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Abstract

In the paper, we propose a class of accelerated zeroth-order and first-order momentum
methods for both nonconvex mini-optimization and minimax-optimization. Specifically,
we propose a new accelerated zeroth-order momentum (Acc-ZOM) method for black-box
mini-optimization where only function values can be obtained. Moreover, we prove that
our Acc-ZOM method achieves a lower query complexity of Õ(d3/4ε−3) for finding an ε-
stationary point, which improves the best known result by a factor of O(d1/4) where d
denotes the variable dimension. In particular, our Acc-ZOM does not need large batches
required in the existing zeroth-order stochastic algorithms. Meanwhile, we propose an
accelerated zeroth-order momentum descent ascent (Acc-ZOMDA) method for black-box
minimax optimization, where only function values can be obtained. Our Acc-ZOMDA ob-
tains a low query complexity of Õ((d1 + d2)3/4κ4.5y ε−3) without requiring large batches for
finding an ε-stationary point, where d1 and d2 denote variable dimensions and κy is con-
dition number. Moreover, we propose an accelerated first-order momentum descent ascent
(Acc-MDA) method for minimax optimization, whose explicit gradients are accessible. Our
Acc-MDA achieves a low gradient complexity of Õ(κ4.5y ε−3) without requiring large batches
for finding an ε-stationary point. In particular, our Acc-MDA can obtain a lower gradient
complexity of Õ(κ2.5y ε−3) with a batch size O(κ4y), which improves the best known result

by a factor of O(κ
1/2
y ). Extensive experimental results on black-box adversarial attack to

deep neural networks and poisoning attack to logistic regression demonstrate efficiency of
our algorithms.
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1. Introduction

In the paper, we consider solving the following stochastic mini-optimization problem:

min
x∈X

f(x) = Eξ∼D[f(x; ξ)], (1)

where f(x) : X → R is a differentiable and possibly nonconvex function, and X ⊆ Rd is
a convex closed set, and ξ is a random variable following an unknown distribution D. In
machine learning, the expected loss minimization is generally expressed as the problem (1).
Stochastic Gradient Descent (SGD) is a standard algorithm for solving the problem (1).
However, it suffers from large variances resulting in a high gradient complexity of O(ε−4)
(Ghadimi and Lan, 2013) for finding an ε-stationary point, i.e., E‖∇f(x)‖ ≤ ε. Thus, many
variance-reduced algorithms (Allen-Zhu and Hazan, 2016; Reddi et al., 2016; Zhou et al.,
2018; Fang et al., 2018; Wang et al., 2019) have been developed to improve the gradient
complexity of the SGD. Specifically, Allen-Zhu and Hazan (2016); Reddi et al. (2016) pro-
posed the nonconvex version of SVRG algorithm (Johnson and Zhang, 2013), which reaches
an improved gradient complexity of O(ε−10/3). Subseqently, the SNVRG/SPIDER methods
(Zhou et al., 2018; Fang et al., 2018; Wang et al., 2019) have been proposed to obtain a
near-optimal gradient complexity of O(ε−3). More recently, the momentum-based variance
reduced methods (Cutkosky and Orabona, 2019; Tran-Dinh et al., 2019) achieved the best
known complexity of Õ(ε−3). At the same time, Arjevani et al. (2019) established a lower
bound of complexity O(ε−3) for variance reduced algorithms.

The above first-order methods need to use gradients of the objective function to update
the variables. In many machine learning problems, however, the explicit gradients of their
objective functions are difficult or infeasible to access. For example, in the reinforcement
learning (Malik et al., 2020; Kumar et al., 2020; Huang et al., 2020a), it is difficult to
calculate the explicit gradients of their objective functions. Even worse, in the black-box
adversarial attack to deep neural networks (DNNs) (Chen et al., 2018), only prediction
labels can be obtained. To solve such back-box problem (1) where only the objective
function values can be obtained, the zeroth-order methods (Ghadimi and Lan, 2013; Duchi
et al., 2015) have been widely used with only querying values of the function f(x) and
not accessing to its explicit formation. Recently, some zeroth-order stochastic algorithms
(Ghadimi and Lan, 2013; Duchi et al., 2015; Nesterov and Spokoiny, 2017; Chen et al., 2019)
have been presented by using the smoothing techniques such as Gaussian-distribution and
Uniform-distribution smoothing. Similarly, these zeroth-order stochastic algorithms also
suffer from large variances resulting in a high query complexity of O(dε−4) (Ghadimi and
Lan, 2013) for finding an ε-stationary point. To reduce the query complexity, Fang et al.
(2018); Ji et al. (2019) recently proposed some accelerated zeroth-order stochastic algorithms
(i.e., SPIDER-SZO and ZO-SPIDER-Coord) based on the variance reduced technique of
SPIDER (Fang et al., 2018). Although these accelerated zeroth-order methods obtain a
lower query complexity of O(dε−3), these methods require large batches in both inner and
outer loops of algorithms. At the same time, the practical performances of these methods
are not consistent with this low query complexity, since they require large batches and strict
learning rates to achieve it.

In the paper, thus, we propose a new accelerated zeroth-order momentum (Acc-ZOM)
method to solve the black-box problem (1), which builds on both generic uniform smoothing
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Table 1: Query complexity comparison of the representative non-convex zeroth-order
methods for finding an ε-stationary point of the black-box mini-optimization problem
(1) and minimax-optimization problem (2), respectively. GauGE, UniGE and CooGE are
abbreviations of Gaussian, Uniform and Coordinate-Wise smoothing gradient estimators,
respectively. Here κy denotes the condition number for function f(·, y). Note that Appendix
B provides a comparison of assumptions used in the zeroth-order methods, and Appendix
C provides a detailed proof to obtain a correct query complexity of ZO-Min-Max algorithm
(Liu et al., 2019b).

Problem Algorithm Reference Estimator Batch Size Complexity

Mini

ZO-SGD Ghadimi and Lan (2013) GauGE O(1) O(dε−4)
ZO-AdaMM Chen et al. (2019) UniGE O(ε−2) O(d2ε−4)

ZO-SVRG Ji et al. (2019) CooGE O(ε−2) O(dε−10/3)
ZO-SPIDER-Coord Ji et al. (2019) CooGE O(ε−2) O(dε−3)

SPIDER-SZO Fang et al. (2018) CooGE O(ε−2) O(dε−3)

Acc-ZOM Ours UniGE O(1) O(d3/4ε−3)

Minimax

ZO-Min-Max Liu et al. (2019b) UniGE O((d1+d2)κ2
yε
−2) O((d1+d2)κ6

yε
−6)

ZO-SGDA Wang et al. (2020) GauGE O((d1+d2)ε−2) O((d1+d2)κ5
yε
−4)

ZO-SGDMSA Wang et al. (2020) GauGE O((d1+d2)ε−2) Õ((d1+d2)κ2
yε
−4)

ZO-SREDA-Boost Xu et al. (2020a) CooGE O(max(κyε
−1, d1 + d2)κyε

−1) O((d1+d2)κ3
yε
−3)

Acc-ZOMDA Ours UniGE O(1) Õ((d1+d2)3/4κ4.5
y ε−3)

gradient estimator and momentum-based variance reduction technique of STORM/Hybrid-
SGD (Cutkosky and Orabona, 2019; Tran-Dinh et al., 2019). Moreover, we prove that our
Acc-ZOM method achieves a lower function query complexity of O(d3/4ε−3) without large
batches for finding an ε-stationary point, which improves the best known complexity by a
factor of O(d1/4) (please see Table 1 for query complexity comparison of different non-convex
zeroth-order methods).

Besides the mini-optimization problem (1) is widely used in machine learning, there also
exist many machine learning applications (Shapiro and Kleywegt, 2002; Nouiehed et al.,
2019; Zhao, 2020) such as adversarial training (Goodfellow et al., 2014), reinforcement
learning (Wai et al., 2019, 2018), distributionally robust optimization (Qi et al., 2020) and
AUC maximization (Ying et al., 2016), which can be modeled as a minimax optimiza-
tion problem. In the paper, we further focus on solving the following stochastic minimax
optimization problem:

min
x∈X

max
y∈Y

f(x, y) = Eξ∼D′ [f(x, y; ξ)], (2)

where function f(x, y) : X ×Y → R is strongly concave in variable y but possibly nonconvex
in variable x, and ξ is a random variable following an unknown distribution D′. Here the
constraint sets X ⊆ Rd1 and Y ⊆ Rd2 are compact and convex. In fact, the problem
(2) can be seen as a zero-sum game between two players. The goal of the first player
is to minimize f(x, y) by varying x, while the other player’s aim is to maximize f(x, y)
by varying y. When the problem (2) is black-box where only noise stochastic function
values can be obtained, we propose an accelerated zeroth-order momentum descent ascent
(Acc-ZOMDA) method based on the generic uniform smoothing gradient estimator and
the variance reduced technique of STORM. When the problem (2) is transparent where
noise stochastic gradients can be accessed, we present an accelerated first-order momentum
descent ascent (Acc-MDA) method based on the variance reduced technique of STORM.

3



Huang,Gao,Pei,Huang

Table 2: Gradient complexity comparison of the representative first-order methods for
finding an ε-stationary point of the minimax problem (2). Here Y denotes the fact that
there exists a convex constraint on variable, otherwise is N. Note that our theoretical results
do not rely on any assumption on convex constraint sets X and Y, so it can be easily extend
to the unconstrained setting.

Algorithm Reference Constraint on x, y Loop(s) Batch Size Complexity

PGSVRG Rafique et al. (2018) N, N Double O(ε−2) O(κ3
yε
−4)

SGDA Lin et al. (2019) N, Y Single O(κyε
−2) O(κ3

yε
−4)

SREDA Luo et al. (2020) N, Y Double O(κ2
yε
−2) O(κ3

yε
−3)

SREDA-Boost Xu et al. (2020a) N, N Double O(κ2
yε
−2) O(κ3

yε
−3)

Acc-MDA Ours Y (N), Y Single O(1) Õ(κ4.5
y ε−3)

Acc-MDA Ours Y (N), Y Single O(κνy), ν > 0 Õ(κ
(4.5−ν/2)
y ε−3)

Contributions: Our main contributions are summarized as follows:

1) We propose a new accelerated zeroth-order momentum (Acc-ZOM) method to solve
the black-box mini-optimization problem (1), where only noise stochastic function
values can be obtained. Moreover, we prove that our Acc-ZOM method achieves
a lower query complexity of O(d3/4ε−3) for finding an ε-stationary point without
requiring large batches, which improves the best known result by a factor of O(d1/4).

2) We propose an accelerated zeroth-order momentum descent ascent (Acc-ZOMDA)
method to solve the black-box minimax-optimization problem (2), where only
noise stochastic function values can be obtained. Moreover, we prove that our Acc-
ZOMDA method obtains a low query complexity of O

(
(d1 + d2)3/4κ4.5

y ε−3
)

without
requiring large batches for finding an ε-stationary point (Please see Table 1).

3) We further present propose an accelerated first-order momentum descent ascent (Acc-
MDA) method to solve the transparent minimax-optimization problem (2), whose
explicit gradients are accessible. We prove that our Acc-MDA algorithm has a low
gradient complexity of Õ

(
κ4.5
y ε−3

)
without requiring large batches for finding an ε-

stationary point. Our Acc-MDA algorithm reaches the best known gradient complex-
ity of Õ

(
κ3
yε
−3
)

with batch size O(κ3
y) for finding an ε-stationary point. Moreover,

our Acc-MDA algorithm obtains a lower gradient complexity of Õ
(
κ2.5
y ε−3

)
with batch

size O(κ4
y) for finding an ε-stationary point (Please see Table 2).

4) We present a class of accelerated zeroth-order and first-order momentum framework
for both mini-optimization and minimax-optimization. Moreover, we study the con-
vergence properties of our methods for both constrained and unconstrained opti-
mization, respectively.

The remainder of the paper is structured as follows. In Section 2, we review some
related works about zeroth-order and first-order methods for mini and minimax optimiza-
tion. Section 3 introduces some preliminaries about zeroth-order and first-order methods
for mini and minimax optimization. We introduce our Acc-ZOM, Acc-ZOMDA and Acc-
MDA methods in Sections 4, 5 and 6, respectively. In Section 7, we give the convergence
properties of our methods. In Section 8, we apply black-box adversarial attack to DNNs
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and poisoning attack to logistic regression to verify efficiency of our methods. Conclusions
are provided in Section 9. The proofs of the main results are given in the appendix.

2. Related Works

In this section, we recap some zeroth-order and first-order methods for solving the mini-
optimization and minimax-optimization problems, respectively.

2.1 Zeroth-Order Mini-Optimization

Zeroth-order (i.e., gradient-free) methods are a class of powerful optimization tools to solve
many complex machine learning problems, whose explicit gradients are difficult or even
infeasible to access. Recently, the zeroth-order methods have been widely proposed. For
example, Ghadimi and Lan (2013); Duchi et al. (2015); Nesterov and Spokoiny (2017) pro-
posed several zeroth-order algorithms based on the Gaussian smoothing technique. Subse-
quently, some accelerated zeroth-order stochastic methods (Liu et al., 2018b; Ji et al., 2019)
have been proposed by using the variance reduced techniques. To solve the constrained
optimization, the zeroth-order projected method (Liu et al., 2018c) and the zeroth-order
Frank-Wolfe methods (Balasubramanian and Ghadimi, 2018; Chen et al., 2018; Sahu et al.,
2019; Huang et al., 2020b) have been recently proposed. More recently, Chen et al. (2019)
have proposed a zeroth-order adaptive momentum method to solve the constrained opti-
mization problems. To solve the nonsmooth optimization, several zeroth-order proximal
algorithms (Ghadimi et al., 2016; Huang et al., 2019c; Ji et al., 2019) and zeroth-order
ADMM-based algorithms (Gao et al., 2018; Liu et al., 2018a; Huang et al., 2019a,b) have
been proposed.

2.2 Zeroth-Order Minimax Optimization

The above zeroth-order methods only focus on the mini-optimization problems. In fact,
many machine learning problems such as reinforcement learning (Wai et al., 2019, 2018),
black-box adversarial attack (Liu et al., 2019b), and adversarial training (Goodfellow et al.,
2014; Liu et al., 2019a) can be expressed as the minimax-optimization problems. For the
black-box minimax problems where we can only access function values, more recently, some
zeroth-order descent ascent methods (Liu et al., 2019b; Wang et al., 2020; Xu et al., 2020a)
have been presented to solve the minimax-optimization problem (2). In addition, online
zeroth-order extra-gradient algorithms (Roy et al., 2019) have been proposed to solve the
(strongly) convex-concave minimax problems.

2.3 First-Order Minimax Optimization

For the transparent minimax problems whose explicit gradients are accessible, more re-
cently, some first-order minimax methods have been widely studied in (Rafique et al., 2018;
Jin et al., 2019; Nouiehed et al., 2019; Thekumparampil et al., 2019; Lin et al., 2019; Yang
et al., 2020; Ostrovskii et al., 2020; Yan et al., 2020; Lin et al., 2020; Xu et al., 2020b; Boţ
and Böhm, 2020). For example, Lin et al. (2019) proposed a class of gradient descent as-
cent methods (i.e., GDA and SGDA) for nonconvex-(strongly) concave minimax problems.
Rafique et al. (2018) studied a class of weakly-convex concave minimax problems and pro-
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posed an efficient stochastic gradient descent ascent method (i.e., PGSVRG) based on the
variance reduced technique of SVRG. Luo et al. (2020); Xu et al. (2020a) proposed a class
of faster SGDA methods (i.e., SREDA and SREDA-Boost) to solve the nonconvex-strongly-
concave minimax problems based on the variance reduced technique of SARAH/SPIDER.
In addition, Tran-Dinh et al. (2020) presented a hybrid variance-reduced SGD algorithm
for a special case of nonconvex-concave stochastic minimax problems, which are equivalent
to a class of stochastic compositional problems studied in (Qi et al., 2020).

3. Preliminaries

In this section, we introduce zeroth-order gradient estimators and some mild assumptions
for mini-optimization problem (1) and minimax-optimization problem (2), respectively.

3.1 Notations

〈x, y〉 denotes the inner product of two vectors x and y. ‖ ·‖ denotes the `2 norm for vectors
and spectral norm for matrices. Id denotes a d-dimensional identity matrix. Given function
f(x, y), f(x, ·) denotes function w.r.t. the second variable with fixing x, and f(·, y) denotes
function w.r.t. the first variable with fixing y. Let ∇f(x, y) = (∇xf(x, y),∇yf(x, y)), where
∇xf(x, y) and ∇yf(x, y) denote the partial gradients w.r.t. variables x and y, respectively.
Define two increasing σ-algebras F1

t := {ξ1, ξ2, · · · , ξt−1} and F2
t := {u1, u2, · · · , ut−1} for

all t ≥ 2, where {ui}t−1
i=1 is a vector generated from the uniform distribution over the unit

sphere, then let E[·] = E[·|F1
t ,F2

t ]. We denote a = O(b) if a ≤ Cb for some constant
C > 0. The notation Õ(·) hides logarithmic terms. Given a convex closed set X , we define
a projection operation to X as PX (x0) = arg minx∈X ‖x− x0‖2.

3.2 Preliminaries for Mini-Optimization

For solving the mini-optimization problem (1), we apply the Uniform smoothing Gradient
Estimator (UniGE) (Gao et al., 2018; Ji et al., 2019) to generate stochastic zeroth-order
gradients. Specifically, given the stochastic function f(x; ξ) : Rd → R, the UniGE can
generate a stochastic zeroth-order gradient, defined as

∇̂f(x; ξ) =
f(x+ µu; ξ)− f(x; ξ)

µ/d
u, (3)

where u ∈ Rd is a vector generated from the uniform distribution over the unit sphere, and
µ is a smoothing parameter. Let fµ(x; ξ) = Eu∼UB [f(x+µu; ξ)] be a smooth approximation
of f(x; ξ), where UB is the uniform distribution over the d-dimensional unit Euclidean ball
B. Further let ∇fµ(x) = Eξ[∇fµ(x; ξ)]. According to Lemma 5 in (Ji et al., 2019), we have

E(ξ,u)[∇̂f(x; ξ)] = ∇fµ(x). Next, we give some mild assumptions about the problem (1).

Assumption 1 The variance of stochastic zeroth-order gradient is bounded, i.e., there ex-
ists a constant σ > 0 such that for all x, it follows E‖∇̂f(x; ξ)−∇fµ(x)‖2 ≤ σ2.

Assumption 1 is similar to the upper bound of variance of stochastic gradient in (Ghadimi
and Lan, 2013; Cutkosky and Orabona, 2019). In the following, we further give some mild
conditions about the problem (1).
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Assumption 2 The component function f(x; ξ) is L-smooth such that

‖∇f(x; ξ)−∇f(x′; ξ)‖ ≤ L‖x− x′‖, ∀x, x′ ∈ X .

Assumption 3 The function f(x) is bounded from below in X , i.e., f∗ = infx∈X f(x).

Assumption 2 imposes smoothness on each component loss function, which is widely used
in the nonconvex algorithms (Fang et al., 2018; Wang et al., 2019; Cutkosky and Orabona,
2019). Assumptions 3 guarantees the feasibility of the problem (1).

3.3 Preliminaries for Minimax-Optimization

For solving the minimax-optimization problem (2), we also apply the UniGE to generate
stochastic zeroth-order partial gradients. Specifically, for the stochastic function f(x, y; ξ) :
Rd1 × Rd2 → R, given B = {ξ1, · · · , ξb} drawn i.i.d. from an unknown distribution, the
UniGE can generate stochastic zeroth-order partial gradients, defined as

∇̂xf(x, y;B) =
1

b

b∑
i=1

∇̂xf(x, y; ξi) =
1

b

b∑
i=1

f(x+ µ1ûi, y; ξi)− f(x, y; ξi)

µ1/d1
ûi, (4)

∇̂yf(x, y;B) =
1

b

b∑
i=1

∇̂yf(x, y; ξi) =
1

b

b∑
i=1

f(x, y + µ2ũi; ξi)− f(x, y; ξi)

µ2/d2
ũi, (5)

where µ1 and µ2 are the smoothing parameters, and Û = {ûi ∈ Rd1}bi=1 and Ũ = {ũ2 ∈
Rd2}bi=1 are generated from the uniform distribution over the unit sphere UB1 and UB2 , re-
spectively. Here UB1 and UB2 denote the uniform distributions over the d1-dimensional unit
Euclidean ball B1 and d2-dimensional unit Euclidean ball B2, respectively. The smoothed
functions associated to function f(x, y; ξ) can be defined as:

fµ1(x, y; ξ) = Eû
[
f(x+ µ1û, y; ξ)

]
, fµ2(x, y; ξ) = Eũ

[
f(x, y + µ2ũ; ξ)

]
. (6)

Following Lemma 5 in (Ji et al., 2019), we have E(û,ξ)[∇̂xf(x, y; ξ)] = ∇xfµ1(x, y) and

E(ũ,ξ)[∇̂yf(x, y; ξ)] = ∇yfµ2(x, y). Similarly, we have E(Û ,B)[∇̂xf(x, y;B)] = ∇xfµ1(x, y)

and E(Ũ ,B)[∇̂yf(x, y;B)] = ∇yfµ2(x, y). Next, we give some mild assumptions about the

problem (2).

Assumption 4 The variance of zeroth-order stochastic gradient is bounded, i.e.,
there exists a constant δ1 > 0 such that for all x, it follows E‖∇̂xf(x, y; ξ)−∇xfµ1(x, y)‖2 ≤
δ2

1, and for all y, it follows E‖∇̂yf(x, y; ξ)−∇yfµ2(x, y)‖2 ≤ δ2
1. The variance of stochas-

tic gradient is bounded, i.e., there exists a constant δ2 > 0 such that for all x, it follows
E‖∇xf(x, y; ξ) − ∇xf(x, y)‖2 ≤ δ2

2; There exists a constant δ2 > 0 such that for all y, it
follows E‖∇yf(x, y; ξ)−∇yf(x, y)‖2 ≤ δ2

2.

Assumption 4 is similar to the upper bound of variance of stochastic partial gradients in
(Luo et al., 2020; Wang et al., 2020). For notational simplicity, let δ = max(δ1, δ2). By
using Assumption 4, we have E‖∇̂xf(x, y;B) − ∇fµ1(x, y)‖2 ≤ δ2/b and E‖∇̂yf(x, y;B) −
∇fµ2(x, y)‖2 ≤ δ2/b.
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Assumption 5 Each component function f(x, y; ξ) has a Lf -Lipschitz gradient, i.e., for
all x, x′ ∈ X and y, y′ ∈ Y

‖∇f(x, y; ξ)−∇f(x′, y′; ξ)‖ ≤ Lf‖(x, y)− (x′, y′)‖, (7)

where ∇f(x, y; ξ) =
(
∇xf(x, y; ξ),∇yf(x, y; ξ)

)
.

Assumption 6 The objective function f(x, y) is τ -strongly concave in variable y, i.e.,

‖∇yf(x, y)−∇yf(x, y′)‖ ≥ τ‖y − y′‖, ∀x ∈ X , y, y′ ∈ Y. (8)

Then the following inequality holds

f(x, y) ≤ f(x, y′) + 〈∇yf(x, y′), y − y′〉 − τ

2
‖y − y′‖2. (9)

Assumption 5 also implies the partial gradients∇xf(x, y) = Eξ[∇xf(x, y; ξ)] and∇yf(x, y) =
Eξ[∇yf(x, y; ξ)] are Lf -Lipschiz continuous. Since f(x, y) is strongly concave in y ∈ Y, there
exists a unique solution to the problem maxy∈Y f(x, y) for any x, and we define the solution
as y∗(x) = arg maxy∈Y f(x, y), and let F (x) = maxy∈Y f(x, y) = f(x, y∗(x)).

Assumption 7 The function F (x) is bounded from below in X , i.e., F ∗ = infx∈X F (x).

4. Accelerated Zeroth-Order Momentum Method for Mini-Optimization

In this section, we propose a new accelerated zeroth-order momentum (Acc-ZOM) method
to solve the black-box mini-optimization problem (1), where only noise stochastic function
values can be obtained. Although our Acc-ZOM method builds on the momentum-based
variance reduction technique of STORM (Cutkosky and Orabona, 2019), our Acc-ZOM
method is the first to extend the original STORM method to the constrained optimization.
Algorithm 1 summarizes the algorithmic framework of our Acc-ZOM method.

In Algorithm 1, we use the zeroth-order variance-reduced stochastic gradients as follows:

vt = αt∇̂f(xt; ξt) + (1− αt)
(
∇̂f(xt; ξt)− ∇̂f(xt−1; ξt) + vt−1

)
, (10)

where αt ∈ (0, 1]. When αt = 1, vt will degenerate a vanilla zeroth-order stochastic gradient;
When αt = 0, vt will degenerate a zeroth-order stochastic gradient based on variance-
reduced technique of SPIDER (Fang et al., 2018). When the constraint set X = Rd, i.e.,
the problem (1) is an unconstrained problem, we use a common metric E‖∇f(xt)‖ used in
the nonconvex optimization (Fang et al., 2018; Ji et al., 2019) to measure the convergence
of Algorithm 1.

