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Abstract

Sparse principal component analysis (PCA) is a popular dimensionality reduction tech-

nique for obtaining principal components which are linear combinations of a small subset

of the original features. Existing approaches cannot supply certifiably optimal principal

components with more than p = 100s of variables. By reformulating sparse PCA as a

convex mixed-integer semidefinite optimization problem, we design a cutting-plane method

which solves the problem to certifiable optimality at the scale of selecting k = 5 covariates

from p = 300 variables, and provides small bound gaps at a larger scale. We also propose

a convex relaxation and greedy rounding scheme that provides bound gaps of 1 − 2% in

practice within minutes for p = 100s or hours for p = 1, 000s and is therefore a viable

alternative to the exact method at scale. Using real-world financial and medical data sets,

we illustrate our approach’s ability to derive interpretable principal components tractably

at scale.

Keywords: Sparse PCA, Sparse Eigenvalues, Semidefinite Optimization

1. Introduction

In the era of big data, interpretable methods for compressing a high-dimensional data set

into a lower dimensional set which shares the same essential characteristics are imperative.

Since the work of Hotelling (1933), principal component analysis (PCA) has been one of the

most popular approaches for completing this task. Formally, given centered data A ∈ Rn×p

and its normalized empirical covariance matrix Σ := AA>

n−1 ∈ Rp×p, PCA selects one or more

leading eigenvectors of Σ and subsequently projects A onto these eigenvectors. This can

be achieved in O(p3) time by taking a singular value decomposition Σ = UΛU>.
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A common criticism1 of PCA is that the columns of U are not interpretable, since each

eigenvector is a linear combination of all p original features. This causes difficulties because:

• In medical applications such as cancer detection, PCs generated during exploratory

data analysis need to supply interpretable modes of variation (Hsu et al., 2014).

• In scientific applications such as protein folding, each original co-ordinate axis has a

physical interpretation, and the reduced set of co-ordinate axes should too.

• In finance applications such as investing capital across index funds, each non-zero

entry in each eigenvector used to reduce the feature space incurs a transaction cost.

• If p � n, PCA suffers from a curse of dimensionality and becomes physically mean-

ingless (Amini and Wainwright, 2008).

One common method for obtaining interpretable principal components is to stipulate

that they are sparse, i.e., maximize variance while containing at most k non-zero entries.

This approach leads to the following non-convex mixed-integer quadratically constrained

problem (see d’Aspremont et al., 2005):

max
x∈Rp

x>Σx s.t. x>x = 1, ||x||0 ≤ k, (1)

where the constraint ||x||0 ≤ k forces variance to be explained in a compelling fashion.

1.1 Background and Literature Review

Owing to sparse PCA’s fundamental importance in a variety of applications including best

subset selection (d’Aspremont et al., 2008), natural language processing (Zhang et al.,

2012), compressed sensing (Candes and Tao, 2007), and clustering (Luss and d’Aspremont,

2010), three distinct classes of methods for addressing Problem (1) have arisen. Namely,

(a) heuristic methods which obtain high-quality sparse PCs in an efficient fashion but do

not supply guarantees on the quality of the solution, (b) convex relaxations which obtain

certifiably near-optimal solutions by solving a convex relaxation and rounding, and (c) exact

methods which obtain certifiably optimal solutions, albeit in exponential time.

Heuristic Approaches: The importance of identifying a small number of interpretable

principal components has been well-documented in the literature since the work of Hotelling

(1933) (see also Jeffers, 1967), giving rise to many distinct heuristic approaches for obtaining

high-quality solutions to Problem (1). Two interesting such approaches are to rotate dense

principal components to promote sparsity (Kaiser, 1958; Richman, 1986; Jolliffe, 1995), or

1. A second criticism of PCA is that, as set up here, it uses the sample correlation or covariance matrix.

This is a drawback, because sample covariance matrices are poorly conditioned estimators which over-

disperses the sample eigenvalues, particularly in high-dimensional settings. In practice, this can be

rectified by, e.g., using a shrinkage estimator (see, e.g., Ledoit and Wolf, 2004). We do not do so here

for simplicity, but we recommend doing so if using the techniques developed in this paper in practice.
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apply an `1 penalty term as a convex surrogate to the cardinality constraint (Jolliffe et al.,

2003; Zou et al., 2006). Unfortunately, the former approach does not provide performance

guarantees, while the latter approach still results in a non-convex optimization problem.

More recently, motivated by the need to rapidly obtain high-quality sparse principal

components at scale, a wide variety of first-order heuristic methods have emerged. The

first such modern heuristic was developed by Journée et al. (2010), and involves combining

the power method with thresholding and re-normalization steps. By pursuing similar ideas,

several related methods have since been developed (see Witten et al., 2009; Hein and Bühler,

2010; Richtárik et al., 2020; Luss and Teboulle, 2013; Yuan and Zhang, 2013). Unfortunately,

while these methods are often very effective in practice, they sometimes badly fail to recover

an optimal sparse principal component, and a practitioner using a heuristic method typically

has no way of knowing when this has occurred. Indeed, Berk and Bertsimas (2019) recently

compared 7 heuristic methods, including most of those reviewed here, on 14 instances of

sparse PCA, and found that none of the heuristic methods successfully recovered an optimal

solution in all 14 cases (i.e., no heuristic was right all the time).

