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Abstract

In high dimension, low sample size (HDLSS) settings, classifiers based on Euclidean dis-
tances like the nearest neighbor classifier and the average distance classifier perform quite
poorly if differences between locations of the underlying populations get masked by scale
differences. To rectify this problem, several modifications of these classifiers have been
proposed in the literature. However, existing methods are confined to location and scale
differences only, and they often fail to discriminate among populations differing outside of
the first two moments. In this article, we propose some simple transformations of these
classifiers resulting in improved performance even when the underlying populations have
the same location and scale. We further propose a generalization of these classifiers based
on the idea of grouping of variables. High-dimensional behavior of the proposed classifiers
is studied theoretically. Numerical experiments with a variety of simulated examples as
well as an extensive analysis of benchmark data sets from three different databases exhibit
advantages of the proposed methods.
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1. Introduction

Classification is a common task in machine learning. Given n data points in R? belonging
to J(> 2) classes, the goal of a classifier is to assign a class label to a new data point. In
particular, distance based classifiers have gained popularity because they are quite simple,
and easy to implement. Well-known classifiers such as the nearest neighbor classifier, the
centroid classifier, and the average distance classifier use only the distance between observa-
tions to classify a new test case (see, e.g., Hastie et al., 2009; Chan and Hall, 2009). These
classifiers also have nice theoretical properties. Under appropriate conditions, misclassifica-
tion probabilities of these classifiers converge to the Bayes risk (in other words, Bayes risk
consistency) as the training sample size increases (see, e.g., Devroye et al., 1996).

In today’s world, high-dimensional problems are frequently encountered in scientific ar-
eas like microarray gene expression studies, medical image analysis, spectral measurements
in chemometrics, etc. A distinct characteristic of some of these problems is the presence of
a very large number of features (or, data dimension) with a much smaller sample size. In
such high dimension, low sample size (HDLSS) situations, Euclidean distance based classi-
fiers face some natural drawbacks due to distance concentration (see, e.g., Aggarwal et al.,
2001; Francois et al., 2007). In Hall et al. (2005), the authors studied the effect of distance
concentration on some popular classifiers based on Euclidean distances such as the centroid
classifier and the nearest neighbor classifier, and derived conditions under which these clas-
sifiers yield perfect classification in the HDLSS setup. We now give some insight into the
idea of distance concentration in HDLSS scenarios.

Consider a random sample 2 = {X;1,...,Xj,,} of size n; from the j-th population
for 1 < j < J. We assume that these nj(z 2) observations are independent and identically
distributed (i.i.d.) from a distribution function F; on R%. Define 2~ = U}Llﬁ?fj to be the
full training sample of size n = ijl nj. For simplicity of analysis, we take J = 2. Let p;4
and Y;g4 denote the d-dimensional location vector and the d x d scale matrix, respectively,
corresponding to F; for j = 1,2. Also, assume that the following limits exist:

v = dlggo {d_lHuld - N2dH2} and 0]2 = dlggo {d_ltr(Zjd)} for j =1,2.

Here, || - || denotes the Euclidean norm on R and tr(A) is the sum of the diagonal elements
of a d x d matrix A. The constants vZ, and %, 03 are measures of the location difference and
scales, respectively. In Hall et al. (2005), the authors showed that in the HDLSS asymptotic
regime (when n is fixed and d goes to infinity), if %, < |0? — 03], the nearest neighbor (NN)
classifier assigns all observations to the population having a smaller dispersion. Later, Chan
and Hall (2009) showed that the average distance (AVG) classifier is also useless in such
a scenario. In other words, Fuclidean distance based classifiers may not yield satisfactory
performance for high-dimensional data if the location difference is masked by the scale
difference. To address this specific problem, some modifications of these classifiers have been
proposed in the literature. Chan and Hall (2009) identified |0 — o3| as a nuisance parameter,
and proposed a scale adjustment to the discriminant of the average distance classifier. A
non-linear transformation of the covariate space followed by NN classification was proposed
by Dutta and Ghosh (2016), while Pal et al. (2016) developed a NN classifier based on
a new dissimilarity index. However, all these modified classifiers are known to perform
well in the HDLSS setup under conditions like ‘vf, > 0" or ‘either v%, > 0 or 0% # 03’. To
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summarize, all the existing classifiers are particularly useful in high-dimensional spaces when
the underlying distributions differ either in their locations and/or scales. Our interest is
to analyze the performance of these classifiers under more general scenarios (in particular,
when v, = 0 and 07 = 03). We demonstrate this by considering some classification
problems involving two populations.

Example 1 We consider two populations where the d component variables are i.i.d. For
the first population, the component distribution is N(0,5/3), while it is t5 for the second
population. Here, N(u,c?) denotes the univariate Gaussian distribution with mean u and

variance o2, and t, denotes the standard Student’s t distribution with v degrees of freedom.

Example 2 The two populations under consideration have the d-dimensional Gaussian
distributions Ng(0g,314) and Ng(0g4,394), where 04 is the d-dimensional vector of zeros,
and Y1q and Yog are block diagonal dispersion matrices having the following form:

H; 0 - 0 1 pj-p
0o H, --- 0 pi le-p;

Yia = | . ’ ) .| with H; = ,] .. _j forj=1,2.
0 --- 0 H; pi pi--1

In this example, we keep the size of the blocks fized at ten (i.e., H; is a 10 x 10 matriz for
j=1,2) and choose p1 = 0.3 and py = 0.7.

Example 3 We consider d-dimensional Gaussian distributions Ng(0g4, X14) and Ng(0g, 3oq),
where Y14 and Yog have an auto-regressive covariance structure (i.e., Yg = ((p‘i_ﬂ))lgi,jgd
and 0 < p < 1) with parameters 0.3 and 0.7, respectively.

For each example, we generated 50 observations from each class to form the training
sample. Misclassification rates of different classifiers are computed based on a test set
consisting of 500 (250 from each class) observations. This process was repeated 100 times,
and the average misclassification rates (along with the standard errors) of different classifiers
for varying values of d are shown in Figure 1. The Bayes risk was calculated for each example
by computing the average Bayes risk over several random replicates of the data. It is clear
from Figure 1 that none of the existing classifiers performed satisfactorily in these three
examples. Observe that in all three examples, we have v, = 0 (the mean vectors p;, and
Moy are equal to 04) and o7 = 02 (both Y14 and Yyy have the same trace). This was the
main reason behind the poor performance of all the existing classifiers.

In this article, we propose a modification to the Euclidean distance, and use it on two
different distance based classifiers, namely, the scale-adjusted average distance classifier
(henceforth referred to as SAVG) by Chan and Hall (2009) and the NN classifier based
on mean absolute differences of distances (henceforth referred to as NN-MADD) by Pal
et al. (2016). We show that these two classifiers, when used with the modified distance, can
discriminate between populations even when there are no differences between their locations
and scales. To capture discriminatory information, these modified distance based classifiers
rely on the non-parametric concept of energy (see Székely and Rizzo, 2017). In particular,
if the one-dimensional marginals of the underlying populations are different, the proposed
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Figure 1: Average misclassification rates (along with the standard errors) based on 100
repetitions of various classifiers are plotted for increasing values of d (in logarithmic scale).
The classifiers AVG/SAVG, NN-MADD and NN-TRIPD were proposed by Chan and Hall
(2009), Pal et al. (2016) and Dutta and Ghosh (2016), respectively.

classifiers are shown to yield perfect classification in the HDLSS asymptotic regime. For
HDLSS asymptotics, we fix the sample size n and allow the data dimension d to grow to
infinity, which is different from standard asymptotics (with d fixed and n going to infinity).

The article is organized as follows. We define the modified classifiers and study their
asymptotic properties in Section 2. In Section 3, we propose further generalization of these
classifiers for the case when the populations have same univariate marginals, but differ in
their joint distributional structures (see Examples 2 and 3) and derive their asymptotic
properties under the HDLSS setup. For implementation of the second generalization, we
need to group the component variables into disjoint clusters. In Section 4, we propose
some data driven methods for this ‘variable clustering’. Numerical performance of the
proposed classifiers on several simulated and real data sets are demonstrated in Sections 5
and 6, respectively. The article ends with a discussion in Section 7. All proofs and other
mathematical details are provided in Appendix A, and some additional material is presented
as a Supplementary. A list of notations used in this paper is given in Appendix B.

2. Classifiers Based on Generalized Distances

Limitations of the classifiers discussed in the previous section stems from the fact that the
behavior of the Euclidean distance in the HDLSS asymptotic regime is completely governed
by the constants v3,, o7 and o3 (see Hall et al., 2005). As a consequence, Euclidean distance
based classifiers cannot distinguish between populations that do not have differences in their
first two moments. To circumvent this problem, we define a class of dissimilarity measures.
For vectors u = (ug,...,uq)' and v = (v1,...,v4) ", we define the dissmimilarity function
hﬁ’“’ : R4 x RY — RT between u and v as follows:

d
h97 (u,v) = ha(u,v) = (b(cll Z’y(]uz — vi\z)), (2.1)
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where v : RT — R"™ and ¢ : R™ — RT are continuous, monotonically increasing with
7(0) = ¢(0) = 0. The class of functions (2.1) was proposed and used in the context of
two-sample testing in Sarkar and Ghosh (2018). It is interesting to note that if ~y(t) = tP/?
and ¢(t) = t'/P with p > 0, then hg(u,v) is the £, distance (up to a constant involving
d) between u and v. This in particular includes the Euclidean distance (for p = 2) as a
special case. In general, hg(u,v) need not be a distance function, but rather a measure
of dissimilarity between u and v. Our main objective is to use hg(u,v) instead of the
scaled Buclidean distance (i.e., d~'||u—v||> or d~¥/2||u — v||) in the SAVG and NN-MADD
classifiers, and study their performance, both theoretically as well as numerically.

2.1 Generalization of SAVG Classifier

For a J-class problem and a new observation Z, the average distance (AVG) classifier is
defined as

5AVG(Z)=argmin{ > dX - Z||2} (2.2)

1<j<s Ny o3

If l/?j, > ‘O'JZ - 0]2,\ for all 1 < j # j/ < J, then this classifier yields perfect classification
in the HDLSS setup (i.e., the misclassification probability of the classifier goes to zero as
d — oo, see Chan and Hall, 2009). But, if this condition is violated, then this classifier may
behave erratically by assigning all observations to the class having the smallest variance. To
relax the condition stated above, the authors identified |Uj2- - crj2.,| as a nuisance parameter,
and proposed a scale adjustment to the average of distances as follows:

Z dYX - z|* - DP(25125) /2, (2.3)
" XeZ;

where D (3%”]%) = {nj(n; — 1)}7! nyx,ec% d7 X — X'||?2 for all 1 < j < J. The
scale- adjusted average distance (SAVQG) classifier is defined as

dsava(Z) = argmin €'y (Z).
1<5<J
If ujzj, > (0 forall 1 < j # j' < J, then the misclassification probability of the SAVG classifier
goes to zero as d — oo (see Chan and Hall, 2009, Theorem 1). The optimality condition
for the SAVG classifier is clearly weaker than the one related to the AVG classifier. In
other words, if the competing populations have difference only in their location parameters
(irrespective of their differences in scales), the SAVG classifier perfectly classifies a new
data point in high dimensions. However, we have observed deteriorating performance of
the SAVG classifier in Figure 1 when this condition is violated (recall that v%, = 0 in
Examples 1, 2 and 3).
We modify the SAVG classifier by simply replacing the Euclidean distance d~!||u — v/||?
with the new dissimilarity index hgy(u, v), as stated below:

E7(Z) = 6u(Z) = — S ha(ZX) — D(25125)/2. (24)
K XeZ;
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Here, Dg(2;|%Z;) = {nj(n; — 1)} ! DX X'e, hq(X,X') with n; > 2 for 1 < j < J. The
generalized scale-adjusted average distance (gSAVG) classifier based on ;4 is given by

dgsava(Z) = argmin €;q(Z). (2.5)
1<5<J

Observe that &4 reduces to the earlier transformation fj(.g) if we consider v(t) = t and
¢(t) = t in equation (2.1). So, the gSAVG classifier is a generalization of the SAVG
classifier.