When the constraint set X ⊂ Rd, at the step 8 of Algorithm 1, we use 0 < ηt ≤ 1 to
ensure the variable xt for all t ≥ 1 in the convex constraint set X . At the same time, we
provide a useful metric E[Gt] to measure the convergence properties of our Acc-ZOM for
constrained optimization, defined as

Gt =
1

γ
‖x̃t+1 − xt‖+ ‖∇f(xt)− vt‖. (11)
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Algorithm 1 Acc-ZOM Algorithm for Mini Optimization

1: Input: T , parameters {γ, k,m, c} and initial input x1 ∈ X ;
2: initialize: Draw a sample ξ1, and sample a vector u ∈ Rd from uniform distribution

over unit sphere, then compute v1 = ∇̂f(x1; ξ1), where the zeroth-order gradient is
estimated from (3);

3: for t = 1, 2, . . . , T do
4: Compute ηt = k

(m+t)1/3
;

5: if X = Rd then
6: Update xt+1 = xt − γηtvt;
7: else
8: Update x̃t+1 = PX (xt − γvt), and xt+1 = xt + ηt(x̃t+1 − xt);
9: end if

10: Compute αt+1 = cη2
t ;

11: Draw a sample ξt+1, and sample a vector u ∈ Rd from uniform distribution over unit
sphere, then compute vt+1 = ∇̂f(xt+1; ξt+1) + (1 − αt+1)

[
vt − ∇̂f(xt; ξt+1)

]
, where

the zeroth-order gradients are estimated from (3);
12: end for
13: Output: (for theoretical) xζ chosen uniformly random from {xt}Tt=1.
14: Output: (for practical) xT .

In fact, our metric E[Gt] is tighter than standard gradient mapping metric E‖GX (xt,∇f(xt), γ)‖
used in (Ghadimi et al., 2016), i.e., Gt ≥ ‖GX (xt,∇f(xt), γ)‖, where

GX (xt,∇f(xt), γ) =
1

γ

(
xt − PX (xt − γ∇f(xt))

)
,

PX (xt − γ∇f(xt)) = arg min
x∈X

{
〈∇f(xt), x− xt〉+

1

2γ
‖x− xt‖2

}
. (12)

Let w(x) = 1
2‖x‖

2, as in (Ghadimi et al., 2016), we give a prox-function associated with
w(x), defined as

V (x, xt) = w(x)−
(
w(xt) + 〈∇w(xt), x− xt〉

)
=

1

2
‖x− xt‖2. (13)

At the same time, the step 8 of Algorithm 1 can be rewritten as

x̃t+1 = PX (xt − γvt) = arg min
x∈X

{
〈vt, x− xt〉+

1

2γ
‖x− xt‖2

}
. (14)

Then we also can obtain a gradient mapping GX (xt, vt, γ) = 1
γ

(
xt − PX (xt − γvt)

)
=

1
γ

(
xt − x̃t+1

)
. Since the function w(x) = 1

2‖x‖
2 is 1-strongly convex, we have

‖GX (xt,∇f(xt), γ)‖ = ‖GX (xt,∇f(xt), γ)−GX (xt, vt, γ) +GX (xt, vt, γ)‖
≤ ‖GX (xt,∇f(xt), γ)−GX (xt, vt, γ)‖+ ‖GX (xt, vt, γ)‖
(i)

≤ ‖∇f(xt)− vt‖+ ‖GX (xt, vt, γ)‖

= ‖∇f(xt)− vt‖+
1

γ
‖xt − x̃t+1‖, (15)

9



Huang,Gao,Pei,Huang

Algorithm 2 Acc-ZOMDA Algorithm for Minimax Optimization

1: Input: T , parameters {γ, λ, k,m, c1, c2} and initial input x1 ∈ X and y1 ∈ Y;
2: initialize: Draw a mini-batch samples B1 = {ξ1

i }bi=1, and draw vectors {ûi ∈ Rd1}bi=1

and {ũi ∈ Rd2}bi=1 from uniform distribution over unit sphere, then compute v1 =
∇̂xf(x1, y1;B1) and w1 = ∇̂yf(x1, y1;B1), where the zeroth-order gradients are esti-
mated from (4) and (5);

3: for t = 1, 2, . . . , T do
4: Compute ηt = k

(m+t)1/3
;

5: if X = Rd1 then
6: Update xt+1 = xt − γηtvt;
7: else
8: Update x̃t+1 = PX (xt − γvt) and xt+1 = xt + ηt(x̃t+1 − xt);
9: end if

10: Update ỹt+1 = PY(yt + λwt) and yt+1 = yt + ηt(ỹt+1 − yt);
11: Compute αt+1 = c1η

2
t and βt+1 = c2η

2
t ;

12: Draw a mini-batch samples Bt+1 = {ξt+1
i }bi=1, and draw vectors {ûi ∈ Rd1}bi=1 and

{ũi ∈ Rd2}bi=1 from uniform distribution over unit sphere;
13: Compute vt+1 = ∇̂xf(xt+1, yt+1;Bt+1)+(1−αt+1)

[
vt−∇̂xf(xt, yt;Bt+1)

]
and wt+1 =

∇̂yf(xt+1, yt+1;Bt+1) + (1 − βt+1)
[
wt − ∇̂yf(xt, yt;Bt+1)

]
, where the zeroth-order

gradients are estimated from (4) and (5).
14: end for
15: Output: (for theoretical) xζ and yζ chosen uniformly random from {xt, yt}Tt=1.
16: Output: (for practical) xT and yT .

where the above inequality (i) holds by Proposition 1 of (Ghadimi et al., 2016).

In fact, the original STORM method (Cutkosky and Orabona, 2019) is only competent
to unconstrained optimization. In Algorithm 1, when using stochastic gradient instead of
stochastic zeroth-order gradient for solving the problem (1), our Acc-ZOM algorithm will
reduce to a new version of STORM method for constrained optimization.

5. Accelerated Zeroth-Order Momentum Descent Ascent Method for
Minimax Optimization

In the section, we propose an accelerated zeroth-order momentum descent ascent (Acc-
ZOMDA) method to solve the black-box minimax problem (2), where only stochastic
function values can be obtained. In fact, we extend the above Acc-ZOM method to solve
the minimax problem and then obtain the Acc-ZOMDA method. Algorithm 2 describes the
algorithmic framework of our Acc-ZOMDA method.

In Algorithm 2, we use the momentum-based variance reduced technique of STORM
to estimate the stochastic zeroth-order partial gradients vt and wt. When the constraint
set X = Rd1 , i.e., the problem (2) is an unconstrained problem w.r.t. variable x, we use
a common metric E‖∇F (xt)‖ used in (Lin et al., 2019; Wang et al., 2020) to measure the
convergence of Algorithm 2, where the function F (x) = maxy∈Y f(x, y).

10
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When the constraint set X ⊂ Rd1 , we define a useful metric E[Ht] to measure the
convergence properties of our Acc-ZOMDA Algorithm,

Ht =
1

γ
‖x̃t+1 − xt‖+ ‖∇xf(xt, yt)− vt‖+ Lf‖yt − y∗(xt)‖, (16)

where the first two terms of Ht measure convergence of the iteration solutions {xt}Tt=1, and
the last term measures convergence of the iteration solutions {yt}Tt=1. In fact, our new
metric E[Ht] is tighter than the generic gradient mapping metric E‖GX (xt,∇F (xt), γ)‖,
i.e., Ht ≥ ‖GX (xt,∇F (xt), γ)‖, where GX (xt,∇F (xt), γ) is a gradient mapping, defined as

GX (xt,∇F (xt), γ) =
1

γ

(
xt − PX (xt − γ∇F (xt))

)
,

PX (xt − γ∇F (xt)) = arg min
x∈X

{
〈∇F (xt), x− xt〉+

1

2γ
‖x− xt‖2

}
, (17)

where F (xt) = f(xt, y
∗(xt)) = miny∈Y f(xt, y). At the same time, the step 8 of Algorithm

2 can be rewritten as

x̃t+1 = PX (xt − γvt) = arg min
x∈X

{
〈vt, x− xt〉+

1

2γ
‖x− xt‖2

}
. (18)

Then we also can obtain a gradient mapping GX (xt, vt, γ) = 1
γ

(
xt − PX (xt − γvt)

)
=

1
γ

(
xt − x̃t+1

)
. Since the function w(x) = 1

2‖x‖
2 is 1-strongly convex, we have

‖GX (xt,∇F (xt), γ)‖ = ‖GX (xt,∇F (xt), γ)−GX (xt, vt, γ) +GX (xt, vt, γ)‖
≤ ‖GX (xt,∇F (xt), γ)−GX (xt, vt, γ)‖+ ‖GX (xt, vt, γ)‖
(i)

≤ ‖∇F (xt)− vt‖+ ‖GX (xt, vt, γ)‖

= ‖∇F (xt)−∇xf(xt, yt) +∇xf(xt, yt)− vt‖+
1

γ
‖xt − x̃t+1‖

≤ ‖∇xf(xt, y
∗(xt))−∇xf(xt, yt)‖+ ‖∇xf(xt, yt)− vt‖+

1

γ
‖xt − x̃t+1‖

(ii)

≤ Lf‖y∗(xt)− yt‖+ ‖∇xf(xt, yt)− vt‖+
1

γ
‖xt − x̃t+1‖, (19)

where the above inequality (i) holds by Proposition 1 of (Ghadimi et al., 2016), and the
above inequality (ii) is due to Assumption 5.

6. Accelerated First-Order Momentum Descent Ascent Method for
Minimax Optimization

In this section, we propose an accelerated first-order momentum descent ascent (Acc-MDA)
method to solve the transparent minimax problem (2), whose explicit stochastic gradients
are accessible. Algorithm 3 gives the algorithmic framework of our Acc-MDA method. In
Algorithm 3, we use the stochastic gradients instead of the stochastic zeroth-order gradients
used in Algorithm 2. In our Acc-MDA algorithm, we use the momentum-based variance-
reduced technique of STORM to estimate the partial derivatives vt and wt on variables x

11



Huang,Gao,Pei,Huang

Algorithm 3 Acc-MDA Algorithm for Minimax Optimization

1: Input: T , parameters {γ, λ, k,m, c1, c2} and initial input x1 ∈ X and y1 ∈ Y;
2: initialize: Draw a mini-batch samples B1 = {ξ1

i }bi=1, and then compute stochastic
gradients v1 = ∇xf(x1, y1;B1) and w1 = ∇yf(x1, y1;B1);

3: for t = 1, 2, . . . , T do
4: Compute ηt = k

(m+t)1/3
;

5: if X = Rd1 then
6: Update xt+1 = xt − γηtvt;
7: else
8: Update x̃t+1 = PX (xt − γvt) and xt+1 = xt + ηt(x̃t+1 − xt);
9: end if

10: Update ỹt+1 = PY(yt + λwt) and yt+1 = yt + ηt(ỹt+1 − yt);
11: Compute αt+1 = c1η

2
t and βt+1 = c2η

2
t ;

12: Draw a mini-batch samples Bt+1 = {ξt+1
i }bi=1, and then compute stochastic gradi-

ents vt+1 = ∇xf(xt+1, yt+1;Bt+1) + (1 − αt+1)
[
vt − ∇xf(xt, yt;Bt+1)

]
and wt+1 =

∇yf(xt+1, yt+1;Bt+1) + (1− βt+1)
[
wt −∇yf(xt, yt;Bt+1)

]
;

13: end for
14: Output: (for theoretical) xζ and yζ chosen uniformly random from {xt, yt}Tt=1.
15: Output: (for practical) xT and yT .

and y, respectively. Moreover, our Acc-MDA algorithm also uses the momentum iteration
to update variables x and y as follows:

x̃t+1 = PX (xt − γvt), xt+1 = xt + ηt(x̃t+1 − xt), (20)

ỹt+1 = PY(yt + λwt), yt+1 = yt + ηt(ỹt+1 − yt). (21)

At the same time, at step 6 of Algorithm 3, i.e., xt+1 = xt − γηtvt also can be rewritten as
x̃t+1 = xt − γvt and xt+1 = xt + ηt(x̃t+1 − xt).

By combining Algorithms 2 and 3, we can propose an accelerated semi-zeroth-order mo-
mentum descent ascent (Acc-Semi-ZOMDA) method to solve one-sided black-box problem
(2) studied in (Liu et al., 2019b), where the explicit stochastic partial gradients in variable
x can not be accessible. Specifically, in the Acc-Semi-ZOMDA algorithm, we only use the
stochastic partial gradients wt instead of the stochastic zeroth-order partial gradients wt in
Algorithm 2.

7. Convergence Analysis

In this section, we study the convergence properties of our algorithms (Acc-ZOM, Acc-
ZOMDA and Acc-MDA) under some mild conditions.

7.1 Convergence Analysis of the Acc-ZOM Algorithm

In this subsection, we analyze convergence of our Acc-ZOM algorithm for solving the
constrained and unconstrained mini-optimization problem (1), respectively.

12
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7.1.1 Convergence Analysis of the Acc-ZOM Algorithm for Constrained
Mini-Optimization

In the subsection, we analyze convergence properties of the Acc-ZOM algorithm for solving
the constrained problem (1), i.e., X ⊂ Rd. The following convergence results build on
a new metric E[Gt], where Gt is defined in (11). The related proofs of these convergence
analysis are provided in Appendix A.1.

We begin with defining a function fµ(x) = Eu∼UB [f(x + µu)], which is a smooth ap-
proximation of function f(x), where UB is the uniform distribution over the d-dimensional
unit Euclidean ball B.

Theorem 1 Suppose the sequence {xt}Tt=1 be generated from Algorithm 1. When X ⊂ Rd,
and let ηt = k

(m+t)1/3
for all t ≥ 0, 0 < γ ≤ min

(
m1/3

2Lk ,
1

2
√

6dL

)
, c ≥ 2

3k3
+ 5

4 , k > 0,

m ≥ max
(
2, (ck)3, k3

)
and 0 < µ ≤ 1

d(m+T )2/3
, we have

1

T

T∑
t=1

E‖GX (xt,∇f(xt), γ)‖ ≤ 1

T

T∑
t=1

E[Gt] ≤
√

2Mm1/6

T 1/2
+

√
2M

T 1/3
+

L

2(m+ T )2/3
, (22)

where M =
fµ(x1)−f∗

kγ + m1/3σ2

k2
+ 9L2

4k2
+ 2k2c2σ2 ln(m+ T ).

Remark 2 Without loss of generality, let m ≥ max
(
2, (ck)3, k3, ( k√

6d
)3
)
, we have m1/3

2Lk ≥
1

2
√

6dL
. It is easy verified that γ = O( 1√

d
), c = O(1) and m = O(1). Then we have

M = O
(√
d+ln(m+T )

)
= Õ

(√
d
)
. Thus, the Acc-ZOM algorithm has Õ

(
d1/4

T 1/3

)
convergence

rate. By d1/4

T 1/3 ≤ ε, i.e., E[Gζ ] ≤ ε, we choose T ≥ d3/4ε−3. In Algorithm 1, we require to
query four function values for estimating the zeroth-order gradients vt at each iteration, and
need T iterations. Thus, the Acc-ZOM algorithm has a query complexity of 4T = Õ(d3/4ε−3)
for finding an ε-stationary point.

7.1.2 Convergence Analysis of Acc-ZOM Algorithm for Unconstrained
Mini-Optimization

In this subsection, we study the convergence properties of our Acc-ZOM algorithm for
solving the unconstrained problem (1), i.e., X = Rd. The following convergence analysis
builds on the common metric E‖∇f(x)‖ used in nonconvex optimization (Ji et al., 2019).
The related proofs of these convergence analysis are provided in Appendix A.2.

Theorem 3 Suppose the sequence {xt}Tt=1 be generated from Algorithm 1. When X = Rd,
and let ηt = k

(m+t)1/3
for all t ≥ 0, 0 < γ ≤ min

(
m1/3

2Lk ,
1

2
√

6dL

)
, c ≥ 2

3k3
+ 5

4 , k > 0,

m ≥ max
(
2, k3, (ck)3

)
and 0 < µ ≤ 1

d(m+T )2/3
, we have

1

T

T∑
t=1

E‖∇f(xt)‖ ≤
√

2Mm1/6

T 1/2
+

√
2M

T 1/3
+

L

2(m+ T )2/3
, (23)

where M =
fµ(x1)−f∗

kγ + m1/3σ2

k2
+ 9L2

4k2
+ 2k2c2σ2 ln(m+ T ).
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Remark 4 Since the conditions of Theorem 3 are the same conditions of Theorem 1, The-
orem 3 also show that our Acc-ZOM algorithm has a lower query complexity of Õ(d3/4ε−3)
for finding an ε-stationary point.

7.2 Convergence Analysis of the Acc-ZOMDA Algorithm

In this subsection, we analyze convergence of our Acc-ZOMDA algorithm for solving the
constrained and unconstrained minimax-optimization problem (2), respectively.

7.2.1 Convergence Analysis of the Acc-ZOMDA Algorithm for Constrained
Minimax Optimization

In the subsection, we provide the convergence properties of our Acc-ZOMDA algorithm for
solving the constrained minimax problem (2), i.e., X ⊂ Rd1 and Y ⊂ Rd2 (or Y = Rd2).
The following results build on new convergence metric E[Ht], where Ht is defined as in (16).
The related proofs of these convergence analysis are provided in Appendix A.3.

We first define a function Fµ1(x) = Eu1∼UB1
[F (x+µ1u1)], which is a smoothing approx-

imation of the function F (x) = f(x, y∗(x)) = maxy∈Y f(x, y). For notational simplicity, let

d̃ = d1 + d2, Lg = Lf +
L2
f

τ and κy = Lf/τ denote the condition number for function f(·, y).

Theorem 5 Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 2. When X ⊂

Rd1, and let ηt = k
(m+t)1/3

for all t ≥ 0, c1 ≥ 2
3k3

+ 9τ2

4 and c2 ≥ 2
3k3

+
625d̃L2

f

3b , k > 0, 1 ≤ b ≤

d̃, m ≥ max
(
2, k3, (c1k)3, (c2k)3

)
, 0 < λ ≤ min

(
1

6Lf
, 75τ

24

)
, 0 < γ ≤ min

(
λτ

2Lf

√
6b/d̃

36λ2+625κ2y
, m

1/3

2Lgk

)
,

0 < µ1 ≤ 1
d1(m+T )2/3

and 0 < µ2 ≤ 1
d̃1/2d2(m+T )2/3

, we have

1

T

T∑
t=1

E‖GX (xt,∇F (xt), γ)‖ ≤ 1

T

T∑
t=1

E[Ht] ≤
2
√

3M ′m1/6

T 1/2
+

2
√

3M ′

T 1/3
+

Lf

2(m+ T )2/3
.

(24)

where ∆1 = ‖y1 − y∗(x1)‖2 and M ′ =
Fµ1 (x1)−F ∗

γk +
25d̃L2

f∆1

kλτb + 2m1/3δ2

bτ2k2
+

36τ2L2
f+625L4

f

8bτ2
(m +

T )−2/3 +
9L2

f

4bτ2k2
+

2(c21+c22)δ2k2

bτ2
ln(m+ T ).

Remark 6 Without loss of generality, let m ≥ max
((
Lgλτk

√
6b/d̃

36λ2+625κ2y

)3
, 2, (c1k)3, (c2k)3,

k3
)

and τ ≤ 1
Lf

. It is easy verified that k = O(1), λ = O(τ), γ−1 = O(

√
d̃
bκ

3
y), c1 = O(1),

c2 = O( d̃bL
2
f ) and m = O( d̃

3

b3
L6
f ). Then we have M ′ = O(

√
d̃
bκ

3
y + d̃

bκ
2
y + d̃

b2
κ2
y +

κ2y
b (m +

T )−2/3 +
κ2y
b + d̃2

b3
κ2
y ln(m+T )). Note that in M ′, we only keep b, d̃, T and κy terms. When

b = 1, we have M ′ = Õ
(√

d̃κ3
y+ d̃2κ2

y

)
. When κy ≥ d̃3/2, the Acc-ZOMDA algorithm has a

convergence rate of Õ
(κ3/2y d̃1/4

T 1/3

)
. By

κ
3/2
y d̃1/4

T 1/3 ≤ ε, i.e., E[Hζ ] ≤ ε, we choose T ≥ κ4.5
y d̃3/4ε−3.

In Algorithm 2, we need to query eight function values for estimating the zeroth-order gra-
dients vt and wt at each iteration, and need T iterations. Thus, the Acc-ZOMDA algorithm

14
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has a query complexity of 8T = Õ
(
κ4.5
y d̃3/4ε−3

)
for finding an ε-stationary point. When

1 ≤ κy ≤ d̃3/2, the Acc-ZOMDA algorithm has a convergence rate of Õ
( κy d̃
T 1/3

)
. Similarly,

the Acc-ZOMDA algorithm has a query complexity of 8T = Õ
(
κ3
yd̃

3ε−3
)

for finding an
ε-stationary point.

7.2.2 Convergence Analysis of the Acc-ZOMDA Algorithm for
Unconstrained Minimax Optimization

In the subsection, we further provide the convergence properties of our Acc-ZOMDA algo-
rithm for solving the unconstrained minimax problem (2), i.e., X = Rd1 and Y = Rd2 (or
Y ⊂ Rd2). The following convergence results build on the common metric E‖∇F (x)‖ used
in (Lin et al., 2019; Wang et al., 2020), where F (x) = maxy∈Y f(x, y). The related proofs
of these convergence analysis are provided in Appendix A.4.

Theorem 7 Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 2. When X =

Rd1, and let ηt = k
(m+t)1/3

for all t ≥ 0, c1 ≥ 2
3k3

+ 9τ2

4 and c2 ≥ 2
3k3

+
625d̃L2

f

3b , k > 0, 1 ≤ b ≤

d̃, m ≥ max
(
2, k3, (c1k)3, (c2k)3

)
, 0 < λ ≤ min

(
1

6Lf
, 75τ

24

)
, 0 < γ ≤ min

(
λτ

2Lf

√
6b/d̃

36λ2+625κ2y
, m

1/3

2Lgk

)
,

0 < µ1 ≤ 1
d1(m+T )2/3

and 0 < µ2 ≤ 1
d̃1/2d2(m+T )2/3

, we have

1

T

T∑
t=1

E‖∇F (xt)‖ ≤
√

2M ′m1/6

T 1/2
+

√
2M ′

T 1/3
+

Lf

2(m+ T )2/3
, (25)

where ∆1 = ‖y1 − y∗(x1)‖2 and M ′ =
Fµ1 (x1)−F ∗

γk +
25d̃L2

f∆1

kλτb + 2m1/3δ2

bτ2k2
+

36τ2L2
f+625L4

f

8bτ2
(m +

T )−2/3 +
9L2

f

4bτ2k2
+

2(c21+c22)δ2k2

bτ2
ln(m+ T ).

Remark 8 Since the conditions of Theorem 7 are the same conditions of Theorem 5, The-

orem 7 has the same results of Theorem 5. When b = 1, we have M ′ = Õ
(√

d̃κ3
y+ d̃2κ2

y

)
.

When κy ≥ d̃3/2, the Acc-ZOMDA algorithm has a convergence rate of Õ
(κ3/2y d̃1/4

T 1/3

)
. By

κ
3/2
y d̃1/4

T 1/3 ≤ ε, i.e., E‖∇F (xζ)‖ ≤ ε, we choose T ≥ κ4.5
y d̃3/4ε−3. In Algorithm 2, we need

to query eight function values for estimating the zeroth-order gradients vt and wt at each
iteration, and need T iterations. Thus, the Acc-ZOMDA algorithm has a query complex-
ity of 8T = Õ

(
κ4.5
y d̃3/4ε−3

)
for finding an ε-stationary point. When 1 ≤ κy ≤ d̃3/2, the

Acc-ZOMDA algorithm has a convergence rate of Õ
( κy d̃
T 1/3

)
. Similarly, the Acc-ZOMDA

algorithm has a query complexity of 8T = Õ
(
κ3
yd̃

3ε−3
)

for finding an ε-stationary point.

7.3 Convergence Analysis of the Acc-MDA Algorithm

In the subsection, we analyze convergence of our Acc-MDA algorithm for solving the
constrained and unconstrained minimax-optimization problem (2), respectively.
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7.3.1 Convergence Analysis of the Acc-MDA Algorithm for Constrained
Minimax Optimization

In the subsection, we give the convergence properties of our Acc-MDA algorithm for solving
the constrained minimax problem (2), i.e., X ⊂ Rd1 and Y ⊂ Rd2 (or Y = Rd2). The
following convergence results build on a new metric E[Ht], where Ht is defined in (16). The
related proofs of these convergence analysis are provided in Appendix A.5.

Theorem 9 Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 3. When X ⊂
Rd1, and ηt = k

(m+t)1/3
for all t ≥ 0, c1 ≥ 2

3k3
+ 9τ2

4 and c2 ≥ 2
3k3

+
75L2

f

2 , k > 0, m ≥

max
(
2, k3, (c1k)3, (c2k)3

)
, 0 < λ ≤ min

(
1

6Lf
, 27bτ

16

)
and 0 < γ ≤ min

(
λτ

2Lf

√
2b

8λ2+75κ2yb
, m

1/3

2Lgk

)
,

we have

1

T

T∑
t=1

E‖GX (xt,∇F (xt), γ)‖ ≤ 1

T

T∑
t=1

E[Ht] ≤
2
√

3M ′′m1/6

T 1/2
+

2
√

3M ′′

T 1/3
, (26)

where ∆1 = ‖y1 − y∗(x1)‖2 and M ′′ = F (x1)−F ∗
γk +

9L2
f∆1

kλτ + 2m1/3δ2

bτ2k2
+

2(c21+c22)δ2k2

bτ2
ln(m+ T ).

Remark 10 Without loss of generality, let λτ
2Lf

√
2b

8λ2+75κ2yb
≤ m1/3

2Lgk
, we have m ≥ max

(
2, k3,

(c1k)3, (c2k)3,
(Lgλτk

Lf

√
2b

8λ2+75κ2yb

)3)
. Let γ = λτ

2Lf

√
2b

8λ2+75κ2yb
= λ

2κy

√
2b

8λ2+75κ2yb
and λ =

min
(

1
6Lf

, 27bτ
16

)
. Without loss of generality, let τ ≤ 1

Lf
. When b = 1, it is easy verified

that k = O(1), λ = O(τ), γ−1 = O(κ3
y), c1 = O(1), c2 = O(L2

f ) and m = O(L6
f ). Then

we have M ′′ = O(κ3
y + κ2

y + κ2
y + κ2

y ln(m + T )) = O(κ3
y). Thus, the Acc-MDA algorithm

has a convergence rate of O
( κ3/2y

T 1/3

)
. By

κ
3/2
y

T 1/3 ≤ ε, i.e., E[Hζ ] ≤ ε, we choose T ≥ κ4.5
y ε−3.

