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Abstract

We study generalization properties of the area under the @& (AUC), a quantity that has been
advocated as an evaluation criterion for the bipartite irmnpfroblem. The AUC is a different term
than the error rate used for evaluation in classificatiomlems; consequently, existing generaliza-
tion bounds for the classification error rate cannot be usellaw conclusions about the AUC. In
this paper, we define the expected accuracy of a rankingium@nalogous to the expected error
rate of a classification function), and derive distributfome probabilistic bounds on the deviation
of the empirical AUC of a ranking function (observed on a érdiata sequence) from its expected
accuracy. We derive both a large deviation bound, whichesetwy bound the expected accuracy of
a ranking function in terms of its empirical AUC on a test seage, and a uniform convergence
bound, which serves to bound the expected accuracy of aggéaamking function in terms of its
empirical AUC on a training sequence. Our uniform convecgdomound is expressed in terms of a
new set of combinatorial parameters that we term the btpadnk-shatter coefficients; these play
the same role in our result as do the standard VC-dimensiateceshatter coefficients (also known
as the growth function) in uniform convergence results lier ¢classification error rate. A compar-
ison of our result with a recent uniform convergence reseitvéd by Freund et al. (2003) for a
guantity closely related to the AUC shows that the boundidexVby our result can be considerably
tighter.

Keywords: generalization bounds, area under the ROC curve, rankingg deviations, uniform
convergence
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1. Introduction

In many learning problems, the goal is not simply to classify objects into onefigéa number
of classes; instead, rmnking of objects is desired. This is the case, for example, in information
retrieval problems, where one is interested in retrieving documents frome slatabase that are
‘relevant’ to a given query or topic. In such problems, one wants tomdtithe user a list of
documents that contains relevant documents at the top and irrelevamheiatsuat the bottom; in
other words, one wants a ranking of the documents such that relevannhdats are ranked higher
than irrelevant documents.

The problem of ranking has been studied from a learning perspeciilar a variety of settings
(Cohen et al., 1999; Herbrich et al., 2000; Crammer and Singer, 208ané& et al., 2003). Here we
consider the setting in which objects come from two categories, positiveayadive; the learner is
given examples of objects labeled as positive or negative, and the god&t#&n a ranking in which
positive objects are ranked higher than negative ones. This capimresample, the information
retrieval problem described above; in this case, the training examples givthe learner consist
of documents labeled as relevant (positive) or irrelevant (negafias form of ranking problem
corresponds to the ‘bipartite feedback’ case of Freund et al. (2@03his reason, we refer to it as
thebipartite ranking problem.

Formally, the setting of the bipartite ranking problem is similar to that of the birdasgification
problem. In both problems, there is an instance spaé®m which instances are drawn, and a set
of two class label®” which we take without loss of generality to Bé= {—1,+1}. One is given a
finite sequence of labeled training examp®es ((X1,Y1),...,(Xm,ym)) € (X x 9)M, and the goal is
to learn a function based on this training sequence. However, the faitme @inction to be learned
in the two problems is different. In classification, one seeks a binary-¢diluetionh : X —9” that
predicts the class of a new instanceitn On the other hand, in ranking, one seekea-valued
function f : X — R that induces a ranking ovef; an instance that is assigned a higher valud by
is ranked higher than one that is assigned a lower valuk by

What is a good classification or ranking function? Intuitively, a good @laaton function
should classify most instances correctly, while a good ranking functionldliank most instances
labeled as positive higher than most instances labeled as negative t &idirght, these intuitions
might suggest that one problem could be reduced to the other; that esglutidn to one could be
used to obtain a good solution to the other. Indeed, several apprdadbaming ranking functions
have involved using a standard classification algorithm that producessifidation functiorh of
the formh(x) = 0(fh(x)) for some real-valued functiofy, : X—R, where

6(u)

{ 1 ifu>0 )

—1 otherwise’

and then takindi to be the desired ranking functidrdowever, despite the apparently close relation
between classification and ranking, on formalizing the above intuitions &valuation criteria for
classification and ranking functions, it turns out that a good classificatimstion may not always
translate into a good ranking function.

1. In Herbrich et al. (2000) the problem of learning a ranking functicaise reduced to a classification problem, but
on pairs of instances.
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1.1 Evaluation of (Binary) Classification Functions

In classification, one generally assumes that examples (both training esaampldéuture, unseen
examples) are drawn randomly and independently according to some umkanderlying distri-
butionD over X x . The mathematical quantity typically used to evaluate a classification function
h: X—9 is then theexpected error ratéor simplyerror rate) of h, denoted by (h) and defined as

L(h) = Exveo{lihxv} ®)

wherel (., denotes the indicator variable whose value is one if its argument is true emdther-
wise. The error rat&(h) is simply the probability that an example drawn randomly frénx 9
(according toD) will be misclassified byh; the quantity(1—L(h)) thus measures our intuitive
notion of ‘how often instances are classified correctlyhhyln practice, since the distributio®
is not known, the true error rate of a classification function cannot be gtdpxactly. Instead,
the error rate must be estimated using a finite data sample. A widely used estimatenpttical
error rate: given a finite sequence of labeled examges ((X1,Y1),. .., (Xn,¥n)) € (X x 9)N, the
empirical error rate of a classification functibrwith respect tor', which we denote ij(h;T), is
given by

~

1 N
L(hT) = N_le{h(Xi#Yi}' (3)
i=

When the examples il are drawn randomly and independently frafmx 9" according toD, the
sequencd constitutes a random sample. Much work in learning theory researctohasrirated
on developing bounds on the probability that an error estimate obtainedtrama random sample
will have a large deviation from the true error rate. While the true error o classification
function may not be exactly computable, such generalization bounds allmveaspute confidence
intervals within which the true value of the error rate is likely to be contained vigtin probability.

1.2 Evaluation of (Bipartite) Ranking Functions

Evaluating a ranking function has proved to be somewhat more difficulte@pérical quantity that
has been used for this purpose is the average precision, which relegealteprecision curves. The
average precision is often used in applications that contain very fewygositamples, such as infor-
mation retrieval. Another empirical quantity that has recently gained some atiastioeing well-
suited for evaluating ranking functions relates to receiver operatingactaistic (ROC) curves.
ROC curves were originally developed in signal detection theory for aisaty radar images (Egan,
1975), and have been used extensively in various fields such as imlicsion-making. Given a
ranking functionf : X —R and a finite data sequen@e= ((X1,y1),. .., (Xn,Yn)) € (X x 9N, the
ROC curve off with respect tar is obtained as follows. First, a setldf+ 1 classification functions
hi : X—9, where 0<i <N, is constructed fronf:

hi(x) = 8(f(x)-hi),
wheref(-) is as defined by Eq. (1) and
f(xi) if1<i<N

min f(x;) | -1 ifi =0.
min 1))
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The classification functiohy classifies all instances has positive, while for X i <N, h; classifies

all instances ranked higher thanpas positive, and all others (including) as negative. Next, for
each classification functidm, one computes the (empirical) true positive and false positive rates on
T, denoted bytpr; andfpr; respectively:

number of positive examples T classified correctly by,

tpr; =
Pri total number of positive examplesn ’

number of negative examplesThmisclassified as positive by
total number of negative examplesTin ’

fpr; =

Finally, the pointgfpr;,tpr;) are plotted on a graph with the false positive rate orxthgis and the
true positive rate on thg-axis; the ROC curve is then obtained by connecting these points such that
the resulting curve is monotonically increasing. It is #rea under the ROC curyf@UC) that has
been used as an indicator of the quality of the ranking functi¢@ortes and Mohri, 2004; Rosset,
2004). An AUC value of one corresponds to a perfect ranking on ittenglata sequenced., all
positive instances ifi are ranked higher than all negative instances); a value of zerspornds to
the opposite scenariaé., all negative instances ifh are ranked higher than all positive instances).

The AUC can in fact be expressed in a simpler form: if the safipt®ntainsm positive and
n negative examples, then it is not difficult to see that the AUQ @fith respect tol, which we
denote byA(f;T), is given simply by the following Wilcoxon-Mann-Whitney statistic (Cortes and
Mohri, 2004):

AfT) = = > > '{f(xi)>f<xj>}+}'{fm):f(xn}- (4)
My =1} (i =1 2
In this simplified form, it becomes clear that the AUCfolvith respect tar is simply the fraction of
positive-negative pairs il that are ranked correctly bf;, assuming that ties are broken uniformly
at randon®.

