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Abstract
We propose a novel method for training deep neural networks that are capable of interpola-
tion, that is, driving the empirical loss to zero. At each iteration, our method constructs a
stochastic approximation of the learning objective. The approximation, known as a bundle,
is a pointwise maximum of linear functions. Our bundle contains a constant function that
lower bounds the empirical loss. This enables us to compute an automatic adaptive learning
rate, thereby providing an accurate solution. In addition, our bundle includes linear approx-
imations computed at the current iterate and other linear estimates of the DNN parameters.
The use of these additional approximations makes our method significantly more robust
to its hyperparameters. Based on its desirable empirical properties, we term our method
Bundle Optimisation for Robust and Accurate Training (BORAT). In order to operationalise
BORAT, we design a novel algorithm for optimising the bundle approximation efficiently
at each iteration. We establish the theoretical convergence of BORAT in both convex and
non-convex settings. Using standard publicly available data sets, we provide a thorough
comparison of BORAT to other single hyperparameter optimisation algorithms. Our exper-
iments demonstrate BORAT matches the state-of-the-art generalisation performance for
these methods and is the most robust.
Keywords: Bundle Methods, Stochastic Optimisation, Neural Network Optimisation,
Interpolation, Adaptive Learning-rate

∗Authors contributed equally to this work.

©2022 Alasdair Paren, Leonard Berrada, Rudra P. K. Poudel and M. Pawan Kumar.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v23/20-1248.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/20-1248.html


Paren, Berrada, Poudel and Kumar

1. Introduction

Training a deep neural network (DNN) is a challenging optimization problem: it involves
minimizing the average of many high-dimensional non-convex loss functions. In practice, the
main algorithms utilised are Stochastic Gradient Descent (SGD) (Robbins and Monro, 1951)
and adaptive gradient methods such as AdaGrad (Duchi et al., 2011) or Adam (Kingma
and Welling, 2014). It has been observed that SGD tends to provide better generalization
performance than adaptive gradient methods (Wilson et al., 2017). However, the downside
of SGD is that it requires the manual design of a learning-rate schedule. Many forms
of schedule have been proposed in the literature, including piece wise constant (Huang
et al., 2017), geometrically decreasing (Szegedy et al., 2015) and warm starts with cosine
annealing (Loshchilov and Hutter, 2017). Examples of these schemes are plotted in Figure
1. Consequently, practitioners who wish to use SGD in a novel setting need to select a
learning-rate schedule for their learning task. To that end, they first need to choose the
parameterization of the schedule (e.g. picking one of the examples given above). Then they
need to tune the corresponding parameters to get good empirical performance. This typically
results in a cross-validation that searches over many critical and sensitive hyper-parameters.
For example, a piece wise linear scheme requires a starting learning rate value, a decay
factor and a list or metric to determine at which points in training to decay the learning
rate. Due to the high dimensionality of this search space performing a grid search can mean
training a large number of models. This number increases exponentially in combination with
other hyperparameters such as regularisation and batch size. Thus, finding an SGD learning
rate schedule that produces strong generalisation performance for a new task is time and
computationally demanding, often requiring hundreds of GPU hours.
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Figure 1: SGD Learning rate schedules proposed in the literature

In this work, we alleviate this issue by presenting a family of algorithms that achieve compa-
rable generalisation performance to SGD with a highly refined learning rate schedule, while
requiring far less tuning of hyperparameters. This in turn leads to a reduction in the time,
cost and energy required when finding a highly accurate network for a new task.
In more detail, we present a novel family of proximal algorithms for the optimisation of DNNs
that are capable of interpolation. A DNN is said to interpolate a data set if it has the ability
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to simultaneously drive the loss of all the training samples in a data set to their minimum
value. Thus a lower bound of the objective function is known: for instance, it is close to zero
for a model trained with the cross-entropy loss. Our algorithms approximate the loss within
each proximal problem by a bundle, that is, a point-wise maximum over linear functions.
By including the interpolation lower bound within this bundle, we obtain the following two
modelling benefits: (i) our model more closely mimics the true loss function than existing
baselines like SGD, and; (ii) the learning rate gets automatically re-scaled at each iteration
of the algorithm, thereby providing accurate updates. By increasing the number of linear
approximations in the bundle, the true loss is better modelled. As an upshot, we obtain
additional stability to optimisation and task-specific hyperparameters. Based on its highly
desirable empirical properties, we term these methods Bundle optimization for Robust and
Accurate Training (BORAT).
All the variants of BORAT use a single learning rate hyperparameter that requires minimal
tuning. In particular, the learning rate hyperparameter is kept constant throughout the
training procedure, unlike the learning rate of SGD that needs to be decayed for good gener-
alization. The BORAT family of algorithms obtain state-of-the-art empirical performance
for single hyperparameter training of neural networks.

Contributions

• We design a family of adaptive algorithms that have a single hyperparameter that does
not need any decaying schedule. In contrast, the related APROX (Asi and Duchi, 2019)
and L4 (Rolinek and Martius, 2018) use respectively two and four hyperparameters for
their learning-rate.

• For the deep learning setting we establish a link between stochastic optimisation
methods with adaptive learning rates and proximal bundle methods.

• We provide convergence rates in various stochastic convex settings and for a class of
non-convex problems.

• We derive a novel algorithm for solving small quadratic programs where the constraints
define the probability simplex. This algorithm permits a parallel implementation
allowing for efficient solution on modern hardware.

• We empirically demonstrate the increased stability to hyperparameters when increasing
the bundle size. We show this on the CIFAR100 and Tiny ImageNet data sets.

• We achieve state-of-the-art results for learning a differentiable neural computer; training
variants of residual networks on the SVHN and CIFAR data sets, and training a Bi-
LSTM on the Stanford Natural Language Inference data set.

A preliminary version of this work appeared in the proceedings of ICML 2020 (Berrada et al.,
2019b). While this previous work has considered bundles of size 2 resulting in the ALI-G
algorithm detailed with in Section 3.3. This article significantly differs from the previous
work by (i) considering bundles of size greater than 2; (ii) introducing an novel algorithm
to compute the exact solution of each bundle; (iii) investigating the robustness towards
hyperparameters; and (iv) showing how the use of large bundles permits easy application of
BORAT to challenging non-smooth losses.
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2. Preliminaries

Loss Function. We consider a supervised learning task where the model is parameterized
by w ∈ Rd. Usually, the objective function can be expressed as an expectation over z ∈ Z, a
random variable indexing the samples of the training set:

f(w) , Ez∈Z [`z(w)], (1)

where each `z is the loss function associated with the sample z. We assume that each
`z admits a known lower bound B. For simplicity we will often assume this lower bound
is 0, which is the case for the large majority of loss functions used in machine learning.
For instance, suppose that the model is a deep neural network with weights w performing
classification. Then for each sample z, `z(w) can represent the cross-entropy loss, which is
always non-negative. Other non-negative loss functions include the structured or multi-class
hinge loss, and the `1 or `2 loss functions for regression. Note that it is always possible to
subtract a non-zero lower bound B from the loss function to define a new equivalent problem
that satisfies the aforementioned assumption.

Interpolation. In this work we consider DNNs that can interpolate the data. Formally,
we assume:

∃ w? : ∀z ∈ Z, `z(w?) ≤ ε, (2)
where ε is a tolerance on the amount of error in the interpolation assumption. We will
often want to make reference to the case when ε = 0. Following previous work (Ma et al.,
2018b) we will refer to this setting as perfect interpolation. The interpolation property is
satisfied in many practical cases, since modern neural networks are typically trained in an
over-parameterized regime where the parameters of the model far exceed the size of the
training data (Li et al., 2020). Additionally most modern DNN architectures can be easily
increased in size and depth, allowing them to interpolate all but the largest data sets. Note,
the data has to be labelled consistently for this to be possible. For instance it is impossible
to interpolate a data set with two instances of the same image that have two different labels.

Regularisation. It is often desirable to encourage generalisation by the addition of a
regularisation function φ(w) to the objective. Typical choices for φ include λ‖w‖2 and λ‖w‖1
where λ governs the strength of the regularisation. However, in this work we incorporate
such regularisation as a constraint on the feasible domain: Ω =

{
w ∈ Rd : φ(w) ≤ r

}
for

some value of r. In the deep learning setting, this will allow us to assume that the objective
function can be driven close to zero without unrealistic assumptions about the value of the
regularisation term for the final set of parameters. Our framework can handle any constraint
set Ω on which Euclidean projections are computationally efficient. This includes the feasible
set induced by `2 regularization: Ω =

{
w ∈ Rd : ‖w‖22 ≤ r

}
, for which the projection is

given by a simple rescaling of w. Finally, note that if we do not wish to use any regularization,
we define Ω = Rd and the corresponding projection is the identity.

Problem Formulation. The learning task can be expressed as the problem (P) of finding
a feasible vector of parameters w? ∈ Ω that minimizes f :

w? ∈ argmin
w∈Ω

f(w). (P)

We refer to the minimum value of f over Ω as f?: f? , minw∈Ω f(w).
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Proximal Perspective of Projected Stochastic Gradient Descent. In order to best
introduce BORAT, we first detail the proximal interpretation of projected stochastic gradient
descent (PSGD). The PSGD algorithm can be seen as solving a sequence of proximal problems.
Within each proximal problem, a minimisation is performed over an approximate local model
of the loss. This approximation is the first order Taylor’s expansion of `zt around the current
iterate and a proximal term. At time step t, the PSGD proximal problem has the form:

wt+1 = argmin
w∈Ω

{
1

2ηt
‖w −wt‖2 + `zt(wt) +∇`zt(wt)

>(w −wt)

}
. (3)

Here wt is the current iterate, zt is the index of the sample chosen and ηt is the learning
rate. For convex Ω, problem (3) can be solved in two steps: first solving the unconstrained
problem and then using Euclidean projection onto Ω. Setting Ω = Rd removes the need
for projection and we recover SGD. When clear from the context we will use SGD to refer
to both projected and un-projected variants. To solve the unconstrained problem one only
needs to set the gradient to zero to recover the familiar closed form SGD update.

3. The BORAT Algorithm

In this section we detail the BORAT algorithm. We start by introducing BORAT’s proximal
problem that is exactly solved at each iteration. We explain its advantages and disadvantages
in relation to the SGD proximal problem (3). Each BORAT proximal problem is best solved
in the dual. Hence we next introduce the dual problem, which permits a far more efficient
solution due to its low dimensionality. We then consider a special case of BORAT with
minimal bundle size which we call Adaptive Learning-rates for Interpolation with Gradients
(ALI-G). ALI-G permits a closed form solution and results in an automatically scaled gradient
descent step. Specifically, it recovers a stochastic variant of the Polyak step size (Polyak,
1969), which offers competitive results in practice. This special case is used extensively in
our experiments and in our analysis to establish the convergence rate of BORAT. Lastly,
we detail our novel direct method for efficiently solving the general dual problem. This
algorithm exploits the small size of the bundle to compute the exact optimum by solving
a finite number of linear systems, removing the need for an inner iterative optimisation
algorithm.

3.1 Primal Problem

For tackling problems of type (P) we identify two deficiencies in the proximal view of
SGD (3). First, the approximation of the loss permits negative values even though the
loss for (P) is defined to be non-negative. Second, the accuracy of a linear model quickly
deteriorates for functions with high curvature away from the site of the approximation. Due
to this crude model, the selection of ηt for all t is critical for achieving good performance
with SGD. BORAT aims to address these deficiencies by using a model composed of a
point-wise maximum over N linear approximations to better model the loss. One of the
linear approximations is chosen to be a constant function equal to the loss lower bound, that
is, 0. By including this linear approximation, we address the first deficiency. The second
deficiency is addressed by making use of the remaining N − 1 linear approximations. These
extra approximations allow us to model variation over the parameter space and positive
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curvature of the loss. A model of this form in combination with a proximal term is commonly
known as a bundle of size N . The main disadvantage of bundles is that they require multiple
gradient evaluations to be performed and then held in memory. Hence we in this work only
consider N ≤ 5, except where mentioned otherwise. Each linear approximation of the loss is
constructed at a point ŵn

t using a different loss function `znt . The subscript t indicates the
iteration number, and n indexes over the N linear approximations. With this notation we
first introduce a bundle of size 1 as:

wt+1 = argmin
w∈Ω

{
1

2η
‖w −wt‖2 + `z1t (ŵ1

t ) +∇`z1t (ŵ1
t )
>(w − ŵ1

t )

}
. (4)

If we set ŵ1
t to wt we recover the SGD proximal problem. Thus SGD effectively uses a

bundle of size N = 1. We next introduce an expanded expression for a bundle of size N ,
before showing how to convert this into the compact form of maxn∈[N ]

{
an>(w −wt) + bn

}
.

Within a bundle each linear approximation is formed around a different point ŵn
t . Hence in

order to write each linear approximation in the aforementioned compact form we split each
linear term in two. The first piece is a constant term, that does not depend on w, and is a
multiple of the distance between the current iterate and the centre of each approximation
ŵn
t −wt. The second term depends on the distance w −wt, for all linear approximations.

This gives the following expanded form for a bundle of size N as:

max
n∈[N ]

{
`znt (ŵn

t )−∇`znt (ŵn
t )>(ŵn

t −wt) +∇`znt (ŵn
t )>(w −wt)

}
, (5)

where we use the notation [N ] to define the set of integers {1, ..., N}. If we define bnt =
`znt (ŵn

t )−∇`znt (ŵn
t )>(ŵn

t −wt), we can thus simplify the expression into the desired compact
form. We now introduce the BORAT proximal problem at time t with a bundle of size N ,
which can be stated as:

wt+1 = argmin
w∈Ω

{
1

2η
‖w −wt‖2 + max

n∈[N ]

{
∇`znt (ŵn

t )>(w −wt) + bnt

}}
. (6)

For BORAT we always set ŵ1
t = wt. We additionally use the last linear approximation

to enforce the lower bound on the loss. This is done by setting ∇`zt(ŵN
t ) = [0, ..., 0]>,

bNt = B = 0. We give details on how we select ŵn
t for n ∈ {2, ..., N − 1} in Section 3.5. Thus

each bundle is composed of N − 1 linear approximations of the function, and the lower bound
on the loss. These linear approximations of the loss need to be stored in memory during
each step. Hence, in order to fit on a single GPU we only consider small bundle sizes in this
work (N ≤ 5). For clarity we depict a 1D example for a bundle with N = 3 in Figure 2.
Unlike SGD, the BORAT proximal problem (6) is not smooth and hence cannot be solved
by simply setting the derivatives to zero. Instead we choose to solve each proximal problem
in the dual.
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wt = ŵ1
t

w?ŵ2
t

wt+1

f?

Loss function lz1t
Loss function lz2t
Linearization at ŵ1

t

Linearization at ŵ2
t

Lower Bound B
Model of f

Figure 2: Illustration of a BORAT bundle (N = 3) in 1D, shown in green. Two stochastic
samples `z1t and `z2t of the loss function f are shown in red and blue (solid lines). The bundle
is formed of the max of three linear approximations (dashed lines) and a proximal term. Two
of these linear approximations are formed using the loss functions `z1t and `z2t , and the last
enforces the known lower bound on the loss. Here the BORAT approximation gives a more
accurate model than approximation used by ALI-G, which would only include the linearization
at ŵ1

t and the lower bound B. In this simple example this improved accuracy allows for a
larger step to be taken towards the minimum.

