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Abstract

In this article, we dwell into the class of so-called ill-posed Linear Inverse Problems (LIP)
which simply refer to the task of recovering the entire signal from its relatively few ran-
dom linear measurements. Such problems arise in a variety of settings with applications
ranging from medical image processing, recommender systems, etc. We propose a slightly
generalized version of the error constrained linear inverse problem and obtain a novel and
equivalent convex-concave min-max reformulation by providing an exposition to its convex
geometry. Saddle points of the min-max problem are completely characterized in terms of
a solution to the LIP, and vice versa. Applying simple saddle point seeking ascend-descent
type algorithms to solve the min-max problems provides novel and simple algorithms to
find a solution to the LIP. Moreover, the reformulation of an LIP as the min-max problem
provided in this article is crucial in developing methods to solve the dictionary learning
problem with almost sure recovery constraints.

Keywords: linear inverse problems, min-max problems, dictionary learning.

1. Introduction

A Linear Inverse Problem (LIP) is, simply stated, the recovery of a signal from its linear mea-
surements. Signals encountered in practise tend to be very high dimensional; for example,
audio signals and images typically have ambient dimension ranging from a few thousands to
millions. However, the number of linear measurements that are typically available to recover
the entire signal from, are relatively few compared to their ambient dimension. This makes
such an LIP ill-posed. Fortunately, high dimensional data of the present day and age often
contain underlying low dimensional characteristics, which if taken into consideration, often
suffice to overcome the ill-posedness of the problem.

One of the early instances that gave recognition to linear inverse problems is compressed
sensing (Donoho, 2006; Candès and Wakin, 2008; Candès et al., 2006a,b), where a given
signal f 1 is assumed to be sparse in some known basis. So, given the partial information
of the signal in the form of a collection of linear measurements x “ φpf 1q, the objective is
to recover the entire signal almost accurately. Since the given signal is known to be sparse,
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one would expect that the true signal can be recovered accurately by finding a sparsest
solution to the under determined system of linear equations x “ φpfq given by the linear
measurements. However, finding the sparsest solutions (i.e., having minimum `0 “norm”) to
linear equations is NP-hard (Natarajan, 1995; Tropp, 2006), and therefore, not practical in
the intended applications due to the size of the data typically encountered there. Fortunately,
it is now well established that under mild conditions (which hold true in relevant problems),
the simple convex heuristic of minimizing the `1-norm

#

minimize
f

‖f‖1

subject to x “ φpfq,
(1)

instead of the `0-penalty finds the true solution. Thus, the true signal can be recovered
exactly by simply solving a convex optimization problem. Moreover, even if the linear
measurements are noisy, recovery done via minimizing the `1-penalty is reasonably accurate.

Similar to compressed sensing is the problem of low rank matrix recovery or completion
(Candès and Recht, 2009; Recht et al., 2010; Chandrasekaran et al., 2012), where the objec-
tive is to reconstruct an entire matrix M 1 from only a few of its entries rM 1sij for pi, jq P I,
where the cardinality of I is “small” compared to the size of the matrix M 1. Matrix recovery
or completion problems arise regularly in recommender systems, and the Netflix challenge
case in point. Since the unknown matrix is known to be of low rank, one expects that the
true matrix is the solution to the rank minimization problem:

#

minimize
M

rankpMq

subject to rM 1sij “ rM sij for pi, jq P I.

However, minimizing the rank exactly, is extremely hard and impractical for most applica-
tions. Analogous to the `1-minimization, it is now well established (Recht et al., 2010) that
under mild conditions, the simple convex heuristic of minimizing the matrix nuclear norm
‖¨‖˚, recovers the true low rank matrix.

#

minimize
M

‖M‖˚
subject to rM 1sij “ rM sij for pi, jq P I.

(2)

Often, signals that are encountered in practice can be written as a linear combination
of relatively few elements from some atomic set A which depends on the low dimensional
characteristics present in the signal. For instance, in compressed sensing, since the signal
is assumed to be sparse, the atomic set A is considered to be the standard Euclidean basis
of appropriate dimension. In the matrix recovery problem, since the unknown matrix is
assumed to be of low rank, it can be written as the sum of a few rank-1 matrices, and thus
the atomic set A is the set of all rank-1 matrices of appropriate dimensions. So, given such
a signal with the corresponding atomic set A, an LIP attempts to find a linear combination
of few elements from the atomic set A that agree with the given linear measurements of
the signal. However, as evident in the compressed sensing and matrix recovery problems,
finding such a linear combination by simply searching the atomic set is impractical.
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It is to be observed that the `1 and the nuclear norms are the guage functions correspond-
ing to the convex hull of the standard Euclidean basis (atomic set in compressed sensing)
and the set of rank-1 matrices (atomic set in matrix recovery problem) respectively. By
minimizing such convex functions subject to the linear measurement constraints, guarantees
have been obtained for fruitful signal recovery in compressed sensing and matrix recovery
problems. Motivated by this observation, it was established in (Chandrasekaran et al., 2012)
that for a generic LIP with a generic atomic set A, the analogous convex heuristic of mini-
mizing the guage function corresponding to the set convpAq provides exact recovery under
mild conditions. Thus, given linear measurements x “ φpf 1q of a signal f 1, an LIP seeks to
solve

#

minimize
f

cpfq

subject to x “ φpfq,
(3)

where c is a positively homogenous convex cost function such that convpAq “ tf : cpfq ď 1u.
If the observed linear measurements are noisy, i.e., x “ φpfq ` ξ, for some measurement
noise ξ. We solve

#

minimize
f

cpfq

subject to ‖x´ φpfq‖ ď ε,
(4)

where ε ě 0 is chosen based on the statistical properties of the measurement noise ξ. If
the true signal f 1 is a linear combination of only a “few” elements of A, it can be recovered
from its linear measurements by simply solving the LIP (4). A great body of literature
(Donoho, 2006; Candès and Wakin, 2008; Candès et al., 2006a,b; Candès and Recht, 2009;
Recht et al., 2010; Chandrasekaran et al., 2012) exists on linear inverse problems focusing
primarily towards providing quantitative analysis of the number of measurements required,
and the constraints on the type of measurements suited for a given atomic set in order to
guarantee fruitful recovery. However, our objective in studying the linear inverse problems
is not directed towards this cause.

The main motivation for our work in this article comes from the related problem of
Dictionary Learning, which is another well known machine learning problem. The objective
in dictionary learning is to find a standard database of vectors called the dictionary such
that samples of the given data pxtqt can be expressed as linear combinations of the dictionary
vectors with desirable features, an important one being sparsity. Due to the many benefits of
sparse representation in applications such as compression, robustness, clustering etc., there
is an ever increasing demand to learn good dictionaries that offer maximally sparse but
also reasonably accurate representation of the data. A brief overview on the relevance of
the dictionary learning problem and methods used to learn a ‘good’ dictionary are given in
(Tosic and Frossard, 2011).

To this end, let D “
`

d1 d2 ¨ ¨ ¨ dK
˘

denote a dictionary of K vectors, where K is
some positive integer. Let ft denote the representation of sample xt for every t P 1, 2, . . . , T .

3



M.R. Sheriff and D. Chatterjee

Then the dictionary learning problem that we aim to solve is

$

’

’

’

’

&

’

’

’

’

%

minimize
pftqt, D

1

T

T
ÿ

t“1

‖ft‖1

subject to

#

D P D,
‖xt ´Dft‖2 ď εt for every t “ 1, 2, . . . , T ,

(5)

where D is some convex subset of RnˆK and pεtqt is a given sequence of non-negative real
numbers. In image processing applications like denoising etc., εt corresponds to the bounds
on the additive noise in the noisy data. It is to be noted that for a fixed dictionary D,
the optimization over pftqt simply consists of solving the LIP (4) for each t. Minimization
of the `1 penalty is to enforces sparsity in the representation vectors pftqt. For different
applications, the dictionary can be learned to optimize a task-specific but otherwise generic
cost function cp¨q instead of the `1-norm.

Conventionally, the dictionary learning problem is addressed by solving the optimization
problem

minimize
pftqt, D P D

1

T

T
ÿ

t“1

´

‖ft‖1 ` γ ‖xt ´Dft‖22
¯

(6)

where γ ą 0 is the regularization parameter. It should be noted that the objective func-
tion in (6) is a weighted sum of the sparsity inducing `1-penalty ‖ft‖1 and the error term
‖xt ´Dft‖22. The regularization parameter γ influences the tradeoff between the level of
sparsity and the error, and for a given value of γ, this tradeoff is specific to a given distribu-
tion or data set. However, the precise relation between the value of regularization parameter
γ and the tradeoff is not straightforward. Thus, a priori one does not know which value of
the regularization parameter γ to pick for a given distribution or data set; it is a tuning
parameter that needs to be learned from the data.

The dictionary learning problem (5) differs from the mainstream one (6) in that it
imposes constraint on every sample to be reconstruction within limits. Such a formulation
arises naturally in many image processing applications like compressed sensing (Donoho,
2006; Candès and Wakin, 2008), inpainting, denoising problems in image processing (Elad
and Aharon, 2006) etc., where, good estimates of pεtqt to be used in (5) are known a priori.
In contrast, if we were to learn the dictionary for the same applications but by solving
(6) instead, the appropriate value of the regularization parameter to be used is not known
and needs to be learnt from other techniques like cross validation, which poses additional
computational challenges. Furthermore, with a single parameter the problem formulation
(6) does not provide the level of customisability that is available in (5). Therefore, learning
dictionaries by solving (5) is more appealing in situations where good estimates of pεtqt to
be used are known beforehand or in situations where the user has the liberty of specifying
it.

Most of the existing techniques (Mairal et al., 2010; Aharon and Elad, 2006) that learn
a dictionary by solving (6), do so by alternating the minimization over the variables pftqt
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and D keeping the other one fixed, i.e., alternating between the problems
$

’

’

’

’

&

’

’

’

’

%

minimize
pftqt

1

T

T
ÿ

t“1

´

‖ft‖1 ` γ ‖xt ´Dft‖22
¯

, and

minimize
D P D

1

T

T
ÿ

t“1

‖xt ´Dft‖22 .
(7)

We note that, individually both the problems in (7) are convex, in particular, the optimiza-
tion over the dictionaries is a Quadratic Program (QP).

In contrast to (6), an alternating minimization technique like (7) applied directly to
(5) is completely ineffective. Indeed, once the variables pftqt are fixed, there is no evident
way to update the dictionary variable such that the resulting dictionary minimizes the
cost. This makes the dictionary learning problem (5) ill-posed and more challenging than
the conventional regularised formulation. We observe that the objective function in (6)
depends directly on the dictionary variable D, whereas, it affects the objective function of
(5) indirectly by only changing the set of feasible representations. This is the key reason
which makes updating the dictionary in (5) such a difficult task.

In this article, we propose a slight modification to the original linear inverse problem
(4), involving an additional parameter, which adds robustness to (4) when positive. Con-
vex duality of the proposed problem is studied by exposing the underlying geometry. We
propose convex-concave min-max problems and establish their equivalence to the modified
LIP. Mathematical guarantees based on Fenchel duality relating the optimal solution of the
LIP with the saddle points of the min-max problems are provided. This equivalent refor-
mulation of the LIP as a min-max problem precisely addresses the issue of ill-posedness
in the dictionary learning problem (5). In the dictionary learning problem (5), replacing
the optimization over variables pftqt, which is a collection of linear inverse problems, with
their respective min-max problems, gives us another min-max problem equivalent to (5), but
well-posed. Making use of this reformulation, we have provided novel dictionary learning
algorithm in (Sheriff and Chatterjee, 2020) to solve (5). To the best of our knowledge, these
are the first set of results that effectively solve the dictionary learning problem for situations
where solving the formulation (5) is natural.

In addition to the importance of the reformulations of the LIP in dictionary learning,
the min-max forms also provide a new approach to solve an LIP, which is of independent
interest. Gradient based algorithms to compute saddle points of the min-max problem give
rise to simple and easy to implement algorithms to solve an LIP. Due to the relevance of large
dimensional linear inverse problems, simple to implement yet reasonably fast and efficient
algorithms to solve them are always desirable. Furthermore, the theory and mathematical
guarantees provided in this article are fairly generic and easily carry forward to the extended
class of optimization problems which optimize a convex gauge function over convex sets,
this includes many relevant problems like projections onto convex sets, LASSO etc., thereby
yielding new algorithms for all such problems at once.

The article unfolds as follows: In Section 2 we formally introduce the LIP in a more
generalised form and provide the main results including the equivalent convex-concave min-
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max reformulations, algorithms to solve them, and applications to some specific problems of
interest. In Section 3, we expose the duality by studying the underlying convex geometry of
the LIP and provide proofs for all the results. We employ standard notations, and specific
ones are explained as they appear.

2. Formal Problem Statement and Main Results

Let n be a positive integer, Hn be an n-dimensional Hilbert space equipped with an inner-
product x¨ , ¨y and its associated norm ‖¨‖. For every z P Hn and r ą 0, let Bpz, rq :“ ty P
Hn : ‖x´ y‖ ă εu and let Brz, rs :“ ty P Hn : ‖x´ y‖ ď εu. Let c : RK ÝÑ r0,`8r be a
cost function such that it satisfies the following assumption.

Assumption 1 The cost function c : RK ÝÑ r0,`8r has the following properties

• Positive Homogeneity : There exists a positive real number p such that for every α ě 0
and f P RK , we have cpαfq “ αpcpfq.

• Pseudo-Convexity : The unit sublevel set Vc :“ tf P RK : cpfq ď 1u is convex.
• Inf-Compactness : The unit sublevel set Vc is compact.

Assumption 1 is enforced throughout the article for the cost function cp¨q unless and oth-
erwise stated explicitly. In addition to Assumption 1, if the cost function cp¨q satisfies
cp´fq “ cpfq and p “ 1, then cp¨q is a norm. In general, a cost function cp¨q satisfying
Assumption 1 and p “ 1 falls under the class of Minkowski guage-functions (Boyd and Van-
denberghe, 2004, Exercise 3.34) which is a class of positively homogeneous convex functions.

Let x P Hn, non-negative real numbers ε and δ, and the linear map φ : RK ÝÑ Hn be
given. We consider the following general formulation of the linear inverse problem

$

’

’

&

’

’

%

minimize
pc, fq P RˆRK

cp

subject to

#

`

cpfq
˘1{p

ď c

‖x´ φpfq‖ ď ε` δc.

(8)

When δ “ 0, we see that the second constraint is independent from the variable c. Conse-
quently, for every f P RK such that ‖x´ φpfq‖ ď ε, the minimization over the variable c

is achieved for c “
`

cpfq
˘1{p. Thus, the linear inverse problem (8) reduces to the following

more familiar formulation.
$

&

%

minimize
f P RK

cpfq

subject to ‖x´ φpfq‖ ď ε.
(9)

If δ “ 0, it is immediately apparent that (8) is feasible if and only if Brx, εsX imagepφq ‰ H.
On the contrary, the linear inverse problem (8) becomes strictly feasible if δ ą 0 irrespective
of x and φ. This is easily seen by considering f “ 0 and c ą

`

‖x‖ {δ
˘

in (8).1 Therefore,

1. We say that a convex problem is strictly feasible if and only if there exists a feasible point that satisfies
all the inequalities strictly.
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non-negative real number δ acts as a robustness parameter, particularly with regards to the
feasibility of (8).