2.2 Generalization of NN-MADD Classifier

For a test point Z € R?, the usual nearest neighbor (NN) classifier is defined as follows:

ONN(Z) = argmin 7;4(Z), (2.6)

1<5<J

where 7;4(Z) = minxey; [|Z — X|| for 1 < j < J. In high dimensions, the NN classifier
perfectly classifies a new observation when ujzj, > ]032» — UJQ.,] for all 1 < j # 5/ < J (see Hall
et al., 2005). But, when this condition is violated, this classifier may behave erratically
(see, e.g., Pal et al., 2016). To avoid this problem, Pal et al. (2016) proposed an approach
by modifying the distance function and defined the dissimilarity between Z and a training
observation X € £ as follows:

1 _ -
02.X) = — 3 |z =X - a2 - X (2.7)

T X'e2\X

The dissimilarity wéo) is called the mean absolute difference of distances (MADD). The NN
classifier based on MADD is defined as

ONN-MADD(Z) = arg min T;S)(Z% (2.8)
1<<J

where T](S)(Z) = minxez; wéo)(Z,X) for 1 < j < J. The NN-MADD classifier perfectly
classifies a new observation in the HDLSS setup when U]Zj, >0 or UJZ- # 0]2., forall 1 < j #
j' < J. This condition is clearly weaker than the one for the usual NN classifier stated
above. However, this classifier too performed quite poorly in Examples 1, 2 and 3, where
the condition was violated.

Here again, the problem lies in the use of Euclidean distance in the construction of ¢éo).
To resolve this issue, we use the new distance function hg defined in (2.1) to modify the

transformation 1/1((10) given in (2.7) as follows:

(2, X) = a(Z,X) = ﬁ > |ha(Z, X)) = hy(X, X)). (2.9)

X'e2\X

The dissimilarity index 14 is referred to as mean absolute difference of generalized distances
(or, generalized MADD and hence, abbreviated as gMADD). Using gMADD, we define
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7ja(Z) = minxeg; Yq(Z, X) for 1 < j < J. The associated nearest neighbor classifier is
defined as

5NN—gMADD(Z) = arg min Tjd(Z). (2.10)
1<5<J

If we consider y(t) = t and ¢(t) = v/t in (2.1), then g reduces to 1#;0) defined in (2.7).
Consequently, the NN-gMADD classifier reduces to the NN-MADD classifier.

Recall that in Examples 1, 2 and 3 we have v%, = 0 and 02 = ¢2. So, both the
classifiers SAVG and NN-MADD (based on Euclidean distances) performed quite poorly
(see Figure 1). However, Figure 2 clearly shows the superiority of the proposed gSAVG and
NN-gMADD classifiers in Example 1 with y(t) =1 —e~! and ¢(¢) = t. In high dimensions,
they have misclassification rates close to the Bayes risk. The misclassification rates of
different NN classifiers are reported by considering a single neighbor (i.e., for £ = 1) only.
We observed a similar phenomenon for other values of k as well. In Figure 2, we further
observe that both the gSAVG and NN-gMADD classifiers misclassify nearly 50% and 45%
(for higher values of d) of the test samples in Examples 2 and 3, respectively. Interestingly,
the transformation hg works favourably for Example 1, while it is quite intriguing to note
that it fails to yield good performance in Examples 2 and 3 for high d. In the next subsection,
we study the reason behind this behavior of the proposed classifiers in high dimensions.
We begin by studying the theoretical behavior of the transformation hg in the HDLSS
asymptotic regime.

> Example 1 Example 2 Example 3
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Figure 2: Average misclassification rates (along with the standard errors) based on 100
repetitions of the gSAVG and NN-gMADD classifiers are plotted for increasing values of d
(in logarithmic scale).

2.3 Behavior of Generalized Classifiers in HDLSS Asymptotic Regime

Suppose that U = (Uy,...,Uy)" ~F;and V = (Vq,...,Vy) " ~ Fj are two independent
d-dimensional random vectors. We denote the marginal distribution of the i-th component
corresponding to the j-th population by Fj; for 1 <i < d and 1 < j < J. To study the
asymptotic behavior of hg’v, we make the following assumptions:

(A1) There exists a constant ¢; such that E(y2(|U; — V;]?)) <1 < oo V1 <i < d.
(A2) 32 1 cicirca Corr((|U; = Vil?), v (IUs — Vi) = o(d?).
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It is evident that (A1) is satisfied if v is bounded. Assumption (A2) holds if the component
variables of the underlying populations are independent. However, it continues to hold even
when the components are dependent, with some additional conditions on their dependence
structure. For instance, in the case of sequence data, (A2) holds when the sequence has the
p-mixing property (see, e.g., Hall et al., 2005; Bradley, 2005). Conditions similar to (A2)
have been considered previously for studying the high-dimensional behavior of different
statistical methods (see the review paper by Aoshima et al., 2018). Under assumptions
(A1) and (A2), the high-dimensional behavior of hflw is given by the following lemma.

Lemma 2.1 Suppose that U ~ F; and V ~ Fj are two independent random wvectors
satisfying assumptions (A1) and (A2) with 1 < j,57' < J, and ¢ is uniformly continuous.
Then

|ha(U, V) = hq(j.§)| 5 0 as d — oo,

where ﬁd(j,j’) = ﬁﬁ"y(j, j") is defined as fld(j, §) = o[d™! Zle E{y(|U; — Vi|»)}].

For 1 < j,4' < J, define the following quantities:

£97,4') = a3, 7) = hatG ) = 5 [Bali's3) + R )], and

~DY (s — = Y N ny g ./ _~ . n]/_l 7 N _~ ..
=GN = 5 | Rl 0) = Ra( D]+ S Rl ) = Ra, )
SIF) S

As an immediate consequence of Lemma 2.1, we get the following result involving &;q(Z)
(defined in (2.4)) and 7;4(Z) (defined just above (2.10)).

Corollary 2.2 If a test observation Z ~ F;, then for any 1 < j' < J we have
* . .n| P

(a) [{&a(Z) — &a(Z)} — €a(4.5")| = 0 as d — oo,
-~ . N P

(b) {rpa(Z) = 75a(2)} — 7a(5,5")| = 0 as d — oo

From the definition, it is clear that &, is symmetric (i.e., fd(j,j’) = gd(j’,j)) and gd(j,j) =0
for 1 < j, 7" < J. Recall that dgsave classifies Z ~ F; correctly if &;14(Z) —&jq(Z) > 0 for all
j' # j. So, for good performance of gSAVG in high dimensions, it is expected that we have
€4(j,7") > 0 for large values of d. On the other hand, the constant 74(j, j') is non-negative
and 74(j,7) = 0 for all 1 < j, " < J by definition. Again, it is desirable to have 74(4,j') > 0
for large values of d, to ensure good performance of the NN-gMADD classifier. Both these
requirements are met by choosing the functions ¢ and ~ appropriately, as stated in the
following lemma.

Lemma 2.3 Let v have non-constant, completely monotone derivative on RY. Then, the
following results hold.

(a) If ¢ is concave, then £4(j,5') > 0, and &4(4,7') = 0 if and only if Fj; = Fy; for all
1<:<d.

(b) If ¢ is one-to-one, then 74(j,7') = 0 if and only if Fj; = Fj; for all 1 <1 < d.
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Functions with non-constant, completely monotone derivatives have been considered earlier
in the literature (see, e.g., Feller, 1971; Baringhaus and Franz, 2010). Lemma 2.3 shows
that for appropriate choices of ¢ and =, the quantity éd( J,7') can be viewed as a measure of
separation between the two population distribution functions F; and Fj for 1 < j # j/ < J.
In fact, this quantity attains the value zero only when the two populations have identical
one-dimensional marginals, and it is related to the idea of energy (see Székely and Rizzo,
2017). So, it is reasonable to assume the following;:

(A3) For every 1 < j # 5 < J, lijninfgd(ﬁj/) > 0.
—00

This assumption ensures that separation among the populations is asymptotically non-
negligible. A similar condition for 74(j, ;") follows from assumption (A3) (see Lemma 1 in
Appendix A). The following theorem states the high-dimensional behavior of the proposed
classifiers under these assumptions.

Theorem 2.4 Define ng = min{ny,...,ns}. If assumptions (A1)-(A3) are satisfied, then
(a) for any ng > 2, the misclassification probability of the gSAVG classifier converges to
zero as d — oo, and

(b) for any k < ng, the misclassification probability of the k-NN classifier based on gMADD
converges to zero as d — 0.

When the underlying distributions have different marginal distributions, Theorem 2.4 sug-
gests that classifiers based on the transformation hf’v should have excellent performance if
¢ and ~y are chosen appropriately. The choice ¢(t) = ¢ satisfies the conditions of Lemmas 2.1
and 2.3. There are several choices of v that satisfy the conditions stated in Lemma 2.3 (see
Baringhaus and Franz, 2010, p.1338). In particular, y(t) = 1—e~! satisfies these conditions.

Let us now recall Figure 2. In Example 1, the one-dimensional marginals of F; are all
N(0,5/3), while for Fy the marginals are t5. So, there is difference in the one-dimensional
marginal distributions and assumptions (Al) — (A3) are satisfied in this example. On
the other hand, the marginal distributions of both classes are same (namely, N(0,1)) in
Examples 2 and 3. As a result, assumption (A3) is violated and Theorem 2.4 fails to hold
in these two examples.

3. Further Generalization Using Groups of Variables

In Figure 2, we have observed that the proposed classifiers fail to discriminate among
populations for which the one-dimensional marginals are identical (recall Examples 2 and 3).
However, in Example 2 we have information in ‘groups of variables’ and the groups are
quite prominent. If we can capture this information in the joint structure of the sub-vectors
(instead of extracting information only from the d univariate components) and modify our
classifiers accordingly, it is expected that the classifiers will perform better. In this section,
we use this idea to further generalize the transformations fflw and TC}M so that populations
can be discriminated even when the one-dimensional marginals are same.

To build the next step of generalization, we assume that the component variables of
a high-dimensional vector have an implicit property of forming groups of variables. By
groups of variables, we simply mean a non-overlapping collection of variables. We will
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address the problem of finding these groups in practice later in Section 4. Meanwhile, let
us assume that the groups are known, i.e., the components of a d-dimensional vector u are
partitioned into b known groups. Let C = {C4,...,Cy} represent the collection of these
groups, where C; = {lg,_,4+1,.-.,0q,} with dp = 0 and 1 < ¢ < b. Now, consider the sub-
vector u; = (uldi_1+17 R “ldi)T of dimension d; for 1 < i < b. We propose a modification

of hﬁ” so that the discriminants can extract information from the distributions of these
sub-vectors (i.e., groups of component variables).

For two vectors u = (u{,...,u) )"
dissimilarity measure as follows:

and v = (v{,... ,v;—)—r, we define a generalized

b

B (,v) = hy(u,v) = [Z (a7 s = vil?) | (31)

We would like to point out the notational similarity between equations (3.1) and (2.1).
Throughout the article, we use the convention that with suffix d, we denote the generalized
distance based on component variables as defined in (2.1), while with suffix b, we denote
the generalized distance based on groups of variables as defined in (3.1).

We first modify the gSAVG classifier defined in (2.5) as follows. Using the transformation

hl‘f”, we define

E(Z) = &(Z Z ho(Z,X) — Dy(Z5|25)/2, (3.2)
" Xe;

where Dy(2;|%2;) = {nj(n; — 1)} ! ZX’X,G%hb(X,X/) for 1 < j < J. Now, the block-
generalized SAVG (bgSAVG) classifier is defined as

dbgsava (Z) = argmin & (Z). (3.3)
1<5<J

Similarly, we modify the NN-gMADD classifier defined in (2.10) as follows. Define
1

NEX) = (2, X) = —— 3 (2, X))~ (X, X)),
X'eX\X

(3.4)

and 7;(Z) = minxe 2; ¥5(Z, X) for 1 < j < J. The associated nearest neighbor classifier is
now defined as:

ONN—bgMADD(Z) = arg min 7;,(Z). (3.5)
1<5<J
We refer to onn—bgmapD as the NN classifier based on block-generalized MADD (or, the
NN-bgMADD classifier).