3.2 Dual Problem

The dual of (6) is a constrained concave quadratic maximisation over N dual variables
α1, ..., αN , and can be concisely written as follows (see supplementary material for derivation):

αt = argmax
α∈∆N

D(α), where D(α) = −η
2
α>A>t Atα+α>bt. (7)

Here At is a N × d matrix whose nth row is ∇`zt(ŵn
t ). We define bt = [b1t , ..., b

N
t ]>,

α = [α1, α2, . . . , αN ]> and ∆N is a probability simplex over the N variables. The dual
problem (7) has a number of features that make it more appealing for optimisation than
the primal (6). First, the primal problem is defined over the parameters space w ∈ Rd,
where p is in the order thousands if not millions for modern DNNs. In contrast, the dual
variables are of dimension N, where is N typically a small number > 10 due to the memory
requirements. Second, the dual is smooth and hence allows for faster convergence with
standard optimisation techniques. Furthermore, as will be seen shortly, we use the fact that
the dual feasible region is a tractable probability simplex to design a customised algorithm
for its solution. We detail this algorithm in this Section 3.6. Once we have found the dual
solution αt, we recover the following update from the KKT conditions:

wt+1 = wt − ηAtαt. (8)

The form of the update (8) deserves some attention. Since each row of At is either the
gradient of the loss `znt or a zero vector, and αt belongs to the probability simplex, the
update step moves in the direction of a non-negative linear combination of negative gradients
−∇`znt (ŵn

t ). Due to the definitions of ∇`zt(ŵN
t ) = [0, ..., 0]> and bNt = 0, any weight given

7



Paren, Berrada, Poudel and Kumar

to αN reduces the magnitude of the resulting step. This has the effect that as the loss value
gets close to zero BORAT automatically decreases the size of the step taken.

3.3 ALI-G (N=2)

We now consider a special case of BORAT with N = 2. Here the bundle is the point wise
maximum over the linear approximation of the loss around the current point and the global
lower bound B, which we assume is 0. This special case is worthy of extra attention for the
following four reasons. First, this special case only requires one gradient evaluation per step
and has a similar time complexity to SGD. Second, it admits a closed form solution. Third,
we use this special case extensively in our analysis of the convergence rate of BORAT. Fourth,
given the definitions ŵ1

t = wt and ŵN
t = 0, if we set N = 2 we recover an algorithm that

simply scales the SGD learning rate. Specifically, it automatically scales down a maximal
learning rate η by a factor α1 ∈ [0, 1] to an appropriate value close to optimality. This is
clear from the simplified version of Equation (8), which has the following form:

wt+1 = wt − α1η∇lzt(wt). (9)

Hence we will call this special case Adaptive Learning-rates for Interpolation with Gradients
(ALI-G). For ALI-G the primal problem (6) simplifies to the following:

argmin
w∈Ω

{
1

2η
‖w −wt‖2 + max{0, `zt(wt) +∇`zt(wt)

>(w −wt)}
}
. (10)

Likewise, the dual problem (7) can be reduced to the following:

α1 = argmax
α1∈[0,1]

{
−η

2
‖α1∇lzt(wt)‖2 + α1lzt(wt)

}
. (11)

The ALI-G dual is a maximisation over a constrained concave function in one dimension.
Hence we can obtain the optimal point by projecting the unconstrained solution on to the
feasible region. This results in the following closed form solution:

α1 = min

{
lzt(wt)

η‖∇lzt(wt)‖2
, 1

}
. (12)

This value of α1 is then used in (9). The ALI-G update can be viewed as a stochastic analog
of the Polyak step size (Polyak, 1969) with the addition of a maximal value η. Recall that,
from the interpolation assumption, we have f? = 0. The ALI-G update is computationally
cheap with the evaluation of ‖∇lzt(wt)‖2 being the only extra computation required over
SGD. Hence when the interpolation assumption holds we suggest that ALI-G can be easily
used in place of SGD.

3.4 The Advantage of Bundles with more than Two Pieces

While ALI-G has many favourable qualities, its local model of the loss is still crude. We next
give two motivating examples to help demonstrate why using a more complex model of the
loss often increases the robustness to η. Thus it may prove useful to use larger values of N
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in settings that are sensitive to step size η.
In the convex setting any function can be perfectly modelled by the point-wise maximum over
an infinite number of linear approximations. While intractable, performing a minimisation
over this model would recover the true optimum by definition. With this perfect model any
value of η could be used. Setting η to a large enough value would recover the optimum in a
single step. This example demonstrates that, at least asymptotically as the accuracy of the
local model increases we can expect a reduced dependence on the correct scale of the step size.

w=− 3
5

w=3
5

f : w 7→ w2 − |w|3
Linearizations of f

Figure 3: A simple example where the ALI-G step-size oscillates due to non-convexity. For
this problem, ALI-G only converges ifs its maximal learning-rate η is less than 10. By contrast
for the same example BORAT with N > 2 converges for all values of η. Additionally for
η ≥ 10 it converges to the optimum in a single update.

Figure 3 provides a non-convex motivating example for use of larger values of N . Here we
demonstrate a 1D symmetric function where ALI-G does not converge for large η. Instead
it oscillates between the two values w = −3/5 and w = 3/5. However, if we were to use a
bundle with a N ≥ 3 our model of the loss would include both the linear approximations
at w = −3/5 and w = 3/5 simultaneously and hence when minimising over this model we
converge to the optimum for any value of η. While this is a carefully constructed synthetic
example it highlights why we would expect a more accurate model of the loss can help to
reduce the dependence on the step size.

3.5 Selecting Additional Linear Approximations or the Bundle

When constructing bundles of size larger than two, we are faced with two design decisions
regarding how to select additional linear approximations to add to the bundle. First, where
in parameter space should we construct the additional linear approximations ŵn

t ? And
second, should we use the same mini-batch of data when constructing the stochastic linear
approximations, or should we sample a new batch to evaluate each linear approximation?
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Selecting ŵn
t . Ideally we would select the location of the linear approximations ŵn

t for
n ∈ {2, ..., N − 1} in order to maximise the progress made towards w? at each step. However,
without the knowledge of w? a priori, due to the high dimensional and non-convex nature of
problem (P) this is infeasible. Instead we make use of a a heuristic. Inspired by the work of
previous bundle methods for convex problems (Smola et al., 2007, Asi and Duchi, 2019) we
select ŵn

t using the following method:

ŵn
t = argmin

w∈Rd

{
1

2η
‖w −wt‖2 + max

k∈[n−1]

{
∇`zkt (ŵk

t )>(w −wt) + bkt

}}
. (13)

In other words we construct the bundle by recursively adding linear approximations centred at
the current optimum. This method of selecting additional linear approximations is appealing
as it requires no extra hyperparameters and helps refine the approximation in the region of
parameter space that would be explored by the next update.

Re-sampling z for additional linear approximations. When constructing additional
linear approximations we choose to re-sample z. Concretely, we use a new mini-batch of data
to construct each stochastic linear approximation. While it is possible to construct all N − 1
non-zero linear approximations using the same batch of data we find this does not work well
in practice. Indeed, such a method behaves similarly to taking multiple consecutive steps of
SGD on the same mini-batch, which tends to produce poor optimisation performance.

Summary. We now summarise the bundle construction procedure for N > 2. We construct
a bundle around wt by first using two linear approximations, one centred at wt and the second
given by a known lower bound on the loss. We then sequentially add linear approximations
until we have N . These extra linear approximations are constructed one at a time using new
batches of data and centred around the point that is the current minimizer of the bundle.
We note that each parameter update of BORAT uses N − 1 batches of data. Therefore
BORAT updates the parameters N − 1 fewer times than SGD in an epoch (given the same
batch-size). Once the bundle is fully constructed we update wt. At this stage we apply
momentum (if enabled) and project back on the feasible set Ω.
The construction of the bundle requires solving a minimization problem for each newly added
piece when N ≥ 2. Therefore it is critical that such a problem gets solved very efficiently.
We next detail how we do this by solving the corresponding dual problem for N ≥ 2.

3.6 Efficient Dual Algorithm to Compute N ≥ 2 Linear Pieces

In the general case (N > 2), the dual has more than 2 degrees of freedom and can not
be written as a 1D minimisation. Thus the method derived for the case N = 2 is no
longer applicable. This means it is not possible to obtain a simple closed form update. We
must instead run an inner optimisation to solve (7) at each step. Many methods exist for
maximising a concave quadratic objective over a simplex. Two algorithms particularly well
suited to problems of the form (7) are (Frank and Wolfe, 1956) or Homotopy Methods (Bach
et al., 2011). However, we propose a novel algorithm that exploits the fact that N is small to
find the maximum directly. This method decomposes the problem of solving (7) into several
sub-problems which provides two computational conveniences. First, the BORAT algorithm
repeatedly searches for solutions to a bundle with only one newly added linear piece since
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the last search. As one might expect, this task shares a great number of sub-problems with
the previous solution and allows for much of the computation to be reused. Second, our dual
algorithm allows for a parallel implementation, which makes it very fast on the hardware
commonly used for deep learning. To illustrate the efficiency of our dual method, the run
time of the dual solution, that is finding αt once we have constructed (7), takes less than 5%
of the time spent in the call of the optimiser. Note due to the large size of the the networks
and the small size of N the majority of the call time is dominated computing A>t At and
Atαt.
We now formally introduce our dual solution algorithm. Our method uses the observation
that at the optimal solution in a simplex the partial derivatives will be equal for all nonzero
dimensions. This observation can be formally stated as:
Proposition 1 (Simplex Optimally Conditions)

Let F : RN → R be a concave function. Let us define α∗ = argmaxα∈∆ F (α). Then
there exists c ∈ R such that:

∀n ∈ [N ] such that αn∗ > 0, we have:
∂F (α)

∂αn

∣∣∣∣
α=α∗

= c. (14)

In other words, the value of the partial derivative is shared among all coordinates of α∗
that are non-zero.

This proposition can be easily proved by contradiction. If the partial derivatives are not
equal, then moving in the direction of the largest would result in an increase in function value.
Likewise moving in the negative direction would produce a decrease. Hence the current point
cannot be optimal. Please see Appendix B for a formal proof of Proposition 1.
In the following paragraphs we explain how this proposition can be used to break up the
task of solving problem (7) into 2N − 1 subproblems. Given a unique subset I of non-zero
dimensions of α Each of these subproblems involves finding the unconstrained optimum and
checking if this point lies within the simplex. We now give an example of a single subproblem.
To simplify notation, let Q , ηA>t At. We note that:

∂D(α)

∂α

∣∣∣∣
α=α∗

= −Qα∗ + bt. (15)

If we knew that α∗ had exclusively non-zero coordinates, then by applying Proposition (1)
to the dual objective D we can recover a solution α∗ and by solving the following linear
system: [

α∗
−c

]
= solvex≥0

([
Q 1
1> 0

]
x =

[
bt
1

])
, (16)

The first N rows of the system would enforce that α∗ satisfies the condition given by
Proposition 1, and the last row of the linear system would ensure that the coordinates of
α∗ sum to one. In the general case, we do not know which coordinates of α∗ are non-zero.
However, since typical problems are in low-dimension N , we can enumerate all possibilities
of subsets of non-zero coordinates for α∗.
We detail this further. We consider a non-empty subset I ⊆ [N ], for which we define:

Q[I×I] , (Qi,j)i∈I,j∈I , b[I] , (bt,i)i∈I . (17)

11
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We then solve the corresponding linear subsystem:[
φ(I)

−c

]
, solvex≥0

([
Q[I×I] 1

1> 0

]
x =

[
b[I]

1

])
. (18)

This φ(I) ∈ R|I| can then be lifted to RN by setting zeros at coordinates non-contained in I.
Formally, we define ψ(I) ∈ RN such that:

∀i ∈ [N ], ψ
(I)
i =

{
φ

(I)
i if i ∈ I,

0 otherwise.
(19)

Therefore, given I ⊆ [N ], we can generate a candidate solution ψ(I) for problem (7) by
solving a linear system in dimension |I|. In the following proposition, we establish that doing
so for all possibilities of I guarantees to find the correct solution:
Proposition 2 (Problem Equivalence)

We define the set of feasible solutions reached by the different candidates ψ(I):

Ψ =
{
ψ(I) : I ⊆ [N ], I 6= ∅

}
∩∆N . (20)

Then we have that:
argmax
α∈∆N

D(α) = argmax
ψ∈Ψ

D(ψ). (21)

In other words, we can find the optimal solution of (7) by enumerating the members of Ψ
and picking the one with highest objective value.

This proposition is trivially true because Ψ is simply the intersection between (i) the original
feasible set ∆N and (ii) the set of vectors that satisfy the necessary condition of Optimality
given by Proposition 1. This insight results in Algorithm 1 which returns a optimal solution
to the dual problem. We characterise this claim in the following proposition.
Proposition 3 (Sets of Solutions)

Algorithm 1 returns a solution α∗ that satisfies α∗ ∈ argmaxα∈∆N
D(α). This is true

even when a the dual does not have a unique solution. Proof given in Appendix C.

Procedurally Algorithm 1 starts by computing Q = −ηA>t At and bt to form a “master”
system Qx = b. We consider each of the 2N − 1 subsystems of Qx = bt defined by an
element of the set set I (lines 1-3), where I represents the set of none-zero dimensions of each
subsystem. For each subsystem we get a independent subproblem. To ensure the solution to
each subproblem will satisfy

∑N
n=1 x

n = 1 and all partial derivatives have equal value an
extra row-column is introduced to each system (line 2). We then compute the point which
satisfies the optimality conditions detailed in Proposition 1 for each subsystem, by solving
for x. We then check if each of these points is feasible, that is, belongs to ∆N by examining
signs xn ≥ 0,∀n ∈ {1, ..., n} (line 4). Note, we have by construction

∑N
n=1 x

n = 1. Finally,
we select α∗ as the feasible point with maximum dual value (lines 7-8). The optimal α∗ is
then used to define the weight update (8). For example, if α∗ = [1, 0, ..., 0]> an SGD step
wt+1 = wt − η∇`zt(wt) will be taken.

12
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The BORAT algorithm can be viewed as automatically picking the best step out of a maximum
of (2N − 1) possible options, where each option has a closed form solution. Although the
computational complexity of this method is exponential in N , this algorithm is still very
efficient in practice for two reasons. First, we only consider small N . Second, as sub problems
can be solved independently, it permits a parallel implementation. With a fully parallel
implementation the time complexity of this algorithm reduces to O

(
N3
)
. Empirically with

such an implementation, for N ≤ 10 we observe approximately a linear relationship between
N and time taken per training epoch. See Appendix F for a comparison of training epoch
time between BORAT and SGD.

Algorithm 1 Dual Optimisation Algorithm
Require: η, N , P = {S : S ⊆ {1, 2, ..., N}, S 6= ∅}, Q = ηA>t At, bt, dmax = 0.
1: for I ∈ P do

2: Q̂ =

[
Q[I×I] 1

1> 0

]
, b̂ =

[
b[I]

1

]
. see Equation (17) for definitions

3: φ[I] = solvex
(
Q̂x = b̂

)
. solve the subsystem, see Equation (18)

4: if φ[I]
i ≥ 0, ∀i ∈ {1, 2, ..., |I|} then . check for non negativity of solution

5: ψ(I) = select(φ[I], I) . select elements according to Equation (19)
6: d = −1

2ψ
(I)>Qψ(I) +ψ(I)>bt . compute the dual value

7: if d ≥ dmax then . save maximum value
8: dmax = d,α∗ = ψ(I)

9: Return α∗ . return optimal value

3.7 Computation considerations

While the method of adding linear approximations detailed in (13) requires running Algorithm
1 at each inner loop iteration, when adding an additional element αn if we keep track of
the best dual value we need only compute the 2N−1 new subproblems that include non-zero
αn. Thus we only need to run Algorithm 1 once for each wt update, that is once per N − 1
batches.

3.8 Summary of Algorithm

The full BORAT method is outlined in Algorithm 2. The bundle is constructed in lines 4-6.
The update is obtained in lines 7-9 using Algorithm 1. Finally, the updated parameters are
projected to the feasible region Ω in line 9.
In the majority of our experiments, we accelerate BORAT with Nesterov momentum. We use
Nesterov momentum as we find this helps produce strong generalise performance. The update
step at line 9 of Algorithm 2 is then replaced by (i) a velocity update vt = µvt−1 − ηAtα
and (ii) a parameter update wt+1 = ΠΩ (wt + µvt).

