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Abstract

Conditional density estimation is a fundamental problem in statistics, with scientific and
practical applications in biology, economics, finance and environmental studies, to name a
few. In this paper, we propose a conditional density estimator based on gradient boosting
and Lindsey’s method (LinCDE). LinCDE admits flexible modeling of the density family
and can capture distributional characteristics like modality and shape. In particular, when
suitably parametrized, LinCDE will produce smooth and non-negative density estimates.
Furthermore, like boosted regression trees, LinCDE does automatic feature selection. We
demonstrate LinCDE’s efficacy through extensive simulations and three real data examples.
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1. Introduction

In statistics, a fundamental problem is characterizing how a response depends on a set
of covariates. Numerous methods have been developed for estimating the mean response
conditioning on the covariates—the so-called regression problem. However, the conditional
mean may not always be sufficient in practice, and various distributional characteristics
or even the full conditional distribution are called for, such as the mean-variance analysis
of portfolios (Markowitz, 1959), the bimodality of gene expression distributions (DeSantis
et al., 2014; Moody et al., 2019), and the peak patterns of galaxy redshift densities (Ball
et al., 2008). Conditional distributions can be used for constructing prediction intervals,
downstream analysis, visualization, and interpretation (Arnold et al., 1999). Therefore, it is
worthwhile to take a step forward from the conditional mean to the conditional distribution.

There are several difficulties in estimating conditional distributions. First, distribution
estimation is more complicated than mean estimation regardless of the conditioning. Sec-
ond, as with conditional mean estimation, conditioning on a potentially large number of
covariates suffers from the curse of dimensionality. When only a small subset of the co-
variates are relevant, proper variable selection is necessary to mitigate overfitting, reduce
computational burden, and identify covariates that may be of interest to the practitioners.
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In this paper, we develop a tree-boosted conditional density estimator based on Lindsey’s
method, which we call LinCDE (pronounced “linseed”) boosting. LinCDE boosting is
built on the base learner LinCDE tree. A LinCDE tree partitions the covariate space
into subregions with homogeneous conditional distributions, estimates a local unconditional
density in each subregion, and aggregates the unconditional densities to form the final
conditional estimator. LinCDE boosting combines LinCDE trees to form a strong ensemble
learner.

LinCDE boosting possesses several desirable properties. LinCDE boosting provides a
flexible modeling paradigm and is capable of capturing distributional properties such as
heteroscedasticity and multimodality. LinCDE boosting also inherits the advantages of tree
and boosting methods, and in particular, LinCDE boosting is able to detect influential
covariates. Furthermore, the conditional density estimates are automatically non-negative
and smooth, and other useful statistics such as conditional quantiles or conditional cumulant
distribution functions (CDFs) can be obtained in a straightforward way from the LinCDE
boosting estimates.

The organization of the paper is as follows. In Section 2, we formulate the problem and
discuss related work. We develop LinCDE in three steps:

• In Section 3, we describe Lindsey’s method for (marginal) density estimation.

• In Section 4, we introduce LinCDE trees for conditional density estimation, which
combine Lindsey’s method with recursive partitioning.

• In Section 5, we develop a boosted ensemble model using LinCDE trees.

In Section 6, we discuss two optional but helpful preprocessing steps—response transforma-
tion and conditional mean centering. In Section 7, we evaluate the performance of LinCDE
boosting on simulated data sets. In Section 8, we apply LinCDE boosting to three real
data sets. We conclude the paper with discussions in Section 9 and provide links to the R
software and instructions in Section 10. All proofs are deferred to the appendix.

2. Background

In this section, we formulate the conditional density estimation problem and discuss related
work.

2.1 Problem Formulation

Let y ∈ R be a continuous response.1 Let x be a d-dimensional covariate vector and x(j) be
its j-th coordinate. We assume the covariates are generated from an unknown underlying
distribution fx(x), and the response given the covariates are sampled from an unknown
conditional density fy|x(y | x). The model is summarized as

xi
i.i.d.∼ fx,

yi | xi
ind.∼ fy|x.

(1)

1. The paper will focus on univariate responses, and the generalization to multivariate responses is straight-
forward and discussed in Section 9.
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We observe n data pairs {(xi, yi)} and aim to estimate the conditional density fy|x(y | x).

2.2 Literature

In general, there are three ways to characterize a conditional distribution: conditional den-
sity, conditional quantile, and conditional CDF. We categorize related works on conditional
density, quantile, and CDF estimation according to the methodology and provide a review
below. We conclude by discussing two desired properties of conditional density estimation
and how our work complements the existing literature on the two points.

A line of study estimates the conditional distribution by localizing unconditional dis-
tribution estimators. Localization methods weight observations according to the distances
between their covariates and those at the target point, and solve the unconditional distribu-
tion estimation problem based on the weighted sample. For conditional density, Fan et al.
(1996) obtain conditional density estimates by local polynomial regression. For conditional
quantile, Chaudhuri (1991a,b) partitions the covariate space into bins and fit a quantile
model in each bin separately, and Yu and Jones (1998) tackle the conditional quantile es-
timation via local quantile loss minimization. For conditional CDF, Stone (1977) proposes
a weighted sum of indicator functions, and Hall et al. (1999) consider a local logistic re-
gression and a locally adjusted Nadaraya-Watson estimator. Localization methods enable
systematic extensions of any unconditional estimator. Nevertheless, the weights usually
treat covariates as equally important, and variable selection is typically not accommodated.
This leaves the methods vulnerable to the curse of dimensionality.

As discussed by Stone (1991a,b), another approach making use of unconditional meth-
ods, first obtains the joint distribution estimate f̂y,x(y, x) and the covariate distribution

estimate f̂x(x), and then follows

f̂y|x(y | x) = f̂y,x(y, x)/f̂x(x) (2)

to derive the conditional density. Nevertheless, the joint distribution estimation is also chal-
lenging, if not more. Arnold et al. (1999) point out except for special cases like multivariate
Gaussian, the estimation of a bivariate joint distribution in a certain exponential form is
onerous due to the normalizing constant. Moreover, the approach is inefficient both sta-
tistically and computationally if the conditional distribution is comparatively simpler than
the joint and covariate distributions; as an example, when the response is independent of
the covariates.

A different thread directly models the dependence of the response’s distribution on the
covariates by a linear combination of a finite or infinite number of bases.

• For conditional density, Kooperberg and Stone (1991, 1992), Stone (1991b), Mâacsse
and Truong (1999), and Barron and Sheu (1991) study the conditional logspline den-
sity model: modeling log(fy|x(y | x)) by tensor products of splines or trigonometric
series and maximizing the conditional log-likelihood to estimate the parameters. The
method is also known as entropy maximization subject to empirical constraints. In
addition, Sugiyama et al. (2010) model the conditional density in reproducing kernel
Hilbert spaces and estimate the loadings by the unconstrained least-squares impor-
tance fitting, and Izbicki and Lee (2016) expand the conditional density in the eigen-

3



Gao and Hastie

functions of a kernel-based operator which adapts to the intrinsic dimension of the
covariates.2

• For conditional quantiles, Koenker and Bassett Jr (1978) formulate conditional quan-
tiles as linear functions of covariates and minimize quantile losses to estimate parame-
ters. Koenker et al. (1994) explore quantile smoothing splines minimizing for a single
covariate, and He et al. (1998) extend the approach to the bi-variate setting, i.e.,
two covariates. Li et al. (2007) propose kernel quantile regression (KQR) considering
quantile regression in reproducing Hilbert kernel spaces. Belloni et al. (2019) approx-
imate the conditional quantile function by a growing number of bases as the sample
size increases.

• For conditional CDF, Foresi and Peracchi (1995) and Chernozhukov et al. (2013)
consider distribution regression: estimating a sequence of conditional logit models
over a grid of values of the response variable. Belloni et al. (2019) further extend the
method to the high-dimensional-sparse-model setting.

The performance of parametric models depends on the selected bases or kernels. Covariate-
specific bases or kernels require a lot of tuning, and the bases or kernels treat covariates
equally, making the approaches less powerful in the presence of many nuisance covariates.

More recently, tree-based estimators arose in conditional distribution estimation. The
overall idea is partitioning the covariate space recursively and fitting an unconditional model
at each terminal node. For conditional quantiles, Chaudhuri and Loh (2002) investigate a
tree-structured quantile regression. Nevertheless, the estimation of different quantiles re-
quires separate quantile loss minimization, which complicates the full conditional distribu-
tion calculation. Meinshausen (2006) proposes the quantile regression forest (QRF) that
computes all quantiles simultaneously. QRF first builds a standard random forest, then esti-
mates the conditional CDF by a weighted distribution of the observed responses, and finally
inverts the CDF to quantiles. For conditional CDF, Friedman (2019) proposes distribution
boosting (DB). DB relies on Friedman’s contrast trees—a method to detect the lack-of-fit
regions of any conditional distribution estimator. DB estimates the conditional distribution
by iteratively transforming the conditional distribution estimator and correcting the errors
uncovered by contrast trees.

Beyond trees, neural network-based conditional distribution estimators have also been
developed. For conditional quantile, standard neural networks with the quantile losses serve
the goal. For conditional density, Bishop (1994, 2006) introduces the mixture density net-
works (MDNs) which model the conditional density as a mixture of Gaussian distributions.
Neural network-based methods can theoretically approximate any conditional distributions
well but are computationally heavy and lack interpretation.

In this paper, we propose LinCDE boosting which complements existing works by pro-
ducing smooth density curves and performing feature selection.

• Compared to quantiles and CDF, smooth density curves are more suitable for the
following reasons.

2. We remark that the approach in (Izbicki and Lee, 2016) adapts to the low intrinsic dimensionality of
covariates but not the sparse dependency of the response on the covariates.
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– Smooth density curves can give valuable indications of distributional characteris-
tics such as skewness and multimodality. Visualization of smooth density curves
is comprehensible to practitioners and can yield self-evident conclusions or point
the way to further analysis.

– Conditional densities can be used to compute class-posterior probabilities us-
ing the Bayes’ rule. The class-posterior probabilities can be further used for
classification.

– Densities can be used to detect outliers: if an observation lies in a very low-
density region, the data point is likely to be an outlier.

LinCDE boosting generates smooth density curves, while directly transforming esti-
mates of conditional quantiles or CDF to conditional density estimates usually pro-
duces bumpy results.

• LinCDE trees and LinCDE boosting calculate feature importances and automatically
focus on influential features in estimation. In contrast, methods like localization and
modeling conditional densities in a linear space or RKHS often treat covariates equally,
and covariate-specific neighborhoods, bases, and kernels may require a lot of tuning.
Therefore, LinCDE boosting is more scalable to a large number of features and less
sensitive to the presence of nuisance covariates.

3. Lindsey’s Method

In this section, we first introduce the density estimation problem — an intermediate step
towards the conditional density estimation. We then discuss how to solve the density
estimation problem by Lindsey’s method (Lindsey, 1974)—a stepping stone of LinCDE.
Lindsey’s method cleverly avoids the normalizing issue by discretization and solves the
problem by fitting a simple Poisson regression. It can be thought of as a method for fitting
a smooth histogram with a large number of bins.

We consider the density family

f(y) = κ(y)eg(y), (3)

where κ : R→ R is some carrying density, and g(y) is known as a tilting function. The idea
is that κ(y) is known or assumed (such as Gaussian or uniform), and g(y) is represented by
a model. We represent g as a linear expansion

g(y) = z(y)>β + β0, (4)

where z(y) is a basis of k smooth functions. As a simple example, if we use standard
Gaussian as the carrying measure and choose z(y)> = (y, y2), the resulting density fam-
ily corresponds to all possible Gaussian distributions. More generally we use a basis of
natural cubic splines in z(y) with knots spread over the domain of y, to achieve a flexible
representation (Wahba, 1975, 1990).

Our goal is to find the density that maximizes the log-likelihood

max
β,β0

1

n

n∑
i=1

log(κ(yi)) + z(yi)
>β + β0, s.t.

∫
κ(y)ez(y)>β+β0dy = 1. (5)
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The constrained optimization problem (5) can be simplified to the unconstrained counter-
part below by the method of Lagrange multipliers (Silverman, 1986),

1

n

n∑
i=1

(
log(κ(yi)) + z(yi)

>β + β0

)
−
∫
κ(y)ez(y)>β+β0dy, (6)

where the multiplier turns out to be one.
The optimization problem (6) is difficult since the integral

∫
κ(y)ez(y)>β+β0dy is gen-

erally unavailable in closed form. One way to avoid the integral is by discretization—the
key idea underlying Lindsey’s method. One divides the response range into B equal bins of
width ∆ with mid-points yb. The integral is approximated by the finite sum∫

κ(y)ez(y)>β+β0dy ≈
B∑
b=1

κ(yb)e
z(yb)

>β+β0∆.