Let us now investigate the performance of the proposed classifiers in Examples 2 and 3.
The choice of groups is quite clear in Example 2 (we have d; = 10 for all 1 < i < b
with C7 = {1,...,10}; Cy = {11,...,20}; and so on), but it is not so straightforward
in Example 3. In both examples, we formed equal-sized groups using consecutive variables
with varying choices of the group sizes, and the corresponding results are shown in Figure 3.

10
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Example 2 Example 3
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group size 1929510 25

o
IS

o
N

Estimated Misclassification Probability

°
o

Figure 3: Average misclassification rates (along with the standard errors) based on 100
repetitions of the bgSAVG and NN-bgMADD classifiers are plotted with varying group
sizes for increasing values of d (in logarithmic scale).

Figure 3 clearly shows the superiority of the modified (both bgSAVG and NN-bgMADD
with v(t) = 1 — et and ¢(t) = t) classifiers when compared with the gSAVG and NN-
gMADD (i.e., d; = 1 for all 1 <i < d) classifiers. In high dimensions, the block-generalized
classifiers have misclassification rates quite close to zero (even for low values of d; like 5).
On the other hand, the performance deteriorates when the value of d; is increased to 25.
Clearly, this reflects that the choice of group size is quite crucial for the proposed classifiers
to perform well in practice. We provide details on the practical implementation of variable
clustering for the block-generalized classifiers in Section 4. But first, we study the theoretical
behavior of hy and the two associated classifiers, viz., bgSAVG and NN-bgMADD in the
HDLSS asymptotic regime.

3.1 Behavior of Block-Generalized Classifiers in HDLSS Asymptotic Regime

Recall that the HDLSS asymptotic behavior of the generalized distance hy (and associated
classifiers) depend on the one-dimensional marginal distributions Fj; for 1 < i < d and
1 <j < J. Similarly, the HDLSS asymptotic behavior of h;, (and related classifiers) will be
governed by the joint distributions of groups of variables. To this extent, let us assume that
we have a common cluster structure C along all the J classes, and C is known. For a random
vector U = (UlT, .. ,UbT)T ~ F; partitioned according to C, we denote the distribution
function of U; by Fj; for 1 <7 < band 1 < j < J. To study the HDLSS asymptotic
behavior of the newly proposed classifiers (viz., bgSAVG and NN-bgMADD), we restrict
ourselves to the setting where the sizes of clusters d; remain bounded for 1 < ¢ < b. This
assumption is formally stated below.

(A4) There exists a fixed positive integer dy such that d; < dj for all 1 < i <b.

It is clear from assumption (A4) that b < d = Zle d; < bdy. Hence, we can write
‘b — oo’ and ‘d — oo’ interchangeably. Now, for U = (UlT,...,UbT)T ~ F;j and V =
(VI, e ,Vl;r)—r ~ Fj with 1 < j, 5" < J, consider the following assumptions:

(A5) There exists a constant cy such that E[y? (di_lﬂUi — Vi[?)] < ¢ for all
1< <.

(A6) 31 <iciray Corr[y(di M [U;s = Vil [2), v (do Ui — Vi ||2)] = o(b?).

11
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Assumptions (A5) and (A6) are generalizations of assumptions (A1) and (A2), respectively.
As we observed earlier, choosing v to be bounded is sufficient to satisfy assumption (A5),
while assumption (A6) imposes some restrictions on the dependence structure among the
sub-vectors. If the sub-vectors are mutually independent, then assumption (A6) is clearly
satisfied. When the sub-vectors are dependent, additional conditions like weak dependence
among the groups of variables are required. In particular, if the sequence {fy(di_1||Ui —
Vin) ,i > 1} has the p-mixing property, then assumption (A6) holds. A sufficient condition
for {’y(di_IHUi - ViH2),i > 1} to be a p-mixing sequence is to have the sequences U and
V to satisfy the p-mixing property (see Lemma 3 in Appendix A). With these assumptions,
we are now ready to state the high-dimensional behavior of hf”.

Lemma 3.1 Suppose that U ~ Fj and V. ~ Fj;i (1 < j,7° < J) are two independent
random vectors satisfying assumptions (A5) and (A6). Additionally, if assumption (A4) is
satisfied and ¢ is uniformly continuous, then

|7(U, V) = Ty, )| 5 0 as b — oo,
where hy(j, 5') = 57 (7, 5') = 66~ X0y B{y(d; U - Vi|2)}].

The next result involves £;;,(Z) (defined in (3.2)) and 7j,(Z) (defined just above (3.5)), and
it is a straightforward extension of Corollary 2.2.

Corollary 3.2 If a test observation Z ~ F;, then for any 1 < j' < J, we have
. | P
() |{&(Z) = &(Z)} — &(5,5")| = 0 as b — oo,

(0) |{(Z) — 756(Z)} — 74, )| 5 0 as b — oo,

where, for 1 < j,7 < J,

s = . = 1., . =

&3, ) = &7(5,3") = ho(4, 5) — §[hb(.7’,y') + hy(4,4)], and
- . . nox . ~ nyg—1- . =~
#6.0) = R0, = Y [nlllhb(J’J)—hb(J,l)l + (5" 5") = (G, 5]

1<I#j'<J

Similar to the constants £4(j,7") and 74(j,7"), both &(j, ") and 7,(j,j') are measures of
separability between F; and Fy for 1 < j,j' < J. While 7(j, ") is non-negative by
definition, the same is true for &,(j,j’) if ¢ is concave. Moreover, under conditions similar
to Lemma 2.3, both £;(j, ") and 74(j,j') are strictly positive whenever F; and F; have
different group distributions (i.e., F;; # F; ; for some 1 <4 < b). This is shown in the
following lemma.

Lemma 3.3 Let v have non-constant, completely monotone derivative on RY. Then, the
following results hold.

(a) If ¢ is concave, then &(j,7")
only if Fj; =Fj; forall1 <i <
(b) If ¢ is one-to-one, then 7y,(j,j") = 0 if and only if Fj; = Fj; for all 1 <i <b.

>0 for all1 < j,j' < J. Moreover, &(j,§') = 0 if and
b.

12
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To derive HDLSS asymptotic results, we require the competing populations to be asymp-
totically separable. So, we assume the following:

(A7) for every 1 < j # 5/ < J, ligninfgb(j,j’) > 0.
— 00

This assumption ensures that separation induced by the blocks is asymptotically non-
negligible. It further implies that a similar condition holds for 7(j,j') (see Lemma 1 in
Appendix A). Following our discussion preceding Lemma 3.3, assumption (A7) is a general-
ization of assumption (A3) because if we have difference in the marginal distributions, then
the joint distributions are bound to be different. But, the converse is clearly not true. In
other words, if two distributions F; and Fj/ are not separable in terms of & (respectively,
7p), then they are not separable in terms of é’d (respectively, 74). The following theorem
shows the high-dimensional behavior of the bgSAVG and NN-bgMADD classifiers under
assumption (AT).

Theorem 3.4 Define ng = min{ny,...,ns}. If assumptions (A4)-(A7) are satisfied, then
(a) for ng > 2, the misclassification probability of the bgSAVG classifier converges to zero
as b — 00,

(b) for any k < ng, the misclassification probability of the k-NN classifier based on bgMADD
converges to zero as b — 0.

Recall that in Examples 2 and 3 we have identical marginal distributions (namely,
N(0,1)) for both the classes, but differences in their joint distributions. Theorem 3.4
states that if this information from the joint distributions can be captured by appropriately
identifying the groups, then the misclassification probability for both the classifiers should
decrease to 0 as d (equivalently, b) increases. We have already observed this in Figure 3.

3.2 Comparison between bgSAVG and NN-bgMADD

In the previous sub-section, we have observed that both bgSAVG and NN-bgMADD clas-
sifiers achieve perfect classification in high dimensions under similar conditions. But, their
relative performance may vary, especially when the dimension is not sufficiently large. To
demonstrate the relative behavior of these two classifiers, we now consider two examples.
The first example is Example 2 from Section 1. As a second example, we use the following.

Example 4 We consider two populations, where the d component variables are i.i.d. For
the first population, the component distribution is Cauchy with location parameter 0 and
scale 1 (standard Cauchy), while it is Cauchy with location parameter 0.75 and scale 0.75
for the second one. In this example, we take n1 = 50 and ny = 25 to form the training set.

Let us now look into the numerical performance of the proposed classifiers in Examples 2
and 4. We keep all other parameters (e.g., the number of iterations, test sample size)
associated with this simulation same as before, and set d; = 10 (respectively, d; = 1) for all
1 <4 < bin Example 2 (respectively, Example 4).

Figure 4 clearly shows that the estimated misclassification probabilities for the proposed
classifiers (with y(t) = 1 — et and ¢(t) = t) go to 0 with increasing values of d, and
hence quite close to the estimated Bayes risks in Examples 2 and 4. Clearly, assumptions

13



Roy, SARKAR, DUTTA AND GHOSH
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Figure 4: Average misclassification rates (along with the standard errors) based on 100
repetitions for the bgSAVG and NN-bgMADD classifiers are plotted for increasing values
of d (in logarithmic scale) for Examples 2 and 4.

(A4) — (A7) hold in both these examples (with bounded « for Example 4). In Example 2,
the block distributions are 10-dimensional multivariate Gaussian with different correlation
structures for the two classes. The marginal distributions are Cauchy (i.e., heavy-tailed)
in Example 4 with differences in their locations and scales. So, assumptions (A5) and
(A6) hold with a bounded ~ function. Interestingly, bgSAVG and NN-bgMADD behave
differently in these examples with one dominating the other in the respective examples.

Let us now study this phenomena in further detail. From the proof of Theorem 3.4, one
can observe that the high-dimensional behavior of the bgSAVG and NN-bgMADD classifiers
depend on the behavior of the constants &,(7, j/) and (4, j'), respectively, for 1 < j, 5/ < J.
Consequently, the difference between these two classifiers lies in the difference between these
constants. To compare between these two classifiers, we make the following assumption,
which implies that the difference between & (5, ') and 7(j, ') does not vanish as the data
dimension increases.

(A8) lim infy |&,(5, ') — (4, 4')| > 0 for all 1 < j # 5/ < J.

The next theorem states the condition under which one classifier dominates the other, and
vice-versa. Define the misclassification probabilities as Apgsava = Plopgsava(X) # Y] and
ANN—bgMADD = P[oNN—bgMmaDD(X) # Y], where Y denotes the class label of X.

Theorem 3.5 If assumptions (A4)—(A6) and (A8) are satisfied, and there exists an integer
By such that &(5,7") > #(j,5') for allb > By and 1 < j # j' < J, then there exists an
integer By such that

Apgsava < ANN—bgMADD for all b > Bs.

Remark 3.6 If the constants &,(j, j') and 7(j, j') are interchanged in the inequality (stated
above), then the ordering of the misclassification probability of the respective classifiers is
reversed.

We now elaborate on this theorem for two-class problems. Recall the expressions for éb(l, 2)
and 75(1,2) from Corollary 3.2. The ordering between &,(1,2) and 7(1,2) clearly depend
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on the relationship between the constants hy(1,2), hy(1,1) and 55(2, 2) (recall the definition
from Lemma 3.1), and the sample sizes n; and ny. A detailed case by case study on this
inequality is provided by Lemma 2 in Appendix A. To draw a comparison, let us now look
back at Examples 2 and 4. Clearly, the constants &,(1,2), 7(1,2) and 7,(2,1) are free of b in
both these examples. Calculating the constants involve computing univariate/multivariate
integrals. More details on these calculations can be found in Section 2 of the Supplementary.
The constants take the values &(1,2) = 0.0101, 7(1,2) = 0.0470 and 7(2,1) = 0.0472 in
Example 2, while in Example 4 they are Eb(l, 2) = 0.0327, 7(1,2) = 0.0213 and 7(2,1) =
0.0222 (also see Table 1). Clearly, the value of &/(1,2) is smaller than those of 7,(1,2) and
75(2,1) in Example 2. Theorem 3.5 suggests that the misclassification probability of the
NN-bgMADD classifier should be smaller than the bgSAVG classifier for large values of b.
This can be observed in the left panel of Figure 4 for dimension higher than 100. On the
other hand, in Example 4, the value of &(1,2) is larger than those of 7,(1,2) and 7(2,1),
and one observes a role reversal in the right panel of Figure 4. This analysis has been
continued for all the examples discussed in this article later in Section 5.