13
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Algorithm 2 The BORAT Algorithm
Require: maximal learning-rate η, maximum bundle size N ≥ 2, initial feasible w0 ∈ Ω .
1: t = 0
2: while not converged do
3: Get `zt(ŵ1

t ), ∇`zt(ŵ1
t ) with zt drawn i.i.d.

4: for n = 2, ..., N − 1 do . sample additional points
5: Sample zt,n ∈ Z, `znt (ŵn

t ), ∇`znt (ŵn
t )

6: compute ŵn+1
t according to (13)

7: compute −ηA>t At and bt
8: α∗ = argmaxα∈∆N

{
−η

2α
>A>t Atα+α>bt

}
. see Algorithm 1 for and details

9: wt+1 = ΠΩ (wt − ηAtα∗) . here ΠΩ is the projection onto Ω
10: t = t+ 1

11: end while

4. Justification and Analysis

The interpolation setting gives by definition, f? = 0. However, more subtly, it also allows the
updates to rely on the stochastic estimate `zt(wt) rather than the exact but expensive f(wt).
Intuitively, this is possible because in the interpolation setting, we know the global minimum
is achieved for each loss function `zt(wt) simultaneously. The following results formalise
the convergence guarantee of BORAT in the stochastic setting. Note here we prove these
result for BORAT with the minor modification, that is, all linear approximations are formed
using the same mini-batch of data, `znt = `zt for all n ∈ {2, ..., N − 1}. First, we consider
the standard convex setting, where we additionally assume the interpolation assumption is
satisfied and that each `z is Lipschitz continuous. Next we consider an important class of
non-convex functions used for analysis in previous works related to interpolation (Vaswani
et al., 2019a).

Theorem 1 (Convex and Lipschitz )
Let Ω be a convex set. We assume that for every z ∈ Z, `z is convex and C-Lipschitz. Let
w? be a solution of (P), and assume that we have perfect interpolation: ∀z ∈ Z, `z(w?) =
0. Then BORAT for N ≥ 2 applied to f satisfies:

f

(
1

T+1

T∑
t=0

wt

)
− f? ≤ C

√
‖w0 −w?‖2

(T + 1)
+
‖w0 −w?‖2

η(T + 1)
. (22)

Hence BORAT recovers the same asymptotic rate as SGD without the need to reduce
the learning rate η. In the Appendix D we show that for convex and β-smooth and the
α-strongly convex settings BORAT recovers rates of O(1/T ) and O(exp(αT )) respectively.
Note the earlier version of this work provides convergence results for ALI-G without perfect
interpolation.
We follow earlier work (Vaswani et al., 2019a) and provide a convergence rate for BORAT
applied to non-convex functions that satisfy the Restricted Secant Inequality (RSI). A
function is said to satisfy the RSI condition with constant µ over a the set Ω if the following
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holds:

∀w ∈ Ω, 〈∇`z(w),w −w?〉 ≤ µ||w −w?||. (23)

Theorem 2 (RSI )

We consider problems of type (P). We assume `z satisfies the RSI with constant µ,
smoothness constant β and perfect interpolation e.g. lz(w∗) = 0, ∀z ∈ Z. Then if set
η ≤ η̂ = min{ 1

4β ,
1

4µ ,
µ

2β2 } then in the worst case we have:

f(wT+1)− f∗ ≤ exp
((
−3

8
η̂µ

)
T

)
||w0 −w∗||2. (24)

In this setting BORAT recovers the same asymptotic rate as SGD.

5. Related work

Bundle Methods. Bundle methods have been primarily proposed for the optimisation of
non-smooth convex functions (Lemaréchal et al., 1995, Smola et al., 2007, Auslender, 2009).
However, these works do not treat the stochastic case, as they consider small problems where
the full gradient can be cheaply evaluated. To our knowledge our work is the first to propose
a bundle method for the optimisation of stochastic non-convex problems.

Interpolation in Deep Learning. The interpolation property of DNNs was utilised by
early efforts to analyse the convergence speed of SGD. These works demonstrate that SGD
achieves the convergence rates of full-batch gradient descent in the interpolation setting (Ma
et al., 2018a, Vaswani et al., 2019b, Zhou et al., 2019). Such works are complementary to
ours in the sense that they provide a convergence analysis of an existing algorithm for deep
learning. In a different line of work, Liu et al. (2019a) propose to exploit interpolation to
prove convergence of a new acceleration method for deep learning. However, their experiments
suggest that the method still requires the use of a hand-designed learning-rate schedule.

Adaptive Gradient Methods. Similarly to BORAT, most adaptive gradient methods
also rely on tuning a single hyperparameter, thereby providing a more pragmatic alternative
to SGD that needs a specification of the full learning-rate schedule. While the most popular
ones are Adagrad (Duchi et al., 2011), RMSPROP (Tieleman and Hinton, 2012), Adam
(Kingma and Welling, 2014) and AMSGrad (Reddi et al., 2018), there have been many
other variants (Zeiler, 2012, Orabona and Pál, 2015, Défossez and Bach, 2017, Levy, 2017,
Mukkamala and Hein, 2017, Zheng and Kwok, 2017, Bernstein et al., 2018, Chen and Gu,
2018, Shazeer and Stern, 2018, Zaheer et al., 2018, Chen et al., 2019, Loshchilov and Hutter,
2019, Luo et al., 2019). However, as pointed out in (Wilson et al., 2017), adaptive gradient
methods tend to give poor generalization in supervised learning. In our experiments, the
results provided by BORAT are significantly better than those obtained by the most popular
adaptive gradient methods. Recently, Liu et al. (2019b) have proposed to “rectify” Adam
with a learning-rate warm up, which partly bridges the gap in generalization performance
between Adam and SGD. However, their method still requires a learning-rate schedule, and
thus remains difficult to tune on new tasks.
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Adaptive Learning-Rate Algorithms. Vaswani et al. (2019b) show that one can use line
search in a stochastic setting for interpolating models while guaranteeing convergence. This
work is complementary to ours, as it provides convergence results with weaker assumptions on
the loss function, but is less practically useful as it requires up to four hyperparameters, instead
of one for BORAT. Less closely related methods, included second-order ones, adaptively
compute the learning-rate without using the minimum (Schaul et al., 2013, Martens and
Grosse, 2015, Tan et al., 2016, Zhang et al., 2017, Baydin et al., 2018, Wu et al., 2018, Li and
Orabona, 2019, Henriques et al., 2019), but do not demonstrate competitive generalization
performance against SGD with a well-tuned hand-designed schedule.

L4 Algorithm. The L4 algorithm (Rolinek and Martius, 2018) also uses a modified version
of the Polyak step-size. However, the L4 algorithm computes an online estimate of f? rather
than relying on a fixed value. This requires three hyperparameters, which are in practice
sensitive to noise and crucial for empirical convergence of the method. In addition, L4 does
not come with convergence guarantees. In contrast, by utilizing the interpolation property
and a single learning rate, our method is able to (i) provide reliable and accurate minimization
with only a single hyperparameter, and (ii) offer guarantees of convergence in the stochastic
convex setting.

Frank-Wolfe Methods. The proximal interpretation in Equation (10) allows us to draw
additional parallels between ALI-G and existing methods. In particular, the formula of the
learning-rate α1 may remind the reader of the Frank-Wolfe algorithm (Frank and Wolfe,
1956) in some of its variants (Locatello et al., 2017), or other dual methods (Lacoste-Julien
and Jaggi, 2013, Shalev-Shwartz and Zhang, 2016). This is because such methods solve in
closed form the dual of problem (10), and problems in the form of (10) naturally appear in
dual coordinate ascent methods (Shalev-Shwartz and Zhang, 2016).
When no regularization is used, ALI-G and Deep Frank-Wolfe (DFW) (Berrada et al., 2019a)
are procedurally identical algorithms. This is because in such a setting, one iteration of
DFW also amounts to solving (10) in closed-form – more generally, DFW is designed to
train deep neural networks by solving proximal linear support vector machine problems
approximately. However, we point out the two fundamental advantages of BORAT over
DFW: (i) BORAT can handle arbitrary (lower-bounded) loss functions, while DFW can only
use convex piece-wise linear loss functions; and (ii) as seen previously, BORAT provides
convergence guarantees in the convex setting.

SGD with Polyak’s Learning-Rate. Oberman and Prazeres (2019) extend the Polyak
step-size to rely on a stochastic estimation of the gradient ∇`zt(wt) only, instead of the
expensive deterministic gradient ∇f(wt). However, they still require evaluating f(wt),
the objective function over the entire training data set, in order to compute its learning-
rate, which makes the method impractical. In addition, since they do not do exploit the
interpolation setting nor the fact that regularization can be expressed as a constraint, they
also require the knowledge of the optimal objective function value f?. We also refer the
interested reader to the recent analysis of Loizou et al. (2020), which provides a set of
improved theoretical results.

aProx Algorithm. Most similar to this work (Asi and Duchi, 2019) have recently intro-
duced the aProx algorithm, a family of proximal stochastic optimisation algorithms for
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convex problems. The aProx “truncated model” and the aProx “relatively accurate models”
share aspects to ALI-G and BORAT respectively. However, there are four clear advantages
of this work over (Asi and Duchi, 2019) in the interpolation setting, in particular for training
neural networks. First, our work is the first to empirically demonstrate the applicability
and usefulness of the algorithm on varied modern non-convex deep learning tasks – most
of our experiments use several orders of magnitude more data and model parameters than
the small-scale convex problems of (Asi and Duchi, 2019). Second, our analysis and insights
allow us to make more aggressive choices of learning rate than (Asi and Duchi, 2019). Indeed,
(Asi and Duchi, 2019) assume that the maximal learning-rate is exponentially decaying, even
in the interpolating convex setting. In contrast, by avoiding the need for an exponential
decay, the learning-rate of BORAT requires only one hyperparameters instead of two for
aProx. Third, our analysis proves fast convergence in function space rather than iterate
space. Fourth, unlike BORAT Asi and Duchi (2019) do not include the global lower bound
in their aProx “relatively accurate models” and does not provide details on how to solve
each proximal problem efficiently.

6. Experiments

We split the experimental results into two sections. The first section demonstrates the strong
generalisation performance of ALI-G and BORAT on a wide range of tasks. Here we compare
ALI-G and BORAT to other single hyperparameter optimisation algorithms. The second
section shows for tasks where SGD and ALI-G are sensitive to the learning rate, using larger
N increases both the robustness to the learning rate and task regularisation hyperparameter.
For experiments we chosen to investigate BORAT with (N = 3) and (N = 5) and refer to
the resulting algorithms as BORAT3 and BORAT5 respectively. For N ≥ 2 BORAT uses
more than one batch of data for each update. In order to give a fair comparison we keep the
number of passes through the data constant for all experiments. This has the effect that
BORAT3 and BORAT5 respectively make a half and a quarter of the weight updates of
SGD and ALIG. The time per epoch of BORAT is very similar to that of all other methods,
see Appendix F for more details. Hence all methods approximately have the same time cost
per epoch. Consequently, faster convergence in terms of number of epochs translates into
faster convergence in terms of wall-clock time.
The code to reproduce our results is publicly available†. For baselines we use the official
implementation where available in PyTorch (Paszke et al., 2017). We use our implementation
of L4, which we unit-test against the official TensorFlow implementation (Abadi et al., 2015).
we employ the official implementation of DFW‡ and we re-use their code for the experiments
on SNLI and CIFAR.

6.1 Effectiveness of ALI-G and BORAT

We empirically compare ALI-G and BORAT to the optimisation algorithms most commonly
used in deep learning using standard loss functions. Where the hyperparameters of each
algorithm are cross validated to select a best performing model. We consider a wide range of

†https://github.com/oval-group/borat
‡https://github.com/oval-group/dfw
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problems: training a wide residual network on SVHN, training a Bi-LSTM on the Stanford
Natural Language Inference data set, training both wide residual networks and densely
connected networks on the CIFAR data sets and lastly training a wide residual network on
the Tiny Imagenet data set. For these problems, we demonstrate that ALI-G (N = 2) and
BORAT for N ∈ {3, 5} obtains comparable performance to SGD with a hand-tuned learning
rate schedule, and typically outperforms adaptive gradient methods. Finally, we empirically
assess the performance of BORAT and its competitors in terms of training objective on
CIFAR-100 and ImageNet, in order to demonstrate the scalability of BORAT to large-scale
settings. Note that the tasks of training wide residual networks on SVHN and CIFAR-100
are part of the DeepOBS benchmark (Schneider et al., 2019), which aims at standardising
baselines for deep learning optimisers. In particular, these tasks are among the most difficult
ones of the benchmark because the SGD baseline benefits from a manual schedule for the
learning rate where as ALI-G and BORAT uses a single fixed value. Despite this, our
set of experiments demonstrate that ALI-G and BORAT obtains competitive performance
in relation to SGD. In addition, our methods significantly outperforms adaptive gradient
methods. All Experiments were performed on a single GPU (SVHN, SNLI, CIFAR) or on up
to 4 GPUs (ImageNet).

6.1.1 Wide Residual Networks on SVHN

Setting. The SVHN data set contains 73k training samples, 26k testing samples and 531k
additional easier samples. From the 73k difficult training examples, we select 6k samples for
validation; we use all remaining (both difficult and easy) examples for training, for a total of
598k samples. We train a wide residual network 16-4 following (Zagoruyko and Komodakis,
2016).

Method. For SGD, we use the manual schedule for the learning rate of Zagoruyko and
Komodakis (2016). For L4Adam and L4Mom, we cross-validate the main learning-rate
hyperparameter α to be in {0.0015, 0.015, 0.15} (0.15 is the value recommended by (Rolinek
and Martius, 2018)). For other methods, the learning rate hyperparameter is tuned as a
power of 10. The `2 regularization is cross-validated in {0.0001, 0.0005} for all methods but
BORAT. For BORAT, the regularization is expressed as a constraint on the `2-norm of the
parameters, and its maximal value is set to 100. SGD, BORAT and BPGrad use a Nesterov
momentum of 0.9. All methods use a dropout rate of 0.4 and a fixed budget of 160 epochs,
following (Zagoruyko and Komodakis, 2016). A batch size of 128 is used for all experiments.

Results. A comparison to other methods is presented in Table 1. On this relatively easy
task, most methods achieve about 98% test accuracy. Despite the cross-validation, L4Mom
does not converge on this task. However, note that L4Adam achieves accurate results. Even
though SGD benefits from a hand-designed schedule, BORAT and other adaptive methods
obtain comparable performance on this task.

6.1.2 Bi-LSTM on SNLI

Setting. We train a Bi-LSTM of 47M parameters on the Stanford Natural Language
Inference (SNLI) data set (Bowman et al., 2015). The SNLI data set consists of 570k pairs
of sentences, with each pair labeled as entailment, neutral or contradiction. This large scale
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Test Accuracy on SVHN (%)

Adagrad 98.0 BPGrad 98.1
AMSGrad 97.9 L4Adam 98.2
DFW 98.1 ALI-G 98.1
L4Mom 19.6 BORAT3 98.1
Adam 97.9 BORAT5 98.1

SGD 98.3 SGD† 98.4

Table 1: In red, SGD benefits from a hand-designed schedule for its learning-rate. In black,
adaptive methods, including ALI-G, have a single hyperparameter for their learning-rate.
SGD† refers to the performance reported by (Zagoruyko and Komodakis, 2016).

data set is commonly used as a pre-training corpus for transfer learning to many other natural
language tasks where labeled data is scarcer (Conneau et al., 2017) – much like ImageNet is
used for pre-training in computer vision. We follow the protocol of (Berrada et al., 2019a)
and we re-use their results for the baselines.

Method. For L4Adam and L4Mom, the main hyperparameter α is cross-validated in
{0.015, 0.15} – compared to the recommended value of 0.15, this helped convergence and
considerably improved performance. The SGD algorithm benefits from a hand-designed
schedule, where the learning-rate is decreased by 5 when the validation accuracy does not
improve. Other methods use adaptive learning-rates and do not require such a schedule.
The value of the main hyperparameter η is cross-validated as a power of ten for the BORAT
algorithm and for previously reported adaptive methods. Following the implementation by
(Conneau et al., 2017), no `2 regularization is used. The algorithms are evaluated with the
Cross-Entropy (CE) loss and the multi-class hinge loss (SVM), except for DFW which is
designed for use with an SVM loss only. For all optimisation algorithms, the model is trained
for 20 epochs, using a batch size of 64, following (Conneau et al., 2017).

