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Abstract

We compare the performance of six model average predictors—Mallows’ model averaging,
stacking, Bayes model averaging, bagging, random forests, and boosting—to the compo-
nents used to form them. In all six cases we identify conditions under which the model
average predictor is consistent for its intended limit and performs as well or better than any
of its components asymptotically. This is well known empirically, especially for complex
problems, although theoretical results do not seem to have been formally established. We
have focused our attention on the regression context since that is where model averaging
techniques differ most often from current practice.

Keywords: model averaging, prediction, empirical risk, Mallows, stacking, Bayes, bag-
ging, random forests, boosting

1. The Predictive Perspective

It is a folk theorem that the best predictor for a future outcome is based on the true
model, assuming it exists, at least in an asymptotic sense. Results of this nature are
often heuristic, see Shmueli (2010) for a discussion. One formal result ensuring this is
Rissanen (1984), Theorem 2 and it is clear this result can be extended beyond the model
classes he considered. The main exceptions to the principle that the true model gives
the best predictions occur when the sample size is insufficient for identifying it. This is
often quantified in the concept of variance-bias tradeoff. The mean squared error can
increase when the benefit of reducing bias by increasing model complexity is smaller than
the corresponding increase in variance. More pragmatically, this commonly occurs when
the complexity of the true model e.g., the number of parameters in it, is too high for the
sample size. In such cases, a simple but wrong model may give better predictions than a
complex but correct model. This situation remains relatively common despite being in the
era of big data because ‘big data’ often means higher per-subject dimension rather than
higher sample size relative to the complexity of the data generator (DG). Indeed, even now,
to obtain consistency or optimality results, the key adaptation to high model complexity is
to allow sample size to increase at a rate that permits the number of parameters to increase
as well, albeit slowly, effectively identifying the DG.

©2022 Tri M. Le and Bertrand Clarke.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/20-874.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/20-874.html


Le and Clarke

We take it as given that the best predictors for a future response are derived from the
true model, at least asymptotically, assuming it exists. We also tacitly assume that models
that are closer to ‘true’ will give better predictions than those that are further. Then we
ask: Suppose the true model is not known, and perhaps cannot even be identified, how
do we obtain a good prediction? We give ourselves a list of models to help us identify
good predictors assuming that the models were chosen intelligently but do not explore here
how that might be done. De facto, we assume that subject matter experts have given us
a model list that they think will contain one or more models close to the true model or
at least contains models thought to be useful. This is mathematically the same setting as
‘prediction with expert advice’ as in Cesa-Bianchi and Lugosi (2006).

Our focus here is on model averages for prediction in complex problems and our goal is
to show formally that six popular model averages give better predictions than using any of
their components would. This is not a new principle—it was observed empirically as early
as Galton (1907); see Clemen (1989) and the references therein for a historical perspective.
However, given the current interest in prediction, theoretical examination of popular model
averages is timely.

In any model average predictor, the two key choices that must be made are the models
to average and the way to combine predictions from them. So, suppose we have F =
{f1, . . . , fJ} as the model list from which to construct a model average. We use the function
fj and the model Mj interchangeably as convenient. Thus Yj(x) = fj(x) + εj is Mj and
we write Ej for the expectation in model Mj where the randomness is in the error terms
εj assumed independent and identically distributed (IID), mean zero, with finite variance
σ2. We assume also that the fj ’s are continuously parametrized by real finite dimensional
vectors θj ’s and that for each fixed θj fj(· | θj) is in a Hilbert space H with a countable
basis and inner product denoted 〈·, ·〉.

Assume we have independent data of the form D = Dn = {(yi, xi)|i = 1, . . . , n} from
Y (x) = f(x) + ε where f is unknown and the xi’s are values of the explanatory variable
x. In Mj , f̂j(x), formed from D, is usually regarded an estimator for fj(x) and the hope
is that at least one of the fj ’s is close to f . If we write Ŷj as the predictor from Mj then

consistency of f̂j (perhaps for fj) is not the same as assessing how well Ŷj predicts a generic
response Y because fj(x) is a real number and Y (x) is a random variable. If we proceed
sequentially, using F , for i = 1, . . . , n+ 1 we can use Di to define Ŷ (xi+1) to be a predictor
for Y (xi+1), the i+ 1 value of the random variable Y at xi+1.

Given the Ŷj ’s, we must have a way to combine them to form our overall predictor Ŷ .
Since Ŷ is a model average let us denote the weight on the predictor from fj by αj . So, we

write Ŷ (xi+1) =
∑J

j=1 αj Ŷj(xi+1). Usually, all αj ≥ 0 and they sum to one, i.e., we take a
convex combination of the predictors from the Mj ’s. Even given a fixed F there are many
ways to define the αj ’s and to estimate them. (We comment that there are cases where
it may be optimal to allow non-negative αj ’s to sum to a number different from one—see
Clyde and Iversen (2013), Le and Clarke (2016), and Le and Clarke (2017). However, these
are cases where a true model cannot be identified or doesn’t exist.)

One way to obtain predictors from the fj ’s is called the plug-in method. Write fj(xi+1) =

fj(xi+1 | θj) and let θ̂j = θ̂j(Di) be an estimator for θj . Now, Ŷi+1,j(xi+1) = fj(xi+1 | θ̂j) =
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f̂j(xi+1). So, assuming we have a way to form α̂j ’s, i.e., α̂j = α̂j(Dn),

Ŷ (xn+1) =
J∑
j=1

α̂jfj(xn+1 | θ̂j) (1)

is the generic form of a model average. Here, we will not explicitly explore the choices of
F ; our focus is on the α̂j ’s.

There are many kinds of theorems that can be proved about model averages such as those
in (1). There are three types that we deal with here. The first are consistency theorems for
the parameters. That is, results that show how the θ̂j ’s and α̂j ’s behave as n→∞. Usually

θ̂j → θj for some θj taken as true and α̂j → αj for some limiting αj , possibly optimal in
a sense that allows f to be well approximated by (1). This is fundamentally an estimation
perspective, not a prediction perspective.

The second type of theorems are inequalities for the empirical risks of predictors. Often
these take the form of oracle inequalities. These are motivated by the definition of the mean
squared error and take the generic form

∀λ ‖f̂ − f‖n ≤ C‖fλ − f‖n + oP (1) as n→∞, (2)

for a predictor Ŷ = f̂ where fλ ∈ {fλ ∈ Λ}, f is true (and may not be fλ for any λ), ‖ · ‖n
is an empirical norm and C ∈ R+. There are numerous variants: The o(1) can often be
improved to O(1/n) when f is a linear model (see Bellec and Tsybakov (2015) for instance)
and the case C = 1 is called ‘sharp’. Also, oP (·) may be o(·), the empirical norm may be an
actual norm, etc. Expressions like (2) are called ‘oracle’ because it’s as if an Oracle knew
how to predict Y asymptotically optimally (using f̂) without actually knowing the best λ.

To date, oracle inequalities with smaller errors than o(1) seem only to have been estab-
lished under relatively strong hypotheses such as i) sparsity assumptions on the true model,
see Lederer et al. (2019); ii) ‘margin’ conditions on the set of ‘near oracles’ to make sure
they have small diameter (and hence do not contribute too much complexity), see Lecué
(2007) and Yang and Pati (2017), iii) concentration properties on sums of variables, see
Lecué and Mitchel (2010), and iv) specific parametric forms of the class of predictors, see
Kong and Nan (2014). Indeed, when x is high dimensional and few extra conditions are
imposed, C = (1 + ε) and the little-o term amounts to O(1/(nε)) for ε > 0; see Bunea et al.
(2004). So, there is a tradeoff beween the empirical risk term and the error term: The
larger n is, the smaller ε can be.

The third type of theorems are results that show model average predictors are asymp-
totically better (or no worse) than other predictors. Usually, these latter predictors are
taken to be the predictors used to form the average. Indeed, comparisons between a model
average and its component predictors are the standard way to verify that the predictive gain
from using a model average is worth the cost in interpretability from not simply selecting a
single model. Moreover, this is the point of minimizing regret, see Cesa-Bianchi and Lugosi
(2006): The ‘regret’ is the amount by which a predictor could have done better by using
one of the models in the average (or ‘experts’). It is theorems of this third type that are the
main contributions of this paper—although to obtain them we sometimes require theorems
of the other two types.
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Formally, we want to control |Ŷ (xn+1) − Y (xn+1)|. Unfortunately, there are few theo-
rems, e.g., of type three above, that provide this control. One of the few is due to Raftery
and Zheng (2003) for the Bayes model average but even it is on the level of densities not
point predictors and does not use a ‘true’ model. The others that exist are for special
cases of linear models, parametric or non-parametric. In the usual notation, we have for
parametric linear models (fλ(x) is of the form XTβ with ε ∼ N(0, σ2)) that

E(XT
n+1β + ε−XT

n+1β̂)2 = σ2
(
1 +XT

n+1(XTX)−1Xn+1

)
, (3)

with similar results for linear estimators in non-parametric function estimation; see Clarke
and Clarke (2018) for examples. As predictors, these are, usually, sub-optimal because of
model uncertainty and mis-specification.

The intuition behind model average predictors is that they will asymptotically outper-
form, or at least not underperform, individual model-based predictors, however plausible.
These may be found, for example, through model selection. That is, the model average will
typically be closer to the DG in an asymptotic and predictive sense than any wrong model
and be as good as using the predictor from the true model. Accordingly, we want the model
average to be better than any of its components because if we had a model we thought were
good, its predictor would already be included in the model average.

Thus, this paper fills a gap in the literature by providing theorems that bound model
average predictors in terms of their component predictors i.e., bounding |Ŷ (xn+1)−Y (xn+1)|
in terms of |Ŷj(xn+1)−Y (xn+1)|, for six commonly occurring model average predictors. The
six model average predictors that we consider are: i) The Mallows’ model average (MMA)
that minimizes an objective function based on the Mallows model selection principle; ii) the
Bayes model averages (BMA) that optimizes a posterior variance; iii) the stacking model
average that optimizes a criterion based on cross-validation; iv) random forests (RF’s) that
tend to stabilize good but unstable predictors; v) bagging more generally; and vi) boosting
that optimizes an objective function based on exponential loss, see Friedman et al. (2000),
even though it was not originally proposed on that basis.

The structure of this paper is as follows. In Sec. 2, we show theorems of types one, two,
and three for the MMA. Being based on linear models, this is a paradigm case in which
many of the main features of nonlinear models can be seen easily. In Sec. 3 we study the
Bayesian model average predictor under squared error loss—which is what is usually meant
by the Bayes model average predictor (BMA). Even though the BMA is not based on linear
models, when the models in the average are well-behaved we can show theorems of types one,
two, and three and show how some settings with increasing dimension of the explanatory
variables can be included. In Sec. 4, we study the stacking model average predictor. Again,
we give versions of the three types of results for finite dimensional explanatory variables
and discuss the case of increasing dimension of the explanatory variables. In Sec. 5, we
turn to the bagging predictor. In this case, there is only one model and the average is
formed by bootstrapping so we show versions of the three results but they are of a different
character than for MMA, BMA, and stacking. In Sec. 6, we adapt our results from Sec.
5 to the case of random forests (RF) since they are usually bagged trees with a built-in
decorrelation procedure. In Sec. 7 we formally deal with boosted regression. Boosting was
originally designed for classification so our results here do not address empirical risk but do
address consistency and component prediction. As a proxy for empirical risk, however, we
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are able to observe that the boosted regression predictor is derived from a set of classifiers
that achieve the optimal Bayesian risk for classification asymptotically. Finally, in Sec. 8,
we provide a more general discussion, in particular on the choice of F . Several technical
results are relegated to the Appendices.

2. The Mallows’ Model Average (MMA) Predictor

As noted in Sec. 1, there are three qualitatively different sorts of theorems one may seek for
a model average predictor assuming the models in the average and the averaging procedure
are specified. All three can be seen clearly in the case of linear models. In this case,
the consistency result is strong enough to give the empirical risk result fairly easily. The
consistency result is also used in the predictive result, but, as will be seen, extra steps are
required in the reasoning.

Since our work is an extension of Hansen (2007), we work within his framework. Thus,
we write

Yi = Y (xi) = µ(xi) + εi

=

km∑
j=1

θjxji +
∞∑

j=km+1

θjxji + εi,
(4)

in which E(εi | xi) = 0, E(ε2i | xi) = σ2, and 0 ≤ k1 ≤ · · · ≤ kM ≤Mn where we first think
of Mn as a constant and then let it increase slowly with n. In (4) the regression coefficients
are the θj ’s and xji is the j-th component of xi = (x1i, . . . , xkmi)

′. The second term on the
right in (4) is the bias bmi and we assume that Eµ(xi)

2 <∞ and µ(xi) converges in mean
square for a distribution on xi. We assume M = Mn ≤ n is an integer for which X ′kMXkM

is invertible. Also, for m ≤M , the least squares estimate of Θm is Θ̂m = (X ′mXm)−1X ′mYn
where Xm is the n × km matrix with (i, j) element xji, Θm = (θ1, . . . , θkm), and Yn =
(Y (x1), . . . , Y (xn))′.

To define the Mallows’ model average (MMA), begin by writing

Cn(W ) = (Yn −XM Θ̂M )′(Yn −XM Θ̂M ) + 2σ̂2k(W ), (5)

where

Θ̂M =
M∑
m=1

wm

(
Θ̂m

0∗

)
,

k(W ) =
M∑
m=1

wmkm,

(6)

and for given K,

σ̂2
K =

(Yn −XKΘ̂K)′(Yn −XKΘ̂K)

n−K
, (7)

where W = (w1, . . . , wM ) with w1, . . . , wM ≥ 0 and
∑M

m=1wm = 1. In (6), dim Θ̂m = km,
0∗ means M − km repeated 0’s, and k(W ) is the effective number of parameters. In (7), we
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use Theorem 2 in Hansen (2007) to see that for K → ∞, and K/n → 0 we get σ̂2
K

P→ σ2.
Thus, it is enough to choose K = km so that the first term on the right in (4) is a large
enough approximation model.

Let N > 1 be fixed. Write the Mn-fold Cartesian product of {0, 1/N, 2/N, . . . , 1} as

Hn(N) = {0, 1/N, 2/N, . . . , 1} × · · · × {0, 1/N, 2/N, . . . , 1}

and set

ŴN = arg min
W∈Hn(N)

Cn(W ). (8)

Now, the MMA for µ = (µ1, . . . , µn)′ is

µ̂Ŵ (x1, . . . , xn) = XM Θ̂M (9)

where dim(xi) = M and the M dimensional vector Ŵ , is suppressed in the notation Θ̂M .
The MMA prediction for a new value xn+1 of the explanatory variable is

µ̂Ŵ (xn+1) = xn+1Θ̂M . (10)

Following Hansen (2007) we evaluate the MMA using squared error, specifically to state
a risk consistency result for ŴN . Let x′M,i be the i-th row of XM . For µ̂i(W ), the fitted
value for xi using W and the least squares estimate for Θ, write the squared error as

Ln(W ) =
n∑
i=1

(µ̂i(W )− µi(xi))2

=
n∑
i=1

(
x′M,iΘ̂M − µi(xi)

)2

=
n∑
i=1

(
x′M,i

M∑
m=1

wm

(
(X ′mXm)−1X ′mYn

0∗

)
− µi(xi)

)2

=

n∑
i=1

(
M∑
m=1

wmx
′
M,i

(
(X ′mXm)−1X ′mYn

0∗

)
− µi(xi)

)2

.