A few words are called for assumption (A8), which holds under various scenarios. In
particular, if the component variables of the underlying distributions are i.i.d., then &, and
7p are free of b. Some more general conditions are discussed in Lemma 2 of Appendix A.
It can also be shown that assumption (A8) holds under more general cases like Example 2
(see Remark A in Appendix A).

4. Practical Implementation of Variable Clustering

For practical implementation of the methodology defined in the previous section, we need to
find an appropriate clustering C of the component variables. The basic idea is to partition
a d-dimensional vector U into b disjoint groups (or, sub-vectors) Uy, ..., U, such that the
variables in the same sub-vector are more similar to each other than the variables in different
sub-vectors. Such phenomena (groups of variables) arises naturally in scientific areas like
genomics. In microarray gene expressions, genes that share similar pattern of expression
are usually put into a cluster (see, e.g., Eisen et al., 1998), while such groups of variables
also play a key role in bio-diversity modeling (see, e.g., Faith and Walker, 1996).

We would like to emphasize that the order in which the component variables are arranged
in a sub-vector is irrelevant in this context. Therefore, we use the terms ‘group’ and ‘sub-
vector’ interchangeably. Here, we assume the same grouping of component variables for all
J populations. In general, different populations may have different groups of component
variables. But, in a two-class problem, if the group structure of one population is either
finer (or, coarser) w.r.t. the other population, then we can assume the coarser structure for
both the populations. For more than two classes, if the group structure of one population
is coarser than all the competing populations, it is sufficient to use the coarsest structure
across all populations. In any case, our problem is essentially that of clustering d variables
with n observations for each variable (i.e., d observations in R™). Any appropriate clustering
algorithm (see, e.g., Hastie et al., 2009) can be used for this purpose. To summarize, one can
view this idea of constructing groups as a problem of clustering the component variables
using an appropriate measure of similarity. So first, let us discuss the idea of similarity
(equivalently, dissimilarity) among variables.
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For the HDLSS asymptotic results, we need variables from different groups (or, clusters)
to have weak dependence (see assumption (A6)). On the other hand, highly dependent
variables are natural candidates to be included in the same cluster. A reasonable measure
of dependence between two components is the absolute value of their correlation coefficient.
Let r(i,4") denote the correlation between the i-th and the i’-th components for 1 < 7,4 < d.
If |r(i,4")| is high, then we say that the i-th and the i-th components are strongly associated,
or ‘similar’. While |r(7,4)| is a measure of similarity, 1 — |r(4,4")| can be considered as a
measure of dissimilarity. We use the agglomerative hierarchical clustering algorithm with
average linkage (see, e.g., Hastie et al., 2009) and 1 — |r(4,4")| as the pairwise dissimilarity
measure to obtain clusters of components. Starting with each component variable as a
single cluster, hierarchical methods merge the least dissimilar clusters in turn until all the
components are put together in one single cluster. For heavy-tailed distributions (like the
Cauchy distribution), a robust measure of correlation can be used.

In hierarchical clustering, each level in the hierarchy induces a set of clusters, and
the whole hierarchy (visualized as a dendrogram) represents a nested structure among the
clusters obtained at different levels (see Figure 5 below). The height of each level represents
the dissimilarity between the clusters that are merged together at that level. In other
words, each cluster structure is represented by the height of the level corresponding to that
structure. Therefore, finding an appropriate clustering is equivalent to identifying a suitable
level in the hierarchy. Suppose H is the set of all heights that are obtained at different levels
of clustering. We order the values in H, and find the a-th percentile H, for different values
of « € A =1{0,0.1,...,0.9,1}. For each fixed o, we obtain a clustering induced by H,.
Note that the number of clusters is non-increasing in «, while the size of each cluster is
non-decreasing. In particular, Hy corresponds to the case where each cluster consists of a
single component variable only, i.e., b = d. On the other hand, H; leads to the clustering
where all the d components are put together in a single cluster.
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Figure 5: Dendrogram showing structures of clusters in Example 2 for one run of a simula-
tion with d = 50.

We demonstrate this idea using Example 2. In this example (with d = 50 and n; =
ny = 50), the groups of component variables (common across both classes) are the sets C =
{1,...,10}; Cy = {11,...,20};...;Cs = {41,...,50}. We consider a simulated realization
from this example. Figure 5 shows the dendrogram for this data. At Hy9 = 0.67, we obtain
five clusters in Figure 5. The distinct clusters are indicated with five different colors, while
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the components corresponding to each cluster are marked with the same color in Figure 5.
Clearly, the method correctly assigns desired components to the respective groups (up to
a permutation of the components within each group). Once the groups Uy,..., Uy have
been identified, we can compute hf"y as in equation (3.1) and classify observations using
the bgSAVG classifier, or the NN-bgMADD classifier introduced in Section 3.

It is evident from Figure 5 that the choice of H, (or, equivalently «) is crucial in finding
the ‘true’ cluster structure. However, our task here is not to find the ‘true’ cluster structure
in the variables, but rather to find cluster structures that are useful for classification. Similar
to the cluster structure, the performance of a classifier should also depend on the choice
of a. To investigate this, we looked at the misclassification rates of the bgSAVG and the
NN-bgMADD classifiers (with v(t) = 1 — e™! and ¢(t) = t) in Examples 2-4 for varying
choices of a (which corresponds to different cluster structures). Clearly, Figure 6 shows
that the classification performance depends crucially on the choice of a.

Example 2 Example 3 Example 4

e
o
a

Estimated Misclassification Probability
o
N
vl

o

000 025 050 075 1.00 000 025 050 075 1.00
[of

#* bgSAVG 4 NN-bgMADD

Figure 6: Average misclassification rates (along with the standard errors) based on 100
repetitions of the bgSAVG and NN-bgMADD classifiers for increasing values of « in Exam-
ples 2-4.

To obtain a data driven choice of «, we use the idea of leave-one-out cross-validation
method (see, e.g., Hastie et al., 2009). For a fixed value of a € A, define
1o :
Ca = n ;H{éal(Xi) # Yi}.
Here, 0% is a classifier (bgSAVG or NN-bgMADD) constructed by leaving out the i-th
sample from the training data for 1 < ¢ < n. Define & = argmingee,. We use the
clustering induced by Hg as the optimal one to carry out further analysis.

As we already mentioned, the idea of grouping in component variables can be found
in several real data scenarios as well. To realize this, we plot similarity matrices of the
components for four high-dimensional data sets from three different data archives. The
Cricket X and EOGHorizontalSignal data sets are both 12 class problems from the UCR
Time Series Classification Archive (see Dau et al., 2018) with (n;,d) as (32,300) and
(30,1250) for 1 < j < J. The first data is related to motion, while the second data
set was collected from an electro-oculography (EOG). In Figure 7, we distinctly observe
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about 1 group and 2 groups (the second group has some smaller blocks) for these two
data sets, respectively. The GSE2685 data set (available at the Microarray database: http:
//www.biolab.si/supp/bi-cancer/projections/) comprises of gene expression measure-
ments of 30 tissue samples distributed over 3 classes (8 normal gastric tissues, 5 diffuse
gastric tumors and 17 intestinal gastric tumors). The blocks are unclear if we plot all
4522 genes (variables) in this data set, so we have created a plot with reduced number of
(about 1500) variables. In the nutt2003v2 data set (available at the Compcancer database:
https://schlieplab.org/Static/Supplements/CompCancer/datasets.htm), it was in-
vestigated whether gene expression profiling could be used to classify high-grade gliomas.
Microarray analysis was used to determine the expression of approximately 12000 genes in
a set of 28 glioblastomas which were classified as classic (C), or non-classic (N). The plots
in Figure 7 also indicate the presence of group structure in these two gene expression data
sets. We give a more detailed analysis of these four real data sets later in Section 6.

Cricket X EOGHorizontalSignal GSE2685 nutt2003v2

Figure 7: Absolute of sample correlation matrices for the four benchmark data sets.

5. Simulation Studies

In this section, we thoroughly analyze some high-dimensional simulated data sets to compare
the performance of the classifiers proposed in Sections 2 and 3. We have already introduced
Examples 1-3 in Section 1, and Example 4 in Section 3. Four new examples are considered
in this section to demonstrate the performance of the proposed classifiers.

Example 5 The two distributions are Ng(04,14) and Ng(0.2514,14), where 04 is the d-
dimensional vector of zeros, 14 is the d-dimensional vector of ones and 1 is the d x d
identity matriz. Note that the d component variables are i.i.d. for both the populations.

Example 6 We again consider two Gaussian distributions Ng(0g,14) and Ng(0g4,0.514).
Here, the d component variables are i.i.d. similar to Fxample 5.

Example 7 The distributions are F1(u) = H?Zl Fii(u;) and Fao(u) = H?Zl Fyi(u;), with
Fl,l = NL%J (OL%J’I%J)’ FLQ = Nd—l_%] (Od—L%j’0'5Id—|_%j)’ F2,1 = NL%J (OL%J’O5I\_%J) cmd
Foo = Nd—LQJ (Odﬂiijdﬂij)' Here, || denotes the floor function.

2 2 2

Example 8 We take Fl = Nd(Od,Id) and Fg(u) = Hi?:l ngi(ui), with F27i = PN10(1107 10)

forall1 <i <b. Here, PN19(8, «) denotes the ten-dimensional multivariate power normal
distribution with parameters B = (B1,...,Bwo) " with B; > 0 for all 1 < i <10 and a > 0
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(see, e.g., Kundu and Gupta, 2013). Note that 5; = 1 for all 1 < i < 10 implies that the
one-dimensional marginals of ¥o are all standard normal.

In each example, we simulated data for d = 50, 100, 250, 500 and 1000. The training
sample was formed by generating 50 observations from each class (except Example 4) and a
test set of size 500 (250 from each class) was used. In Example 4, the training samples sizes
were set to be 50 and 25, respectively. This process was repeated 100 times to compute the
average misclassification rates, which are reported in Figure 8. For the proposed generalized
and block-generalized classifiers, we used v(t) = 1 — e~ ! and ¢(t) = t.

Observe that in Examples 1, 2, 3, 7 and 8, we have p; = poyy = 04 (ie., v% = 0).

Furthermore, we have 0% = 03 = 5/3 in Example 1 and 07 = 03 = 0.75 in Example 7, while

0% = 03 = 1 in Examples 2, 3 and 8. This implies that 0 —c3 = 0 for all these five examples.
In Example 4, the moment based quantities 1%, 02 and o3 do not exist as the underlying
distributions are Cauchy. On the other hand, Example 5 is a location problem (V%Z =0.25
with 0? — 03 = 0), while Example 6 is a scale problem (v%, = 0 with |0? — 03| = 0.5). In
our earlier analysis of Examples 1-4, we assumed the group information C to be known.
We now analyze all eight examples to validate the fact that the data driven procedure for
blocking the variables (developed in Section 4) in combination with the block-generalized
classifiers (proposed in Section 3) yield promising performance in high dimensions.