Results. Table 2 compares ALI-G and BORAT against the other optimises. Moreover,
ALI-G, which requires a single hyperparameter for the learning-rate, outperforms all other
methods for both the SVM and the CE loss functions. BORAT3 and BORAT5 achieve the
same results to ALI-G for both losses.

6.1.3 Wide Residual Networks and Densely Connected Networks on CIFAR

Setting. We follow the methodology of our previous work (Berrada et al., 2019a). We
test two architectures: a Wide Residual Network (WRN) 40-4 (Zagoruyko and Komodakis,
2016) and a bottleneck DenseNet (DN) 40-40 (Huang et al., 2017). We use 45k samples for
training and 5k for validation. The images are centred and normalized per channel. We
apply standard data augmentation with random horizontal flipping and random crops.

Method. We compare ALI-G and BORAT to other common single hyperparameter op-
timisers. Here we cross validate the hyperparameters in order to find a best performing
network for each method. AMSGrad was selected in (Berrada et al., 2019a) because it was
the best adaptive method on similar tasks, outperforming in particular Adam and Adagrad.
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Test Accuracy on SNLI (%)

CE SVM CE SVM

Adagrad∗ 83.8 84.6 Adam∗ 84.5 85.0
AMSGrad∗ 84.2 85.1 BPGrad∗ 83.6 84.2
DFW∗ - 85.2 L4Adam 83.3 82.5
L4Mom 83.7 83.2 BORAT3 84.4 85.2
ALI-G 84.8 85.2 BORAT5 84.5 85.2

SGD∗ 84.7 85.2 SGD† 84.5 -

Table 2: In red, SGD benefits from a hand-designed schedule for its learning-rate. In black,
adaptive methods have a single hyperparameter for their learning-rate. With an SVM loss,
DFW and ALI-G are procedurally identical algorithms – but in contrast to DFW, ALI-G
can also employ the CE loss. Methods in the format X∗ re-use results from (Berrada et al.,
2019a). SGD† is the result from (Conneau et al., 2017).

In addition to these baselines, we also provide the performance of L4Adam, L4Mom, AdamW
(Loshchilov and Hutter, 2019) and Yogi (Zaheer et al., 2018). We follow the cross validation
scheme of (Berrada et al., 2019a) restating it here for completeness, All methods. employ
the CE loss only, except for the DFW algorithm, which is designed to use an SVM loss. The
batch-size is cross-validated in {64, 128, 256} for the DN architecture, and {128, 256, 512}
for the WRN architecture. For L4Adam and L4Mom, the learning-rate hyperparameter
α is cross-validated in {0.015, 0.15}. For AMSGrad, AdamW, Yogi, DFW, ALI-G and
BORAT the learning-rate hyperparameter η is cross-validated as a power of 10 (in practice
η ∈ {0.1, 1} for BORAT). SGD, DFW and BORAT use a Nesterov momentum of 0.9. For
all methods excluding ALI-G, BORAT and AdamW, the `2 regularization is cross-validated
in {0.0001, 0.0005} on the WRN architecture, and is set to 0.0001 for the DN architecture.
For AdamW, the weight-decay is cross-validated as a power of 10. For ALI-G, BORAT, `2
regularization is expressed as a constraint on the norm of the vector of parameters; and its
value is cross validated in {50, 75, 100}. For all optimisation algorithms, the WRN model
is trained for 200 epochs and the DN model for 300 epochs, following (Zagoruyko and
Komodakis, 2016) and (Huang et al., 2017) respectively.

Results. Table 3 details the results of the comparison of ALI-G and BORAT against other
single hyperparameter optimisers for the CE loss only. In this setting, ALI-G and BORAT
outperforms AMSGrad, AdamW, Yogi, L4Adam and L4 Mom and constant step size SGD
by a large margin. This is true for all values of N . The second best method is DFW which
also has the restriction that it can only be used in conjunction with the hinge loss. ALI-G
and BORAT produce the test accuracy achievable using SGD with the manual learning
rate schedules from (Huang et al., 2017) and (Zagoruyko and Komodakis, 2016) for half of
the model data set combinations considered here. For these tasks BORAT provides state
of the art results without the need for the learning rate to be manually adapted through
out training. For the remaining two combinations; training a DN on Cifar10 and training a
WRN on Cifar100, BORAT lags in performance by approximately 0.2% and 2% respectively.
With minor variation depending on which version of BORAT is used. Note SGD with a

20



A Stochastic Bundle Method for Interpolation

hand tuned learning rate schedule provides a reasonable upper limit of the generalisation
performance achievable due to the amount of time that has been put into improving the
schedule.

Test Accuracy on CIFAR (%)

CIFAR-10 CIFAR-100

WRN DN WRN DN

SGD 91.2 91.5 67.8 67.5
AMSGrad 90.8 91.7 68.7 69.4
AdamW 92.1 92.6 69.6 69.5
Yogi 91.2 92.1 68.7 69.6
DFW 94.2 94.6 76.0 73.2
L4Adam 90.5 90.8 61.7 60.5
L4Mom 91.6 91.9 61.4 62.6
ALI-G 95.4 94.5 76.1 76.2
BORAT3 95.4 94.9 76.0 76.5
BORAT5 95.0 94.9 75.8 75.7

Table 3: Test accuracy of single hyperparameter optimisation methods. Each reported result is
an average over three independent runs; the standard deviations and optimal hyperparameters
are reported in Appendix F (the standard deviations are at most 0.4 for ALI-G and BORAT).

6.1.4 Wide Residual Networks on Tiny ImageNet

Setting. Tiny ImageNet contains 200 classes for training where each class has 500 images.
The validation set contains 10,000 images. All images are RGB with 64x64 pixels. The
test-set contains 10,000 images however ground truth labels are not freely available. We
again use the Wide Residual Network (WRN) detailed in Section 6.1.1. The images are
centred and normalized per channel. We apply standard data augmentation with random
horizontal flipping and random crops.

Method. We investigate using SGD (with a constant step-size), ALI-G and BORAT to train
a WRN on Tiny ImageNet. We use Adam (Kingma and Ba, 2015) as an indicator of what can
be expected from a popular adaptive method applied to the same task. We make use of both
the cross entropy (CE) and multi-class hinge (SVM) losses. The learning-rate hyperparameter
η is cross validated in powers of 10, a batch-size of 128 and a training time of 200 epochs
was used for all experiments. The `2 regularisation is cross validated in powers of 10 for
ADAM. For constant step-size SGD, ALI-G and BORAT we make use of the constrained base
regularisation detailed in Section 2, cross validating r ∈ {50, 100, 150, 200, 250}. Additionally
all methods excluding Adam use a Nesterov momentum of 0.9.

Results. The best results for SGD, ALI-G, BORAT and Adam are shown in table 4. For
both losses Adam performs worst, only achieving 2.4% validation accuracy when optimising
the SVM loss. The best results are achieved by BORAT with N = 5 and N = 3 for the
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CE and SVM losses respectively. These results suggest the added gain of BORAT is more
pronounced for larger more challenging data sets.

Validation Accuracy on Tiny ImageNet (%)

CE Loss Hinge Loss

Adam 55.0 2.4
SGD 59.4 23.2
ALI-G 61.1 24.9
BORAT3 61.1 44.1
BORAT5 62.1 39.4

Table 4: Validation accuracy of single hyperparameter optimisation methods on the Tiny
ImageNet data set for cross entropy and hinge loss.

6.1.5 Comparing Training Performance on CIFAR-100

In this section, we empirically assess the performance of ALI-G and its competitors in terms
of training objective on CIFAR-100. In order to have comparable objective functions, the `2
regularization is deactivated. The learning-rate is selected as a power of ten for best final
objective value, and the batch-size is set to its default value. For clarity, we only display the
performance of SGD, Adam, Adagrad and BORAT (DFW does not support the cross-entropy
loss). The L4 methods diverge in this setting. Here SGD uses a constant learning-rate to
demonstrate the need for adaptivity. Therefore all methods use one hyperparameter for their
learning-rate. All methods use a fixed budget of 200 epochs for WRN-CIFAR-100 and 300
epochs for DN-CIFAR-100. As can be seen, ALI-G and BORAT provides better training
performance than the baseline algorithms on both tasks. Here BORAT3 and BORAT5 are
slightly slower than ALI-G due to the fewer number of parameter updates.
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Figure 4: Objective function over the epochs on CIFAR-100 (smoothed with a moving average
over 5 epochs). ALI-G and BORAT reaches a value that is an order of magnitude better than
the baselines.
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6.1.6 Training at Large Scale

We demonstrate the scalability of BORAT by training a ResNet18 (He et al., 2016) on the
ImageNet data set. In order to satisfy the interpolation assumption, we employ a loss function
tailored for top-5 classification (Lapin et al., 2016), and we do not use data augmentation.
Our focus here is on the training objective and accuracy. ALI-G and BORAT uses the
following training setup: a batch-size of 1024 split over 4 GPUs, a `2 maximal norm of 400 for
w, a maximal learning-rate of 10 and no momentum. As can be seen in figure 5, ALI-G and
BORAT reaches 99% top-5 accuracy in 12 epochs, and accurately minimises the objective
function to 2 · 10−4 within 90 epochs.
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Figure 5: Training performance of a ResNet-18 learning with different versions of BORAT
on ImageNet. Note, that all versions converge at similar rates even though for larger values
of N , BORAT3 and BORAT5 makes far fewer updates.

6.2 Robustness of BORAT

In this section we show that using additional linear approximations increases the robustness
of BORAT to its learning rate η and the problem regularisation amount r. BORAT produces
high accuracy models for a wider range of values than SGD and ALI-G. Hence on problems
where SGD and ALI-G are sensitive to their learning rate BORAT with N ≥ 2 produces
the best performance. These results demonstrate the advantage of using a larger bundle to
model the loss in each proximal update.
In order to illustrate this increased robustness we assess the stability of constant step size
SGD, ALI-G, BORAT3 and BORAT5 to their hyperparameters. This is done by completing
a grid search over η and r for a number of tasks while holding the batch size and epoch budget
constant. This allows us to assess the range of values where these algorithms produce high
accuracy models. We perform this grid search for six tasks split over the CIFAR100 and Tiny
ImageNet data sets. We choose these data sets as they are challenging yet a model capable
of interpolation can still fit on a single GPU. We compare against SGD with a constant
learning rate for two reasons. First, SGD effectively uses a bundle of size 1, composed of only
the linearization around the current iterate. Second, constant step size SGD has a single
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learning rate hyperparameter with the same scale as BORAT and also permits the constraint
based regularisation described in Section 2.

6.2.1 Wide Residual Networks on CIFAR100 and Tiny ImageNet

Setting. For a description of the CIFAR100 and Tiny Imagenet data sets please refer to
sections 6.1.3 and 6.1.4 respectively.

Method. We run four separate experiments on the CIFAR100 data set. The first two of
these experiments examine the robustness to hyperparameters of SGD, ALI-G and BORAT
when in combination with the cross entropy (CE) and multi-class hinge (SVM) losses. For the
second two experiments on CIFAR100 we investigate the same algorithms in the presents of
label noise. We limit our self to the CE loss for these two experiments. Label noise is applied
by switching the label of the images in the training set with probability p to a random class
label in the same super class. We repeat the experiments without label noise on the more
challenging Tiny ImageNet data set, resulting in six different settings. For all algorithms we
train a wide residual network (WRN) detailed in Section 6.1.3 and make use of a Nesterov
momentum of 0.9 as we found its use produced superior generalisation performance. For all
experiments we use a batch size of 128 and perform a grid search over the 20 hyper parameter
combinations given by r ∈ {50, 100, 150, 200, 250} and η ∈ {0.01, 0.1, 1.0, 10.0}.
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Figure 6: Comparison of SGD and BORAT’s robustness to hyperparameters when increasing
N for the CE and SVM losses. Experiments are performed on the CIFAR100 data set.
Colour represents test performance, where darker colours correspond to higher values. For
both losses, increasing N allows for higher learning rates to be used while still producing
convergent behaviour. Additionally for the CE loss and η ∈ {1.0, 10.0} larger N allows for a
smaller r or greater levels of regularisation to be used. Consequently increasing N improves
the over all robustness to hyperparameters, while not sacrificing generalisation performance.

Results. Figure 6 details the robustness of SGD, ALI-G and BORAT for the CE and SVM
losses without label noise. In these two settings ALI-G exhibits similar robustness to SGD,
however it outperforms SGD in terms of the performance of the best model trained. On
the CE loss SGD and ALI-G are reasonably robust, providing good results for the majority
of hyperparameter combinations with η ≤ 1. For the SVM loss all algorithms are sensitive
to their learning rate η. SGD and ALI-G only produce an increase in accuracy for small
values of η, hence no model achieves high accuracy in the 200 epoch budget. For both losses,
increasing N improves the robustness and produces convergent behaviour for larger values of
η and smaller values of r. This is particularly pronounced for the SVM loss. Here permitting
larger η allows for a high accuracy network to be trained within the 200 epoch budget.
For both losses and η = 0.01 BORAT3 and BORAT5 slightly under perform compared to
ALI-G and SGD. This is simply a consequence of these methods making significantly fewer
updates. In spite of this the resultant effect of increasing the bundle size is a larger range of
hyperparameters that produce good generalisation performance.
The results from the label noise experiments are shown in Figure 7. For p = 0.1 the results
closely mirror those where no label noise is used, shown in Figure 6, however here all models
achieve roughly 0− 5% worse test performance. When the noise is increased to p = 0.5 the
test error increases drastically by 0− 25%. In both cases p = 0.1 and p = 0.5, increasing N
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permits to obtain good results for a larger range of values of η and r. Interestingly, using
N = 3, 5 results in the best performance when p = 0.5. This is somewhat expected since
using a larger bundle size means more samples are used to calculate each parameter update
and hence helps reduce the effect of the label noise.
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Figure 7: Test accuracy of SGD, ALI-G, BORAT3 and BORAT5 robustness to hyperparam-
eters when trained on CIFAR100 with noisy labels. Here we give results with two different
levels of noise p = 0.1 (upper row) and p = 0.5 (lower row). For readability purposes, the
colour encodes test accuracy, where darker colours correspond to higher values. Increasing N
allows for higher learning rates and greater levels of regularisation to be used. Additionally,
when the level of noise is high (p = 0.5, lower row), BORAT3 and BORAT5 significantly
outperforms SGD (N = 1) and ALI-G (N = 2).

Figure 8 details the robustness of SGD, ALI-G and BORAT for the Tiny Imagenet experiments.
These results show BORAT offers improved robustness of on multiple data sets as we recover
similar performance to CIFAR100. For the CE loss increasing N allows for slightly higher
learning rates and greater levels of regularisation to be used for the CE loss. For the SVM
loss BORAT produces models with reasonable accuracy with η ∈ {0.1, 1.0} opposed to SGD
and ALI-G that produce poor results for all learning rates excluding η = 1.0. Consequently,
when training with the SVM loss for 200 epochs, BORAT produces a drastically better
models than SGD and ALI-G. This happens despite BORAT making significantly fewer
updates of wt in the 200 epochs.
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Figure 8: Comparison of SGD, ALI-G and BORAT’s robustness to hyperparameters on the
Tiny ImageNet data set. Here we investigate the affect of increasing the bundle size when in
use with the CE and Hinge losses. Colour represents validation performance, where darker
colours correspond to higher values. The the CE loss is used BORAT produces an increase
in the range of hyperparameters that result in high accuracy models. For the SVM loss
BORAT is the only optimiser to produce accurate results

Across all six experiments BORAT consistently produces high accuracy models for a larger
range of hyperparameter combinations than SGD or ALI-G. This is particularly pronounced
for the SVM loss experiments where the decrease sensitivity of BORAT makes all the
difference between finding hyperparameters that result in a high accuracy model and not.
Consequently, in comparison to its competitors, BORAT is systematically more robust
to the choice of learning-rate and regularization hyper-parameter, and also offers better
generalization more often than not. Therefore we particularly recommend using BORAT for
tasks where hyper-parameter tuning is a highly time consuming task.

