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Abstract

Open category detection is the problem of detecting “alien” test instances that belong
to categories or classes that were not present in the training data (Liu et al., 2018). In many
applications, reliably detecting such aliens is central to ensuring the safety and accuracy
of test set predictions. Unfortunately, there are no algorithms that provide theoretical
guarantees on their ability to detect aliens under general assumptions. Further, while there
are algorithms for open category detection, there are few empirical results that directly
report alien detection rates. Thus, there are significant theoretical and empirical gaps
in our understanding of open category detection. In this paper, we take a step toward
addressing this gap by studying a simple, but practically-relevant variant of open category
detection. In our setting, we are provided with a “clean” training set that contains only the
target categories of interest and an unlabeled “contaminated” training set that contains a
fraction α of alien examples. Under the assumption that we know an upper bound on α,
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we develop an algorithm that gives PAC-style guarantees on the alien detection rate, while
aiming to minimize false alarms. Given an overall budget on the amount of training data,
we also derive the optimal allocation of samples between the mixture and the clean data
sets. Experiments on synthetic and standard benchmark datasets evaluate the regimes
in which the algorithm can be effective and provide a baseline for further advancements.
In addition, for the situation when an upper bound for α is not available, we employ
nine different anomaly proportion estimators, and run experiments on both synthetic and
standard benchmark data sets to compare their performance.

Keywords: open category detection, anomaly detection, alien detection rate, false posi-
tive rate, PAC guarantees

1. Introduction

Most machine learning systems implicitly or explicitly assume that their training experience
is representative of their test experience. This assumption is rarely true in real-world
deployments of machine learning, where “unknown unknowns”, or “alien” test queries, can
arise without warning. Ignoring the potential for such aliens can lead to serious safety
concerns in many applications and significantly degrade the accuracy of test set predictions
in others. For example, consider a scientific application (Lytle et al., 2010) where a classifier
is trained to recognize specific categories of insects in freshwater samples in order to detect
important environmental changes. Test samples will typically contain some fraction of
specimens belonging to species not represented in the training data. A classifier that is
unaware of these new species will misclassify the specimens as belonging to existing species.
This will produce incorrect conclusions.

The problem of open category detection is to detect such alien examples at test time.
The primary approach to open category detection is to train an anomaly detector based on
a “clean” training set (one that contains no aliens). The anomaly detector, when applied
to a query instance x, returns an anomaly score A(x). This score is compared against a
threshold τ , and if A(x) > τ , then an alarm is raised that declares that x is an alien.
The open category detection performance will depend on both the quality of the anomaly
detector and the setting of the alarm threshold τ . Ideally, the anomaly scores of all alien
instances are larger than the scores of all nominal (known category) instances, and τ can be
set to perfectly separate the aliens from the nominals. Unfortunately, this is rarely achieved
in practice. Figure 1 illustrates a more typical case in which the anomaly score distributions
overlap. In such cases, we confront a tradeoff between false alarms (nominal cases falsely
declared to be aliens) and missed alarms (aliens incorrectly declared to be nominal), and we
must set τ to achieve an operating point along this tradeoff. If we had additional labeled
data for nominals and aliens, we could estimate the anomaly score distributions shown in
Figure 1 and choose τ . In most applications, however, we do not have labeled aliens. Indeed,
this is why the task of open category detection arises in the first place.

Prior research has focused on controlling only the false alarm rate. Given labeled nomi-
nal data, we can estimate the distribution of anomaly scores for the nominal instances and
select τ to achieve a desired false alarm rate, as shown by τFAR in Figure 1. The central
question in this paper is whether we can instead set τ to control the missed alarm rate, as
indicated by τMAR in Figure 1. Although both false alarms and missed alarms are impor-
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Figure 1: Density curves of anomaly scores for nominal and anomalous data points. Setting
τ := τFAR controls the area under the upper tail of the nominal density. Setting
τ := τMAR controls the area under the lower tail of the anomaly density.

tant, controlling missed alarms is much more relevant to safety-critical applications. In this
paper, we present a method that can provide PAC guarantees on the missed alarm rate.

In the absence of labeled anomaly data, our approach assumes two training sets: a la-
beled clean training data set with labels drawn from a finite set of known categories and
an unlabeled contaminated data set that contains a fraction α of queries that belong to
unknown categories (alien queries). Our first contribution is to show that, in this setting,
theoretical guarantees are possible given knowledge of an upper bound on α. In particu-
lar, we give an algorithm that employs this knowledge to provide Probably Approximately
Correct (PAC) guarantees for achieving a user-specified alien detection rate. While knowl-
edge of a non-trivial upper bound on α may not always be possible, in many situations it
will be possible to select a reasonable value based on domain knowledge, prior data, or by
inspecting a sample of the test data.

The utility of our method depends on the quality of the anomaly detector. The detection
rate guarantee will be met regardless of the quality of the anomaly detector. But a poor
anomaly detector will exhibit a very high false alarm rate when τ is set by our algorithm.

Because our method relies on having two different kinds of training data, the question
arises of how the performance depends on the relative sizes of those data sets. To answer
this question, we analyze the case where we are given a fixed budget on the total size of
the two data sets. We determine the optimal way of dividing this budget between the two
samples. We show that as α grows large, the size of the unlabeled mixture sample should
be larger than the labeled data set.
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We carry out experiments1 on synthetic and benchmark data sets using a state-of-the-
art anomaly detector, the Isolation Forest invented by Liu et al. (2008). We vary the
amount of training data, the fraction α of alien data points, along with the tightness of
the upper bound on α. The results indicate that our algorithm can achieve the guaranteed
performance when enough data is available, as predicted by the theory. The results also
show that for the considered benchmarks, the Isolation Forest anomaly detector is able to
support non-trivial false positive rates given enough data. The results also illustrate the
inherent difficulty of the problem for small data sets and/or small values of α.

In practice, there can be many situations where an upper bound on α is not available.
There have been multiple studies on estimating α in literature. We evaluate those methods
on both synthetic and UCI benchmark data sets and compare them to a new estimation
method that we introduce. The experiments show that several of the α estimation methods
give reasonable estimates, and the performance of open category detection using those
estimates gives results that will be usable in practice.

This work is an extension of a previous conference version by Liu et al. (2018).

2. Related Work

The problem of open category detection is related to several other lines of research in
machine learning and statistics.

Open category detection is related to the problem of one-class classification, which aims
to detect outliers relative to a single training class. One-class SVMs (OCSVMs) proposed
by Schölkopf et al. (2001) are popular for this problem. However, they have been found
to perform poorly for open category detection due to poor generalization as in the work
of Zhou and Huang (2003), which has been partly addressed by later work of Manevitz
and Yousef (2002), Wu and Ye (2009), Jin et al. (2004) and Cevikalp and Triggs (2012).
OCSVMs have been employed by Heflin et al. (2012) and Pritsos and Stamatatos (2013)
in a multi-class setting similar to open category detection. However, there are no direct
mechanisms to control the alien detection rate of these methods, which is the primary goal
in our problem setting.

Menon and Williamson (2018) show that calibrated anomaly detection could be achieved
through minimization of a suitable proper loss from binary classification. But the calibration
is in terms of the density level sets from the mixture distribution, which does not give direct
control over the alien detection rate.

Work on classification with rejection/abstaining options (Chow, 1970; Wegkamp, 2007;
Tax and Duin, 2008; Pietraszek, 2005; Cortes et al., 2016; Geifman and El-Yaniv, 2017)
allows classifiers to abstain from making predictions when they are not confident. While
loosely related to open category detection, these approaches do not directly consider the
possibility of novel categories, but rather focus on assessing confidence with respect to the
known categories. Due to their closed-world discriminative nature, it is easy to construct
scenarios where such methods are incorrectly confident about the class of an alien and do
not abstain.

A variety of prior work has addressed variants of open category detection. This includes
work by Scheirer et al. (2013) formalizing the concept of “open space” to characterize the

1. Code for reproducing our experiments can be found at https://github.com/liusi2019/ocd-journal.
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region of the feature space outside of the support of the training set. Variants of SVMs
have also been developed, such as the One-vs-Set Machine by Scheirer et al. (2013) and the
Weibull-calibrated SVM by Scheirer et al. (2014). Da et al. (2014) have addressed open
category detection by tuning the decision boundary based on unlabeled data that contains
data from novel categories. Júnior et al. (2017) propose an approach based on nearest
neighbor methods. None of these methods, however, allow for the direct control of alien
detection rates, nor do they provide theoretical guarantees.

This problem also goes by several other names in the literature. Blanchard et al.
(2010) frame it as a “semi-supervised novelty detection” problem, view the problem from
a Neyman-Pearson classification perspective, show that the optimal test for clean against
alien is identical to testing for clean against mixture, and provide guarantees on the perfor-
mance of a constrained empirical risk minimizer. But in their work the goal is to maximize
the recall (alien detection rate), subject to a constraint on the false alarm rate. While in
our work we aim at getting the smallest possible false alarm rate, under the constraint that
we should achieve a target missed alarm rate. These are two different directions, and the
nature of the problems are different. Sanderson and Scott (2014) treat the open category
problem as one version of the “domain adaptation” problem and show that under certain
conditions, a sequence of approximate empirical risk minimizers have their risks converging
in probability to the corresponding Bayes error. This is a consistency result and does not
give an explicit finite sample guarantee.

There is also recent interest in open category detection for deep neural networks applied
to vision and text classification (e.g., Bendale and Boult, 2016; Shu et al., 2017). These
methods usually train a neural network in a standard closed-world setting, but then analyze
various activations in the network in order to detect aliens. Dhamija et al. (2018) include
“known unknown” classes during the training and improve the network robustness towards
out of distribution samples by increasing entropy and decreasing magnitude for the unknown
inputs. Hendrycks et al. (2018) fine-tune pre-trained classifiers using out-of-distribution
samples and show that the resulting anomaly detectors generalize well for detecting unseen
anomalies. Another related line of work is detection of out-of-distribution instances, which
is similar to open category detection but assumes that the test data come from a completely
different distribution compared to the training distribution (e.g., Hendrycks and Gimpel,
2017; Liang et al., 2018). All of this work is quite specialized to deep neural networks and
does not provide direct control of alien detection rates or theoretical guarantees.

3. Problem Setting

We consider open category detection where there is an unknown nominal data distribution
D0 over labeled examples from a known set of category labels. We receive as input a “clean”
nominal training set S0 containing k i.i.d. draws from D0. In practice, S0 will correspond
to some curated labeled data that contains only the known categories of interest.

We also receive as input an unlabeled “mixture” data set Sm that contains n points
drawn i.i.d. from a mixture distribution Dm. Specifically, the mixture distribution Dm is a
combination of the nominal distribution D0 and an unknown alien distribution Da, which
is a distribution over novel categories (alien data points). We assume that Da is stationary,
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so that all alien points that appear as future test queries will also be drawn from Da. (We
discuss this assumption in Section 9.)

At training time, we assume that Dm is a mixture distribution, with probability α of
generating an alien data point from Da and probability of 1 − α of generating a nominal
point. Our results hold even if the test queries come from a mixture with a different value
of α as long as the alien test points are drawn from Da.

Given these data sets, our problem is to label test instances from Dm as either “alien”
or “nominal”. In particular, we wish to guarantee a specified alien detection rate (recall, or
1 minus the missed alarm rate), which is the fraction of alien data points in Dm that are
classified as “alien” (e.g., 95%). At the same time we would like the false positive rate (false
alarm rate) to be small, which is the fraction of nominal data points incorrectly classified
as aliens.

Our approach to this problem assumes the availability of an anomaly detector that
is trained on S0 and assigns anomaly scores to all data points in both S0 and Sm. The
anomaly scores determine an order over the test examples according to how anomalous
they appear relative to the nominal data (higher scores being more anomalous). An ideal
detector would rank all alien data points higher than all nominals, though in practice, the
ordering will not be so clean. Our approach labels data in Sm by selecting a threshold τ on
the anomaly scores and labeling all data points with scores above the threshold as aliens
and the remaining points as nominals. Our key challenge is to select a value for τ that
provides a guarantee on the alien detection rate. Note that we do not provide a guarantee
on the false positive rate, and the actual false positive rate that is achieved will depend
on how well the anomaly detection method separates the true positives (aliens) and true
negatives (nominals).