In Examples 1, 4, 5, 6 and 7, the component variables are i.i.d. and the populations
have differences in their one-dimensional marginals. So, assumptions (Al) — (A3) are sat-
isfied and consequently, the misclassification probabilities of the gSAVG and NN-gMADD
classifiers are close to zero (see Figure 8). This is not the case for the other three exam-
ples. In Examples 2, 3 and 8, the one-dimensional marginals are standard normal for both
populations, so assumption (A3) is clearly violated. We observe that both the gSAVG and
NN-gMADD classifiers misclassify nearly half of the test points in these examples. On the
other hand, assumptions (A5) — (A7) are satisfied for these examples. So, the bgSAVG
and NN-bgMADD classifiers classify almost all the test points correctly. Blocks of variables
were estimated using the method described in Section 4, where we used the absolute value
of Pearson’s correlation coefficient as the measure of similarity. However, this measure is
inappropriate for Example 4 (with Cauchy distributions). So, we have used the minimum
regularized covariance determinant (MCD) estimator, which is available through the R pack-
age rrcov. We observe that the estimated misclassification probabilities of the bgSAVG
and NN-bgMADD classifiers are very close to zero in high dimensions (see Figure 8), which
is consistent with the idea of perfect classification as b — oo (also see Theorem 3.4).

A question that arises naturally from Figure 8 is the relative performance of the bgSAVG
classifier and the NN-bgMADD classifier for moderate values of d. In Section 3.2, we used
Examples 2 and 4 to motivate this question and investigated this fact theoretically in
Theorem 3.5. We now complete this investigation for the other examples. Recall that
the relative performance of these two classifiers depends on the ordering of the constants
£(1,2), and 7(1,2),7(2,1) (see Theorem 3.5 and the preceeding discussion). We have
computed the value of these constants in Table 1. Section 2 of the Supplementary contains
more details and related calculations.

We can observe from Figure 8 that the NN-bgMADD classifier performs better than
the bgSAVG classifier in Examples 1, 2, 3 and 6 for moderate values of d (~ 100 — 250).
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Figure 8: Average misclassification rates (along with the standard errors) based on 100
repetitions for different classifiers are plotted for increasing values of d (in logarithmic

scale).
20



GENERALIZATIONS OF DISTANCE BASED CLASSIFIERS FOR HDLSS DATA

On the contrary, the bgSAVG classifier clearly dominates the NN-bgMADD classifier in
Examples 4, 5, 7 and 8. This phenomena is consistent with the ordering of éb(l, 2), and
75(1,2),7(2,1) in Table 1, except in Examples 5 and 7, where the value of these constants are
equal. Interestingly, the bgSAVG classifier performs better than the NN-bgMADD classifier
in these two examples. This can be explained by looking closer into the expression of these
constants. Recall from Corollary 3.2 that these constants involve the terms fy(1, 1), hy(2,2)
and hy(1,2). The fact that hy(1,2) > max{hy(1,1), hy(2,2)} (see the values for Examples 5
and 7 in Table 1) justifies the improved performance of the bgSAVG classifier (also see
Sarkar et al. (2020) for related explanations in the context of two sample testing).

Table 1: Values of the constants &,(1,2), 7(1,2) and 7(2,1) in Examples 1-8. The figure
in bold indicates the maximum of these three values.

Ex. hy(1,1) hy(2,2) hy(1,2) &(1,2) #(1,2) #(2,1)
1 0.6387 0.6017 0.6230 0.0027 0.0185 0.0185
2 0.7909  0.6967 0.7539  0.0101  0.0470  0.0472
3 0.7614  0.7091  0.7423  0.0070  0.0260 0.0262
0.7440  0.6789  0.7442 0.0327 0.0213  0.0222
0.5528  0.5528  0.5583 0.0056 0.0056 0.0056
0.5528  0.4226  0.5000 0.0123  0.0649 0.0652
0.4877  0.4877  0.5000 0.0123 0.0123 0.0123
0.8138  0.5903 0.7634 0.0614 0.1111 0.1124

* the block size (d;) was fixed at 5

0 3 O Ut~

5.1 Comparison with popular classifiers

Here, we compare the performance of the proposed classifiers with some well-known clas-
sifiers, namely, Support Vector Machines (SVM, Vapnik, 1998), GLMNET (Hastie et al.,
2009), neural networks (NNET, Bishop, 1995) and nearest neighbor classifiers based on
the random projection method (NN-RAND, Deegalla and Bostrom, 2006). We studied
numerical performance of these classifiers for d = 1000 (see Tables 2 and 3 in the Supple-
mentary for other values of d). The average misclassification rates along with the corre-
sponding standard errors are reported in Table 2. Misclassification rates of both the linear
and non-linear SVM are reported. We used the radial basis function (RBF) kernel, i.e.,
Kp(x,y) = exp{—0|x—y|/*} in non-linear SVM with § € {i/10d; 1 < i < 20} and reported
the minimum misclassification rate. For NNET, we used the sigmoid as its activation func-
tion. The number of hidden layers were allowed to vary in the set {1,3,5,10}, and the
minimum misclassification rate was reported as NNET. We have used default values for the
other parameters that were involved with these classifiers. The R packages e1071, glmnet,
RSNNS and RandPro were used for SVM, GLMNET, NNET and NN-RAND, respectively.
Our classifiers were implemented in R too, and the codes are available from this link. We fix
¢(t) = t for the proposed classifiers. Untill this point, we have used the choice v, (t) = 1—e™*
only. We now introduce two more choices of 7, namely, v2(t) = log(1+t) and v3(t) = v//2
in this section. For our proposed methods, we report the misclassification rates for all three
choices of v in Table 2.
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Table 2: Misclassification rates (stated in the first row) and standard errors (stated in the second row) of different classifiers in

Examples 1-8 for d = 1000. The figure in bold indicates the minimum misclassification rate.

Ex. |GLMNET NN SVM SVM NNET gSAVG bgSAVG NN-gMADD NN-bgMADD
-RAND | -LIN | -RBF 7 V2 V3 71 V2 V3 7 V2 V3 7 V2 V3
1 0.4748 0.4972 0.4979 | 0.4952 | 0.4919 0.1002 0.2079 0.2646 0.1167 0.2156 0.2702 0.0302 0.1321 0.2451 0.0379 0.1411 0.2457
0.0177 0.0171 0.0232 | 0.0203 | 0.0240 0.0194 0.0195 0.0208 0.0165 0.0229 0.0230 0.0102 0.0260 0.0314 0.0135 0.0274 0.0374
2 0.4745 0.4940 0.5099 | 0.4540 | 0.5010 0.5025 0.5029 0.5024 0.0815 0.1243 0.1461 0.4445 0.4390 0.4384 0.0185 0.0171 0.0168
0.0174 0.0150 0.0208 | 0.0226 0.0253 0.0223 0.0228 0.0224 0.0152 0.0201 0.0208 0.0166 0.0174 0.0173 0.0088 0.0084 0.0084
3 0.4757 0.4558 0.5000 | 0.5000 | 0.4997 0.4991 0.5011 0.5018 0.0843 0.1431 0.1532 0.4495 0.4442 0.4443 0.0185 0.0184 0.0182
0.0182 0.0279 0.0000 | 0.0000 | 0.0232 0.0214 0.0230 0.0227 0.0214 0.0260 0.0269 0.0165 0.0152 0.0161 0.0100 0.0105 0.0105
4 0.4173 0.4933 0.4282 0.4995 0.3688 0.0000 0.0000 0.0017 0.0000 0.0000 0.0022 0.0000 0.0007 0.2319 0.0000 0.0009 0.2279
0.0266 0.0245 0.0205 | 0.0014 | 0.0236 0.0000 0.0000 0.0018 0.0000 0.0000 0.0021 0.0000 0.0016 0.0341 0.0000 0.0018 0.0313
5 0.2172 0.0336 0.0018 | 0.0012 | 0.2748 0.0142 0.0022 0.0018 0.0028 0.0007 0.0007 0.1078 0.0248 0.0202 0.0325 0.0139 0.0134
0.0220 0.0139 0.0020 | 0.0017 | 0.0444 0.0055 0.0020 0.0017 0.0028 0.0014 0.0014 0.0261 0.0102 0.0092 0.0173 0.0088 0.0089
6 0.4533 0.5000 0.4587 | 0.0000 0.4968 0.0000 0.0000 0.0003 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0158 0.0000 0.0153 | 0.0000 | 0.0238 0.0000 0.0000 0.0009 0.0000 0.0003 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
7 0.4677 0.3977 0.4974 | 0.4694 | 0.4968 | 0.0000 0.0000 0.0002 | 0.0000 0.0000 0.0002 0.0001 0.0034 0.0143 0.0001 0.0034 0.0148
0.0184 0.0245 0.0240 | 0.0228 | 0.0218 0.0000 0.0002 0.0006 0.0000 0.0000 0.0005 0.0005 0.0036 0.0067 0.0004 0.0034 0.0066
8 0.4767 0.5000 0.5010 | 0.2106 | 0.4971 0.5001 0.4987 0.4969 | 0.0003 0.0028 0.0033 0.4036 0.3914 0.3883 0.0005 0.0022 0.0024
0.0153 0.0233 0.0208 | 0.0218 | 0.0231 0.0273 0.0328 0.0328 0.0013 0.0050 0.0064 0.0218 0.0245 0.0240 0.0015 0.0042 0.0048

Table 3: Misclassification rates (stated in the first row) and standard errors (stated in the second row) of different classifiers in
four benchmark data sets. The figure in bold indicates the minimum misclassification rate.

Data GLMNET NN SVM SVM NNET gSAVG bgSAVG NN-gMADD NN-bgMADD
-RAND -LIN -RBF 7 Y2 V3 7 V2 V3 71 V2 V3 7 V2 V3

CricketX 0.6553 0.5039 0.6061 0.4154 | 0.6643 | 0.6513 0.6500 0.6472 | 0.6008 0.6215 0.6167 0.3756 0.3907 0.3929 | 0.3326 0.3612 0.3660
0.0184 0.0228 0.0212 0.0210 | 0.0263 | 0.0201 0.0231 0.0220 | 0.0279 0.0233 0.0250 0.0218 0.0207 0.0211 0.0212 0.0210 0.0222
EOGHorizontal 0.4824 0.4141 0.4691 0.4241 0.7280 | 0.7334 0.5379 0.5028 | 0.7135 0.4673 0.4684 0.8524 0.5048 0.4998 0.8788 0.2938 0.3475
Signal 0.0183 0.0241 0.0236 0.0211 0.0458 | 0.0183 0.0231 0.0201 | 0.0127 0.0236 0.0236 0.0170 0.0214 0.0254 0.0153 0.0205 0.0181
GSE2685 0.2060 0.2913 0.1787 | 0.3475 | 0.4013 | 0.5213 0.4781 0.4763 | 0.4438 0.4263 0.4175 0.3575 0.2869 0.2381 0.4480 0.2120 0.2873
0.0622 0.1091 0.0613 0.0505 | 0.1081 0.1159 0.1282 0.1252 | 0.1413 0.1370 0.1442 0.0875 0.0941 0.0887 0.1396 0.0959 0.1104
nutt2003v2 0.1993 0.4000 0.1114 0.2100 | 0.4993 | 0.3336 0.2150 0.1871 | 0.3514 0.0871 0.0779 | 0.3686 0.1957 0.1557 0.2593 0.1286 0.1186
0.1081 0.0825 0.0769 0.1695 | 0.0864 | 0.1264 0.1082 0.1102 | 0.1039 0.0588 0.0509 0.0951 0.0784 0.0762 0.1229 0.0626 0.0549

HSOHY) ANV VLLA(] ‘4VMUVS ‘A0Y
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In all the examples (except Example 5), the competing classifiers GLMNET, NN-RAND,
SVM and NNET misclassify almost 50% of the test sample points. Example 5 involves a lo-
cation problem, and all these popular classifiers perform quite well, with SVM having a clear
edge over the others, followed closely by NN-RAND. The non-linear classifier SVM-RBF
leads to perfect classification in Example 6 (a scale problem), and an improved misclassifi-
cation rate of about 21% in Example 8 (having differences in their scatter matrices).

To summarize the performance of our classifiers in Table 2, we observe that the proposed
bgSAVG and NN-bgMADD classifiers outperform popular classifiers in all examples. In Ex-
ample 1, the misclassification rates of these classifiers are slightly more than those of the
gSAVG and NN-gMADD classifiers, respectively. We have difference in marginal distribu-
tions, and it is not necessary to use variable clustering in this example. The same is true for
Examples 4 and 7 as well, but the misclassification rates of the bgSAVG and NN-bgMADD
classifiers are quite similar to those of the gSAVG and NN-gMADD classifiers in these two
examples. In fact, the additional error incurred due to estimation of groups is negligible in
such cases. Moreover, the block-generalized classifiers improve over the generalized classi-
fiers in Example 5. These examples clearly show that block-generalized classifiers perform
well even when it is not necessary to group the component variables.

