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Abstract

We present a uniform analysis of biased stochastic gradient methods for minimizing convex,
strongly convex, and non-convex composite objectives, and identify settings where bias is
useful in stochastic gradient estimation. The framework we present allows us to extend
proximal support to biased algorithms, including SAG and SARAH, for the first time in the
convex setting. We also use our framework to develop a new algorithm, Stochastic Average
Recursive GradiEnt (SARGE), that achieves the oracle complexity lower-bound for non-
convex, finite-sum objectives and requires strictly fewer calls to a stochastic gradient oracle
per iteration than SVRG and SARAH. We support our theoretical results with numerical
experiments that demonstrate the benefits of certain biased gradient estimators.
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1. Introduction

In this paper, we focus on the following composite minimization problem:

min
x∈Rp

{
F (x)

def
= f(x) + g(x)

}
. (1)

Throughout, we assume:

• g is proper and closed such that its proximity operator (see (3) in Section 2) is well-
defined,

• f admits a finite-sum structure f(x)
def
= 1

n

∑n
i=1 fi(x), and for all i ∈ {1, 2, · · · , n},

∇fi is L-Lipschitz continuous for some L > 0.

We consider three settings: the convex setting, where all of {fi}ni=1 and g are convex; the
strongly convex setting, where additionally g is strongly convex; and the non-convex setting,
where {fi}ni=1 and g are not necessarily convex.
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Problems of this form arise frequently in many areas of science and engineering, such
as machine learning, statistics, operations research, and imaging. For instance, in machine
learning, these problems often arise as empirical risk minimization problems from classifica-
tion and regression tasks. Examples include ridge regression, logistic regression, Lasso, and
`1-regularized logistic regression (Bishop, 2006). Principal component analysis (PCA) can
also be formulated as a problem with this structure, where the functions fi are non-convex
(Garber and Hazan, 2015; Allen-Zhu and Yuan, 2018). In imaging, `1 or total variation
regularization is often combined with differentiable data discrepancy terms that appear in
both convex and non-convex instances (Bredies and Lorenz, 2018).

1.1 Stochastic gradient methods

Two classical approaches to solve (1) are the proximal gradient descent method (PGD)
(Lions and Mercier, 1979) and its accelerated variants, including inertial PGD (Liang et al.,
2017) and FISTA (Beck and Teboulle, 2009). For these deterministic approaches, the full
gradient of f must be evaluated at each iteration, which often requires huge computational
resources when n is large. Such a drawback makes these schemes unsuitable for large-scale
machine learning tasks.

By exploiting the finite sum structure of f , stochastic gradient methods enjoy low per-
iteration complexity while achieving comparable convergence rates. These qualities make
stochastic gradient methods the standard approach to solving many problems in machine
learning, and are gaining popularity in other areas such as image processing (Chambolle
et al., 2018). Stochastic gradient descent (SGD) was first proposed in the 1950’s (Robbins
and Monro, 1951) and has experienced a renaissance in the past decade, with numerous
variants of SGD proposed in the literature (see, for instance (Schmidt et al., 2017; Johnson
and Zhang, 2013; Defazio et al., 2014a) and references therein). Most of these algorithms
can be summarized into one general form, which is described below in Algorithm 1.

Algorithm 1 Stochastic gradient descent framework

Input: starting point x0 ∈ Rp, gradient estimator ∇̃.
1: for k = 0, 1, · · · , T − 1 do
2: Compute the stochastic gradient estimate ∇̃k at the current iterate xk.
3: Choose the step size/learning rate ηk.
4: Update xk+1:

xk+1 ← proxηkg(xk − ηk∇̃k). (2)

5: end for

Below we summarize several popular stochastic gradient estimators ∇̃k:

I SGD Classic stochastic gradient descent (Robbins and Monro, 1951) uses the following
gradient estimator at iteration k:⌊

sample jk uniformly at random from {1, ..., n},

∇̃SGD
k = ∇fjk(xk).
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At each step, SGD uses the gradient of the sampled function ∇fjk(xk) as a stochastic
approximation of the full gradient∇f(xk). It is an unbiased estimate as Ek[∇fjk(xk)] =
∇f(xk). It is also memoryless: every update of xk+1 depends only upon xk and the
random variable jk. The variance of SGD is does not vanish as the algorithm converges.

I SAG To deal with the non-vanishing variance of SGD, in (Roux et al., 2012; Schmidt
et al., 2017) the authors introduce the SAG gradient estimator, which uses the gradient
history to decrease its variance. With ∇fi(ϕi0) = 0, i = 1, ..., n, the SAG gradient
estimator is computed using the following procedure:

sample jk uniformly at random from {1, ..., n},

∇̃SAG
k =

1
n

(∇fjk(xk)−∇fjk(ϕjkk )) +
1
n

∑n

i=1 ∇fi(ϕ
i
k),

update the gradient history:∇fi(ϕik+1) =

{∇fi(xk) if i = jk,

∇fi(ϕik) o.w.

Here, for each i ∈ {1, ..., n}, ∇fi(ϕik) is a stored gradient of ∇fi from a previous
iteration. With the help of memory, the variance of the SAG gradient estimator di-
minishes as the algorithm converges. Estimators that satisfy this property are known
as variance-reduced estimators. In contrast to the SGD estimator, ∇̃SAG

k is a biased
estimate of ∇f(xk).

I SAGA Building on (Roux et al., 2012; Schmidt et al., 2017), Defazio et al. (2014a)
propose the unbiased gradient estimator SAGA, which is computed using the procedure
below. 

Sample jk uniformly at random from {1, ..., n},

∇̃SAGA
k = ∇fjk(xk)−∇fjk(ϕjkk ) + 1

n

∑n

i=1 ∇fi(ϕ
i
k),

update the gradient history : ∇fi(ϕik+1) =

{
∇fi(xk) if i = jk,

∇fi(ϕik) o.w.

Compared to ∇̃SAG, the SAGA estimator gives less weight to stored gradients. With
this adjustment, ∇̃SAGA is unbiased while maintaining the variance reduction property.
Similar gradient estimators can be found in Point-SAGA (Defazio, 2016), Finito (De-
fazio et al., 2014b), MISO (Mairal, 2014), SDCA (Shalev-Shwartz and Zhang, 2013),
and those in (Hofmann et al., 2015).

I SVRG Another popular variance-reduced estimator is SVRG (Johnson and Zhang,
2013). The SVRG gradient estimator is computed as follows:

For s = 0, · · · , S
∇f(ϕs) = 1

n

∑n
i=1∇fi(ϕs),

For k = 1, · · · ,m⌊
Sample jk uniformly at random from {1, · · · , n},

∇̃SVRG
k = ∇fjk(xk)−∇fjk(ϕs) +∇f(ϕs),

where ϕs is a “snapshot” point updated every m steps. The algorithms prox-SVRG
(Xiao and Zhang, 2014), Natasha (Allen-Zhu, 2017), Katyusha (Allen-Zhu, 2018a),
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KatyushaX (Allen-Zhu, 2018b), Natasha2 (Allen-Zhu, 2018c), MiG (Zhou et al., 2018),
ASVRG (Shang et al., 2018), and VARAG (Lan et al., 2019) use the SVRG gradient
estimator.

I SARAH In (Nguyen et al., 2017) the authors propose a recursive modification to
SVRG. 

For s = 0, · · · , S

∇̃SARAH
k−1 = 1

n

∑n
i=1∇fi(ϕs),

For k = 1, · · · ,m⌊
Sample jk uniformly at random from {1, · · · , n},

∇̃SARAH
k = ∇fjk(xk)−∇fjk(xk−1) + ∇̃SARAH

k−1 ,

Like SAG, SARAH is a biased gradient estimator. It is also used in prox-SARAH
(Pham et al., 2019), SPIDER (Fang et al., 2018), SPIDERBoost (Wang et al., 2018)
and SPIDER-M (Wang et al., 2019).

We refer to algorithms employing (un)biased gradient estimators as (un)biased stochastic
algorithms, respectively. The body of work on biased algorithms is stunted compared to
the enormous literature on unbiased algorithms, leading to several gaps in the development
of biased stochastic gradient methods. We list a few below.

• Complex convergence proofs. It is often difficult to analyze biased stochastic
algorithms. The convergence proof of the biased algorithm SAG is especially complex,
requiring computational verification (Roux et al., 2012; Schmidt et al., 2017).

• Sub-optimal convergence rates. In the convex setting with g ≡ 0, SARAH achieves
a complexity bound of O( log(1/ε)

ε ) (Nguyen et al., 2017) for finding a point x̄k such that
E[F (x̄k) − F (x?)] ≤ ε. In comparison, SAGA and SVRG achieve a complexity bound
of O(1/ε) which is the same as deterministic proximal gradient descent.

• Lack of proximal support. Bias also makes it difficult to handle non-smooth func-
tions. To the best of our knowledge, there are no theoretical guarantees for biased
algorithms to solve (1) with g 6≡ 0 that take advantage of convexity when it is present.

Despite the above shortcomings, there are notable exceptions that suggest biased algorithms
are worth further consideration. Recently, (Pham et al., 2019; Fang et al., 2018; Wang et al.,
2018, 2019) proved that algorithms using the SARAH gradient estimator require O(

√
n/ε2)

stochastic gradient evaluations to find an ε-first-order stationary point. This matches the
complexity lower-bound for non-convex, finite-sum optimization for smooth functions fi and
n ≤ O(ε−4) (Fang et al., 2018). For comparison, the best complexity bound obtained for
SAGA and SVRG in this setting is O(n2/3/ε2) (Reddi et al., 2016a; Allen-Zhu and Hazan,
2016), and this performance requires large mini-batches of size O(n2/3).

A detailed summary of existing complexity bounds for the variance-reduced gradient
estimators mentioned above is provided in Tables 1 and 2 for convex and non-convex objec-
tives, respectively. The complexity bound for SAGA (Defazio et al., 2014a), SVRG (Johnson
and Zhang, 2013) and SAG (Schmidt et al., 2017) on convex objectives is O(n+L

ε ), which
can be improved to O((n+κ) log(1/ε)) when strong convexity is present. For smooth objec-

tives (where g ≡ 0), this complexity is O(
√
nL
ε ) for SAGA and SVRG (Reddi et al., 2016a),

while SAG requires g ≡ 0 for any convergence results. Convergence results for SARAH
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Convex Convex and g ≡ 0 Strongly Convex Prox-Support?

SAGA O(n+L
ε ) O(

√
nL
ε )∗ O((n+ κ) log(1/ε)) Yes

SVRG O(n+L
ε ) O(

√
nL
ε )∗ O((n+ κ) log(1/ε)) Yes

SAG None O(n+L
ε ) O((n+ κ) log(1/ε)) No

SARAH None O(n+L log(1/ε)
ε )∗ O((n+ κ) log(1/ε)) No

Table 1: Existing complexity bounds for stochastic gradient estimators for convex objec-
tives. Complexities with a “∗” represent the number of stochastic gradient oracle calls
required to find an ε-approximate stationary point (as in Definition 7). The other com-
plexities are for finding a point satisfying E[F (x̄k) − F (x?)] ≤ ε in the convex case and
E[‖xk − x?‖2] ≤ ε in the strongly convex case. The parameter µ is the strong convexity
constant, and κ = L/µ is the condition number.

on convex objectives also require g ≡ 0, and the proven complexity is worse than similar
results for SAGA, SVRG, and SAG by a logarithmic factor (Nguyen et al., 2017).

There are several accelerated algorithms that achieve better convergence rates than those
in Table 1. SVRG++ achieves a complexity of O(n log(1/ε) + L/ε) on convex objectives
using an epoch-doubling procedure (Allen-Zhu and Yuan, 2018). Katyusha, an accelerated
variant of SVRG, has complexities of O(n log(1/ε) +

√
nL/ε) on convex objectives and

O(n+
√
nκ log(1/ε)) with strong convexity. Combining a variance-reduced algorithm with

the Catalyst acceleration scheme produces algorithms with the same convergence rates up
to logarithmic factors (Lin et al., 2015). These accelerated algorithms are not directly
comparable to the non-accelerated algorithms in this paper, so we leave these rates out
of Table 1. The algorithms considered in this work can be accelerated using momentum
schemes as well, and this is the subject of a related work (Driggs et al., 2020).

On non-convex objectives, SAGA and SVRG achieve complexities of O(nL
ε2

), and this

rate can be improved to O(n
2/3L
ε2

) using large mini-batches of size O(n2/3) (Reddi et al.,
2016b). Although we do not consider mini-batching in this work, using large mini-batch
sizes could similarly improve the presented complexities for B-SAGA and B-SVRG. SAG
has not been previously analyzed in the non-convex setting, so this work presents the first
convergence results for SAG in this setting as a special case of our results for B-SAGA.

SARAH achieves the oracle complexity lower-bound of O(
√
nL
ε2

) (Pham et al., 2019).

Table 3 summarises the convergence rates provided in this work. Our results provide
proximal support to biased algorithms such as SARAH and SAG for the first time, prove
state-of-the-art convergence rates for all algorithms in the non-convex setting, and improve
the best-known convergence rates for SARAH on convex objectives. These strong results
for non-smooth, non-convex problems and biased estimators comes at the cost of recovering
suboptimal convergence rates for SAGA and SVRG on convex problems.

1.2 Contributions

This work provides three main contributions:
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Non-Convex, No Mini-Batching With Mini-Batching Prox-Support?

SAGA O(nL
ε2

) O(n
2/3L
ε2

) Yes

SVRG O(nL
ε2

) O(n
2/3L
ε2

) Yes

SAG None None No

SARAH O(
√
nL
ε2

) O(
√
nL
ε2

) Yes

Table 2: Existing complexity bounds for stochastic gradient estimators for non-convex
optimization. These complexities represent the number of stochastic gradient oracle calls
required to find an ε-approximate stationary point (as in Definition 7). Using mini-batches
of size n2/3 optimizes the complexity of SAGA and SVRG in this setting. While we do
not consider mini-batching in this work, this improvement likely extends to B-SAGA and
B-SVRG as well.

1. We introduce a framework for the systematic analysis of a large class of stochastic
gradient methods and investigate a bias-variance tradeoff arising from our analysis.
Our analysis provides proximal support to biased algorithms for the first time in the
convex setting.

2. We apply our framework to derive convergence rates for SARAH and biased versions
of SAGA and SVRG on convex, strongly convex, and non-convex problems.

3. We design a new recursive gradient estimator, Stochastic Average Recursive GradiEnt
(SARGE), that achieves the same convergence rates as SARAH but never computes
a full gradient, giving it a strictly smaller per-iteration complexity than SARAH.
In particular, we show that SARGE achieves the oracle complexity lower bound for
non-convex finite-sum optimization.

To study the effects of bias on the SAGA and SVRG estimators, we introduce Biased SAGA
(B-SAGA) and Biased SVRG (B-SVRG). For θ > 0, these two gradient estimators read

• B-SAGA: ∇̃B-SAGA
k

def
= 1

θ (∇fjk(xk)−∇fjk(ϕjkk )) + 1
n

∑n

i=1 ∇fi(ϕ
i
k).

• B-SVRG: ∇̃B-SVRG
k

def
= 1

θ (∇fjk(xk)−∇fjk(ϕs)) +∇f(ϕs).

In both B-SAGA and B-SVRG, the bias parameter θ adjusts how much weight is given to
stored gradient information. When θ = n, ∇̃B-SAGA

k recovers the SAG gradient estimator.