4. Algorithms for Open Category Detection

In order to obtain a theoretical guarantee, our algorithm assumes knowledge of the alien
mixture probability α that generates the mixture data Sm. Later, we will show that knowing
an upper bound on α is sufficient to obtain a guarantee, and we will introduce practical
methods for estimating α.

Our approach is based on considering the cumulative distribution functions (CDFs) over
anomaly scores of a fixed anomaly detector. Let F0, Fa, and Fm be the CDFs of anomaly
scores for the nominal data distribution D0, alien distribution Da, and mixture distribution
Dm respectively. Since Dm is a simple mixture of D0 and Da, we can write Fm as

Fm(x) = (1− α)F0(x) + αFa(x).

From this we can derive the CDF for Fa in terms of Fm and F0:

Fa(x) =
Fm(x)− (1− α)F0(x)

α
.

Given the ability to derive Fa, it is straightforward to achieve an alien detection rate of
1− q (e.g. 95%) by selecting an anomaly score threshold τq that is the q quantile of Fa and
raising an alarm on all test queries whose anomaly score is greater than τq.
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In reality, we do not have access to Fm or F0 and hence cannot exactly determine Fa.
Rather, we have samples Sm and S0. Thus, our algorithm works with the empirical CDFs
F̂0 and F̂m, which are simple step-wise constant approximations, and estimates an empirical
CDF over aliens:

F̂a(x) =
F̂m(x)− (1− α)F̂0(x)

α
. (1)

Our algorithm computes the above estimate of F̂a and uses it to select a threshold τ̂q to be
the largest threshold such that F̂a(τ̂q) ≤ q, where 1 − q is the target alien detection rate.
This choice will minimize the number of false alarms.

The steps of this algorithm are as follows.

Algorithm 1 Estimate Threshold

1: Compute anomaly scores for all points in S0 and Sm, denoted x1, x2, . . . , xk and
y1, y2, . . . , yn respectively.

2: Compute empirical CDFs F̂0 and F̂m.
3: Calculate F̂a using equation 1.
4: Output detection threshold

τ̂q = max{u ∈ S : F̂a(u) ≤ q},

where S = {x1, x2, . . . , xk, y1, y2, . . . , yn}.

Although F̂m and F̂0 are both legal CDFs, the estimate for F̂a from step 3 may not
be a legal CDF, because it is the difference of two noisy estimates—it may not increase
monotonically, and it may even be negative. A good technique for dealing with this problem
is to employ isotonization (Barlow and Brunk, 1972) and clipping. Isotonization finds the
monotonically increasing function F̂ ∗a closest to F̂a in squared error. To convert F̂a into a
legal CDF, define F̌a = min{max{F̂ ∗a ,0},1}, where the min and max operators are applied
pointwise to their arguments. We performed experiments (shown in the Appendix) to test
whether using F̌a in Step 4 would improve the performance of the overall algorithm. We
found that it did not.

5. Finite Sample Guarantee

In the limit of infinite data (both nominal and mixture) and perfect knowledge of α, F̂a will
converge to the true alien CDF, and our algorithm will achieve the desired alien detection
rate. In this section, we consider the finite data case where |S0| = |Sm| = n. We derive
a value for the sample size n that guarantees with high probability over random draws of
S0 and Sm that fraction 1 − q − ε of the alien test points will be detected, where ε is an
additional error incurred because of the finite sample size n.

Our key theoretical tool is a finite sample result due to Massart (1990) on the uniform
convergence of empirical CDF functions. To use this result, we make the reasonable tech-
nical assumption that the nominal and alien CDFs, F0 and Fa, are continuous. In the
following, let η be the target alien detection rate, q be the input to Algorithm 1, τ̂q be
the estimated q-quantile of the alien CDF (step 4 of Alg. 1), and ε be an error parameter.
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The following theorem gives the sample complexity for guaranteeing that 1− η of the alien
examples will be detected using threshold τ̂q.

Theorem 1 Let S0 and Sm be nominal and mixture data sets containing n i.i.d. samples
from the nominal and mixture data distributions respectively. For any ε ∈ (0, 1 − q) and
δ ∈ (0, 1), if

n >
1

2
ln

2

1−
√

1− δ

(
1

ε

)2(2− α
α

)2

,

then with probability at least 1− δ, Algorithm 1 will return a threshold τ̂q that achieves an
alien detection rate of at least 1− η, where η = q + ε.

The proof is in the Appendix. Note that n grows as O( 1
ε2α2 log 1

δ ). Hence, this guarantee
is polynomial in all relevant parameters, which we believe is the first such guarantee for
open category detection. The result can be generalized to the case where n0 < nm; in
practice, the larger the mixture sample Sm is, the easier it is to estimate τq, because this
provides more alien points for estimating the q-th quantile of Fa.

The theorem suggests what value we should choose for q. For a given α, under a fixed
sample size |S0| = |Sm| = n and a probability tolerance δ, the smallest ε we can achieve is
2−α
α

√
1
2n ln 2

1−
√
1−δ . If a recall of at least 1 − η is desired, we should choose q = η − ε. By

choosing a q value smaller than η − ε, we can achieve a recall greater than 1 − η, but this
will have a higher false positive rate.

The ε captures how close our CDF estimate F̂a is to the true CDF Fa and how much
worse than 1− q our recall will be. As long as ε < η, we can achieve the desired recall 1− η
by setting q = η − ε. But if we can achieve a smaller value for ε, we can use a larger value
for q, which allows us to potentially choose a larger threshold τ̂q. And the greater τ̂q is, the
smaller the false positive rate will be. In the extreme case when ε→ 0 and n→∞, τ̂q → τq
and the false positive rate will tend to 1− F0(τq).

The achievable false positive rate under a specified recall is decided by the relative
shapes and locations of the distributions given by Fa and F0, which are determined by the
performance of the anomaly detector and the difficulty of the anomaly detection problem
(i.e., how different the aliens and nominals are). Figure 2 shows one example of anomaly
scores from an Isolation Forest computed on the UCI Shuttle data set. In this figure, the
distributions of anomaly scores from nominal and anomalous data points are well separated,
and we can attain a small false positive rate while achieving high recall. Figure 3 shows
the corresponding anomaly score distributions on the Optical Recognition of Handwritten
Digits data set. Here the distributions are not as well separated as those in Figure 2. If we
want to achieve high recall, we are going to have a relatively high false positive rate as well.
The greater τ̂q is, the smaller the resulted false positive rate will be.

Making use of the result of Massart (1990), once we have an threshold estimate τ̂q, we
can get a guarantee for its performance in terms of the false alarm rate as well. Under the
same technical assumption of Theorem 1, the following corollary gives a sample complexity
when we want both a guarantee on recall and an estimate for the resulting false positive
rate.
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Corollary 1 Under the same setting of Theorem 1, for any ε ∈ (0, 1− q) and δ ∈ (0, 1),
if

n >
1

2
ln

2

1−
√

1− δ/2

(
1

ε

)2(2− α
α

)2

,

then with probability at least 1− δ, Algorithm 1 will return a threshold τ̂q that achieves an
alien detection rate of at least 1− η, where η = q+ ε, and the false positive rate from using

τ̂q will be no greater than 1− F̂0(τ̂q) + ε0, where ε0 =
√

1
2n ln 4

δ < ε and F̂0 is the empirical

CDF of the anomaly scores of the nominal data set only.

The proof is in the appendix. Note that the sample size required here is larger than
that in Theorem 1, due to the need to splitting the probability tolerance δ between the
guarantee on recall and the estimation for the resulting false positive rate. Also note that
here we are estimating the false positive rate introduced by our threshold instead of trying
to find a threshold that can achieve a desired false positive rate. The requirement to control
the recall and false positive rate at the same time is not always feasible, due to the relative
shape of F0 and Fa.

What if we don’t know the exact value of α? If our algorithm uses an upper bound α′ on
the true α to compute F̂a, we can still provide a guarantee. In this case, in addition to the
assumptions in Theorem 1, we need a concept of an anomaly detector being admissible. We
say that an anomaly detector is admissible for a problem if the anomaly score CDFs satisfy
F0(x) ≥ Fm(x) for all x ∈ R. Most reasonable anomaly detectors will be admissible in
this sense, since the alien CDF will typically concentrate more mass toward larger anomaly
score values compared to F0. Indeed, if this is not the case, there is little hope, since there is
effectively no signal to distinguish between aliens and nominals. Both Figure 2 and Figure 3
show examples of anomaly scores from admissible anomaly detectors.
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Corollary 2 Consider running Algorithm 1 using an upper bound α′ on the true α.
Under the same assumptions as Theorem 1, if the anomaly detector is admissible and

n >
1

2
ln

2

1−
√

1− δ

(
1

ε

)2(2− α′

α′

)2

,

then with probability at least 1− δ, Algorithm 1 will return a threshold τ̂q that achieves an
alien detection rate of at least 1− η, where η = q + ε.
The proof is in the Appendix. While we can achieve a guarantee using an upper bound on
α′, the returned threshold will be more conservative (smaller) than if we had used the true
α. This will result in higher false alarm rates, since more nominal points will be above the
threshold. Thus it is desirable to use a value of α′ that is as close to α as possible.

6. Optimal Allocation of Total Sample Size Budget

In the preceding section, we discussed the sample size requirement under the constraint nm
= n0, where nm = |Sm| and n0 = |S0|. What if we relax this constraint? What will be the
best way of allocating samples if we only have a constraint on the total budget n = n0+nm?

The closer F̂a is to Fa, the better the threshold estimate we can get from the algorithm.
The best way of allocating samples should minimize the maximum absolute distance ε
between F̂a(x) and Fa(x), subject to the requirement on δ and n, under a given α. Since
δ appears inside the logarithm, its effect on the sample size requirement is limited. To
facilitate the analysis, we relax the requirement on the independence between the clean
sample and mixture sample. From the proof of Theorem 1, we can see that this corresponds
to adopting the constraint δ0 + δm ≤ δ instead of (1 − δ0)(1 − δm) ≤ 1 − δ, where δ0 and
δm are the probability error tolerances we allow for estimating F0 and Fm respectively. We
can also see from the same proof that given n0, nm, δ0, and δm, the smallest ε value we can
achieve under a 1− δ probability guarantee is

ε(n0, nm, δ0, δm) =
1

α

1
√
nm

√
1

2
ln

2

δm
+

1− α
α

1
√
n0

√
1

2
ln

2

δ0
.

The optimization problem we want to solve is therefore:

minimize ε(n0, nm, δ0, δm)
subject to n0 + nm ≤ n,

δ0 + δm ≤ δ,
n0, nm, δ0, δm > 0.

(2)

Given a fixed pair (δ0, δm), for any pair of (n0, nm) satisfying n0+nm < n, if we increase
either n0 or nm, the value of ε will decrease. A similar observation holds for any pair of
(δ0, δm) given a fixed pair (n0, nm). Hence the minimum value of ε(nm, n0, δm, δ0) can only
be achieved when first two inequalities in (2) become equalities. Hence, we only need to
consider the feasible region where n0 = n− nm and δ0 = δ − δm. Thus we can simplify the
optimization problem (2) to be

minimize ε(nm, δm)
subject to 0 < nm < n,

0 < δm < δ,
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where

ε(nm, δm) =
1

α

1
√
nm

√
1

2
ln

2

δm
+

1− α
α

1√
n− nm

√
1

2
ln

2

δ − δm
.

Theorem 2 The objective function ε(nm, δm) is convex in nm and δm, nm ∈ (0, n),
δm ∈ (0, δ). Further, if we write

ε(δm) := min
nm∈(0,n)

ε(nm, δm),

then ε(δm) is also a convex function in δm.
For a fixed δm ∈ (0, δ), ε(nm, δm) is a convex function in nm, and we can analytically

minimize ε(nm, δm) with respect to nm to obtain

nm =
(1− α)−

2
3 (

ln 2
δm

ln 2
δ−δm

)
1
3

1 + (1− α)−
2
3 (

ln 2
δm

ln 2
δ−δm

)
1
3

n.

The optimal ε that can be achieved by each value of δm ∈ (0, δ) is

ε(δm) =
1

α

1√√√√√ (1−α)−
2
3 (

ln 2
δm

ln 2
δ−δm

)
1
3

1+(1−α)−
2
3 (

ln 2
δm

ln 2
δ−δm

)
1
3

n

√
1

2
ln

2

δm
+

1− α
α

1√
1

1+(1−α)−
2
3 (

ln 2
δm

ln 2
δ−δm

)
1
3

n

√
1

2
ln

2

δ − δm
.