It might be surprising at first to see the rather unusual formulation (8) of the linear
inverse problem. Our formulation makes way for the possibility of δ to take positive values
also. By considering δ ą 0, we obtain several advantages:

• Whenever δ ą 0, the LIP (8) is always strictly feasible. This is a crucial feature in the
initial stages of dictionary learning, in particular, when the data lies in a subspace of lower
dimension m, such that m,K ! n, where K is the number of dictionary vectors.

• A positive value of δ provides desirable properties like continuity, well defined gradients
of the objective function in terms of the dictionary variable. Thus, having δ ą 0 imparts
regularity to the dictionary learning problem (for e.g., well defined gradients with respect
to the dictionary variable). Such properties in practice lead to well conditioning and
numerical stability in algorithms.

• Having a positive value of δ provides guarantees for convergence of dictionary learning
algorithms. Moreover, it leads to useful fixed point characterization of the optimal dic-
tionary, which can be used to employ a fixed point seeking online dictionary update
algorithms (Sheriff and Chatterjee, 2020, Algorithm 4).

We observe that the mapping f ÞÝÑ pcpfqq1{p is an inf-compact, convex and positively
homogeneous of order 1. Therefore, it is immediate that the constraints of the LIP (8) are
convex. Furthermore, the objective function is also convex whenever p ě 1. Thus, it is
apparent that the LIP (8) is a convex problem when p ě 1. When p ă 1, we highlight that
r0,`8rQ p¨q ÞÝÑ p¨qp is an increasing function, and therefore, minimizing cp is equivalent
to minimizing c. Thus, the LIP (8) has an underlying convex problem (except that the
objective function is a non-convex power).

We emphasise that whenever the optimization problem (8) is feasible, the collection
of feasible pc, fq is a closed subset of r0,`8rˆRK . Moreover, the objective function cp

is continuous and coercive on the feasible set.2 Therefore, from the Weierstrass theorem
(Rudin, 1964, Theorem 4.16) we conclude that whenever (8) is feasible, it admits an optimal
solution. To this end, let

`

pCδpφ, x,εqq
1
p , Fδpφ, x,εq

˘

:“

$

’

’

’

&

’

’

’

%

argmin
pc, fq P RˆRK

cp

subject to

#

`

cpfq
˘1{p

ď c

‖x´ φpfq‖ ď ε` δc.

(10)

Note that Cδpφ, x,εq is also the optimal value achieved in (8). In view of this, we slightly
abuse the definition (10), and follow the convention that if (8) is infeasible, then Cδpφ, x,εq :“
`8 and Fδpφ, x,εq :“ H. In the case of the cost function being strictly convex, the LIP (8)
admits a unique optimal solution. If not strictly convex like in the case of sparse encoding,
(8) could potentially have multiple solutions depending on the variables x, φ, ε, δ, and when
it does, we see that Fδpφ, x,εq is a convex set.

2. Recall that a continuous function l defined over an unbounded set U is said to be coercive in the context
of an optimization problem, if : lim

‖u‖Ñ8
lpuq “ `8 p´8q, in the context of minimization (maximization)

of l and the limit is considered from within the set U .
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Definition 2 Let φ : RK ÝÑ Hn be a linear map, and let ε, δ ě 0. A vector x P Hn is said
to be pφ, ε, δq-feasible if Cδpφ, x,εq ă `8.

Definition 3 For the linear map φ : RK ÝÑ Hn, non-negative real number δ and the cost
function c : RK ÝÑ r0,`8r satisfying Assumption 1, let us define

Sδpφ, 1q :“ tz P Hn : there exists f P Vc satisfying ‖z ´ φpfq‖ ď δ u, and
Sδpφ, rq :“ r ¨ Sδpφ, 1q for all r ě 0.

(11)

where Vc is the unit sub level set of the cost function c.

By denoting S1 :“ tφpfq : f P Vcu, it is clear that S1 is the image of the compact and convex
set Vc under the linear map φ, and is therefore, compact and convex.3 Moreover, since the
set Sδpφ, 1q is the image of another linear map: S1ˆBr0, δs Q pz1, yq ÞÝÑ z1` y, we conclude
convexity and compactness of the set Sδpφ, rq for every r ě 0.

It is easy to see that Sδpφ, 1q “
Ť

hPVc

Brφphq, δs. If δ ą 0, the set Sδpφ, 1q has non-empty

interior that contains the origin, therefore, Sδpφ, 1q is an absorbing set of Hn.4 If δ “ 0,
we immediately see on the one hand that S0pφ, rq Ă imagepφq for every r ě 0. On the
other hand, for every z P imagepφq we know that there exists f P RK such that z “ φpfq,
therefore, we have z P S0pφ, pcpfqq1{pq. Consequently, we obtain:

lim
rÑ`8

Sδpφ, rq :“
ď

rě0

Sδpφ, rq “

#

Hn δ ą 0 ,

imagepφq δ “ 0 .
(12)

Definition 4 The guage function ‖¨‖φ : Hn ÝÑ r0,`8r corresponding to the set Sδpφ, 1qis
given by

‖z‖φ :“ min
 

r ě 0 : z P Sδpφ, rq
(

. (13)

A direct consequence for the guage function ‖¨‖φ due to (12) is that if δ ą 0 then ‖z‖φ ă `8
for every z P Hn, and if δ “ 0 then ‖z‖φ ă `8 if and only if z P imagepφq. Moreover, due to
the set Sδpφ, rq being compact for every r ě 0, the minimization in (13) is always achieved,
and we get z P Sδpφ, ‖z‖φq for every z P Hn such that ‖z‖φ ă `8.

The underlying convexity of the linear inverse problem (8) gives rise to an interplay of
the convex bodies Brx, εs and Sδpφ, rq. In view of (12), as the scaling factor r is increased,
the set Sδpφ, rq grows gradually and intersects with Brx, εs for every pφ, ε, δq-feasible point
x P Hn. We shall see (Lemma 23) that the optimal cost Cδpφ, x,εq for a given x P Hn is
proportional to the minimum amount by which the set Sδpφ, 1q needs to be scaled so that
it intersects with Brx, εs. This gives rise to the following relation between the optimal cost
Cδpφ, x,εq, the guage function ‖¨‖φ, and the set Brx, εs.

3. Considering, for instance, cp¨q “ ‖¨‖1 and the linear map φ given by the matrixD “
`

d1 d2 ¨ ¨ ¨ dK
˘

P

RnˆK , we see that Vc is the `1-closed ball in RK and S1 “ convp˘diq
K
i“1.

4. A set S is an absorbing set of a vector space H if for every z P H there exists rz ě 0 such that z P rz ¨S.
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Lemma 5 Consider the LIP (8) for the linear map φ, cost function c, non-negative real
numbers ε, δ and x P Hn. The optimal cost Cδpφ, x,εq of the LIP (8) and the guage function
‖¨‖φ satisfy

pCδpφ, x,εqq
1{p “ min

y P Brx,εs
‖y‖φ . (14)

2.1 Duality

The guage function ‖¨‖φ gives rise to its corresponding dual function ‖¨‖1φ : Hn ÝÑ r0,`8r
defined by:

‖λ‖1φ :“ sup
‖z‖φď1

xλ , zy “ sup
zPSδpφ,1q

xλ , zy . (15)

Let λ, y P Hn, we recall that y P Sδpφ, ‖y‖φq, and consequently, we have the following Hölder
inequality

xλ , yy ď sup
zPSδpφ,‖y‖φq

xλ , zy “ ‖y‖φ sup
zPSδpφ,1q

xλ , zy “ ‖y‖φ ‖λ‖
1
φ .

This gives rise to strong duality between the guage function ‖¨‖φ and its associated dual
function ‖¨‖1φ in the following way

‖y‖φ “

$

&

%

sup
λ

xλ , yy

subject to ‖λ‖1φ ď 1.
(16)

By replacing the guage function ‖¨‖φ in (14) with its equivalent sup formulation provided
in (16), we obtain the convex dual of the LIP (8). First, we will define the set Λδpφ, x, εq
which is the collection of optimal dual variables.

Definition 6 Let the linear map φ, a cost function c, and ε, δ ě 0 be given. Then for every
x P HnzBr0, εs that is pφ, ε, δq-feasible, let Λδpφ, x, εq Ă Hn denote the collection of points
λ P Hn that satisfy the following two conditions simultaneously:

• ‖λ‖1φ “ 1, and
• xλ , xy ´ ε ‖λ‖ “ pCδpφ, x,εqq

1{p.

Theorem 7 Let the linear map φ, cost function cp¨q, real numbers ε, δ ě 0, and x P Hn be
given. Consider the linear inverse problem (8) and its convex dual problem:

$

&

%

sup
λ

xλ , xy ´ ε ‖λ‖

subject to ‖λ‖1φ ď 1.
(17)

(i) Strong Duality: The supremum value in (17) is finite if and only if x is pφ, ε, δq-feasible,
and is equal to the optimal cost pCδpφ, x,εqq

1
p .

(ii) Existence and description of an optimal solution to (17).
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(a) Irrespective of the value of δ, for any ε ě 0 if ‖x‖ ď ε, then λ˚ “ 0 is an optimal
solution.

(b) If ‖x‖ ą ε, the optimization problem (17) admits an optimal solution if and
only if the set Λδpφ, x, εq defined in Definition 6 is non-empty. If so, then the
supremum in (17) is indeed a maximum and it is achieved at λ˚ if and only if
λ˚ P Λδpφ, x, εq.

(c) If ‖x‖ ą ε and the set Λδpφ, x, εq is empty, the optimization problem (17) does
not admit an optimal solution even though the value of the supremum is finite.

Remark 8 We provide a complete description of the set Λδpφ, x, εq in Proposition 31. It
turns out that the optimal solution to the dual problem (17) can be entirely characterized
in terms of the quantities

`

Cδpφ, x,εq, Fδpφ, x,εq
˘

of the LIP (8) itself. Therefore, if we only
have access to a black box that produces an optimal solution to the LIP (8), a corresponding
dual optimal solution can be easily computed from the solutions to the LIP itself, and we
need not solve the dual problem again separately. This is very helpful in dictionary learning,
where the optimal value of dual variables are used to compute a better dictionary.

Remark 9 We look ahead at Proposition 31 and see that the dual problem does not admit
any optimal solution only when δ “ 0 and Bpx, εq X imagepφq “ H. Interestingly, in that
case, we also observe that the corresponding primal problem is not strictly feasible.

2.2 Equivalent Min-Max Problems

Whenever ‖x‖ ď ε, we immediately see that the pair R` ˆRK Q pcx, fxq :“ p0, 0q is feasible
for (8). Moreover, since cpfq ą 0 for every f ‰ 0 due to inf-compactness and positive
homogeneity, we conclude that:

Cδpφ, x,εq “ 0, and Fδpφ, x,εq “ t0u if and only if ‖x‖ ď ε. (18)

Therefore, the case: ‖x‖ ď ε is uninteresting and inconsequential. In fact, in dictionary
learning, since every such sample can be effectively represented by the zero vector, irrespec-
tive of the dictionary. The average cost of representation then depends only on the samples
that satisfy ‖x‖ ą ε. Therefore, for the convex-concave min-max formulation of the LIP
(8), we consider only the case when ‖x‖ ą ε.

2.2.1 Constrained Formulation

Theorem 10 Let the linear map φ : RK ÝÑ Hn , real numbers ε, δ ě 0, q Ps0, 1r, r ą 0
and x P HnzBr0, εs be given. Consider the following min-sup problem:

$

&

%

min
h P Vc

sup
λ

r
´

xλ , xy ´ ε ‖λ‖
¯q
´

´

δ ‖λ‖ ` xλ , φphqy
¯

subject to xλ , xy ´ ε ‖λ‖ ą 0.
(19)

The following assertions hold with regards to the linear inverse problem (8) and the min-sup
problem (19).

10
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(i) The optimal value of (19) is equal to: spr, qq pCδpφ, x,εqq
q

pp1´qq , and therefore finite if
and only if x is pφ, ε, δq-feasible.5

(ii) Existence and description of a solution to (19) if x is pφ, ε, δq-feasible.6

(a) The minimization over variables h in (19) is achieved, and

h˚ P argmin
h P Vc

$

&

%

sup
λ

r
´

xλ , xy ´ ε ‖λ‖
¯q
´

´

δ ‖λ‖ ` xλ , φphqy
¯

subject to xλ , xy ´ ε ‖λ‖ ą 0,

if and only if h˚ P 1
pCδpφ,x,εqq1{p

¨ Fδpφ, x,εq.
(b) In addition, the inf-sup problem (19) admits a saddle point solution if and only if

the set Λδpφ, x, εq is non-empty, then a pair ph˚, λ˚q P Vc ˆHn is a saddle point
solution to (19) if and only if

h˚ P
1

pCδpφ, x,εqq1{p
¨ Fδpφ, x,εq and

λ˚ P prqq
1

1´q
`

Cδpφ, x,εq
˘

q
pp1´qq ¨ Λδpφ, x, εq.

Corollary 11 By considering r “ rppq :“ p1` pqp
´p
1`p and q “ qppq :“ p

1`p , we get

Cδpφ, x,εq “

$

&

%

min
h P Vc

sup
λ

rppq
´

xλ , xy ´ ε ‖λ‖
¯qppq

´

´

δ ‖λ‖ ` xλ , φphqy
¯

subject to xλ , xy ´ ε ‖λ‖ ą 0.

In particular, if the cost function cp¨q is positively homogeneous of order 1 (like any norm),
we have

Cδpφ, x,εq “

$

&

%

min
h P Vc

sup
λ

2
b

xλ , xy ´ ε ‖λ‖ ´
´

δ ‖λ‖ ` xλ , φphqy
¯

subject to xλ , xy ´ ε ‖λ‖ ą 0.

Remark 12 In the case of signal recovery in ill-posed linear inverse problems, it is assumed
that the true signal is a linear combination of only a few elements of some atomic set A. The
signal is recovered by solving the linear inverse problem (8), by considering the cost function
c such that Vc “ convpAq and p “ 1. If there are sufficiently many linear measurements and
if the measurement map φ satisfies conditions like the restricted isometry property or mutual
coherence, the LIP (8) admits a unique solution and the set Fδpφ, x,εq is then a singleton
containing the true signal to be recovered

5. spr, qq :“
´

p1´ qqpqqrq
1

1´q

¯

6. Generally the notion of a solution to a min-max problem min
uPU

max
vPV

lpu, vq is considered as a saddle point

pu˚, v˚q P U ˆ V such that it satisfies

lpu˚, vq ď lpu˚, v˚q ď lpu, v˚q for all pu, vq P U ˆ V.

11
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Remark 13 In several scenarios like the problem of non-negative matrix factorization (Lee
and Seung, 2001, 1999; Hoyer, 2004), one has to solve (8) with the additional constraint that
f P Q, where Q Ă RK is a convex cone. From similar analysis provided in this chapter, it
can be easily verified that the resulting equivalent min-max formulation analogous to (19)
is

$

&

%

min
h P VcXQ

sup
λ

r
´

xλ , xy ´ ε ‖λ‖
¯q
´

´

δ ‖λ‖ ` xλ , φphqy
¯

subject to xλ , xy ´ ε ‖λ‖ ą 0.

It should be noted that the definition of the set Sδpφ, 1q then changes to

Sδpφ, 1q :“ tz P Hn : there exists f P Vc XQ satisfying ‖z ´ φpfq‖ ď δu,

and the quantities ‖¨‖φ, ‖¨‖
1
φ and Λδpφ, x, εq are accordingly defined w.r.t. the appropriate

definition of the set Sδpφ, 1q.