Motivated by the desirable properties of SARAH, we propose a new gradient estimator,
Stochastic Average Recursive GradiEnt (SARGE), which is defined below

∇̃SARGE
k

def
= ∇fjk(xk)− ψjkk + 1

n

∑n

i=1 ψ
i
k − (1− 1

n)(∇fjk(xk−1)− ∇̃SARGE
k−1 ),

where the variables ψik follow the update rule ψjkk+1 = ∇fjk(xk)−(1− 1
n)∇fjk(xk−1). Similar

to SAGA, SARGE uses stored gradient information to avoid having to compute the full
gradient, a computational burden that SVRG and SARAH require for variance reduction.

A summary of the complexity results obtained from our analysis for SAG/B-SAGA,
B-SVRG, SARAH, and SARGE are provided in Table 3. Note that the result for SAG is
included in B-SAGA.
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Convex Strongly Convex Non-Convex Prox-Support?

B-SAGA O(nLε ) O(nκ log(1/ε)) O(nL
ε2

) Yes

B-SVRG O(nLε ) O(nκ log(1/ε)) O(nL
ε2

) Yes

SARAH O(
√
nL+

√
Ln3/4

ε ) O(max{
√
nκ, n} log(1/ε)) O(

√
nL
ε2

) Yes

SARGE O(
√
nL+

√
Ln3/4

ε ) O(max{
√
nκ, n} log(1/ε)) O(

√
nL
ε2

) Yes

Table 3: Complexity bounds obtained from our analytical framework. These complexities
represent the number of stochastic gradient oracle calls required to find a point x̄k satisfying
E[F (x̄k) − F (x?)] ≤ ε for the convex case, E[‖xk − x?‖2] ≤ ε for the strongly convex case,
and an ε-approximate stationary point in the non-convex case. While we do not recover
the best-known rates for (unbiased) SAGA and SVRG in the convex setting, our rates for
B-SAGA, B-SVRG, SARAH, and SARGE are the first known for this problem class, and
our rates for SARAH and SARGE are better than the best-known rates for SAGA and
SVRG in the convex setting.

Paper organization Preliminary results and notations are provided in Section 2. A
discussion on the tradeoff between bias and variance in stochastic optimization is included
in Section 3. Our main convergence results are presented in Section 4. In Section 5, we
substantiate our theoretical results using numerical experiments involving several classic
regression tasks arising from machine learning. All the proofs of the main results are
collected in the appendix.

2. Preliminaries and notations

Throughout the paper, Rp is a p-dimensional Euclidean space equipped with scalar inner
product 〈·, ·〉 and associated norm || · ||. The sub-differential of a proper closed convex

function g is the set-valued operator defined by ∂g(x)
def
=
{
v ∈ Rn|g(x′) ≥ g(x) + 〈v, x′ −

x〉, ∀x′ ∈ Rn
}

, the proximity, or proximal map of g is defined as

proxηg(y)
def
= arg minx∈Rn ηg(x) + 1

2 ||x− y||
2, (3)

where η > 0 and y ∈ Rp. Below we summarize some useful results in convex analysis.

Lemma 1 (Nesterov (2004, Thm 2.1.5)) Suppose f is convex with an L-Lipschitz con-
tinuous gradient. We have for every x, u ∈ Rp,

‖∇f(x)−∇f(u)‖2 ≤ 2L(f(x)− f(u)− 〈∇f(u), x− u〉).

When f is a finite sum as in (1), Lemma 1 is equivalent to the following result.

Lemma 2 Let f(x) = 1
n

∑n
i=1 fi(x), where each fi is convex with an L-Lipschitz gradient.

Then for every x, u ∈ Rp,

1
2Ln

∑n
i=1 ‖∇fi(x)−∇fi(u)‖2 ≤ f(x)− f(u)− 〈∇f(u), x− u〉.
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Lemma 2 is obtained by applying Lemma 1 to each fi and averaging.

Lemma 3 Suppose g is µ-strongly convex with µ ≥ 0, and let z = proxηg(x− ηd) for some
x, d ∈ Rp and η > 0. Then, for any y ∈ Rp,

η〈d, z − y〉 ≤ 1
2‖x− y‖

2 − 1+µη
2 ‖z − y‖

2 − 1
2‖z − x‖

2 − ηg(z) + ηg(y).

Proof By the strong convexity of g, we have g(z)−g(y) ≤ 〈ξ, z−y〉− µ
2‖z−y‖

2, ∀ξ ∈ ∂g(z).
From the definition of the proximal operator, we have that 1

η (x− z)−d ∈ ∂g(z). Therefore,

g(z)− g(y) ≤ 〈ξ, z − y〉 − µ
2‖z − y‖

2

= 1
η 〈x− z − ηd, z − y〉 −

µ
2‖z − y‖

2

= −〈d, z − y〉+ 1
η 〈x− z, z − y〉 −

µ
2‖z − y‖

2

= −〈d, z − y〉 − 1
2η ||x− z||

2 − 1
2η ||z − y||

2 + 1
2η ||x− y||

2 − µ
2‖z − y‖

2.

Multiplying by η and rearranging yields the assertion.

The next lemma is an analogue of the descent lemma for gradient descent when the
gradient is replaced with an arbitrary vector d.

Lemma 4 Suppose g is µ-strongly convex for µ ≥ 0, and let z = proxηg(x − ηd). The
following inequality holds for any λ > 0.

0 ≤ η(F (x)− F (z)) + η
2Lλ‖d−∇f(x)‖2 + (ηL(λ+1)

2 − 2+µη
2 )‖z − x‖2.

Proof This follows immediately from Lemma 3.

0 = η〈d, x− z〉+ η〈d, z − x〉
1○
≤ η〈d, x− z〉 − 2+µη

2 ‖z − x‖
2 + η(g(x)− g(z))

= η〈∇f(x), x− z〉+ η〈d−∇f(x), x− z〉 − 2+µη
2 ‖z − x‖

2 + η(g(x)− g(z))

2○
≤ η(F (x)− F (z)) + η〈d−∇f(x), x− z〉+ (ηL2 −

2+µη
2 )‖z − x‖2

3○
≤ η(F (x)− F (z)) + η

2Lλ‖d−∇f(x)‖2 + (ηL(λ+1)
2 − 2+µη

2 )‖z − x‖2.

Inequality 1○ is due to Lemma 3 with y = x, 2○ is due to the Lipschitz continuity of ∇fi,
and 3○ is Young’s.

The previous two lemmas require that g to be convex. Similar results hold in the non-
convex case as well.

Lemma 5 Let z ∈ proxηg(x− ηd) for some x, d ∈ Rp and η > 0. Then, for any y ∈ Rp,

η〈d, z − y〉 ≤ 1
2‖x− y‖

2 − 1
2‖z − x‖

2 − ηg(z) + ηg(y).

8



On Biased Stochastic Gradient Estimation

Proof By the definition of z,

z ∈ arg min
v

{
〈d, v − x〉+

1
2η
‖v − x‖2 + g(v)

}
.

Let v = y, then

g(z)− g(y) ≤ 〈d, y − z〉+
1
2η

(
‖x− y‖2 − ‖x− z‖2

)
.

Multiplying by η completes the proof.

Lemma 6 Let z ∈ proxηg(x− ηd). Then

F (z) ≤ F (y) + 〈∇f(x)− d, z − y〉+ (L2 −
1
2η )‖x− z‖2 + (L2 + 1

2η )‖x− y‖2.

Proof By the Lipschitz continuity of ∇f , we have the inequalities

f(x)− f(y) ≤ 〈∇f(x), x− y〉+ L
2 ‖x− y‖

2,

f(z)− f(x) ≤ 〈∇f(x), z − x〉+ L
2 ‖z − x‖

2.

Furthermore, by Lemma 5, g(z) − g(y) ≤ 〈d, y − z〉 + 1
2η

(
‖x− y‖2 − ‖x− z‖2

)
. Adding

these inequalities together completes the proof.

In the non-convex setting, to measure convergence of the sequence to a first-order sta-
tionary point, we use the notion of a generalized gradient (Nesterov, 2004).

Definition 7 (generalized gradient map) The generalized gradient map is defined as

Gη(xk)
def
= 1

η (xk − proxηkg(xk − η∇f(xk))).

For any η > 0. A point x satisfying Gη(x) = 0 is a first-order stationary point of f + g,
and an ε-first-order stationary point is a point satisfying ‖Gη(x)‖ ≤ ε.

When g ≡ 0, we have Gηk(xk) = ∇f(xk) → 0 if the sequence {xk} converges to some
x? ∈ Rp such that ∇f(x?) = 0. For nontrivial g, suppose infk ηk > 0 and xk converges to
some x? such that x? ∈ proxηg(x

? − η∇f(x?)), then Gηk(xk)→ 0.

3. A bias-variance tradeoff in stochastic gradient methods

In this section, we discuss the effect of bias and variance of a stochastic gradient estimator
on the performance of Algorithm 1. It is elementary that the mean-squared error (MSE)
of a stochastic estimator can be decomposed into the sum of its variance and squared bias.
In our setting, we have

Ek[‖∇̃k −∇f(xk)‖2] = ‖Ek[∇̃k]−∇f(xk)‖2 + Ek[‖∇̃k − Ek[∇̃k]‖2].

This decomposition shows that a biased estimator might have a smaller MSE than an
unbiased estimator as long as the bias sufficiently diminishes the variance. This is the
bias-variance tradeoff. As we see below, a bias-variance tradeoff exists in our analysis of
stochastic gradient methods, but with a slightly different form.

In what follows, we first discuss the bias-variance tradeoff in the convex settings and
then the non-convex setting.

9
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3.1 The convex case

Let x? be a global minimizer of problem (1). From the update (2), let wk+1 ∈ ∂g(xk+1).
We have the following bound on the suboptimality at xk+1:

Ek[F (xk+1)− F (x?)]

= Ek[f(xk+1)− f(xk) + f(xk)− f(x?) + g(xk+1)− g(x?)]

1○
≤ L

2 Ek[‖xk+1 − xk‖2] + Ek[〈∇f(xk), xk+1 − xk〉] + 〈∇f(xk), xk − x?〉+ Ek[g(xk+1)− g(x?)]

= L
2 Ek[‖xk+1 − xk‖2] + Ek[〈∇f(xk)− ∇̃k, xk+1 − xk〉]

+ Ek[〈∇f(xk)− ∇̃k, xk − x?〉] + Ek[〈∇̃k, xk+1 − x?〉] + Ek[g(xk+1)− g(x?)]

2○
≤ ε

2Ek[‖∇f(xk)− ∇̃k‖2] + (L2 + 1
2ε)Ek[‖xk+1 − xk‖2]

+ Ek[〈∇f(xk)− ∇̃k, xk − x?〉] + Ek[〈∇̃k + wk+1, xk+1 − x?〉 − µ
2‖xk+1 − x∗‖2]

3○
≤ ε

2Ek[‖∇f(xk)− ∇̃k‖2] + (L2 + 1
2ε −

1
2η )Ek[‖xk+1 − xk‖2]

+ Ek[〈∇f(xk)− ∇̃k, xk − x?〉]− 1+µη
2η Ek[‖xk+1 − x?‖2] + 1

2η‖xk − x
?‖2.

(4)
Inequality 1○ follows from the convexity of f and Lipschitz continuity of ∇f , 2○ follows
from the (strong) convexity of g, and 3○ comes from the implicit definition of the proximal
operator (3). For the last line of (4), we observe that the inner product term Ek[〈∇f(xk)−
∇̃k, xk − x?〉] vanishes when ∇̃k is an unbiased estimate of ∇f(xk). When the estimator is
biased, we must develop a new way to control this term, together with Ek[||∇f(xk)−∇̃k||2].

Hence, the following terms arise in our convergence analysis from the bias and the
variance of the gradient estimator:

Bias : Ek[〈∇f(xk)− ∇̃k, xk − x?〉] and ‖Ek[∇̃k]−∇f(xk)‖2,

Variance : Ek[‖∇̃k − Ek[∇̃k]‖2].
(5)

An effective gradient estimator minimizes all three of these terms simultaneously. As we
later show in our MSE and bias-term bounds, SARAH and SARGE minimize these terms
more effectively than biased SAGA and SVRG estimators, leading to better convergence
rates. We provide an explicit comparison between SARAH and SVRG in Appendix G.

Remark 8 (Non-composite case g = 0) When g = 0, for gradient descent, the descent
property of f yields

f(xk+1)− f(x?) ≤ (L2 −
1
η )‖xk+1 − xk‖2 + f(xk)− f(x?),

where η ≤ 2/L. For stochastic gradient descent, we obtain the following relationship:

Ek[f(xk+1)− f(x?)]

= Ek[f(xk+1)− f(xk) + f(xk)− f(x?)]

≤ Ek[〈∇f(xk)− ∇̃k, xk+1 − xk〉] + (L2 −
1
η )Ek[‖xk+1 − xk‖2] + f(xk)− f(x?)

≤ ε
2Ek[‖∇f(xk)− ∇̃k‖2] + (L2 + 1

2ε −
1
η )Ek[‖xk+1 − xk‖2] + f(xk)− f(x?).

(6)

10
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Compared to (4), there is no inner product term in (6), which makes the analysis of the
non-composite case much simpler. This is one reason why biased algorithms have been
successfully studied in non-composite setting, but not in the composite setting.

3.2 The non-convex case

The influence of bias is simpler in the non-convex setting and independent of g, which
explains why biased algorithms have recently found success for these problems. To begin,
let x̂k+1 ∈ proxηg/2(xk − η

2∇f(xk)). Applying Lemma 6 with z = x̂k+1, y = x = xk and
d = ∇f(xk), we have

F (x̂k+1) ≤ F (xk) + (L2 −
1
η )‖x̂k+1 − xk‖2.

Again, applying Lemma 6 with z = xk+1, y = x̂k+1, x = xk, and d = ∇̃k, we obtain

F (xk+1) ≤ F (x̂k+1) + 〈∇f(xk)− ∇̃k, xk+1 − x̂k+1〉
+ (L2 −

1
2η )‖xk+1 − xk‖2 + (L2 + 1

2η )‖x̂k+1 − xk‖2

Adding these two inequalities together gives

F (xk+1) ≤ F (xk) + (L− 1
2η )‖x̂k+1 − xk‖2 + (L2 −

1
2η )‖xk+1 − xk‖2

+ 〈∇f(xk)− ∇̃k, xk+1 − x̂k+1〉
1○
≤ F (xk) + (L− 1

2η )‖x̂k+1 − xk‖2 + (L2 −
1
2η )‖xk+1 − xk‖2 + 2η‖∇f(xk)− ∇̃k‖2

+ 1
8η‖x̂k+1 − xk+1‖2

2○
≤ F (xk) + (L− 1

4η )‖x̂k+1 − xk‖2 + (L2 −
1
4η )‖xk+1 − xk‖2 + 2η‖∇f(xk)− ∇̃k‖2.

(7)
Inequality 1○ is Young’s, and 2○ is the standard inequality ‖a− c‖2 ≤ 2‖a− b‖2 + 2‖b− c‖2.
In the non-convex case, the inner-product bias term does not appear, so the bias-variance
tradeoff is the classical one.

3.3 General bounds on bias and variance

To ensure convergence of Algorithm 1 using a particular gradient estimator, we must bound
the inner-product bias term, Ek[〈∇f(xk)−∇̃k, xk−x?〉], and the MSE, Ek[‖∇f(xk)−∇̃k‖2].
Below we introduce general bounds on these terms that allow us to establish convergence
rates for a variety of gradient estimators. The first of these is a bound on the MSE term.