As for the first part of (6), one replaces yi by its bin midpoint yb(i) and groups the obser-
vations,

n∑
i=1

log(κ(yi)) + z(yi)
>β + β0 ≈

n∑
i=1

log(κ(yb(i))) + z(yb(i))
>β + β0

=
B∑
b=1

nb

(
log(κ(yb)) + z(yb)

>β + β0

)
,

where b(i) denotes the bin that the i-th response falls in, and nb represents the number of
samples in bin b. Combining the above two parts, the Lagrangian function with response
discretization takes the form

1

n

B∑
b=1

nb

(
log(κ(yb)) + z(yb)

>β + β0

)
−

B∑
b=1

κ(yb)e
z(yb)

>β+β0∆. (7)

The objective function (7) is equivalent to that of a Poisson regression with B observations

{nb}1≤b≤B and mean parameters µb ∝ κ(yb)e
z(yb)

>β. Therefore, Lindsey’s method estimates
the coefficient β by fitting the Poisson regression with predictors z(y) and offset log (κ(yb)).
The normalizing constant β0 in (7) is absorbed in the Poisson regression’s intercept. Despite
the discretization error, Lindsey’s estimates are consistent, asymptotically normal, and re-
markably efficient (Moschopoulos and Staniswalis, 1994; Efron, 2004). We will demonstrate
the efficacy of Lindsey’s method in two examples at the end of this section.

The number of bins B balances the statistical performance and the computational com-
plexity of Lindsey’s method: as B increases, the discretized objective (7) approaches the
original target (6), and the resulting estimator converges to the true likelihood maximizer;
on the other hand, the computations increase linearly in B. This can become a factor later
when we fit many of these Poisson models repeatedly.

The relationship with a histogram becomes clear now, as well. We could use the counts
in the B bins to form a density estimate, but this would be very jumpy. Typically we would
control this by reducing the number of bins. Lindsey’s method finesses this by having B
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large, but controlling the smoothness of the bin means via the k � B basis functions and
associated coefficients.

To control the model complexity further and avoid numeric instability, we add a regu-
larization term to (6). For example, we can penalize deviations from Gaussian distributions
via the regularizer (Wahba, 1977; Silverman, 1982, 1986)3

∫ (
d3

dy3

(
z(y)>β + β0

))2

dy. (8)

The penalty measures the roughness of the tilting function and is zero if and only if the
tilting function’s exponent is a quadratic polynomial, i.e., a Gaussian distribution. We also
attach a hyper-parameter λ to trade-off the objective (6) and the penalty (8), and tune λ
to achieve the best performance on validation data sets.4

It is convenient to tailor the spline basis functions to the penalty (8). Note that, for
arbitrary bases z(y), the penalty (8) is a quadratic form in β∫ (

d3

dy3

(
z(y)>β + β0

))2

dy =
k∑

j,l=1

βjβl

∫
z′′′j (y)z′′′l (y)dy =: β>Ωβ, (9)

where Ωjl =
∫
z′′′j (y)z′′′l (y)dy. We transform our splines so that the associated Ω =

diag(ω1, . . . , ωk) is diagonal and the penalty reduces to a weighted ridge penalty

k∑
j=1

ωjβ
2
j . (10)

(details in Appendix B). Figure 1 depicts an example of the transformed spline bases (in
increasing order of ωj) and the corresponding smoothed versions. Among the transformed
bases, the linear and quadratic components (the first and the second bases in Figure 1) are
not shrunk by the roughness penalty (Claim 1), and higher-complexity splines are more
heavily penalized (Hastie et al., 2009, chap. 5, for example).

Claim 1 Assume u ∈ Rk and Ωu = 0. Then z(y)>u is a linear or quadratic function of y.

We provide examples of Lindsey’s performance in estimating bimodal and skewed dis-
tributions in Appendix G.

4. LinCDE Trees

In this section, we extend the density estimation problem to the conditional density esti-
mation problem. We introduce LinCDE trees combining Lindsey’s method and recursive
partitioning: LinCDE trees partition the covariate space and estimate a local unconditional
density via Lindsey’s method in each subregion.

3. We regard exponential distribution as a special case of Gaussian distribution with σ2 = ∞.
4. The hyper-parameter is a function of the penalized Poisson regression’s degrees of freedom (see Ap-

pendix A for more details), and we tune the degrees of freedom to achieve the best performance on
validation data sets.
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Figure 1: Transformed natural cubic spline bases. The transformed basis functions before
smoothing (in black) are normalized such that

∫
(zj(y))2dy = 1 and ordered by

increasing penalty factors. The damped functions (in red) represent smoothed
basis functions (with 6 degrees of freedom).

To begin, we restate the target density family (3) in the language of exponential fami-
lies. We call z(y) the sufficient statistics and g(y) the natural parameter. We replace the
normalizing constant β0 by the negative cumulant generating function ψ(β) defined as

eψ(β) =

∫
κ(y)ez(y)>βdy.

As a result, the density normalizing constraint of κ(y)ez(y)>β−ψ(β) is automatically satisfied.
In the conditional density estimation problem, we consider the target family generalized

from (3)

fy|x(y | x) = κ(y)ez(y)>β(x)−ψ(β(x)). (11)

The dependence of the response on the covariates is encoded in the parameter function
β(x).

• If there is only k = 1 basis function z(y) and the parameter function satisfies β(x) =
x>θ, then the conditional density family (11) reduces to a generalized linear model.

• If we consider a standard Gaussian prior, basis function z(y) = y, and tree-structured
β(x), then the conditional density family (11) reduces to a regression tree model. In
fact, the optimization problem based on (11) is equivalent to finding the tree β(x)
that minimizes the sum of squares

∑n
i=1(yi − β(xi))

2.
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Similar to the density estimation problem, we aim to find the member in the family (11)
that maximizes the conditional log-likelihood with the ridge penalty (10)

`(R0;β) :=
n∑
i=1

log(κ(yi)) + z(yi)
>β(xi)− ψ(β(xi))− λ

k∑
j=1

ωjβ
2
j (xi)


=

n∑
i=1

(
log(κ(yi)) + z(yi)

>β(xi)− ψ(β(xi))
)
− λ

n∑
i=1

k∑
j=1

ωjβ
2
j (xi),

(12)

where R0 denotes the full covariate space. If β(x) is constant, the problem (12) simplifies
to the unconditional problem (5).

The conditional density estimation problem (12) is more complicated than the uncon-
ditional version due to the covariates x:

1. Given a covariate configuration x, there is often at most one observation whose co-
variates take the value x, and it is infeasible to estimate the multi-dimensional natural
parameter β(x) based on a single observation;

2. There may be a multitude of covariates, and only a few are influential. Proper variable
selection or shrinkage is necessary to avoid serious overfitting.

One way to finesse these difficulties is to use trees (Breiman et al., 1984). We divide the
covariate space into subregions with approximately homogeneous conditional distributions,
and in each subregion, we estimate a density independent of the covariate values. We
name the method “LinCDE trees”. In response to the first difficulty, by conditioning on
a subregion instead of a specific covariate value, we have more samples for local density
estimation. In response to the second difficulty, trees perform internal feature selection, and
are thus resistant to the inclusion of many irrelevant covariates. Moreover, the advantages
of tree-based methods are automatically inherited, such as being tolerant of all types of
covariates, computationally efficient, and easy to interpret.

Before we delve into the details, we again draw a connection between LinCDE trees
and a naive binning approach—fitting a multinomial model using trees. The naive ap-
proach discretizes the response into multiple bins and predicts conditional cell probabilities
through recursive partitioning. The normalized conditional cell probabilities serve as an
approximation of the conditional densities, and the more bins used, the higher resolution
the approximation is. The naive approach is able to detect subregions with homogeneous
multinomial distributions. However, the estimates are bumpy, especially with a large num-
ber of bins. To stabilize the method, restrictions enforcing smoothness are required, and
LinCDE trees realize the goal by modeling the density exponent using splines.

We now explain how LinCDE trees work. In standard tree algorithms, there are two
major steps:

• Splitting : partitioning the covariate space into subregions;

• Fitting : performing estimation in each subregion. The estimator is usually obtained
by maximizing a specific objective function. For example, in a regression tree with `2
loss, the estimator is the sample average; in a classification tree with misclassification
error, the estimator is the majority’s label.
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The fitting step is a direct application of Lindsey’s method in Section 3. In a subregion
R, we treat the natural parameter functions as a constant vector and solve the density
estimation problem via Lindsey’s method. We denote the objective function value in region
R with parameter β by `(R;β), and let β̂R := arg maxβ `(R;β).

Now for the splitting step. Similar to standard regression and classification trees, we
proceed with a greedy algorithm and select the candidate split that improves the objective
the most. Mathematically, starting from a region R, we maximize the improvement statistic

∆`(R, s) := `(Rs,L; β̂Rs,L) + `(Rs,R; β̂Rs,R)− `(R; β̂R), (13)

where Rs,L and Rs,R are the regions on the left and right of the candidate split, respectively.
Direct computation of the difference (13) requires running Lindsey’s method twice for each
candidate split s to obtain β̂Rs,L , β̂Rs,R , and the total computation time is prohibitive.
Instead, we approximate the difference (13) by a simple quadratic term in Proposition 2,
which can be computed much faster.

Proposition 2 (Improvement approximation for LinCDE trees) Let nR, z̄R be the
sample size and average sufficient statistics in a region R. Assume that ∇2ψ(β̂R) + 2λΩ is
invertible, then for a candidate split s,

1

nR
∆`(R, s) =

nRs,LnRs,R
2n2
R

(z̄Rs,L − z̄Rs,R)>
(
∇2ψ(β̂R) + 2λΩ

)−1
(z̄Rs,L − z̄Rs,R) + rs,

where the remainder term satisfies rs = O
(
‖z̄Rs,L − z̄R‖32 + ‖z̄Rs,R − z̄R‖32

)
.

Proposition 2 writes the difference (13) as a quadratic form plus a higher-order residual
term. If z(y) = y, the model amounts to a regression tree, and the residual term is zero. For
general z(y), when the average sufficient statistics z̄Rs,L , z̄Rs,R are similar, the residual term
is of smaller order than the quadratic form and can thus be dropped; when z̄Rs,L , z̄Rs,R
are considerably different, the residual term is not guaranteed to be small theoretically.
However, we empirically demonstrate in Appendix C that at such splits, the quadratic
form is still sufficiently close to the true log-likelihood difference. Based on this empirical
evidence, we use the quadratic approximation to determine the optimal splits.

The quadratic approximation suggested by Proposition 2 is the product of the squared
difference between the average sufficient statistics in RL and RR normalized by ∇2ψ(β̂R)+
2λΩ, further multiplied by the sample proportions inRL andRR. By selecting the candidate
split that maximizes the quadratic term, we will end up with two subregions different in
the sufficient statistics means and reasonably balanced in sample sizes.

To compute the quadratic approximation, we need subsample proportions nRs,L/nR,

nRs,R/nR, average sufficient statistics z̄Rs,L , z̄Rs,R , and the inverse matrix of∇2ψ(β̂R)+2λΩ.
For the candidate splits based on the same covariate, {nRs,L , nRs,R , z̄Rs,L , z̄Rs,R} can be
computed efficiently for all split points by scanning through the samples in R once. For all
candidate splits, this takes O(dnRk) operations in total. The matrix ∇2ψ(β̂R) is shared
by all candidate splits and needs to be computed only once. The difficulty is that ∇2ψ(β)
is often unavailable in closed form. However, since ∇2ψ(βR) is the covariance matrix of
the sufficient statistics z(y) if the responses y are generated from the model parameterized
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by βR, we apply Lindsey’s method to estimate βR and compute the covariance matrix of
the sufficient statistics based on the multinomial cell probabilities, which takes O(k2B).
Appendix F shows the resulting covariance matrix approximates ∇2ψ(β̂R) with a fine dis-
cretization. The total time complexity of the above splitting procedure is summarized in
the following Proposition 3.

Proposition 3 Assume that there are S candidate splits, k basis functions, d covariates,
B discretization bins, and nR observations in the current region. Then the splitting step
for LinCDE trees is of time complexity O(dnRk + k2B + k3 + Sk2).

According to Proposition 3, the computation time based on the quadratic approximation
is significantly reduced compared to running Lindsey’s methods in Rs,L and Rs,R for all
candidate splits, which takes Õ(S(nRk + k2B + k3)).

Having found the best split smax, we partition R into two subregions Rsmax,L and
Rsmax,R, and repeat the splitting procedure in the two subregions. Along the recursively
partitioning, the response distribution’s heterogeneity is reduced. The fitting and the split-
ting steps of LinCDE trees are summarized below, the complete algorithm is given in Al-
gorithm 1, and implementation details are displayed in Section 10. Stopping criteria for
LinCDE trees are discussed in Appendix D.

• Fitting (LinCDE tree). At a region R:

1. Count the number of observations {nR,b} in each bin.

2. Fit a Poisson regression model with the response variable {nR,b}, regressors
z(yb), the offset log(κ(yb)), and a weighted ridge penalty.5 Denote the estimated
coefficients by β̂R.

• Splitting (LinCDE tree). At a region R:

1. Compute {nRs,L , nRs,R , z̄Rs,L , z̄Rs,R} for each candidate split, and approximate

∇2ψ(β̂R) by z(y)’s covariance matrix in R using β̂R.

2. For each candidate split s ∈ S, compute the quadratic approximation ∆̂`(R, s)
by Proposition 2, and choose the split smax = arg maxs∈S ∆̂`(R, s).

Algorithm 1: LinCDE tree

Start at the full covariate space.
1. Apply Fitting (LinCDE tree) and obtain the natural parameter estimator β̂.
2. Apply Splitting (LinCDE tree) and obtain the optimal split smax.
3. Repeat steps 1 and 2 to the left and right children of smax until the stopping
rule is satisfied, e.g., the maximal tree depth is reached. Output the natural
parameter estimator β̂ in each subregion.