(11)

Now, Theorem 1 in Hansen (2007) gives conditions under which

Ln(ŴN )/n

infW∈Hn(N) Ln(W )/n

P→ 1. (12)

Expression (12) is empirical in that Ln(W ) it uses Θ̂M rather than any limiting values.
Next, we modify the risk consistency result (12) to get a consistency result for ŴN using

the implied true values in Θ̂M . First rewrite (11) as

Ln(W ) =

n∑
i=1

(
M∑
m=1

wmx
′
M,i,mΘ̂m − µi(xi)

)2
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where x′M,i,m is the first km entries of the i-th row of XM . Taking Mn = M as a constant,
we have for each m

Θ̂m =

(
1

n

n∑
i=1

x′ixi

)−1(
1

n

n∑
i=1

x′iyi

)
(13)

where xi is the i-th row of Xm. By the Weak Law of Large Numbers, we get that, for
each m, the first term in (13) converges in probability to EX ′mXm and the second term in
(13) converges in probability to EX ′mYn. So, the continuous mapping theorem applied to
f(X ′X,X ′Y ) = (X ′X)−1X ′Y gives that as n→∞,

Θ̂m
P→ (EX ′mXm)−1E(X ′mYn) ≡ Θ∞,m,M

which is the limit of Θ̂m using least squares estimate with design matrix of size M . Under
second moment conditions on Y and X we also get

Θ̂m
L2

→ Θ∞,m,M . (14)

We use (14) in (13), recalling the bias is bMi =
∑∞

j=kM+1 θjxji. So

1

n
Ln(W ) =

1

n

n∑
i=1

 M∑
m=1

wmx
′
M,i,mΘ̂m −

M∑
j=1

θjxji

2

+ b2Mi

− 2bMi

 M∑
m=1

wmx
′
M,i,mΘ̂m −

M∑
j=1

θjxji

 (15)

in which the bias bMi
L2

→ 0 as M → ∞. This means that the last two terms in (15) go to
zero in L2 and hence in probability and distribution. Now,

1

n
Ln(W )

P→ E

 M∑
m=1

wmx
′
M,i,mΘ∞,m,M −

M∑
j=1

θjxji

2

≡ L∞,M (W )

where L∞,M (W ) is the limit, pointwise in W . Now, by Markov’s inequality, fourth moment
conditions on the terms in Ln(W ) give that

1

n
Ln(W )

P→ L∞,M (W ) (16)

uniformly on compact sets of W in [0, 1]M .
We have the following consistency result for ŴN .

Theorem 1 : Assume the hypotheses of Theorems 1 and 2 in Hansen (2007), E(Y 4), E(‖X‖4) <
∞ and that L∞,M (·) has a unique minimum at Wopt,M . Assume also that as M → ∞,
wopt,M,j → wopt,∞,j i.e. as M →∞ and n→∞ the entries of Wopt,M converge to limits as
well. Then,

ŴN
P→Wopt,M (17)

and there is a limiting vector W∞ so that for each M , Wopt,M →W∞,M , the first M entries
of W∞, as n,N →∞ at appropriate rates.
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Proof : For each M , the uniformity in (16) gives

min
W

1

n
Ln(W )

P→ min
W

L∞,M (W ) (18)

If the minW is over W ∈ Hn(N) then (18) with (12) gives

Ln(ŴN )

n

P→ min
W∈Hn(N)

L∞,M (W ) (19)

Since L∞,M (·) has a unique minimum, the Newey-McFadden Theorem (see Theorem 2.1 in
Newey and McFadden (2012)) gives (17).

This is the appropriate consistency result for MMA. The weights converge to limits as do
the parameters in the functions being averaged.

The second kind of result we want is the limiting behavior of the empirical risk. This
follows easily from (12) because it shows that the MMA asymptotically achieves the minimal
empirical squared error. Indeed, we can see that the MMA is better than any individual
model simply considering the weight vector W that puts wj = 1 and wj′ = 0 for j′ 6= j. For
this vector, the MMA is asymptotically better than just using the j-th model alone. The
same reasoning applies if Ln(W ) is replaced by its less empirical form

Ln(ŴN ) =
n∑
i=1

(
M∑
m=1

ŵmx
′
M,i,mΘ∞,m,M − µi(xi)

)2

(20)

that has limit as in (16). It is easily seen that (20) and its empirical form can be expressed
as an oracle inequality such as (2).

Next we turn to the third kind of result we want—this is the most important of the
three results because it addresses predictive performance directly. Our result asymptoti-
cally comparing the squared error for individual predictions from individual models with
predictions from the MMA is the following.

Theorem 2 Under the hypotheses of Prop. 1, if we let M = Mn → ∞ with n → ∞,
slowly, and K →∞ and N →∞ but slow enough that the convergences for m = 1, . . . ,M
are uniformly good then

lim
n→∞

E
(
Y (xn+1)− xn+1(X ′MXM )−1X ′MYn

)2

− E

(
Y (xn+1)−

M∑
m=1

ŵmxn+1(X ′mXm)−1X ′mYn

)2

≥ 0.

(21)

Proof By recalling Y = µ+ ε and bias
L2

→ 0, (21) becomes

lim
n→∞

E
(
µ(xn+1)− xn+1(X ′MXM )−1X ′MYn

)2

− E

(
µ(xn+1)−

M∑
m=1

ŵmxn+1(X ′mXm)−1X ′mYn

)2

≥ 0.

(22)
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(Recall we are setting kM = M for convenience.) Simplifying (22) by using µ(xn+1) =∑M
j=1 θjxj,n+1 +

∑∞
j=M+1 θjxj,n+1 gives that it is equivalent to

lim
n→∞

E

 M∑
j=1

θjxj,n+1 − xn+1Θ̂M

2

− E

 M∑
j=1

θjxj,n+1 −
M∑
m=1

ŵmxn+1Θ̂m

2

≥ 0.

(23)

Examining (23) for fixed kM = Mn = M , ŵm → w∞,m,opt, and Θ̂m→Θ∞,m,M , we have the
second term in (23) goes to

E

 M∑
j=1

θjxj,n+1 −
M∑
m=1

w∞,m,optxn+1Θ∞,m,M

2

= inf
W
L∞,M (W ). (24)

On the other hand, the first term in (23) goes to

E

 M∑
j=1

θjxj,n+1 − xn+1Θ∞,M,M

2

= L∞,M ((0, . . . , 0, 1))

≥ inf
W
L∞,M (W ).

(25)

Taken together, (24) and (25) give (23).

Theorem 2 shows that the MMA will never asymptotically underperform any of its compo-
nent models. This is the key property we want any model average predictor to satisfy.

3. Bayesian Model Averaging

Bayesian model averaging BMA is another model averaging technique that takes model
uncertainty into account by using the posterior weights of models. BMA was first developed
in Leamer (1978); see Geisser (1993), Draper (1995), and Raftery et al. (1996), among
others. Skouras and Dawid (1998) (Theorem 4) established the efficiency of BMA and
Raftery and Zheng (2003) (Theorems 2 and 4) established other asymptotic optimality
properties of BMA under logarithmic scoring rules. These results show that taking model
uncertainty into account improves prediction, see Clyde and George (2004). Taken together,
these show the efficacy of BMA for prediction but do not actually show that the BMA
predictor is better than the predictors of any of it components asymptotically. Here, we
establish this formally.

The central idea of BMA is as follows. Suppose we have J models fj(x | θj), j = 1, . . . , J
and Y (x) = f(x | θj) + ε with density pj(y | x, θj) but that j is unknown. (Later we give
remarks on cases where Y (x) = fT (x) + ε i.e., where no fj is true.) Equip each θj with
a prior w(θj | Mj), where Mj indicates the jth model fj , and let W (Mj) be the across-
models prior for the Mj ’s. When convenient we write p(yi | θj ,Mj) = p(yi | θj) or use
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other simplified notation provided what is meant is clearly indicated. Given data Dn, the
predictive distribution of the future value Yn+1 is

p(yn+1 | Dn) =

J∑
j=1

p(yn+1 |Mj ,Dn)W (Mj | Dn). (26)

This is an average of the conditional predictive distributions p(yn+1 |Mj ,Dn) weighted by
the posterior probability of Mj , W (Mj | Dn), in which

p(yn+1 |Mj ,Dn) =

∫
p(yn+1 | θj ,Mj)w(θj |Mj ,Dn)dθj ,

W (Mj | Dn) =
p(Dn |Mj)W (Mj)∑J
j=1 p(Dn |Mj)W (Mj)

,

and the marginal likelihood under model Mj is

pj(y | x,Mj) =

∫
pj(y | θj , x,Mj)wj(θj |Mj)dθj .

We also write w(θj | Mj ,Dn) = wj(θj | Dn) for the posterior for θj given the data Dn.
The ‘pure’ BMA (26) is defined literally as an average of probability models and hence is a
probability model itself. Here, we only use one of the predictors that can be derived from
this model average. Specifically, the BMA predictor under squared error loss for Yn+1 is

ŶBMA(xn+1) = E(Yn+1(xn+1) | Dn) =

J∑
j=1

W (Mj | Dn)E(Yn+1(xn+1) |Mj ,Dn) (27)

in which

E(Yn+1(xn+1) |Mj ,Dn) =

∫
yn+1(xn+1)p(yn+1(xn+1) |Mj ,Dn)dyn+1.

Being fully Bayesian, the consistency properties of the parameters in a BMA predictor
can be stated and established using standard techniques. There are two kinds of parameters
in (27): The parameters θj in each of the Mj ’s and the Mj ’s themselves. That is, the
posterior weight of a model Mj is also de facto a parameter. Our first result is on consistency
and is the following.

Theorem 3 : Assume the hypotheses of Lemma 1, Lemma 2, and Lemma 4 hold for
pj(y | θj , x,Mj) for j = 1, . . . , J . Also assume the J parametric families are jointly soundly
parametrized, i.e.,

min
j,j′,θj ,θj′ ,x

D(Pj,θj ,x‖Pj′,θj′ ,x) > c (28)

for some c > 0 and that the limit of (1/n)
∑n

i=1 Ii(θ
∗
j∗ | xi) exists as n → ∞. Finally, we

assume that the parameter space and the range of x-values is the same for all j and both
are compact subsets of d-dimensional real space.

Then, i) for all j = 1, . . . , J we have that there are values θ̂∗j∗ so that θ̂j → θ∗j∗ when Mj∗

is taken as true and ii) the posterior weights W (Mj | D) → 0, 1 under Mj∗ when j∗ = j
and j∗ 6= j, respectively.

10
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Remark: The condition (28) is stronger than is required for convergence alone. We
impose it because shortly we will be approximating ŶBMA and want the approximation to
be well-defined.

Proof : First, we verify convergence of the θ̂j ’s—though not necessarily consistency to the
true values. To begin, observe that Lemma 2 ensures the posterior mean of any θj , when j
is taken as true, exists and converges to its correct value θ∗j . Also, for any j taken as true,
the hypotheses of Lemma 4 ensure there exist values θ∗j∗ , for j∗ 6= j, to which the posterior
mean E(θj | Mj ,Dn) converges for any given Mj∗ . The value θ∗j∗ need not be equal to the

limit of the posterior mean E(θj | Mj ,Dn) when the data comes from Mj . Thus, each θ̂j
converges even if it is only consistent under Mj .

Second, we show that the posterior model probabilities converge to one or zero according
to whether the model is true or not. Since we are not in the wrong-model case, write j∗ for
the index of the true parametric family. Now, for any j 6= j∗ we have

W (Mj | Dn) =
pj(Dn |Mj)W (Mj)∑J
j=1 pj(Dn |Mj)W (Mj)

, (29)

where pj(Dn | Mj) =
∫
wj(θj)pj(y

n | θj , xn,Mj)dθj . We want W (Mj | Dn)→ 0 for j 6= j∗,
in p(y | θ∗j∗, x,Mj∗) since this will also give W (Mj∗ | Dn)→ 1. Rewriting (29) gives

W (Mj | Dn) =

∫
wj(θj)pj(yn|θj ,xn,Mj)dθjW (Mj)∫

wj∗ (θj∗ )pj∗ (yn|θj∗ ,xn,Mj∗ )dθj∗W (Mj∗ )

1 +
∑J

j=1,j 6=j∗
∫
wj(θj)pj(yn|θj ,xn,Mj)dθjW (Mj)∫

wj∗ (θj∗ )pj∗ (yn|θj∗ ,xn,Mj∗ )dθj∗W (Mj∗ )

. (30)

It is seen that the numerator and denominator in (30) are based on ratios of the same form,
namely ∫

wj(θj)pj(y
n | θj , xn,Mj)dθjW (Mj)∫

wj∗(θj∗)pj∗(yn | θj∗ , xn,Mj∗)dθj∗W (Mj∗)
. (31)

So, it is enough to show that ratios like (31) go to zero in probability for j 6= j′. To this
end write (31) as

W (Mj)

W (Mj∗)

∫
wj(θj) exp

[
−

(
ln

∫
wj∗(θj∗)pj∗(y

n | θj∗ , xn,Mj∗)dθj∗

pj∗(yn | θ̂j∗, xn,Mj∗)

+ ln
pj∗(y

n | θ̂j∗, xn,Mj∗)

pj∗(yn | θ∗j∗, xn,Mj∗)
+ ln

pj∗(y
n | θ∗j∗, xn,Mj∗)

pj(yn | θj , xn,Mj)

)]
dθj , (32)

where θ̂j∗ is the MLE under Mj∗.

The third term in parentheses in (32) dominates the other two. Indeed, we see that it
equals

n

(
1

n

n∑
i=1

ln
pj∗(yi | θ∗j∗, xi,Mj∗)

pj(yi | θj , xi,Mj)

)
. (33)

11
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The expectation of (33) (with respect to the density pj∗(yi | θ∗j∗, xi,Mj∗)) gives a relative
entropy that, by the soundness condition, is strictly positive. By the law of large numbers,
this relative entropy is the limit of the term in parentheses. So, (33) is OP (n).

The first term in parentheses in (32) is of order OP (lnn). To see this note that Lemma 1
ensures the INID MLE converges to its limit for the sequence of xi’s being used. By a stan-
dard Laplace’s method argument, see Clarke and Barron (1988) Appendix A or DeBruijn
(1958), we can show that∣∣∣∣∣ln

∫
wj∗(θj∗)pj∗(y

n | θj∗ , xn,Mj∗)dθj∗

pj∗(yn | θ̂j∗, xn,Mj∗)

−dj
2

ln
2π

n
−

det

(
1

n

n∑
i=1

Îi(θ̂j∗ | xi)

)1/2
− lnwj∗(θ̂j∗)

∣∣∣∣∣∣→ 0 (34)

in Pθ∗j∗-probability. Standard arguments give that the estimates can be replaced by their
limits so we have

ln

∫
wj∗(θj∗)pj∗(y

n | θj∗ , xn,Mj∗)dθj∗

pj∗(yn | θ̂j∗, xn,Mj∗)

≈ dj∗

2
ln

n

2π
+

det

(
1

n

n∑
i=1

Ii(θ
∗
j∗ | xi)

)1/2
+ lnwj∗(θ

∗
j∗). (35)

So, the first term is O(lnn) and hence dominated in probability by OP (n).
The middle term in (32) has limiting behavior from Wilks’ theorem and so is of order

strictly smaller than any OP (an) for an → ∞. In particular, we can choose an = lnn. To
see this, note the assumptions of Lemma 1 give

2 ln
pj∗(y

n | θ̂j∗ , xn,Mj∗)

pj∗(yn | θ∗j∗ , xn,Mj∗)
= 2(`n(θ̂j∗ | Dn)− `n(θ∗j∗ | Dn)),

where `n is the log likelihood function. Using Taylor’s Theorem to expand `n(θj∗ | Dn)

about θ̂j∗ gives

`n(θj∗ | Dn)− `n(θ̂j∗ | Dn) = ˙̀
n(θ̂j∗ | Dn)(θj∗ − θ̂j∗)− n(θj∗ − θ̂j∗)TAn(θj∗ | Dn)(θj∗ − θ̂j∗).

It is seen that ˙̀
n(θ̂j∗ | Dn) = 0 and from the proof of Lemma 2

An(θj∗ | Dn) = − 1

n

∫ 1

0

∫ 1

0
v ῭
n(θ̂j∗ + uv(θj∗ − θ̂j∗))dudv

≈ 1

2
· 1

n

n∑
i=1

Ii(θj∗ | xi).

Now, by mild abuse of notation, we have

2 ln
pj∗(y

n | θ̂j∗ , xn,Mj∗)

pj∗(yn | θ∗j∗ , xn,Mj∗)
= 2n(θj∗ − θ̂j∗)TAn(θj∗ | Dn)(θj∗ − θ̂j∗)

≈ n(θj∗ − θ̂j∗)T
[

1

n

n∑
i=1

Ii(θj∗ | xi)

]
(θj∗ − θ̂j∗).