There are two important observations to be made about the AUC defingd.abbe first is
that the error rate of a classification function is not necessarily a goachiod of the AUC of a
ranking function derived from it; different classification functions with #ame error rate may pro-
duce ranking functions with very different AUC values. For exampl@&sater two classification
functionshy, hy given byhi(x) = 08(fi(x)),i = 1,2, where the values assigned by f; to the in-
stances in a sample e (X x )8 are as shown in Table 1. Cleariy(h;; T) = L(hy; T) = 2/8, but
A(f1;T) = 12/16 while A(f,; T) = 8/16. The exact relationship between the (empirical) error rate
of a classification functioih of the formh(x) = 8(fy(x)) and the AUC value of the corresponding
ranking functionf,, with respect to a given data sequence was studied in detail by Cortesamnd M
(2004). In particular, they showed that when the number of positivenpbesm in the given data
sequence is equal to the number of negative examplée average AUC value over all possible
rankings corresponding to classification functions with a fixed (empiricedy eate/ is given by
(1—¢), but the standard deviation among the AUC values can be large fordafgethe proportion
of positive instances)/(m- n) departs from 12, the average AUC value corresponding to an error
rate/ departs fron{1— ¢), and the standard deviation increases further. The AUC is thus a differen
term than the error rate, and therefore requires separate analysis.

2. In (Cortes and Mohri, 2004), a slightly simpler form of the WilcoxonfvlaNVhitney statistic is used, which does not
account for ties.
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Xj X1 X2 X3 X4 X5 Xg X7 Xg ’
yi 1 -1 -1 -1 41 41 41 41

fix) || 2 -1 3 4 1 2 5 6
fo) | 2 -1 5 6 1 2 3 4

Table 1: Values assigned by two functiofis f, to eight instances in a hypothetical example. The
corresponding classification functions have the same (empirical) etgyrimat the AUC
values of the ranking functions are different. See text for details.

The second important observation about the AUC is that, as defined,ab@/an empirical
guantity that evaluates a ranking function with respect to a particular dati@isee. What does the
empirical AUC tell us about the expected performance of a ranking functiofuture examples?
This is the question we address in this paper. The question has two pahtgftvehich are im-
portant for machine learning practice. First, what can be said aboukpieeted performance of a
ranking function based on its empirical AUC on an independent test segeSecond, what can
be said about the expected performance of a learned ranking funeise lon its empirical AUC
on the training sequence from which it is learned? The first part of testaun concerns the large
deviation behaviour of the AUC; the second part concerns its unifonmergence behaviour. Both
are addressed in this paper.

We start by defining the expected ranking accuracy of a ranking fun€inalogous to the
expected error rate of a classification function) in Section 2. Sectiontaiosrour large deviation
result, which serves to bound the expected accuracy of a rankingdnric terms of its empirical
AUC on an independent test sequence. Our conceptual approaehiving the large deviation
result for the AUC is similar to that of (Hill et al., 2002), in which large deviatpmoperties of
the average precision were considered. Section 4 contains our urifowergence result, which
serves to bound the expected accuracy of a learned ranking functienria of its empirical AUC
on a training sequence. Our uniform convergence bound is exgr@sserms of a new set of
combinatorial parameters that we term the bipartite rank-shatter coefficibate play the same
role in our result as do the standard shatter coefficients (also knowreagdivth function) in
uniform convergence results for the classification error rate. A casgraof our result with a
recent uniform convergence result derived by Freund et al.32fa® a quantity closely related to
the AUC shows that the bound provided by our result can be consigéigtiter. We conclude with
a summary and some open questions in Section 5.

2. Expected Ranking Accuracy

We begin by introducing some additional notation. As in classification, we akallme that all
examples are drawn randomly and independently according to some (umkaoderlying distri-
bution D over X x . The notationD,; and D_; will be used to denote the class-conditional
distributionsDyy_,1 and Dyy__1, respectively. We use an underline to denote a sequerge,

y € 9N to denote a sequence of elementg)in We shall find it convenient to decompose a data
sequencd = ((X1,y1),-..,(Xn,Yn)) € (X x )N into two componentslx = (xg,...,xn) € XN and

T =(y1,.--,IN) € 9N Several of our results will involve the conditional distributifmﬁmxmzy for
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some label sequenge= (y1,...,yn) € 9N; this distribution is simplyDy, x ... x Dy, If the distri-
bution is clear from the context it will be dropped in the notation of expectst@ml probabilities,
.0, Exy = Exy~». As a final note of convention, we u3ec (X x 9)N to denote a general data
sequences.g, an independent test sequence), Smd(X x 9)M to denote a training sequence.

We define below a quantity that we term the expected ranking accuracputpese of this
quantity will be to serve as an evaluation criterion for ranking functional¢gous to the use of the
expected error rate as an evaluation criterion for classification fungtions

Definition 1 (Expected ranking accuracy) Let f: X—R be a ranking function otk. Define the
expected ranking accuraégr simplyranking accuracyof f, denoted by &), as follows:

1
A(f) = EX~1)+1,X’~D1{I{f(x)>f(x’)}+2|{f(x)_f(x’)}}- (5)

The ranking accuraci( f) defined above is simply the probability that an instance drawn ran-
domly according taD.; will be ranked higher byf than an instance drawn randomly according to
D_1, assuming that ties are broken uniformly at random; the qua#tity thus measures our intu-
itive notion of ‘how often instances labeled as positive are ranked highéthan instances labeled
as negative’. As in the case of classification, the true ranking accdegmnds on the underlying
distribution of the data and cannot be observed directly. Our goal shadl berive generalization
bounds that allow the true accuracy of a ranking function to be estimatadifsempirical AUC
with respect to a finite data sample. The following simple lemma shows that this nexess $or
given a fixed label sequence, the empirical AUC of a ranking fundtignan unbiased estimator of
the expected ranking accuracy faf

Lemma 2 Let f: X—R be a ranking function o, and let y= (y1,...,yn) € 9N be a finite label
sequence. Then

ETX‘TYZX{A(f;T)} = A(f).

Proof Letmbe the number of positive labels ypandn the number of negative labels yn Then
from the definition of empirical AUC (Eg. (4)) and linearity of expectatiome, mave

A 1 1
Enm=y (ACFT)) = mn,, > - > 1}E>q~@+l,xj~@1{'{f<>c>>f<xj>}+§'{f(>@>—f<xj>}}
ityi=+1} {j1yj=—

— 1 z A(f)

M0 Gy =) (ryj=—1}
— A(f).

3. Note that, since the AUC of a ranking functibmwith respect to a data sequerte (X x )N is independent of the
actual ordering of examples in the sequence, our results involving tiétimmal distributionDr, |3, —y, for some label

sequency = (Y1,..-,YN) € 9N depend only on the number of positive labels iry and the numben of negative
labels iny. We choose to state our results in terms of the distribufigy,—, = Dy, X ... X Dy, only because this

is more general than stating them in termsZgf, x D",
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We are now ready to present the main results of this paper, namely, a Engéiah bound in
Section 3 and a uniform convergence bound in Section 4. We note thatsalis are all distribution-
free, in the sense that they hold for any distributibrover X x .

3. Large Deviation Bound for the AUC

In this section we are interested in bounding the probability that the empiric@l éfLa ranking
function f with respect to a (random) test sequeficeill have a large deviation from its expected
ranking accuracy. In other words, we are interested in boundingapilities of the form

P{|A(f;T)—A(f)| > ¢}

for givene > 0. Our main tool in deriving such a large deviation bound will be the following
powerful concentration inequality of McDiarmid (1989), which boundsénaation of any function
of a sample for which a single change in the sample has limited effect:

Theorem 3 (McDiarmid, 1989) Let X,..., Xy be independent random variables with féking
values in a set pfor each k. Letp: (Ap x --- x Ay) —R be such that

SUP [ Q(Xa, .- XN) — (XL, X1, X Xt 1, - XN) | < Gk
X EA X EA

Then for any > 0,
P{O(Xe,..., Xn) — E{@(Xe,....Xn)}| > €} < 20 %I,

Note that whenXy,..., Xy are independent bounded random variables Witk [ay, bx] with
probability one, an@p(Xy, ..., Xn) = zt'zlxk, McDiarmid’s inequality (withcy = by — ax) reduces
to Hoeffding’s inequality. Next we define the following quantity which appda several of our
results:

Definition 4 (Positive skew) Let y= (y1,...,yn) € 9N be a finite label sequence of lengthe\N.
Define thepositive skewof y, denoted by(y), as follows:

ply) = N {i:yi;rl} 1. (6)