5. Weights (penalty factors) of the ridge penalty are ω = [ω1, . . . , ωk]
>.
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To conclude the section, we demonstrate the effectiveness of LinCDE trees in three toy
examples. We generate 10 covariates randomly uniformly on [−1, 1]. The response follows

fy|x(y | x) =


f1(y), x(1) < −0.2,

f2(y), x(1) ≥ −0.2, x(2) ≥ 0,

f3(y), x(1) ≥ −0.2, x(2) < 0,

(14)

with three different local densities fl(x), 1 ≤ l ≤ 3, varying in variance, number of modes,
and skewness. The response distribution is determined by the first two covariates and
independent of the rest. In Figure 2, we plot the average conditional density estimates in
the three subregions. LinCDE trees are able to distinguish the densities differing in the
above characteristic properties and produce good fits. We also compute the normalized
importance score—the proportion of overall improvement in the split-criterion attributed
to each splitting variable. In all settings, the first two covariates contribute over 99%
importance. In other words, LinCDE trees focus on the first two influential covariates and
avoid splitting at nuisance covariates.

5. LinCDE Boosting

Although LinCDE trees are useful as stand-alone tools, our ultimate goal is to use them
as weak learners in a boosting paradigm. Standard tree boosting (Friedman, 2001) builds
an additive model of shallow trees in a forward stagewise manner. Though a single shallow
tree is high in bias, tree boosting manages to reduce the bias by successively making small
modifications to the current estimate.6

We proceed with the boosting idea and propose LinCDE boosting. Starting from a null
estimate, we iteratively modify the current estimate by modifying the natural parameter
functions via a LinCDE tree. In particular, at the t-th iteration,

γt(x) = arg max
LinCDE tree γ(x)

`(R0;βt(x) + γ(x)),

βt+1(x)← βt(x) + γt(x).
(15)

Section 5.1 gives details. We remark that the LinCDE tree modifier γt(x) for boosting
is an expanded version of that in Section 4: in previous LinCDE trees, all samples share
the same carrying density κ(y), while in LinCDE trees for boosting, the carrying densities

κ(y)ez(y)>βt(x)−ψ(βt(x)) differ across units. We elaborate on LinCDE trees with heteroge-
neous carrying densities in Sections 5.2 and 5.3.

Before discussing the details of LinCDE boosting, we compare LinCDE boosting and
LinCDE trees on a toy example in Figure 3. We consider a locally Gaussian distribution
with heterogeneous mean and variance

y = x(1) + 0.5x(2)ε, ε ∼ N (0, 1). (16)

6. We remark that another successful ensemble method —random forests (Breiman, 2001)—are not ap-
propriate for LinCDE trees. Random forests construct a large number of trees with low correlation
and average the predictions. Deep trees are grown to ensure low-bias estimates, which is, however,
unsatisfactory here because deep LinCDE trees will have leaves with too few observations for density
estimation.
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Figure 2: LinCDE trees’ conditional density estimates of heteroscedastic, multimodal and
skewed distributions. The responses are generated from the model (14). The
local densities are Gaussian with variances σ2 ∈ {0.25, 1, 4} (first row), Gaussian
mixtures with 1, 2, 3 components (second row), and Beta distributions with
skewness κ ∈ {−0.8, 0, 0.8} (third row). In each trial, we sample 400 observations.
We use 10 natural cubic splines , 5 degrees of freedom, and a maximal tree depth
at 2. We repeat 100 times and plot the average fits against the true densities.

The covariate generating mechanism is the same as in Figure 2. We plot the average esti-
mated conditional densities plus and minus one standard deviation. Though both LinCDE
trees and LinCDE boosting produce good fits in all settings, the estimation bands of LinCDE

13



Gao and Hastie

y

de
ns

ity 0.0

0.1

0.2

0.3

0.4

0.5

I: µ = 0.5, σ2 = 0.6

−4 −2 0 2 4

II: µ = 0.5, σ2 = 1.6

−4 −2 0 2 4

III: µ = −0.5, σ2 = 0.6

0.0

0.1

0.2

0.3

0.4

0.5

IV: µ = −0.5, σ2 = 1.6

truth
LinCDE tree LinCDEBoosting

Figure 3: Comparison of LinCDE trees and LinCDE boosting. The responses are generated
from (16). We pick 4 landmarks corresponding to different conditional means and
variances. From top to bottom, the conditional means decrease from 0.5 to −0.5.
From left to right, the conditional variances increase from 0.6 to 1.6. In each
trial, we sample 400 observations from the target distribution. We repeat each
setting 100 times, and plot the average estimated conditional densities plus and
minus one standard deviation against the true densities.

boosting are always narrower by around a half. The observation implies LinCDE boosting
is more stable than LinCDE trees.

5.1 Additive Model in the Natural Parameter Scale

In LinCDE boosting, we build an additive model in the natural parameter scale of the
density (11). We find a sequence of LinCDE tree-based learners with parameter functions
{γt(x)}0≤t≤T−1, and aggregate those “basis” functions to obtain the final estimate7

βT (x) =

T−1∑
t=0

γt(x). (17)

In other words, at the t-th iteration, we tilt the current conditional density estimate

f t+1
y|x (y | x) = f ty|x(y | x) · ez(y)>γt(x)−φβt(x)(γ

t(x)) (18)

7. To stabilize the performance, we may shrink γt(x) by some learning rate η ∈ (0, 1], and let βT (x) =∑T−1
t=0 ηγt(x).

14



LinCDE: Conditional Density Estimation via Lindsey’s Method

based on knowledge γt(x) learned by the new tree. Here φβt(x)(γ
t(x)) = ψ(βt(x) + γt(x))−

ψ(βt(x)) is the updated normalizing function (depending on x). Appendix E shows that
if the true conditional density is smooth, the approximation error of LinCDE boosting’s
function class (18) with splines z(y) will vanish as the number of splines k increases.

We determine the LinCDE tree modifiers in (17) by log-likelihood maximization. We aim
to find the modifier that produces the largest improvement in the objective `(R0;β(x)+γ(x))
defined as

n∑
i=1

(
log(f ty|x(yi | xi)) + z(yi)

>γ(xi)− φβt(xi)(γ(xi))
)

+ λ
n∑
i=1

k∑
j=1

ωjγ
2
j (xi). (19)

Compared to the objective (12) of LinCDE trees, the only difference in (19) is the normaliz-
ing function φβt(x)(γ

t(x)). When βt(x) is a constant function, the normalizing functions of
LinCDE trees and LinCDE boosting coincide. In Section 5.2 and 5.3, we demonstrate how
LinCDE boosting’s heterogeneous normalizing function complicates the fitting and splitting
steps and propose corresponding solutions.

5.2 Fitting Step

For fitting, given a subregion R, the problem (19) can not be solved by Lindsey’s method
as in LinCDE trees, because βt(x) could be non-constant in the subregion R. Explicitly,
instead of the single constraint in (5), we could have up to nR constraints∫

κ(y)ez(y)>(βt(xi)+γ
t(xi))+β0(xi)dy = 1, xi ∈ R. (20)

As a result, the Lagrangian function (6) as well as subsequent discrete approximations for
Lindsey’s method are invalid.

Fortunately, we can solve the fitting problem iteratively (Fitting (LinCDE boosting)
below). Define bin probabilities

pb(β
t(x)) :=

κ(yb)e
z>(yb)β

t(x)∑B
b′=1 κ(yb′)ez

>(yb′ )β
t(x)

,

p̄b(R;βt(x)) :=
1

nR

∑
xi∈R

p̄b(β
t(xi)).

(21)

We feed the marginal cell probabilities p̄b(R;βt(x)) to the fitting step as the baseline for
modification. In Step 1, Lindsey’s method produces a natural parameter modifier and
a universal intercept for all samples in R. The intercept produced by Lindsey’s method
guarantees that the marginal cell probabilities to sum to unity, but not for every individual
xi. In Step 2, we update the individual normalizing constants to ensure all constraints (20)
are satisfied. In Proposition 4, we show that the fitting step of LinCDE boosting converges
to the maximizer of the objective (19).

• Fitting (LinCDE boosting). In a region R, initialize γ = 0 ∈ Rk, γ0 = 0 ∈ RnR . Count
the number of observations {nR,b} in each bin.
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1. Updating γ. Compute p̄b(R;βt(x)+γ) in (21), fit a Poisson regression model with
the response variable {nR,b}, regressors z(yb), the offset log(p̄b(R;βt(x) + γ)),
and a weighted ridge penalty. Denote the estimated coefficients by ∆γ. Update
γ ← γ + ∆γ.

2. Updating γ0 (normalization). Compute the normalizing constants for all samples
in R

γ0,i = − log

(∑
b

pb(β
t(xi))e

z(yb)
>γ

)
.

3. Repeat steps 1 and 2 until ‖∆γ‖2 ≤ ε. Output γ, γ0.

Proposition 4 Assume that λ = 0 and Y is supported on the midpoints {yb}, then the
fitting step of LinCDE boosting converges, and the output γtR satisfies

γtR = arg max
γ

`(R;βt(x) + γ).

We offer some intuition behind Proposition 4; i.e., why the fitting step of LinCDE boosting
will stop at the likelihood maximizer. If βt(x) + γ is already optimal, then the average
sufficient statistics z(y) under marginal probabilities (21) should match the observations,
which yields the KKT condition of the Poisson regression in Lindsey’s method. As a result,
Lindsey’s method will produce zero updates, and the algorithm converges.

5.3 Splitting Step

Reminiscent of the splitting step for LinCDE trees, we seek the split that produces the
largest improvement in the objective (19). Proposition 2 is not valid due to the heterogeneity
in βt(x), and we propose an expanded version.

Proposition 5 In a region R, let nR be the sample size and γtR be the optimal update.
Define the average sufficient statistics residuals as

r̄tR :=
1

nR

∑
xi∈R

(
zi −∇ψ(βt(xi) + γtR)

)
.

Given a candidate split s, define

Ψt
s(γ

t
R) :=

nRs,R
nR

 1

nRs,L

∑
xi∈Rs,L

∇2ψ
(
βt(xi) + γtR

)−1

+
nRs,L
nR

 1

nRs,R

∑
xi∈Rs,R

∇2ψ
(
βt(xi) + γtR

)−1

.

Then the improvement of the unpenalized conditional log-likelihood satisfies

1

nR
∆`t(R, s) =

nRs,LnRs,R
2n2
R

(
r̄tRs,L − r̄

t
Rs,R

)>
Ψt
s(γ

t
R)
(
r̄tRs,L − r̄

t
Rs,R

)
+ rs,

where rs = O(‖r̄tRs,L − r̄
t
R‖32 + ‖r̄tRs,R − r̄

t
R‖32).
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The average sufficient-statistic residuals r̄tR measures the deviation of the current esti-
mator from the observations. By maximizing the quadratic approximation in Proposition 5,
we find the candidate split s such that r̄tRs,L and r̄tRs,R are far apart, and modify the current
estimator differently in the left and right children determined by the selected split. The
updated splitting procedure is summarized in Splitting (LinCDE boosting).

• Splitting (LinCDE boosting). In a region R:

1. Compute {nRs,L , nRs,R , z̄Rs,L , z̄Rs,R} for each candidate split s, and approximate

Ψ̃t(γtR) in (22) by the average covariance matrix of z(y) in R.

2. For each candidate split s ∈ S, compute the quadratic approximation ∆̂`(R, s)
by Proposition 5, and choose the split smax = arg maxs∈S ∆̂`(R, s).

The computation of the quadratic approximation is largely the same, except that the
normalization matrix Ψt

s(γ
t
R) varies across candidate splits and requires separate computa-

tion. To relieve the computational burden, we propose the following surrogate independent
of candidate splits8

Ψ̃t(γtR) =

 1

nR

∑
xi∈R

∇2ψ
(
β(xi) + γtR

)−1

. (22)

The surrogate Ψ̃t(γtR) coincides with Ψt
s(γ

t
R) if βt(x) is a constant vector, or the normalizing

function ψ(β) is quadratic.
Proposition 6 gives the computational time complexity of the splitting procedure (Split-

ting (LinCDE boosting)). The computation time scales linearly with regard to the sample
size multiplied by dimension and the number of candidate splits. The extra computation
compared to LinCDE trees comes from residual calculations and individual normalizations.

Proposition 6 Assume that there are S candidate splits, then the splitting step for LinCDE
boosting is of computational time complexity Õ(dnRkB + nRk

2B + k3 + Sk2).

6. Pretreatment

In this section, we discuss two pretreatments: response transformation and centering. The
pretreatments are helpful when the response is heavy-tailed and when the conditional dis-
tributions fy|x(y | x) vary wildly in location.

6.1 Response Transformation

Heavy-tailed response distributions are common in practice, such as income and waiting
time. If the response is heavy-tailed, then in Lindsey’s method, most bins will be approx-
imately empty. As a result the model tends to be over-parameterized and the estimates
tend to overfit.

8. In practice, we add a universal diagonal matrix to 1
nR

∑
xi∈R∇2ψ(β(xi) + γtR) to stabilize the matrix

inversion.
9. The initialization β0(x) is usually a constant vector, e.g., zero vector, independent of the covariates.
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Algorithm 2: LinCDE boosting

Initialize the natural parameter function β0(x).9

for t = 1:T do
1. Apply Algorithm 1 with Fitting (LinCDE boosting), Splitting (LinCDE
boosting), and obtain the optimal LinCDE tree modifier γ̂t−1(x).