Note that the optimal proportion of data that belongs to the mixture sample nm/n is
determined by α and δ, and it is independent of n. However, the optimal ε(δm) achievable
involves n. How does the optimal proportion nm/n change as δm varies within (0, δ), given
fixed α and δ? How about the optimal ε, given a fixed n?

Figures 4 and 5 show how the optimal nm/n and the optimal ε vary as δm changes,
with α = 0.10 and α = 0.90, respectively. We see that unless α is large, the optimal ε is
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usually achieved somewhere not far away from δm = δ/2, and the corresponding optimal
nm/n changes slowly near this area as well. If the guarantee desired on ε does not need
to be precise, then when α is not large, a shortcut is to take δm = δ/2 and calculate the
corresponding optimal nm/n and optimal ε.

However, we can also find the precise optimal solution with respect to nm and δm. As
stated in Theorem 2, ε(δm) is again a convex function in δm ∈ (0, δ). We can solve the
problem of minimizing ε(δm) with respect to δm numerically, and the minimum ε we get is
also the minimum of ε(nm, δm) optimized over nm and δm together. In the following, we
compute the numerical solution using a line search.

For fixed δ, how do the optimal proportion nm/n, the corresponding optimal δm, and
the optimal ε achievable change as the anomaly proportion α varies? In Figure 6 we see
that as α→ 0, which means we almost have no anomaly points in the mixture population,
the optimal nm/n → 0.5, but the best epsilon achieved increases very rapidly. As α → 1,
the mixture population is almost the same as the pure anomaly distribution. In this case,
we want to allocate most of n to nm, since focusing on the mixture distribution can almost
directly give us a good threshold estimate. The trend that optimal nm/n→ 1 and optimal ε
guaranteed goes towards a small number align with this intuition. On the other hand, Figure
7 shows the optimal nm/n and the corresponding δm as α varies. Here we observe that as
α → 0, we are almost taking δm = δ0 = δ/2 and viewing estimating F0 and Fm equally
important. As α→ 1, δm → δ, estimating Fm becomes the most important consideration.

Given the budget constraint on n, confidence level 1 − δ, and anomaly proportion α,
we can calculate the best ε achievable and the optimal nm/n to obtain it. If we want to
find the smallest n that could guarantee a certain ε value, we can solve the optimization
problems for different values of n.
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7. Experiments on Threshold Estimation Given α

We performed experiments to answer four questions. Question Q1: how accurate is our
estimate of τ̂q as a function of n and α? Question Q2: how loose are the bounds from
Theorem 1? Question Q3: what are typical values of the false alarm rates for various
settings of n and α on real data sets? Question Q4: how do these observed values change
if we employ an overestimate α′ > α?

All of our experiments employ the Isolation Forest anomaly detector of Liu et al. (2008),
which has been demonstrated to be a state-of-the-art detector in recent empirical studies
by Emmott et al. (2013).

Synthetic Data Experiments. To address Q1 and Q2, we run controlled experiments
on synthetic data. The data points are generated from 9-dimensional normal distributions.
The dimensions of the nominal distribution D0 are independently distributed as N(0, 1).
The alien distribution is similar, but with probability 0.4, 3 of the 9 dimensions (chosen
uniformly at random) are distributed as N(3, 1) and with probability 0.6, 4 of the 9 di-
mensions (chosen uniformly at random) follow N(3, 1). This ensures that the anomalies are
not highly similar to each other and models the situation in which there are many different
kinds of alien objects, not just a single alien class forming a tight cluster.
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Figure 8: Comparison of recall achieved by τ̂q compared to oracle recall of 0.95. Error
bars are 95% confidence intervals. Settings of n and α increase from left to
right starting with α = 0.01 and n ∈ {100, 500, 1K, 5K, 10K} up to α = 0.5 and
n = 10K.

In each experiment, the nominal data set and the mixture data set are of the same size
n, and the mixture data set contains a proportion α of anomaly points. We fixed the target
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Figure 9: Comparison of oracle FPR to the FPR achieved by τ̂q. Error bars span from the
25th to 75th percentile with the blue dot marking the median of the 100 trials.
Orange markers indicate the oracle FPR. Settings of n and α increase from left
to right starting with α = 0.01 and n ∈ {100, 500, 1K, 5K, 10K} up to α = 0.5
and n = 10K.

quantile to be q = 0.05. The experiments are carried out for n ∈ {100, 500, 1K, 5K, 10K}
and α ∈ {0.01, 0.05, 0.10, 0.20, 0.50}.

For testing, we create two large data sets G0 and Ga, with G0 being a pure nominal data
set, Ga being a pure alien data set, and |G0| = |Ga| = 20K. The Isolation Forest algorithm
computes 1000 full depth isolation trees on the nominal data. Each tree is grown on a
randomly-selected 20% subsample of the clean data points. We compute anomaly scores for
the nominal points via out-of-bag estimates and anomaly scores for the mixture points, G0,
and Ga using the full isolation forest. This avoids the need for a separate validation set,
and would be the correct procedure to follow in real applications. For each combination of
n and α, we repeat the experiment 100 times. We measure the fraction of aliens detected
(the “recall”) and the fraction of nominal points declared to be alien (the “false positive
rate”) by applying the τ̂q estimate to threshold the anomaly scores in G0 and Ga.

To assess the accuracy of our τ̂q estimates (Q1), we could compare them to the true
values. However, this comparison is hard to interpret, because τ is expressed on the scale of
anomaly scores, which are somewhat arbitrary. Instead, Figure 8 plots the recall achieved
by τ̂q. If τ̂q had been estimated perfectly, the recall would always be 1− q = 0.95. However,
we see that the recall is often less than 0.95, which indicates that τ̂q is over-estimated,
especially when n and α are small. This behavior is predicted by our theory, where we see
that the sample size requirements grow inversely with α2. For larger α and n, the recall
guarantee is generally achieved. Figure 9 compares the false positive rate of the true oracle
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τq to the false positive rate of the estimate τ̂q. For each combination of α and n, we have
100 replications of the experiment and therefore 100 estimates τ̂a and 100 FPR rates. For
each of these, the true FPR is computed using G0. The error bars summarize the resulting
100 FPR values by the median and inter-quartile range. We see that for small n and α, the
FPR can be quite different from the oracle rate, but for larger n and α, the estimates are
very good.

To assess the looseness of the bounds (Q2), for each combination of n and α, we fix
δ = 0.05 and compute the value of η such that 95 of the 100 runs achieved a recall of at
least 1 − η (thus η empirically achieves the 1 − δ guarantee). We then compute ε = η − q
and the corresponding required sample size n∗ according to Theorem 1. Figure 10 shows a
plot of n∗ versus the actual n. The distance of these points from the n∗ = n diagonal line
show that the theory is fairly loose, although it becomes tighter as n gets large.

Benchmark Data Experiments. To address our third and fourth questions, we
performed experiments on six UCI multiclass data sets: Landsat, Opt.digits, pageb, Letter
Recognition, Shuttle and Covertype. In addition to these, we provide results for the MNIST
and Tiny ImageNet data sets. In each multiclass data set, we split the classes into two
groups: nominal and alien. For Tiny ImageNet, we train a deep neural network classifier on
200 nominal classes and treat the remaining 800 as aliens. The nominal classes for UCI data
sets are Landsat(1,7), OCR(1,3,4,5,7), pageb(1,5), Letter Recognition(1,3), Shuttle(1,4),
and Covertype(1,2,3,7). The nominal classes for MNIST data set are (1,3,7). We generated
nominal and mixture data sets for various values of α. The value of n for each data set
is 1 600 for Landsat, 1 492 for OCR, 1 112 for pageb, 802 for Letter recognition, 8 777 for

Figure 10: The log sample size n∗ required by Theorem 1 in order to guarantee the actual
observed recall versus the log actual sample size n.
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Shuttle, 10 000 for Covertype, 10 000 for MNIST, and 5 263 for Tiny ImageNet. Because we
cannot create data sets with large n, we cannot measure the true value of τq.

After computing the anomaly scores for both nominal and mixture data sets, we applied
Algorithm 1 within a 10-fold cross validation. We divide the mixture data points at random
into 10 groups. For each fold, we estimate F̂a and τ̂a from 9 of the 10 groups and then
score the mixture points in the held-out fold according to τ̂a. In all other respects, the
experimental protocol is the same as for the synthetic data. For Tiny ImageNet, the anomaly
scores are obtained by applying the baseline method of Hendrycks and Gimpel (2017).

To answer Q3, Figures 11 and 13 plot the false positive rate as a function of α for the
UCI and vision data sets, respectively. We see that the FPR ranges from 0.06% to 85.05%
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Figure 15: Change in recall and false positive rate as a function of α′ − α for six UCI
datasets; α ∈ {0.1, 0.2, 0.4}

on UCI depending on the data set and the level of α. The vision data sets have higher
FPR, especially Tiny ImageNet, which has a large number of alien classes that are not
distinguished well by the anomaly detector. The FPR depends primarily on the problem
domain and the performance of anomaly detector, because the key issue is how well the
anomaly detector distinguishes between nominal and alien examples. For some data sets,
the FPR can be improved by applying an anomaly detector better-suited to the problem.
While for other data sets where the anomalies and nominals are hard to tell apart in nature,
it may not be feasible to improve FPR without sacrificing recall.

Figures 12 and 14 plot the recall as a function of α for the UCI and vision data sets. We
set q = 0.05 in these experiments. Theorem 1 only guarantees a recall of 1− q − ε, where ε
depends on n. Hence, it is nice to see that for two of the domains (Shuttle and Covertype)
in UCI data sets and for both vision data sets the recall is very close to 1− q = 0.95. These
are the domains with the largest values of n. The value of α has a bigger impact on recall
than it does on FPR. This is because the effective number of alien training examples is αn,
which can be very small for some data sets when α = 0.1. The recall generally improves as
α increases. In some applications, it may be possible to enrich Sm so that α is larger on the
training set to take advantage of this phenomenon. It is interesting to note that once τ̂a has
been computed, it can be applied to test data sets having different (or unknown) values of
α. If the mixture data set Sm cannot be enriched to increase α, then when α is very small,
Sm needs to be very large.

To answer Q4 regarding the impact of using an incorrect value α′ > α, we repeated these
experiments on UCI data sets with α′ = α + ξ, for ξ ∈ {0.002, 0.004, 0.006, 0.008, 0.010}.
Figure 15 plots the change in false positive rate and recall as a function of α′−α. Two points
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are plotted for each combination of α′ and data set, the change in recall and the change
in FPR. We observe that the recall increases slightly (in the range from 0.001 to 0.047).
However, the false positive rate increases by much larger amounts (from 0 to 0.246). This
demonstrates that it is very important to determine the value of α accurately to control the
false positive rate.

8. Threshold Estimation via α Estimation

In many practical applications, the exact value or a reasonable upper bound of α is not avail-
able. In this section we combine certain mixture proportion estimators with our algorithm
to explore a possible solution for estimating the threshold in practice.

Multiple methods in the literature exist for estimating α. One problem that is jointly
recognized by multiple studies (e.g., Scott, 2015; Patra and Sen, 2016; Ramaswamy et al.,
2016) is that the exact α is not identifiable in the general setting (i.e., without making
additional assumptions about the relationship of F0 and Fa). To see why, suppose that

Fm(x) = (1− α)F0(x) + αFa(x)

and we know the exact form of Fm(x) and F0(x). Then for any α′ > α, Fm(x) can rewritten
as

Fm(x) = (1− α′)F0(x) + α′F ′a(x),

where

F ′a(x) =
(α′ − α)F0 + αFa(x)

α′
.

This implies that without additional assumptions, any α′ ≥ α will provide us a legal way
to decompose Fm. In the extreme case, taking α′ = 1 will just make F ′a equal to Fm. Thus,
in the literature, most studies either enforce a separability condition between F0 and Fa
(Scott, 2015; Ramaswamy et al., 2016) or focus on estimating

α0 := inf{γ ∈ (0, 1] :
Fm − (1− γ)F0

γ
is a CDF}, (3)

which means we attribute as large a proportion of Fm as possible to F0, as long as a legal
CDF for the anomalous part Fa can still be reconstructed (Patra and Sen, 2016).

