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Abstract

We apply methods from randomized numerical linear algebra (RandNLA) to develop im-
proved algorithms for the analysis of large-scale time series data. We first develop a new
fast algorithm to estimate the leverage scores of an autoregressive (AR) model in big data
regimes. We show that the accuracy of approximations lies within (1 +O (ε)) of the true
leverage scores with high probability. These theoretical results are subsequently exploited
to develop an efficient algorithm, called LSAR, for fitting an appropriate AR model to big
time series data. Our proposed algorithm is guaranteed, with high probability, to find the
maximum likelihood estimates of the parameters of the underlying true AR model and has a
worst case running time that significantly improves those of the state-of-the-art alternatives
in big data regimes. Empirical results on large-scale synthetic as well as real data highly
support the theoretical results and reveal the efficacy of this new approach.

Keywords: autoregressive model, maximum likelihood estimation, big data regime, ran-
domized numerical linear algebra, sampling

1. Introduction

A time series is a collection of random variables indexed according to the order in which
they are observed in time. The main objective of time series analysis is to develop a
statistical model to forecast the future behavior of the system. At a high level, the main
approaches for this include the ones based on considering the data in its original time
domain and those arising from analyzing the data in the corresponding frequency domain
(Shumway and Stoffer 2017, Chapter 1). More specifically, the former approach focuses on
modeling some future value of a time series as a parametric function of the current and past
values by studying the correlation between adjacent points in time. The latter framework,
however, assumes the primary characteristics of interest in time series analysis relate to
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periodic or systematic sinusoidal variations. Although the two approaches may produce
similar outcomes for many cases, the comparative performance is better done in the “time
domain” (Shumway and Stoffer, 2017, Chapter 1) which is the main focus of this paper.

Box and Jenkins (1976) introduced their celebrated autoregressive moving average (ARMA)
model for analyzing stationary time series. Although it has been more than 40 years since
this model was developed, due to its simplicity and vast practicality, it continues to be
widely used in theory and practice. A special case of an ARMA model is an autoregressive
(AR) model, which merely includes the autoregressive component. Despite their simplicity,
AR models have a wide range of applications spanning from genetics and medical sciences to
finance and engineering (Hamilton, 1989; Anderson et al., 1998; Chakravarthy et al., 2004;
Shen and Lu, 2018; Abolghasemi et al., 2020; Eshragh et al., 2021; Messner and Pinson,
2019).

The main hyper-parameter of an AR model is its order, which directly relates to the
dimension of the underlying predictor variable. In other words, the order of an AR model
amounts to the number of lagged values that are included in the model. In problems
involving big time series data, selecting an appropriate order for an AR model amounts
to computing the solutions of many potentially large scale ordinary least squares (OLS)
problems, which can be the main bottleneck of computations (cf. Section 2.1). Here is
where randomized sub-sampling algorithms can be used to greatly speed-up such model
selection procedures.

For computations involving large matrices in general, and large-scale OLS problems in
particular, randomized numerical linear algebra (RandNLA) has successfully employed var-
ious random sub-sampling and sketching strategies. There, the underlying data matrix is
randomly, yet appropriately, “compressed” into a smaller one, while approximately retain-
ing many of its original properties. As a result, much of the expensive computations can
be performed on the smaller matrix; Mahoney (2011) and Woodruff (2014) provided an
extensive overview of RandNLA subroutines and their many applications. Moreover, im-
plementations of algorithms based on those ideas have been shown to beat state-of-the-art
numerical routines (Avron et al. 2010; Meng et al. 2014; Yang et al. 2016).

Despite their simplicity and efficient constructions, matrix approximations using uniform
sampling strategies are highly ineffective in the presence of non-uniformity in the data (e.g.,
outliers). In such situations, non-uniform (but still i.i.d.) sampling schemes in general, and
leverage score sampling in particular (Drineas et al. 2012), are instrumental not only in
obtaining the strongest worst case theoretical guarantees, but also in devising high-quality
numerical implementations. In times series data, one might expect that sampling methods
based on leverage scores can be highly effective (cf. Figure 8). However, the main challenge
lies in computing the leverage scores, which näıvely can be as costly as the solution of the
original OLS problems. In this light, exploiting the structure of the time series model for
estimating the leverage scores can be the determining factor in obtaining efficient algorithms
for time series analysis. We carry out that here in the context of AR models. In particular,
our contributions can be summarized as follows:

(i) We introduce RandNLA techniques to the analysis of big time series data.
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(ii) By exploiting the available structure, we propose an algorithm for approximating the
leverage scores of the underlying data matrix that is shown to be faster than the
state-of-the-art alternatives.

(iii) We theoretically obtain a high-probability relative error bound on the leverage score
approximations.

(iv) Using these approximations, we then develop a highly-efficient algorithm, called LSAR,
for fitting AR models with provable guarantees.

(v) We empirically demonstrate the effectiveness of the LSAR algorithm on several large-
scale synthetic as well as real big time series data.

The structure of this paper is as follows: Section 2 introduces AR models and RandNLA
techniques in approximately solving large-scale OLS problems. Section 3 deals with the
theoretical results on developing an efficient leverage score sampling algorithm to fit and
estimate the parameters of an AR model. All proofs are presented in Appendix A. Section 4
illustrates the efficacy of the new approach by implementing it on several large-scale syn-
thetic as well as real big time series data. Section 5 concludes the paper and addresses
future work.

Notation

Throughout the paper, vectors and matrices are denoted by bold lower-case and bold upper-
case letters, respectively (e.g., v and V ). All vectors are assume to be column vectors. We
use regular lower-case to denote scalar constants (e.g., d). Random variables are denoted
by regular upper-case letters (e.g., Y ). For a real vector, v, its transpose is denoted by v

ᵀ
.

For two vectors v,w, their inner-product is denoted as 〈v,w〉 = v
ᵀ
w. For a vector v and

a matrix V , ‖v‖ and ‖V ‖ denote vector `2 norm and matrix spectral norm, respectively.
The condition number of a matrix A, which is the ratio of its largest and smallest singular
values, is denoted by κ(A). Range of a matrix A ∈ Rn×d, denoted by Range(A), is a sub-
space of Rn, consisting all the vectors

{
Ax | x ∈ Rd

}
. Adopting Matlab notation, we use

A(i, :) to refer to the ith row of the matrix A and consider it as a column vector. Finally,
ei denotes a vector whose ith component is one, and zero elsewhere.

2. Background

In this section, we present a brief overview of the two main ingredients of the results of
this paper, namely autoregressive models (Section 2.1) and leverage score sampling for OLS
problems (Section 2.2).

2.1 Autoregressive Models

A time series {Yt; t = 0,±1,±2, . . .} is called (weakly) stationary, if the mean E[Yt] is
independent of time t, and the auto-covariance Cov(Yt, Yt+h) depends only on the lag h
for any integer values t and h. A stationary time series {Yt; t = 0,±1,±2, . . .}1 with the

1. Throughout this paper, we assume that Yt’s are continuous random variables.
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constant mean E[Yt] = 0 is an AR model with the order p, denoted by AR(p), if we have

Yt = φ1Yt−1 + · · ·+ φpYt−p +Wt,

where φp 6= 0 and the time series {Wt; t = 0,±1,±2, . . .} is a Gaussian white noise with
the mean E[Wt] = 0 and variance V ar(Wt) = σ2

W . Recall that a Gaussian white noise is
a stationary time series in which each individual random variable Wt has a normal distri-
bution and any pair of random variables Wt1 and Wt2 for distinct values of t1, t2 ∈ Z are
uncorrelated.

Remark 1 For the sake of simplicity, we assume that E[Yt] = 0. Otherwise, if E[Yt] = µ 6=
0, then one can replace Yt with Yt − µ to obtain

Yt − µ = φ1(Yt−1 − µ) + · · ·+ φp(Yt−p − µ) +Wt,

which is simplified to

Yt = µ(1− φ1 · · · − φp) + φ1Yt−1 + · · ·+ φpYt−p +Wt.

It is readily seen that each AR(p) model has p+ 2 unknown parameters consisting of the
order p, the coefficients φi and the variance of white noises σ2

W . Here, we briefly explain
the common methods in the literature to estimate each of these unknown parameters.

Estimating the order p. A common method to estimate the order of an AR(p) model
is to use the partial autocorrelation function (PACF) (Shumway and Stoffer 2017, Chapter
3). The PACF of a stationary time series {Yt; t = 0,±1,±2, . . .} at lag h is defined by

PACFh :=


ρ(Yt, Yt+1) for h = 1,

ρ(Yt+h − Ŷt+h,−h, Yt − Ŷt,h) for h ≥ 2,
(1)

where ρ denotes the correlation function, and where Ŷt,h and Ŷt+h,−h denote the linear
regression, in the population sense, of Yt and Yt+h on {Yt+1, . . . , Yt+h−1}, respectively.
It can be shown that for a causal AR(p) model, while the theoretical PACF (1) at lags
h = 1, . . . , p−1 may be non-zero and at lag h = p may be strictly non-zero, at lag h = p+1
it drops to zero and then remains at zero henceforth (Shumway and Stoffer 2017, Chapter 3).
Recall that an AR(p) model is said to be causal if the time series {Yt; t = 0,±1,±2, . . .} can
be written as Yt = Wt+

∑∞
i=1 ψiWt−i with constant coefficients ψi such that

∑∞
i=1 |ψi| <∞.