2. Update

β̂t(x)← β̂t−1(x) + γ̂t−1(x).

end

Output β̂T (x).
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Figure 4: Response transformation and Lindsey’s method. We generate 100 responses y =
w2, w ∼ exp(1), and apply Lindsey’s method. The left panel plots the histogram
of the responses, and we observe several extreme values (≥ 10). The middle panel
plots the true density and Lindsey’s estimate. Due to a limited number (20) of
bins and a wide response range caused by outliers, Lindsey’s estimate is inaccurate
(not sharp enough) around zero. The right panel demonstrates Lindsey’s estimate
using log-transformed responses. The log-transformation helps the estimation
around zero and does not sacrifice the fit at the tail.

In response to the heavy-tailed responses, we recommend transforming the response
first to be marginally normally distributed. Often log and cube-root transformations are
useful. In a more principled way, we can apply the Box-Cox transformation to the responses
and choose the optimal power parameter to produce the best approximation of a Gaussian
distribution curve. Once the model is fit to the transformed data, we map the estimated
conditional densities of the transformed responses back to those of the original observations.
See Figure 4 for an example.
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6.2 Centering

For a distribution whose conditional components differ wildly in location, LinCDE needs
a large number of sufficient statistics to capture local distributional characteristics. For
instance, Figure 5 displays a conditional Gaussian mixture with location shift

y = 3x(1) + wz(1) + (1− w)z(2),

w ∼ Ber(0.5), z(1) ∼ N (−0.5, 0.06), z(2) ∼ N (0.5, 0.06), z(1) ⊥⊥ z(2).
(23)

When we apply LinCDE boosting with k = 10 sufficient statistics, the estimates do not
reproduce the bimodalities due to a lack of flexibility. We call this the “disjoint support”
problem.

A straightforward solution to the disjoint support problem is to increase the number
k so that the sufficient statistics z(y) are adequately expressive. As a consequence, the
number of components in the parameter function β(x) goes up. This approach is prone to
overfitting, especially when there are a small number (∼ 20) samples in a terminal node.
In addition, this approach will significantly slow down the splitting procedure, which scales
O(k3) by Proposition 6.

Our solution is to center the response prior to fitting the LinCDE model. Since the dif-
ference in location causes the disjoint support problem, we suggest aligning the centers of
the conditional densities in advance. Explicitly, we first estimate the locations via some con-
ditional mean estimator and then subtract the estimates from the responses. The support
of the residuals are less heterogeneous, and we apply LinCDE boosting to these residuals
to capture additional distributional structures. Finally, we transform the resulting density
estimates back to those of the responses. The procedure is summarized in Algorithm 3.

Algorithm 3: Centering

1. Estimate the conditional mean ĥ(x) using the training data {(xi, yi)}. Compute
the residuals ri = yi − ĥ(xi).

2. Apply LinCDE boosting to {(xi, ri)}, and obtain f̂R|X(r | x).

3. Define f̂Y |X(y | x) = f̂R|X(y − ĥ(x) | x) and output f̂Y |X .

Centering splits the task of conditional distribution estimation into conditional mean
estimation and distributional property estimation. For centering we have available a variety
of popular conditional mean estimators, such as the standard random forest, boosting, and
neural networks. Once the data are centered, LinCDE boosting has a more manageable
task. Figure 5 shows that with centering, LinCDE boosting is able to reproduce the bimodal
structure in the above example with the same set of sufficient statistics.

7. Simulation

In this section, we demonstrate the efficacy of LinCDE boosting on simulated examples.
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Figure 5: Conditional density estimation with and without centering. We consider the con-
ditional density (23) and pick 3 landmarks corresponding to different locations.
The first row plots LinCDE boosting’s estimates without centering, and the sec-
ond row plots the estimates augmented with true means. In each trial, we sample
1000 observations from the target distribution. We repeat each setting 100 times,
and plot the average estimated conditional densities. In both settings, LinCDE
boosting uses k = 10 sufficient statistics and 20 response bins.

7.1 Data and Methods

Consider d = 20 covariates randomly generated from uniform [−1, 1]. The responses given
the covariates are sampled from the following distributions:

• Locally Gaussian distribution (LGD):

Y | X = x ∼ N
(

0.5x(1) + x(1)x(2),
(

0.5 + 0.25x(2)
)2
)
.
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At a covariate configuration, the response is Gaussian with the mean determined
by x(1) and x(2), and the variance determined by x(2). Covariates x(3) to x(20) are
nuisances variables;

• Locally Gaussian or Gaussian mixture distribution (LGGMD):

Y | X = x ∼


0.5N

(
µ(x(1))− 0.5, σ2

+(x(3))
)

+ 0.5N
(
µ(x(1)) + 0.5, σ2

−(x(3))
)
,
x(2) ≤ 0.2,

N
(
µ(x(1)), σ2

)
, x(2) > 0.2,

where the means and variances are

µ
(
x(1)

)
= 0.25x(1), σ2 = 0.3,

σ2
+

(
x(3)

)
= 0.25

(
0.25x(3) + 0.5

)2
,

σ2
−

(
x(3)

)
= 0.25

(
0.25x(3) − 0.5

)2
.

The mean is determined by x(1). The modality depends on x(2): in the subregion
x(2) ≥ 0.2, the response follows a bimodal Gaussian mixture distribution, while in the
complementary subregion, the response follows a unimodal Gaussian distribution. The
skewness or symmetry is controlled by x(3) in the Gaussian mixture subregion: larger
absolute values of x(3) imply higher asymmetry. Overall, the conditional distribution
has location, shape, and symmetry dependent on the first three covariates. Covariates
x(4) to x(20) are nuisance variables.

The training data set consists of 1000 i.i.d. samples. The performance is evaluated on an
independent test data set of size 1000.

We compare LinCDE boosting with quantile regression forest and distribution boost-
ing.10 There are a number of tuning parameters in LinCDE boosting. The primary parame-
ter is the number of trees (iteration number). Secondary tuning parameters include the tree
size, the learning rate, and the ridge penalty parameter. On a separate validation data set,
we experimented with a grid of secondary parameters, each associated with a sequence of
iteration numbers, and select the best-performing configuration. By default, we use k = 10
transformed natural cubic splines and a Gaussian carrying density We use a small learning
rate η = 0.01 to avoid overfitting. We use 40 discretization bins for training, and 20 or 50
for testing. The simulation examples do not have heavy-tail or disjoint support issues, and
thus no pretreatments are needed.

7.2 Results of Conditional Density Estimation

Let the oracle be provided with the true density, and the null method estimates a marginal
Gaussian distribution. We consider the following metric

`method − `null

`oracle − `null
, (24)

10. LinCDE boosting: https://github.com/ZijunGao/LinCDE. Quantile regression forest: R package
quantregForest (Meinshausen, 2017). Distribution boosting: R package conTree (Friedman and
Narasimhan, 2020).
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Figure 6: Box plots of goodness-of-fit measures (24) in the setting LGD (left panel) and
the setting LGGMD (right panel). The goodness-of-fit measure is based on log-
likelihoods, and a larger value indicates a better estimate. We compare quan-
tile regression forests (QRF), distribution boosting (DB), and LinCDE boosting.
Densities of quantile regression forests and distribution boosting are computed
according to (25) with 20 bins.

where `· denotes the test conditional log-likelihood of a specific method. The criterion is
analogous to the goodness-of-fit measure R2 of linear regression. It measures the perfor-
mance of the method relative to the oracle; larger values indicate better fits, and the ideal
value is one.

Quantile regression forests and distribution boosting estimate conditional quantiles in-
stead of densities. To convert the quantile estimates to density estimates, we define a grid
of bins with endpoints yb,L and yb,R, and approximate the density in bin b by

f̂b =
q̂−1(yb,R)− q̂−1(yb,L)

yb,R − yb,L
, (25)

where q̂−1(y) represents the inverse function of the quantile estimates. As the bin width
shrinks, f̂b is less biased but of larger variance. In simulations, we display the results with
20 bins and 50 bins (Appendix G). We observe that LinCDE boosting is robust to the bin
size, while distribution boosting and quantile regression forests prefer 20 bins due to the
smaller variances.

Figure 6 presents the goodness-of-fit measure (24) of the three methods under the LGD
and LGGMD settings. In both settings, LinCDE boosting leads in performance, improving
the null method by 60% to 80% of the oracle’s improvements.

Figures 7 and 8 depict the estimated conditional densities of LinCDE boosting in dif-
ferent subregions. In both settings, LinCDE boosting identifies the roles of important
covariates: in the LGD setting, the estimated conditional densities vary in location as x(1)
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Figure 7: Conditional densities estimated by LinCDE boosting in the LGD setting. We
take x(2) ∈ {−0.6, 0, 0.6} (upper panel) and x(1) ∈ {−0.6, 0, 0.6} (lower panel)
and fix other covariates. The estimated conditional densities are close to the
truth.

changes, and in scale as x(2) changes; in the LGGMD setting, the estimated conditional
densities vary in location as x(1) changes, in shape as x(2) changes, and in symmetry as x(3)

changes. To further illustrate the ability of LinCDE boosting to detect influential covariates,
we present the importance scores in Figure 9. In the LGD setting, LinCDE boosting puts
around 87% of the importance on x(1) and x(2), while quantile regression forest distributes
more importance on the nuisances (x(1) and x(2) accounting for 40%). In the LGGMD
setting, LinCDE boosting is able to detect all influential covariates x(1), x(2), x(3), while
the quantile regression forest only recognizes x(1).

7.3 Results of Conditional CDF Estimation

Here we evaluate the conditional CDF estimates of the three methods, bringing the compar-
isons closer to the home court of distribution boosting. We consider the average absolute
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Figure 8: Conditional densities estimated by LinCDE boosting in the LGGMD setting. We
take x(1), x(2), x(3) ∈ {−0.6, 0.6} respectively. The estimated conditional densities
vary in location as x(1) changes, in shape as x(2) changes, and in symmetry as
x(3) changes. The estimated conditional densities are close to the truth.

error (AAE) used by Friedman (2019)

AAE =
1

n

n∑
i=1

1

m

m∑
j=1

∣∣∣F̂ (q(uj | xi) | xi)− F (q(uj | xi) | xi)
∣∣∣ , (26)

where {uj} is an evenly spaced grid on [0, 1], and q(u | x) denotes the u quantile at the
covariate value x. To compute the CDF estimates, for distribution boosting and quantile
regression forest, we directly invert the estimated quantiles to CDFs. For LinCDE boosting,
we compute the multinomial cell probabilities with a fine grid (50 bins) and obtain the CDFs
based on the cell probabilities.
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Figure 9: Importance scores of LinCDE boosting and quantile regression forest in the LGD
(left panel) and LGGMD (right panel) settings. We normalize the importance
scores to sum to one. In the LGD setting, both methods detect all the influential
covariates x(1) and x(2). In the LGGMD setting, LinCDE boosting identifies all
the influential covariates x(1), x(2)), and x(3), while quantile regression forest only
identifies x(1).

Figure 10 depicts the AAE metrics. In both settings, LinCDE boosting produces the
smallest AAE. Notice that

F̂ (q(uj) | xi)− uj = F̂ (q(uj | xi) | xi)− F̂ (q̂(uj | xi) | xi)
≈ f̂(q(uj | xi) | xi) · (q(uj | xi)− q̂(uj | xi)).

Though distribution boosting and quantile regression forest estimate the quantiles well, the
CDF estimates can be harmed by the implicit density estimator multiplied. In Appendix G,
we also compare the CDF estimates using Cramér-von Mises distance and observe consistent
patterns to what we see here.

7.4 Results of Conditional Quantile Estimation

Here the comparisons are in the home court of quantile random forests. We evaluate the
conditional quantile estimates of the three methods. We compute the quantile losses at
{5%, 25%, 50%, 75%, 95%} levels (Table 1). For LinCDE boosting, we compute the multi-
nomial cell probabilities (50 bins) and obtain the quantiles based on the cell probabilities.
Despite the fact that quantile-based metrics should favor quantile-based methods, we ob-
serve that the performance of LinCDE boosting is similar.

We also construct 50% and 90% prediction intervals based on the quantiles. In Table 1,
we display the coverages and widths of the 90% prediction intervals. All methods produce

25



Gao and Hastie

QRF DB LinCDE

0.
00

6
0.

00
7

0.
00

8
0.

00
9

0.
01

0

LGD

method

A
A

E 0.008

0.0085

0.0065

QRF DB LinCDE

0.
00

35
0.

00
45

0.
00

55
0.