In this section, we consider nine different estimators for α0 and demonstrate their per-
formance on synthetic data sets. Additionally, we compute the resulting recall and false
positive rate (FPR) from five of the estimators on selected UCI benchmark data sets when
deployed to estimate τα for open category detection.

The first four estimators are based on Ramaswamy et al. (2016), where the authors
embed both the empirical clean and mixture distributions into a reproducing kernel Hilbert
space (RKHS) and then estimate α0 by finding the smallest value of γ such that the es-
timated P̂a is the embedding of a probability distribution. This is the same intuition as
Equation 3, but instead of requiring F̂a to be a valid CDF, they require P̂a to be a valid
probability distribution. They do not actually require P̂a to be a valid embedding, but
instead they threshold the distance between P̂a and a valid embedding. The paper proposes
two methods, “KM1” and “KM2”, where KM1 thresholds the distance directly and KM2
thresholds it based on its gradient.
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In our setting, we can apply these algorithms in two separate ways. First, they can be
applied directly to the samples S0 and Sm. We refer to the corresponding estimates as α1

and α2. The second way is to first compute anomaly scores (e.g., via an isolation forest),
and then embed those scores into the RKHS. We refer to the resulting estimators as α1score
and α2score.

Among the next four estimators, one is extended by Lin and Long (2020) from an
estimator introduced by Patra and Sen (2016), and the other three come from two sources
and are given a good summary by Lin and Long (2020). The main framework of Lin and
Long (2020) trains a flexible classifier, such as a random forest, to discriminate between
the nominal sample S0 and the mixture sample Sm. The CDFs G0 and Gm of the fitted
probability scores of this classifier satisfy the relationship that Gm = (1−α)G0 +αGa. Lin
and Long compare four mixture proportion estimators, namely “C-PS”, “C-ROC”, “ROC”
and “SPY”. Here “C-PS” is the estimator extended from the original version by Patra and
Sen (2016) to the case when F0 is not known, and the letter “C” indicates that it is based on
the fitted classifier. “C-ROC” and “ROC” are both based on the method proposed by Scott
(2015) that makes use of the classifier’s ROC curve to estimate α, by taking 1 minus the
minimum slope between the point (1, 1) and any other point on the curve. The difference is
that “C-ROC” is based on a random forest classifier and “ROC” is based on kernel logistic
regression.

The “SPY” method was proposed by Liu et al. (2002). In the implementation, Lin
and Long (2020) fit a random forest to separate S0 from Sm. To determine a probability
threshold for labeling points in Sm as nominal versus anomalous, the “SPY” method first
inserts a modest number of clean points from S0 (the “spies”) into Sm. By analyzing the
class membership probabilities assigned by random forest to the spies, the method selects a
threshold and labels all points from the original Sm with assigned probabilities lower than
the threshold to be “reliable negatives”. These are assigned labels of 0, the points in the
original S0 are assigned labels of 1, and another random forest is built to tell these “reliable
negatives” apart from points in the original S0. In the last step, the latter random forest
is applied on the original Sm to obtain the predicted labels, and the proportion of points
predicted to be anomalies is taken as an estimate for α.

In addition to the eight methods already introduced, we propose a new method inspired
by Patra and Sen (2016), but based on bootstrap reconstruction of the mixture sets to select
the best value of γ. The procedure is described in Algorithm 2.

The intuition behind the original method by Patra and Sen (2016) is, when γ < α0, we

are attributing too much of the Fm to F0, and Fa = Fm−(1−γ)F0

γ will not be a legal CDF.

As a result, the F̂ γa we compute from F̂m and F̂0 will also tend to be far away from a legal
CDF—specifically, it will be far away from the CDF F̌ γa computed by applying isotonic
regression to F̂ γa . Patra and Sen define the distance of two functions g and h on the real
line as dm(g, h) =

∫
{g(x) − h(x)}2dFm(x). Hence, the distance between the original Fm

and the reconstructed version based on F̌ γa can be written as dm(Fm, γF̌
γ
a + (1 − γ)F0) =

γdm(F̂ γa , F̌
γ
a ). Patra and Sen (2016) prove that γdm(F̂ γa , F̌

γ
a ) converges almost surely to 0

when γ ≥ α0 and to a positive quantity when γ < α0 as the sample size increases. Hence,
we can select as our estimator of α0 the value of γ that makes this distance small. Because
of random fluctuations due to sampling, we do not expect that dm(F̂ γa , F̌

γ
a ) will be equal to
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Algorithm 2 Bootstrap-Based Mixture Proportion Estimation

1: for γ = 0.005, 0.010, . . . , 1 do
2: Compute d(γ) = γdm(F̂ γa , F̌

γ
a ).

3: for b = 1, . . . , B do
4: Get bootstrap sample Sbm by sampling nominal points with replacement from S0

and anomalies from F̌ γa
5: Compute resampled estimates F̂ γa,b and F̌ γa,b
6: Compute the resampled distance db(γ) = γdm,b(F̂

γ
a,b, F̌

γ
a,b)

7: end for
8: Compute the 25% and 75% quantiles from d1(γ), d2(γ), . . . , dB(γ) as d0.25(γ) and

d0.75(γ)
9: if d(γ) ∈ [d0.25(γ), d0.75(γ)] then

10: break and output α̂ = γ
11: end if
12: if d(γ) /∈ [d0.25(γ), d0.75(γ)] and γ = 1 then
13: output α̂ = 1
14: end if
15: end for

zero. Hence, the central question becomes determining what distance we would expect to
have due to random fluctuations when γ = α0?

We propose to answer this question via bootstrap resampling. Specifically, if γ = α0,
then if we resample the anomalous points Sa according to F̌ γa , mix them with clean points
from S0 according to mixing proportion γ and re-estimate F̂ γa and F̌ γa , we should obtain a
bootstrap replicate of the distance dm(F̂ γa , F̌

γ
a ). Repeating this many times will allow us to

assess the typical distance due to sampling fluctuations. If the bootstrap replicate distances
are similar to the dm(F̂ γa , F̌

γ
a ), then we can adopt γ as our estimate of α0.

Specifically, from the bootstrap replicates, we compute the 25% and 75% quantiles of the
distribution of dm(F̂ γa , F̌

γ
a ) and select as our estimate α̂0 the smallest value of γ such that

the computed dm(F̂ γa , F̌
γ
a ) falls within this inter-quartile range of the bootstrap replicates.

The choice of the 25% and 75% quantiles is entirely heuristic. Selecting a higher upper
bound will tend to produce a smaller estimate for α0.

We run experiments on synthetic data sets to compare the performance of nine α0 esti-
mators and summarize the performance in Figure 16. In these experiments, the generating
process of synthetic data sets follows the one described in Section 7, and experiments for
each setting are repeated 100 times. Due to the construction method of the data sets,
we can assume that the nominal and anomalous distributions approximately satisfy the
separability requirements, and thus α0 ≈ α.

We observe that when both α0 and the sample size are small, both α1 and α2 estimators
severely overestimate α, but the performance improves as α increases and as the sample size
increases. The anomaly-score-based methods α1score and α2score appear slightly better
than α1 and α2 which suggests that converting the raw data to anomaly scores first reduces
the large positive bias. All estimators, except the “SPY” method, show a trend toward
the true α value as the sample size increases. However, the C-ROC and ROC methods
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Figure 16: Average estimate and error bars of 9 different estimators for α0, with each
plot corresponding to one α0 value in (0.10, 0.20, 0.40), and sample sizes in
(100, 500, 1000). The black horizontal line shows the true value of α0.

tend to underestimate, and α1, α1score, α2, α2score, and our method (bt-patrasen) tend to
overestimate.

Next, we apply five of these methods to estimate τq by first estimating α and then
applying our Algorithm 1. We did not include the methods based on Ramaswamy et al.
(2016), namely α1, α2, α1score and α2score, because they employ quadratic programming
as part of the procedure and thus take relatively large computing resources. Based on the
insight from the classifier-based methods for estimating α, we perform these experiments
using two different configurations: one based on iForest anomaly scores and one based on
class probabilities produced by a flexible classifier. The configurations for these experiments
are shown in Tables 1 and 2.

In these experiments, the classes we treat as known classes from each data set are LR
(1,3), pageb (1,5), OCR(1,3,4,5,7), landsat(1,7), shuttle(1,4), and covertype (1,2,3,7). The
data set size n = |S0| = |Sm| is LR (802), pageb (1 112), OCR (1 492), landsat (1 600),
shuttle (8 777), and covertype (10 000).

Figure 17 shows the iForest-based results and Figure 18 shows the classifier-based results.
The data set names on x-axis in both figures are ordered by size. We see that in both
configurations, the performance of the various proportion estimators are similar, except
that the SPY method consistently overestimates α and consequently achieves high false
positive rates. In general, as the sample size of the data sets increases, the estimate of
the alien fraction (α) gets closer to its true value, recall gets closer to 1 − q, and the false
positive rate gets closer to that achieved when under the true value of α. These results
show that combining anomaly proportion estimation and our algorithm of setting threshold
is an effective approach for real-world data.
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Figure 17: With iForest anomaly scores: the average estimate and error bars on proportion
estimation, recall, and FPR achieved by 5 different estimators for α0, with α0

value in (0.10, 0.20, 0.40), and over 6 different UCI data sets. The “truth” here
corresponds to the values obtained using the true α(q = 0.05).
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Figure 18: With classifier-provided class probabilities: the average estimate and error bars
on proportion estimation, recall, and FPR achieved by 5 different estimators for
α0, with α0 value in (0.10, 0.20, 0.40), and over 6 different UCI data sets. The
“truth” here corresponds to the values obtained using the true α(q = 0.05).
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estimator proportion estimate threshold estimate

bt-patrasen iForest scores iForest scores
C-PS random forest scores iForest scores
C-ROC random forest scores iForest scores
ROC kernel logistic regression scores iForest scores
SPY random forest scores iForest scores
truth true α value iForest scores

Table 1: Experiment configuration using iForest scores

estimator proportion estimate threshold estimate

bt-patrasen random forest scores random forest scores
C-PS random forest scores random forest scores
C-ROC random forest scores random forest scores
ROC kernel logistic regression scores kernel logistic regression scores
SPY random forest scores random forest scores
truth true α value random forest scores

Table 2: Experiment configuration using classifier scores

Our method, bt patrasen, is one of the best-performing methods, except on covertype
with iForest anomaly scores. The iForest anomaly detector appears to perform very badly
on the covertype data, and all estimators—and the true α value—give poor false positive
rates. However, all of the other estimators still produce good estimates of α in this case, but
bt patrasen gives a serious underestimate. This indicates that the random forest and kernel
logistic regression classifiers provide better scores for the covertype problem for setting the
threshold τ . The tradeoff achievable between recall and false positive rate is determined by
the nature of the problem and the performance of the anomaly detector and classifier.

For dealing with problems in practice, we recommend first computing three estimates
of α from bt patrasen, c patrasen and c roc. If these estimates are similar, we recommend
using bt patrasen. Otherwise use c roc. If it is known from background knowledge that a
certain anomaly detector or classifier in general works well for the problem, then we suggest
using its scores for estimating α and especially for estimating τq.

9. Discussion

We have taken a step toward open category detection with guarantees by providing a PAC-
style guarantee on the probability of detecting 1 − η of the aliens on the test data. This
is the first such guarantee under any similarly general conditions. We have shown that
this guarantee is satisfied in our experiments, although the guarantee is somewhat loose,
especially on small training sets. Obtaining a guarantee requires more data than standard
PAC guarantees on expected prediction accuracy. This is because we must estimate the q
quantile of the alien anomaly score distribution, where q is typically quite small. Nonethe-
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less, our experiments show that our algorithm gives good recall performance and non-trivial
false alarm rates on data sets of reasonable size.

It is important to note that the very formulation of a PAC-style guarantee on the prob-
ability of detecting aliens requires assuming that the aliens are drawn from a well-defined
distribution Da. While this is appropriate in some applications, such as the insect survey
application described in the introduction, it is not appropriate for adversarial settings. In
such settings, a PAC-style guarantee does not make sense, and some other form of safety
guarantee needs to be formulated.