Definition 9 (Bounded MSE) The stochastic gradient estimator ∇̃ is said to satisfy the
BMSE(M1,M2, ρM , ρF ,m) property with parameters M1,M2 ≥ 0, ρM , ρF ∈ (0, 1] and m ≥ 1
if there exist sequences Mk and Fk such that∑m(s+1)−1

k=ms E[‖∇̃k −∇f(xk)‖2] ≤Mms,

and the following bounds hold:

Mms ≤ (1− ρM )mMm(s−1) + Fms + M1
n

∑m(s+1)−1

k=ms

∑n

i=1E[‖∇fi(xk+1)−∇fi(xk)‖2],

Fms ≤
∑s

`=0
M2(1−ρF )m(s−`)

n

∑m(s+1)−1

k=ms

∑n

i=1E[‖∇fi(xk+1)−∇fi(xk)‖2].

11
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The constant m is the epoch length of the gradient estimator, hence it is usually set to
be O(n). This property is useful in convergence analyses because it bounds the MSE by a
geometrically decaying sequence {Mmk}k∈N and a component that is proportional to the
one-iteration progress of gradient descent (1/n

∑n
i=1 ‖∇fi(xk+1)−∇fi(xk)‖2).

Remark 10

• Most variance-reduced stochastic gradient estimators satisfy the BMSE property, in-
cluding SAG, SAGA, SVRG, SARAH, and all the estimators considered by Hofmann
et al. (2015). SGD does not satisfy this property, as its variance does not decay along
the iterations.

• Most existing work on the analysis of general stochastic gradient algorithms enforce
bounds of this form on either the MSE or the moments of the stochastic estimator,
with the crucial difference that existing works require the bounds to be Markovian (that
is, dependent on only the previous iteration) (Bottou et al., 2018). In contrast, the
BMSE property allows non-Markovian MSE bounds through the sequence Fk. This
relaxation is crucial for the analysis of our new gradient estimator, SARGE.

In order to bound the inner-product bias term, we require the gradient estimator to
admit a certain structure in its bias. In biased estimators such as SAG, the bias depends
on the stored gradient values:

∇f(xk)− Ek[∇̃SAG
k ] = (1− 1

n)
(
∇f(xk)− 1

n

∑n
i=1∇fi(ϕik)

)
.

We call estimators whose bias admits the above structure memory-biased gradient estima-
tors. These include SAG, and more generally B-SAGA and B-SVRG.

Definition 11 (Memory-biased gradient estimator) The stochastic gradient estima-
tor ∇̃ is memory-biased with parameters θ > 0, B1 ≥ 0, and m ≥ 1 if

∇f(xk)− Ek[∇̃k] = (1− 1
θ )
(
∇f(xk)− 1

n

∑n

i=1 ∇fi(ϕ
i
k)
)
,

for some {ϕik}ni=1 ⊂ {x`}
k−1
`=0 , and for any s ∈ N0,∑m(s+1)−1

k=ms
1
n

∑n

i=1 E[‖xk − ϕik‖2] ≤ B1

∑m(s+1)−1

k=ms E[‖xk − xk−1‖2]. (8)

B-SAGA is clearly a memory-biased estimator, and so is B-SVRG where ϕik = ϕims for
all k in epoch s. The parameter θ controls the amount of bias in the estimator, and B1,
in a sense, measures how “stale” the stored gradient information is. For memory-biased
gradient estimators, the bias-term can be bounded by terms of the form ‖xk − ϕik‖2.

Lemma 12 Suppose ∇̃ is memory-biased with parameter θ ≥ 1 and that F is µ-strongly
convex with µ ≥ 0. For any λ > 0, the following inequality holds:

ηEk[F (xk+1)− F (x?)] ≤ η
2LλEk[‖∇̃k −∇f(xk)‖2]− 1+µη

2 Ek[‖xk+1 − x?‖2] + 1
2‖xk − x

?‖2

+ (ηL(λ+1)
2 − 1

2 )Ek[‖xk+1 − xk‖2] + ηL
2n (1− 1

θ )
∑n

i=1
‖xk − ϕik‖2.

12
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The proof of Lemma 12 can be found in Appendix A. The bound of Lemma 12 is analogous to
the bound in (4), but the inner-product bias term is replaced with ηL

2n (1− 1
θ )
∑n

i=1 ‖xk−ϕik‖2.
This term is proportional to the progress of gradient descent (by (8)), so this provides the
necessary control over the inner-product bias term.

Remark 13 Lemma 12 requires that θ ≥ 1, so the rates we derive for the convex setting
hold only for θ ≥ 1. However, the convergence rate we prove in Section 4.1.2 for the
non-convex setting, which allow θ ∈ (0, 1), also hold for convex problems. In summary, our
results guarantee convergence for all θ > 0, but they suggest different rates for the parameter
settings θ < 1 and θ ≥ 1.

For estimators such as SARAH, the bias depends on the error in the previous gradient
estimate, rather than previous stochastic gradients:

∇f(xk)− Ek[∇̃SARAH
k ] = ∇f(xk−1)− ∇̃SARAH

k−1 .

We refer to estimators of this type as recursively biased.

Definition 14 (Recursively biased gradient estimator) For any sequence {xk}, let
∇̃k be a stochastic gradient estimator generated from the points {x`}k`=0. This estimator
is recursively biased with parameters ρB ∈ (0, 1] and ν ≥ 1 if

∇f(xk)− Ek[∇̃k] =

{
0 for k ∈ νN0,

(1− ρB)(∇f(xk−1)− ∇̃k−1) o.w.

The parameter ν represents how many steps occur between full gradient evaluations. For
SARGE, ν =∞ because the full gradient is never computed. Recursively biased estimators
admit a bound on the inner-product bias term that involves the estimator’s MSE.

Lemma 15 Suppose ∇̃ is a recursively biased gradient estimator with parameters ν ≥ 1
and ρB ∈ (0, 1]. Then, for any epoch s ∈ N ∪ {0} and ε > 0,∑ν(s+1)−1

k=νs+1
|E〈∇f(xk−1)− ∇̃k−1, xk − x?〉|

≤ min
{
ν, 1

ρB

}∑ν(s+1)−1

k=νs+1
E
[
ε
2‖∇f(xk)− ∇̃k‖2 + 1

2ε‖xk+1 − xk‖2
]
.

The proof of Lemma 15 is in Appendix B. Lemma 15 shows that, for recursively biased
estimators, the inner-product bias term 〈∇f(xk−1)−∇̃k−1, xk−x?〉 is bounded from above
by the MSE, implying that introducing bias to decrease the MSE is a reasonable approach
to design improved gradient estimators.

Remark 16 When ν = ∞, which is true for SARGE, there is only a single epoch, s = 0.
In this case, we adopt the convention ∞ · 0 = 0, so that the sums appearing in Lemma 15
are well-defined.

13
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4. Convergence rates

In this section, we analyze the convergence rates for the stochastic gradient methods. We
first provide very general convergence rates based on the bounds from the last section. Then,
we specify the result to specific gradient estimators including memory-biased B-SAGA/B-
SVRG, and recursively biased SARAH and SARGE.

4.1 General convergence rates

For Algorithm 1, we consider a constant step size ηk ≡ η > 0. Given T iterations of

Algorithm 1, define the average iterate x̄T
def
= 1/T

∑T
k=1 xk.

4.1.1 Convex and strongly convex cases

The following theorem establishes convergence rates for memory-biased estimators in the
convex regime.

Theorem 17 (Memory-biased estimators) Let ∇̃ be a memory-biased gradient esti-
mator parameterized by θ ≥ 1 and B1 ≥ 0, which satisfies the BMSE(M1,M2, ρM , ρF ,m)
property. Let Θ = M1ρF+2M2

ρMρF
and ρ = min{ρM , ρF }.

• In the convex setting, let η = 1
L(1+3

√
2Θ)

, then

E[F (x̄T )−F (x?)] ≤ 1
T

(
L(1+3

√
2Θ)‖x0−x?‖2

2 + max
{
B1(1−1/θ)√

2Θ
− 1, 0

}(
F (x0)− F (x?)

))
.

• When g is additionally µ-strongly convex with µ > 0, let η = min
{

1
3L(1+3

√
2Θ)

,
√

2Θ
B1µ(1−1/θ) ,

ρ
2µ

}
. The iterate xT satisfies

E[‖xT − x?‖2] ≤ (1 + µη)−T
(

2
µ(F (x0)− F (x?)) + ‖x0 − x?‖2

)
.

The proof of Theorem 17 is provided in Appendix A. The next result establishes con-
vergence rates for recursively biased gradient estimators whose proof is in Appendix B.

Theorem 18 (Recursively biased estimators) Let ∇̃ be a recursively biased gradient
estimator parameterized by ρB ∈ (0, 1) and ν ≥ 1, which satisfies the BMSE(M1,M2, ρM , ρF

,m) property. Let B2
def
= min {ν, 1/ρB}, Θ = M1ρF+2M2

ρMρF
and ρ = min{ρM , ρF }.

• In the convex setting, let η = 1

2
√

2ΘL(1+
(1−ρB)B2

1+δ )+L
with δ = max{

√
LΘ1/2(1− ρB)B2−

1, 0}. Then

E[F (x̄T )− F (x?)] ≤ 1
T

(
1
2η‖x0 − x?‖2 + δ(F (x0)− F (x?))

)
.

• When g is additionally µ-strongly convex with µ > 0, let η = min
{

1
3L(4

√
2Θ+1)

,
1

µ(1−ρB)B2
, ρ2µ
}

, then

E[‖xT − x?‖2] ≤ (1 + µη)−T ( 2
µ(F (x0)− F (x?)) + ‖x0 − x?‖2).
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Remark 19

• Both theorems hold true for smaller η; the choices in the theorems are the largest ones
allowed by our analysis.

• For B-SAGA and B-SVRG, Θ = O(n2), while for SARAH and SARGE, Θ = O(n).
This gives these recursive gradient estimators improved convergence rates and suggests
that the bias in these estimators is more effective than the bias in SAGA and SVRG.

4.1.2 Non-convex case

The analysis of biased gradient estimators is simpler for the non-convex setting than the
convex ones due to the absence of the inner-product bias term in (7). Below we provide
a uniform convergence guarantee for all gradient estimators satisfying the BMSE property,
regardless of their bias. This suggests that in the non-convex setting, a large-bias, small-
MSE gradient estimator is favorable over an estimator with small bias and large MSE.

Theorem 20 Let ∇̃ be a gradient estimator that satisfies the BMSE(M1,M2, ρM , ρF ,m)
property, let Θ = M1ρF+2M2

ρMρF
, and let α be a chosen uniformly at random from the set

{0, 1, · · · , T − 1}. If F is non-convex, set η =
√

16Θ+1−1
16LΘ in Algorithm 1, and the point xα

satisfies the following bound on its generalized gradient:

E[‖Gη/2(xα)‖2] ≤ 16(F (x0)−F (x?))
Tη(1−4ηL) .

The proof of this result is provided in Appendix C.

Remark 21 The convergence result of Theorem 20 does not depend on the bias except
through the MSE of the gradient estimator, which implies that incorporating arbitrary amounts
of bias for a smaller MSE improves the convergence rate. This fact is what allows the recur-
sively biased estimators SARAH and SARGE to achieve the oracle complexity lower bound
for non-convex optimization when they are used in Algorithm 1.

4.2 Convergence rates for specific gradient estimators

In this section, we specialize the general convergence rates to analyze the performance of
B-SAGA, B-SVRG, SARAH, and SARGE.

4.2.1 Biased SAGA and SVRG

B-SAGA and B-SVRG are examples of memory-biased gradient estimators, as their biases
take the form

∇f(xk)− Ek[∇̃k] = (1− 1
θ )
(
∇f(xk)− 1

n

∑n

i=1 ∇fi(ϕ
i
k)
)
,

for some previous iterates ϕik. To establish convergence rates for B-SAGA and B-SVRG,
we only need to show these estimators satisfy the BMSE property with suitable constants.

Lemma 22 The B-SAGA gradient estimator is memory-biased with B1 = 2n(2n+ 1), and
it satisfies the BMSE property with parameters ρM = 1

2n , m = 1, M2 = 0, ρF = 1, and

M1 =

{
2n+1
θ2

θ ∈ (0, 2],

(2n+ 1)(1− 1
θ )2 θ > 2.
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The proof of Lemma 22 uses a slight modification of existing variance bounds for the
SAGA estimator, appearing in (Defazio et al., 2014a) for example. We include the proof
in Appendix D. The B-SVRG gradient estimator satisfies the BMSE property with similar
constants.

Lemma 23 The B-SVRG gradient estimator is memory-biased with B1 = 3m(m+ 1), and
it satisfies the BMSE property with parameters ρM = 1, M2 = 0, ρF = 1, and

M1 =

{
3m(m+1)

θ2
θ ∈ (0, 2],

3m(m+ 1)(1− 1
θ )2 θ > 2.

With these constants established, Theorem 17 provides rates of convergence.1

Corollary 24 (Convergence rates for B-SAGA) Algorithm 1 achieves the following
convergence guarantees using the B-SAGA gradient estimator:

• In the convex setting, depending on the choice of θ, set the step size to

η = ηθ
def
=


1

L(1+ 6
θ

√
n(2n+1))

: θ ∈ [1, 2],

1

L(1+6(1− 1
θ

)
√
n(2n+1))

: θ > 2,

and x̄T satisfies E[F (x̄T )− F (x?)] = O(LnT ).

• If additionally g is µ-strongly convex, set η = min
{
ηθ,

1
4µn

}
. Then xT satisfies E[‖xT−

x?‖2] = O((1 + µη)−T ).

• In the non-convex setting, after T iterations, the generalized gradient at xα satisfies

E[‖Gη/2(xα)‖2] =


O
(
Ln
Tθ

)
: η = θ

2L
√
n(2n+1)

, θ ∈ (0, 2],

O
(

Ln
T (1− 1

θ
)

)
: η = 1

2L(1− 1
θ

)
√
n(2n+1)

, θ > 2.

Corollary 25 (Convergence rates for B-SVRG) Algorithm 1 achieves the following
convergence guarantees using the B-SVRG gradient estimator:

• In the convex setting, depending on the choice of θ, set the step size to

η = ηθ =


1

L(1+ 3
θ

√
6m(m+1))

: θ ∈ [1, 2],

1

L(1+3(1− 1
θ

)
√

6m(m+1))
: θ > 2.

After S epochs, the point x̄mS satisfies E[F (x̄mS)− F (x?)] = O(L/S).

• If additionally g is µ-strongly convex, let η = min{ηθ, 1
2µ}. After S epochs, xmS

satisfies E[‖xmS − x?‖2] = O((1 + µη)−mS).

• In the non-convex setting, after S epochs, the generalized gradient at xα satisfies

E[‖Gη/2(xα)‖2] =


O
(
L
Sθ

)
: η =

√
2θ

2L
√

3m(m+1)
, θ ∈ (0, 2],

O
(

L
S(1−1/θ)

)
: η =

√
2θ

2L(1− 1
θ

)
√

3m(m+1)
, θ > 2.
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Remark 26

• Our MSE bounds and convergence rates are optimized when θ = 2. Numerical exper-
iments (including those in Section 5) suggest that setting θ in the range 1 < θ � n
gives the best performance for convex problems, and B-SAGA prefers larger values of
θ than B-SVRG.