00
65

LGGMD

method

A
A

E

0.0047

0.005

0.0042

Figure 10: Box plots of AAE (26) in the LGD (left panel) and LGGMD (right panel) set-
tings. AAE is a metric naturally defined for conditional CDF estimates (Fried-
man, 2019), and a smaller value indicates a better estimate.

data method
quantile loss coverage width

5 % 25 % 50 % 75 % 95 % 90% PI 90% PI

LGD

QRF
0.058 0.174 0.218 0.174 0.056 93.3% 2.02

(0.001) (0.02) (0.002) (0.02) (0.001) (0.9%) (0.048)

DB
0.058 0.176 0.218 0.174 0.057 92.5% 1.95

(0.001) (0.03) (0.003) (0.03) (0.002) (1.2%) (0.051)

LinCDE
0.055 0.168 0.212 0.169 0.054 91.9% 1.84

(0.001) (0.01) (0.001) (0.02) (0.001) (1.0%) (0.045)

LGGMD

QRF
0.054 0.180 0.246 0.181 0.055 89.5% 1.76

(0.001) (0.001) (0.002) (0.001) (0.001) (0.7%) (0.034)

DB
0.054 0.182 0.246 0.182 0.055 91.2% 1.88

(0.001) (0.002) (0.001) (0.002) (0.001) (0.9%) (0.038)

LinCDE
0.053 0.181 0.246 0.181 0.055 90.5% 1.78

(0.001) (0.001) (0.001) (0.001) (0.001) (0.7%) (0.032)

Table 1: Table of quantile losses (the smaller the better) at {5%, 25%, 50%, 75%, 95%} levels
and 90% prediction interval coverages (ideally 90%), interval widths (the narrower
the better) in the LGD and LGGMD settings. Standard deviations are in the
parentheses. PI stands for prediction interval.

fairly good coverages. Results of 50% prediction intervals are consistent and can be found
in Appendix G.
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7.5 Computation Time

We compare the computation time of the three methods.11 We normalize the training
time by the number of trees. In Table 2, quantile random forest is the fastest, followed by
LinCDE boosting. LinCDE boosting takes about 5 seconds for 100 iterations.

time(s) QRF DB LinCDE

LGD 1.3 (0.018) 13 (0.21) 4.8 (0.36)
LGGMD 1.4 (0.15) 14 (1.0) 5.1 (0.93)

Table 2: Table of computation time in seconds. We present the training time for n = 1000
samples and d = 20 features per 100 trees. Standard deviations are in parentheses.

8. Real Data Analysis

In this section, we analyze real data sets with LinCDE boosting. The pipeline is as follows:
first, we split the samples into training and test data sets; next, we perform 5-fold cross-
validation on the training data set to select the hyper-parameters; finally, we apply the
estimators with the selected hyper-parameters and evaluate multiple criteria on the test
data set. We repeat the procedure 20 times and average the results. As for the centering,
we use random forests as the conditional mean learner.

8.1 Old Faithful Geyser Data

The Old Faithful Geyser data records the eruptions from the “Old Faithful” geyser in
the Yellowstone National Park (Azzalini and Bowman, 1990) and represents continuous
measurement from August 1 to August 15, 1985. The data consists of 299 observations and
2 variables: eruption time and waiting time for the eruption. We estimate the conditional
distribution of the eruption time given the waiting time.

In Figure 11, we plot the eruption time versus the waiting time. There is a clear cutoff
at 70min: for any waiting time over 70min, the distribution of eruption time is bimodal,
while for any waiting time below 70min, the distribution is unimodal. In Figure 11, we
display the estimated conditional densities of LinCDE boosting at waiting time 85min and
60min. LinCDE boosting is capable of detecting the difference in modality. In Table 3, we
summarize the comparison between LinCDE boosting, distribution boosting, and quantile
regression forest regarding the negative log-likelihoods and quantile losses. LinCDE boost-
ing outperforms in log-likelihood, and is competitive in quantile losses. We remark the
AAE and Cramér-von Mises distance can not be computed since we do not have the true
conditional distributions.

8.2 Human Height Data

The human height data is taken from the NHANES data set: a series of health and nutrition
surveys collected by the US National Center for Health Statistics (NCHS). We estimate the

11. The experiments are run on a personal computer with a dual-core CPU and 8GB memory.
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Figure 11: LinCDE boosting applied to the Old Faithful Geyser data. On the left, we plot
the eruption time versus the waiting time. On the right, we display the estimated
conditional densities by LinCDE boosting at waiting times 60min and 85min.

conditional distribution of the standing height. We consider two subsets: 542 samples in the
age range 14 to 17, and 1956 samples in the age range 14 to 40. In the smaller subset, we
only consider two covariates: age and poverty; in the larger subset, we consider 9 covariates,
including age, poverty, race, gender, etc. In the smaller subset, we tune by cross-validation;
in the larger subset, we split the data set for validation, training, and test (proportion
2 : 1 : 1), and tune on the hold-out validation data.

The distribution of heights combining male and female is used as a typical illustration
of bimodality (Devore and Peck, 2005). However, Schilling et al. (2002) point out the
separation between the heights of men and women is not large enough to produce the
bimodality. In Figure 12, we demonstrate the histogram of heights of white teenagers in
the age range 15-19. The distribution of the combined data is sightly bimodal. Boys’
heights are larger and more concentrated. We also provide LinCDE boosting’s conditional
density estimates obtained from the larger data set. Overall, the estimates accord with the
histograms. The estimates without the covariate gender is on the borderline of unimodal
and bimodal. The estimates with the gender explains the formation of the quasi-bimodality.

The comparisons of log-likelihood and quantile losses are summarized in Table 3. In
both the larger and the smaller data sets, LinCDE boosting performs the best concerning
the log-likelihood. The advantage is more significant in the smaller data set. The reason is
that in the larger data set, there are more covariates, and the conditional mean explains a
larger proportion of the variation in response, while in the smaller data set, the conditional
distribution after the centering contains more information, such as the bimodality, which
can be learnt by LinCDE boosting.
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data method -log-like
quantile loss

5% 25 % 50% 75 % 95 %

Geyser

QRF
1.55 0.09 0.30 0.42 0.33 0.10

(0.12) (0.01) (0.02) (0.03) (0.02) (0.01)

DB
1.28 0.09 0.27 0.37 0.30 0.09

(0.10) (0.01) (0.02) (0.03) (0.02) (0.01)

LinCDE
1.16 0.09 0.28 0.37 0.30 0.09
(0.07) (0.01) (0.02) (0.03) (0.02) (0.01)

Height (age 14 - 40)

QRF
3.30 0.63 1.72 2.19 1.77 0.69

(0.03) (0.03) (0.06) (0.07) (0.07) (0.04)

DB
3.29 0.65 1.84 2.24 1.90 0.72

(0.04) (0.03) (0.05) (0.06) (0.07) (0.05)

LinCDE
3.19 0.64 1.82 2.20 1.88 0.71
(0.03) (0.04) (0.05) (0.06) (0.07) (0.04)

Height (age 14 - 17)

QRF
3.93 0.95 2.99 3.87 3.19 1.12

(0.17) (0.12) (0.24) (0.25) (0.23) (0.20)

DB
4.21 1.04 3.62 4.90 4.39 1.77

(0.16) (0.04) (0.19) (0.28) (0.38) (0.32)

LinCDE
3.61 0.84 2.92 3.79 3.05 0.96
(0.06) (0.05) (0.16) (0.23) (0.19) (0.10)

Bone density

QRF
-1.67 0.004 0.012 0.015 0.013 0.004
(0.11) (0.001) (0.001) (0.001) (0.001) (0.001)

DB
-1.49 0.007 0.015 0.014 0.016 0.007
(0.03) (0.000) (0.001) (0.001) (0.001) (0.000)

LinCDE
-1.89 0.004 0.011 0.014 0.013 0.005
(0.06) (0.000) (0.001) (0.001) (0.001) (0.001)

Table 3: Comparison of LinCDE boosting, QRF, and DB on real data sets. We display neg-
ative log-likelihoods and quantile losses at {5%, 25%, 50%, 75%, 95%} levels. (For
all metrics, the smaller the better.) Standard deviations are in the parentheses.

8.3 Relative Spinal Bone Mineral Density Data

The relative spinal bone mineral density (spnbmd) data contains 485 observations on 261
North American adolescents. The response is the difference in spnbmd taken on two con-
secutive visits divided by the average. There are three covariates: sex, race, and age (the
average age over the two visits). We estimate the conditional distributions of the spnbmd.
The comparisons of log-likelihood and quantile losses are summarized in Table 3. LinCDE
boosting performs the best concerning the log-likelihood.

The scatterplot of spnbmd versus age demonstrates serious heteroscedasticity: the vari-
ances reach the climax at age 12 and decrease afterward. In Figure 13, we plot LinCDE
boosting’s estimates at age 12, 15 and 20 of white females. The spreads of the conditional
densities decrease as the age grows. At age 12, the spnmd distribution is right-skewed, while
those at age 15 and 20 are approximately symmetric.
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Figure 12: LinCDE boosting applied to the height data. On the left, we plot the histogram
of heights of white teenagers in the age range 15-19. On the right, we plot the
average estimated density by LinCDE boosting from the larger data set at age
17, race white, and other covariates fixed at the corresponding medians. The
estimated conditional density without the gender is on the borderline between
unimodal and bimodal. Furthermore, we contrast the histograms of male and
female heights against that of the combined data in the left plot, explaining
the formation of the quasi-bimodality. We also depict the estimated densities of
females, males (right panel), which accord with the histograms (left panel).

9. Discussion

In this paper, we propose LinCDE boosting for conditional density estimation. LinCDE
boosting poses no specific parametric assumptions of the density family. The estimates
reflect a variety of distributional characteristics. In the presence of unrelated nuisance
covariates, LinCDE boosting is able to focus on the influential ones.

So far, we have discussed only univariate responses. Multivariate responses emerge in
multiple practical scenarios: locations on a 2D surface, joint distributions of health indices,
to name a few. Lindsey’s method and thus LinCDE boosting can be easily generalized
to multivariate responses. Assume the responses are p-dimensional, multivariate LinCDE
boosting considers the density (11) with sufficient statistics involving y(1) to y(p). As an
illustrative example, if we use sufficient statistics {y(i)} and {y(i)y(j)}, the resulting density
will be a multivariate Gaussian (see Efron and Hastie, 2016, chap. 8.3 for the galaxy data
example). The response discretization now divides the hyper-rectangle response support
into equal-sized p-dimensional bins and the rest of LinCDE boosting procedures carry over.
The cost of multivariate responses is the exponentially growing number of bins and suffi-
cient statistics, which requires more samples as well as computational power. In contrast,
conditional quantiles for multi-dimensional responses are relatively less straightforward but
several promising proposals have been proposed (Barnett, 1976; Chaudhuri, 1996; Kong
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Figure 13: LinCDE boosting applied to the relative spinal bone mineral density data. On
the left, we display the scatterplot of spnbmd versus age. There is serious het-
eroscedasticity. On the right, we plot LinCDE boosting’s estimates at age 12,
15 and 20 of white females. The spreads of the conditional densities decrease as
the age grows. At age 12, the spnbmd distribution is right-skewed, while those
at age 15 and 20 are approximately symmetric.

and Mizera, 2012; Carlier et al., 2016). We refer readers to Koenker (2017) and references
therein.

There are several exciting applications of LinCDE boosting.

• Online learning. Online learning processes the data that become available in a se-
quential order, such as stock prices and online auctions. As opposed to batch learning
techniques which generate the best predictor by learning on the entire training data
set once, online learning updates the best predictor for future data at each step. On-
line updating of LinCDE boosting is simple: we input the previous conditional density
estimates as offsets, and modify them to fit new data.

• Conditional density ratio estimation. A stream of work studies the density ratio
model (DRM), particularly the semi-parametric DRM. The density ratio can be used
for importance sampling, two-sample testing, outlier detection (see Sugiyama et al.,
2012, for an extensive review). Boosting tilts the baseline estimate parametrically
based on the smaller group.

One future research direction is adding adaptive ridge penalty in LinCDE boosting.
Recall the fits in the LGGMD setting (Figure 8) where the conditional densities change from
a relatively smooth Gaussian density to a curvy bimodal Gaussian mixture, the estimates
get stuck in between: in the smooth Gaussian subregions, the estimates produce unnecessary
curvatures; in the bumpy Gaussian mixture subregions, the estimates are not sufficiently
wavy. The lack-of-fit can be attributed to the universal constraint on the degrees of freedom:
the constraint may be too stringent in some subregions while lenient in others.
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10. Software

Software for LinCDE is made available as an R package at https://github.com/ZijunGao/
LinCDE. The package can be installed from GitHub with

1 install.packages("devtools")

2 devtools :: install_github("ZijunGao/LinCDE", build_vignettes = TRUE)

The package comes with a detailed vignette discussing hyper-parameter tuning and demon-
strating a number of simulated and real data examples.
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Appendix A. Regularization Parameter and Degrees of Freedom

We discuss how the hyper-parameter λ relates to the degrees of freedom.12 According to Eq.
(12.74) in Efron and Hastie (2016), the effective number of parameters in Poisson models
takes the form

df =

B∑
b=1

cov(η̂b, nb), (27)

where nb are responses and η̂b are estimates of the natural parameter. In the following
Proposition 7, we obtain an approximation of Eq. (27) in the ridge Poisson regression via a
quadratic expansion of the objective function.