Furthermore, if a sample of size n is obtained from a causal AR(p) model, then under some
mild conditions, an estimated sample PACF at lags h > p, scaled by

√
n, has a standard

normal distribution, in limit as n tends to infinity (Blackwell and Davis 2009, Chapter 8).
Thus, in practice, the sample PACF versus lag h along with a 95% zero-confidence

boundary, that is two horizontal lines at ±1.96/
√
n, are plotted. Then, the largest lag h in

which the sample PACF lies out of the zero-confidence boundary for PACF is used as an
estimation of the order p. For instance, Figures 4a, 4d and 4g display the sample PACF
plots for the synthetic time series data generated from models AR(20), AR(100), and AR(200),
respectively. Each figure illustrates that the largest PACF lying out of the red dashed 95%
zero-confidence boundary, locates at a lag which is equal to the order of the AR model.
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Maximum likelihood estimation of the coefficients φi and variance σ2
W . Let

y1, . . . , yn be a time series realization of an AR(p) model where p is known and n � p.
Unlike a linear regression model, the log-likelihood function

log(fY1,...,Yn(y1, . . . , yn; φ1, . . . , φp, σ
2
W )),

where f is the joint probability distribution function of the random variables Y1, . . . , Yn, is
a complicated non-linear function of the unknown parameters. Hence, finding an analytical
form of the maximum likelihood estimates (MLEs) is intractable. Consequently, one typ-
ically uses some numerical optimization methods to find an MLE of the parameters of an
AR(p) model approximately. However, it can be shown that the conditional log-likelihood
function is analogous to the log-likelihood function of a linear regression model given below
(Hamilton 1994, Chapter 5):

log(fYp+1,...,Yn|Y1,...,Yp
(yp+1, . . . , yn|y1, . . . , yp; φ1, . . . , φp, σ

2
W ))

= −n− p
2

log(2π)− n− p
2

log(σ2
W )−

n∑
t=p+1

(yt − φ1yt−1 − · · · − φpyt−p)2

2σ2
W

.

Thus, the conditional MLE (CMLE) of the coefficients φi as well as the variance σ2
W can

be estimated from an OLS regression of yt on p of its own lagged values. More precisely,

φn,p := (X
ᵀ
n,pXn,p)

−1X
ᵀ
n,pyn,p, (2)

where φn,p is the CMLE of the coefficient vector [φ1, . . . , φp]
ᵀ
, the data matrix

Xn,p :=


yp yp−1 · · · y1

yp+1 yp · · · y2
...

...
. . .

...
yn−1 yn−2 · · · yn−p

 , (3)

and yn,p :=
[
yp+1 yp+2 . . . yn

]ᵀ
.

Remark 2 The data matrix Xn,p in (3) possesses Toeplitz structure that we take advantage
of for our derivations in this paper, in particular developing the recursion for the leverage
scores given in Theorem 7. Also, it is highlighted that as the estimated parameter vector (2)
is operating under “conditional” MLE, the data matrix Xn,p is a fixed design matrix.

Moreover, the CMLE of σ2
W , the so-called MSE, is given by

σ̂2
W =

‖rn,p‖2

n− p
,

where

rn,p := yn,p −Xn,pφn,p =
[
rn,p(1) . . . rn,p(n− p)

]ᵀ
(4)
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and

rn,p(i) = yp+i −X
ᵀ
n,p(i, :)φn,p for i = 1, . . . , n− p.

Recall that Xn,p(i, :) is the ith row of matrix Xn,p, that is,

Xn,p(i, :) :=
[
yi+p−1 yi+p−2 . . . yi

]ᵀ
.

One may criticize the CMLE as it requires one to exclude the first p observations to
construct the conditional log-likelihood function. Although this is a valid statement, due
to the assumption n � p, dropping the first p observation from the whole time series
realization could be negligible.

Remark 3 It can be shown (Shumway and Stoffer 2017, Chapter 3) that if

Ŷt+h,−h = α1Yt+h−1 + · · ·+ αh−1Yt+1,

then

Ŷt,h = α1Yt+1 + · · ·+ αh−1Yt+h−1.

This implies that finding PACF at each lag requires the solution to only one corresponding
OLS problem. Furthermore, one can see that an empirical estimation of the coefficients
αi is the same as finding a CMLE of the coefficients of an AR(h − 1) model fitted to the
data. Thus, empirically estimating the order p using a given time series data involves
repeated solutions of OLS problems, which can be computationally prohibitive in large-scale
settings. Indeed, for n realizations y1, . . . , yn, PACF at lag h can be calculated in O (nh)
using Toeplitz properties of the underlying matrix, and as a result selecting an appropriate
order parameter p amounts to O

(∑p
h=1 nh

)
= O

(
np2
)

time complexity.

Remark 4 It should be noted that there is another method to estimate the parameters of
an AR(p) model by solving the Yule-Walker equations with the Durbin-Levinson algorithm
(Blackwell and Davis 2009, Chapter 8). Although, those estimates have asymptotic prop-
erties similar to CMLEs, solving the corresponding OLS problem is computationally faster
than the Durbin-Levinson algorithm and also the CMLEs are statistically more efficient.

2.2 Leverage Scores and RandNLA

Linear algebra, which is the mathematics of linear mappings between vector spaces, has long
had a large footprint in statistical data analysis. For example, canonical linear algebra prob-
lems such as principal component analysis and OLS are arguably among the first and most
widely used techniques by statisticians. In the presence of large amounts data, however,
such linear algebra routines, despite their simplicity of formulation, can pose significant
computational challenges. For example, consider an over-determined OLS problem

min
x
‖Ax− b‖2 , (5)

involving m × d matrix A, where m > d. Note that, instead of n − p and p for the di-
mensions of the matrix (3), we adopt the notation m and d for the number of rows and
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columns, respectively. This is due to the fact that our discussion in this section involves
arbitrary matrices and not those specifically derived from AR models. Solving (5) amounts
to O

(
md2 + d3/3

)
flops by forming the normal equations, O

(
md2 − d3

)
flops via QR fac-

torization with Householder reflections, and O
(
md2 + d3

)
flops using singular value decom-

position (SVD) (Golub and Van Loan 1983). Iterative solvers such as LSQR (Paige and
Saunders 1982), LSMR (Fong and Saunders 2011), and LSLQ (Estrin et al. 2019), involve
matrix-vector products at each iterations, which amount to O (mdc) flops after c iterations.
In other words, in “big-data” regimes where md2 � 1, näıvely performing these algorithms
can be costly.

RandNLA subroutines involve the construction of an appropriate sampling/sketching
matrix, S ∈ Rs×m for d ≤ s� m, and compressing the data matrix into a smaller version
SA ∈ Rs×d. In the context of (5), using the smaller matrix, the above-mentioned classical
OLS algorithms can be readily applied to the smaller scale problem

min
x
‖SAx− Sb‖2 , (6)

at much lower costs. In these algorithms, sampling/sketching is used to obtain a data-
oblivious or data-aware subspace embedding, which ensures that for any 0 < ε, δ < 1 and
for large enough s, we get

Pr
(
‖Ax? − b‖2 ≤ ‖Ax?

s − b‖
2 ≤ (1 +O (ε)) ‖Ax? − b‖2

)
≥ 1− δ, (7)

where x? and x?
s are the solutions to (5) and (6), respectively. In other words, the solution

to the reduced problem (6) is a 1 + O (ε) approximation of the solution to the original
problem (5).

Arguably, the simplest data-oblivious way to construct the matrix S is using uniform
sampling, where each row of S is chosen uniformly at random (with or without replacement)
from the rows of the m × m identity matrix. Despite the fact that the construction and
application of such a matrix can be done in constant O (1) time, in the presence of non-
uniformity among the rows of A, such uniform sampling strategies perform very poorly. In
such cases, it can be shown that one indeed requires s ∈ O (m) samples to obtain the above
sub-space embedding property.

To alleviate this significant shortcoming, data-oblivious sketching schemes involve ran-
domly transforming the data so as to smooth out the non-uniformities, which in turn allows
for subsequent uniform sampling in the randomly rotated space (Drineas et al. 2011). Here,
the random projection acts as a preconditioner (for the class of random sampling algo-
rithms), which makes the preconditioned data better behaved (in the sense that simple
uniform sampling methods can be used successfully) (Mahoney 2011, 2016). With such
sketching schemes, depending on the random projection matrix, different sample sizes are
required, for instance, O

(
d log(1/δ)/ε2

)
samples for Gaussian projection, O

(
d log(d/δ)/ε2

)
samples for fast Hadamard-based transforms, and O

(
d2poly(log(d/δ))/ε2

)
samples using

sparse embedding matrices. Woodruff (2014) provided a comprehensive overview of such
methods and their extensions.

Alternative to data-oblivious random embedding methods are data-aware sampling tech-
niques, which by taking into account the information contained in the data, sample the rows
of the matrix proportional to non-uniform distributions. Among many such strategies, those
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schemes based on statistical leverage scores (Drineas et al. 2012) have not only shown to
improve worst case theoretical guarantees of matrix algorithms, but also they are amenable
to high-quality numerical implementations (Mahoney 2011). Roughly speaking, the “best”
random sampling algorithms base their importance sampling distribution on these scores
and the “best” random projection algorithms transform the data to be represented in a
rotated basis where these scores are approximately uniform.

The concept of statistical leverage score has long been used in statistical regression
diagnostics to identify outliers (Rousseeuw and Hubert 2011). Given a data matrix A ∈
Rm×d with m ≥ d, consider any orthogonal matrix Q such that Range(Q) = Range(A).
The ith leverage score corresponding to ith row of A is defined as

`(i) := ‖Q(i, :)‖2 .

It can be easily shown that this is well-defined in that the leverage score does not depend
on the particular choice of the basis matrix Q. Furthermore, the ith leverage score boils
down to the ith diagonal entry of the hat matrix, that is,

`(i) = e
ᵀ
iHei for i = 1, . . . ,m, (8a)

where

H := A
(
A

ᵀ
A
)−1

A
ᵀ
. (8b)

It is also easy to see that

`(i) ≥ 0 ∀ i, and

m∑
i=1

`(i) = d.

Thus,

π(i) :=
`(i)

d
, for i = 1, . . . ,m, (8c)

defines a non-uniform probability distribution over the rows of A.

Leverage score sampling matrix S. Sampling according to the leverage scores amounts
to randomly picking and re-scaling rows of A proportional to their leverage scores and
appropriately re-scaling the sampled rows so as to maintain an unbiased estimator of A

ᵀ
A,

that is,

E[‖SAx‖2] = ‖Ax‖2 , ∀x.