To obtain the guarantee, we employ two training data sets: a clean data set that contains
no aliens and an (unlabeled) contaminated data set that contains a known fraction α of
aliens. As we have seen in the experiments, if we don’t know the exact value of the alien
proportion α in the mixture distribution, then having a tight upper bound for α is important;
otherwise the false positive rate grows rapidly. To the best of our knowledge, no method is
known that can provide a non-trivial upper bound on α within the setup of this chapter.
Blanchard et al. (2010) show that if the clean data distribution D0 is weakly diffuse, then
there is no distribution-free non-trivial upper confidence bound for α0. (It is possible to
obtain a bound if the support ofD0 is finite.) As a consequence, we cannot get a distribution-
free non-trivial upper confidence bound in our setting. Sanderson and Scott (2014) and
Patra and Sen (2016) propose two different consistent estimators, but these do not give an
upper bound estimate with explicit finite sample guarantees. Despite that, Corollary 2 is
effective if an expert has domain knowledge on what a sound upper bound would be.

Our guarantee requires more data as α becomes small. Fortunately, when α is small,
it may be possible in some applications to afford lower recall rates, since the frequency of
aliens will be smaller. However, in safety-critical applications where a single undetected
alien poses a serious threat, there is little recourse other than to collect more data or allow
for higher false positive rates.

To deal with the problem estimating the threshold τq when an upper bound on α is
not directly available, we evaluated five α estimators with Algorithm 1 on six UCI data
sets. With sufficient training data, these estimators produced accurate estimates for α,
high anomaly detection rates, and low false positive rates. Hence, the combination of these
estimators for α and our method of setting τq gives a practical approach to obtaining good
performance on real-world problems.

Of course the performance of these methods, especially on FPR, is affected by the perfor-
mance of the anomaly detector and classifier (when using the classifier-based α estimation
methods). In an application setting, preliminary experiments should be run to select a good
classifier and a good anomaly detector to employ for estimating α and selecting τq.
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Appendix A. Proofs

A1. Proof for Theorem 1

Suppose there are n random variables which are i.i.d. from the distribution with CDF F
and let F̂n be the empirical CDF calculated from this sample. Then Massart (1990) shows
that

P (
√
n sup

x
|F̂n(x)− F (x)| > λ) ≤ 2 exp(−2λ2) (4)

holds without any restriction on λ. Making use of this, and assuming we use the same
sample size n for both the mixture data set and the clean data set, for any ε ∈ (0, 1 − q),
we seek to determine how large n needs to be in order to guarantee that with probability
at least 1− δ our quantile estimate τ̂q satisfies Fa(τ̂q) ≤ q + ε. To achieve this, we want to
have

P (sup
x
|F̂a(x)− Fa(x)| > ε) ≤ δ.

We have

P (sup
x
|F̂a(x)− Fa(x)| > ε)

= P (sup
x
| F̂m(x)− (1− α)F̂0(x)

α
−

Fm(x)− (1− α)F0(x)

α
| > ε)

= P (sup
x
| 1
α

(F̂m(x)− Fm(x))−

1− α
α

(F̂0(x)− F0(x))| > ε)

≤ P ((
1

α
sup
x
|F̂m(x)− Fm(x)|+

1− α
α

sup
x
|F̂0(x)− F0(x)|) > ε)

≤ P ({ 1

α
sup
x
|F̂m(x)− Fm(x)| > 1

2− α
ε}

∪ {1− α
α

sup
x
|F̂0(x)− F0(x)| > 1− α

2− α
ε})

= P ({sup
x
|F̂m(x)− Fm(x)| > α

2− α
ε}

∪ {sup
x
|F̂0(x)− F0(x)| > α

2− α
ε}).

Making use of (4), when

n >
1

2
ln

2

1−
√

1− δ
(
1

ε
)2(

2− α
α

)2,

27



Liu, Garrepalli, Hendrycks, Fern, Mondal, and Dietterich.

we will have

P (sup
x
|F̂m(x)− Fm(x)| > α

2− α
ε) ≤ 1−

√
1− δ,

P (sup
x
|F̂0(x)− F0(x)| > α

2− α
ε) ≤ 1−

√
1− δ.

In this case we will have

P (sup
x
|F̂a(x)− Fa(x)| > ε)

≤ 1− P ({sup
x
|F̂m(x)− Fm(x)| ≤ α

2− α
ε}

∩ {sup
x
|F̂0(x)− F0(x)| ≤ α

2− α
ε})

≤ 1− (1− 1 +
√

1− δ)2

= δ.

Now we have with probability at least 1− δ,

|F̂a(x)− Fa(x)| ≤ ε, ∀x ∈ R.

If this inequality holds, then for any value τ̂q such that F̂a(τ̂q) ≤ q, we have

Fa(τ̂q) ≤ F̂a(τ̂q) + ε ≤ q + ε.

So we have with probability at least 1− δ, any τ̂q satisfying F̂a(τ̂q) ≤ q will satisfy Fa(τ̂q) ≤
q + ε. �

A2. Proof for Corollary 1

Through Bonferroni correction, we split the probability tolerance δ equally into getting
guarantee for recall and estimating the false positive rate resulted from threshold τ̂q.

Following the reasoning of Theorem 1, we can get that as long as the sample size
|Sm| = |S0| = n satisfy

n >
1

2
ln

2

1−
√

1− δ/2
(
1

ε
)2(

2− α
α

)2, (5)

we can have that with probability at least 1− δ/2, Fa(τ̂q) ≤ q + ε.
Next, We want to get the minimum value of ε0, such that

P (|F̂0(τ̂q)− F0(τ̂q)| > ε0) ≤ δ/2.

Making use of equation (4) again, for the CDF of anomaly scores from clean data, we have

P (
√
n sup

x
|F̂0(x)− F0(x)| > λ) ≤ 2 exp(−2λ2)

holds without any restriction on λ. Setting 2 exp(−2λ2) ≤ δ/2, we get λ ≥
√

1
2 ln 4

δ and

thus the minimum value of ε0 is 1√
n

√
1
2 ln 4

δ . Now we have with probability at least 1− δ/2,

F0(τ̂q) ≥ F̂0(τ̂q)− ε0.
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Thus we have that with probability at least 1− δ,

1− Fa(τ̂q) ≥ 1− (q + ε) and 1− F0(τ̂q) ≤ 1− F̂0(τ̂q) + ε0.

On the other hand, from inequality (5), we have ε > 1√
n
2−α
α

√
1
2 ln 2

1−
√

1−δ/2
. Since

α ∈ (0, 1) and δ ∈ (0, 1), we have

ε0 =
1√
n

√
1

2
ln

4

δ
<

1√
n

2− α
α

√
1

2
ln

2

1−
√

1− δ/2
< ε.

�

A3. Proof for Corollary 2

If α′ ≥ α, and if we write

F ′a(x) =
Fm(x)− (1− α′)F0(x)

α′
,

then F ′a is still a legal CDF, because

F ′a(−∞) = 0, F ′a(∞) = 1,

and it is easy to show that F ′a is monotonically nondecreasing.
But

F ′a(x)− Fa(x) =
(α− α′)(Fm(x)− F0(x))

αα′
≥ 0,∀x ∈ <,

and because of this, if we let τ̂ ′q denote the threshold we get from using α′, we will have

Fa(τ̂
′
q) ≤ F ′a(τ̂ ′q). By the proof of previous theorem, we know that when n > 1

2 ln 2
1−
√
1−δ (1ε )

2(2−α
′

α′ )2,

we have with probability at least 1− δ, F ′a(τ̂ ′q) ≤ q + ε, and thus we have Fa(τ̂
′
q) ≤ q + ε.�

A4. Proof for Theorem 2

As mentioned before, our objective function is the guaranteed ε in terms of nm and δm,
given fixed n, δ and α:

ε(nm, δm) =
1

α

1
√
nm

√
1

2
ln

2

δm
+

1− α
α

1√
n− nm

√
1

2
ln

2

δ − δm
,

where
0 < nm < n, 0 < δm < δ.

To prove its convexity, we can write ε(nm, δm) into two parts:

g(nm, δm) =
1

α

1
√
nm

√
1

2
ln

2

δm
,

h(nm, δm) =
1− α
α

1√
n− nm

√
1

2
ln

2

δ − δm
.
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Now

ε(nm, δm) = g(nm, δm) + h(nm, δm).

First look at the components of the Hessian matrix of g(nm, δm):

∂2g

∂n2m
=

3

4

1

α
n
− 5

2
m (

1

2
ln

2

δm
)
1
2 ,

∂2g

∂nm∂δm
=

1

8

1

α
n
− 3

2
m (

1

2
ln

2

δm
)−

1
2 δ−1m ,

∂2g

∂δ2m
=

1

4

1

α
n
− 1

2
m (

1

2
ln

2

δm
)−

1
2 δ−2m −

1

16

1

α
n
− 1

2
m (

1

2
ln

2

δm
)−

3
2 δ−2m .

We see that ∂2g
∂n2

m
> 0.

What’s more, we see that

|O2g(nm, δm)|

=
∂2g

∂n2m

∂2g

∂δ2m
− (

∂2g

∂nm∂δm
)2

=
3

16
(

1

α
)2n−3m δ−2m −

3

64
(

1

α
)2n−3m (

1

2
ln

2

δm
)−1δ−2m −

1

64
(

1

α
)2n−3m (

1

2
ln

2

δm
)−1δ−2m

=
3

16
(

1

α
)2n−3m δ−2m −

1

16
(

1

α
)2n−3m (

1

2
ln

2

δm
)−1δ−2m

=
1

16
(

1

α
)2n−3m δ−2m

(
3− (

1

2
ln

2

δm
)−1
)

> 0, ∀δm ∈ (0, δ).

(Judging from the last formula above alone, “ > ” holds as long as δ ∈ (0, 2/ exp(2/3)) =
(0, 1.027). But δ < 1 so it holds for all δm ∈ (0, δ).)

Both leading principle minors are positive, so we have that the Hessian matrix of
g(nm, δm) is positive definite. Thus we have that g(nm, δm) is convex.

Next look at the components of the Hessian matrix of h(nm, δm):

∂2h

∂n2m
=

3

4

1− α
α

(n− nm)−
5
2 (

1

2
ln

2

δ − δm
)
1
2 ,

∂2h

∂nm∂δm
=

1

8

1− α
α

(n− nm)−
3
2 (

1

2
ln

2

δ − δm
)−

1
2 (δ − δm)−1,

∂2h

∂δ2m
=

1

4

1− α
α

(n− nm)−
1
2 (

1

2
ln

2

δ − δm
)−

1
2 (δ − δm)−2

− 1

16

1− α
α

(n− nm)−
1
2 (

1

2
ln

2

δ − δm
)−

3
2 (δ − δm)−2.

We see that ∂2h
∂n2

m
> 0.
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Similar to above, we also observe that

|O2h(nm, δm)|

=
∂2h

∂n2m

∂2h

∂δ2m
− (

∂2h

∂nm∂δm
)2

=
3

16
(
1− α
α

)2(n− nm)−3(δ − δm)−2 − 3

64
(
1− α
α

)2(n− nm)−3(
1

2
ln

2

δ − δm
)−1(δ − δm)−2

− 1

64
(
1− α
α

)2(n− nm)−3(
1

2
ln

2

δ − δm
)−1(δ − δm)−2

=
3

16
(
1− α
α

)2(n− nm)−3(δ − δm)−2 − 1

16
(
1− α
α

)2(n− nm)−3(
1

2
ln

2

δ − δm
)−1(δ − δm)−2

=
1

16
(
1− α
α

)2(n− nm)−3(δ − δm)−2
(

3− (
1

2
ln

2

δ − δm
)−1
)

> 0, ∀δm ∈ (0, δ).

(Judging from the last formula above alone, “ > ” holds as long as δ ∈ (δ−2/ exp(2/3), δ) =
(δ − 1.027, δ). But δ < 1 so it holds for all δm ∈ (0, δ).)

Both leading principle minors are positive, so we have that the Hessian matrix of
h(nm, δm) is positive definite. Thus we have that h(nm, δm) is convex.

Based on these two results, we have that ε(nm, δm) = g(nm, δm) + h(nm, δm) is convex
in (nm, δm).