Remark 14 The min-max form (19) is convex in f and strongly-concave in λ. Moreover,
the coupling between the variables f and λ is bi-linear. It is shown in (Du and Hu, 2019)
that performing simple gradient ascent-descent updates on the iterates provides exponential
convergence under certain assumptions (which hold true in problems like image denoising).
Such min-max forms have also been the center of investigation in (Nesterov, 2005), (Ne-
mirovski, 2004), (Chambolle and Pock, 2011), (Zhang and Lin, 2015)

Remark 15 The constraint xλ , xy ´ ε ‖λ‖ ą 0 is inactive at every optimal solution λ˚,
and is therefore, insignificant for theoretical purpose.7 However, in practice, one must
ensure that the inequality is satisfied so that the quantity

`

xλ , xy´ ε ‖λ‖
˘q is well defined

when q Ps0, 1r. This is easily ensured by initialising the variable λ so that it satisfies
the inequality (for e.g., λ0 “ x), and then properly selecting the step sizes in subsequent
iterations. Suppose if the variable λ is updated as λÐÝ λ`αλ1, then we must ensure that
the inequality 0 ă xλ` αλ1 , xy ´ ε ‖λ` αλ1‖ is satisfied. We see that

@

λ` αλ1 , x
D

´ ε
∥∥λ` αλ1∥∥ ě

@

λ` αλ1 , x
D

´ ε
`

‖λ‖ ` α
∥∥λ1∥∥ ˘

ě
`

xλ , xy ´ ε ‖λ‖
˘

` α
` @

λ1 , x
D

´ ε
∥∥λ1∥∥ ˘.

If 0 ď xλ1 , xy´ ε ‖λ1‖, then the required inequality trivially holds, whereas if 0 ą xλ1 , xy´

ε ‖λ1‖, then by selecting α ă xλ , xy´ε‖λ‖
|xλ1 , xy´ε‖λ1‖| , it is easily verified that 0 ă xλ` αλ1 , xy ´

ε ‖λ` αλ1‖.

Remark 16 Interchanging the order of optimization in the min-max problem of Corollary
11 using Sion’s min-max theorem, and minimizing over h using Lemma 28, we get

Cδpφ, x,εq “ sup
λ

"

rppq
´

xλ , xy ´ ε ‖λ‖
¯

p
p`1

´ ‖λ‖1φ

*

.

7. If an inequality constraint is satisfied with strict inequality at a point, then it is said to be inactive at
that point.

12
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A crucial observation to be made here is that since p
p`1 Ps0, 1r, the sublinear component

`

xλ , xy´ ε ‖λ‖
˘

p
p`1 initially grows faster than the linear component ‖λ‖1φ but is eventually

overpowered. Alternatively, when p ą 1, analysis similar to the proof of Lemma 36 shows
that

Cδpφ, x,εq “ sup
λ

"

ppp´ 1qp´1
´

xλ , xy ´ ε ‖λ‖
¯

´ ‖λ‖
1
p
p´1

φ

*

. (20)

If δ “ 0 and we were to replace the error constraint φpfq P Brx, εs with φpfq P Bx, where
Bx Ă Hn is some compact convex subset. By replacing xλ , xy ´ ε ‖λ‖ with the quantity
min
y P Bx

xλ , yy in (20), we arrive at the corresponding min-max problem

min
y P Bx

sup
λ P Hn

"

ppp´ 1qp´1 xλ , yy ´ ‖λ‖
1
p
p´1

φ

*

. (21)

This allows us to write equivalent min-max formulations for problems like LASSO as seen
in Remark 17.

Remark 17 Another optimization problem of interest and related to the linear inverse
problem (8) is:

minimize
f P S

cpx´ ψpfqq , (22)

where cp¨q is a cost function satisfying Assumption 1 with order of homogeneity p ą 1,
ψ : RK ÝÑ Hn is some linear map and S is some compact convex subset of RK . A frequent
example of such a problem is LASSO, where cp¨q “ ‖¨‖2 and S “ tz : ‖z‖1 ď τu.

Defining y :“ x´ψpfq, the problem (22) simply becomes minimize
y P txu´ψpSq

cpyq, whose equiv-

alent min-max form using (21) is

min
y P txu´ψpSq

max
λ P Hn

ppp´ 1qp´1 xλ , yy ´ ‖λ‖
1
p
p´1
c ,

where ‖λ‖1c :“ max
h P Vc

xλ , hy. Replacing the minimization over variable y with f , we get the

final equivalent min-max form to (22).

min
f P S

max
λ P Hn

ppp´ 1qp´1
´

xλ , x´ ψpfqy
¯

´ ‖λ‖
1
p
p´1
c . (23)

Remark 18 When the error constraint ‖x´ φpfq‖ ď ε` δc is measured using some norm
‖¨‖, the corresponding min-max problem (analogous to (19)) is written using the correspond-
ing dual norm ‖¨‖1 as

"

min
h P Vc

sup
λ P Hn

rppq
´

xλ , xy ´ ε ‖λ‖1
¯qppq

´

´

δ ‖λ‖1 ` xλ , φphqy
¯

.

13
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2.2.2 Unconstrained Formulation

The reformulation of the LIP (8) as the convex-concave min-max problem (19) provides a
way to obtain a solution to the LIP (8) by solving the min-max problem instead. Even
though (19) is a convex problem, it is to be observed that the minimization variable h is
constrained. Therefore, updating the iterates of the minimization variable involves comput-
ing projections at each iterations, which could be an expensive task. So, in cases, where
these projections are expensive, we seek to obtain a similar min-max reformulation which
bypasses this computational bottleneck due to projections.

Proposition 19 Let ε, δ ě 0 and x P HnzBr0, εs, and a positively homogeneous cost function
cp¨q of order 1 be given. Then the following assertions hold in view of the linear inverse
problem (8) and the min-max problem:

$

’

’

&

’

’

%

min
f P RK

sup
λ P Hn

cpfq
`

1´ δ ‖λ‖
˘

`
`

xλ , xy ´ ε ‖λ‖
˘

´ xλ , φpfqy

subject to

#

‖λ‖ ď 1
δ

xλ , xy ´ ε ‖λ‖ ą 0,

(24)

(i) the optimal value of the min-max problem (24) is equal to Cδpφ, x,εq
(ii) if x is pφ, ε, δq-feasible, the minimization over variable f is achieved and Fδpφ, x,εq is

the set of minimizers
(iii) if x is pφ, ε, δq-feasible, the min-max problem (24) admits a saddle point solution

pf˚, λ˚q if and only if the set Λδpφ, x, εq is non-empty, then a pair pf˚, λ˚q P RK ˆHn

is saddle point solution if and only if f˚ P Fδpφ, x,εq and λ˚ P Λδpφ, x, εq.

Even though the maximization variable is constrained, the reference to the min-max
problem (24) as “unconstrained” is due to the fact that projecting onto the feasible set
tλ : ‖λ‖ ď 1{δu is very easy since it only requires normalizing the iterates λ by the factor

1
δ‖λ‖ . Moreover, if δ “ 0, the min-max is truly unconstrained, justifying its name.

On the one hand, solving (19) involves projecting the iterates h onto the level set Vc
at each iteration, which is generally a demanding task. Whereas, solving (24) requires
the relatively easier task of computing gradient of the cost function cp¨q. However, it is
observed that it takes fewer iterations to compute a saddle point solution to the constrained
formulation (19) compared to that of the unconstrained formulation (24). Therefore, if we
were to find a solution to the LIP (8) by solving the min-max problems (19) or (24), the
user has to decide between solving (19) with fewer but expensive iterations or solving (24)
with relatively easier but more iterations. This tradeoff depends on the given cost function
and could be equally expensive like in the case of minimizing Nuclear norm.

Remark 20 Observe that the order of homogeneity p in the LIP (8) is assumed to be
1 in Proposition 19. If p ą 1 and when δ “ 0, the equivalent unconstrained min-max
reformulation similar to (24) is

"

min
f P RK

sup
λ P Hn

cpfq `
´

p
1`2p
p

¯

`

xλ , xy ´ ε ‖λ‖
˘

´ xλ , φpfqy . (25)
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Remark 21 If δ “ 0 and we were to replace the error constraint φpfq P Brx, εs with
φpfq P Bx, where Bx Ă Hn is some compact convex subset. The min-max problem written
using (24) is

#

min
f P RK
y P Bx

sup
λ P Hn

cpfq ´ xλ , φpfqy `
´

p
1`2p
p

¯

xλ , yy .

2.3 Algorithms

We propose to solve the LIP (8) by computing saddle point solutions using existing algo-
rithms to solve the min-max problems (19) or (24). There are many techniques available for
solving such min-max problems, notably among them are the vanilla Gradient Descent As-
cent (GDA), Optimistic Gradient Descent Ascent (OGDA), Proximal Point (PP) and Extra
Gradient (EG) algorithms. A quick review of these algorithms can be found in (Mokhtari
et al., 2019). The performance of the algorithm to solve LIP depends on the convergence
attributes of the algorithm chosen to solve the min-max problems.

For the constrained formulation (19), Algorithm 1 performs projected gradient descent
on the minimization variable h for each iteration, and it computes gradients by solving the
maximization over λ by keeping the variable h fixed. This can also be done alternatively
by performing gradient ascent on the maximization variable over a faster time scale and
performing projected gradient descent on the minimization variable over a slower time scale.
The unconstrained min-max problem is solved in Algorithm 2 by performing momentum
based Optimistic Gradient Descent Ascent (OGDA) update.8 A comparison between Algo-
rithms 1 and 2 for `1-minimization problems may be found in Section 2.4.1. We would like
to emphasise that the particular algorithms 1 and 2 to solve LIP provided in this chapter
are for representation purpose only. In practice, depending on specifics of the given LIP
the user has to select the appropriate saddle point seeking algorithm to solve the equivalent
min-max problems.

2.4 Applications to Standard Problems

In this section, we will discuss two linear inverse type problems namely Basis Pursuit Denois-
ing (BPDN) and the Quadratic Program (QP). We will discuss the corresponding min-max
forms for these problems, and implement the corresponding algorithms on image denoising
problems. Finally, we will also discuss how the min-max forms help us in overcoming the
ill-posedness of the dictionary learning problem.

8. In the algorithms, φa indicates the conjugate of the linear map φ, πcp¨q is the projection operator onto
the level set Vc, and Bcpfq is the subdifferential of the cost function c evaluated at f (if the function
c is differentiable at f , we slightly abuse the notation and use the same notation Bcpfq to refer to the
gradient).
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Algorithm 1: Projected gradient descent algorithm for constrained min-max prob-
lem (19).
Input: Problem data: x, φ, ε, δ, c.
Output: An optimal solution f P Fδpφ, x,εq and the optimal value Cδpφ, x,εq.

1 Proceed only if ‖x‖ ą ε, else output 0.
2 Initialize t “ 0, h0 and λ0.
3 Iterate till convergence

Initialise λ “ λt and iterate M times

λÐÝ λ ` α

¨

˝

p
1

1`p
`

x´ ε
‖λ‖λ

˘

`

xλ , xy ´ ε ‖λ‖
˘

1
1`p

´
δ

‖λ‖
λ ´ φphtq

˛

‚

Update : ht`1 “ πc
`

ht ` βt
`

φapλq
˘˘

and λt`1 “ λ
tÐÝ t` 1

4 Repeat
5 Output: Cδpφ, x,εq “ xλt , φphtqy and f “ Cδpφ, x,εq ¨ ht.

Algorithm 2: OGDA algorithm for unconstrained min-max problem (24) when
δ “ 0.
Input: Problem data: x, φ, ε, c.
Output: An optimal solution f P Fδpφ, x,εq.

1 Proceed only if ‖x‖ ą ε, else output 0.
2 Initialize t “ 0, pf0, λ0q and pΓ´1, γ´1q.
3 Iterate till convergence

Compute γt P
´

Bcpftq ´ φ
apλtq

¯

and Γt “
´

x´ φpftq ´
ε

‖λt‖λt

¯

.
Update :

ft`1 “ ft ´ α1t

´

2γt ´ γt´1

¯

λt`1 “ λt ` α1t

´

2Γt ´ Γt´1

¯

tÐÝ t` 1
4 Repeat
5 Output: ft.

2.4.1 Basis Pursuit Denoising (BPDN)

One of the most practical example of an LIP is the classical Basis Pursuit Denoising problem
(Elad and Aharon, 2006; Candès and Wakin, 2008), which arises in various scenarios of
compressed sensing and image processing like denoising, deblurring etc.

$

&

%

minimize
f P RK

‖f‖1

subject to ‖x´ φpfq‖2 ď ε.
(26)
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In such image processing problems, instead of solving the problem directly on the entire
image, it is often done on a collection of smaller patches (typically of size 8ˆ 8) that cover
the entire image. Since natural images are reasonably sparse in 2d-DCT (Discrete Cosine
Transform) basis, a common choice for the linear map φ is the inverse 2d-DCT operator for
8ˆ 8 images.

We implement BPDN based image denoising on two images by solving (26) for all non
overlapping patches of size 8 ˆ 8. Figure 1 shows the denoising results for the standard
cameraman image, which is of size 256ˆ256. From left to right, we have the original image,
noisy image and the recovered image in order. The noisy image is obtained by adding a
mean zero Gaussian noise of standard deviation 0.0065 using imnoise function in MATLAB
resulting in a PSNR (Peak Signal to Noise Ratio) of 22.0741dB. To recover the image, BPDN
was solved with ε “ 0.3 for every non-overlapping 8ˆ8 patch using Algorithm 1 to compute
the saddle point of the equivalent constrained min-max problem

$

&

%

min
‖h‖1ď1

sup
λ

2
b

λJx´ ε ‖λ‖2 ´ λJφphq

subject to λJx´ ε ‖λ‖2 ą 0 .

(27)

The recovered image has a PSNR value of 26.8119dB.

Figure 1: In order from left to right, we have the original image, noisy image, and the
recovered image. The image recovery is done by employing Algorithm 1 to solve the BPDN
problem (26) on each 8 ˆ 8 patch. The PSNR value of the noisy image noisy image is
22.0741dB, and that of the recovered image is 26.8119dB, both w.r.t. the original image.

Similarly, in Figure 2 the results for denoising the flower image are shown, where the
nosiy image is obtained by a adding a mean zero Gaussian noise of standard deviation 0.005,
resulting in a PSNR of 23.0954dB. To denoise the image, BPDN was solved with ε “ 0.385
for every non-overlapping 8 ˆ 8 patch using Algorithm 2 to compute saddle points of the
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equivalent unconstrained min-max problem

min
f

sup
λ

!

‖f‖1 ` λJ
`

x´ φpfq
˘

´ ε ‖λ‖2
)

. (28)

The recovered image has a PSNR value of 28.5362dB.

Figure 2: In order from left to right, we have the original image, noisy image, and the
recovered image. The image recovery is done by employing Algorithm 2 to solve the BPDN
problem (26) on each 8 ˆ 8 patch. The PSNR value of the noisy image is 23.0954dB, and
that of the recovered image is 28.5362dB, both w.r.t. the original image.