More precisely, each row of the s×m sampling matrix S is chosen randomly from the rows of
the m×m identity matrix according to the probability distribution (8c), with replacement.
Furthermore, if the ith row is selected, it is re-scaled with the multiplicative factor

1
√
sπi

, (9)
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implying that 1/
√
sπie

ᵀ
i is appended to S.

Clearly, obtaining any orthogonal matrixQ as above by using SVD or QR factorization is
almost as costly as solving the original OLS problem (i.e., O

(
md2

)
flops), which defeats the

purpose of sampling altogether. In this light, Drineas et al. (2012) proposed randomized ap-
proximation algorithms, which efficiently estimate the leverage scores in O

(
md logm+ d3

)
flops. For sparse matrices, this was further improved by Clarkson and Woodruff (2017),
Meng and Mahoney (2013), and Nelson and Nguyen (2013) to O

(
nnz(A) logm+ d3

)
. In

particular, it has been shown that with the leverage score estimates ˆ̀(i) such that

ˆ̀(i) ≥ β`(i), for i = 1, 2, . . .m, (10)

for some misestimation factor 0 < β ≤ 1, one can obtain (7) with

s ∈ O
(
d log(d/δ)/(βε2)

)
, (11)

samples (Woodruff 2014). As it can be seen from (11), the required sample size s is adversely
affected by the leverage score misestimation factor β.

Recently, randomized sublinear time algorithms for estimating the parameters of an AR

model for a given order d have been developed by Shi and Woodruff (2019). There, by using
the notion of generalized leverage scroes, the authors propose a method for approximating
CMLE of the parameters in O(m log2m + (d2 log2m)/ε2 + (d3 logm)/ε2) time, with high
probability. The analysis in Shi and Woodruff (2019) makes use of Toeplitz structure of data
matrices arising from AR models. Also related to our settings here are Van Barel et al. (2003)
and Xi et al. (2014), which developed, respectively, an exact and a (numerically stable)
randomized approximation algorithm to solve Toeplitz least square problems, both with
the time complexity of O

(
(m+ d) log2(m+ d)

)
. An alternative sub-sampling algorithm

to algorithmic leveraging for OLS problems has been considered by Wang et al. (2018).
There, the sub-sampling is approached from the perspective of optimal design using D-
optimality criterion, aiming to maximize the determinant of the Fisher information in the
sub-sample. We also note that algorithms various statistical aspects of leverage scores have
been extensively studied by Raskutti and Mahoney (2016) and Ma et al. (2015). Finally, a
more general notion of leverage scores in the context of recovery of continuous time signals
from discrete measurements has recently been introduced by Avron et al. (2019).

2.3 Theoretical Contributions

Here, by taking the advantage of the structure of AR models, we derive an algorithm, called
LSAR, which given the (approximate) leverage scores of the data matrix for an AR(p − 1)
model (cf. Equation 3), efficiently provides an estimate for the leverage scores related to
an AR(p) model. In the process, we derive explicit bounds on the misestimation factor β
in (10). An informal statement of our main results (Theorems 13, 16, 17 and 21) are as
follows.

Claim (Informal). For any ε > 0 small enough, we prove (with a constant probability
of success):

• Theorem 13: If only some suitable approximations of the leverage scores of an AR(p−1)
model are known, we can estimate those of an AR(p) model with a misestimation factor
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β ∈ 1−O(p
√
ε) inO(n+p3 log p) time complexity. This should be compared with näıve

QR-based methods with O
(
np2
)

and the universal approximation schemes developed
by Drineas et al. (2012) with O

(
np log n+ p3

)
.

• Theorems 16 and 17: Furthermore, an appropriate AR(p) model can be fitted, with
high-probability, in overall time complexity of O(np+ (p4 log p)/ε2) as compared with
O(np2) using exact methods (cf. Theorem 3), O((n + p)p log2(n + p)) by leveraging
structured matrices as in Van Barel et al. (2003), and O(np log2 n + (p3 log2 n)/ε2 +
(p4 log n)/ε2) from sublinear time algorithms developed by Shi and Woodruff (2019).

Remark 5 In big data regimes where typically n� p the above result implies an improve-
ment over the existing methods for fitting an appropriate AR model. However, we believe
that the dependence of the misestimation factor β ∈ 1 − O(p

√
ε) on p is superfluously a

by-product of our analysis, as in our numerical experiments, we show that a sensible factor
may be in the order of β ∈ 1−O(log p

√
ε).

3. Theoretical Results

In this section, we use the specific structure of the data matrix induced by an AR model to
develop a fast algorithm to approximate the leverage scores corresponding to the rows of
the data matrix (3). Furthermore, we theoretically show that our approximations possess
relative error (cf. Equation 18) bounds with high probability. Motivated from the leverage
score based sampling strategy in Section 2.2, we then construct a highly efficient algorithm,
namely LSAR, to fit an appropriate AR(p) model on big time series data. It should be noted
that all proofs of this section are presented in Appendix A.

3.1 Leverage Score Approximation for AR Models

We first introduce Theorem 6 which relates and unifies notation of Sections 2.1 and 2.2
together.

Definition 6 In what follows, we define `n,p, Hn,p, and πn,p as

`n,p(i) := e
ᵀ
iHn,pei, for i = 1, . . . , n− p,

Hn,p := Xn,p

(
X

ᵀ
n,pXn,p

)−1
X

ᵀ
n,p,

πn,p(i) :=
`n,p(i)

p
, for i = 1, . . . , n− p.

That is, they refer, respectively, to (8a),(8b), and (8c), using A = Xn,p as defined in (3).

We show that the leverage scores associated with an AR(p) model can be recursively
described using those arising from an AR(p − 1) model. This recursive pattern is a direct
result of the special structure of the data matrix (3), which amounts to a rectangular Hankel
matrix (Golub and Van Loan 1983).

10
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Theorem 7 (Exact Leverage Score Computations) The leverage scores of an AR(1)
model are given by

`n,1(i) =
y2
i

n−1∑
t=1

y2
t

, for i = 1, . . . , n− 1. (12a)

For an AR(p) model with p ≥ 2, the leverage scores are obtained by the following recursion

`n,p(i) = `n−1,p−1(i) +
(rn−1,p−1(i))2

‖rn−1,p−1‖2
, for i = 1, . . . , n− p, (12b)

where the residual vector rn−1,p−1 is defined in (4).

Theorem 7 shows that the leverage scores of (3) can be exactly calculated through
the recursive (12b) on the parameter p with the initial condition (12a). This recursion
incorporates the leverage cores of the data matrix Xn−1,p−1 along with the residual terms
of fitting an AR(p− 1) model to the time series data y1, . . . , yn−1. Note that both matrices
Xn−1,p−1 and Xn,p have equal number of rows, and accordingly equal number of leverage
scores. Moreover, since we are dealing with big time series data (i.e., n� p), excluding one
observation in practice is indeed negligible.

Theorem 7, though enticing at first glance, suffers from two major drawbacks in that
not only does it require exact leverage scores associated with AR(p− 1) models, but it also
involves exact residuals from the corresponding OLS estimations. In the presence of big
data, computing either of these factors exactly defeats the whole purpose of data sampling
altogether. To alleviate these two issues, we first focus on approximations in computing the
latter, and then incorporate the estimations of the former. In doing so, we obtain leverage
score approximations, which enjoy desirable a priori relative error bounds.

A natural way to approximate the residuals in the preceding AR(p − 1) model (i.e.,
rn−1,p−1), is by means of sampling the data matrix Xn−1,p−1 and solving the corresponding
reduced OLS problem. More specifically, we consider the sampled data matrix

X̃n,p := SXn,p,

where S ∈ Rs×(n−p) is the sampling matrix whose s rows are chosen at random with
replacement from the rows of the (n−p)×(n−p) identity matrix according to the distribution
{πn,p(i)}n−pi=1 (cf. Theorem 6) and rescaled by the appropriate factor (9). Using X̃n,p, the
estimated parameter vector φ̃n,p is calculated as

φ̃n,p := (X̃
ᵀ
n,pX̃n,p)

−1X̃
ᵀ
n,pỹn,p, (13a)

where ỹn,p := Syn,p. Finally, the residuals of φ̃n,p, analogous to (4), are given by

r̃n,p := yn,p −Xn,pφ̃n,p. (13b)

11
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Remark 8 We note that the residual vector r̃n,p is computed using the sampled data matrix
X̃n,p, which is itself formed according to the leverage scores. In other words, the availability
r̃n,p is equivalent to that of {πn,p(i)}n−pi=1 .

The following theorem, derived from the structural result (Drineas et al. 2011), gives
estimates on the approximations (13a) and (13b).

Theorem 9 (Drineas et al. 2011, Theorem 1) Consider an AR(p) model and let 0 <
ε, δ < 1. For sampling with (approximate) leverage scores using a sample size s as in (11)
with d = p, we have with probability at least 1− δ,

‖r̃n,p‖ ≤ (1 + ε) ‖rn,p‖ , (14a)∥∥∥φn,p − φ̃n,p

∥∥∥ ≤ √εηn,p ‖φn,p‖ , (14b)

where φn,p, rn,p, φ̃n,p and r̃n,p are defined,, respectively, in (2), (4), (13a) and (13b),

ηn,p = κ(Xn,p)
√
ξ−2 − 1, (14c)

κ(Xn,p) is the condition number of matrix Xn,p, and ξ ∈ (0, 1] is the fraction of yn,p that
lies in Range(Xn,p), that is, ξ := ‖Hn,pyn,p‖ / ‖yn,p‖ with Hn,p as in Theorem 6.

Using a combination of exact leverage scores and the estimates (13b) on the OLS resid-
uals associated with the AR(p − 1) model, we define quasi-approximate leverage scores for
the AR(p) model.