12
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Lemma 1 gives that
√
n(θ̂j∗ − θj∗) ≈ N

(
0, [1/n

∑n
i=1 Ii(θj∗ | xi)]

−1
)

. Using this in the last

expression gives that asymptotically

2 ln
pj∗(y

n | θ̂j∗ , xn,Mj∗)

pj∗(yn | θ∗j∗ , xn,Mj∗)

L→ χ2
dj∗

(36)

which is smaller than any OP (an) with an →∞; e.g., an = log log n.
Our analysis of (32) shows it is exp(−OP (n) − OP (lnn) − OP (an)), where α is the

limiting factor on the leading term (n in the exponent) and is the limit of the average in
(33). Clearly, (30) is essentially of the form (31)j/(1+

∑
j∗ 6=j(31)). So, we can multiply the

numerator and the denominator by eαn. Consequently, (30) is of the form

1 + eαne−OP (lnn)−OP (an)

eαn +
∑

j∗ 6=j(1 + eαne−OP (lnn)−OP (an))

where the numerator is for j. Thus, we see that for j 6= j∗, W (Mj | Dn)→ 0 in probability
as n→∞ and consequently W (Mj∗ | Dn)→ 1.

Next, we compare the empirical risk of BMA with the empirical risk of its component
models. As discussed in Secs. 1 and 2, this is the second sort of result that is useful with
model averages. So, suppose j∗ indexes the true model. Then, the empirical risk of Mj∗ is

Ln(Mj∗) =
n∑
i=1

(yi − Ej∗(Y (xi) | Dn))2

=

n∑
i=1

(yi −
J∑
j=1

W (j | D)Ej(Y (xi) | Dn))2

+
n∑
i=1

(
J∑
j=1

W (j | D)Ej(Y (xi) | Dn)− Ej∗(Yi | D))2

+ 2
n∑
i=1

(yi −
J∑
j=1

W (j | D)Ej(Y (xi) | Dn))(
J∑
j=1

W (j | D)Ej(Y (xi) | Dn)− Ej∗(Yi | D))

= L(BMA) +
n∑
i=1

(
J∑

j 6=j∗
W (j | D)Ej(Y (xi) | Dn) + (W (j∗ | D)− 1)Ej∗(Y (xi) | Dn))2

+ 2

n∑
i=1

(yi −
J∑
j=1

W (j | D)Ej(Y (xi) | Dn))

× (

J∑
j 6=j∗

W (j | D)Ej(Y (xi) | Dn) + (W (j∗ | D)− 1)Ej∗(Y (xi) | Dn).

(37)

To obtain the desired bounds on empirical risks, we show that the last two terms on the
right in (37) go to zero at an exponential rate in probability. Fundamentally, this is a
property of Bayes consistency on a discrete space namely the model indices j = 1, . . . , J .
Since Bayes consistency is exponentially fast we have the following.
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Theorem 4 : Assume that for each θj ∈Mj for j = 1, . . . , J we have that

Ej sup
|θ′j−θj |≤δ

| ∂2

∂θj,k∂θ,`
log pj(X | θ′)|2 < B

for k, ` ranging over 1, . . . ,dim(θj) where B > 0. Also, assume that the Renyi relative
entropy of order 1 + λ

1

λ
log

∫
pj(x | θj)

(
pj(x | θj)
pj(x | θ′j

)λ
dx

is uniformly bounded over θj and θ′j for all j. Then, for j = 1, . . . , J , when Mj is true, as
n→∞, we have

|Ln(BMA)− Ln(Mj∗)| = oP
(
e−αn

)
, (38)

for some α > 0.

Proof : It is enough to examine the posterior probabilities in last two terms on the right
of (37). Observe that the hypotheses of Theorem 4 include the hypotheses of Proposi-
tion 1 in Clarke (1999). Thus, this Proposition applied in the independent not identical
case for the mixed continuous and discrete parameter space (Θ1 ∪ . . . ∪ ΘJ) × {1, . . . , J}
gives that the model weights converge where they should exponentially fast in probability.
That is, there is a α′ > 0 so that in (37), Pj(W (j | D) ≥ e−αn) ≤ e−α

′n for j 6= j∗ and
Pj∗(W (j∗ | D) ≥ e−αn) ≤ e−α

′n. Using this with bounds on the posterior means gives
that each term on the right in (37) is Op(e−α

′n). Since there are n terms (the sums over
i = 1, . . . , n), it is enough to choose a value α ∈ (0, α′) to satisfy (38).

Expression (38) is evidence that BMA provides no worse prediction on average, under
squared error loss, than using the predictor from the best model in the BMA and it is easy
to modify the proof to see that L(BMA) ≤ L(Mj∗) + O(e−αn) and L(Mj∗) < L(Mj) +
C(j, j∗) +O(e−αn) for j 6= j∗ where C(j, j∗) > 0 depends on how close the j-th and j∗-th
parametric families are.

However, Theorem 4 is in cumulative error over n predictions, not the error of an
individual prediction. To address individual predictions, we state and prove a result in the
same spirit as Theorem 2 but for M-complete and M-closed DG’s.

We begin by noting that expression (27) has a convenient approximation. If Mj is the
true model so that Y (x) = fj(x | θj) + ε we have

E(Yn+1(xn+1) |Mj ,Dn) =

∫
yn+1(xn+1)mj(yn+1(xn+1) | Dn)dyn+1

and we are led to consider the approximation to the BMA given by

ŶBMA,app(x) =

J∑
j=1

W (Mj | Dn)fj(x | E(θj | Dn)), (39)

where E(θj | Dn) is a the posterior mean estimator for θj,T when model Mj is true and for
θ∗j∗ when Mj∗ is true. As a first step to showing Theorem 5 we verify that (39) and (27)
are asymptotically close.
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Proposition 1 : Assume the hypotheses of Theorem 3. Then,

| ŶBMA(x)− ŶBMA,app(x) | P→ 0 pointwise in x, (40)

in Mj∗, whichever of the J models is the overall true model.

Remarks: First, for linear models ŶBMA,app(x) = ŶBMA(x). So, the Proposition is
immediate. Second, we conjecture that this proposition holds not just in the INID setting
but also in the wrong-model INID setting i.e., when the true model is not in any of the Mj ’s.
That is, there is some INID MT distinct from all the INID Mj ’s in which convergence must
be assessed. In the notation of Berk (1966) (for the IID case), if we only use one Mj when
MT is true then θ∗j = arg minθj ηj(θj) and the minimum is denoted η∗j = η∗(θ∗j ). In White
(1982), we have ηj(θ) = ET ln(pT (y)/pj(y | θj)) where T indicates the true density. So,
following White (1982) in the IID case, θ∗j = arg minD(pT ‖pθj ). (This must be averaged
over x but we have omitted this for ease of exposition.) So, it seems intuitive that the
posterior model weight corresponding to

(j∗, θ∗) = arg min
j,θj

D(PT ‖Pj,θj )

will go to one and the posterior model weights for other Mj ’s will go to zero. We believe
this will follow from Lemmas 3 and 4 that generalize Berk (1966) and White (1982) to the
wrong-model INID settings. Note that in the present case we are using multiple models Mj .
So, there are ‘wrong’ models. However, we are assuming that one of the Mj ’s is correct.
Proof : For any j taken as true, the hypotheses of Lemma 4 ensure there exist values θ∗j∗ ,
for j∗ 6= j, to which the posterior mean E(θj | Mj ,Dn) converges for any given Mj∗ . The
value θ∗j∗ need not be equal to the posterior mean of E(θj | Mj ,Dn) when the data comes
from Mj . Lemma 2 ensures the posterior mean of any θj , when j is taken as true, exists
and converges to its correct value θ∗j . This ensures that ŶBMA,app is well-defined regardless
of which Mj is true.

By using these facts about the posterior means and then using Theorem 3 to identify
the limits of the posterior model weights we have when j∗ indexes the true model class that

| ŶBMA(xn+1)− ŶBMA,app(xn+1) |

=

∣∣∣∣∣∣
J∑
j=1

W (Mj | Dn) [E(Yn+1(xn+1) |Mj ,Dn)− fj(xn+1 | E(θj |Mj ,Dn))]

∣∣∣∣∣∣
≈
∣∣∣E(Yn+1(xn+1) |Mj∗ ,Dn)− fj∗(xn+1 | E(θj∗ |Mj∗ ,Dn))

∣∣∣.
Both terms in the last expression have the same limit, namely fj∗(xn+1 | θ∗j∗). So, the
statement of Prop. 1 follows.

Our analog to Theorem 2 for BMA is the following. It is different in character from
Theorem 2 (and Theorem 8 in Sec. 4) because posterior model weights generally only
converge to zero or one as seen in Theorem 3. That is, they are doing model selection more
than model approximation. Again, this result is for the INID but not wrong-model setting.
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Theorem 5 Assume the hypotheses of Prop. 1 and that for some fixed j∗ YT (x) = Y (x) =
fj∗(x | θ∗j∗) + ε where ε has mean zero and variance σ2. Then, provided each θ̂j = E(θj |
Mj ,Dn) is consistent for some θ∗j under model fj∗ as n→∞ we have

lim sup
n→∞

(∫
EY (Y (x)− fj(x | θ̂j))2dx−

∫
EY (Y (x)− ŶBMA(x))2dx

)
≥ 0.

Proof We have

EY (Y (x)− ŶBMA(x))2 = EY (Y (x)− ŶBMA(x)± EY (x))2

= EY (Y (x)− EY (x))2 + EY (EY (x)− ŶBMA(x))2

+ 2EY

[
(Y (x)− EY (x))(EY (x)− ŶBMA(x))

]
.

The last term is zero because the first factor in this term is for xn+1 and the other factor
in this term is for xi, i ≤ n. So, the factors are independent, the expectation factors, and
the first expectation is zero. We repeat this argument by adding and subtracting ŶBMA,app

to get

EY (Y (x)− ŶBMA(x))2 = σ2 + EY (EY (x)− ŶBMA(x)± ŶBMA,app(x))2

= σ2 + EY (EY (x)− ŶBMA,app(x))2 + EY (ŶBMA(x)− ŶBMA,app(x))2

+ 2EY

[
(EY (x)− ŶBMA,app(x))(ŶBMA(x)− ŶBMA,app(x))

]
By the compactness assumptions of Prop. 1 and the bounded moment conditions assumed

earlier, we can use the statement of Prop. 1 i.e., ŶBMA(x) − ŶBMA,app(x)
P→ 0 for each x,

to see that the third and fourth terms goes to 0 pointwise in x. Hence, asymptotically,

EY (Y (x)− ŶBMA(x))2 = σ2 + EY (EY (x)− ŶBMA,app(x))2 + oP (1)

= σ2 + EY

(
fj∗(x | θ∗j∗)−

J∑
j=1

W (Mj | Dn)fj(x | E(θj |Mj ,Dn))
)2

+ oP (1)

≈ σ2 + EY

(
fj∗(x | θ∗j∗)− fj∗(x | E(θj∗ |Mj∗ ,Dn))

)2

≈ σ2 +
(
fj∗(x | θ∗j∗)− fj∗(x | θ∗j∗)

)2
≈ σ2, (41)

where θ∗j∗ is the correct value θj∗ from the best fj∗(x | θj∗).
For the other side of the inequality in Theorem 5 we fix j, use similar arguments as

before and get

EY (Y (x)− fj(x | θ̂j))2 = EY (Y (x)− fj(x | θ̂j)± EY (x))2

= EY (Y (x)− EY (x))2 + EY (EY (x)− fj(x | θ̂j))2

+2EY

[
(Y (x)− EY (x))(EY (x)− fj(x | θ̂j))

]
= σ2 + EY

(
fj∗(x | θ∗j∗)− fj(x | E(θj |MT ,Dn))

)2

≈ σ2 +
(
fj∗(x | θ∗j∗)− fj(x | θ∗j )

)2
, (42)
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where θ∗j is the best θj from Mj (but not necessarily best from Mj∗). So, as n→∞, we get
that

EY (Y (x)− ŶBMA(x))2 ≤ EY (Y (x)− fj(x | θ̂j))2. (43)

from (41) and (42), pointwise in x, for each fixed j, giving the theorem.

For expression (43) to hold requires that fT (x) = fj∗(x | θ∗j∗) for some specific optimal
θ∗j∗ . If that fails then the best (wrong) model is the one indexed by the θj∗ value that gives
a distribution closest to PT in relative entropy, not necessarily the same as in squared error,
as first identified in Berk (1966). If we assume that the posterior weights are well-behaved,
we obtain the following extension of Theorem 5 to the wrong model setting.

Corollary 1 Let Y = fT (x) + ε and let j∗ = arg minj D(fT ‖fj(θj)) and assume the other
hypotheses of Prop.1. If W (Mj∗ | D)→ 1, then∫

E(Y (x)− ŶBMA(x))2dx ≤
∫
E(Y − fj(x|θ̂j))2dx.

Proof Rewrite the proof of Theorem 5 using fT in place of fj∗ .

Some comments on more general and verifiable hypotheses for Cor. 1 are worth making.
These elaborate on the Remark after Prop. 1 in view of the proofs of that result and
Theorem 5. If the setting is that the true model is MT not one of the Mj ’s then convergences
of quantities derived from any Mj must be assessed in MT , about which we know little. By
contrast, in the results so far, we assessed convergence in Mj∗ . To generalize Prop. 1, we
require all of its assumtions plus Lemma 3. In principle, Lemma 3 permits us to generalize
the main result in Clarke and Barron (1988) to the wrong model INID case so that the
wrong model INID version of (34) will hold. Likewise, Lemma 3 can be used to generalize
Lemma 1 to get a generalization of Wilks theorem to control (36). Since the leading term
O(n) is unchaged we get a more general version of Prop. 1 that gives the convergence of
the posterior weights as needed in Cor. 1. We also get the more general statement of Prop.
1 for use in a wrong-model INID version of Theorem 5 mentioned in the proof of Cor. 1
where we noted the proof is unchanged apart from using MT and a different j∗.

To conclude this section, we note that if p is allowed to increase slowly in the fj(x | θj)’s
then as n→∞ all of the results continue to hold.

4. The Stacking Model Average Predictor

Stacking was first introduced by Wolpert (1992) and studied primarily as a predictor in
numerous contexts such as regression Breiman (1996a), Clarke (2003), Sill et al. (2009),
classification Ting and Witten (1999), Ozay and Vural (2012), and density estimation Smyth
and Wolpert (1999). Stacking has also been used to estimate error rates Rokach (2010).

Stacking has usually been seen as a frequentist procedure. However, Clyde and Iversen
(2013) explicitly extended stacking toM-open problems, brought it into the Bayes paradigm,
and examined the effect of varying the constraints on α in the optimization (44). Le and
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Clarke (2017) formally showed that stacking can be regarded as the Bayes action under
several loss functions, asymptotically.

The basic idea is that the models in F can be usefully combined to give the predictor

Ŷstack(x) =

J∑
j=1

α̂j f̂j(x).

The α̂j ’s are obtained by invoking an optimality property similar to cross-validation. More

formally, let f̂j,−i be the estimate of fj using n − 1 of the n data points and dropping the
i-th one. Then the estimated weight vector α̂ = (α̂1, · · · , α̂J) is

α̂ = arg min
α

n∑
i=1

yi − J∑
j=1

αj f̂j,−i(xi)

2

. (44)

Expression (44) corresponds to leave-one-out cross-validation but can be modified to corre-

spond to leave-K-out cross-validation. Also, α ∈ RJ but may be restricted, e.g. to R+J or
the simplex in RJ .

In this section we establish the same three kinds of results for stacking as we described
in general for model averages in Sec. 1 and established for MMA in Sec. 2. Recall, these
are consistency of parameter estimates, an oracle style inequality for the empirical risk,
and better asymptotic performance of the model average predictor than its component
predictors. We begin by showing these results for fix p and then state the extension of the
results for increasing p.

For each j = 1, . . . , J let pj(· | θj) be the density corresponding to Mj , equipped with a
prior density wj(θj) leading to the posterior density wj(θj | Dn). We assume θj ∈ Θj ⊂ Rdj
and that each Θj is open with compact closure satisfying Θ̄o

j = Θj . First, we have the
following theorem. Here we assume x ∈ X , a compact set, and that it is the x-values that
make the pj(y | x, θj) independent but not identical (INID).

Our consistency result is the following.

Theorem 6 : Assume Yi = fT (xi | θ) + εi, where the εi’s are IID mean zero and variance
σ2 and for all x fT (x | θ) =

∑J
j=1 αjfj(x | θj) + eJ(x | θe) with θ = (θ1, . . . , θJ), where for

each fixed set of θj’s, θe is a function of θ1, . . . , θJ , the fj’s are orthonormal (under F ),
continuous, bounded on their domain, orthogonal to eJ in L2, and eJ(x | θe)→ 0 as J →∞.
Write the stacking predictor for step n + 1 as Ŷstack(xn+1) =

∑J
j=1 α̂jfj(xn+1 | θ̂j) where

the αf ’s are as in (44). Then, provided each θ̂j is consistent for θj in pT , the distribution
of Y , as n→∞ we have that, for all j = 1, . . . , p

α̂j → αj in pT . (45)

Remark 1: The basic technique of proof extends to the case of constrained αj ’s but
becomes more complicated because it uses Theorem 3.1 (or Corollary 3.1) in Le and Clarke
(2017) rather than Theorem 3.2.