For comparison purpose, we solve a BPDN problem for a randomly selected 8ˆ 8 patch
from the noisy flower image in Figure 2 via both Algorithm 1 and 2. In Algorithm 1, we
choose the step size sequence αt “ 5{p20` tq, ε “ 0.385 and for initialisation, h0 “

φ`pxq
‖φ`pxq‖1

and f0 “ x, where φ` is the pseudo inverse of φ. To show convergence to a saddle point in
Figure 3, we plot the quantities

Gt “

∥∥∥∥∥
`

x´ ε
‖λt‖λt

˘

a

xλt , xy ´ ε ‖λt‖
´ φpht´1q

∥∥∥∥∥
gt “ ‖φapλtq‖8 ´ xλt , φphtqy .

(29)

Note that Gt “ 0 guarantees the maximization condition, and gt “ 0 guarantees the mini-
mization condition in the constrained min-max problem (27). Therefore, if gt “ Gt “ 0 for
some t, it implies that pλt, htq is a saddle point to (27). Therefore, the sequences pgtqt and
pGtqt act as certificates for the saddle point condition for the min-max problem (27).

Similarly, to compute a saddle point of the unconstrained min-max problem (28) via
Algorithm 2, we use the step size sequence αt “ 2.5{p10` tq, ε “ 0.385 and for initialisation,
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Figure 3: Saddle point certificates to solve unconstrained min-max problem (27) via Algo-
rithm 1.

f0 “ φ`pxq and λ0 “ x. To show convergence to a saddle point in Figure 4, we have plot
the certificates

G1t “ αt ‖2Γt ´ Γt´1‖
g1t “ αt ‖2γt ´ γt´1‖ .

(30)

Evidently, the constrained formulation requires fewer iterations to converge to a reason-
able solution, in comparison to the number of iterations required to solve (28). However,
each iteration to solve (27) involves computing projections onto `1-ball, which makes each
iteration expensive.

2.4.2 Projection Onto Convex Sets and Quadratic Programs

Another optimization problem that arises regularly is the Quadratic Program (QP). Par-
ticularly, the problem of projecting a given point x onto some given compact-convex set S.
Projection of points onto convex sets arises in almost every practical optimization problem
where the iterates have to be projected onto the respective feasible sets after they are up-
dated using a gradient descent like technique to minimize the cost. We consider the following
QP

minimize
y P S

xy ´ x , Qpy ´ xqy , (31)

where Q is some given positive definite matrix. In terms of new variable f :“ y´x, the QP
(31) becomes

minimize
f P S´txu

xf , Qfy , (32)
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Figure 4: Saddle point certificates to solve unconstrained min-max problem (28) via Algo-
rithm 2.

which is in the form of the LIP (8) with δ “ 0, cpfq “ xf , Qfy, φ being the identity map
and the constraint f P S´txu instead of f P Brx, εs. Using the min-max reformulation (19)
of the LIP, and replacing the quantity xλ , xy ´ ε ‖λ‖ with min

y1 P S´txu
xλ , y1y we obtain the

following equivalent min-max formulation for the QP (31).

$

’

&

’

%

min
xh , Qhy ď 1

max
λ

1.889
´

min
y P S

xλ , y ´ xy
¯2{3

´ xλ , hy

subject to 0 ă min
y P S

xλ , y ´ xy .
(33)

Since the set S is compact, the QP (31) always admits a solution and the corresponding
min-max problem (33) admits a saddle point solution ph˚, λ˚q. From first order conditions,
we know that the optimal value of the min-max problem is 0.5 xλ˚ , h˚y. Then, simple
algebra shows that the optimal solution f˚ to (32) is given by

`

0.5 xλ˚ , h˚y
˘

h˚, and the
optimal solution y˚ to the QP (31) is y˚ “ x` f˚.

The advantage lies in the fact that the projection map πQ : Hn ÝÑ Hn onto the level set
th : xh , Qhy ď 1u is a lot simpler than projecting onto the given set S itself. For example,
if Q is identity matrix, then πQphq simply normalizes h to have unit norm. Since in most
relevant cases, the function λ ÞÝÑ min

yPS
xλ , yy is not differentiable, the step sizes α have to

be diminishing for the subgradient descent-ascent to converge.

Alternatively, since the minimization min
xh , Qhyď1

xλ , hy admits a unique solution for ev-

ery λ, the saddle point solution to the min-max problem can be computed by solving the
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Algorithm 3: Projected gradient descent algorithm for constrained min-max prob-
lem (19).
Input: Problem data: x, Q and the set S.
Output: The solution y˚ to QP (31).

1 Initialize t “ 0 and λ0.
2 Iterate till convergence

Compute yt P argmin
y P S

xλt , yy , and

λt`1 “ λt ` αt

˜

1.26
`

yt ´ x
˘

xλt , yt ´ xy
1{3

´ ht

¸

ht`1 “ πQ
`

ht ` αtλt
˘

tÐÝ t` 1
3 Repeat
4 Output: y˚ “ x` 1

2Q
´1λt.

following maximization problem alone.

sup
λ

1.889
´

min
y P S

xλ , y ´ xy
¯2{3

´

∥∥∥Q´ 1
2λ

∥∥∥ , (34)

using subgradient ascent type algorithms. If ph˚, λ˚q is a saddle point solution to the min-
max problem (33), then

h˚ “
Q´1λ˚

a

xλ˚ , Q´1λ˚y
“ argmax

xh , Qhyď1
xλ˚ , hy .

Finally, the optimal solution y˚ to the QP (31) is y˚ “ x` 1
2Q

´1λ˚.

As an exercise, we solve the orthogonal projection problem of projecting a point x onto
the `1-ball, which if we recall, arises often while using Algorithm 1 to solve the LIP when
cp¨q “ ‖¨‖1. The point x is drawn uniformly randomly from the `8-ball of R1000, and
we solve (31) with Q being the identity operator using Algorithm 3. Figure 5 shows the
progressive distance between the original point x and the computed projections x` 0.5λt at
each iteration of Algorithm 3.

2.4.3 The Dictionary Learning Problem

The setup is that every vector x P Hn is encoded as a vector fpxq in RK via the encoder
map f : Hn ÝÑ RK . We shall refer to fpxq as the representation of x under the encoder
f . The reconstruction of the encoded samples from the representation fpxq is done by

taking the linear combination
K
ř

i“1
fipxqdi with some standard collection of vectors D :“

`

d1 d2 ¨ ¨ ¨ dK
˘

referred to as the dictionary. Since the reconstruction has to be a good
representative of the true vector x, we constraint the error ‖x´Dfpxq‖ to be small.
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Figure 5: For projecting a point x onto the `1-ball, the plot shows the distance between the
iterates (x` 0.5λt) in Algorithm 3 to the original point x.

Given a dictionary D, we encode every vector x by solving the LIP (8) with an appro-
priate cost function c. This cost function determines the desirable characteristics in the
representation. In other words, the optimal encoder map fD : Hn ÝÑ RK corresponding
to the dictionary D is such that fDpxq P FδpD,x, εq for every x. Our objective is to find
dictionaries such that the corresponding encoder map fD has desirable features like sparsity,
robustness with respect to loss of coefficients etc., in the representation. We refer to the
task of finding such a dictionary as the dictionary learning problem.

Formally, let P be a distribution on Hn and X be a P distributed random variable. Let
c : RK ÝÑ r0,`8r be a given cost function that satisfies Assumption 1, ε : Hn ÝÑ r0,`8r
be a given error threshold function and δ be a non-negative real number. Given a dictionary
D, since the random variable X is encoded as fDpXq P FδpD,X, εpXqq, we consider the
cost incurred to encode to be CδpD,X, εpXqq. Our objective is to find a dictionary that
facilitates optimal encoding of the data, which are the samples drawn from P. Therefore,
we consider the following dictionary learning problem :

minimize
D P D

EP

“

CδpD,X, εpXqq
‰

, (35)

where D Ă RnˆK is some known compact convex subset.

For a large integer T , let pxtqTt“1 be a collection of samples drawn from the distribution
P. Let us consider the dictionary learning problem for the sampled data, given by:

minimize
D P D

1

T

T
ÿ

t“1

CδpD,xt, εtq , (36)
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where εt “ εpxtq for all t. For the special case of δ “ 0, the dictionary learning problem
(36) can be restated using the definition of the encoding cost CδpD,xt, εpxtqq in the more
conventional form as:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

minimize
D, pftqt

1

T

T
ÿ

t“1

cpftq

subject to

$

’

&

’

%

D P D,
ft P RK ,
‖xt ´Dft‖ ď εt for all t “ 1, 2, . . . , T.

(37)

The dependence of the encoding cost CδpD,x, εq on the dictionary variable D is not
immediately evident. Therefore, it is replaced in the dictionary learning problem (36) with
the min-max problem provided in Corollary 11 to obtain

min
DPD

min
phtqtĂVc

$

’

&

’

%

sup
pλtqt

1

T

T
ÿ

t“1

´

rppq
`

xλt , xty ´ εt ‖λt‖
˘

p
1`p ´

`

δ ‖λt‖ ` xλt , Dhty
˘

¯

s.t. xλt , xty ´ εt ‖λt‖ ą 0,

where rppq “ p1`pqp
´p
1`p . The dictionary learning problem (36) is then solved by alternating

the optimization over D and phtqt keeping the other one fixed. It is to be noted that each
of these optimization problem is a min-max problem in variables pD, pλtqtq and pphtqt, pλtqtq
respectively. In particular, for a given sequence phtqt Ă Vc, the dictionary is updated by
solving the following min-max problem

$

’

&

’

%

min
D P D

sup
pλtqt

1

T

T
ÿ

t“1

´

rppq
`

xλt , xty ´ εt ‖λt‖
˘

p
1`p ´

`

δ ‖λt‖ ` xλt , Dhty
˘

¯

subject to xλt , xty ´ εt ‖λt‖ ą 0.

It is shown in (Sheriff and Chatterjee, 2020) that if δ ą 0 the above min-max problem
always admits a saddle point solution. Moreover, we observe the objective function of the
min-max problem is linear w.r.t. the dictionary variable D and concave w.r.t. λ. Thus, the
saddle point solution can be computed efficiently by simple ascent-descent type iterations.
The novelty and the convergence attributes of learning a dictionary to solve (36) can be
attributed to the reformulations (19), (24) of the LIP provided in this article.

3. Theory, Discussion, and Proofs.

In this section we investigate the linear inverse problem (8) in detail and its dual with special
emphasis on the underlying convex geometry. Based on the principle of separation of convex
bodies by linear functionals, we obtain the dual problem (17) of the linear inverse problem
which then leads to the convex-concave min-max problem (17). We later provide the proof
of Theorem 10 establishing that the optimal value of this min-max problem is proportional
to the optimal cost Cδpφ, x,εq of the LIP (8).
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Lemma 22 For a linear map φ : RK ÝÑ Hn and δ, r ě 0, we have

Sδpφ, rq “ tz P Hn : Cδpφ, z, 0q ď rpu. (38)

Proof On the one hand, it follows from the Definition 3 that for every z P Sδpφ, rq, there
exists fz P RK such that cpfzq ď rp and ‖z ´ φpfzq‖ ď δr. Thus, considering ε “ 0 in (8),
we see that the pair pr, fzq is a feasible point and hence we have Cδpφ, z, 0q ď rp.

On the other hand, if z P Hn is such that Cδpφ, z, 0q ď rp, we know that there exists a
pair pcz, fzq P R` ˆ RK such that cpz “ Cδpφ, z, 0q ď rp and satisfies the following:

• cpfzq ď cpz ď rp, and
• ‖z ´ φpfzq‖ ď 0` δcz ď δr.

It then immediately follows that for every z P Hn satisfying Cδpφ, z, 0q ď rp, we have the
membership z P Sδpφ, rq. Collecting the two assertions we arrive at (38).

Lemma 23 For a given linear map φ : RK ÝÑ Hn and non-negative real numbers ε, δ, let
x P Hn be pφ, ε, δq-feasible in the sense of Definition 2, then we have

Cδpφ, x,εq “

#

min
rě0

rp

subject to Sδpφ, rq X Brx, εs ‰ H.
(39)

Proof Let r ě 0 be such that Sδpφ, rq X Brx, εs ‰ H. Then on the one hand, there exists
yr P Brx, εs and fr P RK such that ‖yr ´ φpfrq‖ ď δr and cpfrq ď rp. From this we get

‖x´ φpfrq‖ ď ‖x´ yr‖ ` ‖yr ´ φpfrq‖ ď ε` δr ,

which implies that the pair pr, frq is feasible for (8), and as a result we get Cδpφ, x,εq ď rp.
By minimizing over r ě 0 such that Sδpφ, rq XBrx, εs ‰ H we get our first inequality:

Cδpφ, x,εq ď

#

inf
rě0

rp

subject to Sδpφ, rq X Brx, εs ‰ H.

On the other hand, for every pair pr1, f 1q that is feasible for (8), by defining y :“ x1t0upεq`
εφpf 1q`δr1x1

ε`δr1 1s0,`8rpεq we shall establish that y P Brx, εs X Sδpφ, r1q.

Whenever ε “ 0 we have y “ x, and from the feasibility of the pair pr1, f 1q it easily follows
that ‖y ´ φpf 1q‖ “ ‖x´ φpf 1q‖ ď ε ` δr1 “ δr1 and cpf 1q ď r1p. Thus, Cδpy, φ, 0q ď r1p

and from (38) the membership y P Sδpφ, r
1q holds. Moreover, if ε “ 0, we also see that

y “ x “ Brx, 0s. Therefore, y P Brx, εs X Sδpφ, r1q, and the intersection is non-empty.

When ε ą 0, we see that

‖x´ y‖ “
∥∥∥∥x´ εφpf 1q ` δr1x

ε` δr1

∥∥∥∥ “ ε

ε` δr1
∥∥x´ φpf 1q∥∥ ď ε , and

∥∥y ´ φpf 1q∥∥ “ ∥∥∥∥εφpf 1q ` δr1xε` δr1
´ φpf 1q

∥∥∥∥ “ δr1

ε` δr1
∥∥x´ φpf 1q∥∥ ď δr1 .

24



Novel Min-Max Reformulations of Linear Inverse Problems

These inequalities, along with the fact that cpf 1q ď r1p imply that y P Brx, εsXSδpφ, r1q and
in particular that Brx, εs X Sδpφ, r1q ‰ H. As a consequence, the inequality:

r1 ě

#

inf
rě0

r

subject to Sδpφ, rq X Brx, εs ‰ H,

holds for every pair pr1, f 1q that is feasible for (8). By minimizing over all such feasible pairs
pr1, f 1q, we obtain the converse inequality

Cδpφ, x,εq ě

#

inf
rě0

rp

subject to Sδpφ, rq X Brx, εs ‰ H.

Therefore,

Cδpφ, x,εq “

#

inf
rě0

rp

subject to Sδpφ, rq X Brx, εs ‰ H.

We complete the proof by concluding that the infimum above is indeed a minimum since
Brx, εs and Sδpφ, rq are compact subsets of Hn.

Remark 24 An interesting viewpoint to take from this in dictionary learning problem is
that every dictionaryD gives rise to an atomic set SδpD, 1q, and the encoding cost CδpD,x, εq
of a vector x is proportional to the approximate Minkowski gauge function with respect to
this set.9 The corresponding dictionary learning problem can be viewed as the task of finding
a ‘good’ atomic set arising from a dictionary.

3.1 Intersection of the Convex Bodies.

Lemma 23 gives us the first required connection between the LIP (8) and the underlying
convex geometry. It asserts that the value pCδpφ, x,εqq1{p is the minimum amount by which
the set Sδpφ, 1q has to be scaled linearly so that it intersects with Brx, εs. To this end, let
us define:

Sδpφ, x, εq :“ pCδpφ, x,εqq
1{p ¨ Sδpφ, 1q .