In Algorithm 3, we need to compute four stochastic partial gradients to obtain gradient es-
timators vt and wt at each iteration, and need T iterations. Thus, the Acc-MDA algorithm
has a gradient complexity of 4 · T = Õ

(
κ4.5
y ε−3

)
for finding an ε-stationary point.

Corollary 11 Under the same conditions of Theorem 9, when b = O(κνy) for ν > 0 and
27bτ
16 ≤

1
6Lf

, i.e., κνy ≤ 8
81Lf τ

, our Acc-MDA algorithm has a lower gradient complexity of

Õ
(
κ

(3−ν/2)
y ε−3

)
for finding an ε-stationary point.

Proof Under the above conditions of Theorem 9, without loss of generality, let λτ
2Lf

√
2b

8λ2+75κ2yb

≤ m1/3

2Lgk
, we havem ≥ max

(
2, k3, (c1k)3, (c2k)3,

(Lgλτk
Lf

√
2b

8λ2+75κ2yb

)3)
. Let γ = λτ

2Lf

√
2b

8λ2+75κ2yb

= λ
2κy

√
2b

8λ2+75κ2yb
and λ = min

(
1

6Lf
, 27bτ

16

)
.

Given b = O(κνy) for ν > 0 and 27bτ
16 ≤

1
6Lf

, i.e., κνy ≤ 8
81Lf τ

, it is easy verified that

k = O(1), λ = O(bτ), γ−1 = O(
κ3y
b ), c1 = O(1) and c2 = O(L2

f ). Since Lg = Lf +
L2
f

τ , we

have
Lgλτk
Lf

√
2b

8λ2+75κ2yb
= (1+κy)λτk

√
2b

8λ2+75κ2yb
= O( b

κy
), we have m = max(L6

f ,
b3

κ3y
). Then

we have M ′′ = O(
κ3y
b +

κ2y
b +

κ2y
b +

κ2y
b ln(m+ T )) = O(

κ3y
b ) = O(κ

(3−ν)
y ). Thus, our Acc-MDA

16
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algorithm has a convergence rate of Õ
(κ(3/2−ν/2)y

T 1/3

)
. By

κ
(3/2−ν/2)
y

T 1/3 ≤ ε, i.e., E[Hζ ] ≤ ε, we

choose T ≥ κ
(4.5−3ν/2)
y ε−3. Thus, our Acc-MDA algorithm reaches a lower gradient com-

plexity of 4b · T = Õ
(
κ

(4.5−ν/2)
y ε−3

)
for finding an ε-stationary point.

7.3.2 Convergence Analysis of Acc-MDA Algorithm for Unconstrained
Minimax Optimization

In the subsection, we further give the convergence properties of our Acc-MDA algorithm for
solving the unconstrained minimax problem (2), i.e., X = Rd1 and Y = Rd2 (or Y ⊂ Rd2).
The following convergence results build on the common metric E‖∇F (x)‖ used in (Lin
et al., 2019; Luo et al., 2020), where F (x) = maxy∈Y f(x, y). The related proofs of these
convergence analysis are provided in Appendix A.6.

Theorem 12 Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 3. When X =

Rd1, and let ηt = k
(m+t)1/3

for all t ≥ 0, c1 ≥ 2
3k3

+ 9τ2

4 and c2 ≥ 2
3k3

+
75L2

f

2 , k > 0, m ≥

max
(
2, k3, (c1k)3, (c2k)3

)
, 0 < λ ≤ min

(
1

6Lf
, 27bτ

16

)
and 0 < γ ≤ min

(
λτ

2Lf

√
2b

8λ2+75κ2yb
, m

1/3

2Lgk

)
,

we have

1

T

T∑
t=1

E‖∇F (xt)‖ ≤
√

2M ′′m1/6

T 1/2
+

√
2M ′′

T 1/3
, (27)

where ∆1 = ‖y1 − y∗(x1)‖2 and M ′′ = F (x1)−F ∗
γk +

9L2
f∆1

kλτ + 2m1/3δ2

bτ2k2
+

2(c21+c22)δ2k2

bτ2
ln(m+ T ).

Remark 13 Since the conditions of Theorem 12 are the same conditions of Theorem 9,
Theorem 12 has the same results of Theorem 9. When b = 1, our Acc-MDA algorithm
has a gradient complexity of 4 · T = Õ

(
κ4.5
y ε−3

)
for finding an ε-stationary point; when

b = O(κνy) for ν > 0 and 27bτ
16 ≤ 1

6Lf
, i.e., κνy ≤ 8

81Lf τ
, our Acc-MDA algorithm also

reaches a lower gradient complexity of 4b · T = Õ
(
κ

(4.5−ν/2)
y ε−3

)
for finding an ε-stationary

point. When giving b = O(κ3
y), our Acc-MDA reaches the best known gradient complexity

of Õ
(
κ3
yε
−3
)
. When giving b = O(κ4

y), our Acc-MDA reaches a lower gradient complexity

of Õ
(
κ2.5
y ε−3

)
.

Remark 14 The above low gradient complexities are obtained when b = O(κνy) and κνy ≤
8

81Lf τ
, where Lf denotes the smooth parameter of objective function f(x, y). Without loss of

generality, let ν = 1, we have Lf ≤ 2
√

2
9 . Although Lf may be large, we can easily change the

original objective function f(x, y) into a new function f̂(x, y) = rf(x, y), 0 < r < 1. Since
∇f̂(x, y) = r∇f(x, y), the gradient of function f̂(x, y) is L̂-Lipschitz continuous (L̂ = rLf ).

Thus, we can choose a suitable hyper-parameter r to let this new objective function f̂(x, y)

satisfy the condition L̂ ≤ 2
√

2
9 .
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8. Numerical Experiments

In this section, we evaluate the performance of our algorithms on two applications: 1)
black-box adversarial attack to deep neural networks (DNNs) and 2) poisoning attack to
logistic regression. In the first application, we compare our Acc-ZOM algorithm with the
ZO-AdaMM (Chen et al., 2019), ZO-SPIDER-Coord (Ji et al., 2019), SPIDER-SZO (Fang
et al., 2018) and ZO-SFW (Sahu et al., 2019). In the second application, for two-side
black-box attack, we compare our Acc-ZOMDA algorithm with ZO-Min-Max (Liu et al.,
2019b) and ZO-SGDMSA (Wang et al., 2020) and ZO-SREDA-Boost (Xu et al., 2020a).
For one-side black-box attack, we choose ZO-Min-Max (Liu et al., 2019b) as a baseline.
For transparent attack, we compare our Acc-MDA algorithm with SGDA (Lin et al., 2019)
and SREDA-Boost (Xu et al., 2020a). Note that the SREDA-Boost (Xu et al., 2020a) is
an improved version of the SREDA algorithm (Luo et al., 2020) and the difference between
SREDA-Boost and SREDA is using different learning rate. In the transparent attack, thus,
we only choose the SREDA-Boost as a comparison method.

8.1 Black-Box Adversarial Attack to DNNs

In this subsection, we use our Acc-ZOM algorithm to generate adversarial perturbations to
attack the pre-trained black-box DNNs, whose parameters are hidden and only its outputs
are accessible. Let (a, b) denote an image a with its true label b ∈ {1, 2, · · · ,K}, where K is
the total number of image classes. Given multiple images {ai, bi}ni=1, we design a universal
perturbation x to a pre-trained black-box DNN. Following (Guo et al., 2019), we consider
the following untargeted attack problem:

min
x∈X

1

n

n∑
i=1

max
(
fbi(x+ ai)−max

j 6=bi
fj(x+ ai), 0

)
, s.t. X = {‖x‖∞ ≤ ε} (28)

where fj(x+ai) represents the output with j-th class, that is, the final output before softmax
of DNN. In the experiment, we normalize the pixel values to [0, 1]d, and use the following
smooth form as in (Lee and Mangasarian, 2001) to approximate the above untargeted attack
problem:

min
x∈X

1

n

n∑
i=1

{
fbi(x+ ai)−max

j 6=bi
fj(x+ ai) + ln

(
1 + exp

(
max
j 6=bi

fj(x+ ai)− fbi(x+ ai)
))}

,

s.t. X = {‖x‖∞ ≤ ε}.

In the experiment, we use the pre-trained DNNs on four benchmark datasets: MNIST,
FashionMNIST, CIFAR-10, and SVHN, which attain 99.4%, 91.8%, 93.2%, and 80.8% test
accuracy, respectively. Here, n in problem (28) is set to 40 for all datasets. The batch size
of all algorithms is 10. Different datasets require different ε. Specifically, ε is set to 0.4,
0.3, 0.1, 0.2 for MNIST, FashionMNIST, CIFAR-10, and SVHN, respectively. The hyper-
parameters γ, k,m, c of the Acc-ZOM are 0.1, 1, 3, 3. For the other algorithms, we follow
the hyper-parameters in their original paper for a fair comparison. In Fig. 1, we plot attack
loss vs. the number of function queries for each algorithm. Fig. 1 shows that our Acc-ZOM
algorithm can largely outperform other algorithms in terms of function queries. We select
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(a) MNIST (b) FashionMNIST (c) CIFAR-10 (d) SVHN

Figure 1: Experimental results of black-box adversarial attack on four datasets: MNIST,
FashionMNIST, CIFAR-10 and SVHN.

(a) MNIST (b) FashionMNIST (c) CIFAR-10 (d) SVHN

Figure 2: Impact of batch-size on our Acc-ZOM algorithm.

hyper-parameters following the theoretic analysis. k is first chosen as 1. Given k, c have to
be larger than 2

3k3
+ 5

4 , we then choose c as 3, which is the smallest integer larger than the
threshold. Similarly, m is chosen as 3 to satisfy the condition m ≤ max((ck)3, k3). To study
the impact of batch-size, we use three different batch-size settings: 5, 10, 20. From Fig. 2,
we can see that our Acc-ZOM algorithm can work well on a range of batch-size selections.

8.2 Poisoning Attack to Logistic Regression

In this subsection, we apply the task of poisoning attack to logistic regression to demonstrate
the efficiency of our Acc-ZOMDA, Acc-Semi-ZOMDA and Acc-MDA. Let {ai, bi}ni=1 denote
the training dataset, in which n0 � n samples are corrupted by a perturbation vector x.
Following Liu et al. (2019b), this poisoning attack problem can be formulated as

max
x∈X

min
y∈Y

f(x, y) = h(x, y;Dp) + h(0, y;Dt), (29)

s.t. X = {‖x‖∞ ≤ ε}, Y = {‖y‖22 ≤ λreg}

where Dp and Dt are corrupted set and clean set respectively, y is the model parameter, the

corrupted rate
|Dp|

|Dt|+|Dp| is set to 0.15. Here h(x, y;D) = − 1
|D|
∑

(ai,bi)∈D
[
bi log(g(x, y; ai)) +

(1 − bi) log(1 − g(x, y; ai))
]

with g(x, y; ai) = 1

1+e−(x+ai)
T y

. Note that the above problem

(29) can be written in the form of (2), i.e., minx∈X maxy∈Y
{
−f(x, y)

}
. In the experiment,

we generate n = 1000 samples. Specifically, we randomly draw the feature vector ai ∈ R100

from normal distributionN (0, 1), and label bi = 1 if 1

1+e−(aT
i
θ+νi)

> 1
2 , otherwise bi = 0. Here
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(a) Two-Side Black-Box Attack (b) One-Side Black-Box Attack (c) Transparent Attack

Figure 3: Stationary gap of different methods in two-side black-box scenario, one-side black-
box scenario and transparent scenario.

(a) Two-Side Black-Box Attack (b) One-Side Black-Box Attack (c) Transparent Attack

Figure 4: Stationary gap given different combinations of tuning parameters (γ, λ).

we choose θ = (1, 1, · · · , 1) as the ground-truth model parameters, and νi ∈ N (0, 10−3).
For this experiment, we set ε and λreg to 2 and 0.001. We also chose the hyper-parameters
γ, λ, k,m, c1, c2 of our Acc-ZOMDA as 0.2, 0.08, 1, 3, 3, 3.

From Fig. 3(a), we can find that our Acc-ZOMDA algorithm converges fastest and
achieves lowest stationary gap. The Acc-ZOMDA is also robust to different learning rate
pairs of (γ, λ). In Fig. 3(b,c), we show the comparison results for one-side black-box (black-
box w.r.t attacker) poison attack and transparent poison attack. All hyper-parameter
settings are the same as two-side black-box attack. These results demonstrate that our
Acc-Semi-ZOMDA and Acc-MDA algorithms compare favorably with other algorithms.

To better understanding the settings of hyper-parameters, we visualize the stationary
gap given different combinations of (γ, λ). We set γ from 0.04 to 0.036 and λ from 0.02 to
0.18. From Fig. 4, we can see that our method can achieve ideal stationary gap with most
combinations of (γ, λ) across three different scenarios.

9. Conclusions

In the paper, we proposed a class of accelerated zeroth-order and first-order momentum
methods for both nonconvex mini-optimization and minimax-optimization, which build on
the momentum-based variance reduced technique of STORM and momentum update. More-
over, we gave an effective convergence analysis framework for our methods. Specifically, we
proved that our zeroth-order methods can obtain a low query complexity without requir-
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ing any large bathes. Meanwhile, our first-order method also can obtain a low gradient
complexity without requiring any large bathes. In particular, our methods are the first to
extend the STORM algorithm to constrained optimization and minimax optimization.
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Appendix A. Detailed Convergence Analysis

In this section, we provide the detailed convergence analysis of our algorithms. We first
review some useful lemmas.

Lemma 15 (Lin et al., 2019) Under the above Assumptions 5 and 6, the function F (x) =
maxy∈Y f(x, y) has Lg-Lipschitz continuous gradient, such as

‖∇F (x)−∇F (x′)‖ ≤ Lg‖x− x′‖, ∀x, x′ ∈ X (30)

where Lg = Lf +
L2
f

τ .

Lemma 16 (Lin et al., 2019) Under the above Assumptions 5 and 6, the mapping y∗(x) =
arg maxy∈Y f(x, y) is κy-Lipschitz continuous, such as

‖y∗(x)− y∗(x′)‖ ≤ κy‖x− x′‖, ∀x, x′ ∈ X (31)

where κy = Lf/τ denotes the condition number for function f(·, y).

Lemma 17 (Nesterov, 2018) Assume that f(x) is a differentiable convex function and X
is a convex set. x∗ ∈ X is the solution of the constrained problem minx∈X f(x), if

〈∇f(x∗), x− x∗〉 ≥ 0, ∀x ∈ X . (32)

Lemma 18 (Nesterov, 2018) Assume that the function f(x) is L-smooth, i.e., ‖∇f(x) −
∇f(y)‖ ≤ L‖x− y‖, the following inequality satisfies

|f(y)− f(x)−∇f(x)T (y − x)| ≤ L

2
‖x− y‖2. (33)

Lemma 19 (Gao et al., 2018; Ji et al., 2019) Let fµ(x) = Eu∼UB [f(x+ µu)] be a smooth
approximation of function f(x), where UB is the uniform distribution over the d-dimensional

unit Euclidean ball B. Given zeroth-order gradient ∇̂f(x) = f(x+µu)−f(x)
µ/d u, we have

(1) If f(x) has L-Lipschitz continuous gradient (i.e., L-smooth), then fµ(x) has L-Lipschitz
continuous gradient;

(2) |fµ(x)− f(x)| ≤ µ2L
2 and ‖∇fµ(x)−∇f(x)‖ ≤ µLd

2 for any x ∈ Rd;
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(3) E[ 1
|S|
∑

i∈S ∇̂f(x; ξi)] = ∇fµ(x) for any x ∈ Rd;

(4) E‖∇̂f(x; ξ)− ∇̂f(x′; ξ)‖2 ≤ 3dL2‖x− x′‖2 + 3L2d2µ
2 for any x, x′ ∈ Rd.

Lemma 20 For i.i.d. random variables {ξi}ni=1 with zero mean, we have E‖ 1
n

∑n
i=1 ξi‖2 =

1
nE‖ξi‖

2 for any i ∈ [n].

Note that the above results (1)-(2) of Lemma 19 come from Lemma 4.1 in (Gao et al.,
2018), and the above results (3)-(4) come from Lemma 5 in (Ji et al., 2019). In addition,
the result (4) of Lemma 19 is an extended result from Lemma 5 in (Ji et al., 2019).

A.1 Convergence Analysis of Acc-ZOM Algorithm for Constrained
Mini-Optimization

In this subsection, we study the convergence properties of our Acc-ZOM algorithm for solv-
ing the black-box constrained problem (1),i.e., X ⊂ Rd. We first let fµ(x) = Eu∼UB [f(x+
µu)] be a smooth approximation of function f(x), where UB is the uniform distribution
over the d-dimensional unit Euclidean ball B.

Lemma 21 Suppose that the sequence {xt}Tt=1 be generated from Algorithm 1. Let 0 <
ηt ≤ 1 and 0 < γ ≤ 1

2Lηt
, then we have

fµ(xt+1)− fµ(xt) ≤ ηtγ‖∇fµ(xt)− vt‖2 −
ηt
2γ
‖x̃t+1 − xt‖2. (34)

Proof According to Assumption 2 and Lemma 19, the function fµ(x) is L-smooth. Then
we have

fµ(xt+1) ≤ fµ(xt) + 〈∇fµ(xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2 (35)

= fµ(xt) + ηt〈∇fµ(xt), x̃t+1 − xt〉+
Lη2

t

2
‖x̃t+1 − xt‖2

= fµ(xt) + ηt〈∇fµ(xt)− vt, x̃t+1 − xt〉+ ηt〈vt, x̃t+1 − xt〉+
Lη2

t

2
‖x̃t+1 − xt‖2,

where the second equality is due to xt+1 = xt + ηt(x̃t+1 − xt). By the step 8 of Algorithm
1, we have x̃t+1 = PX (xt−γvt) = arg minx∈X

1
2‖x−xt +γvt‖2. Since X is a convex set and

the function 1
2‖x− xt + γvt‖2 is convex, by using Lemma 17, we have

〈x̃t+1 − xt + γvt, x− x̃t+1〉 ≥ 0, ∀x ∈ X . (36)

In Algorithm 1, let the initialize solution x1 ∈ X , and the sequence {xt}t≥1 generates as
follows:

xt+1 = xt + ηt(x̃t+1 − xt) = ηtx̃t+1 + (1− ηt)xt, (37)

where 0 < ηt ≤ 1. Since X is convex set and xt, x̃t+1 ∈ X , we have xt+1 ∈ X for any t ≥ 1.
Set x = xt in the inequality (36), we have

〈vt, x̃t+1 − xt〉 ≤ −
1

γ
‖x̃t+1 − xt‖2. (38)
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By using Cauchy-Schwarz inequality and Young’s inequality, we have

〈∇fµ(xt)− vt, x̃t+1 − xt〉 ≤ ‖∇fµ(xt)− vt‖ · ‖x̃t+1 − xt‖

≤ γ‖∇fµ(xt)− vt‖2 +
1

4γ
‖x̃t+1 − xt‖2. (39)

Combining the inequalities (35), (38) with (39), we obtain

fµ(xt+1)

≤ fµ(xt) + ηt〈∇fµ(xt)− vt, x̃t+1 − xt〉+ ηt〈vt, x̃t+1 − xt〉+
Lη2

t

2
‖x̃t+1 − xt‖2

≤ fµ(xt) + ηtγ‖∇fµ(xt)− vt‖2 +
ηt
4γ
‖x̃t+1 − xt‖2 −

ηt
γ
‖x̃t+1 − xt‖2 +

Lη2
t

2
‖x̃t+1 − xt‖2

= fµ(xt) + ηtγ‖∇fµ(xt)− vt‖2 −
ηt
2γ
‖x̃t+1 − xt‖2 −

( ηt
4γ
− Lη2

t

2

)
‖x̃t+1 − xt‖2

≤ fµ(xt) + ηtγ‖∇fµ(xt)− vt‖2 −
ηt
2γ
‖x̃t+1 − xt‖2, (40)

where the last inequality is due to 0 < γ ≤ 1
2Lηt

.

Lemma 22 Suppose the zeroth-order stochastic gradient {vt} be generated from Algorithm
1, we have

E‖∇fµ(xt+1)− vt+1‖2 ≤ (1− αt+1)2E‖∇fµ(xt)− vt‖2 + 6(1− αt+1)2dL2η2
tE‖x̃t+1 − xt‖2

+ 3(1− αt+1)2L2d2µ2 + 2α2
t+1σ

2. (41)

Proof According to the definition of vt+1 in Algorithm 1, we have

vt+1 − vt = −αt+1vt + (1− αt+1)
(
∇̂f(xt+1; ξt+1)− ∇̂f(xt; ξt+1)

)
+ αt+1∇̂f(xt+1; ξt+1).
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Then we have

E‖∇fµ(xt+1)− vt+1‖2

= E‖∇fµ(xt+1)− vt − (vt+1 − vt)‖2

= E‖∇fµ(xt+1)− vt + αt+1vt − αt+1∇̂f(xt+1; ξt+1)

− (1− αt+1)(∇̂f(xt+1; ξt+1)− ∇̂f(xt; ξt+1))‖2

= E‖(1− αt+1)(∇fµ(xt)− vt) + αt+1

(
∇fµ(xt+1)− ∇̂f(xt+1; ξt+1)

)
+ (1− αt+1)

(
∇fµ(xt+1)−∇fµ(xt)− ∇̂f(xt+1; ξt+1) + ∇̂f(xt; ξt+1)

)
‖2

= (1− αt+1)2E‖∇fµ(xt)− vt‖2 + ‖αt+1

(
∇fµ(xt+1)− ∇̂f(xt+1; ξt+1)

)
+ (1− αt+1)

(
∇fµ(xt+1)−∇fµ(xt)− ∇̂f(xt+1; ξt+1) + ∇̂f(xt; ξt+1)

)
‖2

≤ (1− αt+1)2E‖∇fµ(xt)− vt‖2 + 2(1− αt+1)2E‖∇fµ(xt+1)−∇fµ(xt)− ∇̂f(xt+1; ξt+1)

+ ∇̂f(xt; ξt+1)‖2 + 2α2
t+1E‖∇fµ(xt+1)− ∇̂f(xt+1; ξt+1)‖2

≤ (1− αt+1)2E‖∇fµ(xt)−vt‖2+2(1− αt+1)2E‖∇̂f(xt+1; ξt+1)−∇̂f(xt; ξt+1)‖2+2α2
t+1σ

2

≤ (1− αt+1)2E‖∇fµ(xt)− vt‖2 + 6(1− αt+1)2dL2E‖xt+1 − xt‖2

+ 3(1− αt+1)2L2d2µ2 + 2α2
t+1σ

2

= (1− αt+1)2E‖∇fµ(xt)− vt‖2 + 6(1− αt+1)2dL2η2
tE‖x̃t+1 − xt‖2

+ 3(1− αt+1)2L2d2µ2 + 2α2
t+1σ

2, (42)

where the fourth equality follows by E(u,ξ)[∇̂f(xt+1; ξt+1)] = ∇fµ(xt+1) and

E(u,ξ)[∇̂f(xt+1; ξt+1) − ∇̂f(xt; ξt+1)] = ∇fµ(xt+1) − ∇fµ(xt); the first inequality holds by
Cauchy-Schwarz inequality; the second inequality holds by the equality E‖ζ − E[ζ]‖2 =
E‖ζ‖2−‖E[ζ]‖2 and Assumption 1, and the last inequality holds by Young’s inequality and
Lemma 19.

Theorem 23 (Restatement of Theorem 1) Suppose the sequence {xt}Tt=1 be generated from

Algorithm 1. When X ⊂ Rd, and let ηt = k
(m+t)1/3

for all t ≥ 0, 0 < γ ≤ min
(
m1/3

2Lk ,
1

2
√

6dL

)
,

c ≥ 2
3k3

+ 5
4 , k > 0, m ≥ max

(
2, k3, (ck)3

)
and 0 < µ ≤ 1

d(m+T )2/3
, we have

1

T

T∑
t=1

E‖GX (xt,∇f(xt), γ)‖ ≤ 1

T

T∑
t=1

E
[
‖∇f(xt)− vt‖+

1

γ
‖x̃t+1 − xt‖

]
≤ 2
√

2Mm1/6

T 1/2
+

2
√

2M

T 1/3
+

L

2(m+ T )2/3
, (43)

where M =
fµ(x1)−f∗

kγ + m1/3σ2

k2
+ 9L2

4k2
+ 2k2c2σ2 ln(m+ T ).