Proposition 7 Assume the responses nb are generated independently from the Poisson
model with conditional means µ∗b = κbe

z>b β
∗

(z includes the intercept) and the corresponding
natural parameter η∗b = log(µ∗b). Let λ′ > 0 be the hyper-parameter of the ridge penalty.13

• For arbitrary β, the second order Taylor expansion at β∗ of the Poisson log-likelihood
with ridge penalty is

B∑
b=1

nb

(
log(κb) + z>b β

)
− κbez

>
b β − log(nb!)− λ′

k∑
j=1

ωjβ
2
j

= −1

2
(Zβ +K − ζ)>W (Zβ +K − ζ)− λ′β>Ωβ + C,

Zb· = z>b , Kb = log(κb), ζb = η∗b +
nb − µ∗b
µ∗b

,

W = diag(µ∗1, . . . , µ
∗
B), Ω = diag(ω1, . . . , ωk),

(28)

for some constant C > 0 independent of β.

• Let β̂ be the minimizer of the quadratic approximation (28), then

df =
B∑
b=1

cov
(

log(κb) + z>b β̂, yb

)
= tr

((
Hβ∗ + 2λ′Ω

)−1
Hβ∗

)
, (29)

where Hβ∗ = Z>WZ is the Hessian matrix of the negative Poisson log-likelihood
evaluated at β∗.

We prove Proposition 7 in Appendix F. As a corollary, if Ω is a scalar multiple of the
identity matrix, Eq. (29) agrees with the degrees of freedom formula Eq. (7.34) in Hastie
et al. (2009). In practice, β∗ is unknown and we plug β̂ in Eq. (29) to compute the number
of effective parameters. We remark that Eq. (29) includes one degree of freedom for the
intercept and in the LinCDE package we will use Eq. (29) minus one as the degrees of
freedom.

12. The degrees of freedom are derived under the Poisson approximation (7) of the original likelihood.
13. λ′ = nλ for the λ in (8).
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Figure 14: Estimated log-densities by Lindsey’s method under different degrees of freedom.
We use 10 transformed natural cubic splines as basis functions and increase the
degrees of freedom in Lindsey’s method from 2 to 7 (left to right).

Figure 14 plots the estimated log-densities of a Gaussian mixture distribution from Lind-
sey’s method under different degrees of freedom. As the degrees of freedom (excluding the
intercept) increase from 2 to 7, the log-density curves evolve from approximately quadratic
to significantly bimodal. At 7 degrees of freedom, the estimated log-density is reasonably
close to the underlying truth.

Appendix B. Linear Transformation for Basis Construction

We expand on the linear transformation used in the basis construction in Section 3. Let the
eigen-decomposition of Ω be UDU>, where U ∈ Rk×k is orthonormal, and D ∈ Rk×k is a
diagonal matrix with non-negative diagonal values ordered decreasingly. Define the linear-
transformed cubic spline bases z̃(y) = U>z(y) and the corresponding coefficients β̃ = U>β.
Then z̃(y)>β̃ = z(y)>β and Ω̃ = U>ΩU = U>UDU>U = D. Therefore, z(y) 7→ U>z(y) is
the desired linear transformation.

Appendix C. Approximation Performance of Proposition 2

In Figures 15 and 16, we empirically demonstrate the efficacy of the quadratic approximation
suggested by Proposition 2 . We let the conditional densities depend solely on x(1) and jump
(Figure 15) or vary continuously (Figure 16) in conditional variance, modality, or skewness.
We observe that at candidate splits where the left child and the right child are similar,
e.g., all the candidate splits based on x(2), the quadratic form and the exact log-likelihood
difference are almost the same. At candidate splits where the left child and the right child
are different, e.g., x(1) = 0 in Figure 15, the exact log-likelihood difference is large, and
the quadratic form is sufficiently close to the difference to determine the optimal split.
We remark that to gain robustness, we set the quadratic approximation to zero if one of
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Figure 15: Comparison of the log-likelihood difference (13) and the quadratic approximation
in Proposition 2. There are two subregions: x(1) ≤ 0 and x(1) > 0. In different
subregions, the conditional densities are different in conditional variance (σ2),
modality, or skewness (each column corresponds to a type of difference). In
the same subregion, the conditional density does not change. In each trial, we
sample 100 observations and 5 covariates. We use 5 transformed natural cubic
splines as basis functions, and 30 candidate splits for each covariate equally
spread across their ranges. We plot the log-likelihood difference (red) and the
quadratic approximation (black) for candidate splits of x(1) (influential) and x(2)

(nuisance), respectively. The results are aggregated over 100 times.

the candidate split’s children contain less than 10 samples, which leads to the imperfect
approximation at the boundary candidate splits.

Appendix D. Stopping Criteria for LinCDE Trees

We discuss stopping criteria for LinCDE trees. There is no universally optimal choice. If we
build a single tree learner, the preferred strategy, at least for regression and classification
trees according to Breiman et al. (1984), is to grow a large tree, then prune the tree using
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Figure 16: Comparison of the log-likelihood difference (13) and the quadratic approximation
in Proposition 2. The conditional densities vary continuously with |x(1)| in
variance (σ2), modality, or skewness (each column corresponds to a type of
difference). In each trial, we sample 100 observations and 5 covariates. We use
5 transformed natural cubic splines as basis functions, and 30 candidate splits
for each covariate equally spread across their ranges. We plot the log-likelihood
difference (red) and the quadratic approximation (black) for candidate splits of
x(1) (influential) and x(2) (nuisance), respectively. The results are aggregated
over 100 times.

the cost-complexity pruning. If we train a random forest learner, then Breiman (2001)
recommends stopping the splitting process only when some minimum node size, default
to be 5 in the package randomForest (Liaw and Wiener, 2002), is reached. As for tree
boosting, Friedman (2001) uses trees with the same number of terminal nodes. The number
of terminal nodes is treated as a hyper-parameter of the boosting algorithm and tuned to
maximize the performance on the data set at hand. The aforementioned stopping criteria
generalize to LinCDE trees straightforwardly. Two options are currently available in codes:
(1) stop when the tree depth reaches some prefixed level; (2) stop when the decrease in
the objective fails to surpass a certain number—a greedy top-down approach. We don’t
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recommend the criterion of stopping until a terminal node is pure, because there will be
insufficient samples at terminal nodes for density estimation.

Appendix E. Approximation Error for LinCDE Boosting

We characterize the expressiveness of LinCDE boosting’s function class class (18) with
splines z(y).

Without loss of generality, we will assume fY |X(y|x) is supported on [0, 1]× [0, 1]d. Let

Ss2 be the Sobolev space of functions h(y) on [0, 1] for which h(s−1) is absolutely continuous
and

∫
(h(s)(y))2dy is finite. Denote the space of tree boosting models with arbitrary depth

and number of trees by N1 := {
∑N

i=1 ai1x(j)∈Ij , N ≥ 1, Ij ⊆ [0, 1]}. Denote the space of

splines of order ζ on [0, 1] with equal-spaced knots {1, . . . , k− ζ + 1}× δ, δ = 1/(k− ζ + 2),
ζ ≤ k/2, by Ωk,ζ . Let Fk be the exponential family where zj(y) ∈ Ωk,ζ , ζ ≥ s ≥ 1, and the
parameter functions βj(x) ∈ N1, 1 ≤ j ≤ k.

Proposition 8 Assume the log-conditional-density function h(y|x) := log(fY |X(y|x)) ∈ Ss2,

s ≤ k/2, and ‖h(·|x)‖∞, ‖h(s)(·|x)‖2 ≤ B, then

min
f̃Y |X∈Fk

E
[
D
(
fY |X(y|X) || f̃Y |X(y|X)

)]
≤ C

k2s
, (30)

where C > 0 is a constant depending on B.

The proof of Proposition 8 can be found in Section F.

Appendix F. Proofs

In this section, we provide proofs of aforementioned propositions and claims.

F.1 Proof of Claim 1

Proof. For u ∈ Rk, u lies in the null space of Ωz if and only if u>Ωu = 0. By the definition
of Ω,

0 = u>Ωu =

∫
(z′′′(y)>u)2dy,

which implies that (z(y)>u)′′′ = z′′′(y)>u = 0 almost everywhere. On one hand, if z(y)>u is
linear or quadratic, then (z(y)>u)′′′ is automatically zero everywhere. On the other hand,
since z(y) are cubic spline bases, z(y)>u is piece-wise cubic, and (z(y)>u)′′′ = 0 implies
that z(y)>u is piece-wise linear or quadratic. Because z′(y) and z′′(y) are both continuous,
z(y)>u is also second-order continuous, z(y)>u must be linear or quadratic in y.

F.2 Proof of Proposition 7

Proof. For arbitrary µb, ηb such that ηb = log(µb), the second order Taylor expansion at
µ∗b of the Poisson log-likelihood of the b-th sample `(yb; ηb) is

`(yb; ηb) ≈ `(yb; η∗b ) +
∂

∂ηb
`(yb; η

∗
b )(ηb − η∗b ) +

1

2

∂2

∂η2
b

`(yb; η
∗
b )(ηb − η∗b )2. (31)
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By definition,

`(yb; η
∗
b ) = ybη

∗
b − κbeη

∗
b + C,

∂

∂ηb
`(yb; η

∗
b ) = yb − κbeη

∗
b ,

∂2

∂η2
b

`(yb; η
∗
b ) = −κbeη

∗
b , (32)

for some constant C independent of η∗b . Plug Eq. (32) into Eq. (31),

`(yb; ηb) ≈ ybη∗b − κbeη
∗
b + (yb − κbeη

∗
b )(ηb − η∗b )−

1

2
κbe

η∗b (ηb − η∗b )2 + C

= −1

2
κbe

η∗b

(
ηb − η∗b −

yb − κbeη
∗
b

κbe
η∗b

)2

+ r(yb, η
∗
b ),

(33)

where the remainder r(yb, η
∗
b ) is independent of ηb. Plug ηb = log(κb) + z>b β, µ∗b = eη

∗
b in

Eq. (33), we sum over all samples and finish the proof of Eq. (28).

We different the quadratic approximation (28) with respect to β and obtain the score
function

−Z>W (Zβ +K − ζ)− 2λ′Ωβ = 0.

We solve the score function to obtain

β̂ =
(
Z>WZ + 2λ′Ω

)−1
Z>W (ζ −K).

Then plug η̂ = K + Zβ̂ into Eq. (27) and we get

df =

B∑
b=1

cov(η̂b, yb) = tr

(
cov

(
Z
(
Z>WZ + 2λ′Ω

)−1
Z>W (ζ −K), Y

))
= tr

(
Z
(
Z>WZ + 2λ′Ω

)−1
Z>W cov(ζ, Y )

)
.

Notice that cov(ζb, yb′) = cov(yb, yb′)/µ
∗
b = 1{b=b′}, then

df = tr

(
Z
(
Z>WZ + 2λ′Ω

)−1
Z>W

)
= tr

((
Z>WZ + 2λ′Ω

)−1
Z>WZ

)
.

This gives Eq. (29). The Hessian of the negative Poisson log-likelihood at β∗ is

Hβ∗ = −∇2
β|β=β∗

B∑
b=1

`(yb; ηb) =
B∑
b=1

∇2
β|β=β∗κbe

z>b β

=

B∑
b=1

κbe
z>b β

∗
zbz
>
b = Z>WZ>.
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F.3 Proof of Proposition 2

Proof. We simplify the differences in the log-likelihood,

∆`(R, s) =
∑
xi∈RL

(
log(κ(yi)) + z(yi)

>β̂Rs,L − ψ(β̂Rs,L)
)

+
∑

xi∈RR

(
log(κ(yi)) + z(yi)

>β̂Rs,R − ψ(β̂Rs,R)
)

−
∑
xi∈R

(
log(κ(yi)) + z(yi)

>β̂R − ψ(β̂R)
)

− λnRs,L β̂
>
Rs,LΩβ̂Rs,L − λnRs,R β̂

>
Rs,RΩβ̂Rs,R + λnRβ̂

>
RΩβ̂R

=nRs,L z̄
>
Rs,L(β̂Rs,L − β̂R) + nRs,R z̄

>
Rs,R(β̂Rs,R − β̂R)

− nRs,L(ψ(β̂Rs,L)− ψ(β̂R))− nRs,R(ψ(β̂Rs,R)− ψ(β̂R))

− λnRs,L β̂
>
Rs,LΩβ̂Rs,L − λnRs,R β̂

>
Rs,RΩβ̂Rs,R + λnRβ̂

>
RΩβ̂R,

(34)

where we use nRs,L z̄Rs,L + nRs,R z̄Rs,R = nz̄R. The score equation of β̂R implies

z̄R = ∇ψ(β̂R) + 2λΩβ̂R. (35)

and similarly for β̂Rs,L , β̂Rs,R . Plug Eq. (35) into Eq. (34), we obtain

∆`(R, s) =nRs,L∇ψ(β̂Rs,L)>(β̂Rs,L − β̂R) + nRs,R∇ψ(β̂Rs,R)>(β̂Rs,R − β̂R)

− nRs,L(ψ(β̂Rs,L)− ψ(β̂R))− nRs,R(ψ(β̂Rs,R)− ψ(β̂R))

+ λnRs,L

(
β̂Rs,L − β̂R

)>
Ω
(
β̂Rs,L − β̂R

)
+ λnRs,R

(
β̂Rs,R − β̂R

)>
Ω
(
β̂Rs,R − β̂R

)
.