We observe that both the sets Sδpφ, x, εq and Brx, εs are compact and convex, and due to
this, we have the following intersection lemma.

Lemma 25 Let x P Hn be pφ, ε, δq-feasible in the sense of Definition 2. Let pcx, fxq P
r0,`8rˆRK be an optimal solution to the LIP (8), i.e., cx “ pCδpφ, x,εqq

1{p and fx P
Fδpφ, x,εq. Then the sets Brx, εs and Sδpφ, x, εq intersect at a unique point y˚ given by:

Brx, εs X Sδpφ, x, εq “: y˚ “ x1t0upεq `
εφpfxq ` δcxx

ε` δcx
1s0,`8rpεq. (40)

In addition, we also assert that

9. We say “approximate” in the sense that we do not scale the atomic set SδpD, 1q so as to absorb x. Instead,
we scale it only until it intersects with a given neighborhood of x.
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(i) whenever, ‖x‖ ą ε, every fx P Fδpφ, x,εq satisfies ‖x´ φpfxq‖ “ ε` δcx ;
(ii) for every fx, gx P Fδpφ, x,εq, we have φpfxq “ φpgxq .

Remark 26 In dictionary learning, for a given dictionary D, since every sample vector
x P Hn is represented by some vector fDpxq P FδpD,x, εq, the representation is not unique
whenever the set FδpD,x, εq is not a singleton. In such situations, even though the repre-
sentation need not be unique, we emphasize that the reconstruction xrec :“ DfDpxq of the
vector x obtained from its representation fDpxq is unique.

Remark 27 When x R Br0, εs since cx ą 0, it is easily verified that the unique point of
intersection y˚ in Lemma 25 can also be written as:

y˚ “ φpfxq `
δcx

ε` δcx

`

x´ φpfxq
˘

1s0,`8rpδq.

Proof [Lemma 25] We note that if ε “ 0, Brx, εs “ x, and since by definition, the set
Sδpφ, x, εq intersects with Brx, εs. The intersecton happens at the point x which is unique.
We shall establish (40) by considering the remaining cases.

• 0 ă ‖x‖ ď ε : From (18), we know that Cδpφ, x,εq “ 0 and Fδpφ, x,εq “ t0u. This implies
that Sδpφ, x, εq “ t0u. In addition, we see that 0 P Brx, εs whenever ‖x‖ ď ε. As a
result, we obtain that Brx, εs X Sδpφ, x, εq “ t0u. Now, by using the fact that pcx, fxq is
an optimal solution to the LIP (8) if and only if pcx, fxq “ p0, 0q, we see that y˚ in (40)
evaluates to 0 confirming (40).

• 0 ă ε ă ‖x‖ : We shall prove by contradiction that the sets Brx, εs and Sδpφ, x, εq
intersect at a unique point. Let y1 ‰ y2 be such that y1, y2 P Brx, εs X Sδpφ, x, εq. Since
Brx, εs is a strictly convex set, 1

2py1 ` y2q P Bpx, εq. However, since Bpx, εq is an open
set, one can find ρ ą 0 such that Br12py1 ` y2q, ρs Ă Bpx, εq. Since 0 R Bpx, εq, we

conclude that 2ρ ă ‖y1 ` y2‖; Defining θ :“
´

1´ 2ρ
‖y1`y2‖

¯

, we see that θ Ps0, 1r. It is

easily verified that
∥∥1
2py1 ` y2q ´

θ
2py1 ` y2q

∥∥ “ ρ, which leads us to the first inclusion
θ
2py1 ` y2q P Br

1
2py1 ` y2q, ρs Ă Brx, εs. In addition, we note that the set Sδpφ, x, εq is

also convex, which means that 1
2py1` y2q P Sδpφ, x, εq. Since Sδpφ, x, εq scales linearly, we

conclude that θ
2py1 ` y2q P θ ¨ Sδpφ, x, εq. From these two inclusions, it is clear that

θ

2
py1 ` y2q P Brx, εs X θ ¨ Sδpφ, x, εq “ Brx, εs X Sδpφ, θcxq ,

and equivalently, Brx, εs X Sδpφ, θcxq ‰ H. This, however, contradicts the assertion of
Lemma 23 since θ ă 1.
To summarize, we have established that if the intersection of the sets Brx, εs and Sδpφ, x, εq
is not a singleton, we can slightly shrink the set Sδpφ, x, εq such that it still intersects
Brx, εs non-trivially. This is a contradiction in view of Lemma 23.
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To prove that y˚ defined in (40) is indeed the unique point of intersection, it suffices to
show that y˚ P Brx, εs X Sδpφ, x, εq. We observe that:

‖x´ y˚‖ “
∥∥∥∥x´ εφpfxq ` δcxx

ε` δcx

∥∥∥∥ “ ε

ε` δcx
‖x´ φpfxq‖ ď ε , and

‖y˚ ´ φpfxq‖ “
∥∥∥∥εφpfxq ` δcxxε` δcx

´ φpfxq

∥∥∥∥ “ δcx
ε` δcx

‖x´ φpfxq‖ ď δcx.

(41)

These inequalities, along with the fact that cpfxq ď cpx, imply that y˚ P Brx, εsXSδpφ, x, εq.
This establishes (40).

We proceed to establish the two consequences. to see the first, let us prove that the error
constraint is active at the optimal solution pcx, fxq whenever ‖x‖ ą ε ě 0. If ε “ δ “ 0,
then the error constraint is trivially active since the inequality ‖x´ φpfxq‖ ď 0 can only
be satisfied with equality. Since cx ą 0 for every ‖x‖ ą ε, we have ε ` δcx ą 0 if at least
one of the parameters ε and δ is positive, and thus the quantity y˚ “ εφpfxq`δcxx

ε`δcx
is well

defined for every fx P Fδpφ, x,εq. We know from the previous assertion of the lemma that
y˚ P Sδpφ, x, εq. However, since Sδpφ, x, εq is a convex set that contains 0, we conclude that

θy˚ P Sδpφ, x, εq for every θ P r0, 1s.

If we suppose that ‖x´ φpfxq‖ ă ε ` δcx, it is easily verified that ‖x´ y˚‖ ă ε, and thus
y˚ P Bpx, εq. As a result, one can find ρ ą 0 such that Bry˚, ρs Ă Brx, εs. Since 0 R Brx, εs,
we see at once that ρ ă ‖y˚‖, and conclude that

αy˚ P Bry˚, ρs Ă Brx, εs for every α such that
ˆ

1´
ρ

‖y˚‖

˙

ď α ď 1.

These two inclusions together contradict that the sets Brx, εs and Sδpφ, x, εq intersect at a
unique point.

It remains to prove the final assertion that for every fx, gx P Fδpφ, x,εq, the equality
φpfxq “ φpgxq holds. Indeed, whenever ‖x‖ ď ε, we have Cδpφ, x,εq “ 0 and Fδpφ, x,εq “ t0u.
This implies that fx “ gx “ 0, and thus φpfxq “ φpgxq. Let us consider the case when
‖x‖ ą ε, and suppose that φpfxq ‰ φpgxq for some fx, gx P Fδpφ, x,εq. Then it follows that
1
2pfx ` gxq satisfies the error constraint∥∥∥∥x´ 1

2
φpfx ` gxq

∥∥∥∥ “ ∥∥∥∥1

2

`

x´ φpfxq
˘

`
1

2

`

x´ φpgxq
˘

∥∥∥∥ ď ε` δcx.

Moreover, we know that the level sets of c are convex and since fx, gx P cx ¨ Vc, we
have 1

2pfx ` gxq P cx ¨ Vc. Therefore, cp12pfx ` gxqq ď cpx “ Cδpφ, x,εq, we conclude that
1
2pfx ` gxq P Fδpφ, x,εq. However, since φpfxq ‰ φpgxq, the strict convexity of ‖¨‖ implies
that the above error constraint is satisfied strictly. This contradicts our earlier assertion
that the error constraint is active for every fx P Fδpφ, x,εq. The proof is complete.
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Lemma 28 Let the linear map φ : RK ÝÑ Hn and non-negative real numbers ε, δ be given,
then for every λ P Hn, we have

‖λ‖1φ “ max
zPSδpφ,1q

xλ , zy “ δ ‖λ‖ ` max
hPVc

xλ , φphqy . (42)

Furthermore,

(i) If δ ą 0, then ‖λ‖1φ ą 0 for every λ P Hnzt0u.
(ii) If δ “ 0, and λ P Hnzt0u satisfies ‖λ‖1φ “ 0, then xλ , xy ´ ε ‖λ‖ ď 0 for every

pφ, ε, 0q-feasible vector x P Hn.

Proof We recall from the definition (11) that the set Sδpφ, 1q is the image of the linear
map: Br0, δs ˆ Vc Q pz1, hq ÞÝÑ z1 ` φphq. This allows us to write the optimization problem

max
zPSδpφ,1q

xλ , zy equivalently as:

max
h, z1

@

λ , z1 ` φphq
D

subject to h P Vc, z
1 P Br0, δs.

It is easily seen that the above optimization problem is separable into maximization over
individual variables, and using the fact that max

z1PBr0,δs
xλ , z1y “ δ ‖λ‖ for every λ P Hn (42)

follows at once. Moreover, since 0 P Vc, we have 0 ď max
hPVc

xλ , φphqy for every λ P Hn.

Applying this inequality in (42), assertion (i) of the lemma follows immediately.

Finally, let δ “ 0 and λ P Hnzt0u satisfy ‖λ‖1φ “ 0. Since S0pφ, 1q is an absorbing set
to imagepφq, we conclude from the definition (15) of the dual function that xλ , yy ď 0 for
every y P imagepφq. If x P Hn is pφ, ε, 0q-feasible, we know that Brx, εs X imagepφq ‰ H.
Let y1 P Brx, εs X imagepφq, then

xλ , xy ´ ε ‖λ‖ “ min
yPBrx,εs

xλ , yy ď
@

λ , y1
D

ď 0.

This completes the proof.

3.2 Separation of sets Brx, εs and Sδpφ, x, εq.

We recall that both the sets Brx, εs and Sδpφ, x, εq are compact convex subsets that if
intersect, then do so at the unique point y˚. Moreover, if ‖x‖ ą ε, then we know from
the Hahn-Banach separation principle (Boyd and Vandenberghe, 2004, p. 46,50) that there
exists a linear functional λ1 P Hn which separates the convex sets Brx, εs and Sδpφ, x, εq,
and supports them at their unique point of intersection y˚. In other words, we have

max
zPSδpφ,x,εq

@

λ1 , z
D

“
@

λ1 , y˚
D

“ min
yPBrx,εs

@

λ1 , y
D

. (43)

This equality is central in establishing strong duality and explicitly characterizing the opti-
mal dual variables.
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Lemma 29 Let at least one of ε, δ be positive and x P HnzBr0, εs be pφ, ε, δq-feasible. If
0 ‰ λ1 P Hn satisfies (43), then λ1 “ α1

`

x ´ φpfxq
˘

for some α1 ą 0 and fx P Fδpφ, x,εq.
Consequently, (43) is satisfied by αpx´ φpfxqq for every α ą 0.

Proof We recall from the Remark 27 that the sets Brx, εs and Sδpφ, x, εq intersect at the
unique point y˚, given by

y˚ “ φpfxq `
δcx

ε` δcx

`

x´ φpfxq
˘

1s0,`8rpδq,

where cx :“ pCδpφ, x,εqq
1{p and fx P Fδpφ, x,εq.

• On the one hand, if ε ą 0 and λ1 ‰ 0 satisfies: xλ1 , y˚y “ min
yPBrx,εs

xλ1 , yy, then

necessarily λ1 “ α1px´ y˚q for some α1 ą 0.
• On the other hand, if δ ą 0, and λ1 ‰ 0 satisfies: xλ1 , y˚y “ max

zPSδpφ,x,εq
xλ1 , zy,

then due to the fact that y˚ P Brφpfxq, δcxs Ă Sδpφ, x, εq, λ1 also satisfies: xλ1 , y˚y “

max
zPBrφpfxq,δcxs

xλ1 , zy. It follows that: λ1 “ α2
`

y˚ ´ φpfxq
˘

for some α2 ą 0.

By substituting for y˚ and simplifying, we easily deduce that in both the cases λ1 “ α
`

x´
φpfxq

˘

for some α ą 0.

To complete the proof, we argue that if (43) holds true for λ1 “ α1px´φpfxqq with some
α1 ą 0, then for any α ą 0, the inequalities in (43) are preserved by multiplying throughout
by the positive quantity α

α1 . Thus, (43) is satisfied by αpx´ φpfxqq for every α ą 0.

Lemma 30 Let the linear map φ : RK ÝÑ Hn and non-negative real numbers ε, δ be given,
and x P HnzBr0, εs be any pφ, ε, δq-feasible vector such that Λδpφ, x, εq ‰ H. Then every
λ˚ P Λδpφ, x, εq satisfies (43).

Proof We first recall that Sδpφ, x, εq “ pCδpφ, x,εqq
1{p ¨ Sδpφ, 1q. Thus, for every λ˚ P

Λδpφ, x, εq, the following relations hold:

max
zPSδpφ,x,εq

xλ˚ , zy “ pCδpφ, x,εqq
1{p max

zPSδpφ,1q
xλ˚ , zy “ pCδpφ, x,εqq

1{p, and

min
yPBrx,εs

xλ˚ , yy “ xλ˚ , xy ´ ε ‖λ˚‖ “ pCδpφ, x,εqq
1{p.

In other words, the linear functional xλ˚ , ¨y separates the sets Brx, εs and Sδpφ, x, εq. More-
over, both these sets are compact and convex, and we know from Lemma 25 that they inter-
sect at a unique point y˚. Therefore, the linear functional xλ˚ , ¨y must support both these
sets at their intersection point y˚, and (43) follows at once.

Proposition 31 Let the linear map φ : RK ÝÑ Hn and non-negative real numbers ε, δ be
given, and x P HnzBr0, εs be a pφ, ε, δq-feasible in the sense of Def. 2. The set Λδpφ, x, εq is
completely described in the following.
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(i) If δ “ 0, ε “ 0, then the set Λ0pφ, x, 0q ‰ H, and moreover, Λ0pφ, x, 0q X imagepφq ‰
H. A vector λ˚ P Λ0pφ, x, 0q if and only if the linear functional xλ˚ , ¨y supports the
set S0pφ, x, 0q at x, and satisfies ‖λ˚‖1φ “ 1.10

(ii) If at least one of the following is true
• δ ą 0
• δ “ 0 and ε ą 0 with Bpx, εq X imagepφq ‰ H

then the set Λδpφ, x, εq consists of a unique element λ˚ given by

λ˚ “
x´ φpfxq

‖x´ φpfxq‖1φ
for any fx P Fδpφ, x,εq . (44)

(iii) If δ “ 0 and ε ą 0 such that Bpx, εq X imagepφq “ H, then Λδpφ, x, εq “ H.

Remark 32 Even though the set Fδpφ, x,εq may contain multiple elements, λ˚ is unique
due to the fact that φpfxq is unique.