7. Discussion

In this work have introduced BORAT a bundle method designed for the optimisation of
DNNs capable of interpolation. We detailed a special case of BORAT with a minimal bundle
size that we name ALI-G. ALI-G produces a algorithm that automatically decays the steps
size as the loss of the iterate approaches its minimal value. By only needing to find a good
maximal learning rate that is automatically decayed we remove the labour and compute
intensive task of finding a good learning rate schedule. Using standard publicly available data
sets, we have shown that a ALI-G is highly effective in a number of settings. When tuning a
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single hyperparameter for the learning-rate, ALI-G achieves state of the art performance
while being simple to implement and having minor additional computational cost over SGD.
For problems where ALI-G is sensitive to its learning rate its robustness and performance can
be enhanced by using BORAT which makes use of a greater bundle size. BORAT produces
high accuracy models for a larger range of hyperparameters and is particularly effective
when using the multi-class hinge loss or in the presence of label noise. However, BORAT
also achieves similar generalisation performance to ALI-G in all settings considered. Our
results suggest that BORAT is presently the most robust single hyperparameter optimisation
method for DNNs.
It may be possible to modify BORAT so that it can make a parameter update after each
gradient evaluation by cleverly selecting how linear approximations are added and removed
from the bundle. If done correctly this may lead to a further increase in the speed of
convergence. However we leave this to future work. When keeping the total number of
gradient evaluations constant, a downside of using a larger bundle size for BORAT is that
the number of parameter updates decreases. Despite this, in our experiments, BORAT is
able to obtain good results within the same budget of passes through the data. Notably,
this also means that BORAT has a time per epoch comparable to that of adaptive gradient
methods. Another potential criticism of BORAT is that its memory footprint grows linearly
with the bundle size. However in practice, our results show that using a bundle size of three,
which corresponds to the same memory cost as ADAM, is often sufficient to obtain improved
robustness. Finally, the applicability of BORAT can be limited by the required assumption of
interpolation. While we argue that this interpolation property is satisfied in many interesting
use cases, it may also not hold true for one or more of the following confounding factors: (i)
limited size of the neural network, such as those used in embedded devices; (ii) large size of
the training data set, which is becoming increasingly common in machine learning; and (iii)
complexity of the loss function, such as in adversarial training. Furthermore, the concept of
interpolation itself is ill-defined for unsupervised tasks. Thus, another interesting direction
of future work would be to generalise BORAT to non-interpolating settings. This could be
achieved by adapting an estimate of the minimum value of the objective function online
whilst retaining the desirable quality of minimal hyperparameter tuning.
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Appendix A. Dual Derivation

Lemma 1

The dual of the primal problem (6), can be written as follows:

sup
α∈∆N

{
−η

2
α>A>t Atα+α>bnt

}
.

Where At is defined as a d × N matrix, whose nth row is ∇`znt (ŵn
t ), bnt = [b1t , ..., b

N
t ]>

and α = [α1, α2, . . . , αN ]>.

Proof : We start from the primal problem:

argmin
w∈Rd

{
1

2η
||w −wt||2 + max

n∈[N ]

{
∇`znt (ŵn

t )>(w −wt) + bnt
}}

, (25)

We define w̃ = w −wt.

min
w∈Rd

{
1

2η
||w̃||2 + max

n∈[N ]

{
∇`znt (ŵn

t )>w̃ + bnt
}}

,

min
w∈Rd,ζ

{
1

2η
||w̃||2 + ζ

}
subject to: ζ ≥ ∇`znt (ŵn

t )>w̃ + bnt , ∀n ∈ [N ],

min
w̃∈Rd,ζ

sup
αn≥0,∀n

{
1

2η
||w̃||2 + ζ −

N∑
n=1

αn(ζ −∇`znt (ŵn
t )>w̃ − bnt )

}
,

sup
αn≥0,∀n

min
w̃∈Rd,ζ

{
1

2η
||w̃||2 + ζ −

N∑
n=1

αn(ζ −∇`znt (ŵn
t )>w̃ − bnt )

}
, (strong duality)

sup
αn≥0,∀n

min
w̃∈Rd,ζ

{
1

2η
||w̃||2 + ζ +

N∑
n=1

αn(∇`znt (ŵn
t )>w̃ + bnt − ζ)

}
.

The inner problem is now smooth in w̃ and ζ. We write the KKT conditions:

∂·
∂w̃

=
w̃

η
+

N∑
n=1

αn∇`znt (ŵn
t ) = 0

∂·
∂ζ

= 1−
N∑
n=1

αn = 0

We define ∆N , {α ∈ RN :
∑N
n=1 α

n = 1, αn ≥ 0, n = 1, ..., N} as probability simplex over
the elements of α. Thus when we plug in the KKT conditions we obtain:

sup
α∈∆N

{
1

2η
||η

N∑
n=1

αn∇`znt (ŵn
t )||2 +

N∑
n=1

αn

(
−∇`znt (ŵn

t )>(η

N∑
m=1

αm∇`zmt (ŵm
t )) + bnt

)}
,

sup
α∈∆N

{
η

2
||

N∑
n=1

αn∇`znt (ŵn
t )||2 − η

N∑
n=1

αn(∇`znt (ŵn
t )>

N∑
m=1

αm∇`zmt (ŵm
t )) +

N∑
n=1

αnbnt

}
,

sup
α∈∆N

{
η

2
||

N∑
n=1

αn∇`znt (ŵn
t )||2 − η||

N∑
n=1

αn∇`znt (ŵn
t )||2 +

N∑
n=1

αnbnt

}
,
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sup
α∈∆N

{
−η

2
||

N∑
n=1

αn∇`znt (ŵn
t )||2 +

N∑
n=1

αnbnt

}
.

Using the definitions of At, bnt and α, we can recover the following compact form for the
dual problem:

sup
α∈∆N

{
−η

2
α>A>t Atα+α>bnt

}
.

Appendix B. Proof of Proposition 1

Proposition 1

Let F : RN → R be a concave function. Let us define α∗ = argmaxα∈∆ F (α). Then
there exists c ∈ R such that:

∀n ∈ [N ] such that αn∗ > 0, we have:
∂F (α)

∂αn

∣∣∣∣
α=α∗

= c. (26)

In other words, the value of the partial derivative is shared among all coordinates of α∗
that are non-zero.

Proof : We start form the optimally condition for constrained problems:

〈∇F (α∗),α∗ −α〉 ≥ 0, ∀α ∈ ∆ (27)

We consider the point α̂. Without loss of generality we assume α̂ is equal to α∗ for all but
two dimensions i and j. We let α̂i = 0 and α̂j = α∗i + α∗j . Hence we know α̂ ∈ ∆ as we have∑
i α̂i =

∑
i α
∗
i = 1 and α̂i ≥ 0, ∀i. Letting α = α̂ in (27) give us:

−∂F (α∗)

∂αi
α∗i +

∂F (α∗)

∂αj
α∗i ≥ 0. (28)

Rearranging we have:

∂F (α∗)

∂αj
α∗i ≥

∂F (α∗)

∂αi
α∗i . (29)

Hence for any α∗i 6= 0, we have:

∂F (α∗)

∂αj
≥ ∂F (α∗)

∂αi
. (30)

Noticing, this results holds for any i and j gives us the following and proves the result.

∂F (α∗)

∂αj
=
∂F (α∗)

∂αi
= c (31)
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Appendix C. Proof of Proposition 3

Proposition 3

Algorithm 1 returns a solution α∗ that satisfies α∗ ∈ argmaxα∈∆N
D(α). This is true

even when a the dual does not have a unique solution.

Proof : let x∗ ∈ argmaxα∈∆N
D(α) such that x∗ has a maximal number of zero coordinates.

x∗ exists as we know the solution set is empty. Let I be the set of non-zero coordinates of x∗.
We denote by S(I) the set of soultions to the linear system associated with I:

S(I) ,
{
x ∈ R|I| : Q̃x = b̃,x ≥ 0

}
,where, Q̃ ,

[
Q[I×I] 1
1> 0

]
and, b̃ =

[
b[I]

1

]
. (32)

S(I) is a polytope as the intersection intersection between the probability simplex and a
linear sub-space. There for it admits and vertex representation:

S(I) = Conv(V(I)) (33)

such that Conv(·) denotes the convex hull operation, and V(I) is a finite set. Since S(I)

contains x∗[I], S(I) is non-empty and neither is V(I). let v be and element of V(I). Note,
that if v had one or more zero coordinates, it would be a solution after lifting to RN it would
also be a optimal solution to the dual as good as x∗ while having more zero coordinates
than x*, this is impossible by the definition of x∗. Thus we can conclude v has exclusively
non-zero coordinates.
Since v is a external point of S(I), see section 2.1 of Bertsekas (2009) for a definition. It follows
from proposition 2.1.4b of (Bertsekas, 2009) the columns of Q̃ are independent. Therefore
the linear system admin a unique solution x∗, which is found by Algorithm 1.

Appendix D. Convex Results

Lemma 2
Adding additional linear approximations to the bundle of BORAT can never result in a
lower maximal dual value. Formally:

Dm(α∗) ≥ Dl(α∗) ∀m > l. (34)

Proof : Any vector of ∆l can be lifted to ∆m by appending m− l zeros to it, which does not
impact the value of the objective function. The lifted set ∆l is then a subset of ∆m, hence
the result (maximisation performed performed over a larger space).

Theorem 3 (Convex)
We assume that Ω is a convex set, and that for every z ∈ Z, `z is convex and. Let w?

be a solution of (P), and assume that we have perfect interpolation: ∀z ∈ Z, `z(w?) = 0.
Then BORAT for N ≥ 2 applied to f satisfies:

‖wt+1 −w∗‖2 ≤ ‖wt −w∗‖2 − 2η max
α∈∆N

D(α), (35)

where D is defined in (7).

31



Paren, Berrada, Poudel and Kumar

Proof :

‖wt+1 −w∗‖2 ≤ ‖ΠΩ(wt − ηAtαt)−w∗‖2, (36)

≤ ‖wt − ηAtαt −w∗‖2, (ΠΩ projection) (37)

≤ ‖wt −w∗‖2 + η2‖Atαt‖2 − 2η〈Atαt,wt −w∗〉, (expanding) (38)

‖wt+1 −w∗‖2 − ‖wt −w∗‖2 ≤ η2‖Atαt‖2 − 2η〈Atαt,wt −w∗〉, (rearranging) (39)

= η2‖Atαt‖2 − 2η〈Atαt,wt −w∗〉 (40)

= η2‖Atαt‖2 − 2η〈Atαt,wt − ŵn
t 〉 − 2η〈Atαt, ŵn

t −w∗〉, (41)

= η2‖Atαt‖2 − 2η〈Atαt,wt − ŵn
t 〉 − 2η

N−1∑
n=1

αn∇`zt(ŵn
t )>(ŵn

t −w∗), (Atα
N
t = 0) (42)

≤ η2‖Atαt‖2 − 2η〈Atαt,wt − ŵn
t 〉 − 2η

N−1∑
n=1

αnt (`zt(ŵ
n
t )− `zt(w∗)), (convexity) (43)

≤ η2‖Atαt‖2 − 2η

N−1∑
n=1

αn∇`zt(ŵn
t )>(wt − ŵn

t )− 2η

N−1∑
n=1

αnt (`zt(ŵ
n
t )− `zt(w∗)), (44)

≤ η2‖Atαt‖2 − 2η

N−1∑
n=1

αn[`zt(ŵ
n
t )−∇`zt(ŵn

t )>(ŵn
t −wt)] + 2η

N−1∑
n=1

αnt `zt(w
∗), (45)

≤ η2‖Atαt‖2 − 2ηαtbt − 2η

N−1∑
n=1

αnt `zt(w
∗), (bt definition) (46)

≤ −2ηD(αt) + 2η

N−1∑
n=1

αnt `zt(w
∗), (D definition) (47)

≤ −2ηD(αt) + 2η(1− αNt )`zt(w
∗), (

N∑
n=1

αnt = 1) (48)

≤ −2ηD(αt), (`zt(w
∗) = 0, perfect interpolation) (49)

≤ −2η max
α∈∆N

D(α) (αtdefinition) (50)

A consequence of Lemma 2 is that the convergence rate given by Theorem 5 improves as N
increases.

D.1 Convex and C-Lipshits
Theorem 1 (Convex and Lipschitz )

We assume that Ω is a convex set, and that for every z ∈ Z, `z is convex and C-
Lipschitz. Let w? be a solution of (P), and assume that we have perfect interpolation:
∀z ∈ Z, `z(w?) = 0. Then BORAT for N ≥ 2 applied to f satisfies:

f

(
1

T+1

T∑
t=0

wt

)
− f? ≤ C

√
‖w0 −w?‖2

(T + 1)
+
‖w0 −w?‖2

η(T + 1)
. (51)
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Proof : We start from (50), hence we have:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − 2ηD(αt) (52)

From Lemma 2 we additionally have that D2(α∗) ≤ DN>2(α∗) hence consider the N = 2 as
this provides the worse rate.

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − 2ηD2(αt) (53)

For N = 2 we have exactly two sub problems, and hence can write the dual in following
compact form:

D2(αt) =

{
−η2‖gzt‖

2 + `zt(wt), if η‖gzt‖2 ≤ `zt(wt)
1
2η

`zt (wt)
2

‖gzt‖2
if η‖gzt‖2 ≥ `zt(wt)

(54)

We now introduce IT and JT as follows:

IT ,
{
t ∈ {0, ..., T} : η‖gzt‖2 ≥ `zt(wt)

}
JT , {0, ..., T} \ IT

Defining 1 to be the indicator function we can write:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 + 1(t ∈ IT )η
(
η‖gzt‖2 − 2`zt(wt)

)
− 1(t ∈ JT )

(
`zt(wt)

2

‖gzt‖2

)
.

(55)

From our definition of IT for all t ∈ IT we have η‖gzt‖2 ≥ `zt(wt) hence we can write:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − 1(t ∈ IT )η`zt(wt)− 1(t ∈ JT )

(
`zt(wt)

2

‖gzt‖2

)
. (56)

Summing over T :

‖wT+1 −w?‖2 ≤ ‖w0 −w?‖2 − η
∑
t∈IT

`zt(wt)−
∑
t∈JT

(
`zt(wt)

2

‖gzt‖2

)
(57)

Using ‖wT+1 −w?‖2 ≥ 0, we obtain:

η
∑
t∈IT

`zt(wt) +
∑
t∈JT

(
`zt(wt)

2

‖gzt‖2

)
≤ ‖w0 −w?‖2. (58)

From
(
`zt (wt)

2

‖gzt‖2

)
≥ 0, we get:

∑
t∈IT

`zt(wt) ≤
1

η
‖w0 −w?‖2. (59)

Likewise, using the observation that `z ≥ 0, we can write:∑
t∈JT

`zt(wt)
2

C2
≤
∑
t∈JT

`zt(wt)
2

‖gzt‖2
≤ ‖w0 −w?‖2. (60)
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Diving by C2: ∑
t∈JT

`zt(wt)
2 ≤ C2‖w0 −w?‖2. (61)

Using the Cauchy-Schwarz inequality, we can further write:(∑
t∈JT

`zt(wt)

)2

≤ |JT |
∑
t∈JT

`zt(wt)
2. (62)

Therefore we have: ∑
t∈JT

`zt(wt) ≤ C
√
|JT |‖w0 −w?‖2. (63)

We can now put together inequalities (59) and (63) by writing:

T∑
t=0

`zt(wt) =
∑
t∈JT

`zt(wt) +
∑
t∈IT

`zt(wt) (64)

T∑
t=0

`zt(wt) ≤
1

η
‖w0 −w?‖2 + C

√
|JT |‖w0 −w?‖2 (65)

T∑
t=0

`zt(wt) ≤
1

η
‖w0 −w?‖2 + C

√
(T + 1)‖w0 −w?‖2 (66)

Dividing by T + 1 and taking the expectation over zt, we finally get:

f

(
1

T + 1

T∑
t=0

wt

)
− f∗ ≤ 1

T + 1

T∑
t=0

f(wt)− f∗, (f is convex) (67)

f

(
1

T + 1

T∑
t=0

wt

)
− f∗ ≤ C

√
‖w0 −w?‖2

(T + 1)
+
‖w0 −w?‖2

η(T + 1)
. (68)

D.2 Convex and Smooth
Lemma 3

Let z ∈ Z. Assume that `z is β-smooth and non-negative on Rd. Then we have:

∀(w) ∈ Rd, `z(w) ≥ 1

2β
‖∇`z(w)‖2

Note that we do not assume that `z is convex.