Proof Since ηt = k
(m+t)1/3

on t is decreasing and m ≥ k3, we have ηt ≤ η0 = k
m1/3 ≤ 1

and γ ≤ m1/3

2Lk = 1
2Lη0

≤ 1
2Lηt

for any t ≥ 0. Due to 0 < ηt ≤ 1 and m ≥ (ck)3, we have
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αt+1 = cη2
t ≤ cηt ≤ ck

m1/3 ≤ 1. According to Lemma 22, we have

1

ηt
E‖∇fµ(xt+1)− vt+1‖2 −

1

ηt−1
E‖∇fµ(xt)− vt‖2

≤
((1− αt+1)2

ηt
− 1

ηt−1

)
E‖∇fµ(xt)− vt‖2 + 6(1− αt+1)2dL2ηtE‖x̃t+1 − xt‖2

+
3(1− αt+1)2L2d2µ2

ηt
+

2α2
t+1σ

2

ηt

≤
(1−αt+1

ηt
− 1

ηt−1

)
E‖∇fµ(xt)− vt‖2+6dL2ηtE‖x̃t+1 − xt‖2+

3L2d2µ2

ηt
+

2α2
t+1σ

2

ηt

=
( 1

ηt
− 1

ηt−1
− cηt

)
E‖∇fµ(xt)− vt‖2+6dL2ηtE‖x̃t+1 − xt‖2+

3L2d2µ2

ηt
+

2α2
t+1σ

2

ηt
, (44)

where the second inequality is due to 0 < αt+1 ≤ 1. By ηt = k
(m+t)1/3

, we have

1

ηt
− 1

ηt−1
=

1

k

(
(m+ t)

1
3 − (m+ t− 1)

1
3
)

≤ 1

3k(m+ t− 1)2/3
≤ 1

3k
(
m/2 + t

)2/3
≤ 22/3

3k(m+ t)2/3
=

22/3

3k3

k2

(m+ t)2/3
=

22/3

3k3
η2
t ≤

2

3k3
ηt, (45)

where the first inequality holds by the concavity of function f(x) = x1/3, i.e., (x+ y)1/3 ≤
x1/3 + y

3x2/3
; the second inequality is due to m ≥ 2, and the last inequality is due to

0 < ηt ≤ 1. Let c ≥ 2
3k3

+ 5
4 , we have

1

ηt
E‖∇fµ(xt+1)− vt+1‖2 −

1

ηt−1
E‖∇fµ(xt)− vt‖2

≤ −5ηt
4

E‖∇fµ(xt)− vt‖2+6dL2ηtE‖x̃t+1 − xt‖2+
3L2d2µ2

ηt
+

2α2
t+1σ

2

ηt
. (46)

Next, we define a Lyapunov function Rt = E
[
fµ(xt)+ γ

ηt−1
‖∇fµ(xt)−vt‖2

]
for any t ≥ 1.

According to Lemma 21, we have

Rt+1 −Rt = E
[
fµ(xt+1)− fµ(xt)

]
+
γ

ηt
E‖∇fµ(xt+1)− vt+1‖2 −

γ

ηt−1
E‖∇fµ(xt)− vt‖2

≤ ηtγE‖∇fµ(xt)− vt‖2 −
ηt
2γ

E‖x̃t+1 − xt‖2 −
5γηt

4
E‖∇fµ(xt)− vt‖2

+ 6dL2ηtγE‖x̃t+1 − xt‖2 +
3L2d2µ2γ

ηt
+

2α2
t+1σ

2γ

ηt

≤ −γηt
4

E‖∇fµ(xt)− vt‖2 −
ηt
4γ

E‖x̃t+1 − xt‖2 +
3L2d2µ2γ

ηt
+

2α2
t+1σ

2γ

ηt
, (47)

where the last inequality is due to γ ≤ 1
2
√

6dL
. Thus, we obtain

γηt
4

E‖∇fµ(xt)− vt‖2 +
ηt
4γ

E‖x̃t+1 − xt‖2 ≤ Rt −Rt+1 +
3L2d2µ2γ

ηt
+

2α2
t+1σ

2γ

ηt
. (48)
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Since infx∈X f(x) = f∗, we have infx∈X fµ(x) = infx∈X Eu∼UB [f(x+µu)] = infx∈X
1
V

∫
B f(x+

µu)du ≥ 1
V

∫
B infx∈X f(x+ µu)du = f∗, where V denotes the volume of the unit ball B.

Taking average over t = 1, 2, · · · , T on both sides of (48), we have

1

T

T∑
t=1

E
[γηt

4
‖∇fµ(xt)− vt‖2 +

ηt
4γ
‖x̃t+1 − xt‖2

]
≤ fµ(x1)− f∗

T
+
γ‖∇fµ(x1)− v1‖2

Tη0
+

T∑
t=1

3L2d2µ2γ

Tηt
+

T∑
t=1

2α2
t+1σ

2γ

Tηt

≤ fµ(x1)− f∗

T
+
γσ2

Tη0
+

T∑
t=1

3L2d2µ2γ

Tηt
+

T∑
t=1

2α2
t+1σ

2γ

Tηt

=
fµ(x1)− f∗

T
+
γm1/3σ2

kT
+

T∑
t=1

3L2d2µ2γ

Tηt
+

T∑
t=1

2c2η3
t σ

2γ

T
, (49)

where the second inequality is due to v1 = ∇̂f(x1, ξ) and Assumption 1. Since ηt is de-
creasing, i.e., η−1

T ≥ η
−1
t for any 0 < t < T , we have

1

T

T∑
t=1

E
[1
4
‖∇fµ(xt)− vt‖2 +

1

4γ2
‖x̃t+1 − xt‖2

]
≤ fµ(x1)− f∗

TηTγ
+
m1/3σ2

kTηT
+

T∑
t=1

3L2d2µ2

TηtηT
+

T∑
t=1

2c2η3
t σ

2

TηT

≤ fµ(x1)− f∗

TηTγ
+
m1/3σ2

kTηT
+

3L2d2µ2

TηT

∫ T

1

(m+ t)1/3

k
dt+

2c2σ2

TηT

∫ T

1
k3(m+ t)−1dt

≤ fµ(x1)− f∗

TηTγ
+
m1/3σ2

kTηT
+

9L2d2µ2

4kTηT
(m+ T )4/3 +

2k3c2σ2

TηT
ln(m+ T )

=
fµ(x1)− f∗

Tγk
(m+ T )1/3 +

m1/3σ2

k2T
(m+ T )1/3 +

9L2d2µ2

4k2T
(m+ T )5/3

+
2k2c2σ2

T
ln(m+ T )(m+ T )1/3

≤ fµ(x1)− f∗

Tγk
(m+ T )1/3 +

m1/3σ2

k2T
(m+ T )1/3 +

9L2

4k2T
(m+ T )1/3

+
2k2c2σ2

T
ln(m+ T )(m+ T )1/3, (50)

where the second inequality holds by
∑T

t=1
1
ηt
dt ≤

∫ T
1

1
ηt
dt =

∫ T
1

(m+t)1/3

k dt and
∑T

t=1 η
3
t dt ≤∫ T

1 η3
t dt =

∫ T
1 k3(m + t)−1, and the last inequality is due to 0 < µ ≤ 1

d(m+T )2/3
. Let

M =
fµ(x1)−f∗

kγ + m1/3σ2

k2
+ 9L2

4k2
+ 2k2c2σ2 ln(m+ T ), we have

1

T

T∑
t=1

E
[1
4
‖∇fµ(xt)− vt‖2 +

1

4γ2
‖x̃t+1 − xt‖2

]
≤ M

T
(m+ T )1/3. (51)
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According to Jensen’s inequality, we have

1

T

T∑
t=1

E
[1
2
‖∇fµ(xt)− vt‖+

1

2γ
‖x̃t+1 − xt‖

]
≤
( 2

T

T∑
t=1

E
[1
4
‖∇fµ(xt)− vt‖2 +

1

4γ2
‖x̃t+1 − xt‖2

])1/2
≤
√

2M

T 1/2
(m+ T )1/6 ≤

√
2Mm1/6

T 1/2
+

√
2M

T 1/3
, (52)

where the last inequality is due to (a+ b)1/6 ≤ a1/6 + b1/6. Then we have

1

T

T∑
t=1

E
[
‖∇fµ(xt)− vt‖+

1

γ
‖x̃t+1 − xt‖

]
≤ 2
√

2Mm1/6

T 1/2
+

2
√

2M

T 1/3
. (53)

By Lemma 19, we have ‖∇fµ(xt)−vt‖ = ‖∇fµ(xt)−∇f(xt)+∇f(xt)−vt‖ ≥ ‖∇f(xt)−
vt‖ − ‖∇fµ(xt)−∇f(xt)‖ ≥ ‖∇f(xt)− vt‖ − µLd

2 . Thus, we have

1

T

T∑
t=1

E
[
‖∇f(xt)− vt‖+

1

γ
‖x̃t+1 − xt‖

]
≤ 1

T

T∑
t=1

E
[
‖∇fµ(xt)− vt‖+

µLd

2
+

1

γ
‖x̃t+1 − xt‖

]
≤ 2
√

2Mm1/6

T 1/2
+

2
√

2M

T 1/3
+
µLd

2

≤ 2
√

2Mm1/6

T 1/2
+

2
√

2M

T 1/3
+

L

2(m+ T )2/3
, (54)

where the last inequality is due to 0 < µ ≤ 1
d(m+T )2/3

. Then by using the above inequality

(15), we have

1

T

T∑
t=1

E‖GX (xt,∇f(xt), γ)‖ ≤ 1

T

T∑
t=1

E
[
‖∇f(xt)− vt‖+

1

γ
‖x̃t+1 − xt‖

]
≤ 2
√

2Mm1/6

T 1/2
+

2
√

2M

T 1/3
+

L

2(m+ T )2/3
. (55)

A.2 Convergence Analysis of Acc-ZOM Algorithm for Unconstrained
Mini-Optimization

In this subsection, we study the convergence properties of our Acc-ZOM algorithm for
solving the black-box unconstrained problem (1),i.e., X = Rd. The following convergence
analysis builds on the common metric E‖∇f(x)‖ used in (Ji et al., 2019).
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Lemma 24 Suppose the sequence {xt}Tt=1 be generated from Algorithm 1. When X = Rd,
given 0 < γ ≤ 1

2ηtL
, we have

fµ(xt+1) ≤ fµ(xt) +
γηt
2
‖∇fµ(xt)− vt‖2 −

γηt
2
‖∇fµ(xt)‖2 −

γηt
4
‖vt‖2. (56)

Proof According to Assumption 2 and Lemma 19, the approximated function fµ(x) is
L-smooth. Then we have

fµ(xt+1) ≤ fµ(xt)− γηt〈∇fµ(xt), vt〉+
γ2η2

tL

2
‖vt‖2 (57)

= fµ(xt) +
γηt
2
‖∇fµ(xt)− vt‖2 −

γηt
2
‖∇fµ(xt)‖2 + (

γ2η2
tL

2
− γηt

2
)‖vt‖2

≤ fµ(xt) +
γηt
2
‖∇fµ(xt)− vt‖2 −

γηt
2
‖∇fµ(xt)‖2 −

γηt
4
‖vt‖2,

where the last inequality is due to 0 < γ ≤ 1
2ηtL

. Then we have

fµ(xt+1) ≤ fµ(xt) +
γηt
2
‖∇fµ(xt)− vt‖2 −

γηt
2
‖∇fµ(xt)‖2 −

γηt
4
‖vt‖2. (58)

Lemma 25 Suppose the zeroth-order stochastic gradient {vt} be generated from Algorithm
1, we have

E‖∇fµ(xt+1)− vt+1‖2 ≤ (1− αt+1)2E‖∇fµ(xt)− vt‖2 + 6(1− αt+1)2dL2η2
t γ

2E‖vt‖2

+ 3(1− αt+1)2L2d2µ2 + 2α2
t+1σ

2. (59)

Proof The proof is similar to the proof of Lemma 22.

Theorem 26 (Restatement of Theorem 3) Suppose the sequence {xt}Tt=1 be generated from

Algorithm 1. When X = Rd, and let ηt = k
(m+t)1/3

for all t ≥ 0, 0 < γ ≤ min
(
m1/3

2Lk ,
1

2
√

6dL

)
,

c ≥ 2
3k3

+ 5
4 , k > 0, m ≥ max

(
2, k3, (ck)3

)
and 0 < µ ≤ 1

d(m+T )2/3
, we have

1

T

T∑
t=1

E‖∇f(xt)‖ ≤
√

2Mm1/6

T 1/2
+

√
2M

T 1/3
+

L

2(m+ T )2/3
, (60)

where M =
fµ(x1)−f∗

kγ + m1/3σ2

k2
+ 9L2

4k2
+ 2k2c2σ2 ln(m+ T ).

Proof This proof is similar to the proof of Theorem 23. Under the same conditions in
Theorem 23, by using Lemma 25 and let c ≥ 2

3k3
+ 5

4 , we have

1

ηt
E‖∇fµ(xt+1)− vt+1‖2 −

1

ηt−1
E‖∇fµ(xt)− vt‖2

≤ −5ηt
4

E‖∇fµ(xt)− vt‖2 + 6dL2γ2ηtE‖vt‖2 +
3L2d2µ2

ηt
+

2α2
t+1σ

2

ηt
. (61)
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At the same time, we give the Lyapunov function Rt = E
[
fµ(xt) + γ

ηt−1
‖∇fµ(xt)− vt‖2

]
defined in the above Theorem 23. According to Lemma 24, we have

Rt+1 −Rt = E
[
fµ(xt+1)− fµ(xt)

]
+
γ

ηt
E‖∇fµ(xt+1)− vt+1‖2 −

γ

ηt−1
E‖∇fµ(xt)− vt‖2

≤ γηt
2

E‖∇fµ(xt)− vt‖2 −
γηt
2

E‖∇fµ(xt)‖2 −
γηt
4

E‖vt‖2

− 5ηtγ

4
E‖∇fµ(xt)− vt‖2 + 6dL2γ3ηtE‖vt‖2 +

3L2d2µ2γ

ηt
+

2α2
t+1σ

2γ

ηt

≤ −γηt
2

E‖∇fµ(xt)‖2 +
3L2d2µ2γ

ηt
+

2α2
t+1σ

2γ

ηt
−
(γ

4
− 6dL2γ3

)
ηtE‖vt‖2

≤ −γηt
2

E‖∇fµ(xt)‖2 +
3L2d2µ2γ

ηt
+

2α2
t+1σ

2γ

ηt
, (62)

where the last inequality is due to γ ≤ 1
2
√

6dL
. Thus, we can obtain

γηt
2

E‖∇fµ(xt)‖2 ≤ Rt −Rt+1 +
3L2d2µ2γ

ηt
+

2α2
t+1σ

2γ

ηt
. (63)

Since infx∈X f(x) = f∗, we have infx∈X fµ(x) = infx∈X Eu∼UB [f(x+µu)] = infx∈X
1
V

∫
B f(x+

µu)du ≥ 1
V

∫
B infx∈X f(x+ µu)du = f∗, where V denotes the volume of the unit ball B.

Taking average over t = 1, 2, · · · , T on both sides of (63), we have

1

T

T∑
t=1

γηt
2

E‖∇fµ(xt)‖2

≤ fµ(x1)− f∗

T
+
γ‖∇fµ(x1)− v1‖2

Tη0
+

T∑
t=1

3L2d2µ2γ

Tηt
+

T∑
t=1

2α2
t+1σ

2γ

Tηt

≤ fµ(x1)− f∗

T
+
γσ2

Tη0
+

T∑
t=1

3L2d2µ2γ

Tηt
+

T∑
t=1

2α2
t+1σ

2γ

Tηt

=
fµ(x1)− f∗

T
+
γm1/3σ2

kT
+

T∑
t=1

3L2d2µ2γ

Tηt
+

T∑
t=1

2c2η3
t σ

2γ

T
, (64)
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where the second inequality is due to v1 = ∇̂f(x1, ξ) and Assumption 1. Since ηt is de-
creasing, i.e., η−1

T ≥ η
−1
t for any 0 < t < T , we have

1

T

T∑
t=1

1

2
E‖∇fµ(xt)‖2

≤ fµ(x1)− f∗

TηTγ
+
m1/3σ2

kTηT
+

T∑
t=1

3L2d2µ2

TηtηT
+

T∑
t=1

2c2η3
t σ

2

TηT

≤ fµ(x1)− f∗

TηTγ
+
m1/3σ2

kTηT
+

3L2d2µ2

TηT

∫ T

1

(m+ t)1/3

k
dt

+
2c2σ2

TηT

∫ T

1
k3(m+ t)−1dt

≤ fµ(x1)− f∗

TηTγ
+
m1/3σ2

kTηT
+

9L2d2µ2

4kTηT
(m+ T )4/3 +

2k3c2σ2

TηT
ln(m+ T )

=
fµ(x1)− f∗

Tγk
(m+ T )1/3 +

m1/3σ2

k2T
(m+ T )1/3 +

9L2d2µ2

4k2T
(m+ T )5/3

+
2k2c2σ2

T
ln(m+ T )(m+ T )1/3

≤ fµ(x1)− f∗

Tγk
(m+ T )1/3 +

m1/3σ2

k2T
(m+ T )1/3 +

9L2

4k2T
(m+ T )1/3

+
2k2c2σ2

T
ln(m+ T )(m+ T )1/3, (65)

where the second inequality holds by
∑T

t=1
1
ηt
dt ≤

∫ T
1

1
ηt
dt =

∫ T
1

(m+t)1/3

k dt and
∑T

t=1 η
3
t dt ≤∫ T

1 η3
t dt =

∫ T
1 k3(m + t)−1, and the last inequality is due to 0 < µ ≤ 1

d(m+T )2/3
. Let

M =
fµ(x1)−f∗

kγ + m1/3σ2

k2
+ 9L2

4k2
+ 2k2c2σ2 ln(m+ T ), we have

1

T

T∑
t=1

E‖∇fµ(xt)‖2 ≤
2M

T
(m+ T )1/3. (66)

According to Jensen’s inequality, we have

1

T

T∑
t=1

E‖∇fµ(xt)‖ ≤
( 1

T

T∑
t=1

E‖∇fµ(xt)‖2
)1/2

≤
√

2M

T 1/2
(m+ T )1/6 ≤

√
2Mm1/6

T 1/2
+

√
2M

T 1/3
, (67)

where the last inequality is due to (a+ b)1/6 ≤ a1/6 + b1/6.
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By Lemma 19, we have ‖∇fµ(xt)‖ = ‖∇fµ(xt) − ∇f(xt) + ∇f(xt)‖ ≥ ‖∇f(xt)‖ −
‖∇fµ(xt)−∇f(xt)‖ ≥ ‖∇f(xt)‖ − µLd

2 . Thus, we have

1

T

T∑
t=1

E‖∇f(xt)‖ ≤
1

T

T∑
t=1

(
E‖∇fµ(xt)‖+

µLd

2

)
≤
√

2Mm1/6

T 1/2
+

√
2M

T 1/3
+
µLd

2

≤
√

2Mm1/6

T 1/2
+

√
2M

T 1/3
+

L

2(m+ T )2/3
, (68)

where the last inequality is due to 0 < µ ≤ 1
d(m+T )2/3

.

A.3 Convergence Analysis of the Acc-ZOMDA Algorithm for Constrained
Minimax Optimization

In the subsection, we study the convergence properties of our Acc-ZOMDA algorithm for
solving the black-box constrained minimax problem (2), i.e., X ⊂ Rd1 and Y ⊂ Rd2 (or
Y = Rd2), where only the noise function values of f(x, y) can be obtained. The following
convergence analysis builds on a new metric E[Ht], where Ht is defined in (16).

We first let fµ1(x, y) = Eu1∼UB1
[f(x+ µ1u1, y)] and fµ2(x, y) = Eu2∼UB2

[f(x, y+ µ2u2)]
denote the smoothing version of f(x, y) w.r.t. x with parameter µ1 and the smoothing
version of f(x, y) w.r.t. y with parameter µ2, respectively. Here UB1 and UB2 denote the
uniform distributions over the d1-dimensional unit Euclidean ball B1 and d2-dimensional
unit Euclidean ball B2, respectively. At the same time, let Fµ1(x) = Eu1∼UB1

[F (x+ µ1u1)]
denote the smoothing approximation of function F (x) = maxy∈Y f(x, y).

Lemma 27 Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 2. Let 0 < ηt ≤ 1
and 0 < γ ≤ 1

2Lgηt
, we have

Fµ1(xt+1)− Fµ1(xt) ≤ −
ηt
2γ
‖x̃t+1 − xt‖2 + 6ηtγL

2
f‖y∗(xt)− yt‖2 + 2ηtγ‖∇xfµ1(xt, yt)− vt‖2

+ 3ηtγµ
2
1d

2
1L

2
f , (69)

where Lg = Lf + L2
f/τ .

Proof According to the above Lemma 15 and Lemma 19, the function Fµ1(x) is Lg-smooth.
By the Lg-smoothness of Fµ1(x), we have

Fµ1(xt+1) ≤ Fµ1(xt) + 〈∇Fµ1(xt), xt+1 − xt〉+
Lg
2
‖xt+1 − xt‖2 (70)

= Fµ1(xt) + ηt〈∇Fµ1(xt), x̃t+1 − xt〉+
Lgη

2
t

2
‖x̃t+1 − xt‖2

= Fµ1(xt) + ηt〈∇Fµ1(xt)− vt, x̃t+1 − xt〉+ ηt〈vt, x̃t+1 − xt〉+
Lgη

2
t

2
‖x̃t+1 − xt‖2.
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By the step 8 of Algorithm 2, we have x̃t+1 = PX (xt− γvt) = arg minx∈X
1
2‖x− xt + γvt‖2.

Since X is a convex set and the function 1
2‖x − xt + γvt‖2 is convex, according to Lemma

17, we have

〈x̃t+1 − xt + γvt, x− x̃t+1〉 ≥ 0, ∀x ∈ X . (71)

In Algorithm 2, let the initialize solution x1 ∈ X , and the sequence {xt}t≥1 generates as
follows:

xt+1 = xt + ηt(x̃t+1 − xt) = ηtx̃t+1 + (1− ηt)xt, (72)

where 0 < ηt ≤ 1. Since X is convex set and xt, x̃t+1 ∈ X , we have xt+1 ∈ X for any t ≥ 1.
Set x = xt in the inequality (71), we have

〈vt, x̃t+1 − xt〉 ≤ −
1

γ
‖x̃t+1 − xt‖2. (73)

Next, we decompose the term 〈∇Fµ1(xt)− vt, x̃t+1 − xt〉 as follows:

〈∇Fµ1(xt)− vt, x̃t+1 − xt〉
= 〈∇Fµ1(xt)−∇xfµ1(xt, yt), x̃t+1 − xt〉︸ ︷︷ ︸

=T1

+ 〈∇xfµ1(xt, yt)− vt, x̃t+1 − xt〉︸ ︷︷ ︸
=T2

. (74)

For the term T1, by the Cauchy-Schwarz inequality and Young’s inequality, we have

T1 = 〈∇Fµ1(xt)−∇xfµ1(xt, yt), x̃t+1 − xt〉
≤ ‖∇Fµ1(xt)−∇xfµ1(xt, yt)‖ · ‖x̃t+1 − xt‖

≤ 2γ‖∇Fµ1(xt)−∇xfµ1(xt, yt)‖2 +
1

8γ
‖x̃t+1 − xt‖2

= 2γ‖∇xfµ1(xt, y
∗(xt))−∇xfµ1(xt, yt)‖2 +

1

8γ
‖x̃t+1 − xt‖2

= 2γ‖∇xfµ1(xt, y
∗(xt))−∇xf(xt, y

∗(xt)) +∇xf(xt, y
∗(xt))−∇xf(xt, yt)

+∇xf(xt, yt)−∇xfµ1(xt, yt)‖2 +
1

8γ
‖x̃t+1 − xt‖2

≤ 6γ‖∇xfµ1(xt, y
∗(xt))−∇xf(xt, y

∗(xt))‖2 + 6γ‖∇xf(xt, y
∗(xt))−∇xf(xt, yt)‖2

+ 6γ‖∇xf(xt, yt)−∇xfµ1(xt, yt)‖2 +
1

8γ
‖x̃t+1 − xt‖2

≤ 3γµ2
1d

2
1L

2
f + 6γL2

f‖y∗(xt)− yt‖2 +
1

8γ
‖x̃t+1 − xt‖2, (75)

where the last inequality holds by Assumption 5, i.e., implies that the partial gradient
∇xf(x, y) is Lf -Lipschitz continuous and Lemma 19, we have

‖∇xfµ1(xt, y
∗(xt))−∇xf(xt, y

∗(xt))‖ ≤
Lfd1µ1

2
, ‖∇xf(xt, yt)−∇xfµ1(xt, yt)‖ ≤

Lfd1µ1

2
,

and by Assumption 5, we have

‖∇xf(xt, y
∗(xt))−∇xf(xt, yt)‖ ≤ ‖∇f(xt, y

∗(xt))−∇f(xt, yt)‖ ≤ Lf‖yt − y∗(xt)‖.
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For the term T2, by the Cauchy-Schwarz inequality and Young’s inequality, we have

T2 = 〈∇xfµ1(xt, yt)− vt, x̃t+1 − xt〉
≤ ‖∇xfµ1(xt, yt)− vt‖ · ‖x̃t+1 − xt‖

≤ 2γ‖∇xfµ1(xt, yt)− vt‖2 +
1

8γ
‖x̃t+1 − xt‖2, (76)

where the last inequality holds by 〈a, b〉 ≤ λ
2‖a‖

2 + 1
2λ‖b‖

2 with λ = 4γ. Thus, we have

〈∇Fµ1(xt)− vt, x̃t+1 − xt〉 = 3γµ2
1d

2
1L

2
f + 6γL2

f‖y∗(xt)− yt‖2 + 2γ‖∇xfµ1(xt, yt)− vt‖2

+
1

4γ
‖x̃t+1 − xt‖2. (77)

Finally, combining the inequalities (70), (73) with (77), we have

Fµ1(xt+1) ≤ Fµ1(xt) + 3ηtγµ
2
1d

2
1L

2
f + 6ηtγL

2
f‖y∗(xt)− yt‖2 + 2ηtγ‖∇xfµ1(xt, yt)− vt‖2

+
ηt
4γ
‖x̃t+1 − xt‖2 −

ηt
γ
‖x̃t+1 − xt‖2 +

Lgη
2
t

2
‖x̃t+1 − xt‖2

≤ Fµ1(xt) + 3ηtγµ
2
1d

2
1L

2
f + 6ηtγL

2
f‖y∗(xt)− yt‖2 + 2ηtγ‖∇xfµ1(xt, yt)− vt‖2

− ηt
2γ
‖x̃t+1 − xt‖2, (78)

where the last inequality is due to 0 < γ ≤ 1
2Lgηt

.