Definition 10 (Quasi-approximate Leverage Scores) For an AR(p) model with p ≥ 2,
the quasi-approximate leverage scores are defined by the following equation

˜̀
n,p(i) := `n−1,p−1(i) +

(r̃n−1,p−1(i))2

‖r̃n−1,p−1‖2
for i = 1, . . . , n− p, (15)

where `n,p(i) and r̃n,p are as in Theorem 6 and (13b).

Clearly, the practical advantage of ˜̀
n,p is entirely contingent upon the availability of the

exact leverage scores for p− 1, that is, `n−1,p−1 (cf. Theorem 10). For p = 2, this is indeed
possible. More specifically, from (12a), the exact leverage scores of an AR(1) model can be
trivially calculated, which in turn give the quasi-approximate leverage scores {˜̀n−2,2(i)}n−2

i=1

using (15). However, for p = 3 (and subsequent values), the relation (15) does not apply
as not only are {`n−1,p−1(i)}n−pi=1 no longer readily available, but also for the same token
without having {πn−1,p−1(i)}n−pi=1 , the residual vector r̃n−1,p−1 may not be computed directly
(cf. Theorem 8). Nonetheless, replacing the exact leverage scores with quasi-approximate
ones in (15) for p = 2 allows for a new approximation for p = 3. Such new leverage score
estimates can be in turn incorporated in approximation of subsequent leverage scores for
p ≥ 4. This idea leads to our final and practical definition of fully-approximate leverage
scores.

12



LSAR: Efficient Algorithm for the Analysis of Big Time Series Data

Definition 11 (Fully-approximate Leverage Scores) For an AR(p) model with p ≥ 1,
the fully-approximate leverage scores are defined by the following equation

ˆ̀
n,p(i) :=


`n,1(i), for p = 1

˜̀
n,2(i), for p = 2

ˆ̀
n−1,p−1(i) +

(r̂n−1,p−1(i))2

‖r̂n−1,p−1‖2
, for p ≥ 3

, (16a)

where

r̂n−1,p−1 := yn−1,p−1 −Xn−1,p−1φ̂n−1,p−1, (16b)

φ̂n−1,p−1 := (X̂
ᵀ
n−1,p−1X̂n−1,p−1)−1X̂

ᵀ
n−1,p−1ŷn−1,p−1 (16c)

and X̂n−1,p−1 and ŷn−1,p−1 are the reduced data matrix and response vector, sampled re-
spectively, according to the distribution

π̂n−1,p−1(i) =
ˆ̀
n−1,p−1(i)

p− 1
for i = 1, . . . , n− p. (16d)

Remark 12 It should be noted that (15) estimates the leverage scores of an AR(p) model,
given the corresponding exact values of an AR(p − 1) model. This is in sharp contrast to
(16a), which recursively provides similar estimates without requiring any information on the
exact values.

Unlike the quasi-approximate leverage scores, the fully-approximate ones in Theorem 11
can be easily calculated for any given the parameter value p ≥ 1. Finally, Theorem 13
provides a priori relative-error estimate on individual fully-approximate leverage scores.

Theorem 13 (Relative Errors for Fully-approximate Leverage Scores) For the fully-
approximate leverage scores, we have with probability at least 1− δ,

|`n,p(i)− ˆ̀
n,p(i)|

`n,p(i)
≤
(
1 + 3ηn−1,p−1κ

2(Xn,p)
)

(p− 1)
√
ε, for i = 1, . . . , n− p,

recalling that δ, ηn,p, κ(Xn,p), and ε are as in Theorem 9.

Although qualitatively descriptive, the bound in Theorem 13 is admittedly pessimistic
and involves an overestimation factor that scales quadratically with the condition number
of the data matrix, κ, and linearly with the order of the AR model, p. We conjecture that
the linear dependence on p can be instead replaced with log(p), which is supported by
the experiment depicted in Figure 2. We leave the investigation of ways to improve the
upper-bound of Theorem 13 to future work.

Theorem 13 prescribes the misestimation factor β (cf. Equation 10) for the fully-
approximate leverage sores of an AR(p) model, stated in Theorem 14.

Corollary 14 The misestimation factor β for the fully-approximate leverage scores of an
AR(p) model is 1−O(p

√
ε).
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3.2 LSAR Algorithm for Fitting AR Models

Based on these theoretical results, we introduce the LSAR algorithm, depicted in Algorithm 1,
which is the first leverage score sampling algorithm to approximately fit an appropriate AR

model to a given big time series data. The theoretical properties of the LSAR algorithm are
given in Theorems 16 and 17.

Algorithm 1 LSAR: Leverage Score Sampling Algorithm for Approximate AR Fitting

Input:
- Time series data {y1, . . . , yn} ;

- A relatively large value p̄� n ;

- Constant parameters 0 < ε < 1 and 0 < δ0 < 1;

Step 0. Set p = 0 and m = n− p̄ ;

while p < p̄ do

Step 1. p← p+ 1 and m← m+ 1 ;

Step 2. Estimate PACF at lag p, i.e., τ̂p ;

Step 3. Compute the approximate leverage scores ˆ̀
m,p(i) for i = 1, . . . ,m − p as in

(16a) ;

Step 4. Compute the sampling distribution π̂m,p(i) for i = 1, . . . ,m− p as in (16d) ;

Step 5. Set s as in (11) by replacing d with p, δ = δ0/p, and β with the bound given
in Theorem 14 ;

Step 6. Form the s × m sampling matrix S by randomly choosing s rows of the
corresponding identity matrix according to the probability distribution found in Step
4, with replacement, and rescaling them with the factor (9) ;

Step 7. Construct the sampled data matrix X̂m,p = SXm,p and response vector ŷm,p =
Sym,p ;

Step 8. Solve the associated reduced OLS problem to estimate the parameters φ̂m,p

and residuals r̂m,p as in (16b) and (16c), respectively ;

end while

Step 9. Estimate p∗ as the largest p such that |τ̂p| ≥ 1.96/
√
s ;

Output: Estimated order p∗ and parameters φ̂n−p̄+p∗,p∗ .

Remark 15 For the overall failure probability, recall that in order to get an accumulative
success probability of 1−δ0 for p̄ iterations, the per-iteration failure probability is set as δ =
1− p̄
√

1− δ0 ∈ Ω(δ0/p̄). However, since this dependence manifest itself only logarithmically,
it is of negligible consequence in overall complexity.

The quality of the fitted model by the LSAR algorithm depends on two crucial ingredients,
the order of the underlying AR model as well the accuracy of the estimated parameters. The
latter is guaranteed by Theorem 9. For the former, Theorem 16 shows that for small enough
ε, the LSAR algorithm can estimate the same model order as that using the full data matrix.

Let τp and τ̂p be the PACF values estimated using the CMLE of parameter vectors based

on the full and sampled data matrices, φn,p−1 and φ̂n,p−1, respectively.
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Theorem 16 (LSAR Model-order Estimation) Consider a causal AR(p∗) model and let
0 < ε, δ < 1. For sampling with fully-approximate leverage scores using a sample size s as
in (11) with d = p∗ and β as in Theorem 14 with p = p∗, we have with probability at least
1− δ,

|τ̂p| ≥ |τp| − c1

√
ε, for p = p∗, (17a)

|τ̂p| ≤ |τp|+ c2

√
(p− 1)ε, for p > p∗, (17b)

where c1 and c2 are bounded positive constants depending on a given realization of the model.

Theorem 16 implies that, when |τp∗ | ≥ 1.96/
√
n and |τp| ≤ 1.96/

√
n for p > p∗, with high

probability, we are guaranteed to have |τ̂p∗ | ≥ 1.96/
√
n−O(

√
ε) and |τ̂p| ≤ 1.96/

√
n+O(

√
ε)

for p > p∗, respectively. In practice, we can consider a larger bandwidth of size 2×1.96/
√
s;

see the experiments of Section 4.
Theorem 17 gives the overall running time of the LSAR algorithm.

Theorem 17 (LSAR Computational Complexity) The worst case time complexity of

the LSAR algorithm for an input AR(p∗) time series data is O
(
np∗ + p∗

4
log p∗/ε2

)
, with

probability at least 1− δ0 (0 < δ0 < 1) and the pth iteration of the algorithm has δ = δ0/p,
which appears in the log for each sample size.

Remark 18 We believe that the restriction on ε given by Theorem 17 is highly pessimistic
and merely a by-product of our proof techniques here. As evidenced by numerical experi-
ments, e.g., Figure 2, we conjecture that a more sensible bound is 0 < ε ≤ (log p∗)−2; see
also the discussion in the last paragraph of Section 2 and Theorem 5. In fact, even the tight
bounds on the sample size for RandNLA routines rarely manifest themselves in practice
(Roosta-Khorasani et al. 2015; Mahoney 2011, 2016). Guided by these observations, in our
numerical experiments of Section 4, we set our sample sizes at factions of the total data,
e.g., s = 0.001n, even for small values of p∗.

4. Empirical Results

In this section, we present the performance of the LSAR algorithm on several synthetic as
well as real big time series data. The numerical experiments are run in MATLAB R2018b
on a 64-bit windows server with dual processor each at 2.20GHz with 128 GB installed
RAM.

The numerical results reveal the efficiency of the LSAR algorithm, as compared with the
classical alternative using the entire data. More precisely, it is illustrated that by sam-
pling only 0.1% of the data, not only are the approximation errors kept significantly small,
but also the underlying computational times are considerably less than the corresponding
exact algorithms.

We present our numerical analysis in three subsequent sections. In Section 4.1, we report
the computational times as well as the quality of leverage score approximations (16a) on
three synthetically generated data by running Steps 0-8 of the LSAR algorithm. Analogously,
Section 4.2 shows similar results for estimating PACF (i.e., the output of Step 2 in the LSAR

algorithm). Finally, Section 4.3 displays the performance of the LSAR algorithm on a real
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big time series data. It should be noted that all computational times reported in this section
are in “seconds”.