5.2 Comparison among the choices of v

A natural question that arises from Table 2 is the choice of 7y in practice. We have considered
three choices of v, namely, v1(t) = 1 — e~!, y(t) = log(1l + t) and 3(t) = vt/2. All
these functions have non-constant, completely monotone derivatives (see, e.g., Feller, 1971;
Baringhaus and Franz, 2010). These functions are monotonically increasing and there exists
a C' > 0 such that these functions satisfy the ordering 1 (t) < v2(t) < y3(t) for all ¢ > C.
The function ~; is clearly bounded, while the other two functions are unbounded. For large
t, the function =3, although unbounded, stays closer to y; when compared with the function
~3. The main idea behind choosing these functions was to explore the complete spectrum
(i.e., bounded, unbounded and in-between), and understand the effectiveness of the choice
of the v function in capturing discriminative information from the two class distributions.

We deal with heavy-tailed distributions in Example 4, and the advantage of using a
bounded 7 is clear here. In this example, generalized classifiers based on ~; outperformed
those based on ~3. The performance of classifiers based on v was quite close to ;. The fact
that «; is a bounded function is necessary here to ensure that assumptions (A1) and (A2)
hold. In Example 5 (a location problem) involving light-tailed distributions, generalized
classifiers based on 73 clearly outperform those constructed using +;, while the performance
of v9 again lies in-between these two choices. A related phenomena was also observed by
Baringhaus and Franz (2010) for location problems, where the authors were interested in
non-parametric two sample goodness of fit tests in R%. Observe that if we fix a classifier (say,
bgSAVG) in Table 2, then either 7; (in Examples 1-4 and 6-8) or «y3 (in Example 5) leads
to the minimum misclassification rate. From the results of our simulation study in Table 2,
there is no clear winner among these two choices of the v function. So, we recommend using
both choices, namely, v; and 73 to obtain a complete picture of the underlying scenario.
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6. Real Data Analysis

Now, we study the performance of our proposed classifiers on other benchmark data sets
from three popular databases, namely, Compcancer database, Microarray database and
UCR Time Series Archive (2018). Detailed description of the data sets are available at the
respective sources. Data sets in the Compcancer and Microarray databases (involving gene
expression studies) have a fized data with corresponding class labels, while those from the
UCR Archive come in two parts, a fized training set as well as a fized test set. For our analysis
of the data sets in the Compcancer and Microarray databases, we randomly selected 50%
of the observations (without replacement) corresponding to each class to form the training
set. The rest of the observations were considered as test cases. For data sets from the UCR
Archive, we combined the available training and test data, and randomly selected 50% of
the observations from the combined set to form a new set of training observations, while
keeping the proportions of observations from different classes consistent. The other half
was considered as the test set. This procedure was repeated 100 times over different splits
of the data set to obtain a stable estimate of the misclassification rate.

Let us start by analyzing the four benchmark data sets mentioned in Section 4. The
numerical results are reported in Table 3. The NN-bgMADD classifier captures information
from the group structure and leads to the minimum overall misclassification rate in both
Cricket X and EOGHorizontalSignal data sets. In the EOGHorizontalSignal data, we
observed a significant variability in the misclassification rates for different choices of v. In
fact, 71 (a bounded function) led to a misclassification rate of about 88%. This deteriorating
performance of 41 may be attributed to the fact that this function involves the term e,
which reduces the large differences in componentwise means of the competing classes, while
73 involves the term v/#/2, and manages to retain this information. The next two data sets
are related to gene expression studies, and the component variables often have differences
in their class means. SVM-LIN yields the lowest misclassification rate, while the NN-
bgMADD classifier had the second best performance in the GSE2685 data set. The bgSAVG
classifier leads to the best performance in the high-dimensional nutt2003v2 data, followed
by the SVM-LIN and NN-bgMADD classifiers. Generally, we observe that block-generalized
classifiers perform significantly better than their generalized counterparts in all four data
sets. This further establishes the usefulness of such classifiers in real data scenarios.

The Compcancer database has 35 data sets, while the Microarray database consists
of 20 data sets. We chose data sets with min;n; > 6, which left us with 31 data sets
from the first database, and 20 data sets in the second database. The ALLGSE412 data set
in the Microarray database has missing values in 29 observations (out of the 55 samples)
corresponding to 14 covariates, so we dropped those covariates from all the samples during
our analysis. We used 71 (out of available 85) data sets from the UCR data base.

To begin with, we look at the performance of the generalized and block-generalized
classifiers w.r.t. their classical counterparts. In Figure 9, we show boxplots of the mis-
classification rates for the proposed classifiers, separately for the three databases. It is
clear from these figures that the generalized versions of the AVG classifier yield substantial
improvement over the usual classifiers, while the block-generalized classifiers yield further
improvement in all three databases. However, this improvement is not so compelling for
the generalized and block-generalized NN classifiers. Interestingly, simple classifiers like
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SAVG and NN yield competitive performance in the first two databases involving gene
expression studies.

Compcancer Microarray UCR
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Figure 9: Boxplot of the estimated misclassification probabilities corresponding to various
AVG and NN classifiers in the Compcancer, Microarray and UCR databases.

Next, we compare the performance of our proposed classifiers with some existing classi-
fiers (namely, SVM, GLMNET, NNET and NN-RAND). To get an overall picture of their
performance in the three databases, we summarized the entire information through box-
plots in Figure 10 separately for these three databases. For each database, we considered a
boxplot of misclassification rates for all 22 classifiers across all data sets in that database.
Detailed results are available in Section 5 (see Tables 4-11) of the Supplementary.

The Compcancer and Microarray databases have datasets involving gene expressions,
which are very high-dimensional (d ~ 1400 — 23000) with low sample sizes (n ~ 10 — 100).
Most of these data sets involve 2 or 3 class problems. Linear SVM performs best in these two
databases (see Figure 10) since the competing classes often have differences in their mean
vectors. GLMNET (a regularized linear classifier) induces drastic reduction in the data
dimension (the reduced dimension ~ 1 — 99), and takes the second position. These data
sets have sparsity in their components, which justifies the good performance of GLMNET.
However, blocks of variables contain important information (recall panels (c¢) and (d) of
Figure 7) and also lead to dimension reduction through the estimated block structure. This
helps the bgSAVG classifier to perform quite well too in these two data bases. Generally,
the bgSAVG classifier tends to perform better than the NN-bgMADD classifier.
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Figure 10: Boxplot of the estimated misclassification rates corresponding to various classi-
fiers in the Compcancer, Microarray and UCR databases.

The UCR data archive is quite diverse with d ~ 24 — 2700 and n ~ 20 — 700. The
number of classes J varies from 2 to 52. Again, GLMNET invokes dimension reduction
by identifying sparse components, and yields the best performance. Performance of SVM-
RBF improves substantially in this database. The NN-bgMADD classifier also performs
quite well and secures a competitive position. Linear classifiers like GLMNET and SVM-
LIN perform quite well in data sets with clear differences in their locations, while popular
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non-linear classifiers like SVM-RBF and NN yield good performance in data sets with
difference in scales and/or shapes. In particular, GLMNET and SVM-LIN outperform the
non-linear classifiers in the Coffee and Wine data sets, while SVM-RBF and NN outperform
the linear classifiers in the CinCECGtorso, MoteStrain and Synthetic Control data sets.
The NN-bgMADD classifiers seem to have a slight edge over the corresponding bgSAVG
classifiers here. Generally, we observe a large variability in the boxplots for the UCR
database because of the presence of data sets with very high as well as low misclassification
rates. In particular, the PighirwayPressure data with 52 classes has a misclassification
rate of more than 80% across all classifiers, whereas we obtain perfect classification for these
classifiers in the InsectEPGRgularTrain data with 3 classes.

7. Concluding Remarks

In this article, we have studied the HDLSS asymptotic properties of some distance based
classifiers. We have analyzed and generalized the popular average distance classifier and the
nearest neighbor classifier. On a theoretical note, we have proved that the misclassification
probability of the generalized classifiers go to zero (i.e., perfect classification) in the HDLSS
asymptotic regime under very general conditions. Using a variety of simulated examples and
real data sets from three databases, we have amply demonstrated improved performance of
the proposed classifiers when compared with a wide variety of popular classifiers.

The idea of clustering of components in Section 3 allows us to theoretically explore
several possible ways in which d can grow to infinity. In this work, we have considered
the case where the block sizes are bounded, while the number of blocks increases with the
dimension. One can also keep the number of blocks fixed and allow the size of some (or,
all) blocks to grow with d. This may lead to concentration of distances within blocks, and
the proposed classifiers will then face issues similar to those discussed in Hall et al. (2005).
The remaining possibility is to allow both the number of blocks as well as sizes of the blocks
to grow to infinity. This, of course, is a complicated setup for theoretical analysis and out
of the scope of this article.

Another aspect is handling sparsity in the feature variables. In our theoretical inves-
tigations for the generalized classifiers, assumption (A3) corresponds to the case when the
number of informative components scales as d, but this can be relaxed further (see Sarkar
et al. (2020) for more details). In particular, if the variables are weakly dependent, Theorem
2.4 can be proved when the number of informative variables scales as d*, for some a > 1/2.
A similar remark holds for assumption (A7) in the context of block-generalized classifiers.
In practice, however, one would be interested in capturing the sparse structure in a data
dependent way and modify the classifiers accordingly. This is a topic of future research.
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Appendix A. Proofs and Mathematical Details

We begin with proofs of the results stated in Section 3. Proofs of the results in Section 2
are similar, and are in fact special cases (follows by taking b = d, equivalently, d; = 1 for
1 <4 < d) of these proofs. Hence, we omit them.

Proof of Lemma 3.1 Fix € > 0. Let us define W; = v(d; 7 !||U; — V||?) for 1 < i < b,
where U ~ Fj and V ~ Fj, 1 < j,j < J. Using Chebyshev’s inequality, we observe that

1< 18 L (12 L 2
‘b;W"b;E(W) - € SEQE[b;Wib;E(Wi)] .

We are going to show

b 2 b
1 1 1
E [b;m - b;E(WZ) = Var b;Wi] — 0 as b— oco.
Observe that
b
0< Var[p™' > Wi (A1)
i=1
=b" 22Var ] 42672 Cov (W;, Wy)
1<i<i’<b
=b 2Z:Var | +2b~ ZZZCOI‘I Wi, Wir) v/ Var[W;]Var[Wy]
1<i<i’<b

< b2 ZE[WE] +2072 3N Corr (Wi, W) \/E[WZIE[WZ)]

=1 1<i<i'<b

<b? ZCQ + 2c9b 2 Z Z Corr (W;, W) [by assumption (A5)]

1<i<i’ <b
< bl 4 2e9b72 Z Z Corr (W, Wyr) .
1<i<i/ <b
= o(1) [by assumption (A6)]. (A.2)
SIS Wit S EBW, H — 0 as b — oo. Since ¢ is uniformly continuous,

it follows from the definition of uniform continuity that for any ¢; > 0, there exists e > 0
such that

b
P[|o~ 1ZW —b- 1ZE | <] <Pl > W) — (b > EWi)| < e

i=1 =1
Since, hm PHb LS W= bt S0 E[W, il < el =1,
b b
‘qb(b_lzwz)—qﬁ(b_lZE[W}) S 0asb— oo
=1 =1
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Hence, |hy(U,V) — ilb(j,j/)‘ B oasb—ooforalll< J.3 < J [ |

Proof of Corollary 3.2 It follows from Lemma 3.1 that for independent random vectors
Z ~F;, and X, X' "% Fj, with 1 < j, 5/ < J, we have