Lemma 28 Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 2. Under the
above assumptions, and set 0 < ηt ≤ 1 and 0 < λ ≤ 1

6Lf
, we have

‖yt+1 − y∗(xt+1)‖2 ≤ (1− ηtτλ

4
)‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2

+
25ηtλ

6τ
‖∇yf(xt, yt)− wt‖2 +

25κ2
yηt

6τλ
‖xt − x̃t+1‖2, (79)

where κy = Lf/τ .

Proof According to the assumption 6, i.e., the function f(x, y) is τ -strongly concave w.r.t
y, we have

f(xt, y) ≤ f(xt, yt) + 〈∇yf(xt, yt), y − yt〉 −
τ

2
‖y − yt‖2

= f(xt, yt) + 〈wt, y − ỹt+1〉+ 〈∇yf(xt, yt)− wt, y − ỹt+1〉

+ 〈∇yf(xt, yt), ỹt+1 − yt〉 −
τ

2
‖y − yt‖2. (80)

According to the assumption 5, i.e., the function f(x, y) is Lf -smooth, we have

−
Lf
2
‖ỹt+1 − yt‖2 ≤ f(xt, ỹt+1)− f(xt, yt)− 〈∇yf(xt, yt), ỹt+1 − yt〉. (81)
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Combining the inequalities (80) with (81), we have

f(xt, y) ≤ f(xt, ỹt+1) + 〈wt, y − ỹt+1〉+ 〈∇yf(xt, yt)− wt, y − ỹt+1〉

− τ

2
‖y − yt‖2 +

Lf
2
‖ỹt+1 − yt‖2. (82)

Next, by the step 10 of Algorithm 2, we have ỹt+1 = PY(yt + λwt) = arg miny∈Y
1
2‖y −

yt − λwt‖2. Since Y ⊂ Rd2 is a convex set and the function 1
2‖y − yt − λwt‖

2 is convex,
according to Lemma 17, we have

〈ỹt+1 − yt − λwt, y − ỹt+1〉 ≥ 0, ∀y ∈ Y. (83)

When Y = Rd2 , clearly, we still can obtain the above inequality (83). Then we obtain

〈wt, y − ỹt+1〉 ≤
1

λ
〈ỹt+1 − yt, y − ỹt+1〉

=
1

λ
〈ỹt+1 − yt, yt − ỹt+1〉+

1

λ
〈ỹt+1 − yt, y − yt〉

= − 1

λ
‖ỹt+1 − yt‖2 +

1

λ
〈ỹt+1 − yt, y − yt〉. (84)

Combining the inequalities (82) with (84), we have

f(xt, y) ≤ f(xt, ỹt+1) +
1

λ
〈ỹt+1 − yt, y − yt〉+ 〈∇yf(xt, yt)− wt, y − ỹt+1〉

− 1

λ
‖ỹt+1 − yt‖2 −

τ

2
‖y − yt‖2 +

Lf
2
‖ỹt+1 − yt‖2. (85)

Let y = y∗(xt) and we obtain

f(xt, y
∗(xt)) ≤ f(xt, ỹt+1) +

1

λ
〈ỹt+1 − yt, y∗(xt)− yt〉+ 〈∇yf(xt, yt)− wt, y∗(xt)− ỹt+1〉

− 1

λ
‖ỹt+1 − yt‖2 −

τ

2
‖y∗(xt)− yt‖2 +

Lf
2
‖ỹt+1 − yt‖2. (86)

Due to the concavity of f(·, y) and y∗(xt) = arg maxy∈Y f(xt, y), we have f(xt, y
∗(xt)) ≥

f(xt, ỹt+1). Thus, we obtain

0 ≤ 1

λ
〈ỹt+1 − yt, y∗(xt)− yt〉+ 〈∇yf(xt, yt)− wt, y∗(xt)− ỹt+1〉

− (
1

λ
−
Lf
2

)‖ỹt+1 − yt‖2 −
τ

2
‖y∗(xt)− yt‖2. (87)

By yt+1 = yt + ηt(ỹt+1 − yt), we have

‖yt+1 − y∗(xt)‖2 = ‖yt + ηt(ỹt+1 − yt)− y∗(xt)‖2

= ‖yt − y∗(xt)‖2 + 2ηt〈ỹt+1 − yt, yt − y∗(xt)〉+ η2
t ‖ỹt+1 − yt‖2. (88)

Then we obtain

〈ỹt+1 − yt, y∗(xt)− yt〉 ≤
1

2ηt
‖yt − y∗(xt)‖2 +

ηt
2
‖ỹt+1 − yt‖2 −

1

2ηt
‖yt+1 − y∗(xt)‖2. (89)
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Considering the upper bound of the term 〈∇yf(xt, yt)− wt, y∗(xt)− ỹt+1〉, we have

〈∇yf(xt, yt)− wt, y∗(xt)− ỹt+1〉
= 〈∇yf(xt, yt)− wt, y∗(xt)− yt〉+ 〈∇yf(xt, yt)− wt, yt − ỹt+1〉

≤ 1

τ
‖∇yf(xt, yt)− wt‖2 +

τ

4
‖y∗(xt)− yt‖2 +

1

τ
‖∇yf(xt, yt)− wt‖2 +

τ

4
‖yt − ỹt+1‖2

=
2

τ
‖∇yf(xt, yt)− wt‖2 +

τ

4
‖y∗(xt)− yt‖2 +

τ

4
‖yt − ỹt+1‖2. (90)

Next, combining the inequalities (87), (89) with (90), we have

1

2ηtλ
‖yt+1 − y∗(xt)‖2

≤ (
1

2ηtλ
− τ

4
)‖yt − y∗(xt)‖2 + (

ηt
2λ

+
τ

4
+
Lf
2
− 1

λ
)‖ỹt+1 − yt‖2

+
2

τ
‖∇yf(xt, yt)− wt‖2

≤ (
1

2ηtλ
− τ

4
)‖yt − y∗(xt)‖2 + (

3Lf
4
− 1

2λ
)‖ỹt+1 − yt‖2 +

2

τ
‖∇yf(xt, yt)− wt‖2

= (
1

2ηtλ
− τ

4
)‖yt − y∗(xt)‖2 −

( 3

8λ
+

1

8λ
−

3Lf
4

)
‖ỹt+1 − yt‖2

+
2

τ
‖∇yf(xt, yt)− wt‖2

≤ (
1

2ηtλ
− τ

4
)‖yt − y∗(xt)‖2 −

3

8λ
‖ỹt+1 − yt‖2 +

2

τ
‖∇yf(xt, yt)− wt‖2, (91)

where the second inequality holds by Lf ≥ τ and 0 < ηt ≤ 1, and the last inequality is due
to 0 < λ ≤ 1

6Lf
. It implies that

‖yt+1 − y∗(xt)‖2 ≤ (1− ηtτλ

2
)‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2 +

4ηtλ

τ
‖∇yf(xt, yt)− wt‖2.

(92)

Next, we decompose the term ‖yt+1 − y∗(xt+1)‖2 as follows:

‖yt+1 − y∗(xt+1)‖2

= ‖yt+1 − y∗(xt) + y∗(xt)− y∗(xt+1)‖2

= ‖yt+1 − y∗(xt)‖2 + 2〈yt+1 − y∗(xt), y∗(xt)− y∗(xt+1)〉+ ‖y∗(xt)− y∗(xt+1)‖2

≤ (1 +
ηtτλ

4
)‖yt+1 − y∗(xt)‖2 + (1 +

4

ηtτλ
)‖y∗(xt)− y∗(xt+1)‖2

≤ (1 +
ηtτλ

4
)‖yt+1 − y∗(xt)‖2 + (1 +

4

ηtτλ
)κ2
y‖xt − xt+1‖2

= (1 +
ηtτλ

4
)‖yt+1 − y∗(xt)‖2 + (1 +

4

ηtτλ
)κ2
yη

2
t ‖xt − x̃t+1‖2, (93)

where the first inequality holds by the Cauchy-Schwarz inequality and Young’s inequality,
and the second inequality is due to Lemma 16, and the last equality holds by xt+1 =
xt + ηt(x̃t+1 − xt).
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Combining the above inequalities (92) and (93), we have

‖yt+1 − y∗(xt+1)‖2 ≤ (1 +
ηtτλ

4
)(1− ηtτλ

2
)‖yt − y∗(xt)‖2 − (1 +

ηtτλ

4
)
3ηt
4
‖ỹt+1 − yt‖2

+ (1 +
ηtτλ

4
)
4ηtλ

τ
‖∇yf(xt, yt)− wt‖2 + (1 +

4

ηtτλ
)κ2
yη

2
t ‖xt − x̃t+1‖2.

(94)

Since 0 < ηt ≤ 1, 0 < λ ≤ 1
6Lf

and Lf ≥ τ , we have λ ≤ 1
6Lf
≤ 1

6τ and ληt ≤ 1
6τ . Then we

obtain

(1 +
ηtτλ

4
)(1− ηtτλ

2
) = 1− ηtτλ

2
+
ηtτλ

4
− η2

t τ
2λ2

8
≤ 1− ηtτλ

4
,

−(1 +
ηtτλ

4
)
3ηt
4
≤ −3ηt

4
,

(1 +
ηtτλ

4
)
4ηtλ

τ
≤ (1 +

1

24
)
4ηtλ

τ
=

25ηtλ

6τ
,

(1 +
4

ηtτλ
)κ2
yη

2
t = κ2

yη
2
t +

4κ2
yηt

τλ
≤
κ2
yηt

6τλ
+

4κ2
yηt

τλ
=

25κ2
yηt

6τλ
. (95)

Thus, we have

‖yt+1 − y∗(xt+1)‖2 ≤ (1− ηtτλ

4
)‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2

+
25ηtλ

6τ
‖∇yf(xt, yt)− wt‖2 +

25κ2
yηt

6τλ
‖xt − x̃t+1‖2. (96)

Lemma 29 Suppose the zeroth-order stochastic gradients {vt, wt}Tt=1 be generated from Al-
gorithm 2, we have

E‖∇xfµ1(xt+1, yt+1)− vt+1‖2

≤ (1− αt+1)2E‖∇xfµ1(xt, yt)− vt‖2 +
3(1− αt+1)2L2

fµ
2
1d

2
1

b

+
6d1L

2
f (1− αt+1)2η2

t

b
E
(
‖x̃t+1 − xt‖2 + ‖ỹt+1 − yt‖2

)
+

2α2
t+1δ

2

b
. (97)

E‖∇yfµ2(xt+1, yt+1)− wt+1‖2

≤ (1− βt+1)2E‖∇yfµ2(xt, yt)− wt‖2 +
3(1− βt+1)2L2

fµ
2
2d

2
2

b

+
6d2L

2
f (1− βt+1)2η2

t

b
E
(
‖x̃t+1 − xt‖2 + ‖ỹt+1 − yt‖2

)
+

2β2
t+1δ

2

b
. (98)
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Proof We first prove the inequality (97). According to the definition of vt+1 in Algorithm
2, we have

vt+1 − vt = −αt+1vt + (1− αt+1)
(
∇̂xf(xt+1, yt+1;Bt+1)− ∇̂xf(xt, yt;Bt+1)

)
+ αt+1∇̂xf(xt+1, yt+1;Bt+1). (99)

Then we have

E‖∇xfµ1(xt+1, yt+1)− vt+1‖2

= E‖∇xfµ1(xt+1, yt+1)− vt − (vt+1 − vt)‖2

= E‖∇xfµ1(xt+1, yt+1)− vt + αt+1vt − αt+1∇̂xf(xt+1, yt+1;Bt+1)

− (1− αt+1)
(
∇̂xf(xt+1, yt+1;Bt+1)− ∇̂xf(xt, yt;Bt+1)

)
‖2

= E‖(1− αt+1)(∇xfµ1(xt, yt)− vt) + αt+1

(
∇xfµ1(xt+1, yt+1)− ∇̂xf(xt+1, yt+1;Bt+1)

)
+ (1−αt+1)

(
∇xfµ1(xt+1, yt+1)−∇xfµ1(xt, yt)−∇̂xf(xt+1, yt+1;Bt+1)+∇̂xf(xt, yt;Bt+1)

)
‖2

= (1− αt+1)2E‖∇xfµ1(xt, yt)− vt‖2 + E‖αt+1

(
∇xfµ1(xt+1, yt+1)− ∇̂xf(xt+1, yt+1;Bt+1)

)
+ (1−αt+1)

(
∇xfµ1(xt+1, yt+1)−∇xfµ1(xt, yt)−∇̂xf(xt+1, yt+1;Bt+1)+∇̂xf(xt, yt;Bt+1)

)
‖2

≤ (1− αt+1)2E‖∇xfµ1(xt, yt)− vt‖2 +
2α2

t+1

b
E‖∇xfµ1(xt+1, yt+1)− ∇̂xf(xt+1, yt+1; ξt1)‖2

+
2(1− αt+1)2

b
E‖∇xfµ1(xt+1, yt+1)−∇xfµ1(xt, yt)−∇̂xf(xt+1, yt+1; ξt1)+∇̂xf(xt, yt; ξ

t
1)‖2

≤ (1− αt+1)2E‖∇xfµ1(xt, yt)− vt‖2 +
2α2

t+1δ
2

b

+
2(1− αt+1)2

b
E‖∇̂xf(xt+1, yt+1; ξt1)− ∇̂xf(xt, yt; ξ

t
1)‖2︸ ︷︷ ︸

=T1

, (100)

where the fourth equality follows by E(Û ,Bt+1)[∇̂xf(xt+1, yt+1;Bt+1)] = ∇xfµ1(xt+1, yt+1)

and E(Û ,Bt+1)[∇̂xf(xt+1, yt+1;Bt+1)−∇̂xf(xt, yt;Bt+1)] = ∇xfµ1(xt+1, yt+1)−∇xfµ1(xt, yt);
the first inequality holds by Young’s inequality and the above lemma 20; the last inequality
is due to the equality E‖ζ − E[ζ]‖2 = E‖ζ‖2 − ‖E[ζ]‖2 and Assumption 4.
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Next, we consider the upper bound of the above term T1 as follows:

T1 = E
∥∥∇̂xf(xt+1, yt+1; ξt1)− ∇̂xf(xt, yt; ξ

t
1)
∥∥2

(101)

= E
∥∥d1(f(xt+1 + µ1u1, yt+1; ξt1)− f(xt+1, yt+1; ξt1))

µ1
u1

− d1(f(xt + µ1u1, yt; ξ
t
1)− f(xt, yt; ξ

t
1))

µ1
u1

∥∥2

= d2
1E
∥∥f(xt+1 + µ1u1, yt+1; ξt1)− f(xt+1, yt+1; ξt1)−

〈
∇xf(xt+1, yt+1; ξt1), µ1u1

〉
µ1

u1

+
(〈
∇xf(xt+1, yt+1; ξt1), u1

〉
−
〈
∇xf(xt, yt; ξ

t
1), u1

〉)
u1

−
f(xt + µ1u1, yt; ξ

t
1)− f(xt, yt; ξ

t
1)−

〈
∇xf(xt, yt; ξ

t
1), µ1u1

〉
µ1

u1

∥∥2

≤
3L2

fµ
2
1d

2
1

2
+ 3d2

1E
∥∥〈∇xf(xt+1, yt+1; ξt1)−∇xf(xt, yt; ξ

t
1), u1

〉
u1

∥∥2

=
3L2

fµ
2
1d

2
1

2
+ 3d2

1E
〈
∇xf(xt+1, yt+1; ξt1)−∇xf(xt, yt; ξ

t
1), u1

〉2

=
3L2

fµ
2
1d

2
1

2
+ 3d2

1E
[(
∇xf(xt+1, yt+1; ξt1)−∇xf(xt, yt; ξ

t
1)
)T

(u1u
T
1 )

·
(
∇xf(xt+1, yt+1; ξt1)−∇xf(xt, yt; ξ

t
1)
)]
,

where the above inequality is due to Young’s inequality and Assumption 5, i.e., f(x, y; ξ) is
Lf -smooth w.r.t x, so we have f(xt+1+µ1u1, yt+1; ξt1)−f(xt+1, yt+1; ξt1)−

〈
∇xf(xt+1, yt+1; ξt1)

, µ1u1

〉
≤ Lf

2 ‖µ1u1‖2 and f(xt + µ1u1, yt; ξ
t
1) − f(xt, yt; ξ

t
1) −

〈
∇xf(xt, yt; ξ

t
1), µ1u1

〉
≤

Lf
2 ‖µ1u1‖2, and the forth equality holds by ‖u1‖ = 1.

Following the proof of Lemma 5 in (Ji et al., 2019), we have uT1 u1 = 1
d1
Id1 . Thus, we

have

T1 ≤
3L2

fµ
2
1d

2
1

2
+ 3d1E‖∇xf(xt+1, yt+1; ξt1)−∇xf(xt, yt; ξ

t
1)‖2

≤
3L2

fµ
2
1d

2
1

2
+ 3d1L

2
fE
(
‖xt+1 − xt‖2 + ‖yt+1 − yt‖2

)
=

3L2
fµ

2
1d

2
1

2
+ 3d1L

2
fη

2
tE
(
‖x̃t+1 − xt‖2 + ‖ỹt+1 − yt‖2

)
, (102)

where the last inequality holds by Assumption 5. Plugging the above inequality (102) into
(100), we obtain

E‖∇xfµ1(xt+1, yt+1)− vt+1‖2

≤ (1− αt+1)2E‖∇xfµ1(xt, yt)− vt‖2 +
3(1− αt+1)2L2

fµ
2
1d

2
1

b

+
6d1L

2
f (1− αt+1)2η2

t

b
E
(
‖x̃t+1 − xt‖2 + ‖ỹt+1 − yt‖2

)
+

2α2
t+1δ

2

b
.
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We apply a similar analysis to prove the above inequality (98). We obtain

E‖∇yfµ2(xt+1, yt+1)− wt+1‖2

≤ (1− βt+1)2E‖∇yfµ2(xt, yt)− wt‖2 +
3(1− βt+1)2L2

fµ
2
2d

2
2

b

+
6d2L

2
f (1− βt+1)2η2

t

b
E
(
‖x̃t+1 − xt‖2 + ‖ỹt+1 − yt‖2

)
+

2β2
t+1δ

2

b
.

Theorem 30 (Restatement of Theorem 5) Suppose the sequence {xt, yt}Tt=1 be generated

from Algorithm 2. When X ⊂ Rd1, and let ηt = k
(m+t)1/3

for all t ≥ 0, c1 ≥ 2
3k3

+ 9τ2

4 and

c2 ≥ 2
3k3

+
625d̃L2

f

3b , k > 0, 1 ≤ b ≤ d̃, m ≥ max
(
2, k3, (c1k)3, (c2k)3

)
, 0 < λ ≤ min

(
1

6Lf
, 75τ

24

)
,

0 < γ ≤ min
(
λτ

2Lf

√
6b/d̃

36λ2+625κ2y
, m

1/3

2Lgk

)
, 0 < µ1 ≤ 1

d1(m+T )2/3
and 0 < µ2 ≤ 1

d̃1/2d2(m+T )2/3
, we

have

1

T

T∑
t=1

E‖GX (xt,∇F (xt), γ)‖≤ 1

T

T∑
t=1

E
[
Lf‖y∗(xt)− yt‖+‖∇xf(xt, yt)− vt‖+

1

γ
‖x̃t+1 − xt‖

]
≤ 2
√

3M ′m1/6

T 1/2
+

2
√

3M ′

T 1/3
+

Lf

2(m+ T )2/3
, (103)

where ∆1 = ‖y1 − y∗(x1)‖2 and M ′ =
Fµ1 (x1)−F ∗

γk +
25d̃L2

f

kλτb ∆1 + 2m1/3δ2

bτ2k2
+

36τ2L2
f+625L4

f

8bτ2
(m+

T )−2/3 +
9L2

f

4bτ2k2
+

2(c21+c22)δ2k2

bτ2
ln(m+ T ).

Proof Since ηt = k
(m+t)1/3

on t is decreasing and m ≥ k3, we have ηt ≤ η0 = k
m1/3 ≤ 1 and

γ ≤ m1/3

2Lgk
= 1

2Lgη0
≤ 1

2Lgηt
for any t ≥ 0. Due to 0 < ηt ≤ 1 and m ≥ max

(
(c1k)3, (c2k)3

)
,

we have αt+1 = c1η
2
t ≤ c1ηt ≤ c1k

m1/3 ≤ 1 and βt+1 = c2η
2
t ≤ c2ηt ≤ c2k

m1/3 ≤ 1. According to
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Lemma 29, we have

1

ηt
E‖∇xfµ1(xt+1, yt+1)− vt+1‖2 −

1

ηt−1
E‖∇xfµ1(xt, yt)− vt‖2 (104)

≤
((1− αt+1)2

ηt
− 1

ηt−1

)
E‖∇xfµ1(xt, yt)− vt‖2 +

3(1− αt+1)2L2
fµ

2
1d

2
1

bηt
+

2α2
t+1δ

2

bηt

+
6d1L

2
f (1− αt+1)2ηt

b
E
(
‖x̃t+1 − xt‖2 + ‖ỹt+1 − yt‖2

)
≤
(1−αt+1

ηt
− 1

ηt−1

)
E‖∇xfµ1(xt, yt)− vt‖2+

6d1L
2
fηt

b
E
(
‖x̃t+1 − xt‖2 + ‖ỹt+1 − yt‖2

)
+

3L2
fµ

2
1d

2
1

bηt
+

2α2
t+1δ

2

bηt

=
( 1

ηt
− 1

ηt−1
− c1ηt

)
E‖∇xfµ1(xt, yt)− vt‖2+

6d1L
2
fηt

b
E
(
‖x̃t+1−xt‖2 + ‖ỹt+1−yt‖2

)
+

3L2
fµ

2
1d

2
1

bηt
+

2α2
t+1δ

2

bηt
,

where the second inequality is due to 0 < αt+1 ≤ 1. By a similar way, we obtain

1

ηt
E‖∇yfµ2(xt+1, yt+1)− wt+1‖2 −

1

ηt−1
E‖∇yfµ2(xt, yt)− wt‖2 (105)

≤
( 1

ηt
− 1

ηt−1
− c2ηt

)
E‖∇yfµ2(xt, yt)− wt‖2+

6d2L
2
fηt

b
E
(
‖x̃t+1 − xt‖2 + ‖ỹt+1 − yt‖2

)
+

3L2
fµ

2
2d

2
2

bηt
+

2β2
t+1δ

2

bηt
.

By ηt = k
(m+t)1/3

, we have

1

ηt
− 1

ηt−1
=

1

k

(
(m+ t)

1
3 − (m+ t− 1)

1
3
)

≤ 1

3k(m+ t− 1)2/3
≤ 1

3k
(
m/2 + t

)2/3
≤ 22/3

3k(m+ t)2/3
=

22/3

3k3

k2

(m/2 + t)2/3
=

22/3

3k3
η2
t ≤

2

3k3
ηt, (106)

where the first inequality holds by the concavity of function f(x) = x1/3, i.e., (x+ y)1/3 ≤
x1/3 + y

3x2/3
; the second inequality is due to m ≥ 2, and the last inequality is due to

0 < ηt ≤ 1. Let c1 ≥ 2
3k3

+ 9τ2

4 , we have

1

ηt
E‖∇xfµ1(xt+1, yt+1)− vt+1‖2 −

1

ηt−1
E‖∇xfµ1(xt, yt)− vt‖2 (107)

≤ −9τ2

4
ηtE‖∇xfµ1(xt, yt)− vt‖2 +

6d1L
2
fηt

b
E
(
‖x̃t+1 − xt‖2 + ‖ỹt+1 − yt‖2

)
+

3L2
fµ

2
1d

2
1

bηt
+

2α2
t+1δ

2

bηt
.
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Let c2 ≥ 2
3k3

+
625d̃L2

f

3b with d̃ = d1 + d2, we have

1

ηt
E‖∇yfµ2(xt+1, yt+1)− wt+1‖2 −

1

ηt−1
E‖∇yfµ2(xt, yt)− wt‖2 (108)

≤ −
625d̃L2

f

3b
ηtE‖∇yfµ2(xt, yt)− wt‖2 +

6d2L
2
fηt

b
E
(
‖x̃t+1 − xt‖2 + ‖ỹt+1 − yt‖2

)
+

3L2
fµ

2
2d

2
2

bηt
+

2β2
t+1δ

2

bηt
.