4.1 Synthetic Data: Verification of Theory

We generate synthetic large-scale time series data with two million realizations from the
models AR(20), AR(100), and AR(200). For each data set, the leverage scores over a range
of lag values (i.e., the variable h in the LSAR algorithm) are calculated once by using the
exact formula as given in Theorem 6, and another time by estimating the fully-approximate
leverage scores as defined in (16a). The latter is computed by running Steps 0-8 of the LSAR

algorithm with s = 0.001n = 2000.

Figure 1 displays and compares the quality and run time between the fast sampled
randomized Hadamard transform (SRHT) approximation technique developed by Drineas
et al. (2012) and (16). At each lag p, the maximum pointwise relative error (MPRE, for short)
is defined by

max
1≤i≤n−p

{
|ˆ̀n,p(i)− `n,p(i)|

`n,p(i)

}
. (18)

As displayed in Figures 1a to 1c, while the MPRE curves have sharp increase at the
beginning and then quickly converge to an upper limit around 0.1670 for fully-approximate
leverage scores, the output of SRHT seems to converge around 3. This demonstrates the
high-quality of the fully-approximate leverage scores using only 0.1% of the rows of the data
matrix. More interestingly, Figures 1d to 1f demonstrate the computational efficiency of
the fully-approximate leverage scores. In light of the inferior performance of SRHT, both
in terms of the quality of approximation and also run time, in the subsequent experiments,
we will no longer consider SRHT approximation alternative.

Figures 1a to 1c suggest that the upper bound provided in Theorem 13 might be im-
proved by replacing p− 1 with an appropriate scaled function of log(p). This observation is
numerically investigated in Figure 2. In this figure (which in logarithmic scale), the MPRE

(18) (in blue) is compared with the right hand side (RHS) of Theorem 13 (in red) as well as
the RHS of Theorem 13 with p − 1 replaced with a scaled log(p) (in green). These results
are in strong agreement with Theorems 5 and 18. Indeed, improving the dependence of the
RHS of Theorem 13 on p is an interesting problem, which we intend to address in future
works.

Figure 3 exhibits the impact of the data size n and the sample size s on MPRE for the
AR(100) synthetic data. More precisely, this figure demonstrates MPRE for values of n ∈
{500K, 1M, 2M} (where, K and M stand for “thousand” and “million”, respectively) and
s ∈ {0.001n, 0.01n, 0.1n}. Clearly, for each fixed value of n, by increasing s, MPRE decreases.
Furthermore, for each fixed ratio of s/n, by increasing n, s increases and accordingly MPRE

decreases. It is clear that more data amounts to smaller approximation errors.

4.2 PACF: Computational Time and Estimation Accuracy

In this section, using the same synthetic data as in Section 4.1, we estimate PACF and
fit an AR model. More precisely, for each data set, PACF is estimated for a range of lag
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(a) AR(20) (b) AR(100) (c) AR(200)

(d) AR(20) (e) AR(100) (f) AR(200)

Figure 1: Figures (a), (b) and (c) correspond to AR(20), AR(100), and AR(200) using syn-
thetic data, respectively, and display the MPRE (18) versus the lag values h for
fully-approximate and the SRHT method. Similarly, Figures (d), (e), and (f) rep-
resent the computational time spent, in seconds, to compute the fully-approximate
leverage scores (in blue), the SRHT approximation (in magenta), and the exact
leverage scores (in red) on AR(20), AR(100), and AR(200) using synthetic data,
respectively.

(a) AR(20) (b) AR(100) (c) AR(200)

Figure 2: Figures (a), (b) and (c) correspond to AR(20), AR(100), and AR(200) with syn-
thetic data, respectively. Here, we display the MPRE (18) (in blue), the RHS of
Theorem 13 (in red) and RHS of Theorem 13 with p − 1 replaced with a scaled
log(p) (in green).

values h, once by solving the corresponding OLS problem with the full-data matrix (called,
“exact”), and another time by running the LSAR algorithm (Algorithm 1).

The numerical results of these experiments for the three synthetic data sets are displayed
in Figure 4. As explained in Section 2.1, the most important application of a PACF plot
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(a) n = 500K, s = 0.001n (b) n = 500K, s = 0.01n (c) n = 500K, s = 0.1n

(d) n = 1M, s = 0.001n (e) n = 1M, s = 0.01n (f) n = 1M, s = 0.1n

(g) n = 2M, s = 0.001n (h) n = 2M, s = 0.01n (i) n = 2M, s = 0.1n

Figure 3: The impact of the data size n ∈ {500K, 1M, 2M} and the sample size s ∈
{0.001n, 0.01n, 0.1n} on MPRE for the AR(100) synthetic data.

is estimating the order p by choosing the largest lag h such that its corresponding PACF
bar lies out of the 95% zero-confidence boundary. It is readily seen that Figures 4b, 4e
and 4h not only provide the correct estimate of the order p for the generated synthetic
data, but also are very close to the exact PACF plots in Figures 4a, 4d and 4g. This is
achieved all the while by merely sampling only 0.1% of the rows of the data matrix (i.e.,
s = 0.001, n = 2000). Subsequently, from Figures 4c, 4f and 4i, one can observe a significant
difference in the time required for computing PACF exactly as compared with obtaining a
high-quality approximation using the LSAR algorithm.

Remark 19 Following Theorem 3, finding PACF at each lag requires the solution to the
corresponding OLS problem. Hence, to avoid duplication, the computational times of Steps
4-8 of the LSAR algorithm are excluded in Figure 1. Indeed, those computational times are
considered in Figure 4.

To show the accuracy of maximum likelihood estimates generated by the LSAR algorithm,
the estimates derived by the two scenarios of “full-data matrix” and “reduced data matrix”
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(a) AR(20) (b) AR(20) (c) AR(20)

(d) AR(100) (e) AR(100) (f) AR(100)

(g) AR(200) (h) AR(200) (i) AR(200)

Figure 4: Figures (a), (b) and (c) corresponding to the AR(20) synthetic data, display the
exact PACF plot, the PACF plot generated by the LSAR algorithm, and the com-
parison between the computational time of (a) (in red) and (b) (in blue), respec-
tively. Figures (d), (e) and (f) are similar for the AR(100) synthetic data; and
Figures (g), (h) and (i) are similar for the AR(200) synthetic data.

are relatively compared. For this purpose, following notation defined in Sections 2 and 3,
let φn,p and φ̂s

n,p denote the maximum likelihood estimates of parameters based on the
full-data matrix (cf. Equation 2) and reduced sampled data matrix with the sample size of
s (cf. Equation 16c), respectively. Accordingly, we define the relative error of parameter
estimates by

||φ̂s
n,p − φn,p||
||φn,p||

. (19a)

Analogously, let rn,p and r̂sn,p be the residuals of estimates based on the full-data matrix
(cf. Equation 4) and reduced sampled data matrix with the sample size of s (cf. Equation
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(a) (19a) for the AR(100) data (b) (19b) for the AR(100) data

Figure 5: Figures (a) and (b) display the relative error of parameter estimates (19a) and the
ratio of residual norms (19b) for the AR(100) synthetic data, respectively, both as
a function of sample size s.

16b), respectively. The ratio of two residual norms is given by∥∥r̂sn,p∥∥
‖rn,p‖

. (19b)

The two ratios (19a) and (19b) are calculated for a range of values of s ∈ {200, 300, . . . ,
1000} by computing the maximum likelihood estimates of the AR(100) synthetic data once
with the full-data matrix and another time by running the LSAR algorithm. Also, the
estimates are smoothed out by replicating the LSAR algorithm 1, 000 times and taking the
average of all estimates. The outcome is displayed in Figure 5. Figure 5a displays the
relative errors of parameter estimates (19a) versus the sample size s and Figure 5b shows
the ratio of residual norms (19b) versus the sample size s.

4.3 Real-world Big Time Series: Gas Sensors Data

Huerta et al. (2016) studied the accuracy of electronic nose measurements. They con-
structed a nose consisting of eight different metal-oxide sensors in addition to humidity
and temperature sensors with a wireless communication channel to collect data. The nose
monitored airflow for two years in a designated location, and data continuously collected
with a rate of two observations per second. In this configuration, a standard energy band
model for an n−type metal-oxide sensor was used to estimate the changes in air tempera-
ture and humidity. Based on their observations, humidity changes and correlated changes
of humidity and temperature were the most significant statistical factors in variations of
sensor conductivity. The model successfully used for gas discrimination with an R-squared
close to 1.

The data is available in the UCI machine learning repository2. In our experiment, we use
the output of sensor number 8 (column labeled R8 in the data set) as real time series data
with n = 919, 438 observations. The original time series data is heteroscedastic. However,
by taking the logarithm of the data and differencing in one lag, it becomes stationary and
an AR(16) model seems to be a good fit to the transformed data. We run the LSAR algorithm

2. https://archive.ics.uci.edu/ml/datasets/Gas+sensors+for+home+activity+monitoring, Ac-
cessed on 14 January 2022.
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(a) MPRE (b) Computational time

Figure 6: Figure (a) displays the MPRE (18) (in blue), the RHS of Theorem 13 (in red) and
the RHS of Theorem 13 with p−1 replaced with a scaled log(p) (in green) for the
real gas sensors data, Figure (b) shows the computational time spent, in seconds,
to compute the fully-approximate (in blue) and exact (in red) leverage scores for
the real gas sensors data.

with the initial input parameter p̄ = 100. Recalling that p̄ (p < p̄� n) is initially set large
enough to estimate the order p of the underlying AR model. Also, in all iterations of the
LSAR algorithm, we set the sample size s = 0.001n. For sake of fairness and completeness,
all figures generated for synthetic data in Sections 4.1 and 4.2, are regenerated for the gas
sensors data.

Figure 6a shows (in logarithmic scale) the maximum pointwise relative error (18) (in
blue) along with the RHS of Theorem 13 (in red) as well as the RHS of Theorem 13 with
p− 1 replaced with a scaled log(p) (in green). The behavior of these three graphs are very
similar to those ones on synthetic data discussed in Section 4.1. Furthermore, Figure 6b
reveals analogous computational efficiency in finding the fully-approximate leverage scores
comparing with the exact values for the gas sensors data.