1o (Z,X) — by (, 5] 2 0 and |hy(X, X') — R (57, 5)] 5 0 as b — o,

This further implies that

3T h(Z.X) — (5, 4)| 0 and
XeZ;
{njr(ny =D} 3 he(X,X) = hy(5,5)| 5 0 as b — oo (A.3)
X X'eZ;
(a) Recall that for any 1 < j, 7' < J,
&p(Z) =n;" > hy(Z,X) = {2n(n Y (X X))
XeZ; X X'eZ;

Gu(Z) =nyt Y W(ZX) = {2np(ny = 1)} Y W(X, X)), and
XE]/ X,X’E«%}/

(ho (5", 3") + ha (4, 7))

&(5,5') = ho(4,5') —

DN | =

Since Z ~ F, it follows from (A.3) that
1&56(Z) — {hw (4. 5") — B (5", 3")/2}] L0 and |¢;,(Z) - hy (4. 7)/2] L 0asb—oo. (Ad)
Consequently,
160(2) ~ 60(2) — {1ul3.5) ~ 30 + R )| 5005 0 o
= [{&n(2) = &1(2)} - &5, ‘—>0asb—>oo,

b) Recall that Z ~ F; and X ~ F with 1 < 5,7’ < .J, and v(Z,X) can be expressed as
J J
follows:

! ( Z |ho(Z, X") — hy (X, X")| + Z \hb(z,X’)—hb(X,X’)|).

n—1
X’E%/\{X} X/Gyf\f?fj/

Now, using triangle inequality (repeatedly), we obtain

0 < [¢u(Z, X) — 74, ")
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1{ S (LX) - h(X XD+ Y \hb(z,X')—hb(X,X’)\}

n—1
X’€<%-/\{X} X’E,%\<%f-/

B ) ) 1+ 3 )~ ') ]

I#5'

1 = =
> |me(Z, X)) = he (XX = (g — 1) | B (G, 5') = (5’ 57) |
n—1

X'e2,\{X}

Y (2 X)) (X X[ - n72

i)~ int7'0) | ]

X'e2 N\ I#5!
1
Snl{ ‘}thX) ho(X, X |= | b, 5") = (5, J)"
X'e2;\{X}
+Z Z |ho(Z,X") — ho(X, X)) | | B (35,0) \’}
I#’' X' ez
1 = = g
< — 1{ S mw(ZX) =G+ D (X X)) = (i, 5]
X'e2;\{X} X'e 2, \{X}
+ 0> (2, X)) = (G D[+ D \hb(x,X@—ﬁb(j’J)!}-
I#£5' X'e 2 I#5' X'e 2

It follows from Lemma 3.1 that each of the summands converge to 0 in probability as
(Z,X) — (4,4 50 as b— oo for all

b — oo. Therefore, for a fixed sample size n,
1<4,5 < J.

Let us assume that j # j'. We have 7;(Z) = minxcy; ¢5(%,X), and 7;4(Z) =
minxe 27, Yp(Z,X). Since Z ~ F;, we get

~ . . - . . P
|7i0(Z) = 73, 5| 5o and|7j,(Z) — 7,(5,5)| = 0 as b — oo.
Since 74(7,7) = 0, it follows that
..\ P
{7(Z) — 75(Z)} — 7(j,4")| = 0 as b — oo.
|

Proof of Lemma 3.3 Suppose that X, Xy are i.i.d. copies of X ~ Fj, and X3, X4 are
i.i.d. copies of X' ~ Fj for 1 < j # j' < J. Let us denote hy(j,j) = ¢(Aw), ho(i’, ) =

¢(Az) and hy(j,5) = ¢(As), where Ay = b0 E[y(d X1 — Xoi]?)], Aw =
bt S0 By(di | Xsi — Xail?)] and Agy = b7 320 Bly(d [ Xy — Xsil|?)].

(a) For1<i<band1l<j#j <.J, wehave
_ 1 _ _
e(Fji, Fyi) = E[v(d; lHXu—Xaz'HQ)]—Q{E[’Y(di X i =X |*) [ +E[Y(d; 1HX3¢—X41-H2)]}
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is the energy distance between the distributions F;; and F;/ ;. Baringhaus and Franz
(2010) showed that the energy distance between two distributions is always non-
negative, i.e., e(F;;, Fj ;) >0, forall 1 <i < band 1 < j# j' < J. Therefore,

Bl (d X X)) {E['y(di‘lHXu—XmHQ)]JrEh(leHst-—X4iHZ)]}, vi<i<b

N |

This implies that Az, > %(Alb + Agp). Since ¢ is increasing and concave, we have
¢(Az) = d(3A1 + 3A2) = 56(A1) + 5é(Az). This further implies that &(j, j') =
ho (G, ') = 5 {ho (G, ) + (5", 5') } = 0.

Baringhaus and Franz (2010) also showed that e(FJ i»Fjr;) =0ifand only if F;; = Fj ;,
and we have &,(j,7") = 0. So, we have ¢(Asp) = 2¢(A1b) + 16(Ag). Since ¢ is concave
and increasing, it is straightforward to check that Alb + %Agb > Agp. But, we already
know that As, > %Alb + %Agb and hence, the equality follows.

This further implies that 130  e(F;;,Fy,;) = Oforalll < j # j < J, ie,
e(F;i,Fjr;) =0foralll <i<band 1< j#j <J. Clearly, Fj; = Fj; forall 1 <
i<band 1< j+# j <Jnow follows.

Let us assume that F;; =F;; for all 1 <7 <band 1 < j # j' < J. Therefore, we get
E[y(di X1 — Xaol?) ] = B[y(di 1 X1 — Xsil|*)] = E[v(di |1 Xs: — Xai|?)]

which implies that Ay, = Ag, = Agp. As a consequence, we obtain ﬁb(j,j) = izb(j,j’) =
hu(j', '), and hence &(j, j') = 0 for 1 < j # j' < J.

Recall that for 1 < j # j' < J, we have
~ ny—1 - oy
7(3:3") = == [ (i, ') = h(5', 5" |+Z 1) = ho(5',1) [> 0.

I#5'

If 7,(j,5) = 0, then hy(j,1) = hy(j’,1) for all 1 <1< J. So, we get hy(j, ) = hy(j, ') =
ho(5',5') [ ho(d.5") = ho(3',4)]. This further implies ¢(A1y) = ¢(Az) = ¢(Asp), and
since ¢ is one-to-one, we get Ay, = Ao, = Agp. So, we have &,(] j) = Az — %{Alb +

Agp} = 0. This implies Fj; = Fj ; for all 1 <4 <b.

Let us now assume that F;; = Fj; for all 1 <14 < b. Consequently, for X’ ~ F; with
1<I<Jand 1<i<b, we get the following

By (di Xy = Xi[*)] = B[y (di [ Xsi — X{[)]
b
~ (b B - X)) = (17t R - X))
i=1 =1

This completes the proof. [

Recall that assumption (A7) implies liminfy o 7(j,5') > 0 for any 1 < j # j/ < J. We
now state and prove this fact below.
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Lemma 1 If liminf, gg’”(j,j’) > 0, then we have liminf, ., ﬂ?’y(j,j') > 0 for any
1<j#j <J.

Proof of Lemma 1 Recall that
- = 10 .. ~ .
&(3:3) = (3, 5') = 5 [M(5,3) + (5, 7')], and

L nox o w ng—1- L s,
1) = S { i) — 01 b+ ) Bl )

“<|n—1 —
I£]"
Since
- - 1., . ~
&07") = (G, 57) = 5 (G, 3) + M (' 57)]
1., . - 1., . =
= 5[5 3) = ho(5,9)] + 5 [P (5, 57) = (5", 3")]
1~ .. ~ 1~ ~
< S [h(G 5" = PG, )| + 51, 7) = R 5],

it follows that
e ez Y 2 S 1= 0 =, .
liminf &(j,j) > 0 = liminf (!hb(J,J’) — (5, 5)| + 5| (G, 57) — hb(J’,J’)!> > 0.
b—00 b—00 2 2
Now, let us assume that
P A B 1~ . v 5, .
lim inf (2\hb(3,3’) — (3, 5)| + §|hb(.77],) - hb(JCJ’)D =
—00

for some ¢ > 0. This means that for any ¢ > 0, there exists a b(e) such that for all b > b(e),
we have

/P S

1 m(:3") = m(G, )| + 5 he(53) = (3" 5] > e — e

C— €
2

c—¢€ 1.~ .. .
5 0 Or 5\’%(%]’) — (4", 5] >

I

S1FuG ) = PG )] >

n_j 7 ../7"' .. nj/_]~~ ../7"' A
155 = oG )| + T R, 57) = (5", 5)]

N min{m(c—a, (ny 1><c—e>}

n—1 n—1

nij(c—e) (ny—1)(c—e)
]n—l ’J n—1 }

I

= 7(5,7) > min{

Since € is chosen arbitrarily, we obtain the following

i ony—1
liminf 7 (4, 5") > cmin{ e J } > 0.
b—o0 n

Similarly, it can be shown that

1 .,
liminf 7 (5, §) > cmin{n] o } > 0.
b—o0 n

This completes the proof. [
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Proof of Theorem 3.4

(a) The misclassification probability of the bgSAVG classifier is defined as

Apgsava = P[dbgsava(Z) # Y,

where Y denotes the true label of Z. We will prove that Apgsavg — 0 as b — oo. Now,
note that

0 < lim P(dpgsava(Z) # Y]
J

= lim » Pdpesava(Z) # j, Z ~ F]
j=1

i
¢

M-

Il
—

mj Jim Plopesava(Z) # 7 | Z ~ Fy
; —00

M-

mj im P[&;(Z) — £54(Z) > 0 for some J'#5,1<j <J|Z~Fj]

<.
Il
-

M-

mj lim Z Pl§jp(Z) — &(Z) > 0| Z ~ Fy]

° b—oo _ “—
Jj=1 1<5#5'<J
J
=> 1 Y Jim P& (Z) = &0(2) > 0| Z ~ Fy]. (A.5)

J=1 1<5#'<J

For any € > 0 and € > 0, there exists a By such that for all b > By, we have

P& (Z) — E(Z) — &5, 7)) < 0| Z ~ Fj] > 1 — ¢ [see Corollary 3.2(a)]
— Pl&(Z) — Ep(Z) — &G, 7)) > 0| Z~F;] >1—¢
— Pl&(Z) — Ep(Z) > 0+ &G, ) | Z~Fj] >1—e

~—_— ~—

Let lim infy &(j4,7") be denoted by (4, /). For any 6 > 0, there exists a B’ such that
&(7,7") > £(j,7") — ¢ for all b > B’. Therefore,

P&(Z) — £6(Z) > =0+ &5, ) | Z ~ Fy)

< Pl&jn(Z) = p(Z) > =0 — 6" + (4, 7') | Z ~ Fy] for all b > B’

— Pl&(Z) — Ep(Z) > —0 — 0" +£(5,5') | Z ~ Fj] > 1 — ¢ for all b > max{B’, B, }.
(A.6)

Since 6, 6" are arbitrary, it can be concluded from equation (A.6) that

bIL\IgoP[gjlb(Z) - gjb(z) 2 g(]?]/) | Z~ FJ] =1

= lim P[¢;5(Z) — &3(Z) > 0| Z~ Fjl =1 [ £(5.5) > 0]
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— bli[élo P[gjb(Z) — gj’b(z) >0 ’ Z ~ FJ] =0. (A?)

Now, it follows from equations (A.5) and (A.7) that
J

Jlim Plougsava (Z) # Y] = Z;wj .0=0.
j:

(b) Proof for the misclassification probability of the NN-bgMADD classifier is similar, and
follows along the lines of the proof of part (a). Please check Section 1 of the Supple-
mentary for a proof. |

Proof of Theorem 3.5 Suppose 0 < s;,t; <1, for 1 < i < K. Then

K

H(Si +t) = Z Hsi H t;

=1 SC{1,..,K}ieS ie{l,.,.K}\S

Mo+ X Mo TT

=1 Sc{l,..,K}ieS ie{l,..,.K}\S

IR

i=1 Sc{1,...,K}ie{l,.,K}\S
K

<[I[si+ > ¢t (A.8)
i=1 K}

for some appropriate constant C'x > 0.