Remark 2: Sufficient conditions for the consistency of the θ̂j ’s are given in Lemma 1
and Lemma 2 in Appendix A.1 and Lemma 3 and Lemma 4 in Appendix A.2.

18



Model Averaging Is Better Than Model Selection

Proof : Theorem 3.2 in Le and Clarke (2017) gives that the stacking weights α̂ = (α̂1, . . . , α̂J)
achieving

min
α

n∑
i=1

yi(xi)− J∑
j=1

αj ŷj,−i(xi)

2

are of the form

α̂ = T−1
n c, (46)

where

Tn =
1

n

(
n∑
i=1

ŷl,−i(xi)ŷj,−i(xi)

)
J×J

,

c =
1

n

(
n∑
i=1

yi(xi)ŷ1,−i(xi), · · · ,
n∑
i=1

yi(xi)ŷJ,−i(xi)

)′ (47)

and ŷl,−i(xi) = fl(xi | θ̂l(x̂i) and x̂i means that xi is omitted, for ` = 1, . . . , J .
To see that the α̂j ’s are consistent for the true values αj , begin by writing

1

n

n∑
i=1

ŷl,−i(xi)ŷj,−i(xi) =
1

n

n∑
i=1

fl(xi | θ̂l(x̂i))fj(xi | θ̂j(x̂i))

=
1

n

n∑
i=1

(
fl(xi | θ̂l(x̂i))− fl(xi | θl)

)
fj(xi | θ̂j(x̂i))

+
1

n

n∑
i=1

fl(xi | θl)
(
fj(xi | θ̂j(x̂i))− fj(xi | θj)

)
+

1

n

n∑
i=1

fl(xi | θl)fj(xi | θj).

(48)

By the consistency of θ̂(x̂i) for any i, the dominated convergence theorem gives that the
first and second terms in the right hand side of (48) go to 0. Thus,

1

n

n∑
i=1

fl(xi | θ̂l(x̂i))fj(xi | θ̂j(x̂i)) =
1

n

n∑
i=1

fl(xi | θl)fj(xi | θj) + oP (1), (49)

and by the law of large numbers

1

n

n∑
i=1

fl(xi | θl)fj(xi | θj)→
∫
fl(x | θl)fj(x | θj)dF (x). (50)

So, for Ŷstack formed from an orthonormal basis as before, we have that

1

n

n∑
i=1

fl(xi | θ̂l(x̂i))fj(xi | θ̂j(x̂i)) =

{
oP (1), if l 6= j

1 + oP (1), if l = j
, (51)
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and therefore

Tn = (1 + oP (1))IdJ . (52)

Using (52) with (47) we get

α̂ = (1 + oP (1))IdJ ∗ c, (53)

since 1/(1 + oP (1)) = 1 + oP (1).
From (47), the typical entry in c is

1

n

n∑
i=1

yi(xi)ŷj,−i(xi) =
1

n

n∑
i=1

(fT (xi | θT ) + εi)fj(xi | θ̂j(x̂i))

=
1

n

n∑
i=1

fT (xi | θT )fj(xi | θ̂j(x̂i)) +
1

n

n∑
i=1

εifj(xi | θ̂j(x̂i)).
(54)

We see that the second term in (54) is oP (1) by writing it as

1

n

n∑
i=1

εifj(xi | θj) +
1

n

n∑
i=1

εi

[
fj(xi | θ̂j(x̂i))− fj(xi | θj)

]
.

The first sum has IID terms since the Xi ∼ F are IID and independent of the εi’s that
are also IID. The limit of the sum is zero a.s. since the expectation of each εi is zero.
The second sum is also oP (1) but there are a few more steps to the argument. Write
Uni = fj(xi | θ̂j(x̂i))− fj(xi | θj) and note Uni is independent of εi. By Markov’s inequality,
for any ε > 0 we have

P

(∣∣∣∣∣ 1n
n∑
i=1

εiU
n
i

∣∣∣∣∣ ≥ ε
)
≤ E |ε1|

nε

n∑
i=1

E |Uni |

≤ E |ε1|
nε

n∑
i=1

E |Uni |χ{|Un
i |≤η} +

E |ε1|
nε

n∑
i=1

E |Uni |χ{|Un
i |>η}

≤ E |ε1|
ε

η +
E |ε1|
nε

n∑
i=1

√
E |Uni |

2 P (|Uni | > η) (55)

for any η > 0, using Cauchy’s inequality in the last step. The summands in (55) are a
product of terms that are bounded or oP (1). Accordingly, (55) is oP (1) and so is the second
sum. So, (54) is

1

n

n∑
i=1

fT (xi | θT )fj(xi | θ̂j(x̂i)) =
1

n

n∑
i=1

fT (xi | θT )fj(xi | θj) + oP (1). (56)

Now as n→∞ we get

1

n

n∑
i=1

fT (xi | θT )fj(xi | θj) =

∫
fT (x | θT )fj(x | θj)dF (x). (57)
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Using (57) in (53) gives that

α̂j
P→
∫
fT (x | θT )fj(x | θj)dF (x) = αj . (58)

So, in the absence of constraints the estimated stacking coefficients are consistent for the
Fourier coefficients of fT with respect to the orthonormal functions being stacked.

Next we turn to the empirical risk. Since the stacking coefficients are derived from
a condition similar to cross-validation we will see that dropping one data point does not
affect convergence of predictors. Indeed, the proof can be extended to show that dropping
any finite number of data points does not affect convergence thereby permitting leave-k-out
cross-validation if desired.

Our first result states and proves a result on dropping data points from Bayes predictors
posterior means. Only the latter clause is used in the sequel however we think the fist clause
is of independent interest.

Proposition 2 : Assume the conditions of Lemma 1 and Lemma 2.
Clause I: If, for each j = 1, . . . , J , the Bayes predictor

f̂j(xn+1) = Ej(Yn+1 | Dn) =

∫ ∫
yn+1pj(yn+1 | xn+1, θj)wj(θj | Dn)dθjdyn+1

is used to generate predictions at the n+ 1 step and the EjYn+1’s are uniformly bounded as
functions of x over all values of j and n, then

sup
x∈X

[
f̂j(x)− f̂j,−i(x)

]
= sup

x∈X
[Ej(Yn+1 | Dn)− Ej(Yn+1 | Dn,−i)]→ 0

almost everywhere in model Mj as n→∞, where Dn,−i = Dn \ {(xi, yi)}.
Clause II: The same results hold if the posterior expectation of Yn+1 is replaced by Θj, i.e.,
Ej(Yn+1 | Dn) is replaced by Ej(Θj | Dn) and similarly for Dn,−i.

Proof : Let (xn+1, Yn+1) be a new data point. For any fixed model index j, write

f̂j,−i(xn+1) = Ej(Yn+1 | Dn,−i) =

∫ ∫
yn+1pj(yn+1 | xn+1, θj)wj(θj | Dn,−i)dθjdyn+1.

Also note that

wj(θj | Dn) = wj(θj | (x1, y1), . . . , (xn, yn)),

wj(θj | Dn,−i) = wj(θj | (x1, y1), . . . , (̂xi, yi), . . . , (xn, yn)),

where the caret ̂ means the term is deleted. Therefore,

|f̂j(xn+1)− f̂j,−i(xn+1)|

≤
∫
|yn+1|

∫
[pj(yn+1 | xn+1, θj) |wj(θj | Dn)− wj(θj | Dn,−i)|] dθjdyn+1

(59)
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Let θ̂n,j be the MLE of θj defined in Lemma 1. For xn+1 ∈ X (compact) and yn+1 ∈ Y
(compact), since pj(yn+1 | xn+1, θj) is bounded, Lemma 2 gives that the right hand side of
(59) is bounded by

M

∫ ∣∣∣∣∣∣wj(θj | Dn)−N

θ̂n,j ,[ n∑
i=1

Ii(θ0j | xi)

]−1
∣∣∣∣∣∣ dθj

+M

∫ ∣∣∣∣∣∣N
θ̂n,j ,[ n∑

i=1

Ii(θ0j | xi)

]−1
−N

θ̂n,j,−i,
∑
k 6=i

Ik(θ0j | xk)

−1∣∣∣∣∣∣ dθj
+M

∫ ∣∣∣∣∣∣N
θ̂n,j,−i,

∑
k 6=i

Ik(θ0j | xk)

−1− wj(θj | Dn,−i)
∣∣∣∣∣∣ dθj ,

which does not depend on xn+1 for some constant M . Hence,

sup
xn+1∈X

|f̂j(xn+1)− f̂j,−i(xn+1)|

≤M
∫ ∣∣∣∣∣∣wj(θj | Dn)−N

θ̂n,j ,[ n∑
i=1

Ii(θ0j | xi)

]−1
∣∣∣∣∣∣ dθj

+M

∫ ∣∣∣∣∣∣N
θ̂n,j ,[ n∑

i=1

Ii(θ0j | xi)

]−1
−N

θ̂n,j,−i,
∑
k 6=i

Ik(θ0j | xk)

−1∣∣∣∣∣∣ dθj
+M

∫ ∣∣∣∣∣∣N
θ̂n,j,−i,

∑
k 6=i

Ik(θ0j | xk)

−1− wj(θj | Dn,−i)
∣∣∣∣∣∣ dθj ,

(60)

Using Scheffé’s theorem and Lemma 2 gives convergence in L1 for the first and third
terms in (60), since by Lemma 1 θ̂n,j − θ̂n,j,−i

a.s.→ 0. For the middle term of (60), note that∑n
i=1 Ii(θ0j | xi) → ∞ and

∑
k 6=i Ik(θ0j | xk) → ∞. Now, Lemma 1 again implies then the

middle term goes to 0.

Remark: This result can be generalized to the case that pT /∈ F by using θ̂n,j in a more
complicated argument starting at (59) and using Lemma 4. For actual usage, sufficient
conditions for the EjYn+1’s be uniformly bounded in j and n can be obtained by assuming
x varies over a compact set, by assuming that the tail behavior of the fj ’s in terms of x is
properly controlled, by assuming that the range of θj is restricted, or by a combination of
such assumptions.

Observe that the cumulative predictive loss of the stacking average under squared error
loss is

Ln(Stacking) =
n∑
i=1

(yi − Ŷstack(xi))2 =
n∑
i=1

(yi −
J∑
j=1

α̂j f̂j(xi))
2,
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and the cumulative predictive loss from using individual model Mj is

Ln(Mj) =
n∑
i=1

(yi − f̂j(xi))2.

So, we can use Prop. 2 and Lemma 5 to get a result for theM-complete and -closed cases.
For any j, the definition of the stacking coefficients gives

Ln(Stacking)

=
n∑
i=1

(yi −
J∑
j=1

α̂j f̂j,−i(xi))
2 ≤

n∑
i=1

(yi − f̂j,−i(xi))2.
(61)

When a problem is M-complete or -closed, the true model exists even if it’s inaccessible,
and hence can be used to define a mode of convergence. Using the posterior means as
estimators for the θj ’s, write

n∑
i=1

(yi − f̂j,−i(xi))2 =

[
n∑
i=1

(yi − f̂j,−i(xi))2 −
n∑
i=1

(yi − f̂j(xi))2

]

+

n∑
i=1

(yi − f̂j(xi))2,

(62)

and consider the differences

(yi − f̂j,−i(xi))2 − (yi − f̂j(xi))2

= (f̂j(xi)− f̂j,−i(xi))(2yi − f̂j,−i(xi)− f̂j(xi))
= f ′j(xi | θ̂∗j ) (Ej(Θ | Dn)− Ej(Θ | Dn,−i)) (2yi − fj(xi | Ej(Θ | Dn))− fj(xi | Ej(Θ | Dn,−i)) ,

(63)

where we have used a first order Taylor expansion in the first factor. It is easy to see that
the first factor in (63) is bounded since the fj ’s are continuous functions on compact sets.
The second factor in (63) goes to zero in probability by the same proof as Prop. 2 applied
to the posterior means of θj ’s rather than Yi’s. Now, using Lemma 5 for parameters rather
than Y ’s, on (63) and then applying Lemma 6 gives us the following bound on the pointwise
error of stacking.

Theorem 7 : Assume the hypotheses of Proposition 2 and Lemmas 5 for parameters and
Lemma 6. For j = 1, . . . , J , when Mj is true, as n→∞, we have

Ln(Stacking) ≤ Ln(Mj) + oP (n) , (64)

Remark: In fact, if we use
√
n(Ej(Θ | Dn) − Ej(Θ | Dn,−i)) = OP (1), as is easy to show

by standard techniques, see the proof of Prop. 2 or Clarke (1989) p. 71, Theorem 7 can be
readily improved to

Ln(Stacking) ≤ Ln(Mj) +OP
(
1/
√
n
)
.
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Proof : Lemma 5 for parameters, see (63), shows that (yi − f̂j,−i(xi))2 − (yi − f̂j(xi))2 =

(f̂j(xi) − f̂j,−i(xi))(2yi − f̂j,−i(xi) − f̂j(xi)) = oP (1) uniformly. Then, by Lemma 6 and
Proposition 2 for parameters the first term on the right of (62) is oP (n) in model Mj as
n→∞ and the second term is Ln(Mj) for any j = 1, . . . , J . Therefore,

Ln(Stacking) ≤ Ln(Mj) + oP (n) ,

as n→∞ for j = 1, . . . , J when Mj is true.

Remark: The introduction of new parameters αj for j = 1, . . . , J can in principle lead
to a stacking average that overfits the data in which case generalisation would be poor.
However, Breiman (1996a) advocates choosing the fj ’s to be as different from each other as
possible and here we are assuming n large. In these settings, any overfitting will typically
be slight.

Expression (64) is evidence that stacking provides no worse prediction on average, under
squared error loss, than using the predictor from any single model in the stacking average.
However, our result is in cumulative error over n predictions, not the error of an individual
prediction. It is usually easier to prove results such as (64) rather than their prequential
versions even though cumulative prequential loss is usually smaller than regular cumulative
loss. For prequential results inM-complete andM-closed cases see Dawid (1984), Skouras
and Dawid (1998), Dawid and Vovk (1999), and Skouras and Dawid (1999). In many such
cases, ordering the performance of methods by prequential cumulative loss is the same as
ordering of methods by regular cumulative loss. So, sometimes it may be satisfactory to
compare predictors in M-open cases using regular cumulative loss.

To address individual predictions, we state and prove a result in the same spirit as (64)
but for M-complete and M-closed DG’s. When we take expectations over X we denote
the distribution function by F .

Theorem 8 : Assume Yi = fT (xi | θ) + εi, where the εi’s are IID mean zero and variance
σ2 and for all x fT (x | θ) =

∑J
j=1 αjfj(x | θj) + eJ(x | θe) with θ = (θ1, . . . , θJ), where for

each fixed set of θj’s, θe is a function of θ1, . . . , θJ , the fj’s are orthonormal (under F ),
continuous, bounded on their domain, orthogonal to eJ in L2, and eJ(x | θe)→ 0 as J →∞.
Write the stacking predictor for step n + 1 as Ŷstack(xn+1) =

∑J
j=1 α̂jfj(xn+1 | θ̂j) where

the αj’s are as in (44). Then, provided each θ̂j is consistent for θj in pT , the distribution
of Y , as n→∞ we have

lim sup
n→∞

EY (Y (x)− fj(x | θ̂j))2 − EY (Y (x)− Ŷstack(x))2 ≥ 0 (65)

pointwise in x, and, by the properties of eJ and the fj’s,

lim sup
n→∞

(∫
EY (Y (x)− fj(x | θ̂j))2dx−

∫
EY (Y (x)− Ŷstack(x))2dx

)
≥ 0. (66)

Remarks: (i) One common choice for the θ̂j ’s are the posterior means of the θj ’s. (ii)
Theorem 8 means that the stacking predictor is closer to Y than the plug-in predictor from
any individual model Mj is.
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Proof : It is enough to compare the squared error of stacking with model j. Our hypotheses
give that

fT (x) =
J∑
j=1

αjfj(x | θj) + eJ(x | θ), (67)

where eJ ⊥ fj for all j and eJ(x | θ)→ 0 in L2 as J →∞, and

Ŷstack(x) = fstack(x) =

J∑
j=1

α̂jfj(x | θ̂j). (68)

Also, we can assume that the α̂j ’s are in a compact set. Now,

EY (Y (x)− fstack(x))2 = EY

Y (x)−
J∑
j=1

α̂jfj(x | θ̂j)

2

= EY

Y (x)− EY (x) + EY (x)−
J∑
j=1

α̂jfj(x | θ̂j)

2

= EY (Y (x)− EY (x))2 + EY

EY (x)−
J∑
j=1

α̂jfj(x | θ̂j)

2

+ 2EY

(Y (x)− EY (x))

EY (x)−
J∑
j=1

α̂jfj(x | θ̂j)

 .
Since the difference Y (x)−EY (x) = εn+1 with E(εn+1) = 0 and independent of earlier data
i.e. for i ≤ n, we have

EY (Y (x)− fstack(x))2 = σ2 + EY

 J∑
j=1

αjfj(x | θj) + eJ(x | θ)−
J∑
j=1

α̂jfj(x | θ̂j)

2

= σ2 + e2
J(x | θ) + EY

 J∑
j=1

αjfj(x | θj)−
J∑
j=1

α̂jfj(x | θ̂j)

2

.