According to Lemma 28, we have

‖yt+1 − y∗(xt+1)‖2

≤ (1− ηtτλ

4
)‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2 +

25ηtλ

6τ
‖∇yf(xt, yt)− wt‖2

+
25κ2

yηt

6τλ
‖xt − x̃t+1‖2

= (1− ηtτλ

4
)‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2 +

25κ2
yηt

6τλ
‖xt − x̃t+1‖2

+
25ηtλ

6τ
‖∇yf(xt, yt)−∇yfµ2(xt, yt) +∇yfµ2(xt, yt)− wt‖2

≤ (1− ηtτλ

4
)‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2 +

25κ2
yηt

6τλ
‖xt − x̃t+1‖2

+
25λµ2

2L
2
fd

2
2ηt

12τ
+

25ηtλ

3τ
‖∇yfµ2(xt, yt)− wt‖2,

where the last inequality is due to Young’s inequality and Lemma 19. Thus, we have

‖yt+1 − y∗(xt+1)‖2 − ‖yt − y∗(xt)‖2

≤ −ηtτλ
4
‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2 +

25κ2
yηt

6τλ
‖xt − x̃t+1‖2

+
25λµ2

2L
2
fd

2
2ηt

12τ
+

25ηtλ

3τ
‖∇yfµ2(xt, yt)− wt‖2. (109)

Next, we define a Lyapunov function (i.e., potential function) Φt, for any t ≥ 1

Φt = E
[
Fµ1(xt) +

25γd̃L2
f

λτb
‖yt − y∗(xt)‖2 +

γ

τ2ηt−1
‖∇xfµ1(xt, yt)− vt‖2

+
γ

τ2ηt−1
‖∇yfµ2(xt, yt)− wt‖2

]
.
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By using Lemma 27, we have

Φt+1 − Φt

= E
[
Fµ1(xt+1)− Fµ1(xt)

]
+

25d̃L2
fγ

λτ

(
E‖yt+1 − y∗(xt+1)‖2 − E‖yt − y∗(xt)‖2

)
+

γ

τ2

( 1

ηt
E‖∇xfµ1(xt+1, yt+1)− vt+1‖2 −

1

ηt−1
E‖∇xfµ1(xt, yt)− vt‖2

)
+

γ

τ2

( 1

ηt
E‖∇yfµ2(xt+1, yt+1)− wt+1‖2 −

1

ηt−1
E‖∇yfµ2(xt, yt)− wt‖2

)
≤ − ηt

2γ
E‖x̃t+1 − xt‖2 + 6ηtγL

2
fE‖y∗(xt)− yt‖2 + 2ηtγE‖∇xfµ1(xt, yt)− vt‖2 + 3ηtγµ

2
1d

2
1L

2
f

+
25d̃L2

fγ

bλτ

(
− ηtτλ

4
E‖yt−y∗(xt)‖2−

3ηt
4

E‖ỹt+1−yt‖2+
25ηtλ

3τ
E‖∇yfµ2(xt, yt)−wt‖2

+
25λµ2

2L
2
fd

2
2ηt

12τ
+

25κ2
yηt

6τλ
E‖xt − x̃t+1‖2

)
− 9γηt

4
E‖∇xfµ1(xt, yt)− vt‖2

+
6d1L

2
fηtγ

bτ2

(
E‖x̃t+1 − xt‖2 + E‖ỹt+1 − yt‖2

)
+

6d2L
2
fηtγ

bτ2

(
E‖x̃t+1 − xt‖2 + E‖ỹt+1 − yt‖2

)
−

625d̃L2
fγηt

3bτ2
E‖∇yfµ2(xt, yt)− wt‖2 +

3L2
fµ

2
1d

2
1γ

bηtτ2
+

2α2
t+1δ

2γ

bηtτ2
+

3L2
fµ

2
2d

2
2γ

bηtτ2
+

2β2
t+1δ

2γ

bηtτ2

≤ −
γL2

fηt

4
E‖y∗(xt)− yt‖2−

γηt
4

E‖∇xfµ1(xt, yt)− vt‖2+3µ2
1d

2
1L

2
fηtγ+

625d̃d2
2L

4
fµ

2
2ηtγ

12bτ2

+
3L2

fµ
2
1d

2
1γ

bηtτ2
+

2α2
t+1δ

2γ

bηtτ2
+

3L2
fµ

2
2d

2
2γ

bηtτ2
+

2β2
t+1δ

2γ

bηtτ2

−
(75d̃L2

fγ

4bλτ
−

6d̃L2
fγ

bτ2

)
ηtE‖ỹt+1 − yt‖2 −

( 1

2γ
−

6d̃L2
fγ

bτ2
−

625d̃L2
fκ

2
yγ

6bλ2τ2

)
ηtE‖x̃t+1 − xt‖2

≤ −
γL2

fηt

4
E‖y∗(xt)− yt‖2 −

γηt
4

E‖∇xfµ1(xt, yt)− vt‖2 −
ηt
4γ

E‖x̃t+1 − xt‖2 + 3µ2
1d

2
1L

2
fηtγ

+
625d̃d2

2L
4
fµ

2
2ηtγ

12bτ2
+

3L2
fµ

2
1d

2
1γ

bηtτ2
+

2α2
t+1δ

2γ

bηtτ2
+

3L2
fµ

2
2d

2
2γ

bηtτ2
+

2β2
t+1δ

2γ

bηtτ2
, (110)

where the first inequality holds by combining the above inequalities (107), (108) and (109),
and the second inequality is due to 1 ≤ b ≤ d̃ and the last inequality is due to 0 < γ ≤
λτ2

2Lf

√
6b/d̃

36λ2+625κ2y
and λ ≤ 75τ

24 . Thus, we have

L2
fηt

4
E‖y∗(xt)− yt‖2 +

ηt
4
E‖∇xfµ1(xt, yt)− vt‖2 +

ηt
4γ2

E‖x̃t+1 − xt‖2 (111)

≤ Φt − Φt+1

γ
+ 3µ2

1d
2
1L

2
fηt +

625d̃d2
2L

4
fµ

2
2ηt

12bτ2
+

3L2
fµ

2
1d

2
1

bηtτ2
+

2α2
t+1δ

2

bηtτ2
+

3L2
fµ

2
2d

2
2

bηtτ2
+

2β2
t+1δ

2

bηtτ2
.

Since infx∈X F (x) = F ∗, we have infx∈X Fµ1(x) = infx∈X Eu1∼UB [F (x+µ1u1)] = infx∈X
1
V

∫
B

F (x+ µ1u1)du1 ≥ 1
V

∫
B infx∈X F (x+ µ1u1)du1 = F ∗, where V denotes volume of the unit

ball B.
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Taking average over t = 1, 2, · · · , T on both sides of (111), we have:

1

T

T∑
t=1

(L2
fηt

4
E‖y∗(xt)− yt‖2 +

ηt
4
E‖∇xfµ1(xt, yt)− vt‖2 +

ηt
4γ2

E‖x̃t+1 − xt‖2
)

≤
T∑
t=1

Φt − Φt+1

Tγ
+

1

T

T∑
t=1

(
3µ2

1d
2
1L

2
fηt +

625d̃d2
2L

4
fµ

2
2ηt

12bτ2
+

3L2
fµ

2
1d

2
1

bηtτ2

+
2α2

t+1δ
2

bηtτ2
+

3L2
fµ

2
2d

2
2

bηtτ2
+

2β2
t+1δ

2

bηtτ2

)
.

Let ∆1 = ‖y1 − y∗(x1)‖2, we have

Φ1 = Fµ1(x1) +
25γd̃L2

f

λτb
‖y1 − y∗(x1)‖2 +

γ

η0τ2
E‖∇xfµ1(x1, y1)− v1‖2

+
γ

η0τ2
E‖∇yfµ2(x1, y1)− w1‖2

= Fµ1(x1) +
25γd̃L2

f

λτb
‖y1 − y∗(x1)‖2 +

γ

η0τ2
E‖∇xfµ1(x1, y1)− ∇̂xf(x1, y1;B1)‖2

+
γ

η0τ2
E‖∇yfµ2(x1, y1)− ∇̂yf(x1, y1;B1)‖2

≤ Fµ1(x1) +
25γd̃L2

f

λτb
∆1 +

2γδ2

bη0τ2
, (112)
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where the last inequality holds by Assumption 4. Since ηt is decreasing, i.e., η−1
T ≥ η

−1
t for

any 0 ≤ t ≤ T , we have

1

T

T∑
t=1

(L2
f

4
E‖y∗(xt)− yt‖2 +

1

4
E‖∇xfµ1(xt, yt)− vt‖2 +

1

4γ2
E‖x̃t+1 − xt‖2

)
≤ 1

TγηT

T∑
t=1

(
Φt − Φt+1

)
+

1

TηT

T∑
t=1

(
3µ2

1d
2
1L

2
fηt +

625d̃d2
2L

4
fµ

2
2ηt

12bτ2
+

3L2
fµ

2
1d

2
1

bηtτ2
+

2α2
t+1δ

2

bηtτ2

+
3L2

fµ
2
2d

2
2

bηtτ2
+

2β2
t+1δ

2

bηtτ2

)
≤ 1

TγηT

(
Fµ1(x1)− F ∗ +

25γd̃L2
f

λτb
∆1 +

2δ2γ

bτ2η0

)
+

1

TηT

T∑
t=1

(
3µ2

1d
2
1L

2
fηt +

625d̃d2
2L

4
fµ

2
2ηt

12bτ2

+
3L2

fµ
2
1d

2
1

bηtτ2
+

2α2
t+1δ

2

bηtτ2
+

3L2
fµ

2
2d

2
2

bηtτ2
+

2β2
t+1δ

2

bηtτ2

)
=
Fµ1(x1)− F ∗

TγηT
+

25d̃L2
f

TηTλτb
∆1 +

2δ2

Tbτ2ηT η0
+

36τ2µ2
1d

2
1L

2
f + 625d̃d2

2L
4
fµ

2
2

12bτ2TηT

T∑
t=1

ηt

+
3L2

f

(
µ2

1d
2
1 + µ2

2d
2
2

)
Tbτ2ηT

T∑
t=1

1

ηt
+

2(c2
1 + c2

2)δ2

Tbτ2ηT

T∑
t=1

η3
t

≤ Fµ1(x1)− F ∗

TγηT
+

25d̃L2
f

TηTλτb
∆1 +

2δ2

Tbτ2ηT η0
+

36τ2µ2
1d

2
1L

2
f + 625d̃d2

2L
4
fµ

2
2

12bτ2TηT

∫ T

1

k

(m+ t)1/3
dt

+
3L2

f

(
µ2

1d
2
1 + µ2

2d
2
2

)
Tbτ2ηT

∫ T

1

(m+ t)1/3

k
dt+

2(c2
1 + c2

2)δ2

Tbτ2ηT

∫ T

1

k3

m+ t
dt

≤ Fµ1(x1)− F ∗

TγηT
+

25d̃L2
f

TηTλτb
∆1 +

2δ2

Tbτ2ηT η0
+

36τ2µ2
1d

2
1L

2
fk + 625d̃d2

2L
4
fµ

2
2k

8bτ2TηT
(m+ T )2/3

+
9L2

f

(
µ2

1d
2
1 + µ2

2d
2
2

)
4Tbτ2ηTk

(m+ T )4/3 +
2(c2

1 + c2
2)δ2k3

Tbτ2ηT
ln(m+ T )

≤ Fµ1(x1)− F ∗

TγηT
+

25d̃L2
f

TηTλτb
∆1 +

2δ2

Tbτ2ηT η0
+

36τ2L2
fk + 625L4

fk

8bτ2TηT
(m+ T )−2/3 +

9L2
f

4Tbτ2ηTk

+
2(c2

1 + c2
2)δ2k3

Tbτ2ηT
ln(m+ T )

=
(Fµ1(x1)− F ∗

Tγk
+

25d̃L2
f

Tkλτb
∆1 +

2m1/3δ2

Tbτ2k2

)
(m+ T )1/3 +

36τ2L2
f + 625L4

f

8bτ2T
(m+ T )−1/3

+
9L2

f

4Tbτ2k2
(m+ T )1/3 +

2(c2
1 + c2

2)δ2k2

Tbτ2
ln(m+ T )(m+ T )1/3, (113)

where the second inequality holds by the above inequality (112), and the last inequality is

due to 0 < µ1 ≤ 1
d1(m+T )2/3

and 0 < µ2 ≤ 1
d̃1/2d2(m+T )2/3

. Let M ′ =
Fµ1 (x1)−F ∗

γk +
25d̃L2

f

kλτb ∆1 +
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2m1/3δ2

bτ2k2
+

36τ2L2
f+625L4

f

8bτ2
(m+ T )−2/3 +

9L2
f

4bτ2k2
+

2(c21+c22)δ2k2

bτ2
ln(m+ T ), we have

1

T

T∑
t=1

(L2
f

4
E‖y∗(xt)−yt‖2+

1

4
E‖∇xfµ1(xt, yt)−vt‖2+

1

4γ2
E‖x̃t+1−xt‖2

)
≤ M ′

T
(m+ T )1/3.

(114)

According to Jensen’s inequality, we have

1

T

T∑
t=1

(Lf
2
E‖y∗(xt)− yt‖+

1

2
E‖∇xfµ1(xt, yt)− vt‖+

1

2γ
E‖x̃t+1 − xt‖

)
≤
( 3

T

T∑
t=1

(L2
f

4
E‖y∗(xt)− yt‖2 +

1

4
E‖∇xfµ1(xt, yt)− vt‖2 +

1

4γ2
E‖x̃t+1 − xt‖2

))1/2
≤
√

3M ′

T 1/2
(m+ T )1/6 ≤

√
3M ′m1/6

T 1/2
+

√
3M ′

T 1/3
, (115)

where the last inequality is due to (a+ b)1/6 ≤ a1/6 + b1/6. Thus we obtain

1

T

T∑
t=1

E
[
Lf‖y∗(xt)− yt‖+ ‖∇xfµ1(xt, yt)− vt‖+

1

γ
‖x̃t+1 − xt‖

]
≤ 2
√

3M ′m1/6

T 1/2
+

2
√

3M ′

T 1/3
.

According to Lemma 19, we have ‖∇xfµ1(xt, yt)− vt‖ = ‖∇xfµ1(xt, yt)−∇xf(xt, yt) +
∇xf(xt, yt)−vt‖ ≥ ‖∇xf(xt, yt)−vt‖−‖∇xfµ1(xt, yt)−∇xf(xt, yt)‖ ≥ ‖∇xf(xt, yt)−vt‖−
µ1Lfd1

2 . Thus, we have

1

T

T∑
t=1

E
[
Lf‖y∗(xt)− yt‖+ ‖∇xf(xt, yt)− vt‖+

1

γ
‖x̃t+1 − xt‖

]
≤ 1

T

T∑
t=1

E
[
Lf‖y∗(xt)− yt‖+ ‖∇xfµ1(xt, yt)− vt‖+

µ1Lfd1

2
+

1

γ
‖x̃t+1 − xt‖

]
≤ 2
√

3M ′m1/6

T 1/2
+

2
√

3M ′

T 1/3
+
µ1Lfd1

2

≤ 2
√

3M ′m1/6

T 1/2
+

2
√

3M ′

T 1/3
+

Lf

2(m+ T )2/3
, (116)

where the last inequality is due to 0 < µ1 ≤ 1
d1(m+T )2/3

. Then by using the above inequality

(19), we have

1

T

T∑
t=1

E‖GX (xt,∇F (xt), γ)‖ ≤ 1

T

T∑
t=1

E
[
Lf‖y∗(xt)−yt‖+‖∇xf(xt, yt)−vt‖+

1

γ
‖x̃t+1−xt‖

]
≤ 2
√

3M ′m1/6

T 1/2
+

2
√

3M ′

T 1/3
+

Lf

2(m+ T )2/3
. (117)
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A.4 Convergence Analysis of Acc-ZOMDA Algorithm for Unconstrained
Minimax Optimization

In this subsection, we study the convergence properties of our Acc-ZOMDA algorithm for
solving the black-box unconstrained minimax problem (2), i.e., X = Rd1 and Y = Rd2 (or
Y ⊂ Rd2). The following convergence analysis builds on the common convergence metric
E‖∇F (xt)‖ used in (Lin et al., 2019), where F (x) = maxy∈Y f(x, y).

Lemma 31 Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 2. When X =
Rd1, given 0 < γ ≤ 1

2ηtLg
, we have

Fµ1(xt+1) ≤ Fµ1(xt) + 3ηtγL
2
f‖yt − y∗(xt)‖2 +

3ηtγL
2
fd

2
1µ

2
1

2

+ γηt‖∇xfµ1(xt, yt)− vt‖2 −
γηt
2
‖∇Fµ1(xt)‖2 −

γηt
4
‖vt‖2. (118)

Proof According to Lemma 15 and Lemma 19, the approximated function Fµ1(x) has
Lg-Lipschitz continuous gradient. Then we have

Fµ1(xt+1)

≤ Fµ1(xt)− γηt〈∇Fµ1(xt), vt〉+
γ2η2

tLg
2
‖vt‖2 (119)

= Fµ1(xt) +
γηt
2
‖∇Fµ1(xt)− vt‖2 −

γηt
2
‖∇Fµ1(xt)‖2 + (

γ2η2
tLg
2

− γηt
2

)‖vt‖2

= Fµ1(xt) +
γηt
2
‖∇Fµ1(xt)−∇xfµ1(xt, yt) +∇xfµ1(xt, yt)− vt‖2 −

γηt
2
‖∇Fµ1(xt)‖2

+ (
γ2η2

tLg
2

− γηt
2

)‖vt‖2

≤ Fµ1(xt) + γηt‖∇Fµ1(xt)−∇xfµ1(xt, yt)‖2 + γηt‖∇xfµ1(xt, yt)− vt‖2

− γηt
2
‖∇Fµ1(xt)‖2 + (

γ2η2
tLg
2

− γηt
2

)‖vt‖2

≤ Fµ1(xt) + γηt‖∇Fµ1(xt)−∇xfµ1(xt, yt)‖2 + γηt‖∇xfµ1(xt, yt)− vt‖2

− γηt
2
‖∇Fµ1(xt)‖2 −

γηt
4
‖vt‖2,

where the last inequality is due to 0 < γ ≤ 1
2ηtL

.

Considering an upper bound of ‖∇Fµ1(xt)−∇xfµ1(xt, yt)‖2, we have

‖∇Fµ1(xt)−∇xfµ1(xt, yt)‖2

= ‖∇xfµ1(xt, y
∗(xt))−∇xfµ1(xt, yt)‖2

= ‖∇xfµ1(xt, y
∗(xt))−∇xf(xt, y

∗(xt)) +∇xf(xt, y
∗(xt))−∇xf(xt, yt)

+∇xf(xt, yt)−∇xfµ1(xt, yt)‖2

≤ 3‖∇xfµ1(xt, y
∗(xt))−∇xf(xt, y

∗(xt))‖2 + 3‖∇xf(xt, y
∗(xt))−∇xf(xt, yt)‖2

+ 3‖∇xf(xt, yt)−∇xfµ1(xt, yt)‖2

≤
3L2

fd
2
1µ

2
1

2
+ 3L2

f‖yt − y∗(xt)‖2, (120)
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the last inequality holds by Assumption 5 and Lemma 19, i.e., we have

‖∇xfµ1(xt, y
∗(xt))−∇xf(xt, y

∗(xt))‖ ≤
Lfd1µ1

2
, ‖∇xf(xt, yt)−∇xfµ1(xt, yt)‖ ≤

Lfd1µ1

2
,

and

‖∇xf(xt, y
∗(xt))−∇xf(xt, yt)‖ ≤ ‖∇f(xt, y

∗(xt))−∇f(xt, yt)‖ ≤ Lf‖yt − y∗(xt)‖.

Then we have

Fµ1(xt+1) ≤ Fµ1(xt) +
3ηtγL

2
fd

2
1µ

2
1

2
+ 3ηtγL

2
f‖yt − y∗(xt)‖2

+ γηt‖∇xfµ1(xt, yt)− vt‖2 −
γηt
2
‖∇Fµ1(xt)‖2 −

γηt
4
‖vt‖2. (121)

Lemma 32 Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 2. Under the
above assumptions, and set 0 < ηt ≤ 1 and 0 < λ ≤ 1

6Lf
, we have

‖yt+1 − y∗(xt+1)‖2 ≤ (1− ηtτλ

4
)‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2

+
25ηtλ

6τ
‖∇yf(xt, yt)− wt‖2 +

25κ2
yγ

2ηt

6τλ
‖vt‖2, (122)

where κy = Lf/τ .

Proof This proof is similar to the proof of Lemma 28.

Lemma 33 Suppose the zeroth-order stochastic gradients {vt, wt}Tt=1 be generated from Al-
gorithm 2, we have

E‖∇xfµ1(xt+1, yt+1)− vt+1‖2

≤ (1− αt+1)2E‖∇xfµ1(xt, yt)− vt‖2 +
3(1− αt+1)2L2

fµ
2
1d

2
1

b

+
6d1L

2
f (1− αt+1)2η2

t

b

(
γ2E‖vt‖2 + E‖ỹt+1 − yt‖2

)
+

2α2
t+1δ

2

b
. (123)

E‖∇yfµ2(xt+1, yt+1)− wt+1‖2

≤ (1− βt+1)2E‖∇yfµ2(xt, yt)− wt‖2 +
3(1− βt+1)2L2

fµ
2
2d

2
2

b

+
6d2L

2
f (1− βt+1)2η2

t

b

(
γ2E‖vt‖2 + E‖ỹt+1 − yt‖2

)
+

2β2
t+1δ

2

b
. (124)
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Proof This proof is similar to the proof of Lemma 29.

Theorem 34 (Restatement of Theorem 7) Suppose the sequence {xt, yt}Tt=1 be generated

from Algorithm 2. When X = Rd1, and let ηt = k
(m+t)1/3

for all t ≥ 0, c1 ≥ 2
3k3

+ 9τ2

4 and

c2 ≥ 2
3k3

+
625d̃L2

f

3b , k > 0, 1 ≤ b ≤ d̃, m ≥ max
(
2, k3, (c1k)3, (c2k)3

)
, 0 < λ ≤ min

(
1

6Lf
, 75τ

24

)
,

0 < γ ≤ min
(
λτ

2Lf

√
6b/d̃

36λ2+625κ2y
, m

1/3

2Lgk

)
, 0 < µ1 ≤ 1

d1(m+T )2/3
and 0 < µ2 ≤ 1

d̃1/2d2(m+T )2/3
, we

have

1

T

T∑
t=1

E‖∇F (xt)‖ ≤
√

2M ′m1/6

T 1/2
+

√
2M ′

T 1/3
+

Lf

2(m+ T )2/3
, (125)

where ∆1 = ‖y1 − y∗(x1)‖2 and M ′ =
Fµ1 (x1)−F ∗

γk +
25d̃L2

f

kλτb ∆1 + 2m1/3δ2

bτ2k2
+

36τ2L2
f+625L4

f

8bτ2
(m+

T )−2/3 +
9L2

f

4bτ2k2
+

2(c21+c22)δ2k2

bτ2
ln(m+ T ).

Proof This proof is similar to the proof of Theorem 30. Following the above proof of
Theorem 30, let c1 ≥ 2

3k3
+ 9τ2

4 , we have

1

ηt
E‖∇xfµ1(xt+1, yt+1)− vt+1‖2 −

1

ηt−1
E‖∇xfµ1(xt, yt)− vt‖2 (126)

≤−9τ2

4
ηtE‖∇xfµ1(xt, yt)− vt‖2+

6d1L
2
fηt

b

(
γ2E‖vt‖2 + E‖ỹt+1 − yt‖2

)
+

3L2
fµ

2
1d

2
1

bηt
+

2α2
t+1δ

2

bηt
.

Similarly, let c2 ≥ 2
3k3

+
625d̃L2

f

3b with d̃ = d1 + d2, we also have

1

ηt
E‖∇yfµ2(xt+1, yt+1)− wt+1‖2 −

1

ηt−1
E‖∇yfµ2(xt, yt)− wt‖2 (127)

≤−
625d̃L2

f

3b
ηtE‖∇yfµ2(xt, yt)−wt‖2+

6d2L
2
fηt

b

(
γ2E‖vt‖2+E‖ỹt+1−yt‖2

)
+

3L2
fµ

2
2d

2
2

bηt
+

2β2
t+1δ

2

bηt
.

According to Lemma 32, we have

‖yt+1 − y∗(xt+1)‖2 ≤ (1− ηtτλ

4
)‖yt−y∗(xt)‖2−

3ηt
4
‖ỹt+1−yt‖2+

25ηtλ

6τ
‖∇yf(xt, yt)−wt‖2

+
25κ2

yγ
2ηt

6τλ
‖vt‖2

= (1− ηtτλ

4
)‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2 +

25κ2
yγ

2ηt

6τλ
‖vt‖2

+
25ηtλ

6τ
‖∇yf(xt, yt)−∇yfµ2(xt, yt) +∇yfµ2(xt, yt)− wt‖2

≤ (1− ηtτλ

4
)‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2 +

25κ2
yγ

2ηt

6τλ
‖vt‖2

+
25λµ2

2L
2
fd

2
2ηt

12τ
+

25ηtλ

3τ
‖∇yfµ2(xt, yt)− wt‖2, (128)
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where the last inequality is due to Young’s inequality and Lemma 19. Thus, we have

‖yt+1 − y∗(xt+1)‖2 − ‖yt − y∗(xt)‖2

≤ −ηtτλ
4
‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2 +

25κ2
yγ

2ηt

6τλ
‖vt‖2

+
25λµ2

2L
2
fd

2
2ηt

12τ
+

25ηtλ

3τ
‖∇yfµ2(xt, yt)− wt‖2. (129)

At the same time, we give the Lyapunov function Φt defined in the above proof of
Theorem 30,

Φt = E
[
Fµ1(xt) +

25γd̃L2
f

λτb
‖yt − y∗(xt)‖2 +

γ

τ2ηt−1
‖∇xfµ1(xt, yt)− vt‖2

+
γ

τ2ηt−1
‖∇yfµ2(xt, yt)− wt‖2

]
.