(36)

By the Taylor expansion of ψ(β) and ∇ψ(β) at β̂R,

∇ψ(β̂Rs,L)>(β̂Rs,L − β̂R)− (ψ(β̂Rs,L)− ψ(β̂R))

=∇ψ(β̂Rs,L)>(β̂Rs,L − β̂R)−∇ψ(β̂R)>(β̂Rs,L − β̂R)

− 1

2
(β̂Rs,L − β̂R)>∇2ψ(β̂R)(β̂Rs,L − β̂R) +O(‖(β̂Rs,L − β̂R)‖32)

=
1

2
(β̂Rs,L − β̂R)>∇2ψ(β̂R)(β̂Rs,L − β̂R) +O(‖(β̂Rs,L − β̂R)‖32).

(37)
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Plug Eq. (37) into Eq. (36), we get

∆`(R, s) =
1

2
nRs,L(β̂Rs,L − β̂R)>∇2ψ(β̂R)(β̂Rs,L − β̂R)

+
1

2
nRs,R(β̂Rs,R − β̂R)>∇2ψ(β̂R)(β̂Rs,R − β̂R)

+ λnRs,L

(
β̂Rs,L − β̂R

)>
Ω
(
β̂Rs,L − β̂R

)
+ λnRs,R

(
β̂Rs,R − β̂R

)>
Ω
(
β̂Rs,R − β̂R

)
+O

(
‖(β̂Rs,L − β̂R)‖32 + ‖(β̂Rs,R − β̂R)‖32

)
=

1

2
nRs,L(β̂Rs,L − β̂R)>

(
∇2ψ(β̂R) + 2λΩ

)
(β̂Rs,L − β̂R)

+
1

2
nRs,R(β̂Rs,R − β̂R)>

(
∇2ψ(β̂R) + 2λΩ

)
(β̂Rs,R − β̂R)

+O
(
‖(β̂Rs,L − β̂R)‖32 + ‖(β̂Rs,R − β̂R)‖32

)
.

(38)

Finally by Eq. (35) and the assumption that ∇2ψ(β̂R) + 2λΩ is invertible,

β̂Rs,L − β̂R =
(
∇2ψ(β̂R) + 2λΩ

)−1
(z̄Rz,L − z̄R) +O

(
‖(β̂Rs,L − β̂R)‖22

)
. (39)

Then β̂Rs,L − β̂R � z̄Rs,L − z̄R and similarly for the right child. Plug Eq. (39) into Eq. (38),

∆`(R, s) =
1

2
nRs,L(z̄Rs,L − z̄R)>

(
∇2ψ(β̂R) + 2λΩ

)−1
(z̄Rs,L − z̄R)

+
1

2
nRs,R(z̄Rs,R − z̄R)>

(
∇2ψ(β̂R) + 2λΩ

)−1
(z̄Rs,R − z̄R)

+O
(
‖(z̄Rs,L − z̄R)‖32 + ‖(z̄Rs,R − z̄R)‖32

)
=
nRs,LnRs,L

2nR
(z̄Rs,L − z̄Rs,R)>

(
∇2ψ(β̂R) + 2λΩ

)−1
(z̄Rs,L − z̄Rs,R)

+O
(
‖(z̄Rs,L − z̄R)‖32 + ‖(z̄Rs,R − z̄R)‖32

)
,

and we finish the proof.

F.4 Proof of Claim 9

Claim 9 Assume that in R, y is supported on the midpoints {yb}, then the covariance
matrix approximation by Lindsey’s method equals ∇2ψ(β̂R).

Proof. If y is supported on the midpoints {yb}, then the discretization in Lindsey’s
method is accurate. As a result, the estimator of Lindsey’s method is the exact log-
likelihood maximizer β̂R. Furthermore, the multinomial cell probabilities based on the
Linsey’s method’s estimator is indeed the response distribution indexed by β̂R. Next, by
Lehmann and Romano (2006), ∇2ψ(β̂R) equals the population covariance matrix of the suf-
ficient statistics generated from the distribution indexed by β̂R. Therefore, the covariance
approximation by Lindsey’s method equals ∇2ψ(β̂R).
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F.5 Proof of Proposition 3

Proof. We order the observations and count responses in each bin (Õ(nR)). Next, we run
Newton-Rapson algorithm. In each iteration, the computation of the gradient vector

B∑
b=1

nbz̃(yb)(1− ez(yb)
>β+β0).

is O(kB), where z̃> = [z>, 1]. The computation of the Hessian matrix

−
B∑
b=1

nbe
z(yb)

>β+β0 z̃(yb)z̃(yb)
>

takes O(k2B) operations. Finally, one Newton-Raphson update takes O(k3) operations.
Newton-Raphson algorithm is superlinear (Boyd and Vandenberghe, 2004), thus we can
regard the number of Newton-Raphson updates of constant order. The cell probabilities
can be computed in O(kB) time, and the covariance matrix takes O(k2B) operations.

To compute the quadratic approximation, {nRs,L , nRs,R , z̄Rs,L , z̄Rs,R} can be computed
in O(dnRk) by scanning through the samples once per coordinate. (If observations are not
ordered beforehand, we will have Õ(dnRk), where Õ denotes the order up to log terms.)
Adding the diagonal matrix Ω is cheap, and the matrix inversion takes O(k3) operations. For
a candidate split, the quadratic term in Proposition 2 further takes O(k2) time. Choosing
the optimal split takes O(S). In summary, the complexity is O(dnRk+ k2B+ k3 +Sk2).

F.6 Proof of Proposition 8

The results are built on the expressiveness of logspline density models and tree boosting
models. We first develop an intermediate property for unconditional densities, and then
combine it with the representability of tree boosting models with arbitrary depth and num-
ber of trees. We will use C to denote constants depending on B and the concrete values
may vary from line to line.

For unconditional densities, let the true log-density be h(y) ∈ Ss2 and ‖h(s)(·)‖2 ≤ B.
By Barron and Sheu (1991), there exists a function hk ∈ Ωk,ζ such that

‖h(·)− hk(·)‖2 ≤ Cδs‖h(s)(·)‖2 ≤
C

ks
,

‖h(·)− hk(·)‖∞ ≤ Cδs−1/2‖h(s)(·)‖2 ≤
C

ks−1/2
,

(40)

where we use δ = 1/(k − ζ + 2) ≤ 2/k. Next, we turn to conditional densities. For
|h(y | x)| ∈ Ss2 and ‖h(· | x)‖∞ ≤ B, by Barron and Sheu (1991, Lemma 3), there exists a
unique vector solution β(x) to the minimization problem

β(x) := arg min
β̃(x)∈Rk

D
(
fY |X(y | X = x) ‖ κ(y)ez(y)>β̃(x)−ψ(β̃(x))

)
.

We next show β(x) is measurable on [0, 1]d. In fact, define the mapping

Φ(β) := E
[
z(Y )κ(Y )ez(Y )>β−ψ(β)

]
.
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Again by Barron and Sheu (1991, Lemma 3), Φ is invertible and thus the inverse Φ−1 is
differentiable. By the optimality of β(x), we have

Φ(β(x)) := E
[
z(Y )κ(Y )ez(Y )>β(x)−ψ(β(x))

]
= E

[
z(Y )fY |X(Y | X = x)

]
.

Notice that log(fY |X(Y | X = x)) ∈ Ss2, then fY |X(Y | X = x) is at least (s − 1)-th
order smooth and as a result Φ(β(x)) is differentiable with regard to x. Finally, since
β(x) = Φ−1 ◦ Φ(β(x)), we conclude β(x) is differentiable thus measurable on [0, 1]d. Note
that E

[
z(Y )fY |X(Y | X = x)

]
is bounded since |h(y | x)| ≤ B, then ‖β(x)‖∞ ≤ Cβ for

some Cβ depending on B.

Now we are ready to approximate β(x) by tree boosting models. By the simple func-
tion approximation theorem, for any bounded measurable function on [0, 1], there exists
a sequence of simple functions, i.e., linear combinations of indicator functions, such that
converge to the target function point-wisely and and in L1. Recall the tree boosting models
{
∑N

i=1 ai1x(j)∈Ij , N ≥ 1, Ij ⊆ [0, 1]}, then given a measurable function βj(x) supported on

the hyper-cube [0, 1]d, for any ε > 0, there exists a tree boosting model βj,ε(x) ∈ N1 such
that |βj,ε(x)| ≤ |β(x)|+ ε on [0, 1]d and

|βj(x)− βj,ε(x)| ≤ ε, ∀x ∈ Dε ⊆ [0, 1]d, m(Dε) ≥ 1− ε,

where Dε is some measurable set and m(Dε) denotes the Lebesgue measure of the subset
Dε. By the triangle inequality and Cauchy-Schwarz inequality,∣∣∣h(y | x)− z(y)>βε(x)

∣∣∣ ≤ ∣∣∣h(y | x)− z(y)>β(x)
∣∣∣+
∣∣∣z(y)>β(x)− z(y)>βε(x)

∣∣∣
≤
∣∣∣h(y | x)− z(y)>β(x)

∣∣∣+ ‖z(y)‖2‖β(x)− βε(x)‖2.

On Dε, ‖β(x)− βε(x)‖2 ≤
√
kε, and

‖h(· | x)− z(·)>βε(x)‖2 ≤ C
(

1

ks
+
√
kε‖z(·)‖2

)
,

where we use (40). On Dc
ε, since |h(y | x)| ≤ B and |βj,ε(x)| ≤ Cβ + ε, then

‖h(· | x)− z(·)>βε(x)‖∞ ≤ ‖h(· | x)‖∞ + ‖z(·)>βε(x)‖∞ ≤ C.

Let fε(y | x) := κ(y)ez(y)>βε(x)−ψ(βε(x)), then by Lemma 1 in Barron and Sheu (1991),

E [D (f(y | X) ‖ fε(y | X))]

= E [D (f(y | X) ‖ fε(y | X)) , X ∈ Dε]

+ E [D (f(y | X) ‖ fε(y | X)) , X ∈ Dc
ε]

≤ C
(

1

k2s
+ kε2‖z(·)‖22 + ε

)
.

(41)

Since (41) is valid for arbitrary ε > 0, let ε→ 0 and we finish the proof.
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F.7 Proof of Proposition 4

Proof. Without loss of generality, assume R is the covariate space. For simplicity, we omit
the superscript of βt(x) and denote the natural parameter functions by β(x).

We first show γ∗ = arg maxγ `(R;β(x) + γ). For λ = 0, if ∆γ = 0, the KKT condition
of the last Poisson regression is

1

n

B∑
b=1

nbz(yb) =

B∑
b=1

p̄b(R;β(x) + γ)z(yb), (42)

If in R, Y is supported on the midpoints {yb},

∇ψ(β(xi) + γ) =
1

B

B∑
b=1

pb(β(xi) + γ)z(yb). (43)

Therefore, by Eq. (42) and Eq. (43),

1

n

n∑
i=1

∇ψ(β(xi) + γ) =
1

n

n∑
i=1

B∑
b=1

pb(β(xi) + γ)z(yb) =
B∑
b=1

z(yb) ·
1

n

n∑
i=1

pb(β(xi) + γ)

=
B∑
b=1

p̄b(R;β(x) + γ)z(yb) =
1

n

B∑
b=1

nbz(yb) =
1

n

n∑
i=1

z(yi),

(44)

which implies the KKT condition of maximizing `(R;β(X) +γ) is satisfied at γ∗. Since the
log-likelihood `(R;β(X) + γ) is strictly concave, then γ∗ is the unique maximizer.

We next prove the algorithm converges. Plug in the MLE estimate of the intercept of
the Poisson regression into the log-likelihood and we have

`poisson(R;β(x) + γ + ∆γ) =`poisson(R;β(x) + γ) +
B∑
b=1

nbz(yb)
>∆γ

− n log

(
B∑
b=1

p̄b(R;β(x) + γ) exp
{
z(yb)

>∆γ
})

︸ ︷︷ ︸
:=(I)

.
(45)

By Jensen’s inequality,

(I) = log

(
1

n

n∑
i=1

B∑
b=1

pb(β(xi) + γ) exp
{
z>(yb)∆γ

})

≥ 1

n

n∑
i=1

log

(
B∑
b=1

pb(β(xi) + γ) exp
{
z>(yb)∆γ

})
.

(46)
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Notice that

ψ(β(xi) + γ + ∆γ)− ψ(β(xi) + γ)

= − log

(∑B
b=1 e

z(yb)
>(γ+∆γ)∑B

b=1 e
z(yb)>γ

)

= − log

(
B∑
b=1

pb(β(xi) + γ) exp
{
z(yb)

>∆γ
})

.

(47)

Therefore, by Eq. (45), Eq. (46) and Eq. (47),

`(R;β(x) + γ + ∆γ)− `(R;β(x) + γ)

=
n∑
i=1

z(yi)
>∆γ − log

(
B∑
b=1

pb(β(xi) + γ) exp
{
z(yb)

>∆γ
})

≥
n∑
i=1

z(Yi)
>∆γ − n · (I) =

B∑
b=1

nbz(yb)
>∆γ − n · (I)

= `poisson(R;β(x) + γ + ∆γ)− `poisson(R;β(x) + γ).

By the strong concavity of `poisson, there exists a universal δ > 0 such that

`poisson(R;β(x) + γ + ∆γ)− `poisson(R;β(x) + γ) ≥ δ‖∆γ‖22.

Thus,

`(R;β(x) + γ + ∆γ)− `(R;β(x) + γ)

≥ `poisson(R;β(x) + γ + ∆γ)− `poisson(R;β(x) + γ) ≥ δ‖∆γ‖22.