Using consistency of θ̂j ’s and α̂j ’s, the dominated convergence theorem gives

EY (Y (x)− fstack(x))2 = σ2 + e2
J(x | θ) + oP (1)

= σ2 + oP (1), (69)

for J = Jn →∞, i.e., for n large enough.
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Next, for any individual model Mk, similar arguments give

EY (Y (x)− fk(x | θ̂k))2 = σ2 + EY

 J∑
j=1

αjfj(x | θj) + eJ(x | θ)− fk(x | θ̂k)

2

= σ2 +

 J∑
j=1

αjfj(x | θj) + eJ(x | θ)− fk(x | θk)

2

= σ2 +

 J∑
j=1

(αj − 1k,j)fj(x | θj) + eJ(x | θ)

2

= σ2 +

 J∑
j=1

(αj − 1k,j)fj(x | θj)

2

+ oP (1) (70)

for J = Jn →∞, i.e., for n large enough, where 1k,j = 1 if k = j and 0 otherwise.
Therefore, in the limit, the right hand side of (70) bigger than the right hand side of

(69) for any x with equality if and only if there exists an j such that fj = fT . So, (65)
follows. Now, expression (66) follows by the dominated convergence theorem.

To conclude this section we consider increasing dimension of x and θ. Let us reinterpret
the notation from Theorem 8 to mean that in Yi = fT (xi | θ) + εi and fT (x | θ) =∑J

j=1 αjfj(x | θj) + eJ(x | θe) we mean that fj for j ≤ J = Jp has arguments x and θj
with dim(x),dim(θj) ≤ p and any dependence on dimensions p+ 1, p+ 2, . . . is in eJ(x | θe).
Then it is easy to verify that for p → ∞ slow enough the corresponding statements of the
results in this section remain true. In particular, Theorems 6, 7 and 8 continue to hold in
the limit as p = pn →∞ slowly with n as n→∞.

5. Bagging

A fourth model averaging technique is bagging (‘bootstrap aggregating’). It was introduced
by Breiman (1996b) as a general strategy to improve the precision of model-based predictors.
Usually, the model is thought to be good in the sense of being unbiased but gives predictors
that are highly variable so that the bagging procedure will stabilize them.

Originally, bagging was proposed in the context of trees forM-complete DG’s in classi-
fication problems. In this context, Breiman (2001) established several optimality properties
of bagging. Bagging has also been used, usually without comment, for regression problems
that are M-open as well. For instance, Strobl et al. (2009) provide several examples that
seemM-open rather thanM-complete as well as a discussion of the key features of bagging
in practice. However, there remains relatively little understanding how bagging works apart
from the results in Breiman (1996a) and Buhlmann and Yu (2002). Here, our main addition
to the conceptual understanding of bagging is to show it is, asymptotically, a special case
of a pseudo-BMA.

The bagging model average is defined as follows. Given a sample, fit a model f̂(·) and
consider predicting the response for a new value of x. Usually, f̂(x) = f(x | θ̂) for some
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estimator θ̂. A bagged predictor for Y at x is found by drawing B bootstrap samples of
size n, say Db from Dn for b = 1, . . . , B, using each Db to produce an f̂b(x), and taking the
prediction to be the average

Ŷbag(x) =
1

B

B∑
b=1

f̂b(x). (71)

As in earlier sections, we begin with a consistency result for bagging. This is easy
because the consistency of f̂ gives the consistency for Ŷbag as in the following.

Proposition 3 : Suppose Y = f(x | θ) + ε with ε mean zero random error, θ a finite
dimensional real parameter, f continuously differentiable in its arguments, and that we have
independent data Dn. If there is an estimator θ̂ that is

√
n-consistent for θ then f̂bag(·) in

(71) is consistent for f(· | θ) pointwise in x as well.

Remark: The existence of a
√
n-consistent estimator is guaranteed by the hypotheses of

Lemma 1 for the MLE or Lemma 2 for Bayes estimators. To save on technicality, we only
give an outline of the proof. To get the result formally would require an argument on
subsequences of f(x | θ̂b,n) as b and n slowly increase. This has been omitted for brevity.
Proof (outline): We set up an application of the strong law of large numbers established
for dependent variables in Theorem 1 in Hu et al. (2008). There are three hypotheses.

First, we must bound the covariances of the terms in (71). Let θ̂b,n and θ̂b,n′ be values
of the

√
n consistent estimator for bootstrap sample b from Dn and Dn′ where n′ = n+ k.

Since the data sets Db are chosen randomly from Dn and Dn′ , and n is increasing, every
f̂(x | θ̂b) is

√
n-consistent for f(x | θ), pointwise in x. So, with high probability θ̂b,n and

θ̂b,n′ are close to θ. So, we can use Taylor expansions at θ:

f(x | θ̂b,n) = f(x | θ) + f ′(x | θ∗n)(θ̂b,n − θ)
f(x | θ̂b,n′) = f(x | θ) + f ′(x | θ∗n′)(θ̂b,n′ − θ),

where θ∗n and θ∗n′ are on the lines joining their respective bootstrap estimate and θ.
The first hypothesis is satisfied: Let C > 0 denote a positive constant not necessarily

the same from occurrence to occurrence. Write:

|COV(f(x | θ̂b,n), f(x | θ̂b,n′))| ≤ C(f)COV((θ̂b,n − θ)(θ̂b,n − θ))

≈ C(f)

.62
√
n(n+ k)

E(
√
.62n(θ̂b,n − θ)

√
.62n(θ̂b,n − θ))

∞
=

C(f)

.62
√
n(n+ k)

σn,n′ =
C(f, σ)√
n(n+ k)

,

where .62 is the approximate fraction a bootstrap sample represents from the full sample
and σn,n′ is the covariance indicated. The right hand side shows that

ρk = sup
n≥1
|COV(f(x | θ̂b,n), f(x | θ̂b,n′))| = O(1/

√
k),

which is the first hypothesis of Theorem 1.
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The second hypothesis is on the asymptotic rate of f(x | θ̂b,n). We see that

VAR(f(x | θ̂b,n)

n2
= O(1/n3)

which is smaller than the largest bound on the variance that Theorem 1 requires.
The third hypothesis is that ρk/k

γ be summable for some γ ∈ (0, 1). Clearly, choosing
γ = .75 suffices. So, the hypotheses of Theorem 1 in Hu et al. (2008) are satisfied.

Now Theorem 1 gives the Proposition: As n→∞ and B = Bn →∞,

B∑
b=1

f(x | θ̂b,n)

n

a.s.→ Ef(x | θ̂)) a.s.→ f(x | θ).

The second sort of result for a model average procedure is an oracle type inequality
or bound on the empirical risk as discussed in Sec. 1. For aggregation procedures such
as bagging there is only one model and it is the data that is re-used. Cross-validation
procedures have a similar property but use disjoint subsets of the data making results
more feasible. At this time of writing, there seems to be no oracle inequalities or bounds
on empirical risks for bagging in general. Partial results are available in special cases;
see Dalalyan and Salmon (2012), Montuelle and Pennec (2018) and Maillard et al. (2021).
However, even these are very difficult to establish—perhaps because the terms in the bagging
predictor are symmetric in the data and hence have equal standing probabilistically. So,
here we start by observing that Breiman’s Theorem (recorded here as Proposition 5 in Sec.
6) provides a bound for bagging in the same spirit as an oracle inequality would even though
it is phrased in terms of risk rather than empirical risk.

The third sort of result for model averaging is to verify that the model average performs
no worse asymptotically than any of its components. Because all the terms in a bagging
predictor are probabilistically equivalent, we show this in a different sense. We first show
that a bagging predictor is a sort of pseudo-BMA and the second identifies the term in
the pseudo-BMA that gives the best prediction. This is somewhat like an oracle inequality
but is no substitute for results treating the empirical risk itself. On the other hand, this
will mean that some of the benefits of BMA carry over to bagging asymptotically. Thus,
our strategy is to prove a variant of Prop. 1 for bagging, starting with unidimensional
θ, extending to multidimensional θ, and then decomposing a bagging predictor into terms
from the pseudo-BMA.

We begin by defining f(x | θ) be a bounded continuous function of (x, θ), x ∈ Rp,
θ ∈ Θ an open interval in R; we will generalize to d-dimensional θ shortly. Assume the data
D = {(xi, yi)}|ni=1 are independent over i and come from

Y (x) = f(x | θT ) + ε. (72)

Note that in this section, we do not consider a wrong model analysis because, once p
is large enough—as is the case with, say, bagging trees, the bagged model is essentially
nonparametric.
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To state our first result, consider an approximation to the BMA formed by partitioning
the parameter space into K disjoint and exhaustive (measureable) sets A1, . . . , AK , taken
to be intervals in the unidimensional parameter case. Write Ib = Ak ⇔ θ̂b ∈ Ak, where the
θ̂b’s are the estimates of θ from the B bootstrap samples.

Suppose the MLE θ̂ = θ̂(D) is consistent for θT under PT as defined in (72). For any x,
the bagging predictor based on f is now

f̂bag(x) =
1

B

B∑
b=1

f(x | θ̂b) (73)

where f̂b(x) = f(x | θ̂b) and θ̂b is the value of the estimator on the b-th of B bootstrap
samples from D. Fix C and let F̂ = F̂n,B(·) be the empirical distribution function generated

by the θ̂b’s. For c = 0, . . . , C, let {αc} be the `/C quantiles of F̂ for ` = 0, 1, . . . , C (α0 can
be taken as −∞ if x is not bounded below). Let w(·) be the density of θ on Θ assumed to
satisfy w(θ) > γ > 0 on Θ. When needed, we write the probability measure generated from
w as W (·). Write an empirical form of the BMA as

ŶBMA(x) =
C∑
c=1

W ([αc−1, αc] | D)E(Y |Mc,D),

where Mc is the (empirical) submodel {f(· | θ) | θ ∈ [αc−1, αc]}, (parallel to Mj in Sec. 3
but we replace j by c understood to be data dependent). Now if we treat the Mc as distinct
models we have the alternative BMA

Ŷ ∗BMA(x) =

C∑
c=1

W (Mc | D)

∫
[αc−1,αc]

f(x | θ)w[αc−1,αc](θ | D)dθ, (74)

where

w[αc−1,αc](θ | D) =
w(θ)p(yn | θ, xn)χ[αc−1,αc]∫
[αc−1,αc]w(θ)p(yn | θ, xn)dθ

.

Relative to the empirical BMA in (74), the alternative BMA in (74) is a ‘psuedo’-BMA even
though it can be regarded as a BMA in its own right. The key step now is to recognize the
relationship between 1/B in (73) and the posterior weights in (74). Our analog to Prop. 1
for bagging with unidimensional θ is the following.

Proposition 4 Assume the hypotheses of Lemma 1and Lemma 2. Then, for any x we have∣∣∣f̂bag(x)− Ŷ ∗BMA(x)
∣∣∣ PT→ 0.

Remark: In this proof we have used F̂ and permitted the percentiles to be data depen-
dent. If we used the population distribution (say F , the limit of the F̂ ’s) of the θ̂b’s instead
of the empirical distribution, we would remove the dependence of the αc on the data and
the proof would go through similarly with the posterior probability accumulating in the one
interval containing the true parameter value. We prefer F̂ because it is data-driven.
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Proof Write Gn(θ) for the posterior distribution function formed from w(·), the densities
of Yi, p(yi | θ, xi), and Dn. Now define

Ac =
{
b | F̂−1Gn(θ̂b) ∈ [F̂−1Gn(αc−1), F̂−1Gn(αc)]

}
(75)

for c = 1, . . . , C, where F̂−1 exists because F̂ is cadlag.

By Lemma 1, θ̂ is consistent so θ̂b is consistent and hence F̂
P→ δθT , where δθT (θ) is 0 if

θ < θT and 1 otherwise. Also, by Lemma 2, Gn
P→ δθT . Thus, F̂−1 and Gn are inverses of

each other asymptotically. Using this and the fact

C∑
c=1

#(Ac) = B, (76)

i.e., the Ac’s partition the B values θ̂b, we have that by applying F̂ to all three occurrences
of F̂−1 in (75) we get

#(Ac)

B

PT→ 1

C
. (77)

Now, define

θ̂c =
1

#(Ac)

∑
b∈Ac

θ̂b. (78)

Write (73) as

Ŷbag(x) =
C∑
c=1

#(Ac)

B

 1

#(Ac)

∑
b∈Ac

f(x | θ̂b)

 , (79)

and let

Ŷapp(x) =
1

C

C∑
c=1

f(x | θ̂c) and Ŷ ∗app(x) =

∫
f(x | θ)w(θ | Dn)dθ. (80)

By the triangle inequality,∣∣∣Ŷbag(x)− Ŷ ∗BMA(x)
∣∣∣ ≤ ∣∣∣Ŷbag(x)− Ŷapp(x)

∣∣∣ (81)

+
∣∣∣Ŷapp(x)− Ŷ ∗app(x)

∣∣∣ (82)

+
∣∣∣Ŷ ∗app(x)− Ŷ ∗BMA(x)

∣∣∣. (83)

Now we want (81), (82), and (83)
P→ 0 to get Prop. 4. Indeed, for (81), observe that for

all c, θ̂c → θT since θ̂ consistent. So, for all c and for all x,

1

#(Ac)

∑
b∈Ac

f(x | θ̂b)− f(x | θ̂c)→ f(x | θT )− f(x | θT ) = 0. (84)
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This gives

Ŷbag(x)− Ŷapp(x) =
C∑
c=1

(
#(Ac)

B
− 1

C

) 1

#(Ac)

∑
b∈Ac

f(x | θ̂b)


+

C∑
c=1

1

C

 1

#(Ac)

∑
b∈Ac

f(x | θ̂b)− f(x | θ̂c)

 .

Using the boundedness of f and (77), the first term goes to 0. Using (84), the second term

goes to 0. So, (81)
PT→ 0.

For (82),

∣∣∣Ŷapp(x)− Ŷ ∗app(x)
∣∣∣ ≤ ∣∣∣ 1

C

C∑
c=1

f(x | θ̂c)− f(x | θT )
∣∣∣ (85)

+
∣∣∣f(x | θT )−

∫
f(x | θ)w(θ | D)dθ

∣∣∣. (86)

Since θ̂c
P→ θT and w(θ | D)

P→ δθT , (85) and (86) → 0 and hence (82) → 0.
For (83) we have ∣∣∣Ŷ ∗app(x)− Ŷ ∗BMA(x)

∣∣∣ ≤ ∣∣∣ ∫ f(x | θ)w(θ | D)dθ − f(x | θT )
∣∣∣ (87)

+
∣∣∣f(x | θT )−

C∑
c=1

W ([αc−1, αc] | D)

∫
[αc−1,αc]

f(x | θ)w[αc−1,αc](θ | D)dθ
∣∣∣. (88)

(87) is the same as (86) so it goes to 0 whereas (88) is bounded above by

C∑
c=1

W ([αc−1, αc] | D)
∣∣∣f(x | θT )−

∫
[αc−1,αc]

f(x | θ)w[αc−1,αc](θ | D)dθ
∣∣∣ (89)

because the posterior probabilities are nonnegative and sum to 1. By definitionW ([αc−1, αc] |
Dn) is bounded so we can ignore the first factor in the summands of (89). Under the con-
sistency given by Lemma 1 we have that as n,B → ∞, θ̂c → θT . Also, by consistency,
all percentiles tend to θT . That is, for c = 1, . . . , C, αc → θT . Thus, by the Lebesgue
differentiation theorem, as C → ∞ (slowly) each w[αc−1,αc](θ | D) converges to unit mass
at θT . (Actually, w[αc−1,αc](θ | Dn) converges to whichever of αc−1 or αc is closer to θT ;
when this is c = 0 so that α0 = −∞, the one set [α0, α1] contributes a constant times
1/C where C →∞.) So the second factors in the summands of (89) converge to zero, i.e.,∣∣∣f(x | θT )−

∫
[αc−1,αc] f(x | θ)w[αc−1,αc](θ | D)dθ

∣∣∣ P→ 0, and hence (89)
P→ 0 which gives (83)

P→ 0 pointwise in x.