By using Lemma 31, we have

Φt+1 − Φt

= E
[
Fµ1(xt+1)− Fµ1(xt)

]
+

25d̃L2
fγ

λτ

(
E‖yt+1 − y∗(xt+1)‖2 − E‖yt − y∗(xt)‖2

)
+

γ

τ2

( 1

ηt
E‖∇xfµ1(xt+1, yt+1)− vt+1‖2 −

1

ηt−1
E‖∇xfµ1(xt, yt)− vt‖2

)
+

γ

τ2

( 1

ηt
E‖∇yfµ2(xt+1, yt+1)− wt+1‖2 −

1

ηt−1
E‖∇yfµ2(xt, yt)− wt‖2

)
≤ 3ηtγL

2
fE‖yt − y∗(xt)‖2+

3ηtγL
2
fd

2
1µ

2
1

2
+γηtE‖∇xfµ1(xt, yt)− vt‖2−

γηt
2

E‖∇Fµ1(xt)‖2

− γηt
4

E‖vt‖2+
25d̃L2

fγ

bλτ

(
− ηtτλ

4
E‖yt − y∗(xt)‖2−

3ηt
4

E‖ỹt+1 − yt‖2 +
25κ2

yγ
2ηt

6τλ
E‖vt‖2

+
25ηtλ

3τ
E‖∇yfµ2(xt, yt)− wt‖2 +

25λµ2
2L

2
fd

2
2ηt

12τ

)
− 9γηt

4
E‖∇xfµ1(xt, yt)− vt‖2

+
6d1L

2
fηtγ

bτ2

(
γ2E‖vt‖2 + E‖ỹt+1 − yt‖2

)
−

625d̃L2
fγ

3bτ2
ηtE‖∇yfµ2(xt, yt)− wt‖2

+
6d2L

2
fηtγ

bτ2

(
γ2E‖vt‖2 + E‖ỹt+1 − yt‖2

)
+

3L2
fµ

2
1d

2
1γ

bηtτ2
+

2α2
t+1δ

2γ

bηtτ2
+

3L2
fµ

2
2d

2
2γ

bηtτ2
+

2β2
t+1δ

2γ

bηtτ2

≤ −
13γL2

fηt

4
E‖yt − y∗(xt)‖2 −

5γηt
4

E‖∇xfµ1(xt, yt)− vt‖2 −
γηt
2

E‖∇Fµ1(xt)‖2

+
3µ2

1d
2
1L

2
fηtγ

2
+

625d̃d2
2L

4
fµ

2
2ηtγ

12bτ2
+

3L2
fµ

2
1d

2
1γ

bηtτ2
+

2α2
t+1δ

2γ

bηtτ2
+

3L2
fµ

2
2d

2
2γ

bηtτ2
+

2β2
t+1δ

2γ

bηtτ2

−
(75d̃L2

fγ

4bλτ
−

6d̃L2
fγ

bτ2

)
ηtE‖ỹt+1 − yt‖2 −

(γ
4
−

6d̃L2
fγ

3

bτ2
−

625d̃L2
fκ

2
yγ

3

6bλ2τ2

)
ηtE‖vt‖2

≤ −γηt
2

E‖∇Fµ1(xt)‖2 + 3µ2
1d

2
1L

2
fηtγ +

625d̃d2
2L

4
fµ

2
2ηtγ

12bτ2

+
3L2

fµ
2
1d

2
1γ

bηtτ2
+

2α2
t+1δ

2γ

bηtτ2
+

3L2
fµ

2
2d

2
2γ

bηtτ2
+

2β2
t+1δ

2γ

bηtτ2
, (130)
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where the first inequality holds by combining the above inequalities (126), (127) and (129),
and the second inequality is due to 1 ≤ b ≤ d̃ and the last inequality is due to 0 < γ ≤
λτ2

2Lf

√
6b/d̃

36λ2+625κ2y
and λ ≤ 75τ

24 . Thus, we have

ηt
2
E‖∇Fµ1(xt)‖2 ≤

Φt − Φt+1

γ
+ 3µ2

1d
2
1L

2
fηt +

625d̃d2
2L

4
fµ

2
2ηt

12bτ2

+
3L2

fµ
2
1d

2
1

bηtτ2
+

2α2
t+1δ

2

bηtτ2
+

3L2
fµ

2
2d

2
2

bηtτ2
+

2β2
t+1δ

2

bηtτ2
. (131)

Since infx∈X F (x) = F ∗, we have infx∈X Fµ1(x) = infx∈X Eu1∼UB [F (x+µ1u1)] = infx∈X
1
V

∫
B

F (x + µ1u1)du1 ≥ 1
V

∫
B infx∈X F (x + µ1u1)du1 = F ∗, where V denotes the volume of the

unit ball B. Let ∆1 = ‖y1 − y∗(x1)‖2, we have

Φ1 = Fµ1(x1) +
25γd̃L2

f

λτb
‖y1 − y∗(x1)‖2 +

γ

η0τ2
E‖∇xfµ1(x1, y1)− v1‖2

+
γ

η0τ2
E‖∇yfµ2(x1, y1)− w1‖2

= Fµ1(x1) +
25γd̃L2

f

λτb
‖y1 − y∗(x1)‖2 +

γ

η0τ2
E‖∇xfµ1(x1, y1)− ∇̂xf(x1, y1;B1)‖2

+
γ

η0τ2
E‖∇yfµ2(x1, y1)− ∇̂yf(x1, y1;B1)‖2

≤ Fµ1(x1) +
25γd̃L2

f

λτb
∆1 +

2γδ2

bη0τ2
, (132)

where the last inequality holds by Assumption 4.
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Taking average over t = 1, 2, · · · , T on both sides of (131) and by using η−1
T ≥ η−1

t for
any 0 ≤ t ≤ T , we have

1

T

T∑
t=1

1

2
E‖∇Fµ1(xt)‖2

≤ 1

TγηT

T∑
t=1

(
Φt − Φt+1

)
+

1

TηT

T∑
t=1

(
3µ2

1d
2
1L

2
fηt +

625d̃d2
2L

4
fµ

2
2ηt

12bτ2
+

3L2
fµ

2
1d

2
1

bηtτ2
+

2α2
t+1δ

2

bηtτ2

+
3L2

fµ
2
2d

2
2

bηtτ2
+

2β2
t+1δ

2

bηtτ2

)
≤ Fµ1(x1)− F ∗

TγηT
+

25d̃L2
f

TηTλτb
∆1 +

2δ2

Tbτ2ηT η0
+

36τ2µ2
1d

2
1L

2
f + 625d̃d2

2L
4
fµ

2
2

12bτ2TηT

T∑
t=1

ηt

+
3L2

f

(
µ2

1d
2
1 + µ2

2d
2
2

)
Tbτ2ηT

T∑
t=1

1

ηt
+

2(c2
1 + c2

2)δ2

Tbτ2ηT

T∑
t=1

η3
t

≤ Fµ1(x1)− F ∗

TγηT
+

25d̃L2
f

TηTλτb
∆1 +

2δ2

Tbτ2ηT η0
+

36τ2µ2
1d

2
1L

2
f + 625d̃d2

2L
4
fµ

2
2

12bτ2TηT

∫ T

1

k

(m+ t)1/3
dt

+
3L2

f

(
µ2

1d
2
1 + µ2

2d
2
2

)
Tbτ2ηT

∫ T

1

(m+ t)1/3

k
dt+

2(c2
1 + c2

2)δ2

Tbτ2ηT

∫ T

1

k3

m+ t
dt

≤ Fµ1(x1)− F ∗

TγηT
+

25d̃L2
f

TηTλτb
∆1 +

2δ2

Tbτ2ηT η0
+

36τ2L2
fk + 625L4

fk

8bτ2TηT
(m+ T )−2/3 +

9L2
f

4Tbτ2ηTk

+
2(c2

1 + c2
2)δ2k3

Tbτ2ηT
ln(m+ T )

=
(Fµ1(x1)− F ∗

Tγk
+

25d̃L2
f

Tkλτb
∆1 +

2m1/3δ2

Tbτ2k2

)
(m+ T )1/3 +

36τ2L2
f + 625L4

f

8bτ2T
(m+ T )−1/3

+
9L2

f

4Tbτ2k2
(m+ T )1/3 +

2(c2
1 + c2

2)δ2k2

Tbτ2
ln(m+ T )(m+ T )1/3, (133)

where the second inequality holds by the above inequality (132), and the last inequality is

due to 0 < µ1 ≤ 1
d1(m+T )2/3

and 0 < µ2 ≤ 1
d̃1/2d2(m+T )2/3

. Let M ′ =
Fµ1 (x1)−F ∗

γk +
25d̃L2

f

kλτb ∆1 +

2m1/3δ2

bτ2k2
+

36τ2L2
f+625L4

f

8bτ2
(m+ T )−2/3 +

9L2
f

4bτ2k2
+

2(c21+c22)δ2k2

bτ2
ln(m+ T ), we have

1

T

T∑
t=1

E‖∇Fµ1(xt)‖2 ≤
2M ′

T
(m+ T )1/3. (134)

According to Jensen’s inequality, we have

1

T

T∑
t=1

E‖∇Fµ1(xt)‖ ≤
( 1

T

T∑
t=1

E‖∇Fµ1(xt)‖2
)1/2

≤
√

2M ′

T 1/2
(m+ T )1/6 ≤

√
2M ′m1/6

T 1/2
+

√
2M ′

T 1/3
, (135)
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where the last inequality is due to (a + b)1/6 ≤ a1/6 + b1/6. According to Lemma 19, we
have ‖∇Fµ1(xt)‖ = ‖∇Fµ1(xt)−∇F (xt) +∇F (xt)‖ ≥ ‖∇F (xt)‖−‖∇Fµ1(xt)−∇F (xt)‖ ≥
‖∇F (xt)‖ −

µ1Lfd1
2 . Thus, we have

1

T

T∑
t=1

E‖∇F (xt)‖ ≤
1

T

T∑
t=1

(
E‖∇Fµ1(xt)‖+

µ1Lfd1

2

)
≤
√

2M ′m1/6

T 1/2
+

√
2M ′

T 1/3
+
µ1Lfd1

2

≤
√

2M ′m1/6

T 1/2
+

√
2M ′

T 1/3
+

Lf

2(m+ T )2/3
, (136)

where the last inequality is due to 0 < µ1 ≤ 1
d1(m+T )2/3

.

A.5 Convergence Analysis of Acc-MDA Algorithm for Constrained Minimax
Optimization

In this subsection, we study the convergence properties of our Acc-MDA algorithm for
solving the constrained minimax problem (2), i.e., X ⊂ Rd1 and Y ⊂ Rd2 (or Y = Rd2),
where the noise stochastic gradients of function f(x, y) can be obtained. The following
convergence analysis builds on a new metric E[Ht], where Ht is defined in (16).

Lemma 35 Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 3. Let 0 < ηt ≤ 1
and 0 < γ ≤ 1

2Lgηt
, we have

F (xt+1)− F (xt) ≤ −
ηt
2γ
‖x̃t+1 − xt‖2 + 2ηtγL

2
f‖y∗(xt)− yt‖2 + 2ηtγ‖∇xf(xt, yt)− vt‖2,

(137)

where Lg = Lf + L2
f/τ .

Proof This proof is similar to the proof of Lemma 27. According to Lemma 15, the
function F (x) has Lg-Lipschitz continuous gradient. Then we have

F (xt+1) ≤ F (xt) + 〈∇F (xt), xt+1 − xt〉+
Lg
2
‖xt+1 − xt‖2 (138)

= F (xt) + ηt〈∇F (xt), x̃t+1 − xt〉+
Lgη

2
t

2
‖x̃t+1 − xt‖2

= F (xt) + ηt〈∇F (xt)− vt, x̃t+1 − xt〉+ ηt〈vt, x̃t+1 − xt〉+
Lgη

2
t

2
‖x̃t+1 − xt‖2.

By the step 8 of Algorithm 3, we have x̃t+1 = PX (xt− γvt) = arg minx∈X
1
2‖x− xt + γvt‖2.

Since X is a convex set and the function 1
2‖x − xt + γvt‖2 is convex, according to Lemma

17, we have

〈x̃t+1 − xt + γvt, x− x̃t+1〉 ≥ 0, ∀x ∈ X . (139)
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In Algorithm 3, let the initialize solution x1 ∈ X , and the sequence {xt}t≥1 generates as
follows:

xt+1 = xt + ηt(x̃t+1 − xt) = ηtx̃t+1 + (1− ηt)xt, (140)

where 0 < ηt ≤ 1. Since X is convex set and xt, x̃t+1 ∈ X , we have xt+1 ∈ X for any t > 0.
Set x = xt in the inequality (139), we have

〈vt, x̃t+1 − xt〉 ≤ −
1

γ
‖x̃t+1 − xt‖2. (141)

Next, we decompose the term 〈∇F (xt)− vt, x̃t+1 − xt〉 as follows:

〈∇F (xt)− vt, x̃t+1 − xt〉
= 〈∇F (xt)−∇xf(xt, yt), x̃t+1 − xt〉︸ ︷︷ ︸

=T1

+ 〈∇xf(xt, yt)− vt, x̃t+1 − xt〉︸ ︷︷ ︸
=T2

. (142)

For the term T1, by the Cauchy-Schwarz inequality and Young’s inequality, we have

T1 = 〈∇F (xt)−∇xf(xt, yt), x̃t+1 − xt〉
≤ ‖∇F (xt)−∇xf(xt, yt)‖ · ‖x̃t+1 − xt‖

≤ 2γ‖∇F (xt)−∇xf(xt, yt)‖2 +
1

8γ
‖x̃t+1 − xt‖2

= 2γ‖∇xf(xt, y
∗(xt))−∇xf(xt, yt)‖2 +

1

8γ
‖x̃t+1 − xt‖2

≤ 2γ‖∇f(xt, y
∗(xt))−∇f(xt, yt)‖2 +

1

8γ
‖x̃t+1 − xt‖2

≤ 2γL2
f‖y∗(xt)− yt‖2 +

1

8γ
‖x̃t+1 − xt‖2, (143)

where the last inequality holds by Assumption 5.

For the term T2, by the Cauchy-Schwarz inequality and Young’s inequality, we have

T2 = 〈∇xf(xt, yt)− vt, x̃t+1 − xt〉
≤ ‖∇xf(xt, yt)− vt‖ · ‖x̃t+1 − xt‖

≤ 2γ‖∇xf(xt, yt)− vt‖2 +
1

8γ
‖x̃t+1 − xt‖2, (144)

where the last inequality holds by 〈a, b〉 ≤ λ
2‖a‖

2 + 1
2λ‖b‖

2 with λ = 4γ. Thus, we have

〈∇F (xt)− vt, x̃t+1 − xt〉 = 2γL2
f‖y∗(xt)− yt‖2 + 2γ‖∇xf(xt, yt)− vt‖2 +

1

4γ
‖x̃t+1 − xt‖2.

(145)
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Finally, combining the inequalities (138), (141) with (145), we have

F (xt+1) ≤ F (xt) + 2ηtγL
2
f‖y∗(xt)− yt‖2 + 2ηtγ‖∇xf(xt, yt)− vt‖2 +

ηt
4γ
‖x̃t+1 − xt‖2

− ηt
γ
‖x̃t+1 − xt‖2 +

Lgη
2
t

2
‖x̃t+1 − xt‖2

≤ F (xt) + 2ηtγL
2
f‖y∗(xt)− yt‖2 + 2ηtγ‖∇xf(xt, yt)− vt‖2 −

ηt
2γ
‖x̃t+1 − xt‖2,

(146)

where the last inequality is due to 0 < γ ≤ 1
2Lgηt

.

Lemma 36 Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 3. Under the
above assumptions, and set 0 < ηt ≤ 1 and λ ≤ 1

6Lf
, we have

‖yt+1 − y∗(xt+1)‖2 ≤ (1− ηtτλ

4
)‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2

+
25ηtλ

6τ
‖∇yf(xt, yt)− wt‖2 +

25κ2
yηt

6τλ
‖xt − x̃t+1‖2, (147)

where κy = Lf/τ .

Proof This proof is the same to the proof of Lemma 28.

Lemma 37 Suppose the stochastic gradients {vt, wt}Tt=1 be generated from Algorithm 3, we
have

E‖∇xf(xt+1, yt+1)− vt+1‖2 ≤ (1− αt+1)2E‖∇xf(xt, yt)− vt‖2 +
2α2

t+1δ
2

b

+
2(1− αt+1)2L2

fη
2
t

b

(
E‖x̃t+1 − xt‖2 + E‖ỹt+1 − yt‖2

)
. (148)

E‖∇yf(xt+1, yt+1)− wt+1‖2 ≤ (1− βt+1)2E‖∇yf(xt, yt)− wt‖2 +
2β2

t+1δ
2

b

+
2(1− βt+1)2L2

fη
2
t

b

(
E‖x̃t+1 − xt‖2 + E‖ỹt+1 − yt‖2

)
. (149)

Proof This proof is the same to the proof of Lemma 29. According to the definition of
wt+1 in Algorithm 3, we have

wt+1 − wt = −βt+1wt + (1− βt+1)
(
∇yf(xt+1, yt+1;Bt+1)−∇yf(xt, yt;Bt+1)

)
+ βt+1∇yf(xt+1, yt+1;Bt+1).
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Then we have

E‖∇yf(xt+1, yt+1)− vt+1‖2

= E‖∇yf(xt+1, yt+1)− vt − (vt+1 − vt)‖2 (150)

= E‖∇yf(xt+1, yt+1)− vt + βt+1vt − βt+1∇yf(xt+1, yt+1;Bt+1)

− (1− βt+1)(∇yf(xt+1, yt+1;Bt+1)−∇yf(xt, yt;Bt+1))‖2

= E‖(1− βt+1)(∇yf(xt, yt)− vt) + βt+1

(
∇yf(xt+1, yt+1)−∇yf(xt+1, yt+1;Bt+1)

)
+ (1− βt+1)

(
∇yf(xt+1, yt+1)−∇yf(xt, yt)−∇yf(xt+1, yt+1;Bt+1) +∇yf(xt, yt;Bt+1)

)
‖2

= (1− βt+1)2E‖∇yf(xt, yt)− vt‖2 + E‖βt+1

(
∇yf(xt+1, yt+1)−∇yf(xt+1, yt+1;Bt+1)

)
+ (1− βt+1)

(
∇yf(xt+1, yt+1)−∇yf(xt, yt)−∇yf(xt+1, yt+1;Bt+1) +∇yf(xt, yt;Bt+1)

)
‖2

≤ (1− βt+1)2E‖∇yf(xt, yt)− vt‖2 + 2β2
t+1E‖∇yf(xt+1, yt+1)−∇yf(xt+1, yt+1;Bt+1)‖2

+ 2(1− βt+1)2E‖∇yf(xt+1, yt+1)−∇yf(xt, yt)−∇yf(xt+1, yt+1;Bt+1)+∇yf(xt, yt;Bt+1)‖2

≤ (1− βt+1)2E‖∇yf(xt, yt)− vt‖2 +
2(1− βt+1)2

b
E‖∇yf(xt+1, yt+1;Bt+1)

−∇yf(xt, yt;Bt+1)‖2 +
2β2

t+1δ
2

b

≤ (1− βt+1)2E‖∇yf(xt, yt)− vt‖2 +
2(1− βt+1)2L2

fη
2
t

b

(
E‖x̃t+1 − xt‖2 + E‖ỹt+1 − yt‖2

)
+

2β2
t+1δ

2

b
,

where the fourth equality follows by EBt+1 [∇yf(xt+1, yt+1;Bt+1)] = ∇yf(xt+1, yt+1) and
EBt+1 [∇yf(xt+1, yt+1;Bt+1)−∇yf(xt, yt;Bt+1)] = ∇yf(xt+1, yt+1)−∇yf(xt, yt); the second
inequality is due to Lemma 20 and Assumption 4; the last inequality holds by Assumption
5. Similarly, we can obtain

E‖∇xf(xt, yt)− vt‖2 ≤ (1− αt)2E‖∇xf(xt−1, yt−1)− vt−1‖2 +
2α2

t δ
2

b

+
2(1− αt)2L2

fη
2
t−1

b

(
E‖x̃t − xt−1‖2 + E‖ỹt − yt−1‖2

)
. (151)

Theorem 38 (Restatement of Theorem 9) Suppose the sequence {xt, yt}Tt=1 be generated

from Algorithm 3. When X ⊂ Rd1, and let ηt = k
(m+t)1/3

for all t ≥ 0, c1 ≥ 2
3k3

+ 9τ2

4

and c2 ≥ 2
3k3

+
75L2

f

2 , k > 0, m ≥ max
(
2, k3, (c1k)3, (c2k)3

)
, 0 < λ ≤ min

(
1

6Lf
, 27bτ

16

)
and

0 < γ ≤ min
(
λτ

2Lf

√
2b

8λ2+75κ2yb
, m

1/3

2Lgk

)
, we have

1

T

T∑
t=1

E‖GX (xt,∇F (xt), γ)‖≤ 1

T

T∑
t=1

E
[
Lf‖y∗(xt)− yt‖+‖∇xf(xt, yt)− vt‖+

1

γ
‖x̃t+1 − xt‖

]
≤ 2
√

3M ′′m1/6

T 1/2
+

2
√

3M ′′

T 1/3
, (152)
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where ∆1 = ‖y1 − y∗(x1)‖2 and M ′′ = F (x1)−F ∗
γk +

9L2
f∆1

kλτ + 2m1/3δ2

bτ2k2
+

2(c21+c22)δ2k2

bτ2
ln(m+ T ).

Proof Since ηt = k
(m+t)1/3

on t is decreasing and m ≥ k3, we have ηt ≤ η0 = k
m1/3 ≤ 1 and

γ ≤ m1/3

2Lgk
= 1

2Lgη0
≤ 1

2Lgηt
for any t ≥ 0. Due to 0 < ηt ≤ 1 and m ≥ max

(
(c1k)3, (c2k)3

)
,

we have αt+1 = c1η
2
t ≤ c1ηt ≤ c1k

m1/3 ≤ 1 and βt+1 = c2η
2
t ≤ c2ηt ≤ c2k

m1/3 ≤ 1. According to
Lemma 37, we have

1

ηt
E‖∇xf(xt+1, yt+1)− vt+1‖2 −

1

ηt−1
E‖∇xf(xt, yt)− vt‖2 (153)

≤
((1−αt+1)2

ηt
− 1

ηt−1

)
E‖∇xf(xt, yt)− vt‖2 +

2L2
f (1−αt+1)2ηt

b
E
(
‖x̃t+1 − xt‖2+‖ỹt+1 − yt‖2

)
+

2α2
t+1δ

2

bηt

≤
(1−αt+1

ηt
− 1

ηt−1

)
E‖∇xf(xt, yt)− vt‖2+

2L2
fηt

b
E
(
‖x̃t+1 − xt‖2+‖ỹt+1 − yt‖2

)
+

2α2
t+1δ

2

bηt

=
( 1

ηt
− 1

ηt−1
− c1ηt

)
E‖∇xf(xt, yt)− vt‖2+

2L2
fηt

b
E
(
‖x̃t+1 − xt‖2+‖ỹt+1 − yt‖2

)
+

2α2
t+1δ

2

bηt
,

where the second inequality is due to 0 < αt+1 ≤ 1. Similarly, according to Lemma 37, we
can obtain

1

ηt
E‖∇yf(xt+1, yt+1)− wt+1‖2 −

1

ηt−1
E‖∇yf(xt, yt)− wt‖2 (154)

≤
( 1

ηt
− 1

ηt−1
− c2ηt

)
E‖∇yf(xt, yt)− wt‖2+

2L2
fηt

b
E
(
‖x̃t+1 − xt‖2+‖ỹt+1 − yt‖2

)
+

2β2
t+1δ

2

bηt
.

By ηt = k
(m+t)1/3

, we have

1

ηt
− 1

ηt−1
=

1

k

(
(m+ t)

1
3 − (m+ t− 1)

1
3
)

≤ 1

3k(m+ t− 1)2/3
≤ 1

3k
(
m/2 + t

)2/3
≤ 22/3

3k(m+ t)2/3
=

22/3

3k3

k2

(m+ t)2/3
=

22/3

3k3
η2
t ≤

2

3k3
ηt, (155)

where the first inequality holds by the concavity of function f(x) = x1/3, i.e., (x+ y)1/3 ≤
x1/3 + y

3x2/3
; the second inequality is due to m ≥ 2, and the last inequality is due to

0 < ηt ≤ 1. Let c1 ≥ 2
3k3

+ 9τ2

4 , we have

1

ηt
E‖∇xf(xt+1, yt+1)− vt+1‖2 −

1

ηt−1
E‖∇xf(xt, yt)− vt‖2 (156)

≤ −9τ2ηt
4

E‖∇xf(xt, yt)− vt‖2 +
2L2

fηt

b
E
(
‖x̃t+1 − xt‖2 + ‖ỹt+1 − yt‖2

)
+

2α2
t+1δ

2

bηt
.
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Let c2 ≥ 2
3k3

+
75L2

f

2 , we have

1

ηt
E‖∇yf(xt+1, yt+1)− wt+1‖2 −

1

ηt−1
E‖∇yf(xt, yt)− wt‖2 (157)

≤ −
75L2

fηt

2τ2
E‖∇yf(xt, yt)− wt‖2+

2L2
fηt

b
E
(
‖x̃t+1 − xt‖2 + ‖ỹt+1 − yt‖2

)
+

2β2
t+1δ

2

bηt
.

Next, we define a Lyapunov function, for any t ≥ 1

Ωt = E
[
F (xt) +

9L2
fγ

λτ
‖yt − y∗(xt)‖2 +

γ

τ2ηt−1
‖∇xf(xt, yt)− vt‖2

+
γ

τ2ηt−1
‖∇yf(xt, yt)− wt‖2

]
.