The following is the main result of this section:
Theorem 5 Let f: X—R be a fixed ranking function oX’ and let y= (yi,...,yn) € 9N be any
label sequence of length &N. Let m be the number of positive labels inand n= N —m the
number of negative labels in ¥hen for any > 0,

Prr—y {|A(F;T) = A(f)| >} < 2e72me/(mn)

e 20(Y)(1-p(y)Ne>
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Proof Given the label sequengg the random variableX, ..., Xy are independent, with eact
taking values inx. Now, definep: XN—R as follows:

X1, xn) = A(F((Xe,Y1),- -, (XN YN))) -
Then, for eaclk such thaty = +1, we have the following for al; ,xl’( € X:

|@(X1, .-, XN) = Q(XL, - -, X1, Xigs X1 - -, XN) |

L > <<| ) )
= (100> Fx)} T 51 (o0=fo)} | —
M| =1y o2 |

1
Lt o>ty + 5 Fo0 =t}
1
< —n
mn
_ 1
- =

Similarly, for eachk such thaty = —1, one can show for aki,x; € X:

1

(p(xla"')XN)_(p(xl7"°7kalaxll(7xk+l'~'aXN) S - .
n

Thus, takingex = 1/mfor k such thaty = +1 andc, = 1/n for k such thaty, = —1, and applying
McDiarmid’s theorem, we get for arg/> 0,

e 262/(m(A)24n(2)?)

IN

PTX|TY:¥{’A(f;T) - ETX\Ty:Z{A(f;T)}‘ > 8}

Ze—Zmrsz/(m-m) _

The result follows from Lemma 2. [ |

We note that the result of Theorem 5 can be strengthened so that thiang is only on
the numbersn andn of positive and negative labels, and not on the specific label vgctérom
Theorem 5, we can derive a confidence interval interpretation of thedthat gives, for any
0 < & <1, a confidence interval based on the empirical AUC of a ranking fun¢tinora random
test sequence) which is likely to contain the true ranking accuracy withapiiitly at least 1- d.
More specifically, we have:

Corollary 6 Let f: X—RR be a fixed ranking function o and let y= (y1,...,yn) € 9N be any
label sequence of length &IN. Then forany0 < 6 <1,

Prm— \A<f-T>—A<f>\>\/ = =0
=y AT “\2y)-pyN| =

Proof This follows directly from Theorem 5 by setting2?¥)(1-PW)Ne* — § and solving fore. B
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We note that a different approach for deriving confidence interval$hie AUC has recently
been taken by Cortes and Mohri (2005); in particular, their confidémegvals for the AUC are
constructed from confidence intervals for the classification error rate.

Theorem 5 also allows us to obtain an expression for a test sample size sudfigent to
obtain, for given O< €,6 < 1, ang-accurate estimate of the ranking accuracy witonfidence:

Corollary 7 Let f: X—R be afixed ranking function oki and let0 <&,0 < 1. Lety= (y1,...,yn) €
9N be any label sequence of lengthd\N. If
2
N > In(3) -
20(y)(1—p(y))e

then
PTX|TY:¥{\A(f;T)—A(f)\zs} < 3.

Proof This follows directly from Theorem 5 by setting2?¥)(1-PO)INE* < & and solving foN. B
The confidence interval of Corollary 6 can in fact be generalized tovertie conditioning on

the label vector completely:

Theorem 8 Let f: X—R be a fixed ranking function ok and let Ne N. Then forany0 < 6 < 1,

Pr oo \A(f-T)—A(f)|>\/ In ) <35
™7 ' “V2(W)A—p(y)N [ —

Proof ForT € (X x 9)N and 0< & < 1, define the proposition

o In(3)
O(T.0) = AT =AM = o T o (-
Then for any 0< 6 < 1, we have
Pr{®(T,8)} = Er{loms)}
= En {Enmoy{lors}}

= En {Prmoy (®(T.8)}}
Er, {6} (by Corollary 6)
0.

IA

Note that the above ‘trick’ works only once we have gone to a confidernegeval, an attempt
to generalize the bound of Theorem 5 in a similar way gives an expressighiah the final ex-
pectation is not easy to evaluate. Interestingly, the above proof doevewtrequire a factorized
distribution D, since it is built on a result for any fixed label sequegc&Ve note that the above
technique could also be applied to generalize the results of Hill et al. (20@2imilar manner.
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3.1 Comparison with Bounds from Statistical Literature

The AUC, in the form of the Wilcoxon-Mann-Whitney statistic, has been studidensively in
the statistical literature. In particular, Lehmann (1975) derives an exacession for the variance
of the Wilcoxon-Mann-Whitney statistic which can be used to obtain large ti@vibounds for
the AUC. Below we compare the large deviation bound we have derivedtabith these bounds
obtainable from the statistical literature. We note that the expression démveehmann (1975) is
for a simpler form of the Wilcoxon-Mann-Whitney statistic that does not aatfor ties; therefore,
in this section we assume the AUC and the expected ranking accuracyfiasgldeithout the terms
that account for ties (the large deviation result we have derived aqplées also in this setting).

Let f : X—R be a fixed ranking function orx and lety = (yi,...,yn) € 9N be any label
sequence of lengtN € N. Let m be the number of positive labels yjnandn = N — mthe number
of negative labels ity. Then the variance of the AUC df is given by the following expression
(Lehmann, 1975):

O’% = VarTX‘TY:l, {A(f,T)}
A(F)(L=A)) +(m=1)(p —A(F)?) + (n—1)(p2 —A(f)?)

B mn ’ 0

where
Pr = Pxixjoox ~n, {{f<X1+) > f(xl_)} ﬂ{f(X;) > f(Xl_>}} 8
P = Puonax x~my TG > T fn {6 > 06} - (©)

Next we recall the following classical inequality:
Theorem 9 (Chebyshev’s inequality)Let X be a random variable. Then for aay 0,

Var {X}
e

P{IX-E{X}|>¢} <

The expression for the variandg of the AUC can be used with Chebyshev’s inequality to give the
following bound: for anye > 0,

2
. o
PTX\TY:X{}A(fiT)—A(f”ZS} < ?9- (10)
This leads to the following confidence interval: for any@® < 1,
A . C)-A

It has been established that the AUC follows an asymptotically normal distnibukizerefore,
for largeN, one can use a normal approximation to obtain a tighter bound:

Pror—y {|A(FT) —A(T)| > €} < 2(1—d(e/on)), (12)

where®(-) denotes the standard normal cumulative distribution function giveb(by= |, e ?/2dz/\/2n
The resulting confidence interval is given by

Prr—y {|A(f:T) —A(f)| 2 0a® 1 (1-8/2)} < 3. (13)
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The quantitieg; andp; that appear in the expression fif in Eq. (7) depend on the underlying
distributions?,; andD_;; for example, Hanley and McNeil (1982) derive expressiongfoand
p2 in the case when the scord$X ™) assigned to positive instanc&s™ and the score$ (X ™)
assigned to negative instanc¥s both follow negative exponential distributions. Distribution-
independent bounds can be obtained by using the fact that the vadansat most (Cortes and
Mobhri, 2005; Dantzig, 1915; Birnbaum and Klose, 1957)

A(F)(1—A(f)) 1
Omax = min(m, n) = 4min(m,n)

(14)

A comparison of the resulting bounds with the large deviation bound we hexiveed above using
McDiarmid's inequality is shown in Figure 1. The McDiarmid bound is tighter thankbund
obtained using Chebyshev’s inequality. It is looser than the bound obtagiag the normal ap-
proximation; however, since the normal approximation is valid only for |&fgir smaller values
of N the McDiarmid bound is safer.

Of course, it should be noted that this comparison holds only in the distribfrgersetting. In
practice, depending on the underlying distribution, the actual varianteecAUC may be much
smaller tharo?,,,; indeed, in the best case, the variance could be as small as

mn amn’

Therefore, one may be able to obtain tighter confidence intervals with Etjsafd (13) by esti-
mating the actual variance of the AUC. For example, one may attempt to estimateatitéigsps,
p2 andA(f) that appear in the expression in Eq. (7) directly from the data, or one segesam-
pling methods such as the bootstrap (Efron and Tibshirani, 1993), in whiealariance is estimated
from the sample variance observed over a number of bootstrap samtdéseodlfrom the data. The
confidence intervals obtained using such estimates are only approximaté¢ 1— & confidence
is not guaranteed), but they can often be useful in practice.