Leverage score sampling versus uniform sampling. In order to show the efficacy
of the LSAR algorithm, we compare the performance of leverage score sampling with näıve
uniform sampling in estimating the order as well as parameters of an AR model for the gas
sensor data. For the uniform sampling, we modify the LSAR algorithm slightly by removing
Step 3 and replacing the uniform distribution π̂m,p(i) = 1/(m − p) for i = 1, . . . ,m − p in
Step 4.

Figures 7a to 7d demonstrate the PACF plot calculated exactly, the PACF plot approxi-
mated with the LSAR algorithm, the PACF plot approximated based on a uniform sampling,
and a comparison between the computational times of these three PACF plots, respectively.
Similar to Section 4.2, Figure 7d reveals that while Figure 7b can be generated much faster
than Figure 7a, they both suggest the same AR model for the gas sensors data. In addition,
Figures 7c and 7d divulge that although the uniform sampling is slightly faster than the
LSAR algorithm, the PACF plot generated by the former is very poor and far away from the
exact plot given in Figure 7a. While both Figures 7a and 7b estimate an AR(16) model for
the data, Figure 7c fails to make an appropriate estimate of the order.

Finally, we compare the performance of leverage score sampling with näıve uniform
sampling in estimating the parameters of an AR(16) model for the gas sensor data. Figure 8
compares the performance of these two sampling strategies for sample sizes chosen from
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(a) Exact (b) LSAR

(c) Uniform (d) Computational time

Figure 7: Figures (a), (b), (c) and (d) display the exact PACF plot, the PACF plot generated
by the LSAR algorithm, the PACF plot approximated based on a uniform sampling,
and the comparison between the computational time of (a) (in red), (b) (in blue),
and (c) (in pink), respectively.

s ∈ {200, 300, . . . , 1000}. For each sampling scheme and a fixed sample size, the maximum
likelihood estimates are smoothed out by replicating the LSAR algorithm 1, 000 times and
taking the average of all estimates. Note that in all three Figures 8a to 8c, the blue and
red plots correspond with the leverage score and uniform sampling scheme, respectively.

Figure 8a displays the relative errors of parameter estimates (19a) and Figure 8b shows
the ratio of residual norms (19b), under the two sampling schemes. Both figures strongly
suggest that the leverage score sampling scheme outperforms the uniform sampling scheme.
Furthermore, while the output of the former shows stability and almost monotonic con-
vergence, the latter exhibits oscillations and does not show any indication of convergence
for such small sample sizes. This observation is consistent with the literature discussed in
Section 2.2. Despite the fact uniform sampling can be performed almost for free, Figure 8c
shows no significant difference between the computational time of both sampling scheme.

Finally, in our numerical examples, depending on the order of the AR model, the time
difference between the exact method and the LSAR algorithm for model fitting vary between
75 to 1600 seconds. In many practical situations, one might need to fit hundreds of such
models and make time-sensitive decisions based on the generated forecasts, before new data
is provided. One such example is predicting several stock prices in a financial market for
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(a) Relative error (19a) (b) Ratio of residuals (19b) (c) Computational time

Figure 8: Figures (a), (b) and (c) display the relative error of parameter estimates (19a),
the ratio of residual norms (19b), and the computational time of two sampling
schemes based on the leverage scores (blue) and uniform distribution (pink) for
the gas sensors data, respectively.

portfolio optimization, while the prices may be updated every few seconds. Another practi-
cal example is predicting the meteorology indices for several different purposes, with updates
becoming available every few minutes. In these situations, saving a few seconds/minutes in
forecasting can be crucial.

5. Conclusion

In this paper, we have developed a new approach to fit an AR model to big time series data.
Motivated from the literature of RandNLA in dealing with large matrices, we construct a
fast and efficient algorithm, called LSAR, to approximate the leverage scores corresponding
to the data matrix of an AR model, to estimate the appropriate underlying order, and
to find the conditional maximum likelihood estimates of its parameters. Analytical error
bounds are developed for such approximations and the worst case running time of the LSAR

algorithm is derived. Empirical results on large-scale synthetic as well as big real time series
data highly support the theoretical results and reveal the efficacy of this new approach.

For future work, we are mainly interested in developing this approach for a more general
ARMA model. However, unlike AR, the (conditional) log-likelihood function for ARMA is a
complicated non-linear function such that (C)MLEs cannot be derived analytically. Thus,
it may require to exploit not only RandNLA techniques, but also modern optimization
algorithms in big data regime to develop an efficient leverage score sampling scheme for
ARMA models.
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Appendix A. Technical Lemmas and Proofs

A.1 Proof of Theorem 7

We first present Theorem 20 which is used in the proof of Theorem 7.

Lemma 20 (Golub and Van Loan 1983) Consider the 2× 2 block matrix

M =

c b
ᵀ

b A

 ,

where A, b, and c are an m ×m matrix, an m × 1 vector and a scalar, respectively. If A
is invariable, the inverse of matrix M exists an can be calculated as follows

M−1 =
1

k

 1 −bᵀA−1

−A−1b kA−1 +A−1bb
ᵀ
A−1

 ,

where k = c− bᵀA−1b.

Proof of Theorem 7

Proof For p = 1, computing the leverage score trivially boils down to normalizing the data
vector. For p ≥ 2, the data matrix is given by

Xn,p =
(
yn−1,p−1 Xn−1,p−1

)
.

So, we have

X
ᵀ
n,pXn,p =

 yᵀn−1,p−1yn−1,p−1 y
ᵀ
n−1,p−1Xn−1,p−1

X
ᵀ
n−1,p−1yn−1,p−1 X

ᵀ
n−1,p−1Xn−1,p−1

 .

For sake of simplicity, let us define

Wn,p := X
ᵀ
n,pXn,p.

Following Theorem 20, the inverse of matrix Wn,p is given by

W−1
n,p =

1

un,p

 1 −φᵀ
n−1,p−1

−φn−1,p−1 un,pW
−1
n−1,p−1 + φn−1,p−1φ

ᵀ
n−1,p−1

 ,

where

un,p := y
ᵀ
n−1,p−1yn−1,p−1 − y

ᵀ
n−1,p−1Xn−1,p−1W

−1
n−1,p−1X

ᵀ
n−1,p−1yn−1,p−1
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= y
ᵀ
n−1,p−1yn−1,p−1 − y

ᵀ
n−1,p−1Xn−1,p−1φn−1,p−1.

It is readily seen that

un,p := y
ᵀ
n−1,p−1yn−1,p−1 − 2y

ᵀ
n−1,p−1Xn−1,p−1φn−1,p−1 + y

ᵀ
n−1,p−1Xn−1,p−1φn−1,p−1

= y
ᵀ
n−1,p−1yn−1,p−1 − 2y

ᵀ
n−1,p−1Xn−1,p−1φn−1,p−1

+ y
ᵀ
n−1,p−1Xn−1,p−1W

−1
n−1,p−1Wn−1,p−1φn−1,p−1

= y
ᵀ
n−1,p−1yn−1,p−1 − 2y

ᵀ
n−1,p−1Xn−1,p−1φn−1,p−1 + φ

ᵀ
n−1,p−1Wn−1,p−1φn−1,p−1

= y
ᵀ
n−1,p−1yn−1,p−1 − 2y

ᵀ
n−1,p−1Xn−1,p−1φn−1,p−1

+ φ
ᵀ
n−1,p−1X

ᵀ
n−1,p−1Xn−1,p−1φn−1,p−1

= ‖yn−1,p−1 −Xn−1,p−1φn−1,p−1‖2

= ‖rn−1,p−1‖2 .

The ith leverage score is given by

`n,p(i) = X
ᵀ
n,p(i, :)W

−1
n,pXn,p(i, :)

=
[
yi+p−1 X

ᵀ
n−1,p−1(i, :)

]
W−1

n,p

[
yi+p−1

Xn−1,p−1(i, :)

]
=

1

‖rn−1,p−1‖2
[
yi+p−1 −X

ᵀ
n−1,p−1(i, :)φn−1,p−1

−yi+p−1φ
ᵀ
n−1,p−1 +X

ᵀ
n−1,p−1(i, :)(‖rn−1,p−1‖2W−1

n−1,p−1 + φn−1,p−1φ
ᵀ
n−1,p−1)

]
×
[

yi+p−1

Xn−1,p−1(i, :)

]
=

1

‖rn−1,p−1‖2
(
y2
i+p−1 −X

ᵀ
n−1,p−1(i, :)φn−1,p−1yi+p−1 − yi+p−1φ

ᵀ
n−1,p−1Xn−1,p−1(i, :)

+X
ᵀ
n−1,p−1(i, :)(‖rn−1,p−1‖2W−1

n−1,p−1 + φn−1,p−1φ
ᵀ
n−1,p−1)Xn−1,p−1(i, :)

)
= X

ᵀ
n−1,p−1(i, :)W−1

n−1,p−1Xn−1,p−1(i, :)

+
1

‖rn−1,p−1‖2
(
y2
i+p−1 − 2yi+p−1X

ᵀ
n−1,p−1(i, :)φn−1,p−1 + (X

ᵀ
n−1,p−1(i, :)φn−1,p−1)2

)
= `n−1,p−1(i) +

1

‖rn−1,p−1‖2
∥∥yi+p−1 −X

ᵀ
n−1,p−1(i, :)φn−1,p−1

∥∥2

= `n−1,p−1(i) +
r2
n−1,p−1(i)

‖rn−1,p−1‖2
.
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A.2 Theorem 21 and Its Proof

Theorem 21 (Relative Errors for Quasi-approximate Leverage Scores) For the quasi-
approximate leverage scores, we have with probability at least 1− δ,

|`n,p(i)− ˜̀
n,p(i)|

`n,p(i)
≤
(
1 + 3ηn−1,p−1κ

2(Xn,p)
)√

ε, for i = 1, . . . , n− p,

recalling that ηn,p, κ(Xn,p), and ε are as in Theorem 9.