• The convergence guarantees for θ ∈ (0, 1) still hold for convex objectives, but in this
setting, the rates we obtain for θ ≥ 1 are superior, suggesting that for convex prob-
lems, θ should be larger than or equal to one for best performance. Our numerical
experiments in Section 5 support this; setting θ < 1 can be beneficial for non-convex
problems, but we do not observe this for convex problems.

• In the special case θ = 1, Corollaries 24 and 25 recover the state-of-the-art rates for
SAGA and SVRG in the non-convex regime. For strongly convex problems, these rates
are worse than existing convergence rates of O((1+min

{µ
L ,

1
n

}
)−T ) proven for SAGA

and SVRG (Defazio et al., 2014a; Xiao and Zhang, 2014). This difference is due to
the generality of Theorem 17, as some memory-biased estimators, including B-SVRG,
exhibit poor performance on strongly convex problems when the bias is large.

• Corollaries 24 and 25 require step sizes that decrease with n, while existing results for
SAG, SAGA, and SVRG allow step sizes that are independent of n. This is also due
to the generality of Theorem 17. In practice, we find B-SAGA converges with step
sizes that are independent of n, but B-SVRG requires step sizes to decrease when the
epoch length is larger.

4.2.2 SARAH and SARGE

The SARAH and SARGE gradient estimators are recursively biased, with

∇f(xk)− Ek[∇̃SARAH
k ] = ∇f(xk−1)− ∇̃SARAH

k−1

and ∇f(xk)− Ek[∇̃SARGE
k ] = (1− 1

n
)(∇f(xk−1)− ∇̃SARGE

k−1 ).

As we shall see, these biased estimators admit smaller MSE bounds than unbiased and
memory-biased estimators, and this is reflected in their improved convergence rates. The
following two lemmas establish the constants appearing in Theorem 18 for these estimators.

Lemma 27 The SARAH gradient estimator is recursively biased with parameters ρB = 0
and ν = m, and it satisfies the BMSE property with M1 = m, ρM = 1, ρF = 1, and M2 = 0.

Lemma 28 The SARGE gradient estimator is recursively biased with parameters ρB = 1/n
and ν = ∞, and it satisfies the BMSE property with M1 = 12, M2 = 39/n, ρM = 1

4n ,
ρF = 1

2n , and m = 1.

Proofs of these results are included in Appendices E and F, respectively. It is enlightening
to compare these BMSE constants to those of B-SVRG and B-SAGA. M1 is a factor of
n smaller for the SARAH and SARGE estimators than for the B-SVRG and B-SAGA
estimators (as long as m = O(n) in SARAH and B-SVRG). This translates to an O(

√
n)

improvement in the convergence rates for SARAH and SARGE when L is O(
√
n) or larger.
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Corollary 29 (Convergence rates for SARAH) When using the SARAH gradient es-
timator in Algorithm 1,

• If F is convex, set η = 1
L(2
√

2m+1)+
√
Lm3/4

. After T iterations, x̄T satisfies E[F (x̄T )−

F (x?)] = O(L
√
m+
√
Lm3/4

T ).

• If F is µ-strongly convex, set η = min{ 1
3L(4

√
2m+1)

, 1
µm}, then E[‖xT −x?‖2] = O((1 +

µη)−T ).

• If F is non-convex, set η = 1
L
√

2m
, then E[‖Gη/2(xα)‖2] ≤ O (L

√
m/T ).

Corollary 30 (Convergence rates for SARGE) When using the SARGE gradient es-
timator in Algorithm 1,

• If F is convex, set η = 1
L(74

√
n+15

√
Ln3/4

+1), then E[F (x̄T )−F (x?)] = O(L
√
n+
√
Ln3/4

T ).

• If F is µ-strongly convex, set η = min{ 1

3L(16
√

3(n+13)+1)
, 1

4µn}, then E[‖xT − x?‖2] =

O((1 + µη)−T ).

• If F is non-convex, set η = 1

4L
√

3(n+13)
, then E[‖Gη/2(xα)‖2] ≤ O (L

√
n/T ).

Remark 31 Our theoretical results suggest the step sizes for SARAH and SARGE should
decrease with n, and such step sizes lead to optimal convergence guarantees for non-convex
problems. However this is not true in practice, as we find that using larger step sizes that
are independent of n leads to better performance. We provide examples in Section 5.

These convergence rates for convex objectives represent a significant improvement over
the performance of SAGA, SVRG, and full-gradient methods. Each of these algorithms
require O(nLε ) stochastic gradient evaluations to find a point satisfying F (xT )−F (x?) ≤ ε,
while SARAH and SARGE require only O(

√
nL
ε ). These rates do not require the epoch-

doubling procedure of (Allen-Zhu and Yuan, 2018), although epoch-doubling can potentially
be used to improve the performance of SARAH just as it improves the performance of SVRG
on non-strongly convex objectives.

This square-root dependence on n is present in the convergence rates for strongly convex
and non-convex objectives as well, which is a significant improvement over the dependence
on n in the convergence rates of B-SAGA and B-SVRG. This better dependence on n is most
significant in the non-convex regime, where these convergence rates imply that the SARAH

and SARGE estimators require only O(L
√
n+
√
Ln3/4

ε2
) stochastic gradient evaluations to find

an ε-approximate stationary point, which is the oracle-complexity lower bound (Fang et al.,
2018). Similar results already exist for algorithms using the SARAH estimator (Fang et al.,
2018; Wang et al., 2019, 2018; Pham et al., 2019). Our results for SARGE show that
achieving this complexity is possible without ever computing the full gradient.

5. Numerical Experiments

In this section, we present numerical experiments testing B-SAGA, B-SVRG, SARAH, and
SARGE for minimizing convex, strongly convex, and non-convex objectives. We include
one set of experiments comparing different values of θ in B-SAGA and B-SVRG with a
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fixed step size and one set comparing SARAH and SARGE to B-SAGA and B-SVRG with
the best values of θ.2

5.1 Convex and strongly convex objectives

Let (hi, li) ∈ Rp × {±1}, i = 1, · · · , n be the training set, where hi ∈ Rp is the feature
vector of each data sample, and li is the binary label. Let β > 0 be a tuning parameter.
The ridge regression problem takes the form

min
x∈Rp

1
n

∑n

i=1 (h>i x− li)2 + β
2 ||x||

2
2.

LASSO is similar, but with the regularizer ||x||1 replacing ||x||22. These problems are of the
form (1), where we set fi = (h>i x− li)2 and g equal to the regularizer. In ridge regression,
g is strongly convex, and in LASSO, g is only convex.

We consider four binary classification data sets: australian, mushrooms, phishing,
and ijcnn1 from LIBSVM3. We rescale the value of the data to [−1, 1], set β = 1/n, and
set the step size to η = 1

5L . To compare performance, we use the objective function value
F (xk)− F (x?) is considered.

Comparison of B-SAGA We first compare the performance of B-SAGA under differ-
ent choices of θ for solving ridge regression and LASSO problems. Four choices of θ are
considered: θ ∈ {1, 10, 100, n}, the results are provided below in Figure 1, from which we
observe that B-SAGA consistently performs better with moderate amounts of bias (that is,
θ ∈ (1, n)). For the considered datasets, overall θ = 10 provides the best performance.

Comparison of B-SVRG We also consider four choices of θ for B-SVRG, which are
θ ∈ {0.5, 0.8, 1, 1.5}. The results are shown below in Figure 2. We observe that B-SVRG
is more sensitive to the choice of θ; only small amounts of bias (that is, θ ∈ [0.8, 1.5]) can
occasionally improve performance.

Comparison of different gradient estimators Finally, we provide comparison of
SAGA, B-SAGA with θ = 10, SVRG, SARAH and SARGE, the results are provided below
in Figure 3 from which we observe that

• SARAH performs similarly to SVRG, but is occasionally slower in early epochs.

• SARGE consistently outperforms all other methods except for B-SAGA with θ = 10.

The above observations indicate that, depending on the data, biased schemes can benefit
from their biased gradient estimates. The free parameter θ reduces the MSE of the B-SAGA
and B-SVRG gradient estimators leading to better performance, and the bias in SARAH
and SARGE has a similar effect.

5.2 Non-convex objectives

To test the effect of bias in the non-convex setting, we consider the non-negative principal
component analysis (NN-PCA) problems, which can be formulated as (Reddi et al., 2016b):

min
x∈Rp

{
F (x)− 1

n

∑n

i=1 (h>i x)2 + ιC(x)
}
,

2. See https://github.com/derekdriggs/StochOpt for MATLAB scripts reproducing these experiments.
3. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 1: First row, performance comparison fitting a LASSO model for different choices
of θ in B-SAGA. Second row, performance comparison fitting a ridge regression model for
different choices of θ in B-SAGA. The step size for each case is set to η = 1

5L .
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Figure 2: First row, performance comparison fitting a ridge regression model for different
choices of θ in B-SVRG. Second row, performance comparison fitting a LASSO model for
different choices of θ in B-SVRG. The step size for each case is set to η = 1

5L .

where C
def
= {x ∈ Rp : ‖x‖ ≤ 1, x ≥ 0} is a convex set and ιC(x) =

{
0 : x ∈ C

+∞ : x /∈ C
is the

indicator function of C. Letting g = ιC , the operator proxηg is the projection onto C, which
can be computed efficiently.
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Figure 3: First row, performance comparison for solving ridge regression among different
algorithms. Second row, performance comparison for solving LASSO regression among
different algorithms. For both examples, step sizes are tuned automatically to minimize the
number of iterations required to reach a suboptimality of 10−15.

As the problem is non-convex, we cannot measure convergence with respect to the global
optimum x?, so we use many iterations of proximal gradient descent with a small step size
(η = 1

10Ln) to find a reference point x?. Every test is initialized using a random vector with
normally distributed i.i.d. entries, and the same starting point is used for testing each value
of θ. We found that small step sizes generally lead to stationary points with smaller objective
values, so we set η = 1

5n for all our experiments. We report F (xk) − F (x?) averaged over
every n iterations. These experiments show that the performance of B-SAGA and B-SVRG
varies significantly with θ, with smaller values leading to better performance. SARAH and
SARGE perform similarly to SAGA and SVRG in these experiments, see Figure 4.

For the comparison of all algorithms, B-SAGA and B-SVRG provides the best perfor-
mance with B-SVRG being slightly faster.

6. Conclusion

The complicated convergence proofs of biased stochastic gradient methods have restricted
researchers to studying unbiased estimators almost exclusively. Our simple framework for
proving convergence rates for biased algorithms overcomes this limitation. Our analysis
allows for the study of biased algorithms with proximal support for minimizing convex,
strongly convex, and non-convex objectives for the first time.

We also show that biased gradient estimators can offer improvements over unbiased
estimators in theory and in practice. Most notably, we find that biased recursive gradient
estimators, such as SARAH and SARGE, admit smaller bounds on their MSEs and faster
convergence rates than SAGA and SVRG.
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Figure 4: First row, performance comparison for solving NN-PCA with different choices
of θ in B-SAGA. Second row, performance comparison for solving NN-PCA with different
choices of θ in B-SVRG. The step size for each case is set to η = 1

5Ln . The point x? is found
by solving the problem using proximal gradient descent.
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Figure 5: Performance comparison for solving NN-PCA among different algorithms. All
step sizes are set to 1

5Ln . Objective values are averaged over each epoch (n steps).
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Appendix

The organization of the appendix is as follows: we prove Theorems 17 and 18 in Ap-
pendices A and B, respectively, and we prove Theorem 20 in Appendix C. We provide
convergence rates for B-SAGA and B-SVRG as special cases of Theorem 17 in Appendix D,
and we provide convergence rates for SARAH and SARGE as special cases of Theorem 18
in Appendices E and F, respectively.

Appendix A. Proof of Theorem 17

To prove Theorem 17, we begin by showing that the BMSE property (Definition 9) implies
the MSE of the gradient estimator over T iterations is proportional to

∑T−1
k=0 E‖xk+1−xk‖2.

Lemma 32 (MSE bound) Suppose that the stochastic gradient estimator ∇̃ satisfies the
BMSE(M1,M2, ρM , ρF ,m) property, let ρ = min{ρM , ρF }, and let σs be any sequence sat-
isfying σs(1− ρ)ms ≤ σs−1(1− ρ

2)ms. For convenience, define Θ = M1ρF+2M2

ρMρF
. The MSE of

the gradient estimator is bounded as∑S

s=0
σs
∑m(s+1)−1

k=ms
E[‖∇f(xk)− ∇̃k‖2] ≤ 2ΘL2

∑S

s=0
σs
∑m(s+1)−1

k=ms
E[‖xk+1 − xk‖2].

Proof First, we derive a bound on the sequence Fms arising in the BMSE property.
Summing this sequence from s = 0 to s = S,∑S

s=0
σsFms ≤

∑S

s=0

∑s

`=0
M2σs(1−ρF )m(s−`)

n

∑m(s+1)−1

k=ms

∑n

i=1
E[‖∇fi(xk+1)−∇fi(xk)‖2]

1○
≤
∑S

s=0

∑s

`=0

M2σ`(1−
ρF
2 )m(s−`)

n

∑m(s+1)−1

k=ms

∑n

i=1
E[‖∇fi(xk+1)−∇fi(xk)‖2]

≤
∑S

s=0

(∑∞
`=0

(1− ρF
2 )`

)
M2σs
n

∑m(s+1)−1

k=ms

∑n

i=1
E[‖∇fi(xk+1)−∇fi(xk)‖2]

=
∑S

s=0
2M2σs
nρF

∑m(s+1)−1

k=ms

∑n

i=1
E[‖∇fi(xk+1)−∇fi(xk)‖2].

(9)

Inequality 1○ uses the fact that σs(1− ρF )ms ≤ σs−1(1− ρF
2 )ms. With this bound on Fms,

we proceed to bound Mms similarly.∑S

s=0
σsMms

1○
≤
∑S

s=0
σs

(
Fms + M1

n

∑m(s+1)−1

k=ms

∑n

i=1
E[‖∇fi(xk+1)−∇fi(xk)‖2]

)
+ (1− ρM )m

∑S

s=1
σsMm(s−1)

2○
≤
∑S

s=0
σs

(
M1ρF+2M2

nρF

∑m(s+1)−1

k=ms

∑n

i=1
E[‖∇fi(xk+1)−∇fi(xk)‖2]

)
+ (1− ρM

2 )m
∑S

s=1
σs−1Mm(s−1)

=
∑S

s=0
σs

(
M1ρF+2M2

nρF

∑m(s+1)−1

k=ms

∑n

i=1
E[‖∇fi(xk+1)−∇fi(xk)‖2]

)
+ (1− ρM

2 )m
∑S

s=1
σs−1

(
M1ρF+2M2

nρF

∑ms−1

k=m(s−1)

∑n

i=1
E[‖∇fi(xk+1)−∇fi(xk)‖2]

)
+ · · ·

≤
(∑∞

`=0
(1− ρM

2 )m`
)∑S

s=0
σs

(
M1ρF+2M2

nρF

∑m(s+1)−1

k=ms

∑n

i=1
E[‖∇fi(xk+1)−∇fi(xk)‖2]

)
3○
≤
∑S

s=0
2σsΘ
n

∑m(s+1)−1

k=ms

∑n

i=1
E[‖∇fi(xk+1)−∇fi(xk)‖2]

4○
≤ 2ΘL2

∑S

s=0
σs
∑m(s+1)−1

k=ms
E[‖xk+1 − xk‖2].