3.2 Comparison with Large Deviation Bound for Classification Error Rate

Our use of McDiarmid’s inequality in deriving the large deviation bound ferAkC of a ranking
function is analogous to the use of Hoeffding’s inequality in deriving a sirfé@lgie deviation bound
for the error rate of a classification function (see, for example, Deveiyal., 1996, Chapter 8).
The need for the more general inequality of McDiarmid in our derivatiorearisom the fact that
the empirical AUC, unlike the empirical error rate, cannot be expressedsam of independent
random variables. In the notation of Section 1, the large deviation bourtkhdalassification error
rate obtained via Hoeffding's inequality states that for a fixed classificftiioctionh : X—¢9 and
for anyN € N and anye > 0,

Proon {[L(T) —L(h)| >} < 2072 (16)

Comparing Eg. (16) to the bound of Theorem 5, we see that the AUC bdifieds from the
error rate bound by a factor @f{(y)(1— p(y)) in the exponent. This difference translates into a
1/(p(y)(1—p(y))) factor difference in the resulting sample size bounds; in other wordgjen
0<€,3< 1, the test sample size sufficient to obtairesaccurate estimate of the expected accuracy
of a ranking function with-confidence is A(p(y)(1—p(y))) times larger than the corresponding
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Figure 1: A comparison of our large deviation bound, derived using isichid’s inequality, with
large deviation bounds obtainable from the statistical literature (see SectipnThe
plots are ford = 0.01 and show how the confidence interval sszggven by the different
bounds varies with the sample side= m-+ n, for various values ofn/(m+n).

test sample size sufficient to obtain &accurate estimate of the expected error rate of a classifica-
tion function with the same confidence. Hxly) = 1/2, this means a sample size larger by a factor
of 4; as the positive skep(y) departs from 12, the factor grows larger (see Figure 2).

Again, it should be noted that the above conclusion holds only in the distnibirée setting.
Indeed, the variance? of the error rate (which follows a binomial distribution) is given by

2

o L(h)(2-L(h)

N

= Varr.on {L(h;T)} (17)

AN

Comparing to Egs. (14) and (15), we see that although this is smaller thaotsecase variance of
the AUC, in the best case, the variance of the AUC can be considerabligsheading to a tighter
bound for the AUC and therefore a smaller sufficient test sample size.
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Figure 2: The test sample size bound for the AUC, for positive skewp(y) for some label se-
quencey, is larger than the corresponding test sample size bound for the etedrya
factor of 1/(p(1—p)) (see text for discussion).

3.3 Bound for Learned Ranking Functions Chosen from Finite Functio Classes

The large deviation result of Theorem 5 bounds the expected accafacyanking function in
terms of its empirical AUC on an independent test sequence. A simple applicdtibe union
bound allows the result to be extended to bound the expected accumtsaohed ranking function
in terms of its empirical AUC on the training sequence from which it is learnethercase when
the learned ranking function is chosen from a finite function class. Mueeitcally, we have:

Theorem 10 Let ¥ be afinite class of real-valued functions @rand let £ € F denote the ranking
function chosen by a learning algorithm based on the training sequencety.=L(y1,...,ym) €
M pe any label sequence of lengthdVN. Then for anye > 0,

Pss—y {|A(fsiS) ~A(fs)| > e} < 2/F|e VPN,
Proof For anye > 0, we have
Pss—y {|A(fs'S) —A(fs)| > €}

< Psxs(z{r]];a?x\A(f;S)—A(f)}zs}

Y Ps.js,—y {|A(f;S) —A(f)| > €} (by the union bound)
feF -
< 2|F |e 2PW)(A-ply)Me? (by Theorem 5)

As before, we can derive from Theorem 10 expressions for cemdigl intervals and sufficient
training sample size; we give these below without proof:
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Corollary 11 Let ¥ be afinite class of real-valued functions &rand let §€ 7 denote the ranking
function chosen by a learning algorithm based on the training sequencety.=L(y1,...,ym) €
M be any label sequence of lengthdVN. Then for anyd < & < 1,

. In|#|+Mn(3)
Psx|s4—z{\A<fs.s>—A<fs>\ 2\/2p<z><1—p<x§>'\4} =0

Corollary 12 Let 7 be afinite class of real-valued functions.@rand let £ € ¥ denote the ranking
function chosen by a learning algorithm based on the training sequencety.=L(y1,...,ym) €
M be any label sequence of lengthdVN. Then for any0 < €,8 < 1, if

M= 2p(y)(lip(y))82 <Inf+ln<§>>’

then
Pss—y {|A(fsS) — A(fs)| > e} < 8.

Theorem 13 Let ¥ be afinite class of real-valued functions &rand let § € ¥ denote the ranking
function chosen by a learning algorithm based on the training sequencet 8 ¢ N. Then for any

0<odo<1,
P&@M{|A(fs;S)A(fs)|>\/ In|F|+1In(3) } < 5.

2p(Sy)(1—p(Sr))M

The above results apply only to ranking functions learned from finitetimmeclasses. The
general case, when the learned ranking function may be chosen fpmssibly infinite function
class, is the subject of the next section.

4. Uniform Convergence Bound for the AUC

In this section we are interested in bounding the probability that the empiricél éiLa learned
ranking functionfs with respect to the (random) training sequefdeom which it is learned will
have a large deviation from its expected ranking accuracy, when tleéidarfs is chosen from a
possibly infinite function clasg . The standard approach for obtaining such bounds is via uniform
convergence results. In particular, we have for any0,

P{|A(fs;S) —A(fs)| > e} < P{sup\A(f;S)—A(f)\ > s} :
feF

Therefore, to bound probabilities of the form on the left hand side glibigesufficient to derive a
uniform convergence result that bounds probabilities of the form onghehand side. Our uniform
convergence result for the AUC is expressed in terms of a new sethdbinatorial parameters,
termed thebipartite rank-shatter coefficientthat we define below.
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Table 2: Sub-matrices that cannot appear in a bipartite rank matrix.

Xo

4.1 Bipartite Rank-Shatter Coefficients

We define first the notion of a bipartite rank matrix; this is used in our definitidsipartite rank-
shatter coefficients.

Definition 14 (Bipartite rank matrix) Let f: X—R be a ranking function oiX, letmn e N, and
letx = (Xq,...,Xm) € X™, X' = (X},...,X,) € X". Define thebipartite rank matriof f with respect

to x,x’, denoted byt (x,X’), to be the matrix i 0, %, 1}™" whose(i, j)-th element is given by

1
BrxxX)]ij = Nrowt00) + 5 (foa=10¢)) (18)

foralli e {1,....m}, je{1,...,n}.

Definition 15 (Bipartite rank-shatter coefficient) Let ¥ be a class of real-valued functions af
and let mn € N. Define thgm, n)-th bipartite rank-shatter coefficieaf 7, denoted by 7, m,n),
as follows:

= B N f . 19
r(F,mn) Zexrp?éxn}{ t(x,X) | feFi (19)
Clearly, for finite 7, we haver(F,mn) < |F| for all m,n. In generaly(¥,m,n) < 3™ for
all m,n. In fact, not all 3" matrices in{O,%,l}mX” can be realized as bipartite rank matrices.
Therefore, we have
r(F,mn) <y(mn),

where g(m,n) is the number of matrices if0, 3,1}™" that can be realized as a bipartite rank
matrix. The numbeg(m,n) can be characterized in the following ways:

Theorem 16 Lety(m,n) be the number of matrices {®, %, 1}™" that can be realized as a bipar-
tite rank matrixB¢ (x,x’) for some f: X—R, x € XM, x' € X". Then
1. (m,n) is equal to the number of complete mixed acy@ticn)-bipartite graphs (where a
mixed graph is one which may contain both directed and undirected edgdsyhere we
define a cycle in such a graph as a cycle that contains at least one diredge and in which
all directed edges have the same directionality along the cycle).

2. Y(m,n) is equal to the number of matrices {0, 3, 1}™<" that do not contain a sub-matrix of
any of the forms shown in Table 4.1.

Proof
Part 1. Let G(m,n) denote the set of all complete mixéd, n)-bipartite graphs. Clearlyg(m,n)| =
3M", since there arenn edges and three possibilities for each edge. \Let {vy,...,vn}, V' =

407



AGARWAL, GRAEPEL, HERBRICH, HAR-PELED AND ROTH

{V4,...,Vj} be sets ofn andn vertices respectively, and for any matix= [bjj] € {0, 3,1}™,
let E(B) denote the set of edges betweérandV’ given by E(B) = {(vi < Vj) | bjj = 1} U
{(v = V) | bjj =0} U{(vi — V,) | bj = 3}. Define the mapping : {0,3,1}™" — G(m,n)
as follows:

G(B) = (VUV',E(B)).