Then we have

Ωt+1 − Ωt

= E
[
F (xt+1)− F (xt)

]
+

9L2
fγ

λτ

(
E‖yt+1 − y∗(xt+1)‖2 − E‖yt − y∗(xt)‖2

)
+

γ

τ2

( 1

ηt
E‖∇xf(xt+1, yt+1)− vt+1‖2 −

1

ηt−1
E‖∇xf(xt, yt)− vt‖2

+
1

ηt
E‖∇yf(xt+1, yt+1)− wt+1‖2 −

1

ηt−1
E‖∇yf(xt, yt)− wt‖2

)
≤ − ηt

2γ
E‖x̃t+1 − xt‖2 + 2ηtγL

2
fE‖y∗(xt)− yt‖2 + 2ηtγE‖∇xf(xt, yt)− vt‖2

+
9L2

fγ

λτ

(
− ηtτλ

4
E‖yt − y∗(xt)‖2 −

3ηt
4

E‖ỹt+1 − yt‖2 +
25ηtλ

6τ
E‖∇yf(xt, yt)− wt‖2

+
25κ2

yηt

6τλ
E‖xt − x̃t+1‖2

)
− 9γηt

4
E‖∇xf(xt, yt)− vt‖2 −

2L2
fηtγ

bτ2

(
E‖x̃t+1 − xt‖2

+ E‖ỹt+1 − yt‖2
)

+
2α2

t+1δ
2γ

bτ2ηt
−

75L2
fγ

2τ2
ηtE‖∇yf(xt, yt)− wt‖2

+
2L2

fηtγ

bτ2

(
E‖x̃t+1 − xt‖2 + E‖ỹt+1 − yt‖2

)
+

2β2
t+1δ

2γ

bτ2ηt

≤ −
L2
fηtγ

4
E‖y∗(xt)− yt‖2 −

γηt
4

E‖∇xf(xt, yt)− vt‖2 +
2α2

t+1δ
2γ

bτ2ηt
+

2β2
t+1δ

2γ

bτ2ηt

−
(27L2

fγ

4λτ
−

4L2
fγ

bτ2

)
ηtE‖ỹt+1 − yt‖2 −

( 1

2γ
−

4L2
fγ

bτ2
−

75L2
fκ

2
yγ

2λ2τ2

)
ηtE‖x̃t+1 − xt‖2

≤ −
L2
fηtγ

4
E‖y∗(xt)− yt‖2 −

γηt
4

E‖∇xf(xt, yt)− vt‖2 −
ηt
4γ

E‖x̃t+1 − xt‖2

+
2α2

t+1δ
2γ

bτ2ηt
+

2β2
t+1δ

2γ

bτ2ηt
, (158)
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where the first inequality holds by Lemmas 35, 36 and the above inequalities (156), (157),

and the last inequality is due to 0 < γ ≤ λτ
2Lf

√
2b

8λ2+75κ2yb
and λ ≤ 27bτ

16 . Then we have

L2
fηt

4
E‖y∗(xt)− yt‖2 +

ηt
4
E‖∇xf(xt, yt)− vt‖2 +

ηt
4γ2

E‖x̃t+1 − xt‖2

≤ Ωt − Ωt+1

γ
+

2α2
t+1δ

2

bτ2ηt
+

2β2
t+1δ

2

bτ2ηt
. (159)

Taking average over t = 1, 2, · · · , T on both sides of (159), we have

1

T

T∑
t=1

(L2
fηt

4
E‖y∗(xt)− yt‖2 +

ηt
4
E‖∇xf(xt, yt)− vt‖2 +

ηt
4γ2

E‖x̃t+1 − xt‖2
)

≤
T∑
t=1

Ωt − Ωt+1

Tγ
+

1

T

T∑
t=1

(2α2
t+1δ

2

bτ2ηt
+

2β2
t+1δ

2

bτ2ηt

)
.

Let ∆1 = ‖y1 − y∗(x1)‖2, we have

Ω1 = F (x1)+
9L2

fγ

λτ
‖y1 − y∗(x1)‖2+

γ

τ2η0
E‖∇xf(x1, y1)− v1‖2+

γ

τ2η0
E‖∇yf(x1, y1)− w1‖2

= F (x1) +
9L2

fγ

λτ
‖y1 − y∗(x1)‖2 +

γ

τ2η0
E‖∇xf(x1, y1)− 1

b

b∑
i=1

∇̂xf(x1, y1; ξ1
i )‖2

+
γ

τ2η0
E‖∇yf(x1, y1)− 1

b

b∑
i=1

∇̂yf(x1, y1; ξ1
i )‖2

≤ F (x1) +
9L2

fγ

λτ
∆1 +

2γδ2

bτ2η0
, (160)
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where the last inequality holds by Assumption 4. Since ηt is decreasing, i.e., η−1
T ≥ η

−1
t for

any 0 ≤ t ≤ T , we have

1

T

T∑
t=1

E
(L2

f

4
‖y∗(xt)− yt‖2 +

1

4
‖∇xf(xt, yt)− vt‖2 +

1

4γ2
‖x̃t+1 − xt‖2

)
≤ 1

TγηT

T∑
t=1

(
Ωt − Ωt+1

)
+

1

TηT

T∑
t=1

(2α2
t+1δ

2

bτ2ηt
+

2β2
t+1δ

2

bτ2ηt

)
≤ 1

TγηT

(
F (x1)− F ∗ +

9L2
fγ

λτ
∆1 +

2γδ2

bτ2η0

)
+

1

TηT

T∑
t=1

(2α2
t+1δ

2

bτ2ηt
+

2β2
t+1δ

2

bτ2ηt

)
=
F (x1)− F ∗

TγηT
+

9L2
f

TηTλτ
∆1 +

2δ2

Tbτ2ηT η0
+

2(c2
1 + c2

2)δ2

Tbτ2ηt

T∑
t=1

η3
t

≤ F (x1)− F ∗

TγηT
+

9L2
f

TηTλτ
∆1 +

2δ2

Tbτ2ηT η0
+

2(c2
1 + c2

2)δ2

Tbτ2ηT

∫ T

1

k3

m+ t
dt

≤ F (x1)− F ∗

TγηT
+

9L2
f

TηTλτ
∆1 +

2δ2

Tbτ2ηT η0
+

2(c2
1 + c2

2)δ2k3

Tbτ2ηT
ln(m+ T )

=

(
F (x1)− F ∗

Tγk
+

9L2
f

Tkλτ
∆1 +

2m1/3δ2

Tbτ2k2
+

2(c2
1 + c2

2)δ2k2

Tbτ2
ln(m+ T )

)
(m+ T )1/3, (161)

where the second inequality holds by the above inequality (160). Let M ′′ = F (x1)−F ∗
γk +

9L2
f∆1

kλτ + 2m1/3δ2

bτ2k2
+

2(c21+c22)δ2k2

bτ2
ln(m+ T ), we have

1

T

T∑
t=1

E
[L2

f

4
‖y∗(xt)− yt‖2 +

1

4
‖∇xf(xt, yt)− vt‖2 +

1

4γ2
‖x̃t+1 − xt‖2

]
≤ M ′′

T
(m+ T )1/3.

According to Jensen’s inequality, we have

1

T

T∑
t=1

E
[Lf

2
‖y∗(xt)− yt‖+

1

2
‖∇xf(xt, yt)− vt‖+

1

2γ
‖x̃t+1 − xt‖

]
≤
( 3

T

T∑
t=1

E
[L2

f

4
‖y∗(xt)− yt‖2 +

1

4
‖∇xf(xt, yt)− vt‖2 +

1

4γ2
‖x̃t+1 − xt‖2

])1/2
≤
√

3M ′′

T 1/2
(m+ T )1/6 ≤

√
3M ′′m1/6

T 1/2
+

√
3M ′′

T 1/3
, (162)

where the last inequality is due to (a+ b)1/6 ≤ a1/6 + b1/6 for all a, b > 0. Thus we obtain

1

T

T∑
t=1

E
[
Lf‖y∗(xt)− yt‖+ ‖∇xf(xt, yt)− vt‖+

1

γ
‖x̃t+1 − xt‖

]
≤ 2
√

3M ′′m1/6

T 1/2
+

2
√

3M ′′

T 1/3
.
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Then by using the above inequality (19), we have

1

T

T∑
t=1

E‖GX (xt,∇F (xt), γ)‖≤ 1

T

T∑
t=1

E
[
Lf‖y∗(xt)− yt‖+‖∇xf(xt, yt)− vt‖+

1

γ
‖x̃t+1 − xt‖

]
≤ 2
√

3M ′′m1/6

T 1/2
+

2
√

3M ′′

T 1/3
. (163)

A.6 Convergence Analysis of Acc-MDA Algorithm for Unconstrained
Minimax Optimization

In this subsection, we study the convergence properties of our Acc-MDA algorithm for
solving the unconstrained minimax problem (2), i.e., X = Rd1 and Y = Rd2 (or Y ⊂ Rd2).
The following convergence analysis builds on the common convergence metric E‖∇F (xt)‖
used in (Lin et al., 2019), where F (x) = maxy∈Y f(x, y).

Lemma 39 Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 3. When X =
Rd1, given 0 < γ ≤ 1

2ηtLg
, we have

F (xt+1) ≤ F (xt) + ηtγL
2
f‖yt − y∗(xt)‖2 + γηt‖∇xf(xt, yt)− vt‖2

− γηt
2
‖∇F (xt)‖2 −

γηt
4
‖vt‖2. (164)

Proof This proof is similar to the proof of Lemma 31. According to Lemma 15, the
approximated function F (x) has Lg-Lipschitz continuous gradient. Then we have

F (xt+1) ≤ F (xt)− γηt〈∇F (xt), vt〉+
γ2η2

tLg
2
‖vt‖2 (165)

= F (xt) +
γηt
2
‖∇F (xt)− vt‖2 −

γηt
2
‖∇F (xt)‖2 + (

γ2η2
tLg
2

− γηt
2

)‖vt‖2

= F (xt) +
γηt
2
‖∇F (xt)−∇xf(xt, yt) +∇xf(xt, yt)− vt‖2 −

γηt
2
‖∇F (xt)‖2

+ (
γ2η2

tLg
2

− γηt
2

)‖vt‖2

≤ F (xt) + γηt‖∇F (xt)−∇xf(xt, yt)‖2 + γηt‖∇xf(xt, yt)− vt‖2

− γηt
2
‖∇F (xt)‖2 + (

γ2η2
tLg
2

− γηt
2

)‖vt‖2

≤ F (xt) + γηt‖∇F (xt)−∇xf(xt, yt)‖2 + γηt‖∇xf(xt, yt)− vt‖2

− γηt
2
‖∇F (xt)‖2 −

γηt
4
‖vt‖2,

where the last inequality is due to 0 < γ ≤ 1
2ηtL

.

Considering an upper bound of ‖∇F (xt)−∇xf(xt, yt)‖2, we have

‖∇F (xt)−∇xf(xt, yt)‖2 = ‖∇xf(xt, y
∗(xt))−∇xf(xt, yt)‖2 ≤ L2

f‖yt − y∗(xt)‖2, (166)
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the last inequality holds by Assumption 5. Then we have

F (xt+1) ≤ F (xt) + L2
f‖yt − y∗(xt)‖2 + γηt‖∇xf(xt, yt)− vt‖2

− γηt
2
‖∇F (xt)‖2 −

γηt
4
‖vt‖2. (167)

Lemma 40 Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 3. Under the
above assumptions, and set 0 < ηt ≤ 1 and λ ≤ 1

6Lf
, we have

‖yt+1 − y∗(xt+1)‖2 ≤ (1− ηtτλ

4
)‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2

+
25ηtλ

6τ
‖∇yf(xt, yt)− wt‖2 +

25κ2
yγ

2ηt

6τλ
‖vt‖2, (168)

where κy = Lf/τ .

Proof This proof is the same to the proof of Lemma 28.

Lemma 41 Suppose the stochastic gradients {vt, wt}Tt=1 be generated from Algorithm 3, we
have

E‖∇xf(xt+1, yt+1)− vt+1‖2 ≤ (1− αt+1)2E‖∇xf(xt, yt)− vt‖2 +
2α2

t+1δ
2

b

+
2(1− αt+1)2L2

fη
2
t

b

(
γ2E‖vt‖2 + E‖ỹt+1 − yt‖2

)
. (169)

E‖∇yf(xt+1, yt+1)− wt+1‖2 ≤ (1− βt+1)2E‖∇yf(xt, yt)− wt‖2 +
2β2

t+1δ
2

b

+
2(1− βt+1)2L2

fη
2
t

b

(
γ2E‖vt‖2 + E‖ỹt+1 − yt‖2

)
. (170)

Proof This proof is the same to the proof of Lemma 37.

Theorem 42 (Restatement of Theorem 12) Suppose the sequence {xt, yt}Tt=1 be generated

from Algorithm 3. When X = Rd1, and let ηt = k
(m+t)1/3

for all t ≥ 0, c1 ≥ 2
3k3

+ 9τ2

4

and c2 ≥ 2
3k3

+
75L2

f

2 , k > 0, m ≥ max
(
2, k3, (c1k)3, (c2k)3

)
, 0 < λ ≤ min

(
1

6Lf
, 27bτ

16

)
and

0 < γ ≤ min
(
λτ

2Lf

√
2b

8λ2+75κ2yb
, m

1/3

2Lgk

)
, we have

1

T

T∑
t=1

E‖∇F (xt)‖ ≤
√

2M ′′m1/6

T 1/2
+

√
2M ′′

T 1/3
, (171)

where ∆1 = ‖y1 − y∗(x1)‖2 and M ′′ = F (x1)−F ∗
γk +

9L2
f∆1

kλτ + 2m1/3δ2

bτ2k2
+

2(c21+c22)δ2k2

bτ2
ln(m+ T ).
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Proof This proof is the similar to the proof of Theorem 38. As in the proof of Theorem
38, let c1 ≥ 2

3k3
+ 9τ2

4 , we have

1

ηt
E‖∇xf(xt+1, yt+1)− vt+1‖2 −

1

ηt−1
E‖∇xf(xt, yt)− vt‖2 (172)

≤ −9

4
ηtE‖∇xf(xt, yt)− vt‖2 +

2L2
fηt

b
E
(
γ2‖vt‖2 + ‖ỹt+1 − yt‖2

)
+

2α2
t+1δ

2

bηt
.

Let c2 ≥ 2
3k3

+
75L2

f

2 , we have

1

ηt
E‖∇yf(xt+1, yt+1)− wt+1‖2 −

1

ηt−1
E‖∇yf(xt, yt)− wt‖2 (173)

≤ −
75L2

f

2τ2
ηtE‖∇yf(xt, yt)− wt‖2 +

2L2
fηt

b
E
(
γ2‖vt‖2 + ‖ỹt+1 − yt‖2

)
+

2β2
t+1δ

2

bηt
.

According to Lemma 40, we have

‖yt+1 − y∗(xt+1)‖2 − ‖yt − y∗(xt)‖2 ≤ −
ηtτλ

4
‖yt − y∗(xt)‖2 −

3ηt
4
‖ỹt+1 − yt‖2

+
25ηtλ

6τ
‖∇yf(xt, yt)− wt‖2 +

25κ2
yγ

2ηt

6τλ
‖vt‖2.

(174)

At the same time, we give the Lyapunov function Ωt defined in the proof of the Theorem
38,

Ωt = E
[
F (xt) +

9L2
fγ

λτ
‖yt − y∗(xt)‖2 +

γ

τ2ηt−1
‖∇xf(xt, yt)− vt‖2

+
γ

τ2ηt−1
‖∇yf(xt, yt)− wt‖2

]
.
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By using Lemma 39, we have

Ωt+1 − Ωt

= E
[
F (xt+1)− F (xt)

]
+

9L2
fγ

λτ

(
E‖yt+1 − y∗(xt+1)‖2 − E‖yt − y∗(xt)‖2

)
+

γ

τ2

( 1

ηt
E‖∇xf(xt+1, yt+1)− vt+1‖2 −

1

ηt−1
E‖∇xf(xt, yt)− vt‖2

+
1

ηt
E‖∇yf(xt+1, yt+1)− wt+1‖2 −

1

ηt−1
E‖∇yf(xt, yt)− wt‖2

)
≤ ηtγL2

fE‖yt − y∗(xt)‖2 + γηtE‖∇xf(xt, yt)− vt‖2 −
γηt
2

E‖∇F (xt)‖2 −
γηt
4

E‖vt‖2

+
9L2

fγ

λτ

(
− ηtτλ

4
E‖yt − y∗(xt)‖2 −

3ηt
4

E‖ỹt+1 − yt‖2 +
25ηtλ

6τ
E‖∇yf(xt, yt)− wt‖2

+
25κ2

yγ
2ηt

6τλ
E‖vt‖2

)
− 9γηt

4
E‖∇xf(xt, yt)− vt‖2+

2L2
fηtγ

bτ2

(
γ2E‖vt‖2 + E‖ỹt+1 − yt‖2

)
+

2α2
t+1δ

2γ

bτ2ηt
−

75L2
fγ

2τ2
ηtE‖∇yf(xt, yt)−wt‖2+

2L2
fηtγ

bτ2

(
γ2E‖vt‖2+E‖ỹt+1−yt‖2

)
+

2β2
t+1δ

2γ

bτ2ηt

≤ −
5L2

fηtγ

4
E‖y∗(xt)− yt‖2 −

5γηt
4

E‖∇xf(xt, yt)− vt‖2 −
γηt
2

E‖∇F (xt)‖2 +
2α2

t+1δ
2γ

bτ2ηt

+
2β2

t+1δ
2γ

bτ2ηt
−
(27L2

fγ

4λτ
−

4L2
fγ

bτ2

)
ηtE‖ỹt+1 − yt‖2 −

(γ
4
−

4L2
fγ

3

bτ2
−

75L2
fκ

2
yγ

3

2λ2τ2

)
ηtE‖vt‖2

≤ −γηt
2

E‖∇F (xt)‖2 +
2α2

t+1δ
2γ

bτ2ηt
+

2β2
t+1δ

2γ

bτ2ηt
, (175)

where the first inequality holds by combining the above inequalities (172), (173) and (174),

and the last inequality is due to 0 < γ ≤ λτ
2Lf

√
2b

8λ2+75κ2yb
and λ ≤ 27bτ

16 . Then we have

ηt
2
E‖∇F (xt)‖2 ≤

Ωt − Ωt+1

γ
+

2α2
t+1δ

2

bτ2ηt
+

2β2
t+1δ

2

bτ2ηt
. (176)

Let ∆1 = ‖y1 − y∗(x1)‖2, we have

Ω1 = F (x1) +
9L2

fγ

λτ
‖y1 − y∗(x1)‖2 +

γ

τ2η0
E‖∇xf(x1, y1)− v1‖2 +

γ

τ2η0
E‖∇yf(x1, y1)− w1‖2

= F (x1) +
9L2

fγ

λτ
‖y1 − y∗(x1)‖2 +

γ

τ2η0
E‖∇xf(x1, y1)− 1

b

b∑
i=1

∇̂xf(x1, y1; ξ1
i )‖2

+
γ

τ2η0
E‖∇yf(x1, y1)− 1

b

b∑
i=1

∇̂yf(x1, y1; ξ1
i )‖2

≤ F (x1) +
9L2

fγ

λτ
∆1 +

2γδ2

bτ2η0
, (177)

where the last inequality holds by Assumption 4.
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Taking average over t = 1, 2, · · · , T on both sides of (176) and due to η−1
T ≥ η

−1
t for any

0 ≤ t ≤ T , we have

1

T

T∑
t=1

1

2
E‖∇F (xt)‖2

≤ 1

TγηT

T∑
t=1

(
Ωt − Ωt+1

)
+

1

TηT

T∑
t=1

(2α2
t+1δ

2

bτ2ηt
+

2β2
t+1δ

2

bτ2ηt

)
≤ 1

TγηT

(
F (x1)− F ∗ +

9L2
fγ

λτ
∆1 +

2γδ2

bτ2η0

)
+

1

TηT

T∑
t=1

(2α2
t+1δ

2

bτ2ηt
+

2β2
t+1δ

2

bτ2ηt

)
=
F (x1)− F ∗

TγηT
+

9L2
f

TηTλτ
∆1 +

2δ2

Tbτ2ηT η0
+

2(c2
1 + c2

2)δ2

Tbτ2ηt

T∑
t=1

η3
t

≤ F (x1)− F ∗

TγηT
+

9L2
f

TηTλτ
∆1 +

2δ2

Tbτ2ηT η0
+

2(c2
1 + c2

2)δ2

Tbτ2ηT

∫ T

1

k3

m+ t
dt

≤ F (x1)− F ∗

TγηT
+

9L2
f

TηTλτ
∆1 +

2δ2

Tbτ2ηT η0
+

2(c2
1 + c2

2)δ2k3

Tbτ2ηT
ln(m+ T )

=

(
F (x1)− F ∗

Tγk
+

9L2
f

Tkλτ
∆1 +

2m1/3δ2

Tbτ2k2
+

2(c2
1 + c2

2)δ2k2

Tbτ2
ln(m+ T )

)
(m+ T )1/3, (178)

where the second inequality holds by the above inequality (177). Let M ′′ = F (x1)−F ∗
γk +

9L2
f∆1

kλτ + 2m1/3δ2

bτ2k2
+

2(c21+c22)δ2k2

bτ2
ln(m+ T ), we have

1

T

T∑
t=1

E‖∇F (xt)‖2 ≤
2M ′′

T
(m+ T )1/3.

According to Jensen’s inequality, we have

1

T

T∑
t=1

E‖∇F (xt)‖ ≤
( 1

T

T∑
t=1

E‖∇F (xt)‖2
)1/2

≤
√

2M ′′

T 1/2
(m+ T )1/6 ≤

√
2M ′′m1/6

T 1/2
+

√
2M ′′

T 1/3
, (179)

where the last inequality is due to (a+ b)1/6 ≤ a1/6 + b1/6 for all a, b > 0.

Appendix B. Comparison of Assumptions Used in Zeroth-Order
Methods

We admit that our methods (Acc-ZOM, Acc-ZOMDA, Acc-MDA) and the existing variance-
reduced zeroth-order and first-order methods (e.g., ZO-SPIDER-Coord, SPIDER-SZO,
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ZO-SREDA-Boost, SREDA and SREDA-boost) rely on a relative strong assumption
(component function smoothness), i.e., ‖∇f(x1; ξ)−∇f(x2; ξ)‖ ≤ L‖x1−x2‖ for mini-
optimization and ‖∇f(x1, y1; ξ) −∇f(x2, y2; ξ)‖ ≤ L(‖x1 − x2‖ + ‖y1 − y2‖) for minimax-
optimization.

At the same time, we also argue that the comparison non-variance-reduced meth-
ods (such as ZO-AdaMM and ZO-Min-Max) in Table 1 require stronger assumptions than
the component function smoothness assumption. For example, ZO-AdaMM (Chen
et al., 2019) method requires the following two assumptions (Please see the page 4 of paper
“ZO-AdaMM: Zeroth-Order Adaptive Momentum Method for Black-Box Optimization”
https://arxiv.org/pdf/1910.06513.pdf):

A1) ft(·) = f(·, ξt) has Lg-Lipschitz continuous gradient, where Lg > 0.

A2) ft has η-bounded stochastic gradient ‖∇ft(x)‖∞ ≤ η.

In fact, the above assumption A1 is a component function smoothness assumption. Clearly,
the above assumptions A1 and A2 required in ZO-AdaMM method is more stronger than
the component function smoothness assumption required in our methods.

Meanwhile, ZO-Min-Max (Liu et al., 2019b) method requires a stronger bounded gra-
dient Assumption ( Please see Assumption A1 at the page 4 of paper ’Min-Max Optimiza-
tion without Gradients: Convergence and Applications to Black-Box Evasion and Poisoning
Attacks’ https://arxiv.org/pdf/1909.13806.pdf):

A1) f(x, y) = Eξ∼p[f(x, y; ξ)] has bounded gradients ‖∇xf(x, y; ξ)‖ ≤ η2 and ‖∇yf(x, y; ξ)‖
≤ η2 for stochastic optimization with ξ ∼ p.

Clearly, this Assumption required in ZO-Min-Max method is stronger than the component
function smoothness assumption required in our methods.

Appendix C. Query Complexity of ZO-Min-Max Method in (Liu et al.,
2019b)

Liu et al. (2019b) do not provide the explicit query complexity of ZO-Min-Max method.
However, the query complexity O((d1 + d2)ε−6)) of ZO-Min-Max method given in (Wang
et al., 2020) is incorrect (See Table 1 at page 10 of https://arxiv.org/pdf/2001.07819.pdf).
Here, we give a correct complexity O((d1 + d2)κ6

yε
−6)) of ZO-Min-Max method based on

the results in the original paper (Liu et al., 2019b). The detailed proof is given as follows:
From Theorems 1-2 and Remarks 1-2 in (Liu et al., 2019b) ( Please see the pages 5-

6 of paper: “Min-Max Optimization without Gradients: Convergence and Applications to
Black-Box Evasion and Poisoning Attacks” https://arxiv.org/pdf/1909.13806.pdf ), we have

β = γ
8L2

y
, α = 1/(Lx + 4L2

x
γ2β

+ βL2
x), ζ = min

(2L2
y

γ , 2L2
x
γ + Lx

2

)
and c = max

(
Lx + 3/α, 3/β

)
,

where Lx and Ly are the smooth parameters, γ is the parameter about strongly concave
f(x, y) w.r.t. y.

For notational simplicity, let L = Lx = Ly as in (Luo et al., 2020; Xu et al., 2020a) and
κy = L/γ. It is easy verified that β−1 = O(κy) and α−1 = O(κ3

y), c = O(κ3
y) and ζ = O(κy).

Thus, we have c
ζ = O(κ2

y) in Theorem 1. Since Theorem 2 is similar to Theorem 1 in (Liu

et al., 2019b), we also have c
ζ′ = O(κ2

y). Then based on the remarks about Theorems 1-2
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in (Liu et al., 2019b), we have E‖G(xr, yr)‖2 = O(
κ2y
T +

κ2y
b +

κ2y d̃

q ), where (xr, yr) randomly

picked from {(xt, yt)}Tt=1, and d̃ = d1 + d2, b is mini-batch size, and q is the number of
random direction vectors for estimating zeroth-order gradient.

Considering E‖G(xr, yr)‖ = O(
κy√
T

+
κy√
b

+
κy

√
d̃√

q ) ≤ ε, let T = b = q/d̃, then we have

T = b = q/d̃ = O(κ2
yε
−2). Since the ZO-Min-Max algorithm requires query 4bq function

values to estimate zeroth-order gradients ∇̂xf(x, y) and ∇̂yf(x, y) at each iteration, and
need T iterations, it requires a query complexity of 4bqT = O

(
d̃κ6

yε
−6
)

= O
(
(d1 +d2)κ6

yε
−6
)

for finding an ε-stationary point (i.e., E‖G(xr, yr)‖ ≤ ε). At the same time, the mini-batch
size is max(b, q) = O((d1 + d2)κ2

yε
−2) in ZO-Min-Max method.
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