23



Driggs, Liang, Schönlieb

Inequality 1○ uses the fact that Mm ≤ (1 − ρM )mMm(s−1). Inequality 2○ uses σs(1 −
ρM )ms ≤ σs−1(1 − ρM

2 )ms, 3○ uses the same estimate we applied in (9), and 4○ uses the
Lipschitz continuity of ∇fi.

Proof of Lemma 12 By assumption, 1− 1
θ ≥ 0, so we can apply convexity to obtain

η
θ (f(xk)− f(x?)) + η

n (1− 1
θ )
(∑n

i=1
fi(ϕ

i
k)− fi(x?)

)
≤ η

θ 〈∇f(xk), xk − x?〉+ η
n (1− 1

θ )
∑n

i=1
〈∇fi(ϕik), ϕik − x?〉

= η
θ 〈∇f(xk), xk − x?〉+ η

n (1− 1
θ )
∑n

i=1
〈∇fi(ϕik), xk − x?〉+ η

n (1− 1
θ )
∑n

i=1
〈∇fi(ϕik), ϕik − xk〉.

Because ∇̃k is memory-biased, hence 1
θ∇f(xk)+

1
n(1−1

θ )
∑n

i=1∇fi(ϕ
i
k) = Ek[∇̃k]. Therefore,

η
θ 〈∇f(xk), xk − x?〉+ η

n (1− 1
θ )
∑n

i=1
〈∇fi(ϕik), xk − x?〉

= Ek
[
η〈∇̃k, xk − x?〉

]
= Ek[η〈∇̃k, xk − xk+1〉+ η〈∇̃k, xk+1 − x?〉]

≤ Ek
[
η〈∇̃k, xk − xk+1〉 − 1

2‖xk+1 − xk‖2 + 1
2‖xk − x

?‖2 − 1+µη
2 ‖xk+1 − x?‖2 − ηg(xk+1) + ηg(x?)

]
.

The inequality is due to Lemma 3 with z = xk+1, x = xk, d = ∇̃k, and y = x?. Combining
these two inequalities, we have shown

η
θ (f(xk)− f(x?)) + η

n (1− 1
θ )
∑n

i=1

(
fi(ϕ

i
k)− fi(x?)

)
≤ Ek

[
η〈∇̃k, xk − xk+1〉 − 1

2‖xk+1 − xk‖2 − ηg(xk+1) + ηg(x?)

+ 1
2‖xk − x

?‖2 − 1+µη
2 ‖xk+1 − x?‖2 + η

n (1− 1
θ )
∑n

i=1
〈∇fi(ϕik), ϕik − xk〉

]
.

(10)

We bound the first three terms on the right further.

η〈∇̃k, xk − xk+1〉 − 1
2‖xk+1 − xk‖2 − ηg(xk+1)

= η(〈∇f(xk), xk − xk+1〉 − g(xk+1)) + η〈∇̃k −∇f(xk), xk − xk+1〉 − 1
2‖xk+1 − xk‖2

1○
≤ η(f(xk)− F (xk+1)) + η〈∇̃k −∇f(xk), xk − xk+1〉+ (ηL2 −

1
2 )‖xk+1 − xk‖2

2○
≤ η(f(xk)− F (xk+1)) + η

2Lλ‖∇̃k −∇f(xk)‖2 + (ηL(λ+1)
2 − 1

2 )‖xk+1 − xk‖2.

Inequality 1○ is due to the Lipschitz continuity of ∇f , and inequality 2○ is Young’s. Com-
bining this bound with (10) and rearranging terms, we have shown that

0 ≤ −ηEk[F (xk+1)− F (x?)] + η
2LλEk[‖∇̃k −∇f(xk)‖2]

− 1+µη
2 Ek[‖xk+1 − x?‖2] + 1

2‖xk − x
?‖2 + (ηL(λ+1)

2 − 1
2 )Ek[‖xk+1 − xk‖2]

+ η(1− 1
θ )
(
f(xk)− 1

n

∑n

i=1
fi(ϕ

i
k) + 1

n

∑n

i=1
〈∇fi(ϕik), ϕik − xk〉

)
.

We use Lemma 1 to bound the final term, yielding the desired inequality.

Proof of Theorem 17 (Convex Case) We begin with the inequality of Lemma 12 with
µ = 0. Multiplying the inequality of Lemma 4 with z = xk+1, x = xk, and d = ∇̃k by a
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non-negative constant δ and adding it to the inequality of Lemma 12, we obtain

ηEk[F (xk+1)− F (x?) + δ(F (xk+1)− F (xk))]

≤ η(1+δ)
2Lλ Ek[‖∇̃k −∇f(xk)‖2]− 1

2Ek[‖xk+1 − x?‖2] + 1
2‖xk − x

?‖2

+ (ηL(1+δ)(λ+1)
2 − 1+2δ

2 )Ek[‖xk+1 − xk‖2] + ηL
2n (1− 1

θ )
∑n

i=1
‖xk − ϕik‖2.

(11)

Applying the full expectation operator and summing from k = 0 to k = T − 1, we have∑T−1

k=0
ηE[F (xk+1)− F (x?)] + ηδ(E[F (xT )]− F (x0))

≤ − 1
2E[‖xT − x?‖2] + 1

2‖x0 − x?‖2 +
∑T−1

k=0
E
[η(1+δ)

2Lλ ‖∇̃k −∇f(xk)‖2

+ (ηL(1+δ)(λ+1)
2 − 1+2δ

2 )‖xk+1 − xk‖2 + ηL
2n (1− 1

θ )
∑n

i=1
‖xk − ϕik‖2

]
.

We use Lemma 32 with σs = 1 to bound the MSE, and we use the fact that the gradient
estimator is memory-biased to bound the term 1/n

∑n
i=1 ‖xk − ϕik‖2. This leaves

η
∑T−1

k=0
E[F (xk+1)− F (x?)]

≤ − 1
2E[‖xT − x?‖2] + 1

2‖x0 − x?‖2 + ηδ(F (x0)− E[F (xT )])

+ (ηL(1+δ)(λ+1)
2 + ΘηL(1+δ)

λ + B1ηL
2 (1− 1

θ )− 1+2δ
2 )
∑T−1

k=0
E[‖xk+1 − xk‖2].

(12)

Setting λ =
√

2Θ minimizes the coefficient of the term on the final line. With

η ≤ 1

L(1+2
√

2Θ+
B1(1−1/θ)

1+δ )
,

the final term in (12) is non-positive, so we can drop it from the inequality along with the
term −1/2E‖xT − x?‖2. Using the fact that −F (xT ) ≤ −F (x?), this leaves∑T−1

k=0 E[F (xk+1)− F (x?)] ≤ 1
2η‖x0 − x?‖2 + δ(F (x0)− F (x?)).

We use the convexity of F to rewrite this inequality as a bound on the suboptimality of the
average iterate

E[F (x̄T )−F (x?)] ≤ 1
T

∑T−1

k=0 E[F (xk+1)−F (x?)] ≤ 1
2ηT
‖x0 − x?‖2 + δ

T (F (x0)−F (x?)).

Setting δ = max{B1(1 − 1/θ)/
√

2Θ − 1, 0} approximately minimizes the right side of this
inequality, completing the proof.

Proof of Theorem 17 (Strongly Convex Case) As in the proof of the convex case, we
begin with the inequality of Lemma 12, multiply the inequality of Lemma 4 with z = xk+1,
x = xk, and d = ∇̃k by a non-negative constant δ, and add the two inequalities.

ηEk[F (xk+1)− F (x?) + δ(F (xk+1)− F (xk))]

≤ − 1+µη
2 Ek[‖xk+1 − x?‖2] + 1

2‖xk − x
?‖2 + Ek

[
η(1+δ)

2Lλ ‖∇̃k −∇f(xk)‖2

+ (ηL(1+δ)(λ+1)
2 − 1+δ(2+µη)

2 )‖xk+1 − xk‖2 + ηL
2n (1− 1

θ )
∑n

i=1
‖xk − ϕik‖2

]
.
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Applying the full expectation operator, multiplying by (1 + µη)k, and summing over the
epoch k = ms to k = m(s+ 1)− 1 for some s ∈ N0, we have

η
∑m(s+1)−1

k=ms
(1 + µη)kE[F (xk+1)− F (x?) + δ(F (xk+1)− F (xk))]

≤ − (1+µη)m(s+1)

2 E‖xm(s+1) − x?‖2 + (1+µη)ms

2 E‖xms − x?‖2

+
∑m(s+1)−1

k=ms
(1 + µη)kE

[
η(1+δ)

2Lλ ‖∇̃k −∇f(xk)‖2 + (ηL(1+δ)(λ+1)
2 − 1+δ(2+µη)

2 )‖xk+1 − xk‖2

+ ηL
2n (1− 1

θ )
∑n

i=1
‖xk − ϕik‖2

]
.

Using the fact that η ≤ 1
µm ,

(1 +µη)k ≤ (1 +µη)m(s+1) ≤ (1 +µη)ms lim
m→∞

(1 + 1
m)m = e(1 +µη)ms ≤ 3(1 +µη)ms, (13)

where e is Euler’s number. Therefore,

η
∑m(s+1)−1

k=ms
(1 + µη)kE[F (xk+1)− F (x?) + δ(F (xk+1)− F (xk))]

≤ − (1+µη)m(s+1)

2 E[‖xm(s+1) − x?‖2] + (1+µη)ms

2 ‖xms − x?‖2

+ (1 + µη)ms
∑m(s+1)−1

k=ms
E
[
( 3ηL(1+δ)(λ+1)

2 − 1+δ(2+µη)
2 )‖xk+1 − xk‖2

+ 3η(1+δ)
2Lλ ‖∇̃k −∇f(xk)‖2 + 3ηL

2n (1− 1
θ )
∑n

i=1
‖xk − ϕik‖2

]
.

(14)

Summing the inequality from epoch s = 0 to s = S − 1,

η
∑mS−1

k=0
(1 + µη)kE[F (xk+1)− F (x?) + δ(F (xk+1)− F (xk))]

≤
S−1∑
s=0

(1 + µη)ms
m(s+1)−1∑
k=ms

E
[

3η(1+δ)
2Lλ ‖∇̃k −∇f(xk)‖2 + ( 3ηL(1+δ)(λ+1)

2 − 1+δ(2+µη)
2 )‖xk+1 − xk‖2

+ 3ηL(1+δ)
2n (1− 1

θ )
∑n

i=1
‖xk − ϕik‖2

]
− (1+µη)mS

2 E‖xms − x?‖2 + 1
2‖x0 − x?‖2.

We use Lemma 32 with σs = (1 + µη)ms to bound the MSE. Recall ρ = min{ρM , ρF } and
η ≤ ρ

2µ . This choice for σs satisfies the conditions of Lemma 32 because (1+µη)ms(1−ρ)ms ≤
(1 + µη)m(s−1)(1 − ρ/2)ms. We use the fact that the gradient estimator is memory-biased
to bound the term 1/n

∑n
i=1 ‖xk − ϕik‖2. This leaves

η
∑mS−1

k=0
(1 + µη)kE[F (xk+1)− F (x?) + δ(F (xk+1)− F (xk))]

≤ − (1+µη)mS

2 E[‖xmS − x?‖2] + 1
2‖x0 − x?‖2 + C

∑S−1

s=0
(1 + µη)ms

∑m(s+1)−1

k=ms
E[‖xk+1 − xk‖2],

(15)

where C = 3ηL(1+δ)(λ+1)
2 + 3ΘηL(1+δ)

λ + 3B1ηL
2 (1− 1

θ )− 1+δ(2+µη)
2 . We must choose η, λ,

and δ so that C ≤ 0. Setting λ =
√

2Θ minimizes C over λ. Using the approximation
δ(2 + µη) ≥ δ, we see that C is non-positive if

η ≤ 1

3L(1+2
√

2Θ+
B1(1−1/θ)

1+δ
)
.

Setting δ = max{B1(1− 1/θ)/
√

2Θ− 1, 0}, we are guaranteed that

1
3L(1+3

√
2Θ)
≤ 1

3L(1+2
√

2Θ+
B1(1−1/θ)

1+δ
)
,
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so the step size in the theorem statement ensures C ≤ 0, and the final term in (15) is
non-positive. Dropping this non-positive term from the inequality, we have

η(1 + δ)
∑mS−1

k=0
(1 + µη)kE[F (xk+1)− F (x?)] + δη

∑mS−1

k=0
(1 + µη)kE[F (xk)− F (x?)]

≤ − (1+µη)mS

2 E[‖xmS − x?‖2] + 1
2‖x0 − x?‖2.

(16)

We would like to show that 1 + δ ≥ (1 + µη)δ so that the terms on the first line telescope.

We use the fact that η ≤
√

2Θ
B1µ(1−1/θ) to say

1
µη
≥ B1(1−1/θ)√

2Θ
≥ δ

Hence 1+δ
δ ≥ 1 + µη and inequality (16) simplifies to

(1 + µη)mSE[ηδ(F (xmS)− F (x?)) + 1
2‖xmS − x

?‖2] ≤ ηδ(F (x0)− F (x?)) + 1
2‖x0 − x?‖2,

which implies the result.

Appendix B. Proof of Theorem 18

The following two lemmas establish an analogue of Lemma 12 for recursively biased esti-
mators.

Lemma 33 Suppose ∇̃ is recursively biased with parameters ρB and ν. Suppose g is µ-
strongly convex with µ ≥ 0, and let λ > 0 be a constant whose value we determine later.
The following inequality holds:

0 ≤ −ηEk[F (xk+1)− F (x?)] + η
2LλEk[‖∇̃k −∇f(xk)‖2]

− 1+µη
2 Ek[‖xk+1 − x?‖2] + 1

2‖xk − x
?‖2

+ (ηL(λ+1)
2 − 1

2 )Ek[‖xk+1 − xk‖2] + η(1− ρB)〈∇f(xk−1)− ∇̃k−1, xk − x?〉.

Proof Applying the convexity of f yields

η(f(xk)− f(x?))

≤ η〈∇f(xk), xk − x?〉

= η〈∇f(xk)− (1− ρB)(∇f(xk−1)− ∇̃k−1), xk − x?〉+ η(1− ρB)〈∇f(xk−1)− ∇̃k−1, xk − x?〉.

Because the estimator is recursively biased,

Ek[∇̃k] = ∇f(xk)− (1− ρB)(∇f(xk−1)− ∇̃k−1).

Therefore,

η〈∇f(xk)− (1− ρB)(∇f(xk−1)− ∇̃k−1), xk − x?〉

= Ek[η〈∇̃k, xk − x?〉]

= Ek[η〈∇̃k, xk − xk+1〉+ η〈∇̃k, xk+1 − x?〉]

≤ Ek[η〈∇̃k, xk − xk+1〉 − 1
2‖xk+1 − xk‖2 + 1

2‖xk − x
?‖2 − 1

2‖xk+1 − x?‖2 + ηg(xk+1)− ηg(x?)],
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The inequality is due to Lemma 3. The rest of the proof follows the proof of Lemma 12.

Proof of Lemma 15

We begin with a technical lemma.

Lemma 34 Let {E`}∞`=0 be a sequence of non-negative real numbers. For any ρ ∈ (0, 1]
and c ≥ 1, the following inequality holds:∑c(s+1)−1

k=cs+2

∑k−1
`=cs+1 (1− ρ)k−`−1E` ≤ min {c, 1/ρ}

∑c(s+1)−1
k=cs+1 Ek.