Further, given that ε(nm, δm) is convex in (nm, δm), the possible range of nm is (0, n)
which is a convex nonempty set, we have

ε(δm) = min
nm∈(0,n)

ε(nm, δm)

also being convex in δm, since ε(δm) > −∞, ∀δm ∈ (0, δ). �

Appendix B. Details of Isolation Forest Anomaly Score Calculation
When Clean Data Set Contains Multiple Classes

When the clean data set contains multiple classes, on each class, an Isolation Forest com-
putes 1000 full depth isolation trees, with each tree grown on a randomly-selected 20%
subsample of the data points from this class. For each nominal point, we compute its
anomaly score from the forest on its own class via out-of-bag estimates and its anomaly
scores from other forests using the full forests respectively. For each point from the mixture
data set, we compute its anomaly scores from all forests using the full forests respectively.
The final anomaly score for each point is computed as the minimal of its anomaly scores
from all forests.

Appendix C. Tables of Experimental Results in Section 7

C1. Synthetic Data Sets

In this section we include the simulation results on synthetic data sets from using Isolation
Forest in Tables 3, 4, 5. For all cases, we include results from targeting on different recalls
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Table 3: n∗, recall (i.e. alien detection rate) and false positive rate from experiments using
9-dimensional normal data, 98%, iForest

Basic CDF Iso CDF
Recall False Positive Rate Recall False Positive Rate

α n n∗ Recall±CI FPR±CI Oracle Recall±CI FPR±CI Oracle

0.01 100 247818 0.710±0.033 0.033±0.027 0.102 0.929±0.029 0.512±0.080 0.102
500 1167215 0.862±0.019 0.033±0.024 0.042 0.972±0.016 0.543±0.079 0.042

1000 1829649 0.884±0.015 0.031±0.024 0.036 0.980±0.009 0.574±0.080 0.036
5000 4236646 0.920±0.010 0.060±0.038 0.039 0.985±0.007 0.506±0.079 0.039

10000 6363404 0.932±0.009 0.065±0.034 0.037 0.984±0.007 0.520±0.080 0.037
0.05 100 23373 0.826±0.027 0.088±0.037 0.101 0.950±0.022 0.502±0.081 0.101

500 239656 0.939±0.009 0.064±0.032 0.042 0.979±0.007 0.465±0.081 0.042
1000 259309 0.940±0.008 0.046±0.025 0.037 0.977±0.007 0.477±0.085 0.037
5000 1067189 0.961±0.005 0.083±0.039 0.039 0.984±0.005 0.411±0.080 0.039

10000 1536752 0.965±0.004 0.063±0.026 0.037 0.987±0.004 0.434±0.076 0.037
0.10 100 20178 0.907±0.017 0.105±0.033 0.100 0.977±0.010 0.549±0.075 0.100

500 107381 0.951±0.007 0.071±0.035 0.042 0.985±0.005 0.482±0.080 0.042
1000 196205 0.960±0.005 0.062±0.023 0.037 0.982±0.005 0.419±0.081 0.037
5000 456821 0.970±0.004 0.075±0.031 0.039 0.988±0.004 0.403±0.075 0.039

10000 861861 0.975±0.003 0.088±0.034 0.037 0.989±0.003 0.433±0.077 0.037
0.20 100 7550 0.946±0.011 0.158±0.045 0.101 0.974±0.010 0.496±0.075 0.101

500 80449 0.971±0.005 0.131±0.045 0.042 0.988±0.004 0.484±0.078 0.042
1000 110875 0.972±0.004 0.098±0.038 0.037 0.989±0.004 0.475±0.079 0.037
5000 498016 0.977±0.002 0.048±0.010 0.039 0.985±0.003 0.254±0.066 0.039

10000 670130 0.977±0.002 0.051±0.019 0.037 0.984±0.003 0.216±0.060 0.037
0.50 100 7053 0.970±0.005 0.156±0.036 0.102 0.982±0.005 0.395±0.073 0.102

500 34712 0.977±0.003 0.056±0.009 0.042 0.984±0.003 0.256±0.065 0.042
1000 70925 0.979±0.002 0.053±0.014 0.036 0.985±0.003 0.196±0.052 0.036
5000 167019 0.978±0.001 0.039±0.002 0.039 0.979±0.001 0.049±0.014 0.039

10000 451373 0.979±0.001 0.036±0.001 0.037 0.979±0.001 0.047±0.016 0.037

which are 98%, 95% and 90%. In Tables 3, 4, 5, the oracle FPR column is the mean of 100
oracle FPRs in each setting.

In Table 6, we include the results we used for plotting Figure 9. The results are the 1st
quartile, median and 3rd quartile of FPR from experiments using iForest with target recall
95%. Here the oracle FPR column is the median of 100 oracle FPRs.

C2. Benchmark Data Sets

In this section we include results of performance on UCI benchmarks, MNIST and Tiny
Imagenet and Tables 7-15 illustrate the results. The experimental protocol is similar to
synthetic data sets. For Isolation forest we train Forest with 1000 trees on nominal data
set and use out of bag estimates of this data set to estimate the nominal data sets anomaly
score distribution. Tables 10-15 illustrate the results of iForest for 6 different data sets for
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Table 4: n∗, recall (i.e. alien detection rate) and false positive rate from experiments using
9-dimensional normal data, 95%, iForest

Basic CDF Iso CDF
Recall False Positive Rate Recall False Positive Rate

α n n∗ Recall±CI FPR±CI Oracle Recall±CI FPR±CI Oracle

0.01 100 275039 0.710±0.033 0.033±0.027 0.052 0.929±0.029 0.509±0.080 0.052
500 1474209 0.862±0.019 0.033±0.024 0.015 0.972±0.016 0.533±0.079 0.015

1000 2462157 0.884±0.015 0.030±0.024 0.012 0.978±0.010 0.557±0.081 0.012
5000 6171393 0.911±0.010 0.039±0.030 0.014 0.982±0.008 0.496±0.080 0.014

10000 9309633 0.918±0.010 0.054±0.032 0.014 0.981±0.008 0.495±0.081 0.014
0.05 100 27589 0.826±0.027 0.082±0.035 0.051 0.947±0.022 0.489±0.081 0.051

500 243154 0.920±0.010 0.035±0.020 0.015 0.975±0.009 0.440±0.079 0.015
1000 307512 0.923±0.009 0.022±0.011 0.012 0.966±0.010 0.420±0.084 0.012
5000 1356124 0.943±0.005 0.040±0.028 0.014 0.973±0.007 0.351±0.079 0.014

10000 1553411 0.945±0.005 0.024±0.009 0.014 0.972±0.006 0.314±0.074 0.014
0.10 100 28043 0.906±0.016 0.101±0.033 0.050 0.969±0.013 0.511±0.077 0.050

500 109029 0.933±0.009 0.055±0.032 0.015 0.974±0.008 0.397±0.078 0.015
1000 157112 0.934±0.006 0.017±0.006 0.012 0.969±0.007 0.313±0.075 0.012
5000 1232102 0.949±0.004 0.027±0.018 0.014 0.967±0.006 0.194±0.061 0.014

10000 861861 0.951±0.003 0.027±0.016 0.014 0.964±0.005 0.192±0.063 0.014
0.20 100 8666 0.929±0.012 0.126±0.042 0.051 0.963±0.013 0.428±0.073 0.051

500 121266 0.953±0.006 0.054±0.025 0.015 0.977±0.006 0.360±0.075 0.015
1000 177212 0.949±0.004 0.018±0.004 0.012 0.968±0.006 0.273±0.072 0.012
5000 581132 0.949±0.002 0.014±0.001 0.014 0.953±0.003 0.039±0.024 0.014

10000 776090 0.949±0.002 0.014±0.001 0.014 0.952±0.003 0.042±0.028 0.014
0.50 100 6349 0.952±0.006 0.084±0.021 0.052 0.966±0.007 0.262±0.061 0.052

500 56529 0.951±0.003 0.018±0.002 0.015 0.954±0.004 0.038±0.021 0.015
1000 111994 0.951±0.002 0.013±0.001 0.012 0.952±0.002 0.014±0.001 0.012
5000 292413 0.950 ±0.001 0.014± 0.000 0.014 0.950±0.001 0.014±0.000 0.014

10000 379279 0.950 ±0.001 0.014± 0.000 0.014 0.950± 0.001 0.014±0.000 0.014
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Table 5: n∗, recall (i.e. alien detection rate) and false positive rate from experiments using
9-dimensional normal data, 90%, iForest

Basic CDF Iso CDF
Recall False Positive Rate Recall False Positive Rate

α n n∗ Recall±CI FPR±CI Oracle Recall±CI FPR±CI Oracle

0.01 100 331513 0.710±0.033 0.033±0.027 0.026 0.929±0.029 0.509±0.080 0.026
500 2340744 0.862±0.019 0.033±0.024 0.005 0.970±0.016 0.517±0.078 0.005

1000 3222506 0.859±0.014 0.011±0.008 0.004 0.976±0.011 0.542±0.081 0.004
5000 5918805 0.869±0.011 0.012±0.017 0.004 0.976±0.010 0.476±0.079 0.004

10000 12543171 0.884±0.010 0.012±0.009 0.005 0.971±0.011 0.458±0.080 0.005
0.05 100 37658 0.826±0.027 0.081±0.034 0.026 0.936±0.024 0.468±0.081 0.026

500 403920 0.893±0.011 0.020±0.015 0.006 0.960±0.012 0.372±0.075 0.006
1000 482922 0.888±0.010 0.015±0.011 0.004 0.945±0.014 0.381±0.082 0.004
5000 2307205 0.901±0.006 0.007±0.004 0.004 0.939±0.011 0.228±0.070 0.004

10000 2629242 0.898±0.005 0.005±0.001 0.005 0.923±0.009 0.139±0.056 0.005
0.10 100 39085 0.879±0.017 0.059±0.021 0.025 0.957±0.016 0.463±0.076 0.025

500 139647 0.900±0.010 0.019±0.014 0.005 0.944±0.013 0.297±0.073 0.005
1000 156669 0.888±0.008 0.005±0.001 0.004 0.925±0.012 0.166±0.058 0.004
5000 1867515 0.902±0.003 0.004±0.000 0.003 0.911±0.006 0.060±0.039 0.003

10000 1232102 0.900±0.003 0.005±0.000 0.005 0.903±0.004 0.016±0.015 0.005
0.20 100 6481 0.881±0.017 0.060±0.022 0.026 0.942±0.016 0.359±0.072 0.026

500 63235 0.909±0.007 0.010±0.003 0.005 0.937±0.010 0.170±0.057 0.005
1000 153077 0.902±0.004 0.005±0.000 0.004 0.913±0.007 0.066±0.040 0.004
5000 397467 0.898±0.002 0.003±0.000 0.004 0.898±0.002 0.004±0.000 0.004

10000 1088542 0.899±0.002 0.005±0.000 0.005 0.900±0.002 0.005±0.000 0.005
0.50 100 4400 0.912±0.008 0.038±0.005 0.026 0.920±0.010 0.107±0.042 0.026

500 22825 0.904±0.004 0.006±0.000 0.005 0.904±0.004 0.006±0.000 0.005
1000 44373 0.903±0.003 0.004±0.000 0.004 0.903±0.003 0.004±0.000 0.004
5000 229795 0.900±0.001 0.004±0.000 0.004 0.900±0.001 0.004±0.000 0.004

10000 374065 0.900±0.001 0.005±0.000 0.005 0.900±0.001 0.005±0.000 0.005
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Table 6: 1st quartile, median, 3rd quartile of false positive rate from experiments using
9-dimensional normal data, 95%, Iforest

Basic CDF
False Positive Rate

α n 1st quartile median 3rd quartile Oracle(median)

0.01 100 0.004 0.006 0.014 0.051
500 0.002 0.004 0.015 0.015

1000 0.002 0.004 0.010 0.012
5000 0.002 0.004 0.013 0.014

10000 0.003 0.006 0.014 0.014
0.05 100 0.006 0.014 0.043 0.050

500 0.004 0.008 0.023 0.015
1000 0.004 0.008 0.015 0.012
5000 0.006 0.010 0.020 0.014

10000 0.008 0.011 0.019 0.014
0.1 100 0.015 0.032 0.094 0.049

500 0.006 0.012 0.021 0.015
1000 0.005 0.009 0.014 0.012
5000 0.009 0.013 0.020 0.014