Proof : Let w ∈ Rd. By Lemma 3.4 of Bubeck (2015), we have:

∀ u ∈ Rd, |`z(u)− `z(w)−∇`z(w)ᵀ(u−w)| ≤ β

2
‖u−w‖2.

Therefore we can write:

∀ u ∈ Rd, `z(u) ≤ `z(w) +∇`z(w)ᵀ(u−w)|+ β

2
‖u−w‖2.
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And since ∀ u, lz(u) ≥ 0, we have:

∀ u ∈ Rd, 0 ≤ `z(w) +∇`z(w)ᵀ(u−w)|+ β

2
‖u−w‖2.

We now choose u = − 1
β∇lz(w), which yeilds:

∀ u ∈ Rd, 0 ≤ `z(w)− 1

β
‖∇`z(w)‖2 +

β

2
‖∇`z(w)‖2,

which gives the desired result.

Theorem 3 (Convex and Smooth - Large Eta)
We assume that Ω is a convex set, and that for every z ∈ Z, `z is convex and β-
smooth. Let w? be a solution of (P), and assume that we have prefect interpolation:
∀z ∈ Z, `z(w?) = 0. Then BORAT for N ≥ 2 applied to f with η ≥ 1

2β satisfies:

f

(
1

T+1

T∑
t=0

wt

)
− f? ≤ 2β

‖w0 −w?‖2

T + 1
. (69)

Proof : We start from Equation (57) we have:

‖wT+1 −w?‖2 ≤ ‖w0 −w?‖2 − η
∑
t∈IT

`zt(wt)−
∑
t∈JT

(
`zt(wt)

2

‖gzt‖2

)
. (70)

Now using Lemma 3 we can write:

‖wT+1 −w?‖2 ≤ ‖w0 −w?‖2 − η
∑
t∈IT

`zt(wt)−
1

2β

∑
t∈JT

`zt(wt). (71)

From our assumption on η ≥ 1
2β we can write:

‖wT+1 −w?‖2 ≤ ‖w0 −w?‖2 −
1

2β

∑
t∈IT

`zt(wt)−
1

2β

∑
t∈JT

`zt(wt), (72)

‖wT+1 −w?‖2 ≤ ‖w0 −w?‖2 −
1

2β

T∑
t=0

`zt(wt). (73)

using ‖wT+1 −w?‖2 ≥ 0, we obtain:
T∑
t=0

`zt(wt) ≤ 2β‖w0 −w?‖2. (74)

Dividing by T + 1 and taking the expectation over zt, we finally get:

f

(
1

T + 1

T∑
t=0

wt

)
− f∗ ≤ 1

T + 1

T∑
t=0

f(wt)− f∗, (f is convex)

f

(
1

T + 1

T∑
t=0

wt

)
− f∗ ≤ 2β

‖w0 −w?‖2

T + 1
.
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Theorem 4 (Convex and Smooth - Small Eta)
We assume that Ω is a convex set, and that for every z ∈ Z, `z is convex and β-
smooth. Let w? be a solution of (P), and assume that we have prefect interpolation:
∀z ∈ Z, `z(w?) = 0. Then BORAT for N ≥ 2 applied to f with η ≤ 1

2β satisfies:

f

(
1

T+1

T∑
t=0

wt

)
− f? ≤ 2β

‖w0 −w?‖2

T + 1
. (75)

Proof : now considering the η ≤ 1
2β starting from (76)

‖wT+1 −w?‖2 ≤ ‖w0 −w?‖2 − η
∑
t∈IT

`zt(wt)−
1

2β

∑
t∈JT

`zt(wt), (76)

‖wT+1 −w?‖2 ≤ ‖w0 −w?‖2 − η
∑
t∈IT

`zt(wt)− η
∑
t∈JT

`zt(wt), (77)

‖wT+1 −w?‖2 ≤ ‖w0 −w?‖2 − η
T∑
t=0

`zt(wt). (78)

using ‖wT+1 −w?‖2 ≥ 0, we obtain:
T∑
t=0

`zt(wt) ≤
1

η
‖w0 −w?‖2. (79)

Dividing by T + 1 and taking the expectation over zt, we finally get:

f

(
1

T + 1

T∑
t=0

wt

)
− f∗ ≤ 1

T + 1

T∑
t=0

f(wt)− f∗, (f is convex)

f

(
1

T + 1

T∑
t=0

wt

)
− f∗ ≤ ‖w0 −w?‖2

η(T + 1)
.

D.3 Strongly Convex

Finally, we consider the α-strongly convex and β-smooth case.
Lemma 4

Let z ∈ Z. Assume that `z is α-strongly convex, non-negative on Rd, and such that
inf `z = 0. Then we have:

∀w ∈ Rd,
`z(w)

‖∇`z(w)‖2
≤ 1

2α
. (80)

Proof : Let w ∈ Rd and suppose that `z reaches its minimum at w ∈ Rd (this minimum exists
because of strong convexity). By definition of strong convexity, we have that:

∀ ŵ ∈ Rd, `z(ŵ) ≥ `z(w) +∇`z(w)>(ŵ −w) +
α

2
‖ŵ −w‖2 (81)
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We minimize the right hand-side over ŵ, which gives:

∀ŵ ∈ Rd, `z(ŵ) ≥ `z(w) +∇`z(w)>(ŵ −w) +
α

2
‖ŵ −w‖2

≥ `z(w)− 1

2α
‖∇`z(w)‖2

(82)

Thus by choosing ŵ = w and re-ordering, we obtain the following result (a.k.a. the Polyak-
Lojasiewicz inequality):

`z(w)− `z(w) ≤ 1

2α
‖∇`z(w)‖2 (83)

However we have `z(w) = 0 which concludes the proof.

Lemma 5

For any a, b ∈ Rd, we have that:

‖a‖2 + ‖b‖2 ≥ 1

2
‖a− b‖2. (84)

Proof : This is a simple application of the parallelogram law, but we give the proof here for
completeness.

‖a‖2 + ‖b‖2 − 1

2
‖a− b‖2 = ‖a‖2 + ‖b‖2 − 1

2
‖a‖2 − 1

2
‖b‖2 + a>b

=
1

2
‖a‖2 +

1

2
‖b‖2 + a>b

=
1

2
‖a+ b‖2

≥ 0

Lemma 6

Let z ∈ Z. Assume that `z is α-strongly convex and achieves its (possibly constrained)
minimum at w? ∈ Ω. Then we have:

∀w ∈ Ω, `z(w)− `z(w?) ≥
α

2
‖w −w?‖2 (85)

Proof : By definition of strong-convexity Bubeck (2015), we have:

∀w ∈ Ω, `z(w)− `z(w?)−∇`z(w?)
>(w −w?) ≥

α

2
‖w −w?‖2. (86)

In addition, since w? minimizes `z, then necessarily:

∀w ∈ Ω, ∇`z(w?)
>(w −w?) ≥ 0. (87)

Combining the two equations gives the desired result.

Finally, we consider the α-strongly convex and β-smooth case. Again, our proof yields a
natural separation betweenη ≥ 1

2β and η ≤ 1
2β .
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Theorem 5 (Strongly Convex - Large Eta)
We assume that Ω is a convex set, and that for every z ∈ Z, `z is α-strongly convex and
β-smooth. Let w? be a solution of (P), and assume that we have prefect interpolation:
∀z ∈ Z, `z(w?) = 0. Then BORAT for N ≥ 2 and applied to f with a η ≥ 1

2β satisfies:

E[f(wt+1)]− f(w?) ≤
β

2
exp

(
−αt

4β

)
‖w0 −w?‖2. (88)

Proof : We start from (56):

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − 1(t ∈ IT )η`zt(wt)− 1(t ∈ JT )

(
`zt(wt)

2

‖gzt‖2

)
. (89)

We next use Lemma 3 write:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − 1(t ∈ IT )η`zt(wt)− 1(t ∈ JT )
1

2β
(90)

ellzt(wt). (91)

Now we use our assumption on η to give:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 −
1

2β
`zt(wt) (92)

taking expectations:

E[‖wt+1 −w?‖2] ≤ ‖wt −w?‖2 −
1

2β
f(wt) (93)

Using Lemma 6

E[‖wt+1 −w?‖2] ≤ ‖wt −w?‖2 −
α

4β
‖wt −w?‖2 (94)

We use a trivial induction over t and write:

E[‖wt+1 −w?‖2] ≤
(

1− α

4β

)
‖wt −w?‖2, (95)

E[‖wt+1 −w?‖2] ≤
(

1− α

4β

)t
‖w0 −w?‖2, (96)

(97)

Given an arbitrary w ∈ Rd, we now wish to relate the distance ‖w −w?‖2 to the function
values f(w)− f(w?). From smoothness, we have:

f(wt+ 1)− f(w?) ≤ ∇f(w?)
>(wt+ 1−w?) +

β

2
‖wt+ 1−w?‖2. (98)

However we know by definition ∇f(w?) = 0 hence:

f(wt+1)− f(w?) ≤
β

2
‖wt+1 −w?‖2. (99)
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Taking expectations:

E[f(wt+1)]− f(w?) ≤
β

2
E[‖wt+1 −w?‖2]. (100)

Hence we recover the final rate:

E[f(wt+1)]− f(w?) ≤
β

2

(
1− α

4β

)t
‖w0 −w?‖2, (101)

E[f(wt+1)]− f(w?) ≤
β

2
exp

(
−αt

4β

)
‖w0 −w?‖2. (102)

Theorem 6 (Strongly Convex - Small Eta)
We assume that Ω is a convex set, and that for every z ∈ Z, `z is α-strongly convex and
β-smooth. Let w? be a solution of (P), and assume that we have prefect interpolation:
∀z ∈ Z, `z(w?) = 0. Then BORAT for N ≥ 2 and applied to f with a η ≤ 1

2β satisfies:

E[f(wt+1)]− f(w?) ≤
β

2
exp

(
−αηt

2

)
‖w0 −w?‖2. (103)

Proof : We start from (56):

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − 1(t ∈ IT )η`zt(wt)− 1(t ∈ JT )

(
`zt(wt)

2

‖gzt‖2

)
. (104)

We next use Lemma 3 write:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − 1(t ∈ IT )η`zt(wt)− 1(t ∈ JT )
1

2β
`zt(wt). (105)

Now we use our assumption on η to give:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − η`zt(wt) (106)

taking expectations:

E[‖wt+1 −w?‖2] ≤ ‖wt −w?‖2 − η`zt(wt) (107)

Using Lemma 6

E[‖wt+1 −w?‖2] ≤ ‖wt −w?‖2 −
αη

2
‖wt −w?‖2 (108)

We use a trivial induction over t and write:

E[‖wt+1 −w?‖2] ≤
(

1− αη

2

)
‖wt −w?‖2, (109)

E[‖wt+1 −w?‖2] ≤
(

1− αη

2

)t
‖w0 −w?‖2, (110)

(111)

Given an arbitrary w ∈ Rd, we now wish to relate the distance ‖w −w?‖2 to the function
values f(w)− f(w?). From smoothness, we have:

f(wt+ 1)− f(w?) ≤ ∇f(w?)
>(wt+ 1−w?) +

β

2
‖wt+ 1−w?‖2. (112)
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However we know by definition ∇f(w?) = 0 hence:

f(wt+1)− f(w?) ≤
β

2
‖wt+1 −w?‖2. (113)

Taking expectations:

E[f(wt+1)]− f(w?) ≤
β

2
E[‖wt+1 −w?‖2]. (114)

Hence we recover the final rate:

E[f(wt+1)]− f(w?) ≤
β

2

(
1− αη

2

)t
‖w0 −w?‖2, (115)

E[f(wt+1)]− f(w?) ≤
β

2
exp

(
−αηt

2

)
‖w0 −w?‖2. (116)

Appendix E. None Convex Results

Here we provide the proof of theorem 2, which we restate for clarity. To simplify our analysis,
we consider the BORAT algorithm with N = 3. We prove these result for BORAT with the
minor modification, that is, all linear approximations are formed using the same mini-batch
of data, `znt = `zt for all n ∈ {2, ..., N − 1}.
Theorem 2 (RSI )

We consider problems of type (1), see main paper. We assume lz satisfies RSI with
constant µ, smoothness constant β and perfect interpolation e.g. lz(w∗) = 0, ∀z ∈ Z.
Then if set η ≤ η̂ = min{ 1

4β ,
1

4µ ,
µ

2β2 } then in the worst case we have:

f(wT+1)− f∗ ≤ exp
((
−3

8
η̂µ

)
T

)
||w0 −w∗||2. (117)

In order to derive the proof for Theorem 2 we first give a brief overview of BORAT with
N = 3. We detail the (2N − 1) possible subproblems (7 in this case), and the resulting
values of αt for each. We show for η ≤ 1

2β , only a sub-set of the subproblems result in valid
solutions with optimal points within the simplex. Finally we derive a rate assuming that for
the each of the remaining subproblems is optimal for all t. Lastly by taking the minimum of
these rates we construct the worst case rate.

E.0.1 BORAT (N = 3)

With (N = 3) the bundle is made of three linear approximations. These are, the lower bound
on the loss and linear approximations made at the current point and at the optimum of
the bundle of size two. Hence this third linear approximation is made at the location one
would reach after taking a ALI-G step. Note, here we use γt to denote the optimal value of
α1 as given by 12. As some of this proofs get quite involved, we make use of the following
abbreviations to save space:

ŵ1
t = wt, gzt = ∇`znt (wt), b1t = `znt (wt),
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ŵ2
t = w′t, g′zt = ∇`znt (w′t), b2t = `znt (w′t) + ηγt〈gzt , g′zt〉.

Where w′t is defined as w′t = wt − ηγt∇`znt (wt), where γt = min{1,
`znt

(wt)

η‖∇`znt (wt)‖2 η. With this

notation defined, the BORAT primal problem for this special case can be simplified to:

wt+1 = argmin
w∈Rd

{
1

2η
||w −wt||2 + max

{
〈gzt ,w −wt〉+ b1t , 〈g′zt ,w −wt〉+ b2t , 0

}}
. (118)

The dual of (118) be written an:

αt = argmax
α∈∆3

{
−η

2
||α1gzt + α2tg′zt ||

2 + α1`znt (wt) + α2`znt (w′t) + α2ηγt〈gzt , g′zt〉
}
. (119)

For N = 3 we have the following parameter update:

wt+1 = wt − α1tη∇`znt (wt)− α2tη∇`znt (w′t), (120)

E.0.2 subproblems

Algorithm 1 solves (2N − 1) sub problem. Each of these linear systems corresponds to a
loci of the simplex, defining the feasible set. We refer to each of these (2N − 1) options as
subproblems. However, each subproblem can also be interpreted as a sub-system of Qα = b,
(see line 2 of Algorithm 1 for definitions). For (N = 3) the form of Qα = b is detailed in
(121). 