Proof This inequality can be seen by expanding the sums.∑c(s+1)−1

k=cs+2

∑k−1

`=cs+1
(1− ρ)k−`−1E`

= [Ecs+1] + [(1− ρ)Ecs+1 + Ecs+2] +
[
(1− ρ)2Ecs+1 + (1− ρ)Ecs+2 + Ecs+3

]
+ · · ·

+
[
(1− ρ)c−2Ecs+1 + · · ·+ Ec(s+1)−2

]
=
(
1 + (1− ρ) + · · ·+ (1− ρ)c−2

)
Ecs+1 +

(
1 + (1− ρ) + · · ·+ (1− ρ)c−3

)
Ecs+2 + · · · .

The coefficient of each term of the sequence E` is less than c− 2. Therefore, replacing each
coefficient with c, we obtain the bound∑c(s+1)−1

k=cs+2

∑k−1
`=cs+1 (1− ρ)k−`−1E` ≤ c

∑c(s+1)−1
k=cs+1 Ek.

This proves the first bound. For the second bound, notice that each coefficient is less than∑∞
k=0(1− ρ)k = 1/ρ, proving the second bound.

First, we use the fact that ∇̃k is recursively biased.

E〈∇f(xk−1)− ∇̃k−1, xk − x?〉
1○
= E[〈∇f(xk−1)− ∇̃k−1, xk − xk−1〉+ 〈∇f(xk−1)− Ek−1∇̃k−1, xk−1 − x?〉]
2○
≤ E

[
ε
2‖∇f(xk−1)− ∇̃k−1‖2 + 1

2ε‖xk − xk−1‖2 + 〈∇f(xk−1)− Ek−1∇̃k−1, xk−1 − x?〉
]

3○
= E

[
ε
2‖∇f(xk−1)− ∇̃k−1‖2 + 1

2ε‖xk − xk−1‖2 + (1− ρB)〈∇f(xk−2)− ∇̃k−2, xk−1 − x?〉
]
.

We can pass the conditional expectation Ek−1 into the second inner-product in 1○ because
xk−1 is independent of jk−1. Inequality 2○ is Young’s, and 3○ uses the definition of a
recursively biased gradient estimator.

This is a recursive inequality, and expanding the recursion gives

E〈∇f(xk−1)− ∇̃k−1, xk − x?〉 ≤
∑k−1

`=νs+1
(1− ρB)k−`−1E

[
ε
2‖∇f(x`)− ∇̃`‖2 + 1

2ε‖x`+1 − x`‖2

+ (1− ρB)〈∇f(xνs)− ∇̃νs, xνs+1 − x?〉
]

1○
=
∑k−1

`=νs+1
(1− ρB)k−`−1E

[
ε
2‖∇f(x`)− ∇̃`‖2 + 1

2ε‖x`+1 − x`‖2
]
.
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Equality 1○ is due to the fact that ∇̃νs = ∇f(xνs). Taking the absolute value and summing
this from k = νs+ 1 to k = ν(s+ 1)− 1,∑ν(s+1)−1

k=νs+1
|E〈∇f(xk−1)− ∇̃k−1, xk − x?〉|

≤
∑ν(s+1)−1

k=νs+2

∑k−1

`=νs+1
(1− ρB)k−`−1E

[
ε
2‖∇f(x`)− ∇̃`‖2 + 1

2ε‖x`+1 − x`‖2
]

2○
≤ min

{
ν,

1
ρB

}∑ν(s+1)−1

k=νs+1
E
[
ε
2‖∇f(xk)− ∇̃k‖2 + 1

2ε‖xk+1 − xk‖2
]
.

Inequality 2○ follows from the technical Lemma 34. Summing this inequality from s = 0 to
s = S completes the proof.

Proof of Theorem 18 (Convex Case) To begin, we sum the inequality of Lemma 33
and the inequality of Lemma 4 scaled by δ > 0 with z = xk+1, x = xk, and d = ∇̃k.

ηEk[F (xk+1)− F (x?) + δ(F (xk+1)− F (xk))]

≤ − 1
2Ek[‖xk+1 − x?‖2] + 1

2‖xk − x
?‖2 + Ek

[
η(1+δ)

2Lλ ‖∇̃k −∇f(xk)‖2

+ (1 + δ)(ηL(λ+1)
2 − 1

2 )‖xk+1 − xk‖2 + η(1− ρB)〈∇f(xk−1)− ∇̃k−1, xk − x?〉
]
.

(17)

Applying the full expectation operator, setting µ = 0, and summing from k = 0 to k = T−1
where T = mS for some S ∈ N, we have

η
∑T−1

k=0
E[F (xk+1)− F (x?)] + ηδE[F (xT )− F (x0)]

≤ − 1
2E[‖xT − x?‖2] + 1

2‖x0 − x?‖2 +
∑T−1

k=0
E
[
η(1+δ)

2Lλ ‖∇̃k −∇f(xk)‖2

+ (1 + δ)(ηL(λ+1)
2 − 1

2 )‖xk+1 − xk‖2 + η(1− ρB)〈∇f(xk−1)− ∇̃k−1, xk − x?〉
]
.

We use Lemma 15 to bound the inner-product bias term.

η
∑T−1

k=0
E[F (xk+1)− F (x?)] + ηδE[F (xT )− F (x0)]

≤ − 1
2E[‖xT − x?‖2] + 1

2‖x0 − x?‖2 +
∑T−1

k=0
E
[
(η(1+δ)

2Lλ + B2η(1−ρB)ε
2 )‖∇̃k −∇f(xk)‖2

+ (1 + δ)(ηL(λ+1)
2 + B2η(1−ρB)

2ε(1+δ) − 1
2 )‖xk+1 − xk‖2

]
.

To bound the MSE, we use Lemma 32 with σs = 1. This leaves

η
∑T−1

k=0
E[F (xk+1)− F (x?)] + ηδE[F (xT )− F (x0)]

≤ − 1
2E[‖xT − x?‖2] + 1

2‖x0 − x?‖2 + w
∑T−1

k=0
E[‖xk+1 − xk‖2],

(18)

where w = ηL(λ+1)(1+δ)
2 + B2η(1−ρB)

2ε + ΘηL(1+δ)
λ +B2ηL

2(1− ρB)εΘ− 1+δ
2 . To minimize

the coefficient of the final term, we set λ =
√

2Θ and ε = (2L2Θ)−1/2. This coefficient is
then equal to

√
2ΘηL(1 + δ) + ηL(1+δ)

2 +
√

2(1− ρB)ηLB2

√
Θ− 1+δ

2 ,
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which is non-positive when η ≤ 1

2
√

2ΘL(1+
(1−ρB)B2

1+δ
)+L

. This ensures that the final term

in (18) is non-positive, so we can drop it from the inequality along with the term−1/2E‖xT−
x?‖2. This leaves∑T−1

k=0 E[F (xk+1)− F (x?)] ≤ 1
2η
‖x0 − x?‖2 + δE[F (x0)− F (xT )].

By the convexity of F and the fact that −F (xT ) ≤ −F (x?)

E[F (x̄T )−F (x?)] ≤ 1
T

∑T−1

k=0 E[F (xk+1)−F (x?)] ≤ 1
2ηT
‖x0− x?‖2 +

δ
T

(F (x0)−F (x?)).

We now choose δ so that this upper-bound is approximately minimized. Assuming ‖x0−x?‖2
and F (x0)− F (x?) are approximately equal to K > 0, the right side becomes

K
T

(
2
√

2ΘL(1− ρB)B2

1 + δ
+ δ + 2

√
2ΘL+ L

)
.

Choosing δ = max{
√
L
√

Θ(1− ρB)B2−1, 0} approximately minimizes the right side of this
inequality, completing the proof.

Proof of Theorem 18 (Strongly Convex Case) We begin with inequality (17), but
without setting µ = 0.

η(1 + δ)Ek[F (xk+1)− F (x?)] + 1+µη
2 Ek‖xk+1 − x?‖2

≤ ηδ(F (xk)− F (x?)) + 1
2‖xk − x

?‖2 + Ek
[
η(1+δ)

2Lλ ‖∇̃k −∇f(xk)‖2

+ (1 + δ)(ηL(λ+1)
2 − 1

2 )‖xk+1 − xk‖2 + η(1− ρB)〈∇f(xk−1)− ∇̃k−1, xk − x?〉
]
.

Applying the full expectation operator, multiplying by (1 + µη)k, and summing over the
epoch k = ms to k = m(s+ 1)− 1 for some s ∈ N0, we have

η(1 + δ)
∑m(s+1)−1

k=ms
(1 + µη)kE[F (xk+1)− F (x?)] + (1+µη)m(s+1)

2 E[‖xm(s+1) − x?‖2]

≤ ηδ
∑m(s+1)−1

k=ms
(1 + µη)kE[F (xk)− F (x?)] + (1+µη)ms

2 E[‖xms − x?‖2]

+
∑m(s+1)−1

k=ms
(1 + µη)kE

[
η(1+δ)

2Lλ ‖∇̃k −∇f(xk)‖2 + (1 + δ)(ηL(λ+1)
2 − 1

2 )‖xk+1 − xk‖2

+ η(1− ρB)〈∇f(xk−1)− ∇̃k−1, xk − x?〉
]
.

Choosing δ so that 1+ δ ≥ (1+µη)δ, the terms involving F (xk+1)−F (x?) telescope, giving
the inequality

(1 + µη)m(s+1)E[δη(F (xm(s+1))− F (x?)) + 1
2‖xm(s+1) − x?‖2]

≤ δη(1 + µη)msE[F (xms)− F (x?)] + (1+µη)ms

2 E‖xms − x?‖2

+
∑m(s+1)−1

k=ms
(1 + µη)kE

[
η(1+δ)

2Lλ ‖∇̃k −∇f(xk)‖2 + (1 + δ)(ηL(λ+1)
2 − 1

2 )‖xk+1 − xk‖2

+ η(1− ρB)〈∇f(xk−1)− ∇̃k−1, xk − x?〉
]
.
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We would like to bound the inner-product bias term using Lemma 15, and we can do this
after some manipulation. Because η ≤ 1

µm , we have (1 + µη)k ≤ (1 + 1
m)k−ms(1 + µη)ms ≤

3(1 + µη)ms. Using the same estimate as in equations (13) and (14), we can say∑m(s+1)−1

k=ms (1 + µη)kE[〈∇f(xk−1)− ∇̃k−1, xk − x?〉]

≤ 3(1 + µη)ms
∑m(s+1)−1

k=ms |E[〈∇f(xk−1)− ∇̃k−1, xk − x?〉]|,

which produces the inequality

(1 + µη)m(s+1)E[δη(F (xm(s+1))− F (x?)) + 1
2‖xm(s+1) − x?‖2]

≤ δη(1 + µη)msE[F (xms)− F (x?)] + (1+µη)ms

2 E‖xms − x?‖2

+ (1 + µη)ms
(∑m(s+1)−1

k=ms
E
[

3η(1+δ)
2Lλ ‖∇̃k −∇f(xk)‖2 + (1 + δ)( 3ηL(λ+1)

2 − 1
2 )‖xk+1 − xk‖2

]
+ 3η(1− ρB)|E〈∇f(xk−1)− ∇̃k−1, xk − x?〉|

)
.

Summing this inequality from s = 0 to s = S − 1,

(1 + µη)mSE[δη(F (xmS)− F (x?)) + 1
2‖xmS − x

?‖2]

≤ δη(F (x0)− F (x?)) + 1
2‖x0 − x?‖2

+
∑S−1

s=0
(1 + µη)ms

(∑m(s+1)−1

k=ms
E
[
(1 + δ)( 3ηL(λ+1)

2 − 1
2 )‖xk+1 − xk‖2

]
+ 3η(1+δ)

2Lλ ‖∇̃k −∇f(xk)‖2 + 3η(1− ρB)|E〈∇f(xk−1)− ∇̃k−1, xk − x?〉|
)
.

We use Lemma 32 with σs = (1 + µη)ms to bound the MSE and Lemma 15 to bound the
inner-product bias term.

(1 + µη)mSE[δη(F (xmS)− F (x?)) + 1
2‖xmS − x

?‖2]

≤ δη(F (x0)− F (x?)) + 1
2‖x0 − x?‖2 + w

∑S−1

s=0

∑m(s+1)−1

k=ms
(1 + µη)msE‖xk+1 − xk‖2,

(19)

where w = 3ηL(λ+1)(1+δ)
2 + 3B2η(1−ρB)

2ε + 3ΘηL(1+δ)
λ + 3B2ηL

2(1− ρB)εΘ− 1+δ
2 . To mini-

mize the coefficient of the final term, we set λ =
√

2Θ and ε = (2L2Θ)−1/2. This coefficient
is then equal to

3
√

2ΘηL(1 + δ) + 3ηL(1+δ)
2 + 3

√
2(1− ρB)ηLB2

√
Θ− 1+δ

2 .

With
η ≤ 1

6
√

2ΘL(1+
(1−ρB)B2

1+δ
)+L

this term is non-positive. Setting δ = max{(1− ρB)B2 − 1, 0}, we are assured that

η ≤ 1
3L(1+4

√
2Θ)
≤ 1

6
√

2ΘL(1+
(1−ρB)B2

1+δ
)+L

,

so the final term in (19) is non-positive, and we can drop it from the inequality. The
resulting inequality is

(1 + µη)TE[δη(F (xT )− F (x?)) + 1
2‖xT − x

?‖2] ≤ δη(F (x0)− F (x?)) + 1
2‖x0 − x?‖2.
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All that remains is to show that our choice for δ satisfies (1 + δ) ≥ (1 + µη)δ. Using the
fact that η ≤ 1

(1−ρB)B2µ
we can say

1
µη ≥ (1− ρB)B2 ≥ δ

which ensures that (1 + δ) ≥ (1 + µη)δ and concludes the proof.

Appendix C. Proof of Theorem 20

Theorem 20 follows immediately from inequality (7) and the MSE bound of Lemma 32.
Proof of Theorem 20

Summing inequality (7) from k = 0 to k = T − 1 and applying the full expectation
operator, we obtain

0 ≤ −E[F (xT )] + F (x0) + (L− 1
4η )
∑T−1

k=0
E[‖x̂k+1 − xk‖2]

+ (L2 −
1
4η )
∑T−1

k=0
E[‖xk+1 − xk‖2] + 2η

∑T−1

k=0
E[‖∇f(xk)− ∇̃k‖2].

We bound the MSE using Lemma 32 with σs = 1.

0 ≤ −E[F (xT )] + F (x0) + (L− 1
4η )
∑T−1

k=0
E‖x̂k+1 − xk‖2

+ (L2 + 4ΘηL2 − 1
4η )
∑T−1

k=0
E‖xk+1 − xk‖2.

With η ≤
√

16Θ+1−1
16LΘ , the final term is non-positive, so we can drop it from the inequality.

Using the fact that −F (xT ) ≤ −F (x?), our inequality simplifies to

−(L− 1
4η )
∑T−1

k=0 E[‖x̂k+1 − xk‖2] ≤ F (x0)− F (x?).

Writing the left side in terms of the generalized gradient, we have the bound∑T−1

k=0
E[‖Gη/2(xk)‖2] ≤ 16(F (x0)− F (x?))

η(1− 4ηL)
.

With xα chosen uniformly at random from the set {xk}T−1
k=0 , this is equivalent to

E[‖Gη/2(xα)‖2] ≤ 16(F (x0)− F (x?))

η(1− 4ηL)T
.

This completes the proof.