In order to prove Theorem 21, we first introduce the following lemmas and corollary.

Lemma 22 The leverage scores of an AR(p) model for p ≥ 1, are given by

`n,p(i) = min
z∈Rn−p

{
‖z‖2 |Xᵀ

n,pz = Xn,p(i, :)
}
, for i = 1, . . . , n− p,

where Xn,p is the data matrix of the AR(p) model defined in (3).

Proof We prove this lemma by using Lagrangian multipliers. Define the function

h(z,λ) :=
1

2
z
ᵀ
z − λᵀ

(X
ᵀ
n,pz −Xn,p(i, :)).

By taking the first derivative with respect to the vector z and setting equal to zero, we
have,

∂h(z,λ)

∂z
= z −Xn,pλ = 0 ⇒ z? = Xn,pλ

?.

Now, by multiplying both sides by X
ᵀ
n,p, we obtain,

X
ᵀ
n,pz

? = X
ᵀ
n,pXn,pλ

?,

simplified to

Xn,p(i, :) = X
ᵀ
n,pXn,pλ

?.

This implies that,

λ? = (X
ᵀ
n,pXn,p)

−1Xn,p(i, :).

Thus,

z? = Xn,p(X
ᵀ
n,pXn,p)

−1Xn,p(i, :).

The square of the norm of z? is equal to

‖z?‖2 =
(
X

ᵀ
n,p(i, :)(X

ᵀ
n,pXn,p)

−1X
ᵀ
n,p

) (
Xn,p(X

ᵀ
n,pXn,p)

−1Xn,p(i, :)
)

= X
ᵀ
n,p(i, :)(X

ᵀ
n,pXn,p)

−1Xn,p(i, :)

= `n,p(i).
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Lemma 23 For an AR(p) model with p ≥ 1, we have

‖Xn,p(i, :)‖ ≤ ‖Xn,p‖
√
`n,p(i), for i = 1, . . . , n− p,

where Xn,p and `n,p(i) are defined, respectively, in (3) and Theorem 6.

Proof From Theorem 22 we have,

‖Xn,p(i, :)‖ =
∥∥Xᵀ

n,pz
?
∥∥

≤
∥∥Xᵀ

n,p

∥∥ ‖z?‖
= ‖Xn,p‖

√
`n,p(i).

Lemma 24 For an AR(p) model with p ≥ 1, we have

|rn,p(i)− r̃n,p(i)| ≤
√
εηn,p ‖φn,p‖ ‖Xn,p‖

√
`n,p(i), for i = 1, . . . , n− p,

where rn,p, r̃n,p, ηn,p,φn,p,Xn,p, and `n,p(i) are defined respectively in (4), (13b), (14c), (2),
(3), and Theorem 6 and ε is the error in (14a).

Proof From (14b) and the definition of l2 norm, we have〈
Xn,p(i, :)

‖Xn,p(i, :)‖
, (φn,p − φ̃n,p)

〉
≤
∥∥∥φn,p − φ̃n,p

∥∥∥
≤
√
εηn,p ‖φn,p‖ .

So, we have

X
ᵀ
n,p(i, :)φn,p −X

ᵀ
n,p(i, :)φ̃n,p ≤

√
εηn,p ‖φn,p‖ ‖Xn,p(i, :)‖ .

Now by adding and subtracting yi+p on the left hand side, we yield(
yi+p −X

ᵀ
n,p(i, :)φ̃n,p

)
−
(
yi+p −X

ᵀ
n,p(i, :)φn,p

)
≤
√
εηn,p ‖φn,p‖ ‖Xn,p(i, :)‖ ,

implying that,

r̃n,p(i)− rn,p(i) ≤
√
εηn,p ‖φn,p‖ ‖Xn,p(i, :)‖ .

As analogously we can construct a similar inequality for rn,p(i)− r̃n,p(i), we have that

|rn,p(i)− r̃n,p(i)| ≤
√
εηn,p ‖φn,p‖ ‖Xn,p(i, :)‖ .

Now, by using Theorem 23, we obtain

|rn,p(i)− r̃n,p(i)| ≤
√
εηn,p ‖φn,p‖ ‖Xn,p‖

√
`n,p(i).
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Lemma 25 Let {y1, . . . , yn} be a time series data. For i = 1, . . . , n− p, we have

|rn−1,p−1(i)| ≤
√
‖φn−1,p−1‖2 + 1 ‖Xn,p‖

√
`n,p(i), (20a)

|r̃n−1,p−1(i)| ≤
√∥∥∥φ̃n−1,p−1

∥∥∥2
+ 1 ‖Xn,p‖

√
`n,p(i), (20b)

where rn,p, r̃n,p,φn,p, φ̃n,p,Xn,p, and `n,p(i) are defined respectively in (4), (13b), (2), (13a),
(3), and Theorem 6.

Proof The left hand side of (20a) can be written as below:

|rn−1,p−1(i)| = |yi+p−1 −X
ᵀ
n−1,p−1(i, :)φn−1,p−1|

= |
[
yi+p−1 X

ᵀ
n−1,p−1(i, :)

] [
1 −φᵀ

n−1,p−1

]ᵀ
|

= |Xᵀ
n,p(i, :)

[
1 −φᵀ

n−1,p−1

]ᵀ
|

=

√
‖φn−1,p−1‖2 + 1

∣∣∣∣∣∣Xᵀ
n,p(i, :)

[
1 −φᵀ

n−1,p−1

]ᵀ√
‖φn−1,p−1‖2 + 1

∣∣∣∣∣∣
≤
√
‖φn−1,p−1‖2 + 1 ‖Xn,p(i, :)‖ .

Now, by using Theorem 23, we obtain,

|rn−1,p−1(i)| ≤
√
‖φn−1,p−1‖2 + 1 ‖Xn,p‖

√
`n,p(i).

Inequality (20b) can be proved analogously.

Lemma 26 Let {y1, . . . , yn} be a time series data. We have,

(rn−1,p−1(i))2

‖rn−1,p−1‖2
≤ `n,p(i), for i = 1, . . . , n− p,

where rn,p and `n,p(i) are defined respectively in (4) and Theorem 6.

Proof Since the leverage score is a non-negative valued function, the proof is directly
achieved from Theorem 7.

Lemma 27 Let {y1, . . . , yn} be a time series data. We have

‖rn−1,p−1‖ ≥
√
λmin(Xᵀ

n,pXn,p)
(
‖φn−1,p−1‖2 + 1

)
, (21a)

‖r̃n−1,p−1‖ ≥

√
λmin(Xᵀ

n,pXn,p)

(∥∥∥φ̃n−1,p−1

∥∥∥2
+ 1

)
, (21b)

where rn,p, r̃n,p,φn,p, φ̃n,p, and Xn,p are defined respectively in (4), (13b), (2), (13a), and
(3) and λmin(.) denotes the minimum eigenvalue.
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Proof Consider (21a), by definition, we have

‖rn−1,p−1‖ = ‖yn−1,p−1 −Xn−1,p−1φn−1,p−1‖

=
∥∥∥(yn−1,p−1 Xn−1,p−1

) [
1 −φᵀ

n−1,p−1

]ᵀ∥∥∥
=
∥∥∥Xn,p

[
1 −φᵀ

n−1,p−1

]ᵀ∥∥∥
=

√[
1 −φᵀ

n−1,p−1

]
Xᵀ

n,pXn,p

[
1 −φᵀ

n−1,p−1

]ᵀ
≥
√
λmin(Xᵀ

n,pXn,p)
∥∥[1 −φᵀ

n−1,p−1

]∥∥
=

√
λmin(Xᵀ

n,pXn,p)
(
‖φn−1,p−1‖2 + 1

)
.

Inequality (21b) is proved analogously.

Lemma 28 For any positive integer numbers 1 < p < n, we have

κ(Xn−1,p−1) ≤ κ(Xn,p),

where Xn,p is defined in (3) an κ(.) denotes the condition number.

Proof It is readily seen that the matrix Xn,p can be written in the form of

Xn,p =
(
yn,p Xn−1,p−1

)
.

On the other hand, by definition, we know that

λmax(X
ᵀ
n,pXn,p) = sup

‖ν‖≤1
ν
ᵀ
X

ᵀ
n,pXn,pν.

Let u be a unit vector corresponding to the maximum eigenvalue λmax(X
ᵀ
n−1,p−1Xn−1,p−1)

and construct the vector

ū :=
[
0 u

ᵀ]ᵀ
.

We have

λmax(X
ᵀ
n,pXn,p) ≥ ū

ᵀ
X

ᵀ
n,pXn,pū

= u
ᵀ
X

ᵀ
n−1,p−1Xn−1,p−1u

= λmax(X
ᵀ
n−1,p−1Xn−1,p−1).

Analogously, one can show that λmin(X
ᵀ
n,pXn,p) ≤ λmin(X

ᵀ
n−1,p−1Xn−1,p−1). Thus, we have

κ(Xn,p) =

√
λmax(Xᵀ

n,pXn,p)

λmin(Xᵀ
n,pXn,p)
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≥

√
λmax(Xᵀ

n−1,p−1Xn−1,p−1)

λmin(Xᵀ
n−1,p−1Xn−1,p−1)

= κ(Xn−1,p−1).

Corollary 29 For any positive integer numbers 1 < p < n, we have

‖Xn−1,p−1‖ ≤ ‖Xn,p‖ ,

where Xn,p is defined in (3).

Proof Since λmax(X
ᵀ
n,pXn,p) = ‖Xn,p‖2, this inequality is directly derived from the proof

of Theorem 28.