η||gzt ||2 η〈gzt , g′zt〉 0 1
η〈gzt , g′zt〉 η||g′zt ||

2 0 1
0 0 0 1
1 1 1 0



α1

α2

α3

c

 =


b1
b2
0
1

 , (121)

where c is defined in Theorem 1. Each subproblem is defined by setting a unique subset of
the dual variables αn to zero, before solving for the remaining variables. For (N = 3) we
have exactly seven subproblems, which we each give a unique label, see table 5. For clarity,
we detail a few specific subproblems. The SGD subproblem corresponds to setting α2, α3 = 0,
and recovers the SGD update. Likewise, the ESGD step corresponds to setting α1, α3 = 0
and recovers an update similar to the extra gradient method. Finally, by setting α2 = 0
before solving the system we recover the a ALI-G like step, hence we label this subproblem
as the ALI-G step. If a subproblem results in a α ∈ ∆3 we refer to that subproblem as
feasible, conversely, if it results in a α /∈ ∆3 we refer to that subproblem as infeasible.
Algorithm 2 computes the dual value for all feasible subproblems and selects the largest. This
subproblem’s α is then used in (120) to update the parameters. The closed form solutions
for α for each of the 7 subproblems are listed in table 5. We use a subscript to show that α
belongs to a certain subproblem. For example αSGD = [1, 0, 0].
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α1 α2 α3 label

1 0 0 SGD
0 1 0 SEGD
0 0 1 ZERO
0 b2

η||g′zt ||
2 1− b2

η||g′zt ||
2 EALIG

b1
η||gzt ||2

0 1− b1
η||gzt ||2

ALIG
η||g′zt ||

2−2η〈gzt ,g′zt 〉+b1−b2
η||gzt−g′zt ||

2

η||gzt ||2+b2−b1
η||gzt−g′zt ||

2 0 MAX2
b1||g′zt ||

2−b2g>ztg
′
zt

η||gzt ||2||g′zt ||
2−η||gztg′zt ||

2

b2||gzt ||2−b1g>zta2
η||gzt ||2||g′zt ||

2−η||gztg′zt ||
2 1− α1 − α2 MAX3

Table 5: subproblems for N = 3.

E.0.3 Dual Values

The corresponding expressions for the dual values for the seven different subproblems are
detailed below:

DZERO(α) = 0,

DSGD(α) = −η
2
||gzt ||2 + `znt (wt),

DESGD(α) = −η
2
||g′zt ||

2 + `znt (w′t) + ηγt〈gzt , g′zt〉,

DALIG(α) =
1

2η

`znt (wt)
2

||gzt ||2
,

DEALIG(α) =
1

2η

(
`znt (w′t) + ηγt〈gzt , g′zt〉

)2
||g′zt ||2

,

DMAX2(α) =
1

2η||gzt − g′zt ||2

(
(`znt (w′t)− `znt (wt))

2 + 2η
(
`znt (w′t)||gzt ||2 + `znt (wt)||g′zt ||

2
)

− 4η`znt (wt)〈gzt , g′zt〉+ 2η2||gzt ||2〈gzt , g′zt〉 − η
2||gzt ||2||g′zt ||

2

)
,

DMAX3(α) =
1

2

(
`znt (w′t)gzt + ηγt〈gzt , g′zt〉gzt − `znt (wt)g

′
zt

)2
η||gzt ||2||g′zt ||2 − η〈gzt , g′zt〉2

.

Due to spatial constraints we state these results without proof. The dual value for
each subproblem is simply derived by inserting the closed form expression for α for each
subproblem detailed in table 5 into (7). These dual values observe a tree like hierarchy,

DMAX3 ≥ DMAX2, DALIG, DEALIG,

DMAX2 ≥ DSGD, DESGD,

DALIG ≥ DSGD, DZERO,

DEALIG ≥ DESGD, DZERO.
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This hierarchy is a consequence of the subproblems maximising the dual over progressively
larger spaces, ∆n−1 ⊂ ∆n.

E.0.4 Feasible Subproblems

To give a worst case rate on the convergence of BORAT with N = 3, we first prove for
smooth functions and small η, only certain subproblems will be feasible. We start with a
useful lemma, before proving this result.
Lemma 7

Let z ∈ Z. Assume that `z is β-smooth. If we define w′ = w − η∇`z(w) and η ≤ 1
β

then we have:

∀(w) ∈ Rd, 〈∇`z(w),∇`z(w′)〉 ≥ 0.

Note that we do not assume that `z is convex.

Proof :

2〈∇`z(w),∇`z(w′)〉 = −||∇`z(w)−∇`z(w′)||2 + ||∇`z(w)||2 + ||∇`z(w′)||2

2〈∇`z(w),∇`z(w′)〉 ≥ −β2||w −w′||2 + ||∇`z(w)||2 + ||∇`z(w′)||2, (smoothness)

2〈∇`z(w),∇`z(w′)〉 ≥ −β2η2||∇`z(w)||2 + ||∇`z(w)||2 + ||∇`z(w′)||2, (w′ definition)

〈∇`z(w),∇`z(w′)〉 ≥
1

2
(1− β2η2)||∇`z(w)||2 +

1

2
||∇`z(w′)||2,

〈∇`z(w),∇`z(w′)〉 ≥ 0. (
1

β
≥ η)

Lemma 8 (Feasible Subproblems)

If `znt has smoothness constant β and we set η ≤ 1
2β for the BORAT algorithm with

(N = 3) detailed in Section E.0.1, the ALIG, EALIG and MAX3 subproblems will always
be infeasible.

Proof : We start by showing the ALIG step is infeasible. From Lemma 3 we have:

`z(w)

||gzt ||2
≥ 1

2β
.

For the ALI-G step to be feasible we require α3
ALIG > 0 or 1−

`znt
(wt)

η||gzt ||2
> 0. Rearranging, we

have:

η >
`znt (wt)

||gzt ||2
.

Combining these two inequalities gives:

η >
`z(w)

||gzt ||2
≥ 1

2β
.

Hence for any 1
2β ≥ η, η >

`znt
(wt)

||gzt ||2
cannot hold. We now use a similar argument to show

that the EALIG subproblem is infeasible. For EALIG to be feasible we require α3t
EALIG > 0,
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plugging in the closed form solution for α3
EALIG gives:

η >
`znt (w′t) + ηγt〈gzt , g′zt〉

||g′zt ||2
=
`znt (w′t) + η〈gzt , g′zt〉

||g′zt ||2
=
`znt (w′t)

||g′zt ||2
+
η〈gzt , g′zt〉
||g′zt ||2

≥
`znt (w′t)

||g′zt ||2
≥ 1

2β
,

where the penultimate inequality makes use of 〈gzt , g′zt〉 ≥ 0, which is a direct application of
Lemma 7. The final inequality is a direct application of Lemma 3. Again, it is clear that the
condition η >

`znt
(w′t)

||g′zt ||
2 cannot be satisfied for η ≤ 1

2β .

We show that theMAX3 step is never taken for η ≤ 1
2β . First, we show that the dual value for

theMAX3 step can be written asDMAX3(α) = 1
2

(
`znt (wt)α

1t + `znt (w′t)α
2t + ηγtα

2t〈gzt , g′zt〉
)
.

We start from the dual value stated in Section E.0.3.

DMAX3(α) =
1

2

(
`znt (w′t)gzt + ηγt〈gzt , g′zt〉gzt − `znt (wt)g

′
zt

)2
η||gzt ||2||g′zt ||2 − η〈gzt , g′zt〉2

,

expanding,

DMAX3(α) =
1

2
`znt (w′t)

(
`znt (w′t)gzt + ηγt〈gzt , g′zt〉gzt − `znt (wt)g

′
zt

)
η||gzt ||2||g′zt ||2 − η〈gzt , g′zt〉2

gzt︸ ︷︷ ︸
=α2

+
1

2
ηγt〈gzt , g′zt〉

(
`znt (w′t)gzt + ηγt〈gzt , g′zt〉gzt − `znt (wt)g

′
zt

)
η||gzt ||2||g′zt ||2 − η〈gzt , g′zt〉2

gzt︸ ︷︷ ︸
=α2

− 1

2
`znt (wt)

(
`znt (w′t)gzt + ηγt〈gzt , g′zt〉gzt − `znt (wt)g

′
zt

)
η||gzt ||2||g′zt ||2 − η〈gzt , g′zt〉2

g′zt .︸ ︷︷ ︸
=−α1

Using the definitions of α1
MAX3 and α2

MAX3 we recover the following expression for the
MAX3 subproblem’s dual function:

DMAX3(α) =
1

2

(
`znt (wt)α

1t + `znt (w′t)α
2t + ηγtα

2t〈gzt , g′zt〉
)
.

With the dual function in this form it is easy to upper bound the feasible dual value for
the MAX3 subproblem as DMAX3 ≤ 1

2 max
{
`znt (wt), `znt (w′t) + ηγt〈gzt , g′zt〉

}
. This is a

consequence of the fact that α ∈ ∆ must hold for feasible steps. However, from the hierarchy
of dual values we have the lower bounds DMAX3 ≥ DSGD and DMAX3 ≥ DESGD, on the
MAX3 dual value, see Section E.0.3. If either of these lower bounds have larger value than
the feasible dual value’s upper bound, the MAX3 step will not be feasible. We now show
that this is always the case for η ≤ 1

2β . In order to do this we consider two cases.

We first assume `znt (wt) ≥ `znt (w′t) + ηγt〈gzt , g′zt〉. Hence we know the maximum feasible
value for DMAX3 = 1

2`znt (wt), if either DSGD or DESGD have larger dual value we can
conclude the MAX3 step is unfeasible.

DSGD(α) = −η
2
||gzt ||2 + `znt (wt),

Hence if the following condition holds we know the MAX3 step will be unfeasible:

1

2
`znt (wt) ≤ −

η

2
||gzt ||2 + `znt (wt).
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Thus, the converse must hold for the MAX3 step to be feasible:

1

2
`znt (wt) ≥ −

η

2
||gzt ||2 + `znt (wt),

which is equivalent to,

η ≥
`znt (wt)

||gzt ||2
.

Using the same logic as stated for the ALI-G step we know this condition is never satisfied
for η ≤ 1

2β .

We now assume `znt (wt) ≤ `znt (w′t) + ηγt〈gzt , g′zt〉 and thus we know the max feasible
value of DMAX3 ≤ 1

2`znt (w′t) + 1
2ηγt〈gzt , g

′
zt〉, again if either DSGD or DESGD have larger

values, we know the MAX3 subproblem is unfeasible:

DESGD(α) = −η
2
||g′zt ||

2 + `znt (w′t) + ηγt〈gzt , g′zt〉.

Hence for the MAX3 step to be valid we must have:

1

2
`znt (w′t) + ηγt〈gzt , g′zt〉 ≤ −

η

2
||g′zt ||

2 + `znt (w′t) + ηγt〈gzt , g′zt〉,

which is equivalent to,

η ≤
`znt (w′t) + ηγt〈gzt , g′zt〉

||g′zt ||2
.

Again, we have the same condition as for the EALIG step, which we have already proven can
never be feasible for η ≤ 1

2β . Hence the MAX3 subproblem is never feasible for η ≤ 1
2β .

Lemma 9
For any set of vectors a, b, c then, the following inequality holds:

−2||a− b||2 ≤ −||a− c||2 + 2||b− c||2.

Proof : First consider two vectors x and y.

0 ≤ ||x− y||2,
0 ≤ ||x||2 + ||y||2 − 2〈x,y〉

2〈x,y〉 ≤ ||x||2 + ||y||2,
||x+ y||2 = ||x||2 + ||y||2 + 2〈x,y〉,
||x+ y||2 ≤ 2||x||2 + 2||y||2,
−2||x||2 ≤ 2||y||2 − ||x+ y||2.

Setting x = a− b and y = b− c gives the desired result.
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Lemma 10

Let z ∈ Z. Assume that `z is β-smooth and non-negative on Rd. Then we have:

∀(w) ∈ Rd, `z(w) ≥ 1

2β
||∇`z(w)||2

Note that we do not assume that `z is convex.

Proof : Let w ∈ Rd. By Lemma 3.4 of Bubeck (2015), we have:

∀ u ∈ Rd, |`z(u)− `z(w)−∇`z(w)ᵀ(u−w)| ≤ β

2
||u−w||2.

Therefore we can write:

∀ u ∈ Rd, `z(u) ≤ `z(w) +∇`z(w)ᵀ(u−w)|+ β

2
||u−w||2.

And since ∀ u, lz(u) ≥ 0, we have:

∀ u ∈ Rd, 0 ≤ `z(w) +∇`z(w)ᵀ(u−w)|+ β

2
||u−w||2.

We now choose u = − 1
β∇lz(w), which yeilds:

∀ u ∈ Rd, 0 ≤ `z(w)− 1

β
||∇`z(w)||2 +

β

2
||∇`z(w)||2,

which gives the desired result.

In this section we derive the rate for each of the remaining feasible steps, that is, SGD,
ESGD and MAX2.

E.1 SGD Subproblem
Lemma 11

We assume that Ω = Rd, for every z ∈ Z, `z(w) is β and satisfies the RSI condition with
constant µ. Let w∗ be a solution of f(w). We assume ∀z ∈ Z, `znt (w∗) = 0. Then, if we
apply BORAT with η ≤ η̂ = min{ 1

4β ,
1

4µ ,
µ
β2 } and we take the step resulting from the

SGD subproblem for all t we have:

E[||wt+1 −w∗||2] ≤ (1− η̂µ)||wt −w∗||2.

Proof :

||wt+1 −w∗||2 ≤ ||ΠΩ(wt − ηg′zt)−w∗||2, (122)

≤ ||wt − ηgzt −w∗||2, (123)

= ||wt −w∗||2 + η2||gzt ||2 − 2η〈gzt ,wt −w∗〉, (124)

≤ ||wt −w∗||2 + η2||gzt ||2 − 2ηµ||wt −w∗||2. (125)
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We have ||gzt ||2 ≤ 2β`znt (wt) from Lemma 3 and `znt (wt) ≤ β
2 ||wt −w∗||2 from smoothness

giving ||gzt ||2 ≤ β2||wt −w∗||2. We can now upper bound the r.h.s producing:

||wt+1 −w∗||2 ≤ ||wt −w∗||2 + η2β2||wt −w∗||2 − 2ηµ||wt −w∗||2, (126)

||wt+1 −w∗||2 ≤ (1− 2ηµ+ η2β2)||wt −w∗||2, (127)

||wt+1 −w∗||2 ≤
(
1− η(2µ− ηβ2)

)
||wt −w∗||2. (128)

Now, if we select η ≤ η̂ = min{ 1
2β ,

1
4µ ,

µ
β2 } in the worst case we get:

||wt+1 −w∗||2 ≤ (1− η̂µ)||wt −w∗||2. (129)

Taking expectations with respect to zt:

E[||wt+1 −w∗||2] ≤ E[(1− η̂µ)||wt −w∗||2]. (130)

Noting that wt does not depend on zt, and neither does w∗ due to the interpolation property:

E[||wt+1 −w∗||2] ≤ (1− η̂µ)||wt −w∗||2. (131)

E.2 ESGD Subproblem
Lemma 12

Let z ∈ Z. We assume that `z is β-smooth and non-negative on Rd. Additionally we
assume that η ≤ 1

2β . If we define γt
.
= min{1,

`znt
(wt)

η||gzt||2 }, then we have:

γt = 1, ∀t

Proof : From our assumption on η and Lemma 3 we have:

η ≤ 1

2β
≤
`znt (wt)

||gzt||2
.

Rearranging gives:

1 ≤
`znt (wt)

η||gzt||2
.

Plugging in to the the definition of γt, gives the desired result.