10000 0.011 0.014 0.017 0.014
0.2 100 0.025 0.043 0.105 0.049

500 0.010 0.018 0.031 0.015
1000 0.008 0.011 0.018 0.012
5000 0.010 0.013 0.015 0.014

10000 0.012 0.013 0.015 0.014
0.5 100 0.040 0.058 0.090 0.051

500 0.012 0.016 0.021 0.015
1000 0.011 0.012 0.016 0.012
5000 0.013 0.014 0.016 0.014

10000 0.013 0.014 0.015 0.014
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Table 7: Recall (i.e. alien detection rate) & false positive rate for Image data sets,98%

Basic CDF
Recall False Positive Rate

Data set α α̂ recall±CI FPR±CI

Tiny Image Net 0.100 0.100 0.932 ± 0.012 0.690 ± 0.027
n=5 263 0.100 0.104 0.942 ± 0.011 0.715 ± 0.027

0.100 0.108 0.952 ± 0.009 0.739 ± 0.027
0.200 0.200 0.963 ± 0.006 0.744 ± 0.019
0.200 0.204 0.967 ± 0.005 0.758 ± 0.019
0.200 0.208 0.971 ± 0.005 0.772 ± 0.019
0.400 0.400 0.976 ± 0.003 0.767 ± 0.011
0.400 0.404 0.978 ± 0.003 0.775 ± 0.011
0.400 0.408 0.979 ± 0.002 0.783 ± 0.010

mnist 0.100 0.100 0.956 ± 0.008 0.406 ± 0.034
n=10 000 0.100 0.104 0.968 ± 0.007 0.451 ± 0.034

0.100 0.108 0.980 ± 0.005 0.511 ± 0.036
0.200 0.200 0.971 ± 0.004 0.425 ± 0.025
0.200 0.204 0.980 ± 0.004 0.471 ± 0.029
0.200 0.208 0.986 ± 0.003 0.519 ± 0.031
0.400 0.400 0.979 ± 0.002 0.407 ± 0.009
0.400 0.404 0.984 ± 0.002 0.433 ± 0.012
0.400 0.408 0.988 ± 0.002 0.462 ± 0.015

varying values of η and report the observed recall, false positive rate averaged over 100 runs
of each experiment.

For Image data sets we follow the same protocol as UCI for MNIST and apply Isolation
Forest on the input image but for Tiny Imagenet the anomaly scores are obtained differently.
We first train a Wide Residual Network (40-2) classifier on the 200 nominal classes of Tiny
Imagenet and apply baseline method Hendrycks and Gimpel (2017) on validation data to
get the nominal data set distribution and later apply the same method on the mixture data
set which will have α proportion of aliens which are basically from 800 held out classes.
Tables 7-9 illustrate the results for these data sets for target recall of 98%, 95% and 90%.
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Table 8: Recall (i.e. alien detection rate) & false positive rate for Image data sets,95%

Basic CDF
Recall False Positive Rate

Data set α α̂ recall±CI FPR±CI

Tiny Image Net 0.100 0.100 0.912 ± 0.013 0.638 ± 0.025
n=5 263 0.100 0.104 0.922 ± 0.012 0.658 ± 0.025

0.100 0.108 0.932 ± 0.011 0.678 ± 0.025
0.200 0.200 0.937 ± 0.007 0.665 ± 0.015
0.200 0.204 0.943 ± 0.006 0.678 ± 0.015
0.200 0.208 0.948 ± 0.006 0.691 ± 0.015
0.400 0.400 0.949 ± 0.003 0.673 ± 0.006
0.400 0.404 0.951 ± 0.003 0.679 ± 0.006
0.400 0.408 0.954 ± 0.003 0.686 ± 0.007

MNIST 0.100 0.100 0.936 ± 0.009 0.340 ± 0.026
n=10 000 0.100 0.104 0.953 ± 0.008 0.385 ± 0.029

0.100 0.108 0.966 ± 0.007 0.427 ± 0.031
0.200 0.200 0.946 ± 0.005 0.328 ± 0.011
0.200 0.204 0.957 ± 0.005 0.356 ± 0.014
0.200 0.208 0.967 ± 0.004 0.388 ± 0.016
0.400 0.400 0.950 ± 0.002 0.322 ± 0.004
0.400 0.404 0.956 ± 0.002 0.335 ± 0.005
0.400 0.408 0.962 ± 0.002 0.348 ± 0.005
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Table 9: Recall (i.e. alien detection rate) & false positive rate for Image data sets,90%

Basic CDF
Recall False Positive Rate

Data set α α̂ recall±CI FPR±CI

Tiny Image Net 0.100 0.100 0.874 ± 0.014 0.564 ± 0.021
n=5 263 0.100 0.104 0.884 ± 0.013 0.580 ± 0.020

0.100 0.108 0.895 ± 0.013 0.596 ± 0.021
0.200 0.200 0.894 ± 0.007 0.577 ± 0.010
0.200 0.204 0.900 ± 0.007 0.586 ± 0.010
0.200 0.208 0.905 ± 0.007 0.596 ± 0.010
0.400 0.400 0.898 ± 0.003 0.578 ± 0.004
0.400 0.404 0.902 ± 0.003 0.583 ± 0.004
0.400 0.408 0.905 ± 0.003 0.587 ± 0.004

MNIST 0.100 0.100 0.891 ± 0.010 0.253 ± 0.014
n=10 000 0.100 0.104 0.916 ± 0.009 0.287 ± 0.017

0.100 0.108 0.935 ± 0.008 0.327 ± 0.021
0.200 0.200 0.897 ± 0.004 0.246 ± 0.005
0.200 0.204 0.910 ± 0.005 0.262 ± 0.005
0.200 0.208 0.921 ± 0.005 0.279 ± 0.006
0.400 0.400 0.899 ± 0.002 0.246 ± 0.002
0.400 0.404 0.906 ± 0.002 0.253 ± 0.002
0.400 0.408 0.912 ± 0.002 0.261 ± 0.002
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Table 10: Recall & false positive rate for Letter Recognition data set using Iforest for vary-
ing q (target recall 1− q)

Basic CDF
Recall False Positive Rate

Data set α α̂ q recall±CI FPR±CI

Letter recognition 0.100 0.100 0.020 0.914 ± 0.014 0.277 ± 0.035
n=802 0.100 0.104 0.020 0.927 ± 0.013 0.314 ± 0.038

0.100 0.108 0.020 0.940 ± 0.011 0.352 ± 0.042
0.200 0.200 0.020 0.944 ± 0.009 0.316 ± 0.034
0.200 0.204 0.020 0.951 ± 0.008 0.343 ± 0.036
0.200 0.208 0.020 0.959 ± 0.008 0.373 ± 0.039
0.400 0.400 0.020 0.965 ± 0.005 0.336 ± 0.025
0.400 0.404 0.020 0.970 ± 0.004 0.364 ± 0.027
0.400 0.408 0.020 0.974 ± 0.004 0.393 ± 0.029

0.100 0.100 0.050 0.898 ± 0.015 0.236 ± 0.030
0.100 0.104 0.050 0.916 ± 0.013 0.274 ± 0.034
0.100 0.108 0.050 0.928 ± 0.012 0.305 ± 0.036
0.200 0.200 0.050 0.928 ± 0.009 0.259 ± 0.027
0.200 0.204 0.050 0.937 ± 0.009 0.285 ± 0.029
0.200 0.208 0.050 0.944 ± 0.008 0.303 ± 0.031
0.400 0.400 0.050 0.943 ± 0.005 0.244 ± 0.013
0.400 0.404 0.050 0.949 ± 0.005 0.260 ± 0.014
0.400 0.408 0.050 0.954 ± 0.005 0.279 ± 0.018

0.100 0.100 0.100 0.870 ± 0.017 0.192 ± 0.024
0.100 0.104 0.100 0.889 ± 0.016 0.215 ± 0.027
0.100 0.108 0.100 0.902 ± 0.014 0.242 ± 0.029
0.200 0.200 0.100 0.894 ± 0.011 0.187 ± 0.014
0.200 0.204 0.100 0.904 ± 0.010 0.203 ± 0.016
0.200 0.208 0.100 0.914 ± 0.009 0.220 ± 0.019
0.400 0.400 0.100 0.902 ± 0.006 0.170 ± 0.004
0.400 0.404 0.100 0.908 ± 0.005 0.178 ± 0.004
0.400 0.408 0.100 0.914 ± 0.005 0.184 ± 0.005
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Table 11: Recall & false positive rate for page.blocks data set using iForest for varying q
(target recall 1− q)

Basic CDF
Recall False Positive Rate

Data set α α̂ q recall±CI FPR±CI

pageblocks 0.100 0.100 0.020 0.921 ± 0.014 0.223 ± 0.036
n=1 112 0.100 0.104 0.020 0.937 ± 0.012 0.256 ± 0.039

0.100 0.108 0.020 0.953 ± 0.011 0.291 ± 0.041
0.200 0.200 0.020 0.954 ± 0.008 0.239 ± 0.030
0.200 0.204 0.020 0.964 ± 0.007 0.272 ± 0.035
0.200 0.208 0.020 0.971 ± 0.006 0.307 ± 0.039
0.400 0.400 0.020 0.971 ± 0.004 0.229 ± 0.018
0.400 0.404 0.020 0.977 ± 0.003 0.259 ± 0.025
0.400 0.408 0.020 0.982 ± 0.003 0.289 ± 0.028

0.100 0.100 0.050 0.905 ± 0.015 0.188 ± 0.029
0.100 0.104 0.050 0.924 ± 0.014 0.219 ± 0.033
0.100 0.108 0.050 0.939 ± 0.012 0.254 ± 0.037
0.200 0.200 0.050 0.935 ± 0.009 0.186 ± 0.022
0.200 0.204 0.050 0.946 ± 0.008 0.207 ± 0.023
0.200 0.208 0.050 0.956 ± 0.008 0.233 ± 0.028
0.400 0.400 0.050 0.947 ± 0.005 0.160 ± 0.009
0.400 0.404 0.050 0.955 ± 0.004 0.172 ± 0.010
0.400 0.408 0.050 0.961 ± 0.004 0.185 ± 0.011

0.100 0.100 0.100 0.867 ± 0.016 0.142 ± 0.020
0.100 0.104 0.100 0.891 ± 0.016 0.164 ± 0.023
0.100 0.108 0.100 0.908 ± 0.015 0.192 ± 0.026
0.200 0.200 0.100 0.893 ± 0.010 0.131 ± 0.010
0.200 0.204 0.100 0.907 ± 0.009 0.141 ± 0.011
0.200 0.208 0.100 0.920 ± 0.009 0.157 ± 0.015
0.400 0.400 0.100 0.899 ± 0.004 0.121 ± 0.005
0.400 0.404 0.100 0.907 ± 0.004 0.125 ± 0.006
0.400 0.408 0.100 0.916 ± 0.004 0.129 ± 0.006
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Table 12: Recall & false positive rate for Optical.digits data set using Iforest for varying q
(target recall 1− q)

Basic CDF
Recall False Positive Rate

Data set α α̂ q recall±CI FPR±CI

Optical.digits 0.100 0.100 0.020 0.926 ± 0.012 0.268 ± 0.040
n=1 492 0.100 0.104 0.020 0.940 ± 0.011 0.306 ± 0.043

0.100 0.108 0.020 0.954 ± 0.009 0.349 ± 0.045
0.200 0.200 0.020 0.953 ± 0.007 0.291 ± 0.034
0.200 0.204 0.020 0.963 ± 0.006 0.328 ± 0.037
0.200 0.208 0.020 0.970 ± 0.006 0.366 ± 0.040
0.400 0.400 0.020 0.972 ± 0.004 0.313 ± 0.028
0.400 0.404 0.020 0.977 ± 0.003 0.345 ± 0.031
0.400 0.408 0.020 0.982 ± 0.003 0.380 ± 0.034

0.100 0.100 0.050 0.908 ± 0.013 0.231 ± 0.036
0.100 0.104 0.050 0.928 ± 0.012 0.265 ± 0.039
0.100 0.108 0.050 0.942 ± 0.011 0.296 ± 0.039
0.200 0.200 0.050 0.934 ± 0.009 0.226 ± 0.026
0.200 0.204 0.050 0.943 ± 0.008 0.250 ± 0.028
0.200 0.208 0.050 0.953 ± 0.007 0.280 ± 0.031
0.400 0.400 0.050 0.949 ± 0.004 0.216 ± 0.015
0.400 0.404 0.050 0.955 ± 0.004 0.229 ± 0.016
0.400 0.408 0.050 0.961 ± 0.004 0.248 ± 0.018