The most severe limitation of this proposition is its restriction one unidimensional Θ.
This can be removed by generalizing the definition in (75). We state this as a corollary.
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Corollary 2 Assume the hypotheses of Prop. 4 and that

sup
i,x

E | Yi(x) |4<∞.

Then, we get the same limiting result as in Prop. 4 when θ ranges over Θ ⊂ Rd satisfying
(Θ̄)0 = Θ for any positive integer d.

Proof Let Gn be the posterior formed from w(θ), p(yi | θ, xi), and Dn; Lemma 2 gives that
Gn is asymptotically normal and identifies its asymptotic variance. Separately, let F̂ be
the empirical DF from the θ̂b’s; effectively this is just the parametric bootstrap. Under the
hypotheses of Lemma 1 and the extra moment condition, F̂ is also asymptotically normal
with the same mean and variance as Gn, see Rao (2017) for the statement and Hall (1992)
Sec. 5.2 or van der Vaart (2020) Chap. 23 for details of proof. Without loss, we assume
that F̂ has been smoothed and so is no longer discrete.

Given thatGn and F̂ have the same limiting distribution, we can generalize the definition
of the [αc−1, αc]’s and the Ac’s. To do this, we use the empirical marginals of F̂ that we
denote F̂m for m = 1, . . . , d. Let (α1, . . . , αd) be a vector of percentiles in which each αm
ranges over the values αm,c where the αm,c’s are the c/C percentiles for c = 1, . . . C from
F̂m. Now the dC vectors (α1,c1 , . . . , αd,cd) form a discrete set in d dimensions where cm
indicates the value of the percentile. If the spacing of the entries were regular, this would
be a lattice, but we are using percentiles. Nevertheless, for ease of discussion, we call it a
lattice. Each ‘lattice’ point defines a d-dimensional rectangle (‘cuboid’) by taking it as the
geometric center with boundaries out to the boundaries of the nearest other vectors of length
d. Denote the cuboids by Rc1,...,cd . Now, as n→∞, F̂ , PF̂ (θb ∈ Rc1,...,cd)−Gn(Rc1,...,cd)→ 0
are both are bounded away from zero because they are based on percentiles.

Replacing the sets [αc−1, αc] in (74) by Rc1,...,cd and the sets Ac in (75) by Ac1,...,cd =

{b | θ̂b ∈ Rc1,...,cd} means we can apply the proof of Prop. 4 to give the result stated in Cor.
2. The only other difference is that probabilities like 1/C in (77) must be replaced by the
empirical probabilities of the cuboids.

Given the result of Corollary 2 that shows how a bagging predictor and a pseudo-BMA
are close, we present a result that represents the risk of a bagging predictor as asymptoti-
cally equivalent to a pseudo-BMA. It will be seen that the pseudo-BMA that splits up the
parameter space into ‘submodels’ based on percentiles results in an expression that does not
give a leading term. All terms in the pseudo-BMA are roughly equally important. How-
ever, by choosing the percentiles differently, a leading term can be identified asymptotically.
The result is that bagging has the same limiting behavior as a pseudo-BMA. A different
approach to understanding the MSE of bagging is taken in Sec. 6

Theorem 9 Assume the hypotheses of Lemma 1and Lemma 2. Also, assume that Θ ⊂ Rd
is compact with Θ0 = Θ and that the explanatory variables range over a compact set.
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i) For any xn+1

EY (Y (xn+1)− Ŷbag(xn+1))2 = σ2 +

EY

(
f(xn+1 | θT )−W (R∗ | D)

∫
R∗ f(xn+1 | θ)wR∗(θ | D)dθ

−
∑

c 6=c∗W (Rc | D)
∫
Rc
f(xn+1 | θ)wRc(θ | D)dθ

)2
+ o(1),

where R∗ = Rc∗ = R∗c∗1,...,c∗d
is the region in the parameter space (defined by the marginal

percentiles) that contains θT and c is a vector of the form (c1, . . . , cd).
ii) If θT ∈ Θ0 and we change from C uniformly spaced percentiles to using two percentiles

corresponding to 0 < γ1 < γ2 < 1 for each of the d dimensions of θ, then as γ1 → 0 and
γ2 → 1, we get that

EY (Y (xn+1)− Ŷbag(xn+1))2 = σ2 +

EY

(
f(xn+1 | θT )−W (R∗ | D)

∫
R∗ f(xn+1 | θ)wR∗(θ | D)dθ

)2
+ o(1),

where θT ∈ R∗c1,...,cd the region corresponding to the product of the mid-regions i.e., between
[γ1, γ2], for each dimension of θ.

Remark: It is seen that this result is much like Theorem 5, even down to using a Bayesian
approximation from Cor. 2.
Proof For the first clause of the theorem, we have

EY (Y (xn+1)− Ŷbag(xn+1))2

= EY (f(xn+1 | θT ) + εn+1 − Ŷbag(xn+1))2

= σ2 + EY (f(xn+1 | θT )− Ŷbag(xn+1)± Ŷ ∗BMA(xn+1))2

= σ2 + EY (f(xn+1 | θT )− Ŷ ∗BMA(xn+1))2 + EY (Ŷ ∗BMA(xn+1)− Ŷbag(xn+1))2

+ 2EY

[
(f(xn+1 | θT )− Ŷ ∗BMA(xn+1))(Ŷ ∗BMA(xn+1)− Ŷbag(xn+1))

]
By Cor. 2,

∣∣∣f̂bag(xn+1)− Ŷ ∗BMA(xn+1)
∣∣∣ PT→ 0. So, under the boundedness conditions here we

have

EY (Y (xn+1)− Ŷbag(xn+1))2 = σ2 + EY (f(xn+1 | θT )− Ŷ ∗BMA(xn+1))2 + o(1),

which gives the first clause of the theorem.
The second clause of the Theorem follows by noting that since Gn and F̂ have the same

limiting normal W (R∗cc1,...,cd | D) → 0 as n → 0 and the posterior probabilities multiply
integrals that are bounded.

Theorem 9 shows that if we choose sets in the parameter space that are adaptive and
equiprobable then all of them contribute roughly equally. So, c∗ does not index a ‘best’
term. We only get an approximation of the MSE in terms of components; we do not find
that the ensemble method is better than any of its components. On the other hand, if the
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percentiles are not equally spaced and converge to the tails of their respective marginal
distributions then there is a leading term as identified in clause ii). It is similar to standard
BMA studied in Sec. 3 in that a single term containing the correct model is the limit of the
predictor. In either case, EY (Y (xn+1) − Ŷbag(xn+1))2 → σ2 as expected when the model
class contains a θ∗j∗ closest to the true model. Thus, bagging is asymptotically equivalent
to a BMA using a data dependent prior and the model averaging properties of a bagged
predictor do not seem to be representable in terms of true Bayesian model average.

This suggests that if we want our inferences to be extremely dependent on the data, as
in bagging, and we want to use Bayesian methods, then we have to allow data dependent
priors and these priors must either partition the posterior probability into roughly equal
parts or simpy revert to a single dominating term. This reinforces Sec. 4 in Reid et al. (2003)
where the authors note that strong matching of Bayes and Frequentist interval estimators
is only possible for data dependent priors. The implication is that if an inference procedure
is sufficiently strongly data-driven then only allowing the data to enter the posterior via
the likelihood is not enough. The information in the data spills over to the prior. On the
other hand, the way the data enters the prior is through the definition of subsets of the
parameter space. Since the estimators for c∗ or the αc’s are

√
n-consistent, they do not

affect the convergence of the overall posterior. That is, introducing the parameters gives
an empirical Bayes strategy that is equivalent asymptotically to a fully Bayes strategy.

6. Random Forests

Introduced by Breiman (2001), random forests (RF) are a modification of bagging trees
based on the average of a large collection of de-correlated trees. The de-correlation, and
hence variance reduction, is achieved in the tree-growing procedure via random selection of
the input variables. Specifically, when growing a tree on a bootstrapped sample, before each
split, select m ≤ p of the input variables at random as candidates for splitting. Values for
m are typically

√
p or log2 p. Random forests have essentially all the desirable convergence

properties of bagging trees.

More formally, we modify the definitions of Breiman (2001) to our present context; the
resemblance to the notation in Sec. 5 will be obvious. Consider a collection of regression
functions h(x,Θk), for k = 1, . . . ,K where the Θk are independent and identical copies
of a random vector Θ with realized values θ1, . . . , θK . A random forest ŶRF (x) is any
stochastically symmetric function of the h(x,Θk)’s as functions of x, i.e., each randomly
chosen h(x,Θk) has the same influence on the predicted value of Y (x). RF’s of trees for
classification satisfy this definition, but many other formulations are possible. Here we focus
on regression and we take means of the h(x, θk)’s over k. This definition of RF’s includes
bagging as used in Sec. 5 and the original formulation of RF’s (random selection of variables
for splits in trees) as a special cases.

Write ŶRF (·) for the random forest point predictor, parallel to (73), for some base
function f(x | θ). We start by observing that the results from the previous subsection for
Ŷbag continue to hold for ŶRF . Then we give sufficient conditions for a result in Breiman
(2001) to hold thereby giving a more satisfactory analog to Theorems 2, 5, 8, for RF’s than
Theorem 9 is. We begin with the following.
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Theorem 10 Assume a signal-plus-noise model of the form (72) and assume the hypotheses
of Lemma 1 and Lemma 2. Then, Prop. 4, Cor. 2, and Theorem 9 continue to hold with
Ŷbag = f̂bag replaced by ŶRF . That is, ŶRF can be approximated asymptotically by a pseudo-
BMA of the form (74) and satisfies the two MSE bounds given in Theorem (9).

Proof The proofs of these statement follow from reading the proofs of Prop. 4, Cor. 2,
and Theorem 9 and verifying that each step follows if the RF procedure is used (random
selection of, say,

√
p, the explanatory variables) in place of the bagging procedure.

This result gives versions of the first and third sorts of results we want for model averages.
The second sort of result—an oracle inequality or bounds on empirical risks—remains too
hard to obtain in the generality sought here.

Since the third sort of result—verifying that the model average is a better predictor in
some sense than its components—is the most important of the three, we recall Theorem 11.2
in Breiman (2001). It is stated for trees, but in fact generalizes to applying the random forest
procedure to any rich and well-enough behaved class of predictors. It states, informally,
for RF regression (with trees), that if an unbiasedness condition (stated in Clause ii)) is
satisfied then the generalization error of the RF is bounded by a weighted correlation times
the generalization error of a single tree. The correlation is between two random trees such
as might be in the forest. That is, a multiple of the MSE of a random tree bounds the MSE
of the RF . Note that the decorrelation achieved by the random selection of explanatory
variables lowers the weighted correlation to give a tighter bound on the MSE of the RF .

Theorem 11.2 is qualitatively different from the bounds on MSE from earlier results
here such as Theorems 2, 5, 8, 9, and 10 that focus on determining a leading term. Here, as
in Sec. 5, there is no ‘leading’ term; all terms contribute equally, if only in a probabilistic
sense. Indeed, Clause ii) treats all the terms in the RF as if they are equivalent and obtains
a bound in terms of their generic form. This equivalence of terms can also be seen in Clause
i) of Theorem 9 for bagging, and the discussion after it and recurs in Theorem 10.

Specifically, Breiman (2001) shows the following in general, i.e., no signal-plus-noise
model need be assumed.

Proposition 5 (Breiman 2001 Sec. 11) Clause i): Assume that Y has bounded sec-
ond moment and that h(x, θk) is continuous on an open domain X × ΘRp+d that satisfies
(X ×Θ)0 = X ×Θ. Then,

EX,Y (Y − h(X,Θk))
2 a.s.−→ EXY (Y − EΘh(X,Θ))2

Clause ii) Assume that for all Θ, E(Y ) = EXh(X,Θ). Then,

EXY (Y − EΘh(X,Θ))2 ≤ ρ EΘEX,Y (Y − h(X,Θ))2,

where ρ is the weighted correlation between any pair of residuals Y − h(X,Θ) and Y −
h(X,Θ′) for independent copies Θ and Θ′ of Θ.

The proof of Clause i) is simply the strong law of large numbers applied to outcomes
of Θ. The proof of Clause ii) follows from manipulating the left hand side to reveal the
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correlation. The hypothesis of Clause ii) comes from recognizing correlations involve division
by standard deviations that themselves must be expectations of centered random variables.
Both clauses apply for RF’s and bagging.

What does the unbiasedness condition E(Y ) = EXh(X,Θ) mean? First, it assumes
that Θ is a random variable with outcomes Θ = θ. Second, both Y and X are random.
This is a common assumption in classification which Prop. 5 uses in regression. In fact, the
goal is often phrased as minimizing E(Y − h(X))2 over functions h meaning that X and
Y are random and no specific assumptions are made about any relationship between them.
Essentially, this is theM-complete case described in Bernardo and Smith (2000) or Clarke
and Clarke (2018).

The key issue is satisfying the unbiasedness condition so that Clause ii) can be used.
The intuition behind unbiasedness is that for any Θ = θ, the function h(x, θ) when averaged
over X gives E(Y ). That is, in the distrubution FX , h(X, θ) neither overestimates Y nor
underestimates Y . Let hinit ∈ H, a class of functions that forms a Banach space that
has a countable dense subset. Loosely, given FX (and FY ), if H is large enough then
the unbiasedness condition can be satisfied. Without loss of generality assume E(Y ) <
EXhinit(X, θ) for some Θ = θ. We can construct for θ a function h(x, θ) that satisfies
E(Y ) = EXh(X, θ). Let B(f(x, θ), R) be a ball of radius R in H centered at f(x, θ),
where R is chosen large enough that for some hend ∈ B(f(x, θ), R), E(Y ) > EXhend(X, θ).
Consider the line inH defined by γhinit(x, θ)+(1−γ)hend(x, θ). Now, since a dense set exists,
for some γ ∈ (0, 1) there must be a γ∗ so that h(·, θ) = γ∗hinit(x, θ) + (1− γ∗)hend(x, θ) ∈ H
with E(Y ) = EXh(X, θ), as required. Thus, given hinit(x, θ) we can find an h(x, θ) that
satisfies the unbiasedness condition on the line joining two elements of H. This simple
argument does not by itself ensure that h(x, θ1) and h(x, θ2) will be distinct when θ1 6= θ2.
However, it is easy to see that rich enough classes H, such as trees and neural nets, will
usually have distinct elements. We summarize this reasoning in the following.

Proposition 6 For given θ, let hinit(x, θ) ∈ H, a Banach space with a countable dense set.
Then:

i) ∃h(x, θ) ∈ H, derived from hinit, so that E(Y ) = EXh(X, θ), and,
ii) As long as hinit(x, θ1) and hinit(x, θ2) are distinct a.e. and they are joined by a straight

line to functions hend(x, θ1) and hend(x, θ2) that are also distinct a.e., then h(x, θ1) will be
distinct from h(x, θ2) a.e.

Taken together, Props. 5 and 6 give a version of the third kind of result – a sense in
which an ensemble method performs better than any of its components.

7. Boosting

A sixth model averaging technique is boosting, see Schapire (1990), one of the most suc-
cessful procedures for classification. While there are several boosting algorithms, AdaBoost
due to Freund and Schapire (1996) is arguably the most popular. Boosting can also be ex-
tended to regression problems, see Freund and Schapire (1997) and Ridgeway et al. (1999b),
amongst others. The basic idea behind the extension of boosting for classification to boost-
ing for regression is to discretize the response Y and apply boosting to each interval range
separately. Effectively, this generates an approximation to Y . Boosting for regression has
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not received as much attention as boosting for classification; see, for instance, Schapire
and Freund (2012). Nevertheless, we argue that boosted regression, like other ensembling
methods, is consistent and performs better than any of its components. As a final point for
this section we give a Bayesian interpretation for boosted regression.