Then clearlyG is a bijection that puts the se{6, %, 1}™"M and G(m,n) into one-to-one correspon-
dence. We show that a matie {0, 3,1}™" can be realized as a bipartite rank matrix if and only
if the corresponding bipartite grafgh(B) € G(m,n) is acyclic.

First suppos® =B (x,X) for somef : X—R, x € X™, x" € X", and let if possibl&(B) contain
acycle, say

(Vi < Vi, — Vi, — V|, — ... — Vi — Vj, — Vi) -

Then, from the definition of a bipartite rank matrix, we get

Fxiy) < f(xj,) = f06,) = F04,) = ... = f(xi) = FG,) = f(xi,),

which is a contradiction.

To prove the other direction, |8 < {0, %, 1}™" be such thaG(B) is acyclic. LetG'(B) denote
the directed graph obtained by collapsing together vertic€B) that are connected by an undi-
rected edge. Then itis easily verified ti&{B) does not contain any directed cycles, and therefore
there exists a complete order on the vertice&/9B) that is consistent with the partial order defined
by the edges o6'(B) (topological sorting; see, for example, Cormen et al., 2001, Section.22.4)
This implies a unique order on the vertices®fB) (in which vertices connected by undirected
edges are assigned the same position in the ordering). For any™, x’ € X", identifying x, X’
with the vertex set¥,V’ of G(B) therefore gives a unique order &q....,Xm,X},...,Xp. It can be
verified that defining : X—R such that it respects this order then gies B (x,X’).

Part 2. Consider again the bijectio® : {0, 3,1}™" — G(m,n) defined in Part 1 above. We show
that a matrix8 € {0, 1, 1}™" does not contain a sub-matrix of any of the forms shown in Table 4.1
if and only if the corresponding bipartite gra@{B) € G(m,n) is acyclic; the desired result then
follows by Part 1 of the theorem.

We first note that the condition thBte {0, 3, 1}™" not contain a sub-matrix of any of the forms
shown in Table 4.1 is equivalent to the condition that the corresponding rfrixedl-bipartite graph
G(B) € G(m,n) not contain any 4-cycles.

Now, to prove the first direction, & < {0, %,1}”‘*” not contain a sub-matrix of any of the
forms shown in Table 4.1. As noted above, this me@(B) does not contain any 4-cycles. Let, if
possible G(B) contain a cycle of lengthk? say

(Viy =V}, — Vi, — Vj, — .. — Vi —Vj, — Viy).
Now considervil,\/jz. SinceG(B) is a complete bipartite graph, there must be an edge between
these vertices. I6(B) contained the edg@i, — Vj,), it would contain the 4-cycle

(Viy < \/jl — Vi, — \/jz Vi),

which would be a contradiction. Similarly, @(B) contained the edgei, — Vvj,), it would contain
the 4-cycle
(Viy < \/jl — Vi, — \/jz —Viy),
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which would again be a contradiction. Therefdg&B) must contain the eddei, < vj,). However,
this means(B) must contain a &k — 1)-cycle, namely,

(Vil <—\/j2 _Vi3_\/ja_ _Vik_\/jk_vil)‘
By a recursive argument, we eventually get t88B) must contain a 4-cycle, which is a contradic-
tion.
To prove the other direction, I1& € {0, %, 1}™" be such thaG(B) is acyclic. Then it follows

trivially that G(B) does not contain a 4-cycle, and therefore, by the above observBtiwes not
contain a sub-matrix of any of the forms shown in Table 4.1. [ |

We discuss further properties of the bipartite rank-shatter coefficierBgadtion 4.3; we first
present below our uniform convergence result in terms of these deetf.

4.2 Uniform Convergence Bound
The following is the main result of this section:

Theorem 17 Let ¥ be a class of real-valued functions af) and let y= (yi,...,ym) € M be any
label sequence of length MN. Let m be the number of positive labels inaynd n= M —m the
number of negative labels in ¥hen for any > 0,

P&&y{?ﬁgp‘A(f;S)—A(f”Zs} < 4.r(f}"2m’2n).e—m"’32/8(m+n)

)

= 41 (7, 20(y)M. 21— p(y))M) - & P (I-pIMEZ/e
wherep(y) denotes the positive skew ofigfined in Eg. (6).

The proof is adapted from proofs of uniform convergence for thestfi@ation error rate (see,
for example, Anthony and Bartlett, 1999; Devroye et al., 1996). The mffarehce is that since
the AUC cannot be expressed as a sum of independent randonlesyiabre powerful inequalities
are required. In particular, a result of Devroye (1991) is requirdmbtond the variance of the AUC
that appears after an application of Chebyshev’s inequality; the appfiattbis result to the AUC
requires the same reasoning that was used to apply McDiarmid’s inequaligriing the large
deviation result of Theorem 5. Similarly, McDiarmid’s inequality is required mfihal step of the
proof where Hoeffding’s inequality sufficed in the case of classificatiGomplete details of the
proof are given in Appendix A.

As in the case of the large deviation bound of Section 3, we note that tHeaeSheorem 17
can be strengthened so that the conditioning is only on the numixengn of positive and negative
labels, and not on the specific label vectoFrom Theorem 17, we can derive a confidence interval
interpretation of the bound as follows:

Corollary 18 Let ¥ be a class of real-valued functions an and let y= (y1,...,Ym) € 9M be any
label sequence of length MN. Let m be the number of positive labels inaypd n= M —m the
number of negative labels in ¥hen for any0 < 8 < 1,

8(m+n) (Inr(F,2m,2n)+In(3))

Ps,is—y ;sequ\A(f;S)—A(f)\ 2\/ mn :
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Proof This follows directly from Theorem 17 by setting #(F, 2m, 2n) - e~ ™E/8mt) — § gngd
solving fore. [ |

Again, as in the case of the large deviation bound, the confidence intdxa¢ can be general-
ized to remove the conditioning on the label vector completely:

Theorem 19 Let ¥ be a class of real-valued functions ah and let Me N. Then forany <6< 1,

P&@M{fgﬁA(f?s)A(f)}>\/ (Inr (F, 2p(Sy )M,2<1p(8«))M)+|n(g))} .

P(Sr)(1—-p(Sr))M

4.3 Properties of Bipartite Rank-Shatter Coefficients

As discussed in Section 4.1, we hayg , m,n) < y(m,n), wherel(m, n) is the number of matrices
in {0, 3,1}™ " that can be realized as a bipartite rank matrix. The nuniger n) is strictly smaller
than 3™, indeed,y(m,n) = O(eMM(In(min+1)) = (To see this, note that the number of distinct
bipartite rank matrices of sizen x n is bounded above by the total number of permutations of
(m+n) objects, allowing for objects to be placed at the same position. This numbeunas teq
(m+ny12(mn=1) — g(glmtmin(mn)+1)) y Neverthelessyi(m,n) is still very large; in particular,
W(m,n) > 3mamn)_(To see this, note that choosing any column vectc{ar%, 1}™and replicating
it along then columns or choosing any row vector {0, 5,1}" and replicating it along then rows
results in a matrix that does not contain a sub-matrix of any of the forms simowable 4.1. The
conclusion then follows from Theorem 16 (Part 2).)

For the bound of Theorem 17 to be meaningful, one needs an upped bau(i¥ ,m,n) that is
at least slightly smaller thag™¥ &™) Below we provide one method for deriving upper bounds on
r(F,mn); taking9™ = {—1,0,+1}, we extend slightly the standard VC-dimension related shatter
coefficients studied in binary classification4'-valued function classes, and then derive an upper
bound on the bipartite rank-shatter coefficier{t§ , m,n) of a class of ranking function® in terms
of the shatter coefficients of a classpf-valued functions derived frorff .

Definition 20 (Shatter coefficient) Let9y™ = {—1,0,+1}, and let be a class ofy*-valued func-
tions onX. Let Ne N. Define the Nth shatter coefficientf #/, denoted by #,N), as follows:

S(HN) = max|{ (h(xy),....h(xw)) [ he 7).