Proof of Theorem 21

Proof By using Theorems 7 and 9, we have

|`n,p(i)− ˜̀
n,p(i)| =

∣∣∣∣∣`n−1,p−1(i) +
(rn−1,p−1(i))2

‖rn−1,p−1‖2
− `n−1,p−1(i)− (r̃n−1,p−1(i))2

‖r̃n−1,p−1‖2

∣∣∣∣∣
=

∣∣∣∣∣(rn−1,p−1(i))2

‖rn−1,p−1‖2
− (rn−1,p−1(i))2

‖r̃n−1,p−1‖2
+

(rn−1,p−1(i))2

‖r̃n−1,p−1‖2
− (r̃n−1,p−1(i))2

‖r̃n−1,p−1‖2

∣∣∣∣∣
≤

∣∣∣∣∣(rn−1,p−1(i))2

‖rn−1,p−1‖2
− (rn−1,p−1(i))2

‖r̃n−1,p−1‖2

∣∣∣∣∣+

∣∣∣∣∣(rn−1,p−1(i))2

‖r̃n−1,p−1‖2
− (r̃n−1,p−1(i))2

‖r̃n−1,p−1‖2

∣∣∣∣∣
≤ (rn−1,p−1(i))2

∣∣∣∣∣ 1

‖rn−1,p−1‖2
− 1

‖r̃n−1,p−1‖2

∣∣∣∣∣
+

1

‖r̃n−1,p−1‖2
∣∣∣(rn−1,p−1(i))2 − (r̃n−1,p−1(i))2

∣∣∣

≤ (rn−1,p−1(i))2

∣∣∣∣∣ 1

‖rn−1,p−1‖2
− 1

(1 + ε)2 ‖rn−1,p−1‖2

∣∣∣∣∣
+

1

‖rn−1,p−1‖2
|(rn−1,p−1(i)− (r̃n−1,p−1) (i)) (rn−1,p−1(i) + (r̃n−1,p−1) (i))|

≤ ε2 + 2ε

(1 + ε)2

(rn−1,p−1(i))2

‖rn−1,p−1‖2

+
1

‖rn−1,p−1‖2
|rn−1,p−1(i)− (r̃n−1,p−1) (i)|

× (|rn−1,p−1(i)|+ | (r̃n−1,p−1) (i)|) .
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Now, from Theorems 24 to 26, we have

|`n,p(i)− ˜̀
n,p(i)| ≤

ε2 + 2ε

(1 + ε)2
`n,p(i)

+
1

‖rn−1,p−1‖2

(√
εηn−1,p−1 ‖φn−1,p−1‖ ‖Xn−1,p−1‖

√
`n−1,p−1(i)

)
×
(√
‖φn−1,p−1‖2 + 1 ‖Xn,p‖

√
`n,p(i)

+

√∥∥∥φ̃n−1,p−1

∥∥∥2
+ 1 ‖Xn,p‖

√
`n,p(i)

)

≤

(√
ε(2 + ε)

(1 + ε)2
+
ηn−1,p−1 ‖φn−1,p−1‖ ‖Xn−1,p−1‖ ‖Xn,p‖

‖rn−1,p−1‖2

×

(√
‖φn−1,p−1‖2 + 1 +

√∥∥∥φ̃n−1,p−1

∥∥∥2
+ 1

))
√
ε`n,p(i)

≤

(
1 +

ηn−1,p−1 ‖φn−1,p−1‖ ‖Xn−1,p−1‖ ‖Xn,p‖
‖rn−1,p−1‖2

×

(√
‖φn−1,p−1‖2 + 1 +

√∥∥∥φ̃n−1,p−1

∥∥∥2
+ 1

))
√
ε`n,p(i).

Motivated from Theorem 27 along with using Theorem 29, we obtain

|`n,p(i)− ˜̀
n,p(i)| ≤

(
1 +

ηn−1,p−1 ‖φn−1,p−1‖ ‖Xn−1,p−1‖ ‖Xn,p‖
‖rn−1,p−1‖

×


√
‖φn−1,p−1‖2 + 1

‖rn−1,p−1‖
+

√∥∥∥φ̃n−1,p−1

∥∥∥2
+ 1

‖rn−1,p−1‖


√ε`n,p(i)

≤

1 +
ηn−1,p−1

√
‖φn−1,p−1‖2 + 1 ‖Xn,p‖2

‖rn−1,p−1‖

×


√
‖φn−1,p−1‖2 + 1

‖rn−1,p−1‖
+

(1 + ε)

√∥∥∥φ̃n−1,p−1

∥∥∥2
+ 1

‖r̃n−1,p−1‖


√ε`n,p(i).

Now, by using Theorem 27, we obtain

|`n,p(i)− ˜̀
n,p(i)| ≤

1 +
ηn−1,p−1λmax(X

ᵀ
n,pXn,p)√

λmin(Xᵀ
n,pXn,p)

×

 1√
λmin(Xᵀ

n,pXn,p)
+

1 + ε√
λmin(Xᵀ

n,pXn,p)

√ε`n,p(i)
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≤

(
1 +

3ηn−1,p−1λmax(X
ᵀ
n,pXn,p)

λmin(Xᵀ
n,pXn,p)

)
√
ε`n,p(i)

=
(
1 + 3ηn−1,p−1κ

2(Xn,p)
)√

ε`n,p(i).

A.3 Proof of Theorem 13

Proof We prove by induction. For p = 2, it is derived directly from Theorem 21. Let us
assume that the statement of theorem is correct for all values of p < p̄, and prove that it is
also correct for p = p̄.

|`n,p̄(i)− ˆ̀
n,p̄(i)| =

∣∣∣∣∣`n−1,p̄−1(i) +
(rn−1,p−1(i))2

‖rn−1,p−1‖2
− ˆ̀

n−1,p̄−1(i)− (r̂n−1,p−1(i))2

‖r̂n−1,p−1‖2

∣∣∣∣∣
≤
∣∣∣`n−1,p̄−1(i)− ˆ̀

n−1,p̄−1(i)
∣∣∣+

∣∣∣∣∣(rn−1,p−1(i))2

‖rn−1,p−1‖2
− (r̂n−1,p−1(i))2

‖r̂n−1,p−1‖2

∣∣∣∣∣
≤
(
1 + 3ηn−2,p̄−2κ

2(Xn−1,p̄−1)
)

(p̄− 2)
√
ε`n−1,p̄−1(i)

+
(
1 + 3ηn−1,p̄−1κ

2(Xn,p̄)
)√

ε`n,p̄(i)

≤
(
1 + 3ηn−1,p̄−1κ

2(Xn,p̄)
)

(p̄− 2)
√
ε`n,p̄(i)

+
(
1 + 3ηn−1,p̄−1κ

2(Xn,p̄)
)√

ε`n,p̄(i)

=
(
1 + 3ηn−1,p̄−1κ

2(Xn,p̄)
)

(p̄− 1)
√
ε`n,p̄(i).

The second last inequality comes from the induction hypothesis as well as Theorem 21 and
the last inequality is from Theorem 28.

A.4 Proof of Theorem 16

Proof From Theorem 9, we have (14b), which in turn implies∣∣∣φn,p∗(k)− φ̂n,p∗(k)
∣∣∣ ≤ √εηn,p∗ ‖φn,p∗‖ , for 1 ≤ k ≤ p∗.

One can estimate the PACF value at lag p∗ using the p∗th component of the CMLE of
the parameter vector based on the full data matrix, i.e., φn,p∗(p∗), (Shumway and Stoffer,
2017, Chapter 3). Hence, (17a) now readily follows by an application of reverse triangular
inequality.
To show (17b), we recall that (Shumway and Stoffer, 2017, Chapter 3)

PACFp =
Cov(p)−

∑p−1
k=1 φkCov(p− k)

σ2
W

,

where Cov(p) is the autocovariance function at lag p and σ2
W is the variance of white noise

series in an AR(p− 1) model. It follows that τp is given by plugin the CMLE of Cov(p), φk
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for k = 1, . . . , p− 1 and σ2
W , that is,

τp =
γ(p)−

∑p−1
k=1φn,p−1(k)γ(p− k)

‖rn,p−1‖2 /n
.

Hence, for p > p∗, we have

|τ̂p| =

∣∣∣γ(p)−
∑p−1

k=1 φ̂n,p−1(k)γ(p− k)
∣∣∣

‖r̂n,p−1‖2 /n

=

∣∣∣γ(p)−
∑p−1

k=1

[(
φ̂n,p−1(k) + φn,p−1(k)− φn,p−1(k)

)
γ(p− k)

]∣∣∣
‖r̂n,p−1‖2 /n

≤ |τp|+

∑p−1
k=1

∣∣∣(φn,p−1(k)− φ̂n,p−1(k)
)
γ(p− k)

∣∣∣
‖rn,p−1‖2 /n

≤ |τp|+
γ(0)

∑p−1
k=1

∣∣∣φn,p−1(k)− φ̂n,p−1(k)
∣∣∣

‖rn,p−1‖2 /n

≤ |τp|+
γ(0)
√
p− 1

∥∥∥φn,p−1 − φ̂n,p−1

∥∥∥
‖rn,p−1‖2 /n

≤ |τp|+
ηn,p ‖φn,p‖ γ(0)

‖rn,p−1‖2 /n

√
(p− 1)ε.

Now, the result follows by noting that ‖rn,p−1‖2 /n is an MLE estimate of σ2
W , and from

convergence in probability of this estimate, we have that, for large enough n, it is bounded
with probability at least 1− δ.

A.5 Proof of Theorem 17

Proof Consider an input AR(p∗) time series data of size n. From Theorem 11, Theo-
rem 13, and Theorem 19, given the fully-approximate leverage scores for the data matrix
corresponding to the AR(p − 1) models for p varying from 2 to p∗, we can estimate those
of AR(p) models in O (n) time. Here, we assume that κ(Xn,p) does not scale with the di-
mension p (at least unfavorably so), and treat it as a constant. Theorem 13 implies that
we must choose 0 < ε ≤ p−2. Now, solving the compressed OLS problem (e.g., applying
QR factorization with Householder reflections) requires O

(
sp2
)

= O
(
p3 log p/ε2

)
. As a

result, the overall complexity of performing the LSAR for an input AR(p∗) time series data

is O
(∑p∗

p=1(n+ p3 log p/ε2)
)

= O
(
np∗ + p∗

4
log p∗/ε2

)
.
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