Proof If ε “ δ “ 0, then Brx, εs “ txu. In view of Lemma 30 we know that λ˚ P Λ0pφ, x, 0q
if and only if the linear functional xλ˚ , ¨y supports the set S0pφ, x, 0q at x, and satisfies
‖λ˚‖1φ “ 1. It remains to be shown that the set Λ0pφ, x, 0q is non-empty, and we do so by
showing that there exists λφ P Λ0pφ, x, 0q X imagepφq. Since x is pφ, 0, 0q-feasible, we have
x P imagepφq. We note from Lemma 23 that

`

C0pφ, x, 0q
˘1{p is the least amount by which

the set S0pφ, 1q has to be scaled linearly so that it contains x. This implies that x lies on the
boundary of the set S0pφ, x, 0q, i.e., x R relintpS0pφ, x, 0qq

11. In addition, since S0pφ, x, 0q
is a convex subset of imagepφq, we know that there exists 0 ‰ λφ P imagepφq such that the
linear functional xλφ , ¨y supports the set S0pφ, x, 0q at the boundary point x. As result, we
obtain:

xλφ , xy “ max
zPS0pφ,x,0q

xλφ , zy “ pCδpφ, x,εqq
1{p max

zPS0pφ,1q
xλφ , zy

“ pCδpφ, x,εqq
1{p ‖λφ‖1φ .

Since S0pφ, 1q is an absorbing set to imagepφq we have 0 P relintpS0pφ, 1qq and therefore,
0 ă ‖λφ‖1φ. Thus, defining λ˚ :“ p1{ ‖λφ‖1φqλφ it readily follows that λ˚ P Λ0pφ, x, 0q. This
establishes the assertion (i) of the proposition.

If either ε ą 0 or δ ą 0, on the one hand we know from Lemma 29 that px ´ φpfxqq
satisfies

xx´ φpfxq , xy ´ ε ‖x´ φpfxq‖ “ max
zPSδpφ,x,εq

xx´ φpfxq , zy

“ pCδpφ, x,εqq
1{p ‖x´ φpfxq‖1φ .

We immediately see that if ‖x´ φpfxq‖1φ ą 0, then x´φpfxq

‖x´φpfxq‖1φ
P Λδpφ, x, εq. On the other

hand, if λ˚ P Λδpφ, x, εq then Lemma 30 implies that λ˚ must satisfy (43), and from Lemma

10. If imagepφq is a proper subspace of Hn, then every λ in the orthogonal complement of imagepφq supports
the set S0pφ, 1q at every point, and in particular at x. However, such a λ doesn’t satisfy the condition
xλ , xy ´ ε ‖λ‖ “ pCδpφ, x,εqq1{p.

11. For a given set S, its relative interior relintpSq is defined as the interior of the set w.r.t. the subspace
topology induced on the smallest affine subspace containing the set S.
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29 we infer that λ˚ “ αpx´φpfxqq for some α ą 0. From Definition 6 it immediately implies
that if αpx ´ φpfxqq P Λδpφ, x, εq, then ‖x´ φpfxq‖1φ ą 0 and α “ 1

‖x´φpfxq‖1φ
. Thus the set

Λδpφ, x, εq is non-empty, and is the singleton
"

x´φpfxq

‖x´φpfxq‖1φ

*

if and only if ‖x´ φpfxq‖1φ ą 0.

We complete the proof by showing that ‖x´ φpfxq‖1φ “ 0 if and only if δ “ 0 and
Bpx, εq X imagepφq “ H. On the one hand, if δ “ 0 and Bpx, εq X imagepφq “ H, then we
have

‖x´ πφpxq‖ “ min
zPimagepφq

‖x´ z‖ ě ε.

However, from Lemma 25 we know that ‖x´ φpfxq‖ “ ε, and since φpfxq P imagepφq, we
deduce that πφpxq “ φpfxq.12 Due to orthogonality of projection, xx´ φpfxq , zy “ 0 for all
z P imagepφq. Since S0pφ, 1q Ă imagepφq, we obtain

‖x´ φpfxq‖1φ “ max
zPS0pφ,1q

xx´ φpfxq , zy “ 0

One the other hand, if ‖x´ φpfxq‖1φ “ 0, Lemma 28(i) implies that δ “ 0. Moreover, since
S0pφ, 1q is an absorbing set to imagepφq, we conclude from the definition (15) of the dual
function that xx´ φpfxq , zy “ 0 for all z P imagepφq. Furthermore, since φpfxq P imagepφq
it implies from the orthogonality principle that πφpxq “ φpfxq. Consequently,

min
zPimagepφq

‖x´ z‖ “ ‖x´ πφpxq‖ “ ‖x´ φpfxq‖ “ ε.

In other words, we have Bpx, εq X imagepφq “ H. The proof is now complete.

Lemma 33 Let the linear map φ : RK ÝÑ Hn and non-negative real numbers ε, δ be given,
and x P HnzBr0, εs be pφ, ε, δq-feasible such that Λδpφ, x, εq ‰ H. Then for every λ˚ P
Λδpφ, x, εq and h˚ P 1

pCδpφ,x,εqq1{p
¨ Fδpφ, x,εq, we have

xλ˚ , φph˚qy “ max
hPVc

xλ˚ , φphqy “ 1´ δ ‖λ˚‖ . (45)

Proof Applying (42) directly to λ˚ P Λδpφ, x, εq gives us

max
hPVc

xλ˚ , φphqy “ ´δ ‖λ˚‖ ` ‖λ˚‖1φ “ 1´ δ ‖λ˚‖ . (46)

By denoting cx “ pCδpφ, x,εqq
1{p, we know from (43) and Lemma 30 that

xλ˚ , y˚y “ max
zPSδpφ,x,εq

xλ˚ , zy “ cx max
zPSδpφ,1q

xλ˚ , zy “ cx ‖λ˚‖1φ “ cx.

On substituting for y˚ by considering fx “ cxh
˚ in Remark 27, we get

cx “ xλ
˚ , y˚y “ cx xλ

˚ , φph˚qy `
δcx

ε` δcx

@

λ˚ ,
`

x´ cxφph
˚q
˘D

1s0,`8rpδq. (47)

12. πφ : Hn ÝÑ imagepφq is the orthogonal projection operator onto imagepφq.
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Whenever δ ą 0 we know from Proposition 31 that λ˚ and
`

x ´ cxφph
˚q
˘

are co-linear.
Thus, we obtain that:

@

λ˚ ,
`

x´ cxφph
˚q
˘D

“ ‖λ˚‖ ‖x´ cxφph
˚q‖ “ pε` δcxq ‖λ˚‖ ,

where the last equality follows from assertion (i) of Lemma 25 since cxh
˚ P Fδpφ, x,εq. Note

that cx ą 0 since ‖x‖ ą ε. Therefore, cancelling cx throughout in (47) and simplifying for
xλ˚ , φph˚qy yields

xλ˚ , φph˚qy “ 1´
´

δ ‖λ˚‖ 1s0,`8rpδq
¯

“ 1´ δ ‖λ˚‖ , (48)

(45) follows at once from (46) and (48).

Proof [Lemma 5] If x is not pφ, ε, δq-feasible, then we know that δ “ 0 and Brx, εs X
imagepφq “ H. Consequently, ‖y‖φ “ `8 for all y P Brx, εs. Therefore, the assertion holds
since Cδpφ, x,εq “ `8.

If x is pφ, ε, δq-feasible, then from Lemma 25, we know that the sets Brx, εs and Sδpφ, x, εq
intersect at a unique point y˚. Thus we have

min
y P Brx,εs

‖y‖φ ď ‖y˚‖φ ď pCδpφ, x,εqq
1{p,

where the first inequality follows from the fact that y˚ P Brx, εs and the second one follows
from y˚ P pCδpφ, x,εqq

1{p ¨ Sδpφ, 1q and the definition (13) of the guage function ‖¨‖φ.

On the one hand, for y P Brx, εs such that ‖y‖φ “ `8, the inequality pCδpφ, x,εqq1{p ď
‖y‖φ holds trivially. On the other hand, for y P Brx, εs such that ‖y‖φ ă `8, we know
from the definition (13) that y P Sδpφ, ‖y‖φq. Thus, Brx, εs X Sδpφ, ‖y‖φq ‰ H, and in view
of Lemma 23, we get pCδpφ, x,εqq1{p ď ‖y‖φ. Combining the two facts, we conclude

pCδpφ, x,εqq
1{p ď min

y P Brx,εs
‖y‖φ .

Collecting the two inequalities, (14) follows at once.

Remark 34 The proof of the lemma also implies that ‖y˚‖φ “ pCδpφ, x,εqq1{p, and there-
fore, y˚ is a minimizer in the problem (14). Furthermore, if y1 ‰ y˚ is also a minimizer, then
we have ‖y1‖φ “ pCδpφ, x,εqq1{p and y1 P Brx, εs. Then it follows that y1 P Sδpφ, ‖y1‖φq “
Sδpφ, x, εq, and thus y1 P Brx, εsXSδpφ, x, εq. From Lemma 25, we then have y1 “ y˚. Which
is a contradiction. Thus,

y˚ “ argmin
y P Brx,εs

‖y‖φ .
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Proof [Theorem 7] Combining (14) and (16), we obtain

pCδpφ, x,εqq
1{p “ min

yPBrx,εs
sup

‖λ‖1φď1
xλ , yy

ě sup
‖λ‖1φď1

min
yPBrx,εs

xλ , yy

ě

#

sup
λ

xλ , xy ´ ε ‖λ‖

subject to ‖λ‖1φ ď 1.

(49)

Therefore, pCδpφ, x,εqq1{p is an upper bound to the optimal value of (17). We shall establish
the proposition by considering all the possible cases and showing that the upper bound is
indeed the supremum.

Case 1: When x is not pφ, ε, δq-feasible. We know that this happens only if δ “ 0 and
Brx, εsX imagepφq “ H. Denoting πφpxq to be the orthogonal projection of x onto imagepφq,
we have xx´ πφpxq , zy “ 0 for every z P imagepφq.

Since δ “ 0 we have S0pφ, 1q Ă imagepφq. Thus, for every α ě 0, letting λ1α :“ αpx ´
πφpxqq we see that xλ1α , zy “ 0 for every z P S0pφ, 1q. In other words, we have ‖λα‖1φ “ 0,
and therefore, λ1α is a feasible point in (17) for every α ě 0. Moreover, since Brx, εs X
imagepφq “ H we see that ‖x´ πφpxq‖ ě ε ` ρ for some ρ ą 0. Therefore, the objective
function of (17) evaluated at λα satisfies

@

λ1α , x
D

´ ε
∥∥λ1α∥∥ “ α

´

xx´ πφpxq , xy ´ ε ‖x´ πφpxq‖
¯

“ α
´

‖x´ πφpxq‖2 ` xx´ πφpxq , πφpxqy ´ ε ‖x´ πφpxq‖
¯

“ α ‖x´ πφpxq‖
´

‖x´ πφpxq‖ ´ ε
¯

ě αpε` ρqρ.

By considering arbitrarily large value of α, we observe that the objective function in (17)
attains arbitrarily large values for λ1α, i.e., the supremum is `8.

Case 2: When 0 ď ‖x‖ ď ε. We know that the optimal cost Cδpφ, x,εq is equal to zero,
and we shall conclude that so is the value of the supremum in (17). For λ˚ “ 0, we have
‖λ˚‖1φ “ 0 (thus, λ˚ is feasible in (17)) and xλ˚ , xy ´ ε ‖λ˚‖ “ 0. Therefore, in view of
(49), we know that the objective function in (17) achieves the value of its upper bound at
λ˚. Thus, the value of the supremum is 0, and λ˚ “ 0 is an optimal solution.13

Case 3: When x is a pφ, ε, δq-feasible, and ‖x‖ ą ε with Λδpφ, x, εq ‰ H. We know that
there exists a λ˚ P Λδpφ, x, εq and the following two conditions hold simultameously:

‖λ˚‖1φ “ 1, and

xλ˚ , xy ´ ε ‖λ˚‖ “ pCδpφ, x,εqq
1{p.

13. It is to be to be noted that whenever ‖x‖ “ ε, there could be non-zero optimal solutions, for e.g., λ˚ “ αx
for every α ě 0.
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The first equality implies that λ˚ is a feasible point to (17), and the latter, in conjunc-
tion with (49) implies that the upper bound of pCδpφ, x,εqq1{p is achieved at λ˚. Thus,
pCδpφ, x,εqq

1{p is indeed the optimum value of (17), and that every λ˚ P Λδpφ, x, εq is an
optimal solution to (17).

Conversely, if λ˚ is an optimal solution to (17), then readily we get xλ˚ , xy ´ ε ‖λ˚‖ “
pCδpφ, x,εqq

1{p. It suffices to show that ‖λ˚‖1φ “ 1. Since pCδpφ, x,εqq1{p ą 0, we have
xλ˚ , xy ´ ε ‖λ˚‖ ą 0. Therefore, from the assertions (i) and (ii) of Lemma 28, we conclude
that ‖λ˚‖1φ ą 0. Moreover, if ‖λ˚‖1φ ă 1, then λ1 :“ 1

‖λ˚‖1φ
λ˚ is also a feasible point to (17).

However, the objective function of (17) evaluated at λ1 satisfies

@

λ1 , x
D

´ ε
∥∥λ1∥∥ “ 1

‖λ˚‖1φ

`

xλ˚ , xy ´ ε ‖λ˚‖
˘

ą pCδpφ, x,εqq
1{p,

which is a contradiction. Therefore, it follows at once that λ˚ P Λδpφ, x, εq.

Case 4: When x is a pφ, ε, δq-feasible vector and ‖x‖ ą ε with Λδpφ, x, εq “ H. We know
from Proposition 31 that this happens only if δ “ 0 and Bpx, εq X imagepφq “ H. Since x
is pφ, ε, 0q-feasible, we also know that Brx, εs X imagepφq ‰ H. Thus the intersection must
happen at the boundary of the set Brx, εs. Due to the strict convex geometry of Brx, εs,
the sets Brx, εs and imagepφq can only intersect at a unique point, observe that this is
also the point that is closest to x among all points in imagepφq. Thus we conclude that
Brx, εs X imagepφq “ πφpxq - the orthogonal projection of x onto imagepφq. Since no point
other than πφpxq in Brx, εs intersects with imagepφq, the LIP (8) reduces to the following:

$

&

%

minimize
f P RK

cpfq

subject to φpfq “ πφpxq,

which simply is another LIP with parameters πφpxq, φ and ε “ δ “ 0. Since, πφpxq P
imagepφq, πφpxq is pφ, 0, 0q-feasible. Therefore, C0pφ, x, εq “ C0pφ, πφpxq, 0q and F0pφ, x, εq “
F0pφ, πφpxq, 0q. In addition, from the Proposition 31 it follows that the set Λ0pφ, πφpxq, 0q
is non-empty, and in particular, there exists λ1 P imagepφq X Λ0pφ, πφpxq, 0q such that the
following two conditions hold simultaneously.

@

λ1 , πφpxq
D

“
`

C0pφ, πφpxq, 0q
˘1{p

“
`

C0pφ, x, εq
˘1{p and

∥∥λ1∥∥1
φ
“ 1

Using the above facts, we shall first establish that the value pCδpφ, x,εqq1{p is not just an
upper bound but is indeed the supremum in (17).