XE.X

Clearly,s(#,N) < 3N for all N. Next we define a series 6f*-valued function classes derived
from a given ranking function class. Only the second function classs insthis section; the other
two are needed in Section 4.4. Note that we take

+1 fu>0
sign(u) = 0 ifu=0

-1 ifu<O.
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Definition 21 (Function classes)Let ¥ be a class of real-valued functions ah Define the fol-
lowing classes ofy*-valued functions derived from

1. F = {f:x—9*|f(x)=signf(x)) for somef € F} (20)
2. F = {f:ixxx—9"| f(x,x)=signf(x)— f(x')) for somef ¢ F} (21)
3. F = {f;: X—97"]| f,(x) =sign(f(x)— f(z)) for somef € 7,z X} (22)

The following result gives an upper bound on the bipartite rank-shattficients of a class of
ranking functions? in terms of the standard shatter coefficientgfof

Theorem 22 Let F be a class of real-valued functions af) and let# be the class ofy*-valued
functions onX x X defined by Eqg. (21). Then for all,me N,

Proof For anym,n e N, we havé

"Tmn = R {['{f<x|>>f<xj>}+%'{f<xi>—f<x'>}] ‘ fef}’
T Ao { I{f(xi’xﬁ)—ﬂ}+%'{F(xi,x/j>_o}] | fe f}'
= omax [{[fax)] | Fed}

S e {[foxi. X)) | feF}
= max, {(F(x0, %), o, T Xmn X)) | € F 1
= S(F,mn).

Below we make use of the above result to derive polynomial upper bamtie bipartite rank-
shatter coefficients for linear and higher-order polynomial rankingtfans. We note that the same
method can be used to establish similar upper bounds for other algebraieiflyahiaved function
classes.

Lemma 23 For d € N, let % (q) denote the class of linear ranking functions®ft
Fin@gy = {f:RISR|f(x)=wx+bforsomeweR%beR}.

Then for all Ne N,

- 2eN\ ¢
S(Fiin(a):N) < (Z) :

4. We use the notatiofs; | to denote a matrix whos@, j)" element iss;. The dimensions of such a matrix should be
clear from context.
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Proof We have,

Fin@y = {f:RIxRIo™ | f(x,X)=signw:(x—x)) for somew € R%}.
Let (X1,X}),- -, (Xn,Xy) be anyN points inRY x RY, and consider the ‘dual’ weight space corre-
sponding tow € RY. Each point(x;,x!) defines a hyperplang; — x!) in this space; thé\ points
thus give rise to an arrangementhfhyperplanes iRY. It is easily seen that the number of sign

patterns( f(x1,x}), ..., f(xn,Xy)) that can be realized by functiorfse %) is equal to the total
number of faces of this arrangement (Matel, 2002), which is at most (Buck, 1943)

5305000 - 5200 < (%)

Since theN points were arbitrary, the result follows. [ |

Theorem 24 For d € N, let % (q) denote the class of linear ranking functions A (defined in
Lemma 23 above). Then for all, me N,

2emn) @
I (Fiin(a),m,n) < <T> :

Proof This follows immediately from Lemma 23 and Theorem 22. |

Lemma 25 For d,q € N, let Fpo1y(q,q) denote the class of polynomial ranking functionsRShwith
degree less than or equal to g. Then for alE\N,

S‘(-{;—poly(d,q)a N) < <W

coo = 5(()20-0) @

r}fpoly(d,q) = {f:RIXRI>9* | f(x,x) =sign(f(x) — f (X)) for somef € Fponia.q -

where

Proof We have,

Let (x1,X}),..., (XN, Xy) be anyN points inRY x RY. For anyf € Fooyaq. (f(X) — (X)) is a
linear combination ofS(d,q) basis functions of the fornigk(x) — gk(x’)), 1 < k <C(d,q), each
gk(x) being a product of 1 tg components ok. Denoteg(x) = (g1(X), - .-,0c(d,qg) (X)) € RC(4.0),
Then each pointx;,x!) defines a hyperplan@(x;) —g(x)) in RS9; the N points thus give rise

to an arrangement df hyperplanes iR®(@9 . |t is easily seen that the number of sign patterns
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(f(x1,%)),..., f(xn,X})) that can be realized by functiofise Fpol(d.q) is €qual to the total number
of faces of this arrangement (Mafterk, 2002), which is at most (Buck, 1943)

( 2eN )C“’W
C(d,a) '

Since theN points were arbitrary, the result follows. |

Theorem 26 Ford,q e N, let F,01(4,g) denote the class of polynomial ranking functiongRSrwith
degree less than or equal to g. Then for allm& N,

2emn )C(d"”

r(Fpoly(a.q),MN) < <C@L®

where Gd, q) is as defined in Eq. (23).

Proof This follows immediately from Lemma 25 and Theorem 22. |

4.4 Comparison with Uniform Convergence Bound of Freund et al.

Freund et al. (2003) recently derived a uniform convergence déama quantity closely related

to the AUC, namely the ranking loss for the bipartite ranking problem. As poiotiedy Cortes

and Mohri (2004), the bipartite ranking loss is equal to one minus the AULutliform conver-
gence bound of Freund et al. (2003) therefore implies a uniform cgemee bound for the AUE.
Although the result in (Freund et al., 2003) is given only for functionsgasconsidered by their
RankBoost algorithm, their technique is generally applicable. We state thalt below, using our
notation, for the general case(, function classes not restricted to those considered by RankBoost),
and then offer a comparison of our bound with theirs. As in (Freund e2@03), the result is given

in the form of a confidence intervél.

Theorem 27 (Generalization of Freund et al. (2003), Theorem 3).et ¥ be a class of real-valued
functions onx, and let y= (y1,...,ym) € M be any label sequence of lengthdVN. Let m be
the number of positive labels in gnd n=M — m the number of negative labels injhen for any
0<d<1],

PS<|S()_/{ supl( 9~ A(T) ZZ\/Ins(T,Zmn)]-s-ln(%z) +z\/'”‘°’(7’2”r)]+'”(%2>} < 5

— 3

where# is the class ofy*-valued functions ot defined by Eq. (22).

5. As in the AUC definition of (Cortes and Mohri, 2004), the ranking losinde in (Freund et al., 2003) does not
account for ties; this is easily remedied.

6. The result in (Freund et al., 2003) was stated in terms of the VC diorersut the basic result can be stated in
terms of shatter coefficients. Due to our AUC definition which account8deythe standard shatter coefficients are
replaced here with the extended shatter coefficients defined aboy& feamlued function classes.
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The proof follows that of Freund et al. (2003); for completeness, medgtails in Appendix B.
We now compare the uniform convergence bound derived in Sectionith2hat of Freund et al.
for a simple function class for which the quantities involved in both boundsiéhar (¥ ,2m, 2n)
ands( F, 2m), s( T, 2n)) can be characterized exactly. Specifically, consider the function £iags
of linear ranking functions ofR, given by

Finy = {f:R—=R|f(x)=wx+bforsomewe R,beR}.

Although i, (1) is an infinite function class, it is easy to verify th@t1),m,n) = 3 forallm,ne
N. (To see this, note that for any setmf+ n distinct points inR, one can obtain exactly three
different ranking behaviours with functions #,1): one by settingnv > 0, another by setting

w < 0, and the third by settings = 0.) On the other hands(ﬁin(l),N) =4N+1 for allN > 2,
sinceﬁin(l) = %iin(1) (s€€ Eq. (20)) and, as is easily verified, the number of sign patterNs>o@
distinct points inR that can be realized by functions #j, 1) is 4N +1. We thus get from our result
(Corollary 18) that

P5<S(—)_/{ sup }A(f;S)A(f)]z\/8(m+n)(|n3+|n(§))} < 5,

f€hline mn

and from the result of Freund et al. (Theorem 27) that

Pw—y{ sup |A(f;S)—A(f)| >

€Fin
2\/In(8m+lrz1+ln(%2) +2\/In(8n+l)+|n(%2)} <5

n

The above bounds are plotted in Figure 3dc¢ 0.01 and various values @i/ (m+n). As can be
seen, the bound provided by our result is considerably tighter.

4.5 Correctness of Functional Shape of Bound

Although our bound seems to be tighter than the previous bound of Freahd2003), it is still,
in general, too loose to make quantitative predictions. Nevertheless, thd ban serve as a useful
analysis tool if it displays a correct functional dependence on the tcpg@mple size parametars
andn. In this section we give an empirical assessment of the correctnessfahtiimnal shape of
our bound.