The concept of boosting in regression requires a different problem formulation than
in earlier sections. Regard the pairs (xi, yi(xi)) for i = 1, . . . , n as IID outcomes from a
bivariate probability P on X ×Y for which X = X 0 ⊂ Rp and Y = [0, 1]. We seek a function
h : X → Y for which d(Y, h(X)) is satisfactorily small for some distance d. Here we use
expected squared error in P . This differs from Sec. 6 because here we have Y = Y (x). The
effect is that we will get optimality in an MSE sense instead of the optimality we would
get in a signal-plus-noise setting where optimal predictors generally achieve σ2 as their
asymptotically minimum variance. It is left as an exercise to specialize the results below
to a signal-plus-noise model and obtain asymptotics similar to what we showed in earlier
sections. This means that we are including M-complete problems.

Following Freund and Schapire (1997) Sec. 5.3, let Ŷn,T (x) be the boosted regression

function after T iterations and let Ŷ (·) = arg minhEP (Y − h(X))2. By construction Ŷn,T
converges a.e. to Ŷn = arg minhEemp(Y − h(X))2, where Eemp is the expectation under
the empirical distribution function. This follows from applying the monotone convergence
theorem to the inequality in Theorem 12 of Freund and Schapire (1997), as T →∞, in the
empirical probability for (X,Y ).

As in previous sections, we start with a consistency result. To see that Ŷn(·) P→ Ŷ (·)
as n→∞ we use the following generalization of the Newey-McFadden theorem from finite
dimensional parameter spaces to function spaces.

Proposition 7 (Generalization of Theorem 2.1 in Newey and McFadden (2012)) Suppose
Ŷn achieves minhEemp(Y − h(X))2 and Ŷ achieves minhEP (Y − h(X))2. Also, assume

(i) Eemp(Y − h(X))2 P→ EP (Y − h(X))2 uniformly for h ∈ K, a compact set in a Hilbert
space H, under the weak* topology, 1

(ii) h uniquely achieves minhEP (Y − h(X))2,

(iii) EP (Y − h(X))2 is continuous as a real valued function of h in the weak* topology.

Then, Ŷn
P→ Ŷ .

Proof The proof is the same as in Newey and McFadden (2012) but in the weak* topology.
Recall, that the dual space to H is H∗, also a Hilbert space, and H∗ is isomorphic to H.
Hence H∗∗, the dual of H∗, is a Hilbert space isomorphic to H. The Alaoglu theorem states
that the closed unit ball in H is compact under the weak* topology and every bounded
closed set in H is relatively weakly compact in the weak* topology. All the steps in the

1. In a Hilbert space, the Reisz representation theorem shows that H∗ is isomorphic to its dual H. So, for
Hilbert spaces, the weak and weak* topologies coincide and are metrizable. We retain the distinction
between the weak and weak* topologies because they are not in general isomorphic for Banach spaces.
We hope to generalize our results to functions in a Banach space since the inner product on H is not
explicitly used in the proof.
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proof of the Newey-McFadden theorem can now be done in H with the weak* topology:
Simply replace steps using finite dimensional real spaces under the usual real topology with
the corresponding steps using H under the weak* topology.

This generalized Newey-McFadden theorem now gives Ŷn = arg minhEemp(Y−h(X))2 P→
Ŷ = arg minhEP (Y − h(X))2 as n → ∞. Taken altogether, we have the following consis-
tency theorem.

Theorem 11 Suppose n → ∞ and T = Tn → ∞ at a suitable rate in n. Then, we have

that Ŷn,T (x)
P→ Ŷ (x).

Not that this is consistency of Ŷn,T (x) for Ŷ (x) and that by construction Ŷ (x) is consistent
for minhEP (Y − h(X))2 automatically giving the following corollary.

Corollary 3 Under the hypotheses of Theorem 11, Ŷn,T (x) is consistent for minhEP (Y −
h(X))2.

As in the previous two sections, obtaining an oracle inequality or other bounds on the
empirical risk is very difficult. One starting point is Freund and Schapire (1997) Theorem
7 but it is for an iteration not cumulative over many instances. This is left as a gap in the
characterization of boosting techniques for regression (and classification).

Turning to the third sort of result we want, Prop. 7 also gives that the boosted regression
function is better than any of its terms, or indeed any selection of finitely many of its terms,
unless the final selection of terms is asymptotically equivalent to the boosted regression
function. Thus, we have a result to parallel our earlier results comparing model averages
with their components. Indeed, Cor. 4 below is suggested by the fact that Ŷn,T from Freund
and Schapire (1997) p. 136 col. 1 optimizes an empirical squared error.

Corollary 4 Let Ŷn,` be a regression function formed from a finite collection of terms in

Ŷn(·). Then,

lim inf
n→∞

[
EP (Ŷn,` − h(X))2 − EP (Ŷn − h(X))2

]
≥ 0

Proof Obvious because Ŷn asymptotically minimizes EP (Y − h(X))2.

While this result concludes the treatment of the three sorts of results we want for
model average predictors, we note that earlier model averages bore a close resemblance to
Bayesian predictors. Indeed, BMA is Bayes, bagging and random forests were shown to be
approximately Bayes, and stacking has been shown to be a Bayes action; see Le and Clarke
(2017) under several loss functions. So, to conclude this section we turn to giving a Bayesian
interpretation to boosted regression functions. We do this by relating boosted regression to
boosted classifiers. Our technique is modeled on Ridgeway et al. (1999a). Given h as above,
define h̃ : {x}×{y} → {0, 1} where h and h̃ are related by h̃(x, y) = 1{y≥h(x)}. Given an h̃ we
can also recover an h. Suppose X is the set of x-values and Sm = {0, 1/m, . . . , (m−1)/m, 1}.
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If X has the n x-values from D = {(xi, yi) | i = 1, . . . , n} then #(X × Sm) = mn and we
can consider the set

D∗ = {(x, s, y∗) | x ∈ X , s ∈ Sm, y∗ = 1{s≥y(x)}}.

Since y∗ ∈ {0, 1}, D∗ is a (binary) classification data set derived from D. Now, if h̃(x, s)
is a classifier for D∗, i.e., h̃(x, s) predicts the class of y∗ = y∗(x, s), we can define the
regression function

hm(x) = inf
s∈Sm

{s | h̃(x, s) = 1}. (90)

Intuitively, passing from D to D∗ converts a regression problem to a classification problem
by assigning to each x the pair of intervals {s < y(x)} and {s ≥ y(x)} that are coded as
0, 1, respectively, to a fineness of 1/m. Hence, hm(x) gives the breakpoint in y-space as the
prediction for Y (x).

We can now apply the AdaBoost algorithm from Freund and Schapire (1997) to D∗.
That is, let Ĉt(x, s) denote the iterates for t = 1, . . . , T from AdaBoost and form the
classifier

BSTCT (x, s) = sign

(
T∑
t=1

β̂tĈt(x, s)

)
(91)

where the weights β̂t are also given in the AdaBoost algorithm. Then BSTCT plays the
role of h̃.

It was shown in Le and Clarke (2018) that BSTCT converges to the Bayes classifier and
hence is Bayes optimal, asymptotically, as T →∞. More formally,

T∑
t=1

β̂tĈt(x, s)→ log
P (Y = 1 | X = x, S = s)

P (Y = 0 | X = x, S = s)
. (92)

Hence, for fixed x and m, using (91) in (90) gives a regression function that inherits opti-
mality from the asymptotically Bayes classifier. The size of m matters here because if m
is large enough then each distinct point in D corresponds to a well defined set of points in
D∗, i.e., the inclusion map D → D∗ is one-to-one.

Assuming limits are continuous and convergence is uniform, (92) gives

T∑
t=1

β̂tĈt(x, z)→ log
P (Y = 1 | X = x, z)

P (Y = 0 | X = x, z)

when s = sk → z independently of the convergences with T or n → ∞. Thus we have
BSTC(x, sk)→ BSTC(x, z) as m and k →∞, i.e., the limit on the right hand side exists.
Now, we can set

h(x) = inf
z
{z | BSTC(x, z) = 1} (93)

and it is the limit of Ŷn,T and Ŷn. Indeed, (93) is essentially the same as the output
from Algorithm 5 in Freund and Schapire (1997). That is, the boosted regression function
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comes from the boosted classifier that is asymptotically Bayes. This provides a Bayes
interpretation for boosted regression.

A readily formalizable argument reinforces this parallel to Cor. 4. Let Ŷ ∗ be any
regression function for Y based on D other than the boosted regression function Ŷm where
Ŷm(x) = infs∈Sm{s | h̃(x, s) = 1}. Then, for any x,

|Ŷm(x)− Ŷ ∗(x)| ≤ |Ŷm(x)− Ŷm(xc)|+ |Ŷm(xc)− Ŷ ∗(xc)|+ |Ŷ ∗(xc)− Ŷ ∗(x)| (94)

where xc = arg mink |x− xk|. Since (xi, yi)|ni=1 becomes dense in [0, 1]× [0, 1], xc − x
P→ 0.

So, provided Ŷm(x) and Ŷ ∗(x) are bounded as functions of x, the first and third terms of

(94)
P→ 0. Now, since Ŷm(xc) → y(xc) as m → ∞ and Ŷm(xc) has tolerance 1/m around

y(xc), if Ŷm(xc) ≥ Ŷ ∗(xc) the second term in (94) can be bounded by

0 ≤ Ŷm(xc)− Ŷ ∗(xc) ≤ (y(xc)− Ŷ ∗(xc)) +
1

m
. (95)

Otherwise, if Ŷm(xc) < Ŷ ∗(xc) the second term in (94) can be bounded by

0 < Ŷ ∗(xc)− Ŷm(xc) ≤ (Ŷ ∗(xc)− y(xc))−
1

m
. (96)

In any event, (95) or (96) means if y(x) is continuous, the closer Ŷ ∗(x) is to y(x) the better
Ŷ ∗(x) is and any regression function not close enough to Ŷm would be outperformed by
Ŷm(·). So regression functions too different from the boosted regression will be worse than
Ŷm even if they are made from terms in Ŷm unless they are equivalent to Ŷm.

8. Concluding Remarks

First, good predictors that are model averages tend to outperform any of their components.
Second, good predictors that are not Bayes are nearly Bayes. This is seen in our results
that show that bagging and RF’s are pseudo-BMA’s in a limiting sense, that boosting for
regression has a Bayes justification (from classification), and that stacking is asymptotically
a Bayes action. Moreover, MMA is based on regression and it is well-known that Bayesian
linear regression under normal priors is equivalent to regular frequentist regression as the
priors become more spread out. So, it is reasonable to conjecture that MMA is is Bayesian
analog will be asymptotically identical. While our other sorts of results—consistency and
bounds on empirical risk—are important for understanding and using model average pre-
dictors, they do not justify why model averages are generally better than other predictors.

The biggest problem left insufficiently addressed here is the selection of the model list
F . However, design principles for F have been examined by numerous other authors. First,
Breiman (1996a) argued that the fj ’s should be as different as possible from each other.
Second, George (1999) identified a phenomenon called dilution in which the models on a
model list close to fT are so numerous that each has very small probability leading to
BMA predictors that are essentially always zero. The same phenomenon can occur with
some frequentist predictors as well. In the Bayes context, Chipman et al. (2001) proposed
prior selection techniques to avoid dilution. Third, Occam’s window, Madigan and Raftery
(1994), is another model list selection principle. It’s the opposite of dilution and is well
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suited to prediction because a dynamic form of it has recently been proposed, see Onorante
and Raftery (2014). Fourth, Yu et al. (2013) argues that choosing different models on
different parts of the covariate space provides better prediction.

Finally, fifth, if some data is held in reserve for model list selection, variance-bias tradeoff
arguments may help guide the selection of F . In MSE terms, small, localized F ’s will tend
to have high bias, while large spread out F ’s will tend to have high variance. This suggests
F should be chosen so that it is believed that fT is in the ‘middle’ of F rather than on its
periphery or outside its closed convex hull in order to outperform well-selected individual
models. This is consistent with Clarke and Fokoue (2011) that argued one can find MSE
optimal model lists. Of course, in the case that there is no true model it is possible for
model selection and downstream prediction to oscillate within a collection of predictors,
some of which may be mixtures of models. Hence, optimal model list selection must still
be regarded as an incompletely resolved issue for model averaging techniques just as it is
an incompletely resolved issue for model selection.

Appendix A. Supporting Results for Sec. 2

In this Appendix we present four Lemmata. Two are results for asymptotic normality of the
MLE and posterior when the observations are independent but not identical. In standard
cases, these are well known; see Hoadley (1971) and Hartigan (1983) for instance. However,
here the non-identicality is due to an explanatory variable not just the parametric family.
The second two results are analogs of these results when none of the models can be assumed
correct. These latter two Lemmata generalize the first two and generalize White (1982) and
Berk (1966). Note that in this section, j indexes model classes rather then the entries in a
vector defining an element of a model class.

A.1 INID results – correct model

We begin by establishing asymptotic Normality of MLE for independent but not identical
variables. Our proof is modified from the proof of the analogous result in Theorem 18 of
Ferguson (1996). Consider the following list of hypotheses.

(i) Let θj ∈ Θj , an open subset of Rdj such that (Θ̄j)
o = Θj , i.e., Θj is the interior of its

closure.

(ii) All second partial derivatives of pj(y|x, θj) w.r.t. θj exist and are continuous for all
x, y, and may be passed under the integral sign in

∫
pj(y|x, θj)dy.

(iii) There exists a function K(·) such that EθjK(Y ) <∞ and each element of the matrix(
∂2

∂θ`∂θk
log pj(y | xi, θj)

)
`,k=1,...,dj

is bounded in absolute value by K(y) uniformly for

θj in an open neighborhood of θ0,j .

(iv) Assume that, for any xi,

Ii(θ0,j | xi) =

(
−Eθ0,j

[
∂2

∂θ`∂θk
log pj(y | xi, θj)

])
`,k=1,...dj

is continuous on an open set around the true value θ0,j and is positive definite at θ0,j .
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(v) For any θj,0 ∈ Θj and any xi, pj(y | xi, θj) = pj(y | xi, θj,0) a.e. in y implies θj = θj,0.

(vi) The average (1/n)
∑n

i=1 Ii(θ0,j | xi) is invertible for any n and the dj = dim(θj)-vector

Ψ(θj,0 | x, y) =
(
∇θj log pj(y | x, θj,0)

)T
satisfies

n∑
i=1

E
∥∥∥ 1

n

[ n∑
k=1

Ik(θ0,j | xk)
]−1/2

Ψ(θj,0 | xi, Y )
∥∥∥3

= o

(
1

n3/2

)
.

Note that assumptions (i) to (v) are for the existence of θ̂n,j analogous to those for
Cramer’s Theorem in the IID case. Assumption (vi) allows us to identify the variance in
the asymptotic normal distribution. We have the following.

Lemma 1 Let yi ∼ pj(y | xi, θj) be INID and let θj,0 denote the true value of the parameter.

Assume hypotheses (i) – (vi). If θ̂n,j is the MLE of θj,0 then

√
n(θ̂n,j − θj,0)−N

0,

[
1

n

n∑
i=1

Ii(θj,0 | xi)

]−1
 L→ 0.

Proof For ease of exposition, we write Ψ̇(θj | x, y) =
(
∇2
θj

log pj(y | xi, θj)
)

for the dj ×dj
matrix of second partial derivatives of log pj(y | x, θj,0). So, I(θj | x) = −Eθj Ψ̇(θj | x, Y ).
The likelihood is Ln(θj | Dn) =

∏n
i=1 pj(yi | xi, θj) with derivative of its logarithm given by

the dj-vector ˙̀
n(θj | Dn) = ∇θj logLn(θj | Dn) =

∑n
i=1∇θj log pj(yi | xi, θj).

Now, the Mean Value Theorem gives

˙̀
n(θj | Dn) = ˙̀

n(θ0,j | Dn) +

∫ 1

0

n∑
i=1

Ψ̇(θ0,j + λ(θj − θ0,j) | xi, yi)dλ(θj − θ0,j).