For every α ě 0 let λpαq :“ λ1`αpx´πφpxqq. Since the linear functional xx´ πφpxq , ¨y
vanishes on imagepφq, for every z P imagepφq we have

xλpαq , zy “
@

λ1 , z
D

` α xx´ πφpxq , zy “
@

λ1 , z
D

, and therefore,

‖λpαq‖1φ “ max
zPS0pφ,1q

xλpαq , zy “ max
zPS0pφ,1q

@

λ1 , z
D

“
∥∥λ1∥∥1

φ
“ 1.
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Thus, λpαq is a feasible point to (17), and the objective function evaluated at λpαq satisfies:

xλpαq , xy ´ ε ‖λpαq‖ “ xλpαq , πφpxqy ` xλpαq , x´ πφpxqy ´ ε ‖λpαq‖

“
@

λ1 , πφpxq
D

` α ‖x´ πφpxq‖2 ´ ε
b

‖λ1‖2 ` α2 ‖x´ πφpxq‖2

“
`

C0pφ, x, εq
˘1{p

` ε
´

αε´

b

‖λ1‖2 ` α2ε2
¯

.

Since λpαq is feasible in (17) for every α ě 0, the supremum in (17) is sandwitched between
sup
αě0

xλpαq , xy ´ ε ‖λpαq‖ and the optimal cost
`

C0pφ, x, εq
˘1{p. However, we see that:

sup
αě0

xλpαq , xy ´ ε ‖λpαq‖ ě lim
αÑ`8

xλpαq , xy ´ ε ‖λpαq‖ “
`

C0pφ, x, εq
˘1{p

.14

This implies that the supremum in (17) is indeed equal to pC0pφ, x, εqq
1{p.

Now that we know the value of the supremum, it suffices to establish that (17) does not
admit an optimal solution in this case. If there were any λ1 that is an optimal solution to
(17), then from the arguments provided in the proof of necessary implication for case 3, it
follows that λ1 P Λ0pφ, x, εq. This contradicts the premise Λ0pφ, x, εq “ H. Therefore, (17)
admits no solution whenever Λ0pφ, x, εq “ H.

Lemma 35 Let the linear map φ : RK ÝÑ Hn, non-negative real numbers ε, δ and x P
HnzBr0, εs be given. For any h P Vc, consider the optimization problem

$

’

’

&

’

’

%

sup
λ

xλ , xy ´ ε ‖λ‖

subject to

#

xλ , xy ´ ε ‖λ‖ ą 0,

xλ , φphqy ` δ ‖λ‖ ď 1.

(50)

(i) The optimal value of (50) is equal to

ηh :“ inf
 

θ ě 0 : Brx, εs XBrφpθhq, θδs ‰ H
(

. (51)

(ii) ηh ě pCδpφ, x,εqq1{p and equality holds (whenever x is pφ, ε, δq-feasible) if and only if
h P 1

pCδpφ,x,εqq1{p
Fδpφ, x,εq.

(iii) ηh “ `8 if and only if there exists a λ1 P Hn that simultaneously satisfies the condi-
tions

• xλ1 , xy ´ ε ‖λ1‖ ą 0
• xλ1 , φphqy ` δ ‖λ1‖ ď 0.

14. For any b ą 0, we see that

lim
αÑ`8

´

α´
?
b` α2

¯

“ lim
αÑ`8

`

α´
?
b` α2

˘ `

α`
?
b` α2

˘

`

α`
?
b` α2

˘ “ lim
αÑ`8

´b

α`
?
α2 ` b

“ 0.
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Proof Let the map Lpη, hq : r0,`8rˆVc ÝÑ r0,`8s be defined by

Lpη, hq :“

$

&

%

sup
λ

´

xλ , xy ´ ε ‖λ‖
¯

´ η
´

xλ , φphqy ` δ ‖λ‖
¯

subject to xλ , xy ´ ε ‖λ‖ ą 0.
(52)

For every η ě 0, let us define the set S1pηq :“
Ť

θPr0,ηs

Brφpθhq, δθs. It is easily verified that

S1pηq is a convex-compact subset of Hn and monotonic, i.e., S1pηq Ă S1pη1q for every η ď η1.

For every h P Vc and θ ě 0, we observe that Brφpθhq, pθδqs “ θ ¨ Brφphq, δs. Since the
sets Brx, εs and Brφphq, δs are compact, the minimization over θ ě 0 in (51) is achieved
whenever it is finite. Therefore, we have Brx, εs XBrφpηhhq, pηhδqs ‰ H. On the one hand,
for 0 ď η ă ηh ď `8, we know that the convex sets Brx, εs and S1pηq do not intersect.
Therefore, there exists a non-zero λ1 P Hn such that the linear functional xλ1 , ¨y separates
them. In other words, we have

min
yPBrx,εs

@

λ1 , y
D

ą max
zPS1pηq

@

λ1 , z
D

.

Observing the following equalities

min
yPBrx,εs

@

λ1 , y
D

“
@

λ1 , x
D

´ ε
∥∥λ1∥∥ , and

max
zPS1pηq

@

λ1 , z
D

“ max
!

0, max
zPBrφpηhq,δηs

@

λ1 , z
D

)

“ max
!

0, η
´

@

λ1 , φphq
D

` δ
∥∥λ1∥∥ ¯),

we get
@

λ1 , x
D

´ ε
∥∥λ1∥∥ ą max

!

0, η
´

@

λ1 , φphq
D

` δ
∥∥λ1∥∥ ¯). (53)

It follows at once that for every α ě 0, λ1α :“ αλ1 is a feasible point in (52), and thus,

Lpη, hq ě sup
αě0

!

` @

λ1α , x
D

´ ε
∥∥λ1α∥∥ ˘´ η` @λ1α , φphqD` δ ∥∥λ1α∥∥ ˘

“

´

` @

λ1 , x
D

´ ε
∥∥λ1∥∥ ˘´ η` @λ1 , φphqD` δ ∥∥λ1∥∥ ˘¯ ´

sup
αě0

α
¯

“ `8.

On the other hand, for ηh ď η ă `8, we know that Brx, εs X S1pηq ‰ H. Therefore, for
every λ P Hn, we have

xλ , xy ´ ε ‖λ‖ “ min
yPBrx,εs

xλ , yy ď max
zPS1pηq

xλ , zy “ max
!

0, η
´

xλ , φphqy ` δ ‖λ‖
¯)

.

Therefore, for every λ satisfying xλ , xy ´ ε ‖λ‖ ą 0, we obtain xλ , φphqy ` δ ‖λ‖ ą 0, and

xλ , xy ´ ε ‖λ‖ ď η
´

xλ , φphqy ` δ ‖λ‖
¯

.
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By taking the supremum over all λ, we obtain Lpη, hq ď 0. However, by picking any λ such
that xλ , xy ´ ε ‖λ‖ ą 0, and defining λα :“ αλ for every α ą 0, we immediately see that
xλα , xy ´ ε ‖λα‖ ą 0 and

0 “ lim
αÑ0

´

xλα , xy ´ ε ‖λα‖
¯

´ η
´

xλα , φphqy ` δ ‖λα‖
¯

.

Therefore, Lpη, hq “ 0. Summarizing, we have:15

Lpη, hq “

#

`8 if 0 ď η ă ηh

0 if ηh ď η ă 8.

Let us consider the Lagrange-dual of (50) (Boyd and Vandenberghe, 2004, Section 5.2),
which is written in the following inf-sup formulation.

$

&

%

inf
η ě 0

sup
λ

xλ , xy ´ ε ‖λ‖ ´ η
´

δ ‖λ‖ ` xλ , φphqy ´ 1
¯

subject to xλ , xy ´ ε ‖λ‖ ą 0.
(54)

Solving for the supremum over λ, the inf-sup problem (54) reduces to inf
ηě0

η ` Lpη, hq. It is

immediate that the optimal value of the inf-sup problem (54) is equal to ηh.

We observe that the optimization problem (50), is a convex program. Moreover, since
‖x‖ ą ε, we see that λ1 :“ αx is a strictly feasible point in (50) for every 0 ă α ă

1
xx , φphqy`δ‖x‖ (and for every α ą 0 if xx , φphqy ` δ ‖x‖ “ 0). Therefore, strong duality
holds for the convex problem (50), and the optimal value of (50) is indeed equal to ηh. This
establishes the assertion (i) of the lemma.

Since Brφphq, δs Ă Sδpφ, 1q for any h P Vc, we see that

Brφpηhq, δηs “ η ¨Brφphq, δs Ă η ¨ Sδpφ, 1q Ă Sδpφ, ηq for every η ą 0. (55)

If ηh “ `8, assertion (ii) of the lemma holds true trivially. If ηh P r0,`8r, the fact
that Brx, εs X Brφpηhhq, pηhδqs ‰ H together with (55) (for η “ ηh) immediately gives us
Brx, εs X Sδpφ, ηhq ‰ H. Thus, in view of Lemma 23, we have ηh ě pCδpφ, x,εqq1{p. Now,
if ηh1 “ cx :“ pCδpφ, x,εqq

1{p for some h1 P Vc, then by considering f 1 “ cxh
1, we first

see that cpf 1q ď Cδpφ, x,εq. Moreover, since Brx, εs X Brφpcxh
1q, pcxδqs ‰ H, we also have

‖x´ φpcxh1q‖ ď ε ` δcx. Thus, cxh1 P Fδpφ, x,εq. Conversely, for every f 1 P Fδpφ, x,εq, we
conclude from (41) that Brx, εs X Brφpf 1q, δcxs ‰ H. Therefore, η

pc´1
x f 1q ď pCδpφ, x,εqq

1{p,
but since ηh ě pCδpφ, x,εqq1{p for every h P Vc, we conclude that η

pc´1
x f 1q “ pCδpφ, x,εqq

1{p.
This establishes assertion (ii) of the lemma.

If there exists a λ1 P Hn such that the conditions xλ1 , xy ´ ε ‖λ1‖ ą 0 and xλ1 , φphqy `
δ ‖λ1‖ ď 0 hold simultaneously. Then for every α ą 0, λα :“ αλ1 is a feasible point in (50).
Therefore, we have

ηh ě sup
αą0

xλα , xy ´ ε ‖λα‖ “ `8.

15. It is to be noted that if ηh “ `8, then Lpη, hq “ `8 for every η P r0,`8r.
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Conversely let ηh “ `8, then we know that the compact-convex setBrx, εs does not intersect
with the closed convex-cone S1 :“

Ť

θPr0,`8r

Brφpθhq, δθs. Since one of the sets involved is

compact, there exists a λ1 P Hn such that the liear functional xλ1 , ¨y separates these sets
strictly. Thus, we have

max
zPS1

@

λ1 , z
D

ă min
yPBrx,εs

@

λ1 , y
D

“
@

λ1 , x
D

´ ε
∥∥λ1∥∥ .

We note that the quantity xλ1 , xy´ε ‖λ1‖ is a minimum of a linear functional over a compact
set, and thus finite. On the contrary, max

zPS1
xλ1 , zy is a maximum of the linear functional

λ1 over the cone S1. Therefore, it can be either 0 or `8. However, since xλ1 , xy ´ ε ‖λ1‖
is an upper bound to this maximum, we have 0 “ max

zPS1
xλ1 , zy. Therefore, we get

xλ1 , xy ´ ε ‖λ1‖ ą 0, and since Brφphq, δs Ă S1 we also have xλ1 , φphqy ` δ ‖λ1‖ ď 0. This
completes the proof.

Lemma 36 Let the linear map φ, real numbers ε, δ ě 0, q Ps0, 1s, r ą 0 and x P HnzBrx, εs
be given. For every h P Vc, let us consider the following optimization problem:

$

&

%

sup
λ

r
´

xλ , xy ´ ε ‖λ‖
¯q
´

´

δ ‖λ‖ ` xλ , φphqy
¯

subject to xλ , xy ´ ε ‖λ‖ ą 0.
(56)

(i) If q Ps0, 1r, the optimal value of (56) is spr, qq η
q

1´q

h , where ηh is as defined in (51)
and spr, qq is some constant .16

(ii) If q “ 1, the optimal value of (56) is finite and equal to 0 if and only if ηh ď 1
r .

Proof We begin by considering the case when ηh ă `8. From the assertion (iii) of Lemma
35, it follows that xλ , φphqy ` δ ‖λ‖ ą 0 for every λ P Hn satisfying xλ , xy ´ ε ‖λ‖ ą 0.
Then, the optimization problem can be equivalently written as

$

’

’

’

&

’

’

’

%

sup
λ, αą0

r
´

xλ , xy ´ ε ‖λ‖
¯q
´ α

subject to

#

xλ , φphqy ` δ ‖λ‖ “ α

xλ , xy ´ ε ‖λ‖ ą 0.

Redefining new variables λ1 :“ 1
αλ, the above optimization problem is written as

$

’

’

’

&

’

’

’

%

sup
λ1, αą0

αqr
´

@

λ1 , x
D

´ ε
∥∥λ1∥∥ ¯q ´ α

subject to

#

xλ1 , φphqy ` δ ‖λ1‖ “ 1

xλ1 , xy ´ ε ‖λ1‖ ą 0.

16. spr, qq :“
´

p1´ qqpqqrq
1

1´q

¯
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By keeping a feasible λ1 fixed, one can explicitly optimize over α ą 0. In fact, for any r1 ą 0
we know that

sup
αą0

`

r1αq ´ α
˘

“ pr1q
1

1´q q
q

1´q p1´ qq.

Substituting r1 “ r
`

xλ1 , xy ´ ε ‖λ1‖
˘q, we see that (56) simplifies to

$

’

’

’

&

’

’

’

%

sup
λ1

spr, qq
´

@

λ1 , x
D

´ ε
∥∥λ1∥∥ ¯ q

1´q

subject to

#

xλ1 , φphqy ` δ ‖λ1‖ “ 1

xλ1 , xy ´ ε ‖λ1‖ ą 0.

Since, ηh ă `8, we know that xλ1 , φphqy ` δ ‖λ1‖ ą 0 for every λ1 satisfying xλ1 , xy ´
ε ‖λ1‖ ą 0. Moreover, if xλ1 , φphqy ` δ ‖λ1‖ ă 1 also holds for λ1, we see that its scaled
version λ2 :“ 1

xλ1 , φphqy`δ‖λ1‖λ
1, satisfies

@

λ2 , x
D

´ ε
∥∥λ2∥∥ ą

@

λ1 , x
D

´ ε
∥∥λ1∥∥ and

@

λ2 , φphq
D

` δ
∥∥λ2∥∥ “ 1.

Therefore, the equality constraint xλ1 , φphqy ` δ ‖λ1‖ “ 1 can be relaxed to an inequal-
ity without changing the value of the supremum. Thus, we obtain the following problem
equivalent to (56).

$

’

’

’

&

’

’

’

%

sup
λ1

spr, qq
´

@

λ1 , x
D

´ ε
∥∥λ1∥∥ ¯ q

1´q

subject to

#

xλ1 , φphqy ` δ ‖λ1‖ ď 1

xλ1 , xy ´ ε ‖λ1‖ ą 0.

Finally, we observe that r0,8rQ p¨q ÞÝÑ p¨q
q

1´q P r0,`8r is an increasing function for every
q Ps0, 1r. Then it follows at once from Lemma 35 that the optimal value of (56) is equal to
spr, qqpηhq

q
1´q .

Finally if q “ 1, employing similar technique as before, reduces the problem (56) to
$

’

’

’

&

’

’

’

%

sup
λ1, αą0

αr
´

@

λ1 , x
D

´ ε
∥∥λ1∥∥ ´

1

r

¯

subject to

#

xλ1 , φphqy ` δ ‖λ1‖ “ 1

xλ1 , xy ´ ε ‖λ1‖ ą 0,

which simplifies to: sup
αą0

αr
`

ηh ´
1
r

˘

. It then follows at once that the optimal value of the

sup problem (56) is finite and equal to 0 if and only if ηh ď 1
r . The proof if now complete.