We generated data pointsdn= 16 dimensionsX = R®) as follows. We tookD. 1 andD_; to
be mixtures of two 16-dimensional Gaussians each, where each of thenedeshboth the means
and the (diagonal) covariances of the Gaussians were chosen rarfdomly uniform distribution
on the interval0,1). A test sequence was generated by drawing 2500 points fpeimand 2500
points fromD_1.” Training sequences of varying sizes were then generated by drawgmnts
from 9D, 1 andn points from?_ for various values ofnandn. For each training sequence, a linear
ranking function in%,16) Was learned using the RankBoost algorithm of Freund et al. (2003) (the

7. To sample points from Gaussian mixtures we made use of the NETLABotowritten by lan Nabney and Christo-
pher Bishop, available front t p: / / wwv. ncr g. ast on. ac. uk/ net !l ab/ .
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Comparison of uniform convergence bounds: m/(m+n) = 1/2  Comparison of uniform convergence bounds: m/(m+n) = 1/10
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Figure 3: A comparison of our uniform convergence bound with thatretifd et al. (2003) for
the class of linear ranking functions @ The plots are fod = 0.01 and show how the
confidence interval sizegiven by the two bounds varies with the sample $ike m+n,
for various values ofn/(m+n). In all cases where the bounds are meaningfut 0.5),
our bound is tighter.

algorithm was run foil = 20 rounds). The training AUC of the learned ranking function, its AUC
on the independent test sequence, and the lower bound on its expattatyraccuracy obtained
from our uniform convergence result (using Corollary 18, at a denfte leveld = 0.01) were
then calculated. Since we do not have a means to charactéffiggis), m,n) exactly, we used the
(loose) bound provided by Theorem 24 in calculating the lower bound @expected accuracy.
The results, averaged over 10 trials (draws of the training sequemagdh pair of values ahand

n, are shown in Figure 4. As can be seen, the shape of the bound is ispgmmdeence with that of
the test AUC, suggesting that the bound does indeed display a cometibfual dependence.
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Figure 4: The training AUC (top row), test AUC (middle row), and lower thdon expected rank-
ing accuracy (bottom row) of linear ranking functions learned from imgisequences of
different sizedM = m+ n (see Section 4.5). The plots show mean values over 10 trials
for each pair of values ahandn; the error bars show standard deviations (note that there
are also error bars on the values of the lower bound; these have theizanas the error
bars on the training AUC, but are invisible due to the difference in scaleeoplibits).
Although the bound is quantitatively loose, its shape is in correspondetitthat of the
test AUC (and therefore correct).
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5. Conclusion and Open Questions

We have derived geralization bounds for the area under the ROC @MJ&), a quantity used as
an evaluation criterion for the bipartite ranking problem. We have deriatid & large deviation
bound, which serves to bound the expected accuracy of a rankintidnnn terms of its empirical
AUC on a test sequence, and a uniform convergence bound, whiakss® bound the expected
accuracy of a learned ranking function in terms of its empirical AUC on aitrgisequence. Both
our bounds are distribution-free.

Our large deviation result for the AUC parallels the classical large deviedguit for the clas-
sification error rate obtained via Hoeffding’s inequality. A comparison with Ilrge deviation
result for the error rate suggests that, in the distribution-free setting,dhsateple size required to
obtain ane-accurate estimate of the expected accuracy of a ranking functiondvaitimfidence is
larger than the test sample size required to obtain a similar estimate of the expeotatte of a
classification function.

Our uniform convergence bound for the AUC is expressed in terms@ivasat of combinatorial
parameters that we have termed the bipartite rank-shatter coefficientse @befficients define a
new measure of complexity for real-valued function classes and play the Isde in our result as
do the standard VC-dimension related shatter coefficients in uniform evee results for the
classification error rate.

For the case of linear ranking functions Bn for which we could compute the bipartite rank-
shatter coefficients exactly, we have shown that our uniform conmeegbound is considerably
tighter than a recent uniform convergence bound derived by Fretald(2003), which is expressed
directly in terms of standard shatter coefficients from results for clagsdficar his suggests that the
bipartite rank-shatter coefficients we have introduced may be a morepajgdeocomplexity mea-
sure for studying the bipartite ranking problem. However, in order to tdkardage of our results,
one needs to be able to characterize these coefficients for the claskiofréunctions of interest.
The biggest open guestion that arises from our study is, for what fathetion classe¥ can the
bipartite rank-shatter coefficient$ ¥ ,m.n) be characterized? We have derived in Theorem 22 a
general upper bound on the bipartite rank-shatter coefficients ofcidarclass? in terms of the
standard shatter coefficients of the function cléis&ee Eq. (21)); this allows us to establish a poly-
nomial upper bound on the bipartite rank-shatter coefficients for linehh@her-order polynomial
ranking functions ofR? and other algebraically well-behaved function classes. However, thirup
bound is inherently loose (see proof of Theorem 22). Is it possible datifijnter upper bounds on
r(¥,m,n) than that given by Theorem 22?

Our study also raises several other interesting questions. First, castaldigh analogous
complexity measures and generalization bounds for other forms of rapkaidems i e., other
than bipartite)? Second, do there exist data-dependent boundsikingaanalogous to existing
margin bounds for classification? Finally, it also remains an open questiethertighter (or
alternative) generalization bounds for the AUC can be derived usitfigretitt proof techniques.
Possible routes for deriving alternative bounds for the AUC could irecthd theory of compression
bounds (Littlestone and Warmuth, 1986; Graepel et al., 2005).
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Appendix A. Proof of Theorem 17

We shall need the following result of Devroye (1991), which boundwvén@nce of any fuction of
a sample for which a single change in the sample has limited effect:

Theorem 28 (Devroye, 1991; Devroye et al., 1996, Theorem 9.Bgt X, ..., Xy be independent
random variables with Ktaking values in a set|&for each k. Letp: (A1 x --- x Ay) —R be such
that

sup |<P(X1,---7XN)—(P(XL---,Xk—l,X'k,Xk+1,---,XN)| < G-
X €A X €A

Then

NN

N
Var{(‘p(xb"'aXN)} < ZCE
K=1
Proof [of Theorem 17]

The proof is adapted from proofs of uniform convergence for thesdiaation error rate given in
(Anthony and Bartlett, 1999; Devroye et al., 1996). It consists of &beps.

Step 1. Symmetrization by a ghost sample.

For eachk € {1,...,M}, define the random variabl such thatXy, X, are independent and
identically distributed. Le§x = (Xi,...,Xw), and denote b the joint sequencé,y). Then for
anye > 0 satisfyingmre?/(m--n) > 2, we have

" A N E
PS(ISry{?gf'A(f;S)_A(f)’ZS} < 2P&§x|&_y{sup]A(f;S)—A(f; )]25}.

To see this, lef¢ € F be a function for whicHA( f$;S) — A(f$)| > €if such a function exists, and
let f$ be a fixed function inf otherwise. Then

> Psssy{AIE9 A= 5}
> Psgisy{ {A(IES) ~ATE) ZE}H{’A(fg,S)—A(fg)‘Sg}}

Il
m
4
1
\Q
— =
-~
Z)
oF
%)
|
P4
D
v
™
2
U
>({)z
2
©»
L
—
2
—
(f)*
v
|
>
~
—
(2R3
IN
NI m
——
H,_/
—~
N
N
o

418



GENERALIZATION BOUNDS FOR THEAREA UNDER THE ROC QURVE

The conditional probability inside can be bounded using Chebyshevjsiati¢y (and Lemma 2):

A~ . = . € Vars(ls“s(:y{/&(fs*,é)}

Now, by the same reasoning as in the proof of:l'heo[em 5, a change ialtleeof a single random
variableX, can cause a change of at mogtrlin A(f;S) for k: yx = +1, and a change of at most
1/nfor k:yx = —1. Thus, by Theorem 28, we have

. 1 1\2 1\? m-+n

Var & {A(f§9)} < ( Z <> + Z ()) -
S |Sx,Sr=y S

’ P\i=m A\ =g\ 4mn

This gives

Al ¥ Q * € m-+n 1
Péx\sx,s(:yﬂA(fs:S)—A(fs)\ Sé} 1o 2 s,

whenevelmrr_z/(m+ n) > 2. Thus, from Eq. (24) and the definition &f, we have

- ~ . E 1
PSx%Svﬂ{fé’f‘A(f;S)_A(f?S)’25} > EES(\S(ZX{I{IA(fg;S)fA(fé)\Zs}}
1 INZL] *
= SPsis—y {|A(f§;S) —A(fg)| = €}

%P&S{X{sup\A(f;S) —A(f)] > s} .
feF

v

Step 2. Permutations.