Recall that Apgsavg = 1—P[opgsava(Z) = Y] and Ann—pgmapD = 1—P[onn—bgmapD(Z) =
Y]. Here,

J
Plhgsava(Z) = Y] =Y mPlEu(Z) — &p(Z) > 05 # j,1 < j' < J|Z ~ F,], and
j=1

J
PoNN-bgmaDD(Z) = Y] =Y mPlrn(Z) — 7jp(Z) > 0 V' # 4,1 < j' < J|Z ~ Fy].
j=1

It is to be noted that given Z and 2 (training data of the j-th class), 74(Z) — 7;5(Z) and
Tw(Z) — Tj5(Z) are independently distributed for all 1 < k # 1 < J, k,l # j. Therefore, for
any 1 < j < J, we can write the following

Plrj(Z) — mj4(Z) > 0 Vi'#45,1<4 <JZ~ F;]
= E{P[rj(Z) — 1ju(Z) > 0Vj' # j,1 < j' < J|Z ~Fy, 2]}
—o{ T Pl - @ > 0z~ ¥, 21

1<j/#5<T
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= E{ [T ®Pln(2) - 756(Z) > 0, &n(Z) — £(2) > 0|Z ~ Fy, 2]

1<j/#5<T

- Plr(Z) — 5(Z) > 0,E0(Z) — £(Z) < 0/Z ~ F, %D}

< E{ [ (Pl - 4(2) > 0Z ~ F;, 2]

1<j/#5<T

PE(Z) — D)} — {r(2) — (B} < 02 ~ B, 23] |

< E{ [ (Plew@ - (@) >0z ~ F;, 25)

1<j/#§ <]

+ Y CrPU(Z) — ()} — {7jn(Z) — Tp(2)} < 0|Z ~ F, %‘]} [using (A.8)]

1<5/#5<J

_ E{ I (Pleyn(2) - () > 0|Z ~ Fy, %D}

1< #5<J
+5{ S 0o Pllen(®) - (@)}~ {r0(2) - (@) <02~ By, 23]
1<j/4j<J
—5{ I (Plen@ - en(z) > 02~ Py, 23) |
1<j/£5<J
+ Y Cr-PU&GHZ) = p(2)} — {mjn(Z) — jp(Z)} < 0|Z ~ F}]. (A.9)
1<j'25<J

For Z ~ F; and 1 < j' # j < J, using Corollary 3.2, we have

. . P - . .n P
[1{&(Z) = &p(Z) } — &(5,5")| = 0 and |{7j(Z) — 7j5(Z)} — (4, 5)| = 0 as b — oc.
This now implies that
o L P
ng/b(Z) — fjb(Z)} —{7n(Z) — 75p(Z)} — {&(4,7") — Tb(],]/)}’ = 0asb— oo.
Therefore, for any 6 > 0, € > 0 and j there exists a B;;» such that for all b > B; y
P[{&(Z) — &0(Z)} — {mj(Z) — mp(Z)} — {&(, ) — (3, 5N} < O|Z ~ Fj] > 1 —e.

We assume &(j,5') > 7(j,5') for all b > By and 1 < j # j/ < J. Let 6 =
liminfy (&(4,5") — 7(j,5')). By assumption (A9), 6y > 0. Hence, for any 0 < 6 < 6
and € > 0, there exists a V' (6y, 0, €) such that for all b > ¥'(6, 0, €)

P{&n(Z) — &4(Z)} — {7j5(Z) — 7j5(Z)} < 0|Z ~ Fj] < e
From equation (A.9), we now obtain

Plrj(Z) — mj5(Z) > 0 Vj # j'|Z ~ F]
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< E{ H P[fj/b(Z) — fjb(Z) > O‘Z ~ Fj, %]} + Z Cje

1<5#5'<J 1<5#5'<J
_ E{ [T Pl —4(2) >0z~ F;, 3&3«1} e
1<j#5'<J

=E{P[§n(Z) —&p(Z) > 0V)' # 5,1 <5 < J|Z~Fj, 23]} +C) e
— Pl&;(Z) — Eu(Z) > 0V) #5,1 < < J|Z ~TF;]+C € for all b >V (6,0, e).

Therefore,

— P[oxN_bgMADD(Z) = Y] < P[0hgsavc(Z) = Y]+ C e

This now implies that Apgsavg — C' € < Ann—pgmapp for all b > b/(6p, 6, €). Since € > 0
is arbitrarily, we conclude that

Apgsave < Ann—bgmapp for all b > V(6o 6, €).

Following a similar line of arguments, one can prove that there exist By and By such that
if &(5,4") < (4,5") for all b > By and 1 < j # j' < J, then Apgsave > ANN—bgMaDD for
all b > Bs. This completes the proof. |

Lemma 2 We now discuss some sufficient conditions for ggv(j,j’) > (<) %57(33 j") for
1<j#j <J.
Let us consider a two (J = 2) class problem. If

i hy(1,2) > hy(1,1) > hy(2,2) and ny > ng + 1,

ii. hp(1,2) > hy(2,2) > hp(1,1) and ny < ng — 1,

iii. hy(1,1) > hy(1,2) > 2hy(1,1) + 1h(2,2) > hy(2,2) and

{ Bb(lal) - ﬁb(2a2) }
2hy(1,2) — hy(1,1) — hy(2,2) 0

or

. hy(2,2) > hp(1,2) > 1hp(1,1) + 3hy(2,2) > hy(1,1) and

1 ho(2,2) — hy(1,1)
M D e ) e

then &(1,2) > max{7(1,2), 7(2,1)}.
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Proof of Lemma 2 Please check Section 1 of the Supplementary for a proof. |

Remark A Assumption (A8) holds in various scenarios. In particular, if the component
variables of the underlying distributions are i.i.d., then the constants & and 7, are free of
b. To realize this, assume X, X A Fi, X9, X4 i Fo. If d; = dy, and Xy; i Fq,

X3; o F,; for all 1 < ¢ < b, then we have
- 1< 1
hy(1,2) = ¢<b > Ely(l1Xw — XSz‘H2)]>
i=1 v

1< 1
= ¢<b ; E[V(dTHXM — X31!2)]>
_ ¢<E[’Y(d11\|x11 _ xmu?)]),

which implies that ﬁb(l, 2) is free of b.  Similarly, we can show that izb(l, 1) =
S(E[ (g1 X11 — Xa1[?)]) and hy(2,2) = ¢(E[y(g;[1Xs1 — Xa1[|*)]) are also free of b. Con-
sequently,

lim inf, &,(1,2)(= &(1,2), say) and lim inf; 7 (1, 2)(= 71(1, 2), say) remain constant for vary-
ing b. Clearly, under such circumstances, a sufficient condition for assumption (A8) is

1€1(1,2) — 71(1,2)] > 0.

It is also straightforward to observe that if E[y(d; '(|U; — V;||?)] = E[v(d; ' |[Uy — Vi|?)]
for all 1 < 4,7 <b, with U~ F; and V ~ Fj, then both &(j,j") and 7(j, j') are also free
of b. |

Lemma 3 Suppose U = {U;,Ug,...} and V = {V1,Va, ...} with U; and V; denoting the
respective sub-vectors fori € N. If U and V are p-mizing sequences, then the sequence W =
(W, Wa,..) T, where W; = y(d; 7L ||U; =V, ||2), is p-mizing and " > 1<icir<p Corr (Wi, W)
= o(b?).

)T

Proof of Lemma 3 For a random sequence X = (X7, Xo,...)' we have

px(d) = 21;[1)p(0(X1, o Xi), 0(Xptds - - 4)s
where o(X;,i € I) denotes the o-field generated by {X;,7 € I}, and p(A, B) is defined as
SUPx ¢ 2(A),y €.22(B) |E[XY] — E[X]E[Y]|. Here, £?(A) is the space of square integrable
random variables on A. The sequence X is said to be p-mixing if px(d) — 0 as d — oo
(see, e.g., Bradley, 2007).
Define Z; = h(U;, V;) for i € N, where h : R? — R is a continuous function. Note that
0(Zays-yZay) Co(Uayy--yUsy) Vo (Vay, ..., Va,). Bradley (2007) showed that

pz(d) = igll)f)(ff(zl»---,Zk:)»C’(Zker, ) (A.10)
< ilirl)p(a(Ul, o U) VoV, ooy Vi), o(Uktds - - ) V o (Vietd, - - ))
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(see Theorem 3.15-Remark (I), p.82 of Bradley, 2007)

= ili}l)max {p(U(Ul, .. .,Uk),J(U],H_d,. . )), p(a(Vl, .o .,Vk),a(Vk+d, .. ))}

(see Theorem 6.6-(II) and Note 3, pp.199-200 of Bradley, 2007)
= max {igll)p(g(Uh cos Ug)y 0 (Uktds - - )), ilill)p(a(vl, co s Vi), o (Vietd, - - ))}

— max {pu(d), pv(d)} (A1)
Therefore, pz(d) — 0 if both py(d) — 0 and pv(d) — 0 as d — oo.

Let us consider the sequence W with W1 = ¢1(Z1, ..., Z4,), Wo = 92(Zay+1, - -+ » Zdy+dsy)
and so on, where g; : R% — R for i € N are continuous functions. For simplicity, let us
assume that d; = dy for all 1 <1i <b. Now, we have

U(Wal’ R Wa2) = U(gal(Z(alfl)doJrla B Za1do)7 S >ga2<Z(a271)d0+17 IR Zagdo))
g U(Z(a1—l)d0+17 ey Za1d07 ey Z(ag—l)do+l7 ey Z(ag—l)do)'

This further implies that
pw (d) = 21;1:1>p(0(W1,.--,Wk),G(WHd,---)) (A.12)

< 21;11)p(0-(217 SR de s Z(k—l)do—i-lv SR deo)a U(Z(k+d—1)d0+17 SRR Z(k+d)d07 .- ))

(see Theorem 3.15-Remark (I), p.82 of Bradley, 2007)

< sup p(o(Z1, . Zay, - Ze—1ydot 15 - - Zdo)> O (Zido+ds Zkdo+ds1 - - -))

= Supp(a(Zl, .. ->Zk);U(Zk+da .. ))
k>1

— pz(d). (A.13)

Proof for the case when d;s are unequal, but bounded follows by using a similar line of
arguments. From equations (A.10) and (A.12), it follows that W is a p-mixing sequence if
both the original sequences U and V are p-mixing. Consider the maps h(u,v) = (u — v)?,
g(ui,...,ur) = (u1+---+wug)/k, and v as described in Lemma 2.3. Hence, if U and V are
p-mixing, then the sequence W = {W; = ~(d; ' ||U; — V;||?),i > 1} is also p-mixing.

Now, by Theorem 4.5(b) of Bradley (2007), we have

Corr(W;, Wy) < p(c(W;),0(Wy)) < p(c(Wh, ..., Wi),0(Wy,...)) < pw (i’ —i).

Therefore,
b b
0<b2Y N Corr(Wy, Wer) <572 ) pw(i/—i) <572 (b-Dpw () b 1> pw(l).
1<i<i’<b 1<i<i’<b =1 =1

Since, pw(b) — 0 as b — oo, it follows from Cesaro summability that

D> ) Corr (Wy, Wy) = o(b?).

1<i<i’<b
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Appendix B. Notations

Table 4: List of standard notations

Symbol Denotes
J number of classes
n; training sample size of j-th class
n total training sample size
d data dimension
z random sample
m location parameter (vector)
X scale parameter (matrix)
P population correlation coefficient
r sample correlation coefficient
X random variable
X random vector
F distribution function of a random variable X
F distribution function of a random vector X
Corr(X,Y) correlation between X and Y
0 a generic classifier
A misclassification probability (rate) of the classifier ¢

Table 5: Notations specific to this paper

Symbol Denotes Remark

b number of blocks
h(U, V) generalized distance between U and V
¢(U,V) measure of dissimilarity between U and V average distance classifier
£ (7,7") | measure of separability between class j and j' | average distance classifier
7(U, V) measure of dissimilarity between U and V nearest neighbor classifier
7(j,7") | measure of separability between class j and j' | nearest neighbor classifier
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