Convex Relaxations: Motivated by the shortcomings of heuristic approaches on high-

dimensional data sets, and the successful application of semi-definite optimization in obtain-

ing high-quality approximation bounds in other applications (see Goemans and Williamson,

1995; Wolkowicz et al., 2012), a variety of convex relaxations have been proposed for sparse

PCA. The first such convex relaxation was proposed by d’Aspremont et al. (2005), who

reformulated sparse PCA as the rank-constrained mixed-integer semidefinite optimization

problem (MISDO)

max
X�0

〈Σ,X〉 s.t. tr(X) = 1, ‖X‖0 ≤ k2, Rank(X) = 1, (2)

whereX models the outer product xx>. Note that, for a rank-one matrixX, the constraint

‖X‖0 ≤ k2 in (2) is equivalent to the constraint ‖x‖0 ≤ k in (1), since a vector x is k-sparse

if its outer product xx> is k2-sparse. After performing this reformulation, d’Aspremont

et al. (2005) relaxed both the cardinality and rank constraints and instead solved

max
X�0

〈Σ,X〉 s.t. tr(X) = 1, ‖X‖1 ≤ k, (3)

which supplies a valid upper bound on Problem (1)’s objective.

The semidefinite approach has since been refined in a number of follow-up works. Among

others, d’Aspremont et al. (2008), building upon the work of Ben-Tal and Nemirovski

(2002), proposed a different semidefinite relaxation which supplies a sufficient condition for

optimality via the primal-dual KKT conditions, and d’Aspremont et al. (2014) analyzed the

quality of the semidefinite relaxation in order to obtain high-quality approximation bounds.

A common theme in these approaches is that they require solving large-scale semidefinite

optimization problems. This presents difficulties for practitioners because state-of-the-art
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implementations of interior point methods such as Mosek require O(p6) memory to solve

Problem (3), and therefore currently cannot solve instances of Problem (3) with p ≥ 300 (see

Bertsimas and Cory-Wright, 2020, for a recent comparison). Techniques other than interior

point methods, e.g., ADMM or augmented Lagrangian methods as reviewed in Majumdar

et al. (2020) could also be used to solve Problem (3), although they tend to require more

runtime than IPMs to obtain a solution of a similar accuracy and be numerically unstable

for problem sizes where IPMs run out of memory (Majumdar et al., 2020).

A number of works have also studied the statistical estimation properties of Problem

(3), by assuming an underlying probabilistic model. Among others, Amini and Wainwright

(2008) have demonstrated the asymptotic consistency of Problem (3) under a spiked covari-

ance model once the number of samples used to generate the covariance matrix exceeds a

certain threshold; see Vu and Lei (2012); Berthet and Rigollet (2013); Wang et al. (2016)

for further results in this direction, Miolane (2018) for a recent survey.

In an complementary direction, Dey et al. (2018) has recently questioned the modeling

paradigm of lifting x to a higher dimensional space by instead considering the following

(tighter) relaxation of sparse PCA in the original problem space

max
x∈Rp

x>Σx s.t. ‖x‖2 = 1, ‖x‖1 ≤
√
k. (4)

Interestingly, Problem (4)’s relaxation provides a
(

1 +
√

k
k+1

)2

-factor bound approxi-

mation of Problem (1)’s objective, while Problem (3)’s upper bound may be exponentially

larger in the worst case (Amini and Wainwright, 2008). This additional tightness, however,

comes at a price: Problem (4) is NP-hard to solve—indeed, providing a constant-factor

guarantee on sparse PCA is NP-hard (Magdon-Ismail, 2017)—and thus (4) is best formu-

lated as a MIO, while Problem (3) can be solved in polynomial time.

More recently, by building on the work of Kim and Kojima (2001), Bertsimas and Cory-

Wright (2020) introduced a second-order cone relaxation of (2) which scales to p = 1000s,

and matches the semidefinite bound after imposing a small number of cuts. Moreover,

it typically supplies bound gaps of less than 5%. However, it does not supply an exact

certificate of optimality, which is often desirable, for instance in medical applications.

A fundamental drawback of existing convex relaxation techniques is that they are not

coupled with rounding schemes for obtaining high-quality feasible solutions. This is prob-

lematic, because optimizers are typically interested in obtaining high-quality solutions,

rather than certificates. In this paper, we take a step in this direction, by deriving new

convex relaxations that naturally give rise to greedy and random rounding schemes. The

fundamental point of difference between our relaxations and existing relaxations is that we

derive our relaxations by rewriting sparse PCA as a MISDO and dropping an integrality

constraint, rather than using more ad-hoc techniques.

Exact Methods: Motivated by the successful application of mixed-integer optimiza-

tion for solving statistical learning problems such as best subset selection (Bertsimas and
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Van Parys, 2020) and sparse classification (Bertsimas et al., 2021b), several exact methods

for solving sparse PCA to certifiable optimality have been proposed. The first branch-and-

bound algorithm for solving Problem (1) was proposed by Moghaddam et al. (2006), by

applying norm equivalence relations to obtain valid bounds. However, Moghaddam et al.

(2006) did not couple their approach with high-quality initial solutions and tractable bounds

to prune partial solutions. Consequently, they could not scale their approach beyond p = 40.

A more sophisticated branch-and-bound scheme was recently proposed by Berk and

Bertsimas (2019), which couples tighter Gershgorin Circle Theorem bounds (Horn and

Johnson, 1990, Chapter 6) with a fast heuristic due to Yuan and Zhang (2013) to solve

problems up to p = 250. However, their method cannot scale beyond p = 100s, because the

bounds obtained are too weak to avoid enumerating a sizeable portion of the tree.

Recently, the authors developed a framework for reformulating convex mixed-integer

optimization problems with logical constraints (see Bertsimas et al., 2021a), and demon-

strated that this framework allows a number of problems of practical relevance to be solved

to certifiably optimality via a cutting-plane method. In this paper, we build upon this work

by reformulating Problem (1) as a convex mixed-integer semidefinite optimization prob-

lem, and leverage this reformulation to design a cutting-plane method which solves sparse

PCA to certifiable optimality. A key feature of our approach is that we need not solve any

semidefinite subproblems. Rather, we use concepts from SDO to design a semidefinite-free

approach which uses simple linear algebra techniques.

Concurrently to our initial submission, Li and Xie (2020) also attempted to reformulate

sparse PCA as an MISDO, and proposed valid inequalities for strengthening their formu-

lation and local search algorithms for obtaining high-quality solutions at scale. Our work

differs in the following two ways. First, we propose strengthening the MISDO formulation

using the Gershgorin circle theorem and demonstrate that this allows our MISDO formula-

tion to scale to problems with p = 100s of features, while they do not, to our knowledge, solve

any MISDOs to certifiable optimality where p > 13. Second, we develop tractable second-

order cone relaxations and greedy rounding schemes which allow practitioners to obtain

certifiably near optimal sparse principal components even in the presence of p = 1, 000s of

features. More remarkable than the differences between the works however is the similari-

ties: more than 15 years after d’Aspremont et al. (2005)’s landmark paper first appeared,

both works proposed reformulating sparse PCA as an MISDO less than a week apart. In

our view, this demonstrates that the ideas contained in both works transcend sparse PCA,

and can perhaps be applied to other problems in the optimization literature which have not

yet been formulated as MISDOs.

1.2 Contributions and Structure

The main contributions of the paper are twofold. First, we reformulate sparse PCA exactly

as a mixed-integer semidefinite optimization problem; a reformulation which is, to the best
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of our knowledge, novel. Second, we leverage this MISDO formulation to design efficient

algorithms for solving non-convex mixed-integer quadratic optimization problems, such as

sparse PCA, to certifiable optimality or within 1− 2% of optimality in practice at a larger

scale than existing state-of-the-art methods. The structure and detailed contributions of

the paper are as follows:

• In Section 2.1, we reformulate Problem (1) as a mixed-integer SDO. We propose a

cutting-plane method which solves it to certifiable optimality in Section 2.2. Our algo-

rithm decomposes the problem into a purely binary master problem and a semidefinite

separation problem. Interestingly, we show in Section 2.3 that the separation problems

can be solved efficiently via a leading eigenvalue computation and does not require any

SDO solver. Finally, the Gershgorin Circle theorem has been empirically successful

for deriving upper-bounds on the objective value of (1) (Berk and Bertsimas, 2019).

We theoretically analyze the quality of such bounds in Section 2.4 and show in Section

2.5 that tighter bounds derived from Brauer’s ovals of Cassini theorem can also be

imposed via mixed-integer second-order cone constraints.

• In Section 3, we analyze the semidefinite reformulation’s convex relaxation, and in-

troduce a greedy rounding scheme (Section 3.1) which supplies high-quality solutions

to Problem (1) in polynomial time, together with a sub-optimality gap (see numerical

experiments in Section 4). To further improve the quality of rounded solution and the

optimality gap, we introduce strengthening inequalities (Section 3.2). While solving

the strengthened formulation exactly would result in an intractable MISDO problem,

solving its relaxation and rounding the solution appears as an efficient strategy to

return high-quality solutions with a numerical certificate of near-optimality.

• In Section 4, we apply the cutting-plane and random rounding methods to derive

optimal and near optimal sparse principal components for problems in the UCI data

set. We also compare our method’s performance against the method of Berk and

Bertsimas (2019), and find that our exact cutting-plane method performs comparably,

while our relax+round approach successfully scales to problems an order of magnitude

larger and often returns solutions which outperform the exact method at sizes which

the exact method cannot currently scale to. A key feature of our numerical success is

that we sidestep the computational difficulties in solving SDOs at scale by proposing

semidefinite-free methods for solving the convex relaxations, i.e., solving second-order

cone relaxations.

Notation: We let nonbold face characters such as b denote scalars, lowercase bold faced

characters such as x denote vectors, uppercase bold faced characters such as X denote

matrices, and calligraphic uppercase characters such as Z denote sets. We let [p] denote

the set of running indices {1, ..., p}. We let e denote a vector of all 1’s, 0 denote a vector of

all 0’s, and I denote the identity matrix, with dimension implied by the context.
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We also use an assortment of matrix operators. We let 〈·, ·〉 denote the Euclidean inner

product between two matrices, ‖ · ‖F denote the Frobenius norm of a matrix, ‖ · ‖σ denote

the spectral norm of a matrix, ‖ · ‖∗ denote the nuclear norm of a matrix, X† denote the

Moore-Penrose psuedoinverse of a matrix X and Sp+ denote the p× p positive semidefinite

cone; see Horn and Johnson (1990) for a general theory of matrix operators.

2. An Exact Mixed-Integer Semidefinite Optimization Algorithm

In Section 2.1, we reformulate Problem (1) as a convex mixed-integer semidefinite optimiza-

tion problem. From this formulation, we propose an outer-approximation scheme (Section

2.2) which, as we show in Section 2.3, does not require solving any semidefinite problems.

We improve convergence of the algorithm by deriving quality upper-bounds on Problem’s

(1) objective value in Section 2.4 and 2.5.

2.1 A Mixed-Integer Semidefinite Reformulation

Starting from the rank-constrained SDO formulation (2), we introduce binary variables zi

to model whether Xi,j is non-zero, via the logical constraint Xi,j = 0 if zi = 0; note that

we need not require that Xi,j = 0 if zj = 0, since X is a symmetric matrix. By enforcing

the logical constraint via −Mi,jzi ≤ Xi,j ≤ Mi,jzi for sufficiently large Mi,j > 0, Problem

(2) becomes

max
z∈{0,1}p:e>z≤k

max
X∈Sp+

〈Σ,X〉

s.t. tr(X) = 1, −Mi,jzi ≤ Xi,j ≤Mi,jzi ∀i, j ∈ [p], Rank(X) = 1.

To obtain a MISDO reformulation, we omit the rank constraint. In general, omitting

a rank constraint generates a relaxation and induces some loss of optimality. Remarkably,

this omission is without loss of optimality in this case. Indeed, the objective is convex and

therefore some rank-one extreme matrices X is optimal. We formalize this observation in

the following theorem; note that a similar result—although in the context of computing

Restricted Isometry constants and with a different proof—exists (Gally and Pfetsh, 2016):

Theorem 1 Problem (1) attains the same optimal objective value as the problem

max
z∈{0,1}p:e>z≤k

max
X∈Sp+

〈Σ,X〉

s.t. tr(X) = 1

|Xi,j | ≤Mi,jzi ∀i, j ∈ [p],
p∑
j=1

|Xi,j | ≤
√
kzi ∀i ∈ [p],

(5)

where Mi,i = 1, and Mi,j = 1
2 if j 6= i.
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Remark 2 Observe that if k ≤
√
n and we set Mi,j = 1 ∀i, j ∈ [p] in Problem (5) and omit

the valid inequality
∑p

j=1 |Xi,j | ≤
√
kzi then the optimal value of the continuous relaxation

is trivially λmax(Σ). Indeed, letting x be a leading eigenvector of the unconstrained problem

(where ‖x‖2 = 1), we can set zi = |xi| ≥ |xi||xj |, where the inequality holds since ‖x‖2 = 1,

and Xi,j = xixj, meaning (a)
∑

i zi = ‖x‖1 ≤ k ≤
√
n by norm equivalence and (b)

|Xi,j | ≤ zi and thus (X, z) solves this continuous relaxation. Therefore, setting Mi,j = 1
2

if j 6= i and/or imposing the valid inequality
∑p

j=1 |Xi,j | ≤
√
kzi is necessary for obtaining

non-trivial relaxations whenever k is small.

Proof It suffices to demonstrate that for any feasible solution to (1) we can construct a

feasible solution to (5) with an equal or greater payoff, and vice versa.

• Let x ∈ Rp be a feasible solution to (1). Then, since ‖x‖1 ≤
√
k, (X := xx>, z) is a

feasible solution to (5) with equal cost, where zi = 1 if |xi| > 0, zi = 0 otherwise.

• Let (X, z) be a feasible solution to Problem (5), and let X =
∑p

i=1 σixix
>
i be a

Cholesky decomposition of X, where e>σ = 1,σ ≥ 0, and ‖xi‖2 = 1 ∀i ∈ [p].

Observe that ‖xi‖0 ≤ k ∀i ∈ [p], since we can perform the Cholesky decomposition on

the submatrix of X induced by z, and “pad” out the remaining entries of each xi with

0s to obtain the decomposition of X. Therefore, let us set x̂ := arg maxi[x
>
i Σxi].

Then, x̂ is a feasible solution to (1) with an equal or greater payoff.

Finally, we let Mi,i = 1, Mi,j = 1
2 if i 6= j, as the 2 × 2 minors imply X2

i,j ≤ Xi,iXj,j ≤ 1
4

whenever i 6= j (c.f. Gally and Pfetsh, 2016, Lemma 1).

Theorem 1 reformulates Problem (1) as a mixed-integer SDO. Therefore, we can solve

Problem (5) using general branch-and-cut techniques for semidefinite optimization problems

(see Gally et al., 2018; Kobayashi and Takano, 2020). However, this approach is not scalable,

as it comprises solving a large number of semidefinite subproblems and the community does

not know how to efficiently warm-start interior point methods (IPMs) for SDOs.

Alternatively, we propose a saddle-point reformulation of Problem (5) which avoids the

computational difficulty of solving a large number of SDOs by exploiting problem structure,

as we will show in Section 2.3. The following result reformulates Problem (5) as a max-min

saddle-point problem amenable to outer-approximation:

Theorem 3 Problem (5) attains the same optimal value as the following problem:

max
z∈{0,1}p: e>z≤k

f(z) (6)

where f(z) := min
λ∈R,α∈Rp×p,β∈Rp

λ+

p∑
i=1

zi

 p∑
j=1

Mi,j max(0, |αi,j | − βi) +
√
kβi


(7)

s.t. λI +α � Σ.
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Remark 4 The above theorem demonstrates that f(z) is concave in z, by rewriting it as

the infimum of functions which are linear in z (Boyd and Vandenberghe, 2004).

Proof Let us introduce auxiliary variables Ui,j to model the absolute value of Xi,j and

rewrite the inner optimization problem of (5) as

f(z) := max
X�0,U

〈Σ,X〉

s.t. tr(X) = 1, [λ]

Ui,j ≤Mi,jzi ∀i, j ∈ [p], [σi,j ]

|Xi,j | ≤ Ui,j ∀i, j ∈ [p], [αi,j ]
p∑
j=1

Ui,j ≤
√
kzi ∀i ∈ [p], [βi]

(8)

where we associate dual constraint multipliers with primal constraints in square brackets.

For z such that e>z ≥ 1, the maximization problem induced by f(z) satisfies Slater’s

condition (see, e.g., Boyd and Vandenberghe, 2004, Chapter 5.2.3), strong duality applies

and leads to

f(z) = min
λ

σ,α,β≥0

λ+
∑
i,j

σi,jMi,jzi +

p∑
i=1

βi
√
kzi

s.t. λI +α � Σ, |αi,j | ≤ σi,j + βi.

We eliminate σ from the dual problem above by optimizing over σi,j and setting σ?i,j =

max(0, |αi,j | − βi).
Note that for z = 0, the primal subproblem is infeasible and the dual subproblem has

objective −∞, but this can safely be ignored since z = 0 is certainly suboptimal.

2.2 A Cutting-Plane Method

Theorem 3 shows that evaluating f(ẑ) yields the globally valid overestimator:

f(z) ≤ f(ẑ) + g>ẑ (z − ẑ),

where gẑ is a supergradient of f at ẑ, at no additional cost. In particular, we have

gẑ,i =

 p∑
j=1

Mi,j max
(
0, |α?i,j(ẑ)| − βi(ẑ)

)
+
√
kβi(ẑ)

,
where α?(ẑ), β?(ẑ) constitutes an optimal choice of (α,β) for a fixed ẑ. This observation

leads to an efficient strategy for maximizing f(z): iteratively maximizing and refining a

9



Bertsimas, Cory-Wright and Pauphilet

piecewise linear upper estimator of f(z). This strategy is called outer-approximation (OA),

and was originally proposed by Duran and Grossmann (1986). OA works by iteratively

constructing estimators of the following form at each iteration t:

f t(z) = min
1≤i≤t

{
f(zi) + g>zi(z − zi)

}
. (9)

After constructing each overestimator, we maximize f t(z) over {0, 1}p to obtain zt, and

evaluate f(·) and its supergradient at zt. This procedure yields a non-increasing sequence

of overestimators {f t(zt)}Tt=1 which converge to the optimal value of f(z) within a finite

number of iterations T ≤
(
p
1

)
+ . . . +

(
p
k

)
, since {0, 1}p is a finite set and OA never visits

a point twice. Additionally, we can avoid solving a different MILO at each OA iteration

by integrating the entire algorithm within a single branch-and-bound tree, as proposed

by Quesada and Grossmann (1992), using lazy constraint callbacks. Lazy constraint

callbacks are now standard components of modern MILO solvers such as Gurobi or CPLEX

and substantially speed-up OA. We formalize this procedure in Algorithm 1; note that

∂f(zt+1) denotes the set of supergradients of f at zt+1.

Algorithm 1 An outer-approximation method for Problem (1)

Require: Initial solution z1

t← 1

repeat

Compute zt+1, θt+1 solution of

max
z∈{0,1}p:e>z≤k,θ

θ s.t. θ ≤ f(zi) + g>zi(z − zi) ∀i ∈ [t],

Compute f(zt+1) and gzt+1 ∈ ∂f(zt+1) by solving (7)

t← t+ 1

until f(zt)− θt ≤ ε
return zt

2.3 A Semidefinite-Free Subproblem Strategy

Our derivation and analysis of Algorithm 1 indicates that we can solve Problem (1) to

certifiable optimality by solving a (potentially large) number of semidefinite subproblems

(7), which might be prohibitive in practice. Therefore, we now derive a computationally

efficient subproblem strategy which crucially does not require solving any semidefinite pro-

grams. Formally, we have the following result:
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Theorem 5 For any z ∈ {0, 1}p : e>z ≤ k, optimal dual variables in (7) are

λ = λmax (Σ1,1) , α̂ =

(
α̂1,1 α̂1,2

α̂>1,2 α̂2,2

)
=

(
0 0

0 Σ2,2 − λI + Σ>1,2 (λI−Σ1,1)†Σ1,2

)
, (10)

βi = (1− zi)
(
|α̂i,1|, |α̂i,2|, . . . , |α̂i,i|, |α̂i,i|, . . . , |α̂i,p|

)
[d
√
k e]

∀i ∈ [p], (11)

where λmax(·) denotes the leading eigenvalue of a matrix, α̂ =

(
α̂1,1 α̂1,2

ˆα>1,2 α̂2,2

)
is a permuta-

tion such that α̂1,1 (resp. α̂2,2) denotes the entries of α̂ where zi = zj = 1 (zi = zj = 0);

Σ is similar, and (x)[k] denotes the kth largest element of x.

Remark 6 By Theorem 5, Problem (7) can be solved by computing the leading eigenvalue

of Σ1,1 and solving a linear system. This justifies our claim that we need not solve any

SDOs in our algorithmic strategy.

Proof We appeal to strong duality and complementary slackness. Observe that, for any

z ∈ {0, 1}p, f(z) is the optimal value of a maximization problem over a closed convex

compact set. Therefore, there exists some optimal primal solution X? without loss of

generality. Moreover, since the primal has non-empty relative interior with respect to the

non-affine constraints, it satisfies the Slater constraint qualification and strong duality holds

(see, e.g., Boyd and Vandenberghe, 2004, Chapter 5.2.3). Therefore, by complementary

slackness (see, e.g., Boyd and Vandenberghe, 2004, Chapter 5.5.2), there must exist some

dual-optimal solution (λ, α̂,β) which obeys complementarity with X?. Moreover, |Xi,j | ≤
Mi,j is implied by tr(X) = 1,X � 0, while

∑p
j=1 |Xi,j | ≤ zi

√
k is implied by |Xi,j | ≤Mi,jzi

and e>z ≤ k. Therefore, by complementary slackness, we can take the constraints |Xi,j | ≤
Mi,jzi,

∑p
j=1 |Xi,j | ≤ zi

√
k to be inactive when zi = 1 without loss of generality, which

implies that α̂?i,j , β
?
i = 0 if zi = 1 in some dual-optimal solution. Moreover, we also have

α̂?i,j = 0 if zj = 1, since α̂ obeys the dual feasibility constraint λI + α̂ � Σ, and therefore

is itself symmetric.

Next, observe that, by strong duality, λ = λmax(Σ1,1) in this dual-optimal solution,

since α only takes non-zero values if zi = zj = 0 and does not contribute to the objective,

and β is similar.

Next, observe that, by strong duality and complementary slackness, any dual feasible

(λ, α̂,β) satisfying the above conditions is dual-optimal. Therefore, we need to find an α̂2,2

such that (
λI−Σ1,1 −Σ1,2

−Σ2,1 λI + α̂2,2 −Σ2,2

)
� 0.

By the generalized Schur complement lemma (see Boyd et al., 1994, Equation 2.41), this is

PSD if and only if

11
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1. λI−Σ1,1 � 0,

2.
(
I− (λI−Σ1,1)(λI−Σ1,1)†

)
Σ1,2 = 0, and

3. λI + α̂2,2 −Σ2,2 � Σ>1,2 (λI−Σ1,1)†Σ1,2.

The first two conditions hold because, as argued above, λ is optimal and therefore feasible,

and the conditions are independent of α̂2,2. Therefore, it suffices to pick α̂2,2 in order that

the third condition holds. We achieve this by setting α̂2,2 so the PSD constraint in condition

(3) holds with equality.

Finally, let us optimize for β to obtain stronger cuts (when zi = 0 we can pick any

feasible βi, but optimizing to set ∂f(z)i to be as small as possible gives stronger cuts). This

is equivalent to solving the univariate minimization problem for each βi:

min
βi

 p∑
j=1

Mi,j max(0, |αi,j | − βi) +
√
kβi

 .

Moreover, it is a standard result from max-k optimization (see, e.g., Zakeri et al., 2014; Todd,

2018) that this is achieved by setting βi to be the d
√
k e largest element of {αi,j}j∈[p]∪{αi,i}

in absolute magnitude, where we include αi,i twice since Mi,i = 1 while Mi,j = 1/2 if j 6= i.

2.4 Strengthening the Master Problem via the Gershgorin Circle Theorem

To accelerate Algorithm 1, we strengthen the master problem by imposing bounds from the

circle theorem. Formally, we have the following result, which can be deduced from (Horn

and Johnson, 1990, Theorem 6.1.1):

Theorem 7 For any vector z ∈ {0, 1}p we have the following upper bound on f(z)

f(z) ≤ max
j∈[p]:zj=1

∑
i∈[p]

zi|Σi,j |. (12)

Observe that this bound cannot be used to directly strengthen Algorithm 1’s master

problem, since the bound is not convex in z. Nonetheless, it can be successfully applied if

we (a) impose a big-M assumption on Problem (1)’s optimal objective and (b) introduce p

additional binary variables s ∈ {0, 1}p : e>s = 1 which model whether the ith Gershgorin

disc is active; recall that each eigenvalue is contained in the union of the discs. Formally,

we impose the following valid inequalities in the master problem:

∃s ∈ {0, 1}p : θ ≤
∑
i∈[p]

zi|Σi,j |+M(1− sj) ∀j ∈ [p], e>s = 1, s ≤ z, (13)

12
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where θ is the epigraph variable maximized in the master problem stated in Algorithm 1,

and M is an upper bound on the sum of the k largest absolute entries in any column of Σ.

Note that we set s ≤ z since if zi = 0 the ith column of Σ does not feature in the relevant

submatrix of Σ. In the above inequalities, a valid M is given by any bound on the optimal

objective. Since Theorem 7 supplies one such bound for any given z, we can compute

M := max
j∈[p]

max
z∈{0,1}p:e>z≤k

∑
i∈[p]

zi|Σi,j |, (14)

which can be done in O(p2) time.

To further improve Algorithm 1, we also make use of the Gershgorin circle theorem

before generating each outer-approximation cut. Namely, at a given node in a branch-and-

bound tree, there are indices i where zi has been fixed to 1, indices i where zi has been fixed

to 0, and indices i where zi has not yet been fixed. Accordingly, we compute the worst-case

Gershgorin bound—by taking the worst-case bound over each index j such that zj has not

yet been fixed to 0, i.e.,

max
j:zj 6=0

 max
s∈{0,1}p:e>s≤k

∑
i∈[p]

si|Σi,j | s.t. si = 0 if zi = 0, si = 1 if zi = 1


 .

If this bound is larger than our incumbent solution then we generate an outer-approximation

cut, otherwise the entire subtree rooted at this node does not contain an optimal solution

and we use instruct the solver to avoid exploring this node via a callback.

Our numerical results in Section 4 echo the empirical findings of Berk and Bertsimas

(2019) and indicate that Algorithm 1 performs substantially better when the Gershgorin

bound is supplied in the master problem. Therefore, it is interesting to theoretically inves-

tigate the tightness, or at least the quality, of Gershgorin’s bound. We supply some results

in this direction in the following proposition:

Proposition 8 Suppose that Σ is a scaled diagonally dominant matrix as defined by Boman

et al. (2005), i.e., there exists some vector d > 0 such that

diΣi,i ≥
∑

j∈[p]:j 6=i

dj |Σi,j | ∀i ∈ [p].

Then, letting ρ := maxi,j∈[p]{ didj }, the Gershgorin circle theorem provides a (1 + ρ)-factor

approximation, i.e.,

f(z) ≤ max
j∈[p]

∑
i∈[p]

zi|Σi,j |

 ≤ (1 + ρ)f(z) ∀z ∈ {0, 1}p. (15)

Remark 9 Observe that, for a fixed z, the ratio ρ := maxi,j∈[p]{ didj } need only be computed

over indices i, j such that zi, zj = 1. Moreover, for a partially specified z—which might arise

13
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at an intermediate node in a branch-and-bound tree generated by Algorithm 1—the ratio ρ

need only be computed over indices i where zi is unspecified or set to 1. This suggests that

the quality of the Gershgorin bound improves upon branching.

Remark 10 In particular, if Σ ∈ Sn+ is a diagonal matrix, then Equation (13)’s bound

is tight - which follows from the fact that the spectrum of Σ and the discs coincide if and

only if Σ is diagonal (see, e.g, Horn and Johnson, 1990, Chapter 6). Alternatively, if Σ

is a diagonally dominant matrix then ρ = 1 and the Gershgorin circle theorem provides a

2−factor approximation.

Proof Scaled diagonally dominant matrices have scaled diagonally dominant principal

minors—this is trivially true because

diΣi,i ≥
∑

j∈[p]:j 6=i

dj |Σi,j | ∀i ∈ [p] =⇒ diΣi,i ≥
∑

j∈[p]:j 6=i

djzj |Σi,j | ∀i ∈ [p] : zi = 1

for the same vector d > 0 and therefore the following chain of inequalities holds

f(z) ≤max
j∈[p]
{
∑
i∈[p]

zi|Σi,j |} = max
j∈[p]
{zjΣj,j +

∑
i∈[p]:j 6=i

zi|Σi,j |}

≤ max
j∈[p]
{zjΣj,j +

∑
i∈[p]:j 6=i

ρ
di
dj
zi|Σi,j |} ≤ (1 + ρ) max

j∈[p]
{zjΣj,j} ≤ (1 + ρ)f(z) ∀z ∈ {0, 1}p,

where the second inequality follows because ρ ≥ di
dj

, the third inequality follows from the

scaled diagonal dominance of the principal submatrices of Σ, and the fourth one holds be-

cause the leading eigenvalue of a PSD matrix is at least as large as each diagonal entry.

To make clear the extent our numerical success depends upon Theorem 7, our results in

Section 4 present implementations of Algorithm 1 both with and without the bound.

2.5 Beyond Gershgorin: Further Strengthening via Brauer’s Ovals of Cassini

Given the relevance of Gershgorin’s bound, we propose, in this section, a stronger —yet

more expensive to implement— upper bound, based on an generalization of the Gershgorin

Circle theorem, namely Brauer’s ovals of Cassini.

First, we derive a new upper-bound on f(z) that is at least as strong as the one presented

in Theorem 7 and often strictly stronger (Horn and Johnson, 1990, Chapter 6):

Theorem 11 For any vector z ∈ {0, 1}p, we have the following upper bound on f(z):

f(z) ≤ max
i,j∈[p]:i>j,zi=zj=1

{
Σi,i + Σj,j

2
+

√
(Σi,i − Σj,j)2 + 4Ri(z)Rj(z)

2

}
, (16)

where Ri(z) :=
∑

j∈[p]:j 6=i zj |Σi,j | is the absolute sum of off-diagonal entries in the ith

column of the submatrix of Σ induced by z.

14
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Proof Let us first recall that, per Brauer (1952)’s original result, all eigenvalues of a matrix

Σ ∈ Sp+ are contained in the union of the following p(p− 1)/2 ovals of Cassini:⋃
i∈[p],j∈[p]:i<j

{λ ∈ R+ : |λ− Σi,i||λ− Σj,j | ≤ RiRj} ,

where Ri :=
∑

j∈[p]:j 6=i |Σi,j | is the absolute sum of off-diagonal entries in the ith column

of Σ. Next, let us observe that, if λ is a dominant eigenvalue of a PSD matrix Σ then

λ ≥ Σi,i ∀i and, in the (i, j)th oval, the bound reduces to

λ2 − λ(Σi,i + Σj,j) + Σi,iΣj,j −RiRj ≤ 0, (17)

which, by the quadratic formula, implies an upper bound is
Σi,i+Σj,j

2 +

√
(Σi,i−Σj,j)2+4RiRj

2 .

The result follows because if zi = 0 the ith row of Σ cannot be used to bound f(z).

Theorem 11’s inequality can be enforced numerically as mixed-integer second order cone

constraints. Indeed, the square root term in (16) can be modeled using second-order cone,

and the bilinear terms only involve binary variables and can be linearized. Completing the

square in Equation (17), (16) is equivalent to the following system of p(p−1)/2 mixed-integer

second-order cone inequalities:(
θ − 1

2
(Σi,i + Σj,j)

)2

≤
∑

s,t∈[p]:s6=i,t 6=j

Ws,t|Σi,sΣj,t| −
3

4
Σi,iΣj,j +M(1− si,j) ∀i, j ∈ [p] : i < j,

∑
i,j∈[p]:i<j

si,j = 1, si,j ≤ min(zi, zj) i, j ∈ [p] : i < j, si,j ∈ {0, 1} i, j ∈ [p] : i < j.

where Wi,j = zizj is a product of binary variables which can be modeled using, e.g., the

McCormick inequalities max(0, zi + zj − 1) ≤Wi,j ≤ min(zi, zj), and M is an upper bound

on the right-hand-side of the inequality for any i, j : i 6= j, which can be computed in O(p3)

time in much the same manner as a big-M constant was computed in the previous section.

Note that we do not make use of these inequalities directly in our numerical experiments, due

to their high computational cost. However, an interesting extension would be to introduce

the binary variables dynamically, via branch-and-cut-and-price (Barnhart et al., 1998).

Since the bound derived from the ovals of Cassini (Theorem 11) is at least as strong

as the Gershgorin circle’s one (Theorem 7), it satisfies the same approximation guarantee

(Proposition 8). In particular, it is tight when Σ is diagonal and provides a 2−factor

approximation for diagonally dominant matrices. Actually, we now prove a stronger result

and demonstrate that Theorem 11 provides a 2−factor bound on f(z) for doubly diagonally

dominant matrices—a broader class of matrices than diagonally dominant matrices (see Li

and Tsatsomeros, 1997, for a general theory):
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Proposition 12 Let Σ ∈ Sp+ be a doubly diagonally dominant matrix, i.e.,

Σi,iΣj,j ≥ RiRj ∀i, j ∈ [p] : i > j,

where Ri :=
∑

j∈[p]:j 6=i |Σi,j | is the sum of the off-diagonal entries in the ith column of Σ.

Then, we have that

f(z) ≤ max
i,j∈[p]:i>j,zi=zj=1

{
Σi,i + Σj,j

2
+

√
(Σi,i − Σj,j)2 + 4Ri(z)Rj(z)}

2

}
≤ 2f(z). (18)

Proof Observe that if Σi,iΣj,j ≥ RiRj then√
(Σi,i − Σj,j)2 + 4RiRj ≤

√
(Σi,i − Σj,j)2 + 4Σi,iΣj,j = Σi,i + Σj,j .

The result then follows in essentially the same fashion as Proposition 8.

3. Convex Relaxations and Rounding Methods

For large-scale instances, high-quality solutions can be obtained by solving a convex relax-

ation of Problem (5) and rounding the optimal solution. In Section 3.1, we propose relaxing

z ∈ {0, 1}p in (5) to z ∈ [0, 1]p and applying a greedy rounding scheme. We further tighten

this relaxation using second-order cones constraints in Section 3.2.

3.1 A Boolean Relaxation and a Greedy Rounding Method

We first consider a Boolean relaxation of (5), which we obtain2 by relaxing z ∈ {0, 1}p to

z ∈ [0, 1]p. This gives max
z∈[0,1]p:e>z≤k

f(z), i.e.,

max
z∈[0,1]p:e>z≤k

max
X�0

〈Σ,X〉 s.t. tr(X) = 1, |Xi,j | ≤Mi,jzi ∀i, j ∈ [p]. (19)

A useful strategy for obtaining a high-quality feasible solution is to solve (19) and set zi = 1

for k indices corresponding to the largest zj ’s in (19) as proposed in the randomized case

for general integer optimization problems by Raghavan and Tompson (1987). We formalize

this in Algorithm 2. We remark that rounding strategies for sparse PCA have previously

been proposed (see Fountoulakis et al., 2017; Dey et al., 2017; Chowdhury et al., 2020),

however, the idea of rounding z and then optimizing for X appears to be new.

2. Note that we omit the
∑p
j=1 |Xi,j | ≤

√
kzi constraints when we develop our convex relaxations, since they

are essentially dominated by the ‖X‖1 ≤ k constraint we introduce in the next section; we introduced

these inequalities to improve our semidefinite-free subproblem strategy for the exact method.
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Algorithm 2 A greedy rounding method for Problem (1)

Require: Covariance matrix Σ, sparsity parameter k

Compute z? solution of (19) or (20)

Construct z ∈ {0, 1}p : e>z = k such that zi ≥ zj if z?i ≥ z?j .

Compute X solution of

max
X∈Sp+

〈Σ,X〉 s.t. tr(X) = 1, Xi,j = 0 if zizj = 0 ∀i, j ∈ [p].

return z,X.

Remark 13 Our numerical results in Section 4 reveal that explicitly imposing a PSD

constraint on X in the relaxation (19)—or the ones derived later in the following sec-

tion—prevents our approximation algorithm from scaling to larger problem sizes than the

exact Algorithm 1 can already solve. Therefore, to improve scalability, the semidefinite cone

can be safely approximated via its second-order cone relaxation, X2
i,j ≤ Xi,iXj,j ∀i, j ∈ [p],

plus a small number of cuts of the form 〈X,xtx
>
t 〉 ≥ 0 as presented in Bertsimas and

Cory-Wright (2020).

Remark 14 Rather than relaxing and greedily rounding z, one could consider a higher

dimensional relax-and-round scheme where we let Z model the outer product zz> via

Z � zz>, max(0, zi + zj − 1) ≤ Zi,j ≤ min(zi, zj) ∀i, j ∈ [p], Zi,i = zi, and require

that
∑

i,j∈[p] Zi,j ≤ k2. Indeed, a natural “round” component of such a relax-and-round

scheme is precisely Goemans-Williamson rounding (Goemans and Williamson, 1995; Bert-

simas and Ye, 1998), which performs at least as well as greedy rounding in both theory and

practice. Unfortunately, some preliminary numerical experiments indicated that Goemans-

Williamson rounding is not actually much better than greedy rounding in practice, and is

considerably more expensive to implement. Therefore, we defer the details of the Goemans-

Williamson scheme to Appendix A, and do not consider it any further in this paper.

3.2 Valid Inequalities for Strengthening Convex Relaxations

We now propose valid inequalities which allow us to improve the quality of the convex

relaxations discussed previously. Note that as convex relaxations and random rounding

methods are two sides of the same coin (Barak et al., 2014), applying these valid inequalities

also improves the quality of the randomly rounded solutions.

Theorem 15 Let Pstrong denote the optimal objective value of the following problem:

max
z∈[0,1]p:e>z≤k

max
X∈Sp+

〈Σ,X〉 s.t. tr(X) = 1, |Xi,j | ≤Mi,jzi ∀i, j ∈ [p],∑
j∈[p]

X2
i,j ≤ Xi,izi, ‖X‖1 ≤ k.

(20)
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Then, (20) is a stronger relaxation than (19), i.e., the following inequalities hold:

max
z∈[0,1]p:e>z≤k

f(z) ≥ Pstrong ≥ max
z∈{0,1}p:e>z≤k

f(z).

Moreover, suppose an optimal solution to (20) is of rank one. Then, the