Let 'y be the set of all permutations ¢Ky, ..., Xum, X1, ...,Xu} that swapX, andX, for all k
in some subset of1,...,M}. In other words, for alb € 'y andk € {1,...,M}, eithera(Xy) = X,
in which caseo(X) = Xk, or 6(X¢) = X, in which cases(X¢) = X¢. Now, define

5 . 1 1
Br(Xe,. o X, X X) = Z Z (('{fm>>f(x,~>}+§'{fm>—f<xj>}>
{iyi=+1}H{jyj=-1}

~ ~ 1 ~ ~
- ('{f(m>f<x,->}+§'{f<>q>:f<xj>}> :
Then clearly, since(k,f(k are i.i.d. for eaclk, for anyo € 'y, we have that the distribution of

Sup|Bs (Xe, - - X, X1, -, Xw) |
feF

is the same as the distribution of

~

;sel.lf\ﬁf(c(xl),...,G(XM),G(Xl),...,G(XM))\ :
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Therefore, using(D) to denote the uniform distribution over a discreteBgtve have the follow-
ing:

~ ~ £
Psxg(s(_y{sup}A(f;S)A(f; §}
feF

~ ~ €
= PSKSdS(_y{SUp’Bf(Xl)'"7XM7X17'~‘7XM)}Zé}
feF

1 - ~ £

= Ps. & s~y sup}Bf(cr(Xl),...,cr(XM),o(Xl),...,o(XM))\2E
’ M’OE M = | feF

1
Y GGZM Esxéx\&:y{' {sup@\Bf<o<x1>,...,o<xM>,o<i1>,...,o<>"<m>>\z§}}
= Egz 1 |
T USSISY ) [Ty 4, (SURer[Br(O04)....00M).0(X0)....0(R)) |5 }

M

= E&S(S(y{PGNU(rM) {fg}?‘ﬁf(c(xl),...,O'(XM),O'(Xl),...,O'(XM))‘ > %}}

~ €
< max Pog(ry) {sup Bi(0(x1),.,0(xm), O(%a), ... 0(%w)) | = —} .
x,XexM feF 2

Step 3. Reduction to a finite class.

We wish to bound the quantity on the right hand side above. From the defioitibipartite
rank matrices (Definition 14), it follows that for amyx € XM, asf ranges oveff, the number of
different random variables

Bi(0(X1),...,0(Xm),0(X1),...,0(Xm))

is at most the number of different bipartite rank matriBe$z, z') that can be realized by functions
in F, wherez € X" containsx;,%; for i :y; = +1 andz € X" containsx;,%; for j :yj = —1.
This number, by definition, cannot excedd , 2m, 2n) (see the definition of bipartite rank-shatter
coefficients, Definition 15). Therefore, the supremum in the aboveghibity is a maximum of at
mostr (F,2m, 2n) random variables. Thus, by the union bound, we get fonaiy: XM,

}

< r(7,2m,2n).fsuprG~U(rM){‘Bf(o(xl),...,O(XM),G()"(l),...,G(XM)))2

PGN‘U(FM) {fsel'l?p Bf(G(Xl), e 70—(XM)70()’21)7' : '70(XM))) =

NI ™

b

NI m

Step 4. McDiarmid’s inequality.
Notice that for any,, X € XM, we can write

Poairy) {|Br(00). ., 00w),0(%0), ., o) > 5}

. ~ £
PV—VNu(l_lwzl{Xk-ik}) {‘Bf(wl""’%’wl"'”vwv')‘ Z E} )
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B ~o X, IF W= X
WhereV_V_(Wl,...,V\l,\A)andV\/[(_{ e if W= %
Now, for f : X—R andx,x’ € X, let
1
a(fixx) = ooty + 51 r00=r00) -

Then for anyf € F,

Ewwﬂ(ﬂyzl{th(k}) {Bf(Wl) s aVVMana cee 7%)}
1 .
_ L Byt 50y W21 1) L 0T VW) — (£ V0, G) )
mn{i:in+1}{j:YjZ—l} X)W %,1)
1 1[ o o o
= — Z Z —la(f;xi,xj) —a(f;%i,%;) )+ (o(f;%,x;) —a(f;x,%;) )+
m”{i:yi—u}{j:yj—l}“( )+ )
(a(f;xi,ij)—a(f;ii,xj)>+(a(f;ii,ij)—a(f;xi,xj))}
= 0.
Also, it can be verified that for anfy € ¥, a change in the value of a single random varidkjlean
bring a change of at mosyfhin the value of

Br (Wi, ..., Wi, WA,...,.\Wiy)

for k: yx = +1, and a change of at mosti2for k : yx = —1. Therefore, by McDiarmid’s inequality
(Theorem 3), it follows that for any € ¥,

PV—VNU(ﬂltﬂzl{Xk,ik}) {}Bf(wl""’vw’wl’ : ’\M/')’ =z
< 267282/4(m(%)2+n(%)2)
D~ MrE?/8(m+n)

NI ™

Putting everything together, we get that
P&S(_y{sup\A(f;S) —A(f)] > g} < 4. r(szm’zn).efmmz/g(m-kn%
“ | fer

for mre?/(m+n) > 2. In the other case,e., for mre?/(m+n) < 2, the bound is greater than one
and therefore holds trivially. |

Appendix B. Proof of Theorem 27

We shall need to extend the notion of error rat@'tevalued functions (recall that™* = {—1,0,+1}).
Given a functiorh: X—9™ and a data sequende= ((X1,Y1),..., (XN, YN)) € (X X N, let the
empirical error rate ofi with respect tol' be denoted by*(h; T) and defined as

. 1N 1
L'(hT) = N,Zl{'{h(xi#oﬂ{h(xi#yi}+§'{h<xi>—0}}~ (25)
i=

421



AGARWAL, GRAEPEL, HERBRICH, HAR-PELED AND ROTH

Similarly, for an underlying distributiorD over X x 9, let the expected error rate bibe denoted
by L*(h) and defined as

. 1
L = wa{Ww#mmw#w+§MW%m}- (26)

Then, following the proof of a similar result given in (Vapnik, 1982) fardry-valued functions,
it can be shown that if{ is a class ofy*-valued functions otk andM € N, then for anye > 0,

Psopm { sup|L*(h;S) —L*(h)| >ep < 6s(H,2M)e M/, (27)
heH

Proof [of Theorem 27]

To keep notation concise, fdr: X—R andx,x’ € X, let

1
n(Exx) = lgpo<tpy + El{f(x):f(x’)} ;

and forh: X—9*, xe X,ye 9, let

1
v(hixy) = Lnpgzop! thooyy + 51 ihx=o} -
Now, givenSy =y, we have for allf € F

|A(f:9) —A(f)|
= |A-A(f;9) - 1-A(D)

1
mn,, 2 " > }n(f:Xa,Xj)—Ewa,xw@1{ﬂ(f:X,X')}‘
iyi=+1}{jiyj=-1

1 1
mn z Z n(f;XhXj)_E] z Exen , {N(F;X, X"}
{iyi=+1}{jyj=-1} {iyi=+1}
1
P S B (KX B (1))
iyi=+1

1 > (E > n(f;Xa,Xj)—Ex'w1{n(fixi’xl)}>

M=y \Mjyi=—1

1
-+Ew~@1{ﬁi > n<ﬁXuXv—Ex~a1@Kfﬂcxﬂ}}‘
{ityi=+1}

1

M iy =1

IN

1 /
= z n(f;Xa,Xj)—Exm@l{n(f;Xa,X)}‘
{iyj=-1}

1
+EX’~@1{‘E z n(fvxlaxl)_EX~fD+1{n(flxﬂxl)}}‘
{iy =11}
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1
< sup |- Y n(f5zX) —Exen , {n(f2X)}
frerzex | fjyi=—1)
1
+ sup | = % n(fi%,2) —Exen, {n(f;X.2)}
fleF,zex m{i:yi:+1}
= sup|- V(T Xj,—1) — Exrmp , V(T3 X, —1)}
feg | {jyj=-1}
1 - .
+ sup|— v(fz; X, +1) —EXN@H{V(fZ;X,Jrl)}‘ )
f,eF {iyi=+1}

If we augment the notatiob*(h) used to denote the expected error rate with the distribuéan,
L7, (h), we thus get

sup|A(f;S) —A(f)| < sup|l*(fuST) ~Ly ()

m
L (F:8) Ly, ()
fef fre fe?

, (28)

Wheresﬂ) andsﬁni denote the subsequencesabntaining tham positive anch negative examples,
respectively. Now, from the confidence interval interpretation of theltgiven in Eq. (27), we have

Ins(#,2m) +In (32) 5
m * "L > i 0 < =
Pgm_pm { S FH p|L*(f;S) — L, (f2) 2\/ — < 50 (29
s . Ins(F,2n) +1In (%) 3
* .an * ’ >
Pan_pn. §u§ L(f;8") - Ly () 22\/ . < 5 (0
Combining Egs. (28-30) gives the desired result. |
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