0.100 0.100 0.100 0.874 ± 0.015 0.179 ± 0.028
0.100 0.104 0.100 0.897 ± 0.014 0.205 ± 0.031
0.100 0.108 0.100 0.914 ± 0.013 0.236 ± 0.034
0.200 0.200 0.100 0.893 ± 0.009 0.159 ± 0.015
0.200 0.204 0.100 0.906 ± 0.009 0.173 ± 0.017
0.200 0.208 0.100 0.918 ± 0.009 0.190 ± 0.019
0.400 0.400 0.100 0.900 ± 0.004 0.145 ± 0.003
0.400 0.404 0.100 0.907 ± 0.004 0.152 ± 0.003
0.400 0.408 0.100 0.915 ± 0.004 0.159 ± 0.004
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Table 13: Recall & false positive rate for Landsat data set using Iforest for varying q (target
recall 1− q)

Basic CDF
Recall False Positive Rate

Data set α α̂ q recall±CI FPR±CI

Landsat 0.100 0.100 0.020 0.917 ± 0.012 0.401 ± 0.048
n=1 600 0.100 0.104 0.020 0.927 ± 0.011 0.443 ± 0.047

0.100 0.108 0.020 0.938 ± 0.010 0.489 ± 0.045
0.200 0.200 0.020 0.943 ± 0.008 0.489 ± 0.037
0.200 0.204 0.020 0.950 ± 0.007 0.522 ± 0.036
0.200 0.208 0.020 0.957 ± 0.007 0.552 ± 0.035
0.400 0.400 0.020 0.967 ± 0.005 0.568 ± 0.025
0.400 0.404 0.020 0.971 ± 0.004 0.586 ± 0.025
0.400 0.408 0.020 0.974 ± 0.004 0.602 ± 0.024

0.100 0.100 0.050 0.902 ± 0.012 0.348 ± 0.045
0.100 0.104 0.050 0.916 ± 0.012 0.389 ± 0.046
0.100 0.108 0.050 0.926 ± 0.011 0.426 ± 0.044
0.200 0.200 0.050 0.926 ± 0.008 0.407 ± 0.035
0.200 0.204 0.050 0.934 ± 0.008 0.438 ± 0.034
0.200 0.208 0.050 0.940 ± 0.008 0.464 ± 0.034
0.400 0.400 0.050 0.942 ± 0.005 0.447 ± 0.022
0.400 0.404 0.050 0.946 ± 0.005 0.465 ± 0.021
0.400 0.408 0.050 0.951 ± 0.005 0.484 ± 0.021

0.100 0.100 0.100 0.872 ± 0.013 0.258 ± 0.039
0.100 0.104 0.100 0.892 ± 0.012 0.303 ± 0.040
0.100 0.108 0.100 0.904 ± 0.011 0.341 ± 0.041
0.200 0.200 0.100 0.893 ± 0.009 0.283 ± 0.030
0.200 0.204 0.100 0.903 ± 0.008 0.311 ± 0.030
0.200 0.208 0.100 0.910 ± 0.008 0.336 ± 0.030
0.400 0.400 0.100 0.900 ± 0.005 0.286 ± 0.018
0.400 0.404 0.100 0.905 ± 0.005 0.303 ± 0.018
0.400 0.408 0.100 0.910 ± 0.005 0.321 ± 0.018
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Table 14: Recall & False Positive Rate for Shuttle Data set using iForest for varying q
(target recall 1− q)

Basic CDF
Recall False Positive Rate

Data set α α̂ q recall±CI FPR±CI

Shuttle 0.100 0.100 0.020 0.979 ± 0.001 0.022 ± 0.016
n=8 777 0.100 0.104 0.020 0.997 ± 0.001 0.179 ± 0.044

0.100 0.108 0.020 1.000 ± 0.000 0.339 ± 0.053
0.200 0.200 0.020 0.980 ± 0.001 0.010 ± 0.003
0.200 0.204 0.020 0.995 ± 0.001 0.087 ± 0.026
0.200 0.208 0.020 1.000 ± 0.000 0.244 ± 0.044
0.400 0.400 0.020 0.980 ± 0.000 0.005 ± 0.000
0.400 0.404 0.020 0.990 ± 0.001 0.025 ± 0.010
0.400 0.408 0.020 0.997 ± 0.000 0.080 ± 0.019

0.100 0.100 0.050 0.952 ± 0.001 0.002 ± 0.001
0.100 0.104 0.050 0.986 ± 0.001 0.036 ± 0.016
0.100 0.108 0.050 0.998 ± 0.001 0.174 ± 0.039
0.200 0.200 0.050 0.951 ± 0.000 0.001 ± 0.000
0.200 0.204 0.050 0.969 ± 0.001 0.002 ± 0.000
0.200 0.208 0.050 0.987 ± 0.001 0.024 ± 0.008
0.400 0.400 0.050 0.951 ± 0.000 0.001 ± 0.000
0.400 0.404 0.050 0.960 ± 0.000 0.001 ± 0.000
0.400 0.408 0.050 0.969 ± 0.000 0.001 ± 0.000

0.100 0.100 0.100 0.903 ± 0.001 0.001 ± 0.000
0.100 0.104 0.100 0.938 ± 0.001 0.001 ± 0.000
0.100 0.108 0.100 0.972 ± 0.001 0.008 ± 0.005
0.200 0.200 0.100 0.902 ± 0.001 0.001 ± 0.000
0.200 0.204 0.100 0.919 ± 0.000 0.001 ± 0.000
0.200 0.208 0.100 0.937 ± 0.000 0.001 ± 0.000
0.400 0.400 0.100 0.901 ± 0.000 0.001 ± 0.000
0.400 0.404 0.100 0.910 ± 0.000 0.001 ± 0.000
0.400 0.408 0.100 0.919 ± 0.000 0.001 ± 0.000
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Table 15: Recall & False Positive Rate for Covertype data set using Iforest for varying q
(target recall 1− q)

Basic CDF
Recall False Positive Rate

Data set α α̂ q recall±CI FPR±CI

Covertype 0.100 0.100 0.020 0.945 ± 0.009 0.851 ± 0.020
n=10 000 0.100 0.104 0.020 0.951 ± 0.008 0.865 ± 0.018

0.100 0.108 0.020 0.957 ± 0.007 0.879 ± 0.016
0.200 0.200 0.020 0.970 ± 0.004 0.908 ± 0.009
0.200 0.204 0.020 0.972 ± 0.003 0.913 ± 0.008
0.200 0.208 0.020 0.974 ± 0.003 0.918 ± 0.007
0.400 0.400 0.020 0.978 ± 0.001 0.926 ± 0.003
0.400 0.404 0.020 0.978 ± 0.001 0.928 ± 0.003
0.400 0.408 0.020 0.979 ± 0.001 0.929 ± 0.003

0.100 0.100 0.050 0.919 ± 0.010 0.790 ± 0.021
0.100 0.104 0.050 0.925 ± 0.010 0.803 ± 0.020
0.100 0.108 0.050 0.932 ± 0.009 0.816 ± 0.018
0.200 0.200 0.050 0.940 ± 0.004 0.832 ± 0.010
0.200 0.204 0.050 0.942 ± 0.004 0.838 ± 0.010
0.200 0.208 0.050 0.944 ± 0.004 0.844 ± 0.009
0.400 0.400 0.050 0.948 ± 0.002 0.850 ± 0.004
0.400 0.404 0.050 0.949 ± 0.002 0.853 ± 0.004
0.400 0.408 0.050 0.950 ± 0.002 0.855 ± 0.004

0.100 0.100 0.100 0.879 ± 0.011 0.708 ± 0.020
0.100 0.104 0.100 0.887 ± 0.011 0.721 ± 0.019
0.100 0.108 0.100 0.893 ± 0.010 0.732 ± 0.018
0.200 0.200 0.100 0.894 ± 0.006 0.729 ± 0.012
0.200 0.204 0.100 0.897 ± 0.005 0.735 ± 0.011
0.200 0.208 0.100 0.900 ± 0.005 0.742 ± 0.010
0.400 0.400 0.100 0.899 ± 0.002 0.740 ± 0.005
0.400 0.404 0.100 0.900 ± 0.002 0.743 ± 0.005
0.400 0.408 0.100 0.902 ± 0.002 0.746 ± 0.005
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David A Lytle, Gonzalo Mart́ınez-Muñoz, Wei Zhang, Natalia Larios, Linda Shapiro, Robert
Paasch, Andrew Moldenke, Eric N Mortensen, Sinisa Todorovic, and Thomas G Diet-
terich. Automated processing and identification of benthic invertebrate samples. Journal
of the North American Benthological Society, 29(3):867–874, 2010.

Larry M. Manevitz and Malik Yousef. One-class SVMs for document classification. J. Mach.
Learn. Res., 2:139–154, March 2002. ISSN 1532-4435.

P. Massart. The tight constant in the dvoretzky-kiefer-wolfowitz inequality. The Annals of
Probability, 18(3):1269–1283, 1990. ISSN 00911798.

Aditya Krishna Menon and Robert C Williamson. A loss framework for calibrated anomaly
detection. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pages 1494–1504. Curran Associates Inc., 2018.

Rohit Kumar Patra and Bodhisattva Sen. Estimation of a two-component mixture model
with applications to multiple testing. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 78(4):869–893, 2016.

Tadeusz Pietraszek. Optimizing abstaining classifiers using ROC analysis. In Proceedings
of the 22Nd International Conference on Machine Learning, ICML ’05, pages 665–672,
New York, NY, USA, 2005. ACM. ISBN 1-59593-180-5.

46



PAC Guarantees and Effective Algorithms for Detecting Novel Categories

Dimitrios A. Pritsos and Efstathios Stamatatos. Open-Set Classification for Automated
Genre Identification, pages 207–217. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
ISBN 978-3-642-36973-5.

Harish Ramaswamy, Clayton Scott, and Ambuj Tewari. Mixture proportion estimation
via kernel embeddings of distributions. In International conference on machine learning,
pages 2052–2060, 2016.

Tyler Sanderson and Clayton Scott. Class proportion estimation with application to mul-
ticlass anomaly rejection. In Artificial Intelligence and Statistics, pages 850–858, 2014.

W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult. Toward open set
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(7):
1757–1772, July 2013. ISSN 0162-8828.

W. J. Scheirer, L. P. Jain, and T. E. Boult. Probability models for open set recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(11):2317–2324, Nov
2014. ISSN 0162-8828.

Bernhard Schölkopf, John C. Platt, John C. Shawe-Taylor, Alex J. Smola, and Robert C.
Williamson. Estimating the support of a high-dimensional distribution. Neural Compu-
tation, 13(7):1443–1471, July 2001. ISSN 0899-7667.

Clayton Scott. A rate of convergence for mixture proportion estimation, with application to
learning from noisy labels. In Artificial Intelligence and Statistics, pages 838–846, 2015.

Lei Shu, Hu Xu, and Bing Liu. DOC: deep open classification of text documents. CoRR,
abs/1709.08716, 2017.

D.M.J. Tax and R.P.W. Duin. Growing a multi-class classifier with a reject option. Pattern
Recognition Letters, 29(10):1565 – 1570, 2008. ISSN 0167-8655.

Marten H. Wegkamp. Lasso type classifiers with a reject option. 2007.

M. Wu and J. Ye. A small sphere and large margin approach for novelty detection us-
ing training data with outliers. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31(11):2088–2092, Nov 2009. ISSN 0162-8828.

Xiang Sean Zhou and Thomas S. Huang. Relevance feedback in image retrieval: A compre-
hensive review. Multimedia Systems, 8(6):536–544, Apr 2003. ISSN 1432-1882.

47


	Introduction
	Related Work
	Problem Setting
	Algorithms for Open Category Detection
	Finite Sample Guarantee
	Optimal Allocation of Total Sample Size Budget
	Experiments on Threshold Estimation Given 
	Threshold Estimation via  Estimation
	Discussion

