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Abstract
While the identification of nonlinear dynamical systems is a fundamental building block of model-
based reinforcement learning and feedback control, its sample complexity is only understood for
systems that either have discrete states and actions or for systems that can be identified from data
generated by i.i.d. random inputs. Nonetheless, many interesting dynamical systems have continu-
ous states and actions and can only be identified through a judicious choice of inputs. Motivated by
practical settings, we study a class of nonlinear dynamical systems whose state transitions depend
linearly on a known feature embedding of state-action pairs. To estimate such systems in finite time
identification methods must explore all directions in feature space. We propose an active learning
approach that achieves this by repeating three steps: trajectory planning, trajectory tracking, and
re-estimation of the system from all available data. We show that our method estimates nonlinear
dynamical systems at a parametric rate, similar to the statistical rate of standard linear regression.
Keywords: nonlinear dynamical systems, system identification, least squares, control theory

1. Introduction

The estimation of nonlinear dynamical systems with continuous states and inputs is generally based
on data-collection procedures inspired by the study of optimal input design for linear dynamical
systems (Schoukens and Ljung, 2019). Unfortunately, these data-collection methods are not suffi-
cient in general to enable the estimation of nonlinear systems. To attempt to circumvent this issue,
studies of system identification have either assumed that the available data is informative enough
for estimation (Hong et al., 2008; Ljung, 1987; Schoukens and Ljung, 2019) or considered systems
for which i.i.d. random inputs produce informative data (Bahmani and Romberg, 2020; Foster et al.,
2020; Oymak, 2019; Sattar and Oymak, 2020). However, as we will see, there are many nonlinear
dynamical systems that require a more judicious choice of inputs for estimation to be possible.

Inspired by experimental design and active learning, we present a data-collection scheme that is
guaranteed to enable system identification in finite time. Our method applies to dynamical systems
whose transitions depend linearly on a known feature embedding of state-input pairs. This class of
models can capture many types of dynamics and is used widely in system identification (Hong et al.,
2008; Ljung, 1987). For example, Ng et al. (2006) used such a model to estimate the dynamics
of a helicopter and Brunton et al. (2016) showed that sparse linear regression of polynomial and
trigonometric feature embeddings can be used to fit models of the chaotic Lorentz system and of a
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fluid shedding behind an obstacle. These models can be parametrized as follows:

xt+1 = A?φ(xt,ut) + wt, (1)

where xt and ut are the state and input of the system at time t, and wt is stochastic noise. The
feature map φ is assumed known and the goal is to estimate A? from one trajectory by choosing a
good sequence of inputs. The input ut is allowed to depend on the history of states {xj}tj=0 and is
independent of wt.

The class of systems (1) contains any linear system, with fully observed states, when the features
include the states and inputs of the system. Moreover, any piecewise affine (PWA) system can be
expressed using (1) if the support of its pieces is known. First introduced by Sontag (1981) as an
approximation of nonlinear systems, PWA systems are a popular model of hybrid systems (Borrelli
et al., 2017; Camacho et al., 2010; Heemels et al., 2001) and have been successfully used in a wide
range of applications (Borrelli et al., 2006; Geyer et al., 2008; Han and Tedrake, 2017; Marcucci
et al., 2017; Sadraddini and Tedrake, 2019; Yordanov et al., 2011).

While linear dynamical systems can be estimated from trajectories induced by i.i.d. random
inputs (Simchowitz et al., 2018), the following example shows that this is not possible for PWA
systems.

Example 1. Let us consider the feature map φ : Rd × Rd → R3d defined by:

φ(x,u) =

x · 1{‖x‖ ≤ 3
2}

x · 1{‖x‖ > 3
2}

u · 1{‖u‖ ≤ 1}

 ,
where 1{·} is the indicator function and the multiplication with x is coordinatewise. We assume
there is no process noise and let A? =

[
1
2Id A2 Id

]
for some d × d matrix A2 and the d × d

identity matrix Id. Also, we assume x0 = 0.
Then, since the inputs to the system can have magnitude at most 1, the state of the system can

have magnitude larger than 3/2 only if consecutive inputs point in the same direction. However, the
probability that two or more random vectors, uniformly distributed on the unit sphere, point in the
same direction is exponentially small in the dimension d. Therefore, if we used random inputs, we
would have to wait for a long time in order to reach a state with magnitude larger than 3/2.

On the other hand, if we chose a sequence of inputs ut = u for a fixed unit vector u, we would
be guaranteed to reach a state with norm larger than 3/2 in a couple of steps. Hence, despite the
input constraint, we would be able to reach the region ‖x‖ > 3/2 with a good choice of inputs. �

Therefore, in general the estimation of (1) requires a judicious choice of inputs. To address this
challenge we propose a method based on trajectory planning, which, at a high level, repeats three
steps:

• Given past observations and an estimate Â, our method plans a reference trajectory from the
current state of the system to a high uncertainty region of the feature space.

• Then, our method attempts to track the reference trajectory using Â.

• Finally, using all data collected so far, our method re-estimates Â.
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The ability to find reference trajectories from a given state to a desired goal set is related to the
notion of controllability, a standard notion in control theory. A system is called controllable if it is
possible to take the system from any state to any other state in a finite number of steps by using an
appropriate sequence of inputs. In our case, a system is considered more controllable the bigger we
can make the inner product between the system’s features and goal directions in feature space. The
number of time steps required to obtain a large inner product is called the planning horizon.

The controllability of the system and the planning horizon are system-dependent properties that
influence our ability to estimate the system. Intuitively, the more controllable a system is, the easier
it is to collect the data we need to estimate it. The following informal version of our main result
clarifies this relationship.

Theorem 1 (Informal) Our method chooses actions ut such that with high probability the ordinary
least squares (OLS) estimate Â ∈ arg minA

∑T−1
t=0 ‖Aφ(xt,ut)− xt+1‖2 satisfies

‖Â−A?‖ ≤
size of the noise

controllability of the system

√
dimension× planning horizon

number of data points
.

This statistical rate is akin to that of standard supervised linear regression, but it has an additional
dependence on the controllability of the system and the planning horizon. To better understand why
these two terms appear, recall that our method uses Â, an estimate ofA?, to plan and track reference
trajectories. Therefore, the tracking step is not guaranteed to reach the desired region of the feature
space. The main insight of our analysis is that when trajectory tracking fails, we are still guaranteed
to collect at least one informative data point per reference trajectory. Therefore, in the worst case,
the effective size of the data collected by our method is equal to the total number of data points
collected over the planning horizon.

In the next section we present our mathematical assumptions and in Section 3 we discuss our
method and main result. Section 4 includes a general result derived from prior work concerning
linear regression with dependent data. Then, in Section 5 we present in detail the proof of our main
result. There is a long line of work studying system identification, which we discuss in Section 6.
Finally, Section 7 contains takeaways and open problems.

Notation: The norm ‖·‖ is the Euclidean norm whenever it is applied to vectors and is the
spectral norm whenever it is applied to matrices. We use c1, c2, c3, . . . to denote different universal
constants. Also, Sp−1 is the unit sphere in Rp and Bpr is the ball in Rp centered at the origin and of
radius r. The symbol � is used to indicate the end of an example or of a proof. To aid the reader
Appendix A lists the definitions of our notation and also discusses the universal constants we use.

2. Assumptions

To guarantee the estimation of (1) we must make several assumptions about the true system we are
trying to identify. We denote the dimensions of the states and inputs by d and p respectively. The
feature map φ maps state-action pairs to feature vectors in Rk.

The main challenge in the estimation of (1) is choosing inputs ut so that the minimal singular
value of the design matrix is Ω(

√
T ), where T is the length of the trajectory collected from the

system. To reliably achieve this we must assume the feature map φ has some degree of smooth-
ness. Without a smoothness assumption the noise term wt at time t might affect the feature vector
φ(xt+1,ut+1) at time t+ 1 in arbitrary ways, regardless of the choice of input at time t.
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Assumption 1 The map φ : Rd × Bpru → Rk is L-Lipschitz.1

In order to use known techniques for the analysis of online linear least squares (Abbasi-Yadkori
et al., 2011; Dani et al., 2008; Rusmevichientong and Tsitsiklis, 2010; Simchowitz et al., 2018) we
also assume that the feature map φ is bounded. For some classes of systems (e.g., certain linear
systems) this condition can be removed (Simchowitz et al., 2018).

Assumption 2 There exists bφ > 0 such that ‖φ(x,u)‖ ≤ bφ for all x ∈ Rd and u ∈ Bru .

This assumption implies that the states of the system (1) are bounded, a consequence which can
be limiting in some applications. To address this issue we could work instead with the system

xt+1 = A?φ(xt,ut) + xt + wt. (2)

In this case, φ being bounded implies that the increments xt+1−xt are bounded, allowing the states
to grow in magnitude. However, formulation (2) complicates the exposition so we choose to focus
on (1).

As mentioned in the introduction, our method relies on trajectory planning and tracking to deter-
mine the inputs to the system. Suppose we would like to track a reference trajectory {(xRt ,uRt )}t≥0
that satisfies xRt+1 = A?φ(xRt ,u

R
t ). In other words, we wish to choose inputs ut to ensure that the

tracking error ‖xt − xRt ‖ is small. Simply choosing ut = uRt does not work even when the initial
states x0 and xR0 are equal because the true system (1) experiences process noise.

To ensure that tracking is possible we assume that there always exists an input to the true system
that can keep the tracking error small. There are multiple ways to formalize such an assumption.
We make the following choice.

Assumption 3 There exist positive constants γ and bu such that for any x,x′ ∈ Rd and any u′ ∈
Bpbu we have

min
u∈Bpru

‖A?
(
φ(x,u)− φ(x′,u′)

)
‖ ≤ γ‖x− x′‖. (3)

Moreover, if ‖u′‖ ≤ bu/2, there exists u, with ‖u‖ ≤ bu, that satisfies (3).

Suppose we wish to track a trajectory {(xRt ,uRt )}t≥0 that satisfies xt+1 = A?φ(xt,ut). Then,
Assumption 3 guarantees the existence of an input ut ∈ Bpbu such that

‖xt+1 − xRt+1‖ = ‖A?φ(xt,ut) + wt −A?φ(xRt ,u
R
t )‖

≤ γ‖xt − xRt ‖+ ‖wt‖.

In other words, Assumption 3 allows us to find an input ut such that the tracking error ‖xt+1−xRt+1‖
is upper bounded in terms of noise wt and the tracking error at time t. By induction, Assumption 3
guarantees the existence of inputs to the system such that

‖xH − xRH‖ ≤ max
t=0,...,H−1

‖wt‖(1 + γ + . . .+ γH−1) + γH‖x0 − xR0 ‖.

1. Since φ is continuous and since u lies in a compact set, we know that any continuous function of φ(x,u) achieves its
maximum and minimum with respect to u. This is the only reason we assume the inputs to the system are bounded.
Alternatively, we could let the inputs be unbounded and work with approximate maximizers and minimizers.
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Hence, when γ < 1 we can choose a sequence of inputs such that the state xH at time H is close to
xRH , as long as the process noise is well behaved.

Note that in Assumption 3 we allow γ ≥ 1. However, we pay a price when γ is large. The larger
γ is the more stringent the following assumptions become. Finally, we note that the parameter bu
appearing in Assumption 3 makes it easier for systems to satisfy the assumption than requiring that
(3) holds for all u′.

To estimate (1) we must collect measurements of state transitions from feature vectors that
point in different directions. To ensure that such data can be collected from the system we must
assume that there exist sequences of actions which take the dynamical system from a given state
to some desired direction in feature space. This type of assumption can be formulated in terms of
controllability. Recall that a linear system xt+1 = Axt + But is said to be controllable when the
matrix

[
B AB . . . Ad−1B

]
has full row rank. It can be easily checked that for a controllable

linear system it is possible to get from any state to any other state in d steps by appropriately
choosing a sequence of inputs. Moreover, this notion of controllability can be extended to a class
of nonlinear systems, called control affine systems, through the use of Lie brackets (Sastry, 1999;
Slotine and Li, 1991). We require, however, a different notion of controllability. In particular, we
assume that in the absence of process noise we can take the system (1) from any state to a feature
vector that aligns sufficiently with a desired direction in feature space.

Assumption 4 There exist α andH , a positive real number and a positive integer, such that for any
initial state x0 and goal vector v ∈ Sk−1 there exists a sequence of actions ut, with ‖ut‖ ≤ bu/2,
such that |〈φ(xt,ut), v〉| ≥ α > 0 for some 0 ≤ t ≤ H , with xj+1 = A?φ(xj ,uj) for all j.

While we have not seen this notion of controllability anywhere else in the literature, it captures
for nonlinear systems an important aspect of the controllability of linear systems. Namely, a linear
system is controllable if it is possible to go from any state to any other state in d steps, using an
appropriate sequence of actions. Similarly, a nonlinear system satisfies Assumption 4 if it is possible
to go from any state to any direction in feature space in H steps. If the assumption is satisfied for
some horizon H , it is clear that it is also satisfied for larger horizons. Moreover, one expects that a
larger horizon H allows a larger controllability parameter α. As discussed in the introduction, the
larger H is, the weaker our guarantee on estimation will be. However, the larger α is, the better our
guarantee on estimation will be. Therefore, there is a tension between α and H in our final result. It
is also worth noting that a nonlinear system (1) that does not satisfy Assumption 4 would not permit
the estimation of A? because it would not be possible to explore certain directions in feature space.

Assumptions 1 to 4 impose many constraints. Therefore, it is important to give examples of
nonlinear dynamical systems that satisfy these assumptions. We give two simple examples. First
we present a synthetic example for which it is easy to check that it satisfies all the assumptions, and
then we discuss the simple pendulum.

Example 2. Smoothed Piecewise Linear System When the support sets of the different pieces are
known, piecewise affine systems can be easily expressed as (1). However, the feature map φ would
not be continuous. In this example, we present a smoothed version of a PWA system, which admits
a 1-Lipschitz feature map. Let f : R→ R be defined by

f(x) =


0 if x < −1/2,
x+ 1/2 if x ∈ [−1/2, 1/2],
1 if x > 1/2.
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We also consider the maps g(x) = xt
‖xt‖ min{‖xt‖, bx} and h(u) = u

‖u‖ min{‖u‖, ru}, for some
values bx and ru. The maps g and h simply clip the size of the states and inputs. Here both the
inputs and the states are d-dimensional. Then, we define the feature map φ : R2d → R3d as follows:

φ(x,u) =

 g(x)f(x1)
g(x)(1− f(x1))

h(u)

 ,
where x1 denotes the first coordinate of x. Now, let us consider the following dynamical system:

xt+1 =
[
A1 A2 Id

]
φ(xt,ut) + wt, (4)

where A1 and A2 are two unknown d× d matrices. Since Assumptions 1-4 have nothing to do with
the process noise, in this example we assume wt is zero almost surely.

To better understand the system (4) note that when ‖xt‖ ≤ bx and ‖ut‖ ≤ ru we have

xt+1 = A1xt + ut if xt1 ≥ 1/2,

xt+1 = A2xt + ut if xt1 ≤ −1/2.

By construction, the feature map of the system is 1-Lipschitz and bounded. Therefore, (4) satisfies
Assumptions 1 and 2. We are left to show that we can choose A1, A2, bx, and ru so that (4) satisfies
Assumptions 3 and 4 as well.

Now, let us choose bx = 4. To ensure Assumptions 3 and 4 we choose ru sufficiently large.
More precisely, we choose ru = 32(‖A1‖ + ‖A2‖) + 4 and bu = 16(‖A1‖ + ‖A2‖) + 4, which
implies that Assumption 3 is satisfied with γ = 0 (one can choose u to make the left hand side of (3)
zero). Since ru ≥ 4, it means that in one time step the state x can take any value in a ball of radius 4
centered at the origin. This ball intersects with the three bands that determine the function f . Now,
let v = [v>1 , v

>
2 , v

>
3 ]> be a 3d-dimensional unit vector with vi d-dimensional. Then, the maximum

of ‖v1‖, ‖v2‖, and ‖v3‖ is at least 1/
√

3. If ‖v1‖ ≥ 1/
√

3, we can choose x with xt1 ≥ 1/2,
‖x‖ ≤ 4, and u = 0 such that |〈v, φ(x,u)〉| ≥ 4 · 1/2 · 1/

√
3 = 2/

√
3. The cases ‖v2‖ ≥ 1/

√
3

and ‖v3‖ ≥ 1/
√

3 are treated similarly. Therefore, Assumption 4 also holds.
�

Example 3. Simple Pendulum The dynamics of a simple pendulum are described in continuous
time by the equation

m`2θ̈(t) +mg` sin θ(t) = −bθ̇(t) + u(t), (5)

where θ(t) is the angle of the pendulum at time t, m is the mass of the pendulum, ` is its length, b
is a friction coefficient, and g is the gravitational acceleration.

Discretizing (5) according to Euler’s method2 with step size h and assuming stochastic process
noise, we obtain the following two-dimensional system:

xt+1 = xt +

[
a1 a2
h 0

] [
xt1

sin (xt2)

]
+

[
a3
0

]
ut + wt,

2. Using a more refined discretization method, such as a Runge-Kutta method, would be more appropriate. Unfortu-
nately, such discretization methods yield a discrete-time system which cannot be easily put in the form (2).
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where xt1 and xt2 are the coordinates of xt and a1, a2, and a3 are unknown real values. The
first coordinate of xt represents the angular velocity of the pendulum at time t, while the second
coordinate represents the angle of the pendulum. Therefore, to put the inverted pendulum in the
form of (2) we consider the feature map

φ(xt,ut) =

 xt1
sin (xt2)

ut

 .
It can be easily checked that this feature map is 1-Lipschitz. While it is not bounded, if the pendulum
experiences friction, we can ensure the feature values stay bounded by clipping the inputs ut; i.e.,
we replace ut with sgn(ut) min{|ut|, ru} for some value ru.

The simple pendulum satisfies Assumption 4 because we can drive the system in a finite number
of steps from any state xt to states xt+H for which the signs of x(t+h)1 and sin (xt1) can take any
value in {−1, 1}2, with their absolute values lower bounded away from zero.

Finally, to check Assumption 3 note that the input u can impact directly only the first coordinate
of the state. Hence, in (3) we can choose u such that the left hand side depends only on the second
coordinates of the states. Since the sine function is 1-Lipschitz, we can choose γ = 1 + h to ensure
that (3) is satisfied. Assumption 3 is pessimistic because it only considers one step control and the
simple pendulum is stabilizable and can track reference trajectories. However, Assumption 3 does
not hold with γ < 1 since the input at time t does not affect the position at time t+ 1. �

We now turn to our final two assumptions. We need to make an assumption about the process
noise and we also must assume access to an initial Â to warm start our method.

Assumption 5 The random vectors wt are independent, zero mean, and ‖wt‖ ≤ bw almost surely.3

Also, wt is independent of (xt,ut). Furthermore, we assume

bw ≤
α

c1L(1 + γ + . . .+ γH−1)
, (6)

for some universal constant c1 > 4.

Equation 6 imposes on upper bound on the size of the process noise in terms of system-
dependent quantities: the controllability parameter α introduced in Assumption 4, the Lipschitz
constant L of the feature map, and the control parameter γ introduced in Assumption 3. An upper
bound on bw is required because when the process noise is too large, it can be difficult or impossible
to counteract its effects through feedback. For example, even when the system is linear and stable
if the process noise is large, the state would not reach a small neighborhood of the origin, which
would prevent algorithm from collecting data in such a neighborhood. Therefore, the size of the
process noise needs to be small enough in relation to the system in order to make the task possible.

Finally, we assume access to an initial guess Â that is sufficiently close to A?. Namely, we
require an initial estimate Â such that ‖Â − A?‖ = O

(
L−1(1 + γ + . . .+ γH−1)−1

)
. To under-

stand the key issue this assumption resolves, suppose we are trying to track a reference trajectory
{(xRt ,uRt )}t≥0 and ‖(Â−A?)φ(xRt ,u

R
t )‖ is large. Without an assumption on the size of ‖Â−A?‖,

3. We can relax this assumption to only require wt to be sub-Gaussian. In this case, we would make a truncation
argument to obtain an upper bound on all wt with high probability.
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the magnitude of (Â − A?)φ(xRt ,u
R
t ) might be large while ‖φ(xRt ,u

R
t )‖ is small. Then, making

a measurement at a point (xt,ut) close to (xRt ,u
R
t ) might not be helpful for estimation because

φ(xt,ut) could be zero. Therefore, if ‖Â−A?‖ is too large, we might both fail to track a reference
trajectory and to collect a useful measurement. For ease of exposition, instead of assuming access
to an initial guess Â, we assume access to a data set.

Assumption 6 We have access to an initial trajectory D = {(xt,ut,xt+1)}0≤t<t0 of transitions
from the true system such that

λmin

(
t0−1∑
t=0

φ(xt,ut)φ(xt,ut)
>

)
≥ 1 + c2b

2
wL

2

(
H−1∑
i=0

γi

)2(
d+ k log(b2φT ) + log

(
π2T 2

6δ

))
,

where c2 is a sufficiently large universal constant (see Section 5.2 for a precise bound on c2) and T
is the number of samples to be collected by our method. In Appendix D we show how to replace T
by a fixed quantity T?.

As shown in Section 4, Assumption 6 guarantees that the OLS estimate Â obtained from D
satisfies ‖Â−A?‖ ≤ c3√

c2
L−1(1+γ+ . . .+γH−1)−1 for some universal constant c3. Since the fea-

tures φ(x,u) can have magnitude as large as bφ, Assumption 6 only implies ‖(Â−A?)φ(x,u)‖ =
O(bφL

−1(1+γ+. . .+γH−1)−1). Therefore, Assumption 6 does not imply a stringent upper bound
on ‖(Â−A?)φ(x,u)‖ because bφ can be arbitrarily large relative to L and γ.

3. Main Result

Our method for estimating the parameters of a dynamical system (1) is shown in Algorithm 1. The
trajectory planning and tracking routines are discussed in detail in Sections 3.1 and 3.2, respectively.
Our method is also presented in one block of pseudo-code in Appendix E. We now state our main
result.

Theorem 1 Suppose xt+1 = A?φ(xt,ut) + wt is a nonlinear dynamical system which satisfies
Assumptions 1-5 and suppose D is an initial trajectory that satisfies Assumption 6. Also, let β =

c4

(
d+ k log(β2φT ) + log(π2T 2/(6δ))

)−1
with c4 ≤ (c1−4)2

144c23
and let:4

Ne :=


2k log

(
2kb2φ

log(1+β/2)

)
log(1 + β/2)

 .
Then, with probability 1− δ, and given parameters T and β, Algorithm 1 outputs Â such that

‖Â−A?‖ ≤ c5
bw
α

√√√√d+ k log(b2φT ) + log
(
π2T
6δ

)
T/H −Ne

,

whenever T ≥ 32kb2φH

α2 +HNe.
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Algorithm 1 Active learning for nonlinear system identification
Require: Parameters: the feature map φ, initial trajectory D, and parameters T , α, and β.

1: Initialize Φ to have rows φ(xj ,uj)
> and Y to have rows (xj+1)

>, for (xj ,uj ,xj+1) ∈ D.
2: Set Â← Y >Φ(Φ>Φ)−1; i.e., the OLS estimate according to D.
3: Set t← t0.
4: while t ≤ T + t0 do
5: Set xR0 ← xt,
6: Set v to be a minimal eigenvector of Φ>Φ, with ‖v‖ = 1.
7: Trajectory planning: find inputs uR0 , uR1 , . . . , uRr , with ‖uRj ‖ ≤ bu and r ≤ H , such that∣∣〈φ(xRr ,u

R
r ), v〉

∣∣ ≥ α

2
or φ(xRr ,u

R
r )>(Φ>Φ)−1φ(xRr ,u

R
r ) ≥ β,

where xRj+1 = Âφ(xRj ,u
R
j ) for all j ∈ {0, 1, . . . , r − 1}.

8: Trajectory tracking: track the reference trajectory {(xRj ,uRj )}rj=0 and increment t as de-
scribed in Section 3.2.

9: Set Φ> ← [φ0, φ1, . . . , φt−1] and Y > ← [x1,x2, . . . ,xt], where (φj ,xj+1) are all feature-
state transitions observed so far.

10: Re-estimate: Â← Y >Φ(Φ>Φ)−1.
11: end while
12: Output the last estimate Â.

There are several aspects of this result worth emphasizing. First, the statistical rate we ob-
tain in Theorem 1 has the same form as the standard statistical rate of linear regression, which is

O
(
σw

√
k
T

)
, where σw is the sub-Gaussian parameter of the noise w. Nonetheless, there are a

couple of key distinctions between our result and the standard statistical rate of linear regression.
Firstly, while a bound bw on the norm of the noise implies that the noise is bw-sub-Gaussian, it is
not true that the norm of a σw-sub-Gaussian random vector can be bounded with high probability
by σw. In general, the best available bound would be σw

√
k, where k is the dimension of the ran-

dom vector. Therefore, for certain types of process noise our result has a worse dependence on the
dimension than the statistical rate of linear regression.

Two other important distinctions are the dependence on the planning horizonH and the control-
lability term α, both of which are to be expected in our case. Algorithm 1 uses trajectory planning
for data collection and the length of the reference trajectories is at most H . Since we can only
guarantee one useful measurement per reference trajectory, it is to be expected that we can only
guarantee an effective sample size of T/H . The controllability term α is also natural in our result
because it quantifies how large the feature vectors can become in different directions. Larger feature
vectors imply a larger signal-to-noise ratio, which in turn implies faster estimation.

Theorem 1 shows that our method can estimateA? reliably. However, downstream control tasks
may be difficult even when a good estimate of A? is available. In other words, given a model (1)
it may be difficult to find a controller that achieves a desired behavior. Model predictive control
(MPC) is a good technique for leveraging a model of the dynamics for control since at each time

4. Recall that c1 is the universal constant appearing in Assumption 4 and c3 is the universal constant appearing in the
upper bound on the error of the OLS estimate, shown in Section 4.

9
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step it determines the next input to the system by approximately optimizing the cost achieved by tra-
jectories generated using the model (Borrelli et al., 2017). We leave an exploration of the interplay
between MPC and system identification to future work.

3.1 Trajectory Planning

The trajectory planning routine shown in Algorithm 1 uses the current estimate Â to plan, assuming
no process noise, a trajectory from the current state of the system xR0 = xt to a high-uncertainty
region of the feature space, assuming no process noise. More precisely, it finds a sequence of actions
{uRj }rj=0 which produces a sequence of reference states {xRj }rj=0 with the following properties:

• xRj+1 = Âφ(xRj ,u
R
j ).

• The last reference state-action pair (xRr ,u
R
r ) is either well aligned with v, the minimum eigen-

vector of Φ>Φ, or its feature vector is in a high-uncertainty region of the state space. More
precisely, (xRr ,u

R
r ) must satisfy one of the following two inequalities:∣∣〈φ(xRr ,u

R
r ), v〉

∣∣ ≥ α

2
or φ(xRr ,u

R
r )>(Φ>Φ)−1φ(xRr ,u

R
r ) ≥ β.

It is not immediately obvious that we can always find such a sequence of inputs. In Section 5 we
prove that when Assumptions 4 and 6 hold the trajectory planning problem is feasible.

From the study of OLS, discussed in Section 4, we know that the matrix Φ>Φ determines the
uncertainty set of OLS. The larger λmin

(
Φ>Φ

)
is, the smaller the uncertainty set will be. Therefore,

to reduce the size of the uncertainty set we want to collect measurements at feature vectors φ such
that the smallest eigenvalues of Φ>Φ+φφ> are larger than the smallest eigenvalues of Φ>Φ. Ideally,
φ is a minimal eigenvector of Φ>Φ. However, we cannot always drive the system to such a feature
vector, especially in the presence of process noise.

Instead, we settle for feature vectors of the following two types. Firstly, the trajectory planner
tries to drive the system to feature vectors φ that are well aligned with the minimal eigenvector v of
Φ>Φ; i.e., such that |〈φ, v〉| ≥ α. Such a data collection scheme is an instance of E-optimal design
(Pukelsheim, 1993), which has been shown by Wagenmaker and Jamieson (2020) to produce inputs
that allow the estimation of linear dynamics at an optimal rate.

However, if reaching a feature vector that aligns with the minimal eigenvector is not possible,
the trajectory planner finds a reference trajectory to a feature vector φ such that φ>(Φ>Φ)−1φ ≥ β.
When this inequality holds our uncertainty about the estimate Â in the direction φ is large. As
shown in Section 5, such feature vectors can be encountered for only a small number of iterations.

Finally, trajectory planning is computationally intractable in general. However, in this work we
quantify the data requirements of identifying A?, leaving computational considerations for future
work. We assume access to a computational oracle. This assumption is reasonable since trajectory
planning is often solved successfully in practice (Kavraki et al., 1996; LaValle and Kuffner Jr., 2001;
Zucker et al., 2013).

3.2 Trajectory Tracking

Now we detail the trajectory tracking component of our method. We saw that the trajectory planner
produces a reference trajectory {(xRj ,uRj )}rj=0, with r ≤ H . However, the planner assumes no

10
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process noise to generate this reference trajectory. Therefore, if we were to simply plug the sequence
of actions {uRj }rj=0 into (1), the states of the system would diverge from xRj . Instead, after observing
each state xt of the system (1), our method chooses an input ut as follows:

• Given the current state xt, our method chooses an input ut such that

φ(xt,ut)
>(Φ>Φ)−1φ(xt,ut) ≥ β,

if there exists such an input. In other words, if there is an opportunity to greedily collect an
informative measurement, our method takes it. If this situation is encountered, the trajectory
tracker increments t by 1 and then stops tracking and returns.

• If there is no opportunity for greedy exploration, our method chooses an input ut that mini-
mizes ‖Â(φ(xt,ut) − φ(xRj ,u

R
j ))‖, and then increments t and j by one (t indexes the time

steps of the system (1) and j indexes the reference trajectory). Therefore, our method uses
closed loop control for data generation since minimizing ‖Â(φ(xt,ut) − φ(xRj ,u

R
j ))‖ re-

quires access to the current state xt. At time t we choose ut in this fashion in order to
minimize the tracking error E‖xt+1 − xRt+1‖2 at the next time step, where the expectation is
taken with respect to wt.

• Our method repeats these steps until j = r; i.e., until it reaches the end of the reference
trajectory. When j = r the trajectory tracker sets ut = uRj , increments t by one, and returns.

4. General Guarantee on Estimation

In this section we provide a general upper bound on the error between an OLS estimate Â and the
true parameters A?. The guarantee is based on the work of Simchowitz et al. (2018). We note
also that results of this kind have been previously used in the study of online least squares and linear
bandits (Abbasi-Yadkori et al., 2011; Dani et al., 2008; Rusmevichientong and Tsitsiklis, 2010). We
assume that we are given a sequence of observations {(xt,ut,xt+1)}t≥0, generated by the system
(1), with ut allowed to depend on x0, x1, . . . , xt−1 and independent of wj for all j ≥ t. In what
follows we denote φt := φ(xt,ut).

Our method re-estimates the parameters A? as more data is being collected. For the purpose
of this section let us denote by Âj the OLS estimate obtained using the first j measurements
(xt,ut,xt+1):

Âj = arg min
A

j−1∑
t=0

‖Aφt − xt+1‖2. (7)

Proposition 2 If the system (1) satisfies Assumptions 5 and 2 and if λmin

(∑t0−1
t=0 φtφ

>
t

)
≥ λ, for

some λ > 0 and t0 > 0, the OLS estimates (7) satisfy

P

∃u ∈ Sk−1 and j ≥ t0 s.t. ‖(Âj −A?)u‖ ≥ µj

√√√√u>

(
j−1∑
t=0

φtφ>t

)−1
u

 ≤ δ,
where µj = c3bw

√
d+ k log

(
b2φj

λ

)
+ log

(
π2j2

6δ

)
for some universal constant c3.

11
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Proof By assumption λmin

(∑t0−1
t=0 φtφ

>
t

)
≥ λ > 0. Therefore,

∑j−1
t=0 φtφ

>
t is invertible and

Âj −A? = W>j Φj(Φ
>
j Φj)

−1,

where W>j = [w0, . . . ,wj−1] and Φ>j = [φ0, . . . , φj−1]. Now, we fix the index j and we consider
the SVD decomposition Φj = UΣV >. Therefore, Âj −A? = W>j UΣ†V >.

Recall that supx,u ‖φ(x,u)‖2 ≤ bφ by assumption. Then, according to the analysis of Sim-
chowitz et al. (2018) we know that ‖W>j U‖ ≤ µj with probability at least 1−6δ/(π2j2). Note that
for all u ∈ Sk−1 we have

‖(Âj −A?)u‖ ≤ ‖W>j U‖‖Σ†V >u‖ = ‖W>j U‖
√
u>V (Σ†)>Σ†V >u

= ‖W>j U‖
√
u>(Φ>j Φj)−1u.

Therefore, for a fixed index j, we have

P

∃u ∈ Sk−1 s.t. ‖(Âj −A?)u‖2 ≥ µj

√√√√u>

(
j−1∑
t=0

φtφ>t

)−1
u

 ≤ 6δ

π2j2
.

A direct application of the union bound yields the desired conclusion.

5. Proof of Theorem 1

First let us observe that when bw = 0 the result is trivial. Because we assume access to an initial
trajectory D which satisfies Assumption 6 we are guaranteed Â = A? when bw = 0. Therefore, we
can assume that bw > 0, which implies that α must be strictly positive according to Assumption 4.
Throughout the proof we denote φt := φ(xt,ut) and φRj := φ(xRj ,u

R
j ).

The proof of our result has three parts, which we now outline:

• We show that the trajectory planning step in Algorithm 1 is always feasible.

• We show that during the execution of Algorithm 1 there are at most Ne iterations such that:

max
u∈Bru

φ(xt,u)>(Φ>Φ)−1φ(xt,u) ≥ β or (φRj )>(Φ>Φ)−1φRj ≥ β.

• We show that Algorithm 1 collects at least T/H − Ne measurements (φt,xt+1) such that
|〈φt, v〉| ≥ α/4, where v is a minimal eigenvector used to plan the reference trajectories. As
a consequence, we show that Algorithm 1 collects measurements (φt,xt+1) such that

λmin

(
T+t0∑
t=1

φtφ
>
t

)
≥ O(1)α2

(
T

H
−Ne

)
− k − 1

2
b2φ. (8)

Once we have shown (8) is true, Theorem 1 follows from Proposition 2 and some algebra.

12
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5.1 Part 1 of the Proof of Theorem 1.

We show that the trajectory planning step of Algorithm 1 is always feasible. Let

µ = c3bw

√
d+ k log

(
b2φT

)
+ log

(
π2T 2

6δ

)
,

where c3 is the universal constant appearing in Proposition 2. Since Assumption 6 guarantees that
the minimum eigenvalue of the design matrix is at least 1, we know that

‖(Â−A?)φ‖ ≤ µ
√
φ> (Φ>Φ)

−1
φ, (9)

for all φ ∈ Sk−1 and all iterations of Algorithm 1 with probability 1− δ.

Now, let β = c4

(
d+ k log(β2φT ) + log(π2T 2/(6δ))

)−1
with c4 ≤ c21/(4c

2
3). Then, since

α ≥ c1Lbw(1 + γ + . . .+ γH−1), we have

β ≤
(

α

2L(1 + γ + . . .+ γH−1)µ

)2

. (10)

Let us x̃0 be equal to the initial state xR0 of the trajectory planning and let v ∈ Rk be the desired
goal direction. By Assumption 4 we know that there must exist a sequence of inputs ũ0, ũ1, . . . , ũr,
with r ≤ H and ‖ũj‖ ≤ bu/2, such that |〈φ(x̃r, ũr), v〉| ≥ α, where x̃j+1 = A?φ(x̃j , ũj). Now,
let xRj+1 = Âφ(xRj ,u

R
j ), where uRj is any input vector with ‖uRj ‖ ≤ bu such that

‖A?[φ(xRj ,u
R
j )− φ(x̃j , ũj)]‖ ≤ γ‖xRj − x̃j‖, (11)

for j < r. Assumption 4 guarantees the existence of uRj . We set uRr = ũr and denote φ̃j =

φ(x̃j , ũj) and φRj = φ(xRj ,u
R
j ).

Case 1. There exists j ∈ {0, 1, 2, . . . , r} such that (φRj )>
(
Φ>Φ

)−1
φRj ≥ β. If this is the case,

we are done because we found a feasible sequence of inputs uR0 , uR1 , . . . , uRj .

Case 2. We have (φRj )>
(
Φ>Φ

)−1
φRj ≤ β for all j ∈ {0, 1, 2, . . . , r}. In this case, we have

x̃j+1 − xRj+1 = A?φ̃j − ÂφRj = A?(φ̃j − φRj ) + (A? − Â)φRj .

Therefore, using (9), (10), and (11) we find

‖x̃j+1 − xRj+1‖ ≤ ‖A?(φ̃j − φRj )‖+ ‖(A? − Â)φRj ‖

≤ γ‖x̃j − xRj ‖+
α

2L(1 + γ + . . .+ γH−1)
.

Applying this inequality recursively, we find ‖x̃r − xRr ‖ ≤ α
2L , which implies |〈φRr , v〉| ≥ α/2

because ‖φRr − φ̃r‖ ≤ L‖x̃r −xRr ‖ by Assumption 1 and |〈φ̃r, v〉| ≥ α by construction. Hence, we
constructed a feasible sequence of inputs {uj}rj=0 and Part 1 of the proof is complete.

13
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5.2 Part 2 of the Proof of Theorem 1.

Now, we show that the number of iterations for which Algorithm 1 satisfies

max
u∈Bru

φ(xt,u)>(Φ>Φ)−1φ(xt,u) ≥ β or (φRj )>(Φ>Φ)−1φRj ≥ β (12)

is upper bounded by

Ne :=


2k log

(
2kb2φ

log(1+β/2)

)
log(1 + β/2)

 . (13)

We rely on the following proposition whose proof is deferred to Appendix B.

Proposition 3 Let M0 be a positive definite matrix and let us consider a sequence of vectors
{vt}t≥1 in Rk with maxt≥1‖vt‖ ≤ b. Then, the number of vectors vt+1 such that

v>t+1

(
M0 +

t∑
i=1

viv
>
i

)−1
vt+1 ≥ β,

is upper bounded by 
2k log

(
2kb2

λk(M0) log(1+β)

)
log(1 + β)

 . (14)

Given Proposition 3, to prove (13) it suffices to show that during each iteration of Algorithm 1
when (12) occurs our method collects a measurement (φt,xt+1) such that φ>t (Φ>Φ)−1φt ≥ β/2.

By the definition of our trajectory tracker, whenever supu φ(xt,u)>(Φ>Φ)−1φ(xt,u) ≥ β we
collect a measurement (φt,xt+1) such that φ>t (Φ>Φ)−1φt ≥ β.

Next, we show that when (φRj )>(Φ>Φ)−1φRj ≥ β, for some j ≤ r, Algorithm 1 is guaranteed
to collect a measurement (φt,xt+1) such that φ>t (Φ>Φ)−1φt ≥ β/2. Let s be the smallest index in
the reference trajectory such that (φRs )>(Φ>Φ)−1φRs ≥ β.

For the remainder of this section we re-index the trajectory {(xt,ut)}t≥0 collected by Algo-
rithm 1 so that xRj = xj for all j ∈ {0, 1, . . . , s}. Then, we show that (φRs )>(Φ>Φ)−1φRs ≥ β

implies the existence of j ∈ {0, 1, . . . , s} such that φ>j (Φ>Φ)−1φj ≥ β/2.
Let ∆ = φRs − φs. The Cauchy-Schwarz inequality implies

φs(Φ
>Φ)−1φs = φRs (Φ>Φ)−1φRs + ∆>(Φ>Φ)−1∆ + 2∆T (Φ>Φ)−1φRs

≥
(√

φRs (Φ>Φ)−1φRs −
√

∆>(Φ>Φ)−1∆

)2

.

Then, as long as ∆>(Φ>Φ)−1∆ ≤ β
2 (3− 2

√
2), we are guaranteed to have φ>s (Φ>Φ)−1φs ≥ β/2.

Now, since s is the smallest index such that (φRs )>(Φ>Φ)−1φRs ≥ β, we know that for all
j ∈ {0, 1, . . . , s− 1} we have (φRj )>(Φ>Φ)−1φRj ≤ β. Also, we can assume that during reference
tracking we do not encounter a state xj , with j ∈ {0, 1, . . . , s− 1}, such that

max
u∈Bru

φ(xj ,u)>(Φ>Φ)−1φ(xt,u) ≥ β,

14
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because we already treated this case. Now, let us consider the difference

xj+1 − xRj+1 = A?φj + wj − ÂφRj = (A? − Â)φj + wj − Â[φRj − φj ].

We obtain

‖xj+1 − xRj+1‖ ≤ ‖(A? − Â)φj‖+ bw + ‖Â[φRj − φj ]‖.

Let us denote δj(u) = φ(xj ,u)− φRj . Hence, δj(uj) = φj − φRj . Now, let u? ∈ Bru an input such
that ‖A?δt(u?)‖ ≤ γ‖xj − xRj ‖, which we know exists by Assumption 3 (note that u? depends on
the index j, but we dropped this dependency from the notation for simplicity). Since our method
attempts trajectory tracking by choosing uj ∈ arg minu∈Bru‖Â(φ(xt,u)− φ(xRj ,u

R
j ))‖ we have

‖Âδj(uj)‖ ≤ ‖Âδj(u?)‖ ≤ ‖A?δj(u?)‖+ ‖(A? − Â)δj(u?)‖

≤ γ‖xj − xRj ‖+ ‖(A? − Â)δj(u?)‖

≤ γ‖xj − xRj ‖+ ‖(A? − Â)φ(xj ,u?)‖+ ‖(A? − Â)φRj ‖.

As mentioned above, we can assume φ(xj ,u?)
>(Φ>Φ)−1φ(xj ,u?) < β. Also, recall that

(φRj )>(Φ>Φ)−1φRj ≤ β,

since j < s and s is the smallest index so that this inequality does not hold. Hence, Proposition 2
implies that ‖(A?− Â)φ(xt,u?)‖ ≤ µ

√
β and ‖(A?− Â)φRr ‖ ≤ µ

√
β. Putting everything together

we find

‖xj+1 − xRj+1‖ ≤ γ‖xj − xRj ‖+ 3µ
√
β + bw.

Then, since the reference trajectory is initialized with the state xR0 = x0, we find

‖∆‖ = ‖φs − φRs ‖ ≤ L(bw + 3µ
√
β)(1 + γ + . . .+ γs−1)

= (3c3
√
c4 + 1)Lbw(1 + γ + . . .+ γs−1),

where the last identity follows because µ
√
β = c3

√
c4bw.

Then, as long as c2 ≥ 2(3c3
√
c4+1)2

(3−2
√
2)c4

, Assumption 6 offers a lower bound on λmin(Φ>Φ) which

ensures that ∆>(Φ>Φ)−1∆ ≤ β
2 (3− 2

√
2), implying φ>s (Φ>Φ)−1φs ≥ β/2.

To summarize, we have shown whenever Algorithm 1 encounters a situation in which either

sup
u
φ(xt,u)>(Φ>Φ)−1φ(xt,u) ≥ β or (φRj )>(Φ>Φ)−1φRj ≥ β, (15)

it collects a measurement (φt,xt+1) such that φt(Φ>Φ)−1φt ≥ β/2. Hence, according to Proposi-
tion 3, the event (15) can occur at most Ne times (the value Ne was defined in (13)).
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5.3 Part 3 of the Proof of Theorem 1.

In this final part of the proof we analyze what happens when the trajectory planning problem returns
a reference trajectory (xRj ,u

R
j ) for which |〈φRr , v〉| ≥ α/2, where v is a minimal eigenvector with

unit norm of Φ>Φ.
During its execution the algorithm produces T/H reference trajectories. Part 2 of the proof

implies that at least T/H −Ne of the reference trajectories satisfy |〈φRr , v〉| ≥ α/2, with all states
xt encountered during tracking satisfying supu φ(xt,u)>

(
Φ>Φ

)−1
φ(xt,u) ≤ β and all reference

features φRj satisfying (φRj )>(Φ>Φ)−1φRj ≤ β.
Following the same argument as in Part 2 of the proof we know that tracking the reference

trajectory in this case takes the system to a state xt such that

‖xt − xRr ‖ ≤ (3c3
√
c4 + 1)bw(1 + γ + . . .+ γr−1),

which implies by Assumption 1 that

‖φt − φRr ‖ ≤ (3c3
√
c4 + 1)Lbw(1 + γ + . . .+ γr−1).

This last inequality implies that |〈φt, v〉| ≥ α/4 if 3c3
√
c4+1 ≤ c1/4. Recall that the only condition

we imposed so far on c4 is c4 ≤ c21/(4c23) in Part 1 of the proof. Hence, since c1 > 4, we can choose
c4 such that c4 ≤ (c1−4)2

144c23
and c4 ≤ c21/(4c

2
3). Then, 3c3

√
c4 + 1 < c1/4. Now, to finish the proof

of Theorem 1 we rely on the following result, whose proof is deferred to Appendix C.

Proposition 4 Let V ⊂ Rk be a bounded set, with supv∈V‖v‖ ≤ b, such that for any u ∈ Sk−1
there exists v ∈ V with |〈u, v〉| ≥ α. Then, for all T ≥ 0, given any sequence of vectors {vt}t≥0 in
Rk we have

λmin

(
T∑
i=1

viv
>
i

)
≥ α2K(T )

2k
− k − 1

2

(
b2 − α2

2

)
,

where K(T ) is the number of times vt+1 belongs to V and |〈vt+1, ṽt+1〉| ≥ α, with ṽt+1 ∈
arg min‖v‖=1 v

> (∑t
i=1 viv

>
i

)
v and t < T .

We have shown that at least T/H−Ne times the algorithm collects a state transition (xt,ut,xt+1)
for which φt is at least α/4 aligned with the minimal eigenvector of Φ>Φ, where Φ is the matrix of
all φj observed prior to the last trajectory planning episode. Therefore, Proposition 4 implies that
Algorithm 1 collects a sequence of measurements (φt,xt+1) such that

λmin

(
T+t0∑
t=1

φtφ
>
t

)
≥ α2

32

(
T

H
−Ne

)
− k − 1

2
b2φ,

where bφ plays the role of b in Proposition 4. Putting this result together with Proposition 2 yields
the desired conclusion.
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6. Related Work

System identification, being one of the cornerstones of control theory, has a rich history, which we
cannot hope to summarize here. For an in-depth presentation of the field we direct the interested
reader to the book by Ljung (1987) and the review articles by Åström and Eykhoff (1971), Bombois
et al. (2011), Chiuso and Pillonetto (2019), Hong et al. (2008), Juditsky et al. (1995), Ljung et al.
(2020), Schoukens and Ljung (2019), and Sjöberg et al. (1995). Instead, we discuss recent studies
of system identification that develop finite-time statistical guarantees.

Most recent theoretical guarantees of system identification apply to linear systems under var-
ious sets of assumptions (Campi and Weyer, 2002; Dahleh et al., 1993; Faradonbeh et al., 2018;
Fattahi et al., 2019; Hardt et al., 2018; Hazan et al., 2017, 2018; Oymak and Ozay, 2019; Sarkar and
Rakhlin, 2019; Sarkar et al., 2021, 2019; Simchowitz et al., 2018, 2019; Sun et al., 2020; Tsiamis
and Pappas, 2019; Tsiamis et al., 2019; Wagenmaker and Jamieson, 2020). Notably, Simchowitz
et al. (2018) derived sharp rates for the non-adaptive estimation of marginally stable systems. Then,
Sarkar and Rakhlin (2019) developed a more general analysis that also applies to a certain class
of unstable linear systems. Both of these studies assumed that the estimation method can directly
observe the state of the system. We make the same assumption in our work. However, in many
applications full state observation is not possible. Recently, Simchowitz et al. (2019) proved that
marginally stable linear systems can be estimated from partial observations by using a prefiltered
least squares method. From the study of linear dynamics, the work of Wagenmaker and Jamieson
(2020) is the closest to our own. Inspired by E-optimal design (Pukelsheim, 1993), the authors
propose and analyze an adaptive data collection method for linear system identification which max-
imizes the minimal eigenvalue λmin(

∑T−1
t=0 xtx

>
t ) under power constraints on the inputs. Wagen-

maker and Jamieson (2020) prove matching upper and lower bounds for their method.
There is comparatively little known about the sample complexity of nonlinear system identifi-

cation. Oymak (2019) and Bahmani and Romberg (2020) studied the estimation of the parameters
A and B of a dynamical system of the form xt+1 = φ(Axt +But), where φ is a known activation
function and the inputs ut are i.i.d. standard Gaussian vectors. Importantly, in this model both xt
and ut are observed and there is no unobserved noise, which makes estimation easy when the map
φ is invertible. In follow-up work, Sattar and Oymak (2020) and Foster et al. (2020) generalized
these results. In particular, Foster et al. (2020) took inspiration from the study of generalized linear
models and showed that a method developed for the standard i.i.d. setting can estimate dynamical
systems of the form xt+1 = φ(Axt) +wt at an an optimal rate, where wt is unobserved i.i.d. noise.
All these works share a common characteristic, they study systems for which identification is pos-
sible through the use of non-adaptive inputs. We take the first step towards understanding systems
that require adaptive methods for successful identification.

In a different line of work, Singh et al. (2021) proposed a learning framework for trajectory
planning from learned dynamics. They propose a regularizer of dynamics that promotes stabiliz-
ability of the learned model, which allows the tracking of reference trajectories based on estimated
dynamics. Also, Khosravi and Smith (2020a) and Khosravi and Smith (2020b) developed learning
methods that exploit other control-theoretic priors. Nonetheless, none of these works characterize
the sample complexity of the problem.

While most work that studies sample-complexity questions in the setting of tabular MDPs fo-
cuses on finding optimal policies, Jin et al. (2020) and Wolfer and Kontorovich (2019) recently
analyzed data collection for system identification. More precisely, Jin et al. (2020) developed an ef-
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ficient algorithm for the exploration of tabular MDPs that enables near-optimal policy synthesis for
an arbitrary number of reward functions, which are unknown during data collection, while Wolfer
and Kontorovich (2019) derived minimax sample complexity guarantees for the estimation of er-
godic Markov chains. Finally, we note that Abbeel and Ng (2005) quantified the sample complexity
of learning policies from demonstrations for tabular MDPs and for a simpler version of the model
class (1).

Finally, Kakade et al. (2020) already followed up on our work, showing that when (1) has an
associated cost function one can solve online the control problem by relying on optimism in the face
of uncertainty. Their proposed method achieves achievesO(

√
T ) regret and, as in our case, it is not

computationally tractable.

7. Discussion and Open Problems

The field of system identification has broadened the range of real-world applications of control
theory, and promises to further expand the field in the future, particularly as data collection becomes
more pervasive. In this work we proposed and analyzed a method that estimates a class of nonlinear
dynamical systems in finite time by adaptively collecting data that is informative enough. While
this results takes us closer to understanding the fundamental limits of data-driven control, there are
many limitations to our model and approach. We end with a list of open questions:

• To solve trajectory planning problems we assumed access to a computational oracle. Is it
possible to develop a method that has good statistical guarantees and is also computationally
tractable? In practice, successful nonlinear control is often based on linearizations of the
dynamics. Is it possible to quantify the sample complexity of system identification when
trajectory planning is implemented using linearizations?

• Our method relies on full state observations. However, in many applications full state obser-
vations are impossible. Is it possible to obtain finite-time statistical guarantees for nonlinear
system identification from partial observations?

• Our guarantee holds only when the true system being identified lies in the model class (1).
When the true system is not part of the model class, how much data is needed to find the best
model in class? Ross and Bagnell (2012) studied this problem under a generative model.

• Only fully actuated systems can satisfy Assumption 3 with γ < 1. Is it possible to extend our
result to systems that require multiple time steps to recover from disturbances?

• Assumption 4 allows only systems whose feature vectors can align with any direction. What
if the feature vectors can align only with vectors in a subspace? In this case, it is not possible
to recoverA? fully. However, in this case, it would not be necessary to knowA? fully in order
to predict or control. Is it possible to estimate A? only in the relevant directions?

• What if we consider infinite-dimensional feature maps φ? For example, can we develop a
statistical theory of learning reproducing kernel Hilbert space models of dynamical systems?
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Appendix A. Notation

We list the meanings of some of our notation. We also discuss our requirements on the universal
constants we use.

Symbol Definition
d dimension of the states
p dimension of the inputs
k dimension of the features φ(x,u)

ru upper bound on the Euclidean norm of the inputs
L Lipschitz constant of the feature map φ
bφ upper bound on the Euclidean norm of the feature map φ
γ multiplicative factor that upper bounds how much a tracking error can be shrunk

in one time step, appearing in Assumption 3
bu upper bound on the Euclidean norm of the inputs needed in Assumption 3 to

shrink the tracking errors
α lower bound on well the state-input features of the system can align with given

directions, appearing in Assumption 4
H a positive integer that upper bounds the horizon needed to align the features of

the system with a given direction, appearing in Assumption 4
D the initial data set
β hyperparameter in Algorithm 1
c1, c2, c3 . . . different universal constants
c1 universal constant appearing in Assumption 5 regarding the size of the noise.
c2 universal constant appearing Assumption 6 regarding the initialization of the

algorithm.
c3 universal constant appearing in the bound on the performance of OLS (Proposi-

tion 2)
c4 universal constant appearing in our choice of the hyperparameter β (Theorem 1)
c5 universal constant appearing in our method’s final statistical rate (Theorem 1)

Now, we discuss the universal constants. The constant c1 can be chosen to be any number
greater than 4. The constant c3 can be any positive value that makes Proposition 2 true. Once c1
and c3 are chosen, the constant c4 can be chosen to be any positive number such that c4 ≤ (c1−4)2

144c23
.

Finally, once c1, c2, and c3 are set, the constant c2 can be any value such that c2 ≥ 2(3c3
√
c4+1)2

(3−2
√
2)c4

.
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Appendix B. Proof of Proposition 3

To make this section self-contained we restate Proposition 3 here. This proposition shows that for
any sequence {vt}t≥1 the quantity v>t+1

(
M0 +

∑t
i=1 viv

>
i

)−1
vt+1 is large only a small number

of times. For linear regression, this fact implies that whenever we collect a measurement with
covariates vt+1, the estimation error shrinks by a factor greater than one.

Proposition 5 Let M0 be a positive definite matrix and let us consider a sequence of vectors
{vt}t≥1 in Rk with maxt≥1‖vt‖ ≤ b. Then, the number of vectors vt+1 such that

v>t+1

(
M0 +

t∑
i=1

viv
>
i

)−1
vt+1 ≥ β,

is upper bounded by 
2k log

(
2kb2

λk(M0) log(1+β)

)
log(1 + β)

 . (14)

The next lemma relates scaling ellipsoids in one direction with the scaling of their volumes. A
proof of this result can be found in the work by Abbasi-Yadkori et al. (2011).

Lemma 6 Suppose M and N are two positive definite matrices with M � N � 0. Then,

sup
v 6=0

v>Mv

v>Nv
≤ det(M)

det(N)
.

Now, we are ready to prove Proposition 3. We denote by Nt = N0 +
∑t

i=1 viv
>
i . First, we

prove that det(N−1t+1) ≤ det(N−1t )/(1 + β) whenever v>t+1N
−1
t vt+1 ≥ β.

By definition we have Nt+1 � Nt � 0. Therefore, N−1t+1 � N
−1
t . Now, we apply the Sherman-

Morrison rank-one update formula to find

v>t+1N
−1
t+1vt+1 = v>t+1N

−1
t vt+1 −

(
v>t+1N

−1
t vt+1

)2
1 + v>t+1N

−1
t vt+1

=

(
1−

v>t+1N
−1
t vt+1

1 + v>t+1N
−1
t vt+1

)
v>t+1N

−1
t vt+1.

Since the function x 7→ x
1+x is increasing for x > −1, we find

v>t+1N
−1
t+1vt+1 ≤

v>t+1N
−1
t vt+1

1 + β
,

whenever v>t+1N
−1
t vt+1 ≥ β. Then, Lemma 6 implies that det(N−1t+1) ≤ det(N−1t )/(1 + β)

whenever v>t+1N
−1
t vt+1 ≥ β, which in turn implies det(Nt+1) ≥ (1 + β) det(Nt) whenever

v>t+1N
−1
t vt+1 ≥ β.

Intuitively, det(Nt+1) ≥ (1 + β) det(Nt) cannot happen too often because the vectors vt are
bounded. Therefore, the number of times v>t+1N

−1
t vt+1 ≥ β must be small. To prove this fact
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we study the growth of the eigenvalues of Nt. We have shown that det(Nt+1) ≥ (1 + β) det(Nt)
whenever v>t+1N

−1
t vt+1 ≥ β, which means that the eigenvalues of Nt grow exponentially with the

number of times v>t+1N
−1
t vt+1 ≥ β. We offer an exponential lower bound on the growth of Nt’s

eigenvalues and we also present an upper bound on the size of the eigenvalues, using the fact that
the vectors vt are bounded. Putting these two bounds together shows that v>t+1N

−1
t vt+1 ≥ β cannot

happen too often. Now, we make this argument precise.
Let us denote by λ1(t), λ2(t), . . . , λk(t) the eigenvalues ofNt sorted in decreasing order. Recall

that λi(t) is a non-decreasing function of t. Now, let εi,t = log1+β(λi(t)/λi(t− 1)). Therefore, we
have λi(t) = (1 + β)εi,tλi(t− 1). We know εi,t ≥ 0 for all i and t and we know that

∑k
i=1 εi,t ≥ 1

when v>t N
−1
t−1vt ≥ β because det(Nt) ≥ (1 + β) det(Nt−1).

We first prove an upper bound on the growth of λi(t) as a function of t. By definition, we
have λi(t) = (1 + β)

∑t
j=1 εi,jλi(0) ≥ (1 + β)

∑t
j=1 εi,jλk(0). Since maxj‖vj‖ ≤ b, we know that

λi(t+ 1) ≤ λi(t) + b2. Therefore,

(1 + β)εi,t+1 =
λi(t+ 1)

λi(t)
≤ 1 +

b2

λi(t)
≤ 1 +

b2

(1 + β)
∑t
j=1 εi,jλk(0)

.

In other words, we have

εi,t+1 ≤
log

(
1 + b2

(1+β)
∑t
j=1

εi,jλk(0)

)
log(1 + β)

≤ b2

(1 + β)
∑t
j=1 εi,jλk(0) log(1 + β)

.

We denote ρ = log
(

2kb2

λk(0) log(1+β)

)
/ log(1+β). Therefore, when

∑t
j=1 εi,j > ρ, we have εi,t+1 ≤

1/(2k), which shows that when λi(t) grew past a certain point as a function of t it can grow by at
most a factor of (1 + β)1/2k at the next time step.

Now, we prove a lower bound on the growth of λi(t) as a function of t. Suppose there are n
vectors vj such that v>j N

−1
j−1vj ≥ β with j ≤ t. Since

∑k
i=1 εi,j ≥ 1 whenever v>j N

−1
j−1vj ≥ β, we

have
∑t

j=1

∑k
i=1 εi,j ≥ n. Moreover, each time j such that v>j N

−1
j−1vj ≥ β we know that

εi,j ≥ 1−
∑
i′ 6=i

εi′,j ≥ 1−
∑

i′:
∑j−1
s=1 εi′,s<ρ

εi′,j −
∑

i′:
∑j−1
s=1 εi′,s≥ρ

εi′,j

≥ 1−
∑

i′:
∑j−1
s=1 εi′,s<ρ

εi′,j −
∑

i′:
∑j−1
s=1 εi′,s≥ρ

1

2k
≥ 1

2
−

∑
i′:
∑j−1
s=1 εi′,s<ρ

εi′,j . (16)

This last bound holds for all j such that v>j N
−1
j−1vj ≥ β and we assumed there are n such j with

j ≤ t. Also, note that

t∑
j=1

∑
i′:
∑j−1
s=1 εi′,s<ρ

εi′,j ≤
∑
i′ 6=i

min

ρ,
t∑

j=1

εi′,j

 .
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Hence, summing (16) over j, we obtain a lower bound on the growth of λi(t) up to time t

log1+β

(
λi(t)

λk(0)

)
≥

t∑
j=1

εi,j ≥
n

2
−
∑
i′ 6=i

min

ρ,
t∑

j=1

εi′,j


≥ n

2
− (k − 1)ρ.

Then, once n ≥ 2k log
(

2kb2

λk(0) log(1+β)

)
/ log(1 + β), we obtain

t∑
j=1

εi,j ≥ log

(
2kb2

λk(0) log(1 + β)

)
/ log(1 + β) = ρ,

which implies εi,j < 1
2k for all j > t. Since i was chosen arbitrarily, we see that whenever

n ≥ 2k log
(

2kb2

λk(0) log(1+β)

)
and j > t we get

∑k
i=1 εij < k 1

2k < 1. Hence, n must be smaller or

equal than
⌈
2k log

(
2kb2

λk(0) log(1+β)

)⌉
.

Appendix C. Proof of Proposition 4

To make this section self-contained we restate Proposition 4 here. Intuitively, this proposition shows
that when there are many vectors vt that align well with the minimum eigenvectors of

∑t−1
i=1 viv

>
i ,

the minimum eigenvalue of
∑T

i=1 viv
>
i must be large.

Proposition 7 Let V ⊂ Rk be a bounded set, with supv∈V‖v‖ ≤ b, such that for any u ∈ Sk−1
there exists v ∈ V with |〈u, v〉| ≥ α. Then, for all T ≥ 0, given any sequence of vectors {vt}t≥0 in
Rk we have

λmin

(
T∑
i=1

viv
>
i

)
≥ α2K(T )

2k
− k − 1

2

(
b2 − α2

2

)
,

where K(T ) is the number of times vt+1 belongs to V and |〈vt+1, ṽt+1〉| ≥ α, with ṽt+1 ∈
arg min‖v‖=1 v

> (∑t
i=1 viv

>
i

)
v and t < T .

Remark: If we choose vi to cycle over standard basis vectors, we see that λmin

(∑T
i=1 viv

>
i

)
=

α2T
k when T is a multiple of k. Therefore, we cannot hope to have a lower bound in Proposition 4

better than α2T
k . Our proof can be refined to show

λmin

(
T∑
i=1

viv
>
i

)
≥ α2T

k
−O(

√
T ),

where the O(·) notation hides dependencies on α, b, and k.
Clearly, the sum of the eigenvalues of

∑t
i=1 viv

>
i grows linearly with t. However, it is not

clear whether just some of the eigenvalues grow or whether all of them grow with t. To prove
Proposition 4 we need the following lemma, which intuitively shows that the sum of the smallest
eigenvalues cannot lag behind the larger eigenvalues by too much.
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Lemma 8 Let M ∈ Rk×k be a positive semi-definite matrix. Let λ1 ≥ λ2 ≥ . . . ≥ λk be the
eigenvalues of M and let u1, u2, . . . , uk be the corresponding eigenvectors of unit norm. Suppose
v is a vector in Rk such that ‖v‖ ≤ b and |〈v, uk〉| ≥ α. Let ν1 ≥ ν2 ≥ . . . ≥ νk be the eigenvalues
of M + vv>. Then, for any s ∈ {2, . . . k} such that λs−1 ≥ λs + b2 − α2/2 we have

k∑
i=s

νi ≥
k∑
i=s

λi +
α2

2
. (17)

Proof First, we express v in M ’s eigenbasis: v =
∑k

i=1 ziui. Then, by assumption we know that
‖v‖2 =

∑k
i=1 z

2
i ≤ b2 and z2k ≥ α2. Using a result by Bunch et al. (1978) we know that ν1 ≥ λ1

and νi ∈ [λi, λi−1] for every i ∈ {2, . . . k} and that the k eigenvalues νi are the k solutions of the
secular equation:

f(ν) := 1 +

k∑
i=1

z2i
λi − ν

= 0 (18)

if zi 6= 0 for all i. If zi = 0, there is an eigenvalue νj such that νj = λi. We assume zi 6= 0 for all i.
If νs ≥ λs + α2

2 , there is nothing to prove. Let us assume νs < λs + α2

2 . Hence, the eigenvalues
νs, νs+1, . . . , νk lie in the interval [λk, λs + α2/2). For any ν ∈ [λk, λs + α2/2) we have

0 ≤ ζ(ν) :=

s−1∑
i=1

z2i
λi − ν

≤
∑s−1

i=1 z
2
i

λs−1 − ν
(19)

≤ b2 − α2

λs−1 − ν
≤ b2 − α2

b2 − α2
= 1. (20)

By rewriting the equation f(ν) = 0, for any solution ν? which lies in [λk, λs+α2/2) we obtain

0 = 1 +
k∑
i=s

z2i
(λi − ν?)(1 + ζ(ν?))

≤ 1 +

k∑
i=s

z2i
2(λi − ν?)

because 1 < 1 + ζ(ν?) ≤ 2 and
∑k

i=s
z2i

(λi−ν?) < 0. Now, let νj be the unique solution f(νj) = 0 in
the interval [λj , λj−1] for j ∈ {s+ 1, . . . , k} or in the interval [λs, λs + α2/2) for j = s.

Since the function g(ν) = 1 +
∑k

i=s
z2i

2(λi−ν) is increasing on the interval [λj , λj−1] (if j = s,
the interval is [λs,∞)) we know that the unique solution ν ′j ∈ [λj , λj−1] of the equation g(ν) = 0
satisfies ν ′j ≤ νj for all j ∈ {s, . . . , k}.

Therefore, we have shown that
∑k

j=s νj ≥
∑k

j=s ν
′
j , where ν ′j are the solutions to the equation

1 +

k∑
i=s

z2i
2(λi − ν)

= 0.

However, the solutions of this equation are the eigenvalues of Q = diag(λs, λs+1, . . . , λk) + 1
2zz
>,

where z = [zs, zs+1, . . . , zk]
>. Hence,

k∑
j=s

νj ≥
k∑
j=s

ν ′j = tr(Q) =

k∑
j=s

λj +
1

2

k∑
j=s

z2j ≥
k∑
j=s

λj +
α2

2
.
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Now we can turn back to the proof of Proposition 4. Let λi(t) be the i-th largest eigenvalue of∑t
j=1 vjv

>
j and let K(t) be the number of times

vj+1 ∈ {v|v ∈ V and |〈ṽj+1, v〉| ≥ α}

with ṽj+1 ∈ arg min‖v‖=1 v
>
(∑j

i=1 viv
>
i

)
v and j < t.

We prove that
∑k

i=j λi(t) grows linearly with K(t) by induction on j. The base case j =
1 is clearly satisfied since it corresponds to the sum of all eigenvalues. Suppose we know that∑k

i=j−1 λi(t) ≥ cj−1α
2K(t) − dj−1 for all t ≥ 1, where cj−1 > 0 and dj−1 ≥ 0 are some real

values. Since ‖vj‖ ≥ α for all j, we can choose c1 = 1 and d1 = 0. Now, we lower bound∑k
i=j λi(t) as a function of t. To this end, we define tj to be the maximum time in {1, 2, . . . , t}

such that λs−1(tj)− λs(tj) < b2 − α2

2 for all s ∈ {j, j + 1, . . . , k}.
Then, Lemma 8 and our induction hypothesis guarantee that

k∑
i=j

λi(t) ≥
k∑
i=j

λi(tj) +
α2(K(t)−K(tj))

2

≥ α2(K(t)−K(tj))

2
+ cj−1α

2K(tj)− dj−1 − λj−1(tj).

By the definition of tj we know that λi(tj) ≥ λj−1(tj) − (i − j + 1)(b2 − α2) for all i ≥ j.
Therefore, we have the lower bound:

k∑
i=j

λi(t) ≥
k∑
i=j

λi(tj) ≥ (k − j + 1)λj−1(tj)−
(k − j + 1)(k − j + 2)

2

(
b2 − α2

2

)
.

We minimize the maximum of the previous two lower bounds with respect to λj−1(tj), which can
be done by finding the value of λj−1(tj) which makes the two lower bounds equal. Then, we find

k∑
i=j

λi(t) ≥
α2

2

k − j + 1

k − j + 2
((2cj−1 − 1)K(tj) +K(t))− k − j + 1

k − j + 2
dj−1 −

k − j + 1

2

(
b2 − α2

2

)
.

Case 1: 2cj−1 ≥ 1. Then, since K(tj) ≥ 0, we obtain

k∑
i=j

λi(t) ≥
α2

2

k − j + 1

k − j + 2
K(t)− k − j + 1

k − j + 2
dj−1 −

k − j + 1

2

(
b2 − α2

2

)
.

Case 2: 2cj−1 < 1. Then, since K(tj) ≤ K(t), we obtain

k∑
i=j

λi(t) ≥ α2k − j + 1

k − j + 2
cj−1K(t)− k − j + 1

k − j + 2
dj−1 −

k − j + 1

2

(
b2 − α2

2

)
.
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Now, we can define recursively

cj =
k − j + 1

k − j + 2
cj−1

dj =
k − j + 1

k − j + 2
dj−1 +

k − j + 1

2

(
b2 − α2

2

)
,

with c2 = k−1
2k and d2 = k−1

2

(
b2 − α2

2

)
. Note that c2 < 1/2 and cj ≤ cj−1. By unrolling the

recursions, we obtain the conclusion.

Appendix D. Refinement of Assumption 6

We saw that when Assumption 6 offers a lower bound

λmin

(
t0−1∑
t=0

φ(xt,ut)φ(xt,ut)
>

)
≥ 1 + c2b

2
wL

2

(
H−1∑
i=0

γi

)(
d+ k log(b2φT ) + log

(
π2T 2

6δ

))

Algorithm 1 with parameter β = c4

(
d+ k log(β2φT ) + log(π2T 2/(6δ))

)−1
is guaranteed to col-

lect measurements (φt,xt+1) such that

λmin

(
T+t0∑
t=0

φtφ
>
t

)
≥ α2

32

(
T

H
−Ne(T )

)
− k − 1

2
b2φ. (21)

We wrote Ne(T ) because Ne is a function of β and β is a function of T . Then, let us consider
T? to be the smallest value such that

α2

32

(
T?
H
−Ne(T?)

)
− k − 1

2
b2φ ≥ 1 + c2b

2
wL

2

(
H−1∑
i=0

γi

)(
d+ k log(2b2φT?) + log

(
π2T 2

?

3δ

))
.

(22)

Such T? exists because Ne(T?) = O(log(T?)). Moreover, if (22) holds, any T ≥ T? satisfies (22).
Now, suppose Assumption 6 is satisfied with T replaced by T?. Then, we can set

β = c4
(
d+ k log(β2φT?) + log(π2T 2

? /(6δ))
)−1

for all iterations of Algorithm 1 with t ≤ T?. When t > T? inequalities (21) and (22) guarantee that
we can update β to be equal to

c4
(
d+ k log(2β2φT?) + log(2π2T 2

? /(3δ))
)−1

and that the minimal eigenvalue of
∑T

t=0 φtφ
>
t is sufficiently large as long as T ≤ 2T?. Therefore,

we can update β in epochs of doubling lengths and have Theorem 1 hold as long as Assumption 6
holds with T replaced by T?.
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Appendix E. Detailed Pseudo-code of Algorithm 1

Algorithm 2 Active learning for nonlinear system identification
Require: Parameters: the feature map φ, initial trajectory D, and parameters T , α, and β.

1: Initialize Φ to have rows φ(xj ,uj)
> and Y to have rows (xj+1)

>, for (xj ,uj ,xj+1) ∈ D.
2: Set Â← Y >Φ(Φ>Φ)−1, i.e. the OLS estimate according to D.
3: Set t← t0.
4: while t ≤ T + t0 do
5: Set xR0 ← xt,
6: Set v to be a minimal eigenvector of Φ>Φ, with ‖v‖ = 1.
7: Trajectory planning: find inputs uR0 , uR1 , . . . , uRr , with ‖uRj ‖ ≤ bu and r ≤ H , such that∣∣〈φ(xRr ,u

R
r ), v〉

∣∣ ≥ α

2
or φ(xRr ,u

R
r )>(Φ>Φ)−1φ(xRr ,u

R
r ) ≥ β,

where xRj+1 = Âφ(xRj ,u
R
j ) for all j ∈ {0, 1, . . . , r − 1}.

8: Trajectory tracking:
9: for j = 0, . . . , r do

10: if maxu∈Bru φ(xt,u)>(Φ>Φ)−1φ(xt,u) ≥ β then
11: Set ut ∈ arg maxu∈Bru φ(xt,u)>(Φ>Φ)−1φ(xt,u),
12: Input ut into the real system and observe the next state: xt+1 = A?φ(xt,ut) + wt,
13: t← t+ 1,
14: break.
15: else if j ≤ r − 1 then
16: Set ut ∈ arg minu∈Bru‖Â(φ(xt,u)− φ(xRj ,u

R
j ))‖.

17: else
18: ut = uRr .
19: end if
20: Input ut into the real system and observe the next state: xt+1 = A?φ(xt,ut) + wt,
21: t← t+ 1.
22: end for
23: Set Φ> ← [φ0, φ1, . . . , φt−1] and Y > ← [x1,x2, . . . ,xt], where (φj ,xj+1) are all feature-

state transitions observed so far.
24: Re-estimate: Â← Y >Φ(Φ>Φ)−1.
25: end while
26: Output the last estimate Â.
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Lydia E. Kavraki, Petr Švestka, Jean-Claude Latombe, and Mark H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on
Robotics and Automation, 12(4):566–580, 1996.

Mohammad Khosravi and Roy S Smith. Convex nonparametric formulation for identification of
gradient flows. IEEE Control Systems Letters, 5(3):1097–1102, 2020a.

Mohammad Khosravi and Roy S Smith. Nonlinear system identification with prior knowledge on
the region of attraction. IEEE Control Systems Letters, 5(3):1091–1096, 2020b.

28



ACTIVE LEARNING FOR NONLINEAR SYSTEM IDENTIFICATION

Steven M LaValle and James J. Kuffner Jr. Randomized kinodynamic planning. The International
Journal of Robotics Research, 20(5):378–400, 2001.

Lennart Ljung. System identification: theory for the user. Prentice Hall, 1987.

Lennart Ljung, Tianshi Chen, and Biqiang Mu. A shift in paradigm for system identification. Inter-
national Journal of Control, 93(2):173–180, 2020.

Tobia Marcucci, Robin Deits, Marco Gabiccini, Antonio Bicchi, and Russ Tedrake. Approximate
hybrid model predictive control for multi-contact push recovery in complex environments. IEEE-
RAS International Conference on Humanoid Robotics, pages 31–38, 2017.

Andrew Y. Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schulte, Ben Tse, Eric Berger,
and Eric Liang. Autonomous inverted helicopter flight via reinforcement learning. Experimental
Robotics IX, Springer, pages 363–372, 2006.

Samet Oymak. Stochastic gradient descent learns state equations with nonlinear activations. Con-
ference on Learning Theory, 2019.

Samet Oymak and Necmiye Ozay. Non-asymptotic identification of LTI systems from a single
trajectory. American Control Conference, pages 5655–5661, 2019.

Friedrich Pukelsheim. Optimal Design of Experiments. Wiley & Sons, 1993.

Stephane Ross and J. Andrew Bagnell. Agnostic system identification for model-based reinforce-
ment learning. International Conference on Machine Learning, 2012.

Paat Rusmevichientong and John N Tsitsiklis. Linearly parameterized bandits. Mathematics of
Operations Research, 35(2):395–411, 2010.

Sadra Sadraddini and Russ Tedrake. Sampling-based polytopic trees for approximate optimal con-
trol of piecewise affine systems. International Conference on Robotics and Automation, pages
7690–7696, 2019.

Tuhin Sarkar and Alexander Rakhlin. Near optimal finite time identification of arbitrary linear
dynamical systems. International Conference on Machine Learning, 2019.

Tuhin Sarkar, Alexander Rakhlin, and Munther A. Dahleh. Nonparametric system identification of
stochastic switched linear systems. IEEE Conference on Decision and Control, 2019.

Tuhin Sarkar, Alexander Rakhlin, and Munther A Dahleh. Finite time lti system identification.
Journal of Machine Learning Research., 22:26–1, 2021.

Shankar Sastry. Nonlinear Systems: Analysis, Stability, and Control. Springer, 1999.

Yahya Sattar and Samet Oymak. Non-asymptotic and accurate learning of nonlinear dynamical
systems. arXiv preprint:2002.08538, 2020.

Johan Schoukens and Lennart Ljung. Nonlinear system identification: a user-oriented road map.
IEEE Control Systems Magazine, 39(6):28–99, 2019.

29



MANIA, JORDAN, AND RECHT

Max Simchowitz, Horia Mania, Stephen Tu, Michael I. Jordan, and Benjamin Recht. Learning
without mixing: towards a sharp analysis of linear system identification. Conference on Learning
Theory, pages 439–473, 2018.

Max Simchowitz, Ross Boczar, and Benjamin Recht. Learning linear dynamical systems with semi-
parametric least squares. Conference on Learning Theory, pages 2714–2802, 2019.

Sumeet Singh, Spencer M Richards, Vikas Sindhwani, Jean-Jacques E Slotine, and Marco Pavone.
Learning stabilizable nonlinear dynamics with contraction-based regularization. The Interna-
tional Journal of Robotics Research, 40(10-11):1123–1150, 2021.

Jonas Sjöberg, Qinghua Zhang, Lennart Ljung, Albert Benveniste, Bernard Deylon, Pierre-Yves
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