Lemma 13

We assume that Ω = Rd, for every z ∈ Z, `z(w) is β and satisfies the RSI condition with
constant µ. Let w∗ be a solution of f(w). We assume ∀z ∈ Z, `znt (w∗) = 0. Then, if we
apply BORAT with η ≤ η̂ = min{ 1

4β ,
1

4µ ,
µ
β2 } and we take the step resulting from the

ESGD subproblem for all t we have:

E[||wt+1 −w∗||2] ≤ (1− η̂µ)||wt −w∗||2.
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Proof : This proof loosely follows work by Vaswani et al. (2019a).

||wt+1 −w∗||2 ≤ ||ΠΩ(wt − ηg′zt)−w∗||2, (132)

≤ ||wt − ηg′zt −w∗||2, (133)

= ||wt −w∗||2 + η2||g′zt ||
2 − 2η〈g′zt ,wt −w∗〉, (134)

= ||wt −w∗||2 + η2||g′zt ||
2 − 2η〈g′zt ,w

′
t + ηγtgzt −w∗〉, (135)

= ||wt −w∗||2 + η2||g′zt ||
2 − 2η〈g′zt ,w

′
t + ηgzt −w∗〉, (lemma 12) (136)

= ||wt −w∗||2 + η2||g′zt ||
2 − 2η〈g′zt ,w

′
t −w∗〉 − 2η2〈g′zt , gzt〉. (137)

Using the RSI condition:

||wt+1 −w∗||2 ≤ ||wt −w∗||2 + η2||g′zt ||
2 − 2ηµ||w′t −w∗||2 − 2η2〈g′zt , gzt〉. (138)

Using lemma (9) to upper bound −||w′t −w∗||2,

= ||wt −w∗||2 + η2||g′zt ||
2 − ηµ||w∗ −wt||2 + 2ηµ||wt −w′t||2 − 2η2〈g′zt , gzt〉, (139)

= (1− ηµ)||wt −w∗||2 + η2||g′zt ||
2 + 2ηµ||wt −w′t||2 − 2η2〈g′zt , gzt〉, (140)

= (1− ηµ)||wt −w∗||2 + η2||g′zt − gzt ||
2 − η2||gzt ||2 + 2ηµ||wt −w′t||2, (141)

= (1− ηµ)||wt −w∗||2 + η2||g′zt − gzt ||
2 − η2||gzt ||2 + 2η3µ||gzt ||2, (142)

≤ (1− ηµ)||wt −w∗||2 + η2β2||w′t −wt||2 − η2||gzt ||2 + 2η3µ||gzt ||2, (smoothness) (143)

= (1− ηµ)||wt −w∗||2 + η4β2||gzt ||2 − η2||gzt ||2 + 2η3µ||gzt ||2, (144)

= (1− ηµ)||wt −w∗||2 + η2
(
η2β2 − 1 + 2ηµ

)
||gzt ||2, (145)

Taking expectations with respect to zt:

E[||wt+1 −w∗||2] = E[(1− ηµ)||wt −w∗||2 + η2
(
η2β2 − 1 + 2ηµ

)
||gzt ||2, (146)

Noting that wt does not depend on zt, and neither does w∗ due to the interpolation property:

E[||wt+1 −w∗||2] = (1− ηµ)||wt −w∗||2 + η2
(
η2β2 − 1 + 2ηµ

)
E[||gzt ||2], (147)

If we set η ≤ η̂ = min{ 1
2β ,

1
4µ ,

µ
β2 } then we have η2β2 ≤ 1

4 , 2ηµ ≤ 1
2 ,hence

(
η2β2 − 1 + 2ηµ

)
≤

0.

E[||wt+1 −w∗||2] ≤ (1− ηµ)||wt −w∗||2. (148)

Hence if we insert the chosen value for η then we have:

E[||wt+1 −w∗||2] ≤ (1− η̂µ)||wt −w∗||2. (149)

E.3 MAX2 Subproblem
Lemma 14

We assume that Ω = Rd, for every z ∈ Z, lz(w) is β and satisfies the RSI condition with
constant µ. Let w∗ be a solution of f(w). We assume ∀z ∈ Z, lzt(w∗) = 0. Then, if we
apply BORAT with η ≤ η̂ = min{ 1

4β ,
1

4µ ,
µ
β2 } and we take the step resulting from the

48



A Stochastic Bundle Method for Interpolation

MAX2 subproblem for all t we have:

E[||wt+1 −w∗||2] ≤
(

1− 3

8
η̂µ

)t
||w0 −w∗||2.

Proof : Note we assume γt = 1 as proved in Lemma 12.

||wt+1 −w∗||2 ≤ ||ΠΩ(wt − ηα1tgzt − ηα2tg′zt)−w∗||2, (150)

≤ ||wt − ηα1tgzt − ηα2tg′zt −w∗||2, (151)

= ||wt −w∗||2 + η2||α1tgzt + α2tg′zt ||
2

− 2η〈α1tgzt + α2tg′zt ,wt −w∗〉,
(152)

= ||wt −w∗||2 + η2||α1tgzt + α2tg′zt ||
2

− 2ηα1t〈gzt ,wt −w∗〉 − 2ηα2t〈g′zt ,wt −w∗〉,
(153)

= ||wt −w∗||2 + η2||α1tgzt + α2tg′zt ||
2 − 2ηα1t〈gzt ,wt −w∗〉

− 2ηα2t〈g′zt ,w
′
t + ηgzt −w∗〉,

(154)

= ||wt −w∗||2 + η2||α1tgzt + α2tg′zt ||
2 − 2ηα1t〈gzt ,wt −w∗〉

− 2ηα2t〈g′zt ,w
′
t −w∗〉 − 2η2α2t〈g′zt , gzt〉,

(155)

= ||wt −w∗||2 + η2||α1tgzt + α2tg′zt ||
2 − 2η2α2t〈g′zt , gzt〉

− 2ηα1t〈gzt ,wt −w∗〉 − 2ηα2t〈g′zt ,w
′
t −w∗〉.

(156)

We now make use of −〈gzt ,wt −w∗〉 ≤ −µ||w∗ −wt||2 (RSI condition),

||wt+1 −w∗||2 ≤ ||wt −w∗||2 + η2||α1tgzt + α2tg′zt ||
2

− 2η2α2t〈g′zt , gzt〉 − 2ηα1tµ||wt −w∗||2 − 2η〈α2tg′zt ,w
′
t −w∗〉,

(157)

||wt+1 −w∗||2 ≤ (1− 2ηα1tµ)||wt −w∗||2 + η2||α1tgzt + α2tg′zt ||
2

− 2η2α2t〈g′zt , gzt〉 − 2ηα2t〈g′zt ,w
′
t −w∗〉.

(158)

Similarly using −〈g′zt ,w
′
t −w∗〉 ≤ −µ||w∗ −w′t||2 (RSI condition),

||wt+1 −w∗||2 ≤ (1− 2ηα1tµ)||wt −w∗||2 + η2||α1tgzt + α2tg′zt ||
2

− 2η2α2t〈g′zt , gzt〉 − 2ηα2tµ||w′t −w∗||2.
(159)

We now upper bound −||w′t −w∗||2, using lemma (9):

||wt+1 −w∗||2 ≤ (1− 2ηα1tµ)||wt −w∗||2 + η2||α1tgzt + α2tg′zt ||
2

− 2η2α2t〈g′zt , gzt〉 − α
2tηµ||wt −w∗||2 + 2α2tηµ||wt −w′t||2.

(160)

This gives the following general form:

||wt+1 −w∗||2 ≤ (1− 2ηα1tµ− α2tηµ)||wt −w∗||2 + η2||α1tgzt + α2tg′zt ||
2

− 2η2α2t〈g′zt , gzt〉+ 2α2tηµ||wt −w′t||2.
(161)

We now use the inequality ||wt −w′t|| = η2||gzt || ≤ η2β2||wt −w∗|| to upper bound the final
term, see SGD proof for derivation of inequality:

||wt+1 −w∗||2 ≤ (1− 2ηα1tµ− α2tηµ)||wt −w∗||2 + η2||α1tgzt + α2tg′zt ||
2

− 2η2α2t〈g′zt , gzt〉+ 2η3β2µα2t||wt −w∗||,
(162)

49



Paren, Berrada, Poudel and Kumar

||wt+1 −w∗||2 ≤ (1− 2ηα1tµ− α2tηµ+ 2η3α2tβ2µ)||wt −w∗||2

+ η2||α1tgzt + α2tg′zt ||
2 − 2η2α2t〈g′zt , gzt〉.

(163)

We now simplify the last two terms, starting with the first:

η2||α1tgzt + α2tg′zt ||
2 = η2((α1t)2||gzt ||2 + 2α1tα2t〈gzt , g′zt〉+ (α2t)2||g′zt ||

2). (164)

Plugging in the expressions for α1t, α2t,γt = 1, grouping like terms and simplifying gives the
following. Note, we have excluded a few steps due to spatial constraints:

η2||α1tgzt + α2tg′zt ||
2

=
(lzt(w

′
t)− lzt(wt))

2 + 2η(lzt(w
′
t)− lzt(wt))〈gzt , g′zt〉+ η2||gzt ||2||g′zt ||

2

||gzt − g′zt ||2
(165)

Plugging in α2t into the remaining term gives the following expressions:

−2η2α2t〈g′zt , gzt〉 =
−2η2||gzt ||2〈g′zt , gzt〉 − 2η(lzt(w

′
t)− lzt(wt))〈g′zt , gzt〉

||gzt − g′zt ||2
. (166)

Putting these together,

η2||α1tgzt + α2tg′zt ||
2 − 2η2α2t〈g′zt , gzt〉

=
(lzt(w

′
t)− lzt(wt))

2 + 2η(lzt(w
′
t)− lzt(wt))〈gzt , g′zt〉

||gzt − g′zt ||2

+
η2||gzt ||2||g′zt ||

2 − 2η2||gzt ||2〈g′zt , gzt〉 − 2η(lzt(w
′
t)− lzt(wt))〈g′zt , gzt〉

||gzt − g′zt ||2
.

(167)

Cancelling terms gives,

η2||α1tgzt + α2tg′zt ||
2 − 2η2α2t〈g′zt , gzt〉

=
(lzt(w

′
t)− lzt(wt))

2 + η2||gzt ||2||g′zt ||
2 − 2η2||gzt ||2〈g′zt , gzt〉

||gzt − g′zt ||2
.

(168)

From α2t ≥ 0 we have η||gzt ||2 ≥ lzt(wt) − lzt(w′t) hence we can upper bound (lzt(w
′
t) −

lzt(wt))
2 by η2||g′zt ||

4:

η2||α1tgzt + α2tg′zt ||
2 − 2η2α2t〈g′zt , gzt〉

≤
η2||g′zt ||

4 + η2||gzt ||2||g′zt ||
2 − 2η2||gzt ||2〈g′zt , gzt〉

||gzt − g′zt ||2
≤ η2||gzt ||2.

(169)

Again we use the inequality ||wt −w′t|| = η2||gzt || ≤ η2β2||wt −w∗||:

η2||α1tgzt + α2tg′zt ||
2 − 2η2α2t〈g′zt , gzt〉 ≤ η

2||gzt ||2 ≤ η2β2||wt+1 −w∗||2 (170)

Hence we get the following expression:

||wt+1 −w∗||2 ≤ (1− 2ηα1tµ− α2tηµ+ 2η3α2tβ2µ)||wt −w∗||2 + η2β2||wt+1 −w∗||2〉,
(171)

||wt+1 −w∗||2 ≤ (1− 2ηα1tµ− α2tηµ+ 2η3α2tβ2µ+ η2β2)||wt −w∗||2, (172)

||wt+1 −w∗||2 ≤ (1− ηµ− α1tηµ+ 2η3β2µ− 2η3α1tβ2µ+ η2β2)||wt −w∗||2. (173)
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Upper bounding −α1t by 0,

||wt+1 −w∗||2 ≤ (1− ηµ+ 2η3β2µ+ η2β2)||wt −w∗||2. (174)

Taking expectations with respect to zt:

E[||wt+1 −w∗||2] ≤ E[(1− ηµ+ 2η3β2µ+ η2β2)||wt −w∗||2]. (175)

Noting that wk does not depend on zt, and neither does w∗ due to the interpolation property:

E[||wt+1 −w∗||2] ≤ (1− ηµ+ 2η3β2µ+ η2β2)||wt −w∗||2. (176)

For the this step to be convergent we need the following condition to hold 2η3β2µ+η2β2−ηµ ≤
0. However, for η ≤ η̂ = min{ 1

4β ,
1

4µ ,
µ

2β2 } we have:

2η3β2µ+ η2β2 − ηµ ≤ 1

8
ηµ+

1

2
ηµ− ηµ ≤ −3

8
ηµ. (177)

Hence, we recover the rate:

E[||wt+1 −w∗||2] ≤
(

1− 3

8
η̂µ

)t
||w0 −w∗||2. (178)

E.4 Worst Case Rate

It is clear by inspection that the worst case rate derived corresponds to the MAX2 subproblem.
Hence in the worst case this step is taken for all t, and thus a trivial induction gives the
result of Theorem 2.

Appendix F. Additional Results

F.1 Cifar Hyperparameters and Variance

Here we detail the hyperparameters and variance for the ALI-G and BORAT results reported
in table 6. For other optimisation methods please refer to Appendix E of Berrada et al.
(2019b).

F.2 Empirical Run Time

Here we detail the effect of increasing N on the run time of BORAT. Due to each update
requiring N − 1 gradient evaluations BORAT with N ≥ 2 take significantly longer between
updates than other methods. However, BORAT achieves good empirical convergence rates
taking N − 1 fewer parameter updates than other methods, as shown in the results section.
Hence we consider the epoch time and show for each pass through the data BORAT has a
similar run time to SGD.
Increasing N both increases the run time of Algorithm 1 but additionally BORAT must
compute extra dot products when calculating Q. A naive implementation of Algorithm 1 has
a time complexity of O

(∑N
k=1

N !
k!(N−k)!k

3
)
. However if we exploit the parallel nature of this

algorithm where the sub problems are solved simultaneously, the time complexity reduces to
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Data Set Model Hyperparameters Test Accuracy

N η r batchzise Mean std

CIFAR10

WRN
2 0.1 50 128 95.4 0.13
3 1 100 128 95.4 0.05
5 1 75 128 95.0 0.08

DN
2 0.1 100 64 94.5 0.09
3 1 75 256 94.9 0.13
5 1 75 128 94.9 0.13

CIFAR100

WRN
2 0.1 50 512 76.1 0.21
3 0.1 50 256 76.0 0.16
5 0.1 50 128 75.8 0.22

DN
2 0.1 75 256 76.2 0.14
3 0.1 75 128 76.5 0.38
5 0.1 75 64 75.7 0.03

Table 6: Cifar Hyperparameters (BORAT)

O
(
N3
)
as discussed in Section 3.6. Additionally we need only run Algorithm 1 once every

N − 1 batches so the per epoch time complexity is O
(
N2
)
. Of course in practice Algorithm

1 is only responsible for a fraction of the run time, where its contribution is determined by
the relative size of the model and N .
Table 7 show with a parallel implementation the effect of the this extra computation on the
training epoch time isn’t significant and the time complexity scales approximately linearly
with N . Moreover, Table 7 shows for large scale learning problems, such as ImageNet the
extra run time when increasing N is negligible.

Optimiser SGD BORAT BORAT BORAT BORAT

N 1 2 3 4 5
Time (s) 51.0 55.6 68.2 69.2 74.3

Optimiser BORAT BORAT BORAT BORAT BORAT

N 6 7 8 9 10
Time (s) 77.8 82.8 88.7 94.1 99.5

Table 7: Average BORAT training epoch time for CIFAR100 data set, shown for varying
N. Time quoted using a batch size of 128, CIFAR100, CE loss, a Wide ResNet 40-4, and a
parallel implantation of BORAT. All Optimiser had access to 3 CPU cores, and one TITAN
Xp GPU.
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Optimiser BORAT BORAT BORAT

N 2 3 5
Time (s) 885.50 910.49 934.79

Table 8: Average BORAT training epoch time for ImageNet data set, shown for varying
N. Time quoted using a batch size of 1024, ImageNet, CE loss, a ResNet18, and a parallel
implantation of BORAT. All Optimiser had access to 12 CPU cores, and 4 TITAN Xp GPUs.
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