Appendix D. Proofs of convergence rates for B-SAGA and B-SVRG

The following lemma establishes an MSE bound on the B-SAGA and B-SVRG gradient
estimators. For the unbiased case θ = 1, this result was essentially first proved in (Defazio
et al., 2014a), but the authors ultimately use a looser variance bound.
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Lemma 35 The MSEs of the B-SAGA and B-SVRG gradient estimators satisfy

Ek[‖∇̃k −∇f(xk)‖2] ≤ 1

nθ2

∑n

i=1
‖∇fi(xk)−∇fi(ϕik)‖2 + (1− 2

θ )‖∇f(xk)− 1
n

∑n

i=1
∇fi(ϕik)‖2.

(20)

Proof Let ∇̃k ≡ ∇̃B-SAGA
k or ∇̃B-SVRG

k . The proof amounts to computing the expectation of
the estimator and applying the Lipschitz continuity of ∇fi.

Ek[‖∇̃k −∇f(xk)‖2] = Ek[‖ 1
θ (∇fjk(xk)−∇fjk(ϕjkk ))−∇f(xk)− 1

n

∑n

i=1
∇fi(ϕik)‖2]

=
1

θ2
Ek[‖∇fjk(xk)−∇fjk(ϕjkk )‖2] + ‖∇f(xk)− 1

n

∑n

i=1
∇fi(ϕik)‖2

− 2
θ
Ek[〈∇fjk(xk)−∇fjk(ϕjkk ),∇f(xk)− 1

n

∑n

i=1
∇fi(ϕik)〉]

=
1

nθ2

n∑
i=1

‖∇fi(xk)−∇fi(ϕik)‖2 + (1− 2
θ )‖∇f(xk)− 1

n

∑n

i=1
∇fi(ϕik)‖2,

which is the desired result.

The following two lemmas establish the constants in the BMSE property for the B-SAGA
and B-SVRG estimators.

Proof of Lemma 22 We begin with the inequality of Lemma 35 and consider two cases.

Case 1. Suppose θ ∈ [1, 2]. In this case the second term in (20) is non-positive, so we
drop it from the inequality. For the remaining term, we use the following bound.

1
n

∑n

i=1
E[‖∇fi(xk)−∇fi(ϕik)‖2]

1○
≤ 1 + 2n

n

n∑
i=1

E[‖∇fi(xk)−∇fi(xk−1)‖2] +
1
n

(1 +
1

2n
)

n∑
i=1

E[‖∇fi(xk−1)−∇fi(ϕik)‖2]

2○
=

1 + 2n
n

n∑
i=1

E[‖∇fi(xk)−∇fi(xk−1)‖2] +
1
n

(1 +
1

2n
)(1− 1

n
)

n∑
i=1

E[‖∇fi(xk−1)−∇fi(ϕik−1)‖2]

3○
≤ 1 + 2n

n

n∑
i=1

E[‖∇fi(xk)−∇fi(xk−1)‖2] +
1
n

(1− 1
2n

)

n∑
i=1

E[‖∇fi(xk−1)−∇fi(ϕik−1)‖2].

(21)
Inequality 1○ is the standard inequality ‖a − c‖2 ≤ (1 + δ)‖a − b‖2 + (1 + δ−1)‖b − c‖2
(where we let δ = 1

2n). Inequality 2○ follows from the definition of ϕik and computing the
expectation over jk−1, and 3○ uses the fact that (1 + 1

2n)(1 − 1
n) ≤ (1 − 1

2n). Altogether,
this gives

E[‖∇̃SAGA
k −∇f(xk)‖2]

≤ 1

nθ2

∑n

i=1
E[‖∇fi(xk)−∇fi(ϕik)‖]

≤ 2n+ 1

nθ2

∑n

i=1
E[‖∇fi(xk)−∇fi(xk−1)‖2] +

1

nθ2
(1− 1

2n
)
∑n

i=1
E[‖∇fi(xk−1)−∇fi(ϕik−1)‖2].

WithMk = 1
nθ2
∑n

i=1 E[‖∇fi(xk)−∇fi(ϕik)‖2], it is clear that the SAGA estimator satisfies
the BMSE property with M1 = 2n+1

θ2
, ρM = 1

2n ,M2 = 0, ρF = 1, and m = 1.
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Case 2. Suppose θ > 2, so that the second term in (20) is non-negative. Jensen’s inequal-
ity gives

Ek[‖∇̃k −∇f(xk)‖2] ≤ 1
n(1− 1

θ )2
∑n

i=1 ‖∇fi(xk)−∇fi(ϕ
i
k)‖2.

Following the argument of Case 1, it is easy to see that the B-SAGA gradient estimator
satisfies the BMSE property with Mk = 1

n(1 − 1
θ )2
∑n

i=1 ‖∇fi(xk) − ∇fi(ϕik)‖2, M1 =
(2n+ 1)(1− 1

θ )2, ρM = 1
2n , M2 = 0, ρF = 1, and m = 1.

To prove that the B-SAGA is memory-biased, we need computing its expectation.

∇f(xk)− Ek[∇̃B-SAGA
k ] = ∇f(xk)− 1

θEk[∇fjk(xk)− fi(ϕjkk )]− 1
n

∑n

i=1
∇fi(ϕik)

= (1− 1
θ )
(
∇f(xk)− 1

n

∑n

i=1
∇fi(ϕik)

)
.

To compute a value for B1, we follow (21) to obtain

1
n

∑n

i=1
E[‖xk − ϕik‖2] ≤ (2n+ 1)‖xk − xk−1‖2 + 1

n (1− 1
2n )
∑n

i=1
E[‖xk−1 − ϕik−1‖2]

≤ (2n+ 1)
∑k

`=1
(1− 1

2n )k−`‖x` − x`−1‖2.

Summing this inequality from k = 0 to k = T − 1, we obtain

1

n

∑T−1

k=0

∑n

i=1
E[‖xk − ϕik‖2] ≤ (2n+ 1)

∑T−1

k=0

∑k

`=1
(1− 1

2n )k−`‖x` − x`−1‖2

≤ (2n+ 1)
(∑∞

`=0
(1− 1

2n )`
)∑T−1

k=0
‖xk+1 − xk‖2

= 2n(2n+ 1)
∑T−1

k=0
‖xk+1 − xk‖2,

which completes the proof.

Proof of Lemma 23 Suppose k ∈ {ms,ms+ 1, · · ·m(s+ 1)− 1} for some s ∈ N0. As in
the proof of Lemma 22, we begin with the inequality of Lemma 35 and consider two cases.

Case 1. Suppose θ ∈ [1, 2], so that we may drop the second term in (20). We can bound
the remaining term as follows.

1
nθ2

∑n

i=1
‖∇fi(xk)−∇fi(ϕs)‖2

1○
≤ 1+m

nθ2

∑n

i=1
‖∇fi(xk)−∇fi(xk−1)‖2 + 1+1/m

nθ2

∑n

i=1
‖∇fi(xk−1)−∇fi(ϕs)‖2

2○
≤ 1+m

nθ2

∑k

`=ms
(1 + 1

m )k−`
∑n

i=1
‖∇fi(x`+1)−∇fi(x`)‖2.

Inequality 1○ uses the inequality ‖u − w‖2 ≤ (1 + 1/m)‖u − v‖2 + (1 + m)‖v − w‖2, and

2○ follows from the fact that xms = ϕs. Summing this inequality from k = ms to k =
m(s+ 1)− 1 gives

1

nθ2

m(s+1)−1∑
k=ms

n∑
i=1

‖∇fi(xk)−∇fi(ϕs)‖2 ≤ m+ 1

nθ2
(1 + 1

m )m
m(s+1)−1∑
k=ms

k∑
`=ms

n∑
i=1

‖∇fi(x`+1)−∇fi(x`)‖2

≤ m(m+ 1)

nθ2
(1 + 1

m )m
m(s+1)−1∑
k=ms

n∑
i=1

‖∇fi(xk+1)−∇fi(xk)‖2

≤ 3m(m+ 1)

nθ2

m(s+1)−1∑
k=ms

‖∇fi(xk+1)−∇fi(xk)‖2.
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The final inequality uses the fact that (1 + 1
m)m < limm→∞(1 + 1

m)m = e < 3. From this
inequality, it is clear that the B-SVRG gradient estimator satisfies the BMSE property with
M1 = 3m(m+1)

θ2
, ρM = 1, M2 = 0, and ρF = 1.

Case 2. If θ > 2, then applying Jensen’s inequality to (20) produces

Ek[‖∇̃B-SVRG
k −∇f(xk)‖2] ≤ 1

n(1− 1
θ )2
∑n

i=1 ‖∇fi(xk)−∇fi(ϕs)‖
2.

A similar argument to the one in Case 1 shows that M1 = 3m(m + 1)(1 − 1
θ )2, ρM = 1,

M2 = 0, and ρF = 1.

All that is left is to prove the stated value for B1. Following the proof in Case 1,∑m(s+1)−1

k=ms
‖xk − ϕs‖2 ≤

∑m(s+1)−1

k=ms

∑k

`=ms
(1 +m)(1 +

1
m

)m‖x`+1 − x`‖2

≤ 3m(m+ 1)
∑m(s+1)−1

k=ms
‖xk+1 − xk‖2.

Summing over the epochs s = 0 to s = S shows B1 = 3m(m+ 1).

Combining Lemmas 22 and 23 with Theorems 17 and 20 proves convergence rates for
B-SAGA and B-SVRG.

Appendix E. Proof of convergence rates for SARAH

Lemma 27 establishes the BMSE constants for the SARAH estimator. The convergence
rates of Corollary 29 then follow immediately from Theorem 18.

Proof of Lemma 27 Let k ∈ {ms + 1,ms + 2, · · · ,m(s + 1) − 1}. The claim follows
immediately from the well-known bound on the MSE of the SARAH gradient estimator

‖∇̃SARAH
k −∇f(xk)‖2 ≤ 1

n

∑k

`=ms

∑n

i=1‖∇fi(x`+1)−∇fi(x`)‖2.

We refer to Fang et al. (2018) for a proof of this inequality. Summing over an epoch and
applying the estimate

1
n

m(s+1)−1∑
k=ms

k∑
`=ms

n∑
i=1

‖∇fi(x`+1)−∇fi(x`)‖2 ≤ m
n

m(s+1)−1∑
k=ms

n∑
i=1

‖∇fi(xk+1)−∇fi(xk)‖2

completes the proof.

Appendix F. Proof of convergence rates for SARGE

For our analysis, we write the SARGE gradient estimator in terms of the SAGA estimator.
Define the estimator

∇̃ξ-SAGA

k
def
= ∇fjk(xk−1)−∇fjk(ξjkk ) + 1

n

∑n

i=1 ∇fi(ξ
i
k),
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where the variables {ξik}ni=1 follow the update rules ξjkk+1 = xk−1 and ξik+1 = ξik for all i 6= jk.
The SARGE estimator is equal to

∇̃SARGE
k = ∇̃SAGA

k − (1− 1
n)(∇̃ξ-SAGA

k − ∇̃SARGE
k−1 ).

Before we prove Lemma 28, we require a bound on the MSE of the ξ-SAGA gradient
estimator that follows immediately from Lemma 35.

Lemma 36 The MSE of the ξ-SAGA gradient estimator satisfies the following bound:

E[‖∇̃ξ-SAGA

k −∇f(xk−1)‖2] ≤ 3
∑k−1

`=1 (1− 1
2n)k−`−1

∑n

i=1 E[‖∇fi(x`)−∇fi(x`−1)‖2].

Proof Following the proof of Lemma 35,

Ek[‖∇̃ξ-SAGA

k −∇f(xk−1)‖2] = Ek[‖∇fjk(xk−1)−∇fjk(ξjkk )−∇f(xk−1) + 1
n

∑n

i=1
∇fi(ξik)‖2]

1○
=

1
n

∑n

i=1
‖∇fi(xk−1)−∇fi(ξik)‖2 − ‖∇f(xk−1)− 1

n

∑n

i=1
∇fi(ξik)‖2

≤ 1
n

∑n

i=1
‖∇fi(xk−1)−∇fi(ξik)‖2.

Equality 1○ is the standard variance decomposition. To continue, we follow the proof of
Lemma 35.

E[‖∇̃ξ-SAGA

k −∇f(xk−1)‖2]

≤ 1
n

∑n

i=1
E[‖∇fi(xk−1)−∇fi(ξik)‖2]

≤ 1+2n
n

∑n

i=1
E[‖∇fi(xk−1)−∇fi(xk−2)‖2] + 1

n (1 + 1
2n )
∑n

i=1
E[‖∇fi(xk−2)−∇fi(ξik)‖2]

2○
= (1+2n)

n

∑n

i=1
E[‖∇fi(xk−1)−∇fi(xk−2)‖2]

+ 1
n (1 + 1

2n )(1− 1
n )
∑n

i=1
E[‖∇fi(xk−2)−∇fi(ξik−1)‖2]

3○
≤ 3
∑n

i=1
E[‖∇fi(xk−1)−∇fi(xk−2)‖2] + 1

n (1− 1
2n )
∑n

i=1
E[‖∇fi(xk−2)−∇fi(ξik−1)‖2]

≤ 3
∑k−1

`=1
(1− 1

2n )k−`−1
∑n

i=1
E[‖∇fi(x`)−∇fi(x`−1)‖2].

Equality 2○ follows from computing expectations, and 3○ uses the estimate (1− 1
n)(1+ 1

2n) ≤
(1− 1

2n).

Due to the recursive nature of the SARGE gradient estimator, its MSE depends on the
difference between the current estimate and the estimate from the previous iteration. The
next lemma provides a bound on E‖∇̃SARGE

k − ∇̃SARGE
k−1 ‖2.

Lemma 37 The SARGE gradient estimator satisfies the following bound:

E[‖∇̃SARGE
k − ∇̃SARGE

k−1 ‖2] ≤ 12
n

∑n

i=1
E[‖∇fi(xk)−∇fi(xk−1)‖2] + 3

2n2E‖∇f(xk−1)− ∇̃SARGE
k−1 ‖2

+ 39
n2

∑k

`=1
(1− 1

2n )k−`
∑n

i=1
E‖∇fi(x`)−∇fi(x`−1)‖2.

Proof To begin, we use the standard inequality ‖a−c‖2 ≤ (1+δ)‖a−b‖2+(1+δ−1)‖b−c‖2
for any δ > 0 twice. For simplicity, we set δ =

√
3/2−1 and use the fact that 1+ 1√

3/2−1
≤ 6
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for both applications of this inequality.

E[‖∇̃SARGE
k − ∇̃SARGE

k−1 ‖2]

= E[‖∇̃SAGA
k − (1− 1

n )(∇̃ξ-SAGA

k − ∇̃SARGE
k−1 )− ∇̃SARGE

k−1 ‖2]

≤ 6E[‖∇̃SAGA
k − ∇̃ξ-SAGA

k ‖2] +
√

3√
2n2

E[‖∇̃ξ-SAGA

k − ∇̃SARGE
k−1 ‖2]

≤ 6E[‖∇̃SAGA
k − ∇̃ξ-SAGA

k ‖2] + 6
√

3√
2n2

E[‖∇̃ξ-SAGA

k −∇f(xk−1)‖2] + 3
2n2E[‖∇f(xk−1)− ∇̃SARGE

k−1 ‖2].

(22)

We use 6
√

3√
2n2 ≤ 9

n2 to simplify the coefficient of the second term. We now bound the first

two of these three terms separately. Consider the first term.