Since the conditional log-likelihood `(R;β(x)+γ) is bounded, thus can not increase linearly
forever. Therefore, ‖∆γ‖2 → 0, i.e. the algorithm converges.

44



LinCDE: Conditional Density Estimation via Lindsey’s Method

F.8 Proof of Proposition 5

Proof. The proof follows that of Proposition 2. We simplify the difference of log-likelihoods,

∆`t(R, s) =
∑
xi∈RL

(
z(yi)

>γtRs,L − ψ(βt(Xi) + γtRs,L)
)

+
∑

xi∈RR

(
z(yi)

>γtRs,R − ψ(βt(Xi) + γtRs,R)
)

−
∑
xi∈R

(
z(yi)

>γtR − ψ(βt(Xi) + γtR)
)

− λnRs,Lγ
t>
Rs,LΩγtRs,L − λnRs,Rγ

t>
Rs,RΩγtRs,R + λnRγ

t>
R ΩγtR

=nRs,L z̄
>
Rs,L(γtRs,L − γ

t
R) + nRs,R z̄

>
Rs,R(γtRs,R − γ

t
R)

−
∑

xi∈Rs,L

ψ(βt(Xi) + γtRs,L)− ψ(βt(Xi) + γtR)

−
∑

xi∈Rs,R

ψ(βt(Xi) + γtRs,R)− ψ(βt(Xi) + γtR)

− λnRs,Lγ
t>
Rs,LΩγtRs,L − λnRs,Rγ

t>
Rs,RΩγtRs,R + λnRγ

t>
R ΩγtR.

(48)

The score equation of γtR implies

z̄R =
1

nR

n∑
i=1

∇ψ(βt(Xi) + γtR) + 2λΩγtR, (49)

and similarly for γtRs,L , γtRs,R . Plug Eq. (49) into Eq. (48), we obtain

−∆`(R, s) =
∑

xi∈Rs,L

∇ψ(βt(Xi) + γtRs,L)>(γtRs,L − γ
t
R)

+
∑

xi∈Rs,R

∇ψ(βt(Xi) + γtRs,R)>(γtRs,R − γ
t
R)

−
∑

xi∈Rs,L

(
ψ(βt(Xi) + γtRs,L)− ψ(βt(Xi) + γtR)

)
−

∑
xi∈Rs,R

(
ψ(βt(Xi) + γtRs,R)− ψ(βt(Xi) + γtR)

)
+ λnRs,L

(
γtRs,L − γ

t
R

)>
Ω
(
γtRs,L − γ

t
R

)
+ λnRs,R

(
γtRs,R − γ

t
R

)>
Ω
(
γtRs,R − γ

t
R

)
.

(50)
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By the Taylor expansion of ψ(β) and ∇ψ(β),

∇ψ(βt(Xi) + γtRs,L)>(γtRs,L − γ
t
R)− (ψ(βt(Xi) + γtRs,L)− ψ(βt(Xi) + γtR))

=∇ψ(βt(Xi) + γtRs,L)>(γtRs,L − γ
t
R)−∇ψ(βt(Xi) + γtR)>(γtRs,L − γ

t
R)

− 1

2
(γtRs,L − γ

t
R)>∇2ψ(βt(Xi) + γtR)(γtRs,L − γ

t
R) +O(‖(γtRs,L − γ

t
R)‖32)

=
1

2
(γtRs,L − γ

t
R)>∇2ψ(βt(Xi) + γtR)(γtRs,L − γ

t
R) +O(‖(γtRs,L − γ

t
R)‖32).

(51)

Plug Eq. (51) into Eq. (50), we get

−∆`(R, s)

=
1

2

∑
xi∈Rs,L

(γtRs,L − γ
t
R)>∇2ψ(βt(Xi) + γtR)(γtRs,L − γ

t
R)

+
1

2

∑
xi∈Rs,R

(γtRs,R − γ
t
R)>∇2ψ(βt(Xi) + γtR)(γtRs,R − γ

t
R)

+ λnRs,L

(
γtRs,L − γ

t
R

)>
Ω
(
γtRs,L − γ

t
R

)
+ λnRs,R

(
γtRs,R − γ

t
R

)>
Ω
(
γtRs,R − γ

t
R

)
+O

(
‖(γtRs,L − γ

t
R)‖32 + ‖(γtRs,R − γ

t
R)‖32

)
=

1

2
(γtRs,L − γ

t
R)>

 ∑
xi∈Rs,L

∇2ψ(βt(Xi) + γtR) + 2λnRs,LΩ

 (γtRs,L − γ
t
R)

+
1

2
(γtRs,R − γ

t
R)>

 ∑
xi∈Rs,R

∇2ψ(βt(Xi) + γtR) + 2λnRs,RΩ

 (γtRs,R − γ
t
R)

+O
(
‖(γtRs,L − γ

t
R)‖32 + ‖(γtRs,R − γ

t
R)‖32

)
.

(52)

By Eq. (49),

nRs,R
nR

(
z̄Rs,L − z̄Rs,R

)
= z̄Rz,L − z̄R

=
1

nRs,L

∑
xi∈Rs,L

∇2ψ(βt(Xi) + λtR)(λtRs,L − λ
t
R)

+
nRs,R
nR

(
z̄tRs,L − z̄

t
Rs,R

)
+O

(
‖(γtRs,L − γ

t
R)‖22

)
,
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where z̄tRs,L :=
∑

xi∈Rs,L ∇ψ(βt(Xi) + λtR)/nRs,L , and similarly for z̄tRs,R . Finally, by the
assumption of invertibility,

γtRs,L − γ
t
R

=

 1

nRs,L

∑
xi∈Rs,L

∇2ψ(βt(Xi) + γtR) + 2λΩ

−1

nRs,R
nR((

z̄Rs,L − z̄Rs,R
)
−
(
z̄tRs,L − z̄

t
Rs,R

))
+O

(
‖(γtRs,L − γ

t
R)‖22

)
=
nRs,R
nR

 1

nRs,L

∑
xi∈Rs,L

∇2ψ(βt(Xi) + γtR) + 2λΩ

−1 (
r̄tRz,L − r̄

t
Rz,R

)
+O

(
‖(γtRs,L − γ

t
R)‖22

)
.

(53)

Plug Eq. (53) into Eq. (52),

−∆`(R, s)

=
nRs,Ln

2
Rs,R

2n2
R

(r̄tRs,L − r̄
t
Rs,R)>

 1

nRs,L

∑
xi∈Rs,L

∇2ψ(βt(Xi) + γtR) + 2λΩ

−1

(r̄tRs,L − r̄
t
Rs,R) +

n2
Rs,LnRs,R

2n2
R

(r̄tRs,L − r̄
t
Rs,R)> 1

nRs,R

∑
xi∈Rs,R

∇2ψ(βt(Xi) + γtR) + 2λΩ

−1

(r̄tRs,L − r̄
t
Rs,R)

+O
(
‖(r̄tRs,L − r̄

t
R)‖32 + ‖(r̄tRs,R − r̄

t
R)‖32

)
,

and we finish the proof.

F.9 Proof of Proposition 6

Proof. We first evaluate the complexity of the fitting step of LinCDE boosting. The
computation of offset is O(nRkB), and we store the cell probabilities pb(β

t(xi)). The first
step of the fitting runs a penalized Lindsey’s method and takes O(nR+k2B+k3) as shown
in the proof of 3. The second step in the fitting takes O(nRB + kB), and we update the
cell probabilities to pb(β

t(xi) + γtR).
It takes O(nRk

2B) to compute the surrogate normalization matrix Ψ̃t(γtR) and an extra
O(k3) for matrix inversion. It takes Õ(dnRkB) to compute all average residuals r̄tR. Finally,
the quadratic approximation for all candidate splits and choosing the optimal one takes
O(Sk2). In summary, the time complexity is Õ(dnRkB + nRk

2B + k3 + Sk2).

Appendix G. Additional Figures

In this section, we provide additional numerical results.
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Figure 17: Estimation of bimodal and skewed densities using our regularized Lindsey’s
method. In the left panel, the true density is a Gaussian mixture, and in the
right panel, the true density is a beta distribution. In each trial, we sample 400
observations. We generate 10 natural cubic splines with knots equally spread
across the range of observations, and tune the penalty parameter λ to achieve
an effective 5 degrees of freedom. We repeat each setting 100 times and plot the
average fits against the true densities.

G.1 Additional Simulations

Figure 17 displays the performance of Lindsey’s method in two toy examples. One target
density is bimodal, and the other is skewed. In Lindsey’s method, we use natural cubic
splines, which are arguably the most commonly used splines because they provide good and
seamless fits and are easy to implement, and transform them as discussed. In both examples,
the estimated densities of Lindsey’s method match the true densities quite closely, except
for tiny gaps at boundaries and peaks.

Figure 18 presents the goodness-of-fit measure (24) of the three methods under the LGD
and LGGMD settings with 50 bins. LinCDE boosting benefits from finer grids. In contrast,
distribution boosting and quantile regression forest are hurt by larger numbers of bins due
to higher variances, especially in the LGGMD setting where the densities themselves are
bumpy.

Similar to AAE, another commonly used CDF-based metric is the cram/’er-von Mises
distance (Friedman, 2019):

CVM =
1

n

n∑
i=1

1

m

m∑
j=1

(
F̂ (q(uj | xi) | xi)− F (q(uj | xi) | xi)

)2
, (54)

where {uj} is an evenly spaced grid on [0, 1], and q(u | x) denotes the u quantile at the
covariate value x. Figure 19 depicts the cram/’er-von Mises distance. In both settings,
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Figure 18: Box plots of goodness-of-fit measure (24) in the LGD (left panel) and LGGMD
(right panel) settings. The densities are computed as (25) with 50 bins.
QRF stands for quantile regression forest, DB stands for distribution boost-
ing, LinCDE stands for LinCDE boosting respectively.

QRF DB LinCDE

0.
00

06
0.

00
10

0.
00

14
0.

00
18

LGD

method

C
V

M 0.0012

0.0014

8e−04

QRF DB LinCDE

2e
−

04
4e

−
04

6e
−

04

LGGMD

method

C
V

M

4e−04

4e−04

3e−04

Figure 19: Box plots of CVM distance (54) in the LGD (left panel) and LGGMD (right
panel) settings. CVM is a metric naturally defined for conditional CDF estimates
(Friedman, 2019), and a smaller value indicates a better estimate.

LinCDE boosting outperforms the other two. The results are consistent with those of
AAE.
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Figure 20: Coverage of 50% prediction intervals (ideally 50%) in the LGD (left panel) and
LGGMD (right panel) settings.

In Figure 20, we plot the coverages of the 50% prediction intervals. The results are
consistent with those of 90% prediction intervals.

G.2 Air Pollution Data

The air pollution data (Wu and Dominici, 2020) focuses on PM2.5 exposures in the United
States.14 The responses are 3108 county-level PM2.5 exposures averaged from 2000 to 2018.
We incorporate 16 weather, socio-economic, and demographic covariates, such as winter
relative humidity, house value, and proportion of white people. The target is estimating
the conditional density of the average PM2.5 exposure. We split the data into training,
validation, and test (proportion 2:1:1), and tune on the hold-out validation data. We also
identify influential covariates which may help find the culprits of air pollution and manage
regional air quality.

The PM2.5 exposure varies vastly across counties. For example, the average PM2.5 of
west coast counties may soar up to 12µg/m3 due to frequent wildfires, while those of rural
areas in Central America are typically below 8µg/m3. The difference in PM2.5 levels induces
the disjoint support issue for LinCDE in Section 6, and thus we employ the centering. The
comparisons of log-likelihood and quantile losses are summarized in Table 4. Centered
LinCDE performs the best in log-likelihood and is comparable in quantile losses.

In Figure 21, we display how the estimated conditional densities change with respect to
winter relative humidity and house value—top influential covariates identified by LinCDE.

• Winter relative humidity affects the locations of the conditional densities: as the
humidity goes up, the PM2.5 concentration first increases, then decreases. One hy-

14. PM2.5: particulate particles 2.5 microns or less in diameter. The data represents 98% of the population
of the United States.
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pothesis of the inverted U-shaped relationship is that in dry counties, wind speed
that is inversely correlated with the humidity is a powerful factor for PM2.5; in wet
counties, moisture particles that accelerate the deposition process of PM2.5 are the
driving force.

• House value is impactful to the scales of the conditional densities: more expensive
houses are associated with more variable PM2.5 exposures. We conjecture that rural
areas are generally low in PM2.5 while urban areas vary. Higher house values suggest
a higher proportion of urban areas and thus less homogeneous air quality.

data method -log-like
quantile loss

5% 25 % 50% 75 % 95 %

Air pollution

QRF
0.95 0.077 0.189 0.229 0.206 0.087

(0.02) (0.002) (0.005) (0.007) (0.006) (0.002)

DB
1.27 0.099 0.247 0.300 0.244 0.093

(0.04) (0.007) (0.009) (0.010) (0.008) (0.006)

LinCDE
0.89 0.063 0.185 0.233 0.194 0.072
(0.03) (0.003) (0.006) (0.007) (0.007) (0.004)

Table 4: Comparison of LinCDE boosting, QRF, and DB on the air pollution data. We dis-
play the negative log-likelihoods and quantile losses at {5%, 25%, 50%, 75%, 95%}
levels. Standard deviations are in the parentheses.
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