Letting θj = θ̂n,j and dividing by
√
n gives

1√
n

˙̀
n(θ̂n,j | Dn) = Bn

√
n(θ̂n,j − θ0,j), (97)

where

Bn = −
∫ 1

0

1

n

n∑
i=1

Ψ̇(θ0,j + λ(θ̂n,j − θ0,j) | xi, yi)dλ.

Observe that Eθ0,jΨ(θ0,j | x, Y ) = 0 and V arθ0,jΨ(θ0,j | x, Y ) = I(θ0,j | x). So, from the
Berry-Esseen Theorem for independent but non-identical multivariate random variables, as
n→∞, Assumption (vi) gives the weak convergence meant by

1√
n

˙̀
n(θj | Dn) =

√
n

(
1

n

n∑
i=1

Ψ(θ0,j | xi, yi)

)
L
≈ N

(
0,

1

n

n∑
i=1

Ii(θ0,j | xi)

)
. (98)
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It remains to show Bn − (1/n)
∑n

i=1 Ii(θ0,j | xi)
P→ 0. Indeed, let ε > 0 and note that

from Assumptions (ii) and (iii) Eθj Ψ̇(θj | x, Y ) is continuous in θj and x. Thus, there is a
ρ > 0 such that |θj − θ0,j | < ρ implies

sup
x∈X
|Eθj Ψ̇(θj | x, Y ) + I(θ0,j | x)| < ε. (99)

Also, Assumptions (ii) and (iii) give that with probability one there is an integer N such
that if n > N then

sup
|θj−θ0,j |<ρ;xi∈X

∣∣∣∣∣ 1n
n∑
i=1

Ψ̇(θj | xi, yi)−
1

n

n∑
i=1

Eθj Ψ̇(θj | xi, Y )

∣∣∣∣∣ < ε. (100)

By consistency, there is an N is so large that for n > N , |θ̂n,j − θ0,j | < ρ with probability
at least 1− η for some small η > 0 (under θ0,j).

Now, we have that∣∣∣∣∣Bn − 1

n

n∑
i=1

Ii(θ0,j | xi)

∣∣∣∣∣
≤
∫ 1

0

∣∣∣∣∣ 1n
n∑
i=1

Ψ̇(θ0,j + λ(θ̂n,j − θ0,j) | xi, yi) +
1

n

n∑
i=1

Ii(θ0,j | xi)

∣∣∣∣∣ dλ
≤
∫ 1

0

∣∣∣∣∣ 1n
n∑
i=1

Ψ̇(θ0,j + λ(θ̂n,j − θ0,j) | xi, yi)−
1

n

n∑
i=1

Eθj Ψ̇(θj | xi, Y )

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

Eθj Ψ̇(θj | xi, Y ) +
1

n

n∑
i=1

Ii(θ0,j | xi)

∣∣∣∣∣ dλ
≤
∫ 1

0
sup

θj :|θj−θ0,j |<ρ;x∈X

∣∣∣∣∣ 1n
n∑
i=1

Ψ̇(θj | x, yi)−
1

n

n∑
i=1

Eθj Ψ̇(θj | x, Y )

∣∣∣∣∣
+ sup
xi∈X

1

n

n∑
i=1

∣∣∣∣∣Eθj Ψ̇(θj | xi, Y ) +
1

n

n∑
i=1

Ii(θ0,j | xi)

∣∣∣∣∣ dλ
≤ ε+

1

n

n∑
i=1

ε = 2ε by (99) and (100).

This gives that

Bn −
1

n

n∑
i=1

Ii(θ0,j | xi)
P→ 0. (101)

Therefore, from (97), (98), and (101), Slutsky’s Theorem gives the conclusion of Lemma 1.

Having established asymptotic normality of the MLE under INID conditions, we turn
to asymptotic normality of the posterior. This time our proof is modeled on Theorem 21
in Ferguson (1996).
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Lemma 2 Assume hypotheses (i) – (vi) and that the prior w(θj) > 0 is continuous for all
θj ∈ Θ. Then the posterior wj(θj | Dn) is asymptotically normal, i.e.,

wj(θj | Dn)
a.s.
≈ N

θ̂n,j , 1

n

[(
1

n

) n∑
i=1

Ii(θ0,j | xi)

]−1
 .

Proof We continue using the notation defined in the proof of Lemma 1. Write

Ln(θj | Dn)

Ln(θ̂n,j | Dn)
= exp{`n(θj | Dn)− `n(θ̂n,j | Dn)}

= exp{−n(θj − θ̂n,j)TAn(θj | Dn)(θj − θ̂n,j)}, (102)

where we have Taylor expanded `n(θj | Dn) = logLn(θj | Dn) about θ̂n,j to get `n(θj |
Dn)− `n(θ̂n,j | Dn) equals

˙̀
n(θ̂n,j | Dn)(θj − θ̂n,j)− n(θj − θ̂n,j)TAn(θj | Dn)(θj − θ̂n,j)

in which

An(θj | Dn) = − 1

n

∫ 1

0

∫ 1

0
v ῭
n(θ̂n,j + uv(θj − θ̂n,j))dudv (103)

and we have the fact that ˙̀
n(θ̂n,j) = 0 w.p.1.

Let ηj =
√
n(θj − θ̂n,j). Using (99) and (100) we can rewrite (103) as

An(θ̂n,j + ηj/
√
n) = − 1

n

∫ 1

0

∫ 1

0
v ῭
n(θ̂n,j + uvηj/

√
n)dudv

≈ − 1

n

∫ 1

0

∫ 1

0

n∑
i=1

Eθ0,j Ψ̇(θ0,j | xi, Y )vdudv

≈ 1

2
· 1

n

n∑
i=1

Ii(θ0,j | xi).

Therefore, (102) becomes

Ln(θj | Dn)

Ln(θ̂n,j | Dn)
w(θj) =

Ln(θ̂n,j + ηj/
√
n | Dn)

Ln(θ̂n,j | Dn)
w(θ̂n,j + ηj/

√
n)

a.s.
≈ exp

{
−1

2
ηTj

(
1

n

n∑
i=1

Ii(θ0,j | xi)

)
ηj

}
w(θ0,j).

Hence, the posterior distribution of ηj is

p(ηj | Dn) ∝ Ln(θ̂n,j + ηj/
√
n | Dn)w(θ̂n,j + ηj/

√
n)

∝ exp

{
−1

2
ηTj

(
1

n

n∑
i=1

Ii(θ0,j | xi)

)
ηj

}
.
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That means

p(ηj | Dn)
a.s.
≈ N

0,

[
1

n

n∑
i=1

Ii(θ0,j | xi)

]−1
 .

Transforming from ηj back to θj gives Lemma 2.

A.2 INID Results – wrong model

Let yi ∼ pj(y | xi, θj) be INID and assume y has the true distribution PT on Ω with the true
density pT (y). Define the relative entropy distance between pT (y) and 1/n

∑n
i=1 pj(y | xi, θj)

as

KL

[
pT (y)‖ 1

n

n∑
i=1

pj(y | xi, θj)

]
= E

[
log

(
pT (y)

1
n

∑n
i=1 pj(y | xi, θj)

)]
(104)

where the expectations are taken w.r.t. the true distribution PT .
Consider the quasi-log-likelihood

Ln(θj | Dn) =
1

n

n∑
i=1

pj(y | xi, θj)

and let θ̂n,j be the quasi-MLE, i.e

θ̂n,j = arg max
θj∈Θj

Ln(θj | Dn). (105)

Define

A(θj | xn) = E

[
1

n

n∑
i=1

∂2

∂θ`∂θk
log pj(y | xi, θj)

]
and

B(θj | xn) = E

[
1

n

n∑
i=1

∂

∂θ`
log pj(y | xi, θj) ·

∂

∂θk
log pj(y | xi, θj)

]
, `, k = 1, . . . , d.

Now we consider the following list of hypotheses.

(i) The densities pj(y | xi, θj) are measurable in y for all θj ∈ Θj , xi ∈ X , and continuous
in θj for all y ∈ Ω, xi ∈ X (Θj , X are compact sets).

(ii) E[log pT (y)] exists; | log pj(y | xi, θj)| ≤ m(y) for all θj ∈ Θj , xi ∈ X where m is
integrable w.r.t. PT ; and θ∗j , the parameter minimizes (104), is unique.

(iii) ∂
∂θ`

log pj(y | xi, θj), ` = 1, . . . , d, are measurable functions of y for all θj ∈ Θj , xi ∈ X ,
and continuously differentiable functions of θj for all y ∈ Ω, xi ∈ X .

(iv)
∣∣∣ ∂2

∂θ`∂θk
log pj(y | xi, θj)

∣∣∣ and
∣∣∣ ∂∂θ` log pj(y | xi, θj) · ∂

∂θk
log pj(y | xi, θj)

∣∣∣, `, k = 1, . . . , d,

are dominated by functions integrable w.r.t. PT for all y ∈ Ω, θj ∈ Θj , xi ∈ X .

45



Le and Clarke

(v) θ∗j is interior to Θj ; A(θ∗j | xn) is nonsingular; and θ∗j is a regular point of A(θj | xn)
i.e A(θj | xn) has constant rank in some open neighborhood of θ∗j .

We have the following.

Lemma 3 (White (1982) for INID case) Let yi ∼ pj(y | xi, θj) be INID and assume y
has the true distribution PT on Ω with the true density pT (y). Assume hypotheses (i) - (v).
If θ̂n,j is the quasi-MLE as defined in (105), then

√
n(θ̂n,j − θ∗j )

L→ N(0, C(θ∗j | xn)),

where θ∗j is the parameter which minimizes (104) and

C(θ∗j | xn) = A(θ∗j | xn)−1B(θ∗j | xn)A(θ∗j | xn)−1.

Proof All the steps in the proof of White (1982) Theorem 3.2 can now be directly applied
under Assumptions (i) - (v).

Consider the second list of hypotheses as below.

(i) The densities pj(y | xi, θj) are measurable in y for all θj ∈ Θj , xi ∈ X , and continuous
in θj for all y ∈ Ω, xi ∈ X (Θj , X are compact sets).

(ii) pj(y | xi, θj) > 0 a.e. w.r.t. PT for all θj ∈ Θj , xi ∈ X .

(iii) For every θj ∈ Θj , there is an open neighborhood B of θj such that

E sup
θj∈B,xi∈X

{| log pj(y | xi, θj)|} <∞.

(iv) There is a positive integer m such that for any real number r, there is a co-compact
subset D of Θj (i.e Θj \D is compact) such that

E sup
θj∈D,xi∈X

{
1

m

m∑
i=1

log pj(y | xi, θj)

}
≤ r.

We have the following.

Lemma 4 (Berk (1966) for INID case) Let yi ∼ pj(y | xi, θj) be INID and assume y
has the true distribution PT on Ω with the true density pT (y). Assume hypotheses (i) - (iv)
and that the prior wj(θj) > 0 is continuous for all θj ∈ Θj. Then, the posterior wj(θj | Dn)
is almost surely carried on the set

A0,j =

{
θ∗j | θ∗j ∈ arg min

θj∈Θj

KL

[
pT (y)‖ 1

n

n∑
i=1

pj(y | xi, θj)

]}
.

Proof All the steps in the proof of the main theorem in Berk (1966) can now be directly
applied under Assumptions (i) - (iv).

Note: we don’t have asymptotic normality for the posterior as in Lemma 2, but we can
still obtain Prop. 2 if θ∗j is unique as assumed in White (1982).
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Appendix B. Uniformity Results

The two lemmata here are uniformity results for the sequences of random variables appear-
ing in Theorem 7. These results are not surprising but do not seem to be in the standard
literature or follow directly from it. Our first Lemma here shows that the expressions (63)
are uniformly oP (1).

Lemma 5 Assume

(i) For any j = 1, . . . , J , and n,

Ej(Y
2
n ) =

∫ ∫
y2pj(yn | x, θj)wj(θj)dθjdy <∞,

(ii) For each j = 1, . . . , J and n, the conditional densities pj(yn | x, θj) are equicontinuous
in x, for x ∈ K1 for each y and θj ∈ K2j where K1 and the K2j’s are compact sets,
and,

(iii) There exists c > 0 so that for any j = 1, . . . , J and n,

Ej(Y (x)− f̂j(x))2 < c <∞.

Then the expressions (63), i.e.,

(Yi − f̂j,−i(xi))2 − (Yi − f̂j(xi))2 = (f̂j(xi)− f̂j,−i(xi))(2Yi − f̂j,−i(xi)− f̂j(xi))

for i = 1, . . . , n are uniformly oP (1).

Proof By the Cauchy-Schwarz inequality,

(f̂j(x)− f̂j,−i(x))2 = (Ej(Yn+1 | Dn)− Ej(Yn+1 | Dn,−i))2

≤ 2
(
E2
j (Yn+1 | Dn) + E2

j (Yn+1 | Dn,−i)
)

≤ 2
(
Ej(Y

2
n+1 | Dn) + Ej(Y

2
n+1 | Dn,−i)

)
. (106)

So, by Assumption (i) and Billingsley (2012) (Lemma p. 498), we have that the right hand
side of (106) is a uniformly integrable sequence since the sequence of xi’s in K1 is regarded
as a countable collection of fixed design points. Assumption (ii) together with Prop. 2 gives

Ej(f̂j(xi)− f̂j,−i(xi))2 → 0 as n→∞ (107)

uniformly in the xi’s.
For ε > 0, Markov’s inequality gives

Pj [(f̂j(xi)− f̂j,−i(xi))(2Yi − f̂j,−i(xi)− f̂j(xi)) > ε]

≤ 1

ε
Ej [(f̂j(xi)− f̂j,−i(xi))(2Yi − f̂j,−i(xi)− f̂j(xi))]

≤ 1

ε

[
Ej(f̂j(xi)− f̂j,−i(xi))2Ej(2Yi − f̂j,−i(xi)− f̂j(xi))2

]1/2

≤ 1

ε

{
Ej(f̂j(xi)− f̂j,−i(xi))2

[
2Ej(Yi − f̂j,−i(xi))2 + 2Ej(Yi − f̂j(xi))2

]}1/2

(108)
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Therefore, from Assumption (iii), (107), and (108), for each η > 0, ε > 0 there exists
N(η, ε) such that

sup
xi
Pj [(f̂j(xi)− f̂j,−i(xi))(2Yi − f̂j,−i(xi)− f̂j(xi)) > ε] < η, for all n > N(η, ε),

i.e., the expressions (63) are uniformly oP (1).

Second, the following lemma shows that a sum of n uniformly oP (1) random variables
is oP (n); this may be of more general interest.

Lemma 6 If the sequence of random variables {Zi,n, i = 1, . . . , n} is uniformly oP (1) then
the sum Tn =

∑n
i=1 Zi,n = oP (n).

Proof Since Zi,n = oP (1) uniformly, for each η > 0, ε > 0 there exists N(η, ε) such that
for any ξ > 0,

sup
i
P (|Zi,n| > ε− ξ

n
) <

η

n
, for all n > N(η, ε). (109)

Consider

P (|Tn| > nε) = P

(∣∣∣∣∑n
i=1 Zi,n
n

∣∣∣∣ > ε

)
≤ P

(
n∑
i=1

|Zi,n|
n

> ε

)

≤ P

N(η,ε)∑
i=1

|Zi,n|+
n∑

i=N(η,ε)+1

|Zi,n| > nε

 .

(110)

Since
∑N(η,ε)

i=1 |Zi,n|
P→ 0, for any ξ > 0, the right hand side of (110) is bounded by

P

ξ +
n∑

i=N(η,ε)+1

|Zi,n| > nε

 = P

 n∑
i=N(η,ε)+1

|Zi,n| >
(
ε− ξ

n

)
n


≤ P

∪ni=N(η,ε)+1

|Zi,n| >
(
ε− ξ

n

)
n

n−N(η, ε)


≤

n∑
i=N(η,ε)+1

P

|Zi,n| >
(
ε− ξ

n

)
n

n−N(η, ε)

 .
Using (ε− ξ/n)/(1−N(η, ε)/n) > ε− ξ/n gives the new bound

n∑
i=N(η,ε)+1

P

(
|Zi,n| > ε− ξ

n

)
≤ n sup

i
P

(
|Zi,n| > ε− ξ

n

)
.
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Therefore, from (109), for each η > 0, ε > 0 there exists N(η, ε) such that

P (|Tn| > nε) < η, for all n > N(η, ε),

i.e., Tn =
∑n

i=1 Zi,n = oP (n).
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