6E[‖∇̃SAGA
k − ∇̃ξ-SAGA

k ‖2]

= 6E[‖∇fjk(xk)−∇fjk(ϕjkk ) + 1
n

∑n

i=1
∇fi(ϕik)−∇fjk(xk−1)−∇fjk(ξjkk )− 1

n

∑n

i=1
∇fi(ξik)‖2]

≤ 12E[‖∇fjk(xk)−∇fjk(xk−1)‖2]

+ 12E[‖∇fjk(ϕjkk )−∇fjk(ξjkk )− 1
n

∑n

i=1
∇fi(ϕik) + 1

n

∑n

i=1
∇fi(ξik)‖2]

1○
= 12E[‖∇fjk(xk)−∇fjk(xk−1)‖2]

+ 12E[‖∇fjk(ϕjkk )−∇fj(ξjkk )‖2]− 12E[‖ 1
n

∑n

i=1
∇fi(ϕik)− 1

n

∑n

i=1
∇fi(ξik)‖2]

≤ 12
n

∑n

i=1
E[‖∇fi(xk)−∇fi(xk−1)‖2] + 12E[‖∇fjk(ϕjkk )−∇fjk(ξjkk )‖2]

≤ 12
n

∑n

i=1
E[‖∇fi(xk)−∇fi(xk−1)‖2] + 12E[‖∇fjk(ϕjkk )−∇fjk(ξjkk )‖2].

Equality 1○ is the standard variance decomposition, which states that for any random
variable X, E[‖X−EX‖2] = E[‖X‖2]−‖E[X]‖2. The second term can be reduced further by
computing the expectation. The probability that ∇fjk(ϕjkk ) = ∇fjk−1

(xk−1) is equal to the

probability that jk = jk−1, which is 1/n. The probability that ∇fjk(ϕjkk ) = ∇fjk−2
(xk−2)

is equal to the probability that jk 6= jk−1 and jk = jk−2, which is 1
n(1− 1

n). Continuing in
this way,

E[‖∇fjk(ϕjkk )−∇fjk(ξjkk )‖2]

= 1
nE[‖∇fjk−1

(xk−1)−∇fjk−1
(xk−2)‖2] + 1

n (1− 1
n )E[‖∇fjk−2

(xk−2)−∇fjk−3
(xk−2)‖2] + · · ·

= 1
n

∑k−1

`=1
(1− 1

n )k−`−1E[‖∇fj`(x`)−∇fj`(x`−1)‖2].

This implies that

12E[‖∇fjk(ϕjkk )−∇fjk(ξjkk )‖2] ≤ 12
n2

∑k−1

`=1
(1− 1

n )k−`−1
∑n

i=1
E[‖∇fi(x`)−∇fi(x`−1)‖2]

≤ 12
n2

∑k−1

`=1
(1− 1

2n )k−`−1
∑n

i=1
E[‖∇fi(x`)−∇fi(x`−1)‖2].

We include the second inequality to simplify later arguments. This completes our bound
for the first term of (22).

For the second term of (22), we recall Lemma 36.

E[‖∇̃ξ-SAGA

k −∇f(xk−1)‖2] ≤ 3
∑k−1

`=1 (1− 1
2n)k−`−1

∑n

i=1 E[‖∇fi(x`)−∇fi(x`−1)‖2].

Combining all of these bounds, we obtain

E[‖∇̃SARGE
k − ∇̃SARGE

k−1 ‖2] ≤ 12
n

∑n

i=1
E[‖∇fi(xk)−∇fi(xk−1)‖2] + 3

2n2E[‖∇f(xk−1)− ∇̃SARGE
k−1 ‖2]

+ 39
n2

∑k−1

`=1
(1− 1

2n )k−`−1
∑n

i=1
E[‖∇fi(x`)−∇fi(x`−1)‖2],
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which completes the proof.

Lemma 37 allows us to take advantage of the recursive structure of our gradient estimate.
With this lemma established, we can prove a bound on the MSE.

Lemma 38 The SARGE gradient estimator satisfies the following recursive bound:

E[‖∇̃SARGE
k −∇f(xk)‖2]

≤ (1− 1
n + 3

2n2 )E[‖∇̃SARGE
k−1 −∇f(xk−1)‖2] + 12

n

∑n

i=1
E[‖∇fi(xk)−∇fi(xk−1)‖2]

+ 39
n2

∑k−1

`=1
(1− 1

2n )k−`−1
∑n

i=1
E[‖∇fi(x`)−∇fi(x`−1)‖2].

Proof The beginning of our proof is similar to the proof of the variance bound for the
SARAH gradient estimator in (Nguyen et al., 2017, Lem. 2).

Ek‖∇̃SARGE
k −∇f(xk)‖2

= Ek[‖∇̃SARGE
k−1 −∇f(xk−1) +∇f(xk−1)−∇f(xk) + ∇̃SARGE

k − ∇̃SARGE
k−1 ‖2]

= ‖∇̃SARGE
k−1 −∇f(xk−1)‖2 + ‖∇f(xk−1)−∇f(xk)‖2 + Ek[‖∇̃SARGE

k − ∇̃SARGE
k−1 ‖2]

+ 2〈∇f(xk−1)− ∇̃SARGE
k−1 ,∇f(xk)−∇f(xk−1)〉

− 2〈∇f(xk−1)− ∇̃SARGE
k−1 ,Ek[∇̃SARGE

k − ∇̃SARGE
k−1 ]〉

− 2〈∇f(xk)−∇f(xk−1),Ek[∇̃SARGE
k − ∇̃SARGE

k−1 ]〉.

We consider each inner product separately. The first inner product is equal to

2〈∇f(xk−1)− ∇̃SARGE
k−1 ,∇f(xk)−∇f(xk−1)〉

= −‖∇f(xk−1)− ∇̃SARGE
k−1 ‖2 − ‖∇f(xk)−∇f(xk−1)‖2 + ‖∇f(xk)− ∇̃SARGE

k−1 ‖2.

For the next two inner products, we use the fact that

Ek[∇̃SARGE
k − ∇̃SARGE

k−1 ] = Ek
[
∇̃SAGA
k − (1− 1

n )∇̃ξ-SAGA

k + (1− 1
n )∇̃SARGE

k−1

]
− ∇̃SARGE

k−1

= ∇f(xk)− (1− 1
n )∇f(xk−1)− 1

n∇̃
SARGE
k−1

= ∇f(xk)−∇f(xk−1) + 1
n (∇f(xk−1)− ∇̃SARGE

k−1 ).

With this equality established, we see that the second inner product is equal to

− 2〈∇f(xk−1)− ∇̃SARGE
k−1 ,Ek[∇̃SARGE

k − ∇̃SARGE
k−1 ]〉

= −2〈∇f(xk−1)− ∇̃SARGE
k−1 ,∇f(xk)−∇f(xk−1)〉 − 2

n 〈∇f(xk−1)− ∇̃SARGE
k−1 ,∇f(xk−1)− ∇̃SARGE

k−1 〉

= ‖∇f(xk−1)− ∇̃SARGE
k−1 ‖2 + ‖∇f(xk)−∇f(xk−1)‖2

− ‖∇f(xk)− ∇̃SARGE
k−1 ‖2 − 2

n‖∇f(xk−1)− ∇̃SARGE
k−1 ‖2

= (1− 2
n )‖∇f(xk−1)− ∇̃SARGE

k−1 ‖2 + ‖∇f(xk)−∇f(xk−1)‖2 − ‖∇f(xk)− ∇̃SARGE
k−1 ‖2.

The third inner product can be bounded using a similar procedure.

− 2〈∇f(xk)−∇f(xk−1),Ek[∇̃SARGE
k − ∇̃SARGE

k−1 ]〉

= −2〈∇f(xk)−∇f(xk−1),∇f(xk)−∇f(xk−1)〉 − 2
n 〈∇f(xk)−∇f(xk−1),∇f(xk−1)− ∇̃SARGE

k−1 〉

≤ −2‖∇f(xk)−∇f(xk−1)‖2 + 1
n‖∇f(xk)−∇f(xk−1)‖2 + 1

n‖∇f(xk−1)− ∇̃SARGE
k−1 ‖2

= −(2− 1
n )‖∇f(xk)−∇f(xk−1)‖2 + 1

n‖∇f(xk−1)− ∇̃SARGE
k−1 ‖2,
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where the inequality is Young’s. Altogether and after applying the full expectation operator,
we have

E[‖∇̃SARGE
k −∇f(xk)‖2] ≤ (1− 1

n )E[‖∇̃SARGE
k−1 −∇f(xk−1)‖2]

− (1− 1
n )E[‖∇f(xk)−∇f(xk−1)‖2] + E[‖∇̃SARGE

k − ∇̃SARGE
k−1 ‖2]

≤ (1− 1
n )E[‖∇̃SARGE

k−1 −∇f(xk−1)‖2] + E[‖∇̃SARGE
k − ∇̃SARGE

k−1 ‖2].

Finally, we bound the last term on the right using Lemma 37.

E‖∇̃SARGE
k −∇f(xk)‖2

≤ (1− 1
n + 3

2n2 )E[‖∇̃SARGE
k−1 −∇f(xk−1)‖2] +

12
n

∑n

i=1
E[‖∇fi(xk)−∇fi(xk−1)‖2]

+
39

n2

∑k−1

`=1
(1− 1

2n )k−`−1
∑n

i=1
E[‖∇fi(x`)−∇fi(x`−1)‖2]

This completes the proof.

Proof of Lemma 28 It is easy to see that ρB = 1/n by computing the expectation of the
SARGE gradient estimator.

∇f(xk)− Ek[∇̃SARGE
k ] = ∇f(xk)− Ek[∇̃SAGA

k − (1− 1
n )(∇̃ξ-SAGA

k − ∇̃SARGE
k−1 )]

= (1− 1
n )(∇f(xk−1)− ∇̃SARGE

k−1 ).

The result of Lemma 38 makes it clear that M1 = 12. To determine ρM , we must first
choose a suitable sequenceMk. LetMk = E[‖∇̃SARGE

k −∇f(xk)‖2]. If n = 1, thenMk = 0
for all k, so it holds trivially thatMk ≤ (1−ρM )Mk−1. If n ≥ 2, then 1− 1

n + 3
2n2 ≤ 1− 1

4n ,
so Lemma 38 ensures that with ρM = 1

4n , Mk ≤ (1− ρM )Mk−1.
Finally, we must compute M2 and ρF with respect to some sequence Fk. Lemma 38

motivates the choice

Fk =
∑k−1

`=1 (1− 1
2n)k−`−1

∑n

i=1 E[‖∇fi(x`)−∇fi(x`−1)‖2],

and the choices M2 = 39
n and ρF = 1

2n are clear.

Appendix G. Incorporating Bias to Lower the MSE: An Example

From (5), we argue that biased stochastic gradient estimators can admit better convergence
guarantees than unbiased estimators if the bias reduces the total effect of the estimator’s
MSE and inner-product bias term. In this section, we compare the effects of these terms
for the SARAH and SVRG gradient estimators, revealing why SARAH admits better con-
vergence rates.

Beginning with the SARAH estimator, equation (5) reduces to (17), which we reproduce:

ηEk[F (xk+1)− F (x?) + δ(F (xk+1)− F (xk))]

≤ − 1
2Ek[‖xk+1 − x?‖2] + 1

2‖xk − x
?‖2 + Ek

[
η(1+δ)

2Lλ ‖∇̃k −∇f(xk)‖2

+ (1 + δ)(ηL(λ+1)
2 − 1

2 )‖xk+1 − xk‖2 + η(1− ρB)〈∇f(xk−1)− ∇̃k−1, xk − x?〉
]
.
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Following the proof of Theorem 18, we set λ =
√

2Θ, which optimizes the step size. The
effect of the MSE and bias term over an epoch is then∑m(s+1)−1

k=ms+1
η(1+δ)

2L
√

2Θ
E[‖∇f(xk)− ∇̃k‖2 + η(1− ρB)〈∇f(xk−1)− ∇̃k−1, xk − x?〉]

1○
≤
∑m(s+1)−1

k=ms+1
E[(η(1+δ)

L
√

2Θ
+ mεη(1−ρB)

2 )‖∇f(xk)− ∇̃k‖2 + mη(1−ρB)
2ε ‖xk+1 − xk‖2]

2○
≤
∑m(s+1)−1

k=ms+1
E[(η(1+δ)

L
√

2Θ
+ mεη(1−ρB)

2 )mn

∑n

i=1
‖∇fi(xk+1)− fi(xk)‖2 + mη(1−ρB)

2ε ‖xk+1 − xk‖2]

3○
≤
∑m(s+1)−1

k=ms+1
E[L2m(η(1+δ)

L
√

2Θ
+ mεη(1−ρB)

2 )‖xk+1 − xk‖2 + mη(1−ρB)
2ε ‖xk+1 − xk‖2]

Inequality 1○ is an application of Lemma 15, 2○ is Lemma 27, and 3○ uses the Lipschitz
continuity of ∇fi. Setting ε = (L2n)−1/2 to minimize this bound, setting δ = m − 1, and
choosing m = O(n) gives a coefficient of O(n3/2Lη).

In contrast, B-SVRG admits a larger bound on these terms. For memory-biased esti-
mators, equation (5) reduces to (c.f. (11))

ηEk[F (xk+1)− F (x?) + δ(F (xk+1)− F (xk))]

≤ η(1+δ)
2Lλ Ek[‖∇̃k −∇f(xk)‖2]− 1

2Ek[‖xk+1 − x?‖2] + 1
2‖xk − x

?‖2

+ (ηL(1+δ)(λ+1)
2 − 1+2δ

2 )Ek[‖xk+1 − xk‖2] + ηL
2n (1− 1

θ )
∑n

i=1
‖xk − ϕik‖2.

The bias term leads to terms of the form ‖xk − ϕik‖2. Therefore, using λ =
√

2Θ, our goal
is to minimize∑m(s+1)−1

k=ms
E[ η(1+δ)

2L
√

2Θ
‖∇f(xk)− ∇̃k‖2 + ηL

2n (1− 1
θ )
∑n

i=1
‖xk − ϕik‖2]

1○
≤ η(1+δ)

2L
√

2Θ
Mms +

∑m(s+1)−1

k=ms
E[ηL2n (1− 1

θ )
∑n

i=1
‖xk − ϕik‖2]

2○
≤
∑m(s+1)−1

k=ms
E[M1ηL(1+δ)

2
√

2Θ
‖xk+1 − xk‖2 + ηL

2n (1− 1
θ )
∑n

i=1
‖xk − ϕik‖2]

3○
≤
∑m(s+1)−1

k=ms
E[M1ηL(1+δ)

2
√

2Θ
‖xk+1 − xk‖2 + ηLB1

2 (1− 1
θ )E‖xk+1 − xk‖2].

Inequalities 1○ and 2○ use the fact that the SVRG estimator satisfies the BMSE property
with ρM = 1. Inequality 3○ uses the definition of a memory-biased estimator. With δ =
max{B1(1− 1/θ)/

√
2Θ− 1, 0}, B1 = 3m(m+ 1), Θ = M1, and

M1 =

{
3m(m+1)

θ2
θ ∈ (0, 2],

3m(m+ 1)(1− 1
θ )2 θ > 2,

this gives a coefficient of O(Lm2η).
This difference of O(n1/2) between the two bounds is significant. It manifests as an

improvement of
√
n in the convergence rate of SARAH over the rate of B-SVRG.
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