Proof [Theorem 10] Solving for the supremum over λ for every h P Vc in the min-sup
problem (19), we deduce from Lemma 36 that (19) reduces to

min
h P Vc

spr, qq η
q

1´q

h .
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Since s0,`8rQ η ÞÝÑ η
q

1´q is an increasing function for every q Ps0, 1r, in view of the assertion
(ii) of Lemma 35, we conclude that the minimization over the variable h is achieved at h˚

such that ηh˚ “ pCδpφ, x,εqq1{p. Therefore, the optimal value of the min-sup problem (19)
is equal to spr, qq pCδpφ, x,εqq

q
pp1´qq and the set of minimizers is 1

pCδpφ,x,εqq1{p
Fδpφ, x,εq. This

establishes the assertions (i) and (ii)-(a) of the theorem.

Necessary condition for ph˚, λ˚q to be a saddle point solution.
Suppose that ph˚, λ˚q P Vc ˆ Hn is a saddle point solution to the min-sup problem (19).
Then necessarily, we have

h˚ P argmin
h P Vc

$

&

%

sup
λ

r
´

xλ , xy ´ ε ‖λ‖
¯q
´

´

δ ‖λ‖ ` xλ , φphqy
¯

subject to xλ , xy ´ ε ‖λ‖ ą 0,

which implies that h˚ P 1
pCδpφ,x,εqq1{p

¨ Fδpφ, x,εq. Moreover, we also have

λ˚ P

$

&

%

argmax
λ

min
hPVc

!

r
´

xλ , xy ´ ε ‖λ‖
¯q
´

´

δ ‖λ‖ ` xλ , φphqy
¯

subject to xλ , xy ´ ε ‖λ‖ ą 0.
(57)

The minimization over h can be solved explicitly, and simplifying using (42), we have

λ˚ P

$

&

%

argmax
λ

r
´

xλ , xy ´ ε ‖λ‖
¯q
´ ‖λ‖1φ

subject to xλ , xy ´ ε ‖λ‖ ě 0.

By defining the new variables α :“ ‖λ‖1φ, and λ1 :“ 1
‖λ‖1φ

λ, and writing the above optimization

problem in terms of the variables pλ1, αq, we obtain

´ λ˚

‖λ˚‖1φ
, ‖λ˚‖1φ

¯

P

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

argmax
pλ1, αq

rαq
´

@

λ1 , x
D

´ ε
∥∥λ1∥∥ ¯q ´ α

subject to

$

’

&

’

%

α ą 0,

‖λ1‖1φ “ 1,

xλ1 , xy ´ ε ‖λ1‖ ą 0.

(58)

Observe that for every feasible λ1, the optimization over the variable α can be solved ex-
plicitly. Then from arguments similar to the ones provided in the proof of Lemma 36, we
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conclude that

1

‖λ˚‖1φ
λ˚ P

$

’

’

&

’

’

%

argmax
λ1

max
αą0

!

rαq
´

xλ1 , xy ´ ε ‖λ1‖
¯q
´ α

subject to

#

‖λ1‖1φ “ 1

xλ1 , xy ´ ε ‖λ1‖ ą 0,

“

$

’

’

’

&

’

’

’

%

argmax
λ1

spr, qq
´

@

λ1 , x
D

´ ε
∥∥λ1∥∥ ¯ q

1´q

subject to

#

‖λ1‖1φ “ 1

xλ1 , xy ´ ε ‖λ1‖ ą 0,

“

$

’

’

&

’

’

%

argmax
λ1

@

λ1 , x
D

´ ε
∥∥λ1∥∥

subject to

#

‖λ1‖1φ ď 1

xλ1 , xy ´ ε ‖λ1‖ ą 0,

“ Λδpφ, x, εq.
17

Since every λ P Λδpφ, x, εq satisfies xλ , xy´ ε ‖λ‖ “ Cδpφ, x,εq
1
p , we conclude from (58) that

the following also holds.

‖λ˚‖1φ P argmax
α ą 0

!

rαqCδpφ, x,εq
q
p ´ α

“ prqq
1

1´q
`

Cδpφ, x,εq
˘

q
pp1´qq .

Therefore, λ˚ P prqq
1

1´q
`

Cδpφ, x,εq
˘

q
pp1´qq ¨ Λδpφ, x, εq, and the necessary conditions hold.

Sufficient condition for ph˚, λ˚q to be a saddle point solution.
Since 0 ă prqq

1
1´q

`

Cδpφ, x,εq
˘

q
pp1´qq , multiplying by this positive quantity throughout in (45)

gives us xλ˚ , φph˚qy “ max
hPVc

xλ˚ , φphqy. Then it immediately follows that

h˚ P argmin
hPVc

r
´

xλ˚ , xy ´ ε ‖λ˚‖
¯q
´

´

δ ‖λ˚‖ ` xλ˚ , φphqy
¯

. (59)

From Lemma 35(ii), we note that ηh˚ “ Cδpφ, x,εq
1{p. Therefore, from Lemma 36 we

have

spr, qqCδpφ, x,εq
q

pp1´qq “

$

&

%

sup
λ

r
´

xλ , xy ´ ε ‖λ‖
¯q
´

´

δ ‖λ‖ ` xλ , φph˚qy
¯

subject to xλ , xy ´ ε ‖λ‖ ą 0.

Moreover, from (45) and Definition 6 of the set Λδpφ, x, εq, it is a straightforward exercise
to verify that

spr, qqCδpφ, x,εq
q

pp1´qq “ r
´

xλ˚ , xy ´ ε ‖λ˚‖
¯q
´

´

δ ‖λ˚‖ ` xλ˚ , φph˚qy
¯

.

17. Since ‖x‖ ą ε, we know that the optimal value achieved in (17) is positive. Therefore, adding the
additional constraint

@

λ1 , x
D

´ ε ‖λ1‖ ą 0 neither changes the optimizer nor the optimal value. Then
the last last equality follows from Theorem 7.
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Since it is obvious from the Definition 6 that xλ˚ , xy ´ ε ‖λ˚‖ ą 0, we get at once that

λ˚ P

$

&

%

argmax
λ

r
´

xλ , xy ´ ε ‖λ‖
¯q
´

´

δ ‖λ‖ ` xλ , φph˚qy
¯

subject to xλ , xy ´ ε ‖λ‖ ą 0.
(60)

Collecting (59) and (60), we conclude that ph˚, λ˚q is indeed a saddle point solution to (19).
The proof is now complete.

Proof [Proposition 19] If x is not pφ, ε, δq-feasible, then we know that δ “ 0 and Brx, εsX
imagepφq “ H. Consequently, there exists Hn Q λ

1 K imagepφq such that xλ1 , xy ´ ε ‖λ1‖ ą
0. Therefore, for every α ą 0, λα :“ αλ1 is a feasible point, and by considering arbitrarily
large values of α we see that

`8 “ sup
λ P Hn

!

cpfq `
`

xλ , xy ´ ε ‖λ‖
˘

´ xλ , φpfqy

for every f P RK . Observe that since δ “ 0, the constraint ‖λ‖ ď 1
δ in (24) can be omitted.

Thus, if x is not pφ, ε, δq-feasible, the optimal value of the min-max problem (24) is `8.

For every f P RK define

ηf :“ sup
‖λ‖ ă 1

δ

cpfq
`

1´ δ ‖λ‖
˘

`
`

xλ , xy ´ ε ‖λ‖
˘

´ xλ , φpfqy .

To complete the proof of assertions (1) and (ii) of the proposition, we show that for every x
that is pφ, ε, δq-feasible, we have

Cδpφ, x,εq “ min
f P RK

ηf , and Fδpφ, x,εq “ argmin
f P RK

ηf .

We begin by first showing that the inequality Cδpφ, x,εq ď ηf holds for every f P RK . From
the Cauchy-Schwartz inequality: ‖x´ φpfq‖ “ max

‖λ‖ď1
xλ , x´ φpfqy, we get

ηf “ cpfq ` sup
α P r0, 1

δ
r

α
´

‖x´ φpfq‖ ´ pε` δcpfqq
¯

. (61)

Case 1: If δ “ 0 and ‖x´ φpfq‖ ą ε.
Since δ “ 0, α is unconstrained in the maximization problem of (61), and therefore, ηf “
`8. Since x is pφ, ε, δq-feasible we have Cδpφ, x,εq ă `8, and the inequality Cδpφ, x,εq ď ηf
follows.

Case 2: If δ “ 0 and ‖x´ φpfq‖ ď ε.
It is immediate that

ηf “ cpfq `
`

‖x´ φpfq‖ ´ ε
˘

inf
α P r0, 1

δ
r

α

“ cpfq.
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Recall that the LIP (8) reduces to (9), then the inequality Cδpφ, x,εq ď ηf follows immedi-
ately from the feasibility of f in (9).

Case 3: If δ ą 0.
It is easily verified that ηf “ cpfq ` 1

δ max
 

0, ‖x´ φpfq‖ ´ pε ` δcpfqq
(

. Observe that
cpfq ď ηf follows trivially, and moreover,

‖x´ φpfq‖ “ pε` δcpfqq `
`

‖x´ φpfq‖ ´ pε` δcpfqq
˘

ď pε` δcpfqq `max
 

0, ‖x´ φpfq‖ ´ pε` δcpfqq
(

“ pε` δcpfqq ` δ
`

ηf ´ cpfq
˘

“ ε` δηf .

Therefore, the pair pηf , fq is a feasible point in the LIP (8), and consequently, the inequality
Cδpφ, x,εq ď ηf follows.

Let us consider f˚ P Fδpφ, x,εq, to establish that the inequality Cδpφ, x,εq ď min
f P RK

ηf

is indeed satisfied with the equality, it suffices to show that ηf˚ “ Cδpφ, x,εq. If δ “ 0, then
indeed ηf˚ “ cpf˚q “ Cδpφ, x,εq. If δ ą 0, we know that ηf˚ ě cpf˚q, whereby we have

‖x´ φpf˚q‖ ´ pε` δcpf˚qq ě ‖x´ φpf˚q‖ ´ pε` δηf˚q ě 0.

Using ηf˚ “ cpf˚q ` 1
δ max

 

0, ‖x´ φpf˚q‖ ´ pε` δcpf˚qq
(

and simplifying, we get

ηf˚ “
1

δ

`

‖x´ φpf˚q‖ ´ ε
˘

“ Cδpφ, x,εq, (62)

where the last equality follows from the assertion (i) of Lemma 25. Furthermore, if there
exists f 1 P RK such that ηf 1 “ Cδpφ, x,εq, we know that the pair pηf 1 , f 1q is a feasible point
in the LIP (8) it readily follows that f 1 P Fδpφ, x,εq. This completes the proof of assertions
(i) and (ii) of the proposition.

Necessary condition for the pair pf˚, λ˚q to be a saddle point in (24).
The fact that f˚ P Fδpφ, x,εq follows at once from assertion (ii) of the proposition. To prove
that λ˚ P Λδpφ, x, εq, first we observe that

min
fPRK

cpfq
`

1´ δ ‖λ‖
˘

´ xλ , φpfqy “ min
ηě0, hPVc

η
`

1´ δ ‖λ‖
˘

´ xλ , φpηhqy

“ min
ηě0

η
`

1´ ‖λ‖1φ
˘

(from (42))

“

"

´8 if ‖λ‖1φ ą 1,

0 if ‖λ‖1φ ď 1.

(63)
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Therefore, if pf˚, λ˚q is a saddle point in (24), we have

λ˚ P argmax
‖λ‖ă 1

δ

"

min
fPRK

cpfq
`

1´ δ ‖λ‖
˘

`
`

xλ , xy ´ ε ‖λ‖
˘

´ xλ , φpfqy

P argmax
#

‖λ‖ă 1
δ
,

‖λ‖1φď1

xλ , xy ´ ε ‖λ‖ (from (63))

P argmax
‖λ‖1φď1

xλ , xy ´ ε ‖λ‖ (because, δ ‖λ‖ ď ‖λ‖1φ, from (42))

P Λδpφ, x, εq (from Theorem 7 (iii, b)).

Sufficient condition for the pair pf˚, λ˚q to be a saddle point in (24).
Let λ˚ P Λδpφ, x, εq and f˚ P Fδpφ, x,εq. From Definition 6, we see that ‖λ˚‖1φ “ 1 and
`

1´ δ ‖λ˚‖
˘

ě 0. Therefore, from (63)

0 “ min
fPRK

cpfq
`

1´ δ ‖λ˚‖
˘

´ xλ˚ , φpfqy

ď cpf˚q
`

1´ δ ‖λ˚‖
˘

´ xλ˚ , φpf˚qy

ď Cδpφ, x,εq
`

1´ δ ‖λ˚‖ ´ xλ˚ , φph˚qy
˘

“ 0,

where h˚ :“ 1
Cδpφ,x,εq

f˚, and the last equality follows from (45). Therefore, all the inequalities
are satisfied with equality, and we have 0 “ cpf˚q

`

1´ δ ‖λ˚‖
˘

´ xλ˚ , φpf˚qy. Moreover,
it also immediately implies that

f˚ P argmin
fPRK

cpfq
`

1´ δ ‖λ˚‖
˘

`
`

xλ˚ , xy ´ ε ‖λ˚‖
˘

´ xλ˚ , φpfqy . (64)

From Definition 6 we know that xλ˚ , xy ´ ε ‖λ˚‖ “ Cδpφ, x,εq and from (42) we have
δ ‖λ˚‖ “ 1´max

hPVc
xλ˚ , φphqy ď 1. Moreover, from the fact that 0 “ cpf˚q

`

1´ δ ‖λ˚‖
˘

´

xλ˚ , φpf˚qy we have

´

cpf˚q
`

1´ δ ‖λ˚‖
˘

´ xλ˚ , φpf˚qy
¯

`

´

xλ˚ , xy ´ ε ‖λ˚‖
¯

“ 0` Cδpφ, x,εq.

Recalling from (62) that ηf˚ “ Cδpφ, x,εq, we immediately get

λ˚ P argmax
‖λ‖ ď 1

δ

cpf˚q
`

1´ δ ‖λ‖
˘

`
`

xλ , xy ´ ε ‖λ‖
˘

´ xλ , φpf˚qy . (65)

Collecting (64) and (65), we conclude that pf˚, λ˚q P Fδpφ, x,εq ˆ Λδpφ, x, εq is indeed a
saddle point solution to the min-max problem (24), and the proof is now complete.
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4. Conclusion

In this article, we have proposed a slightly generalised formulation of the error constrained
linear inverse problem and provide an exposition to its underlying convex geometry. Novel
convex-concave min-max problems have been proposed and their equivalence to the LIP is
mathematically established. These equivalent reformulations are crucial in overcoming the
ill-posedness of the error constrained dictionary learning problem. Furthermore, complete
characterization of the saddle points of the min-max problems is also provided in terms of
a solution to the LIP, and vice versa. Consequently, a solution to the LIP can be computed
by applying saddle point seeking methods to its equivalent min-max problems, which gives
rise to simple algorithms to solve linear inverse problems and problems alike. Of course,
the intent of this article is to only show that the min-max forms can also be used to obtain
algorithms for an LIP, comparison of the resulting algorithms with the existing methods
needs a separate and thorough investigation of its own, and will be reported in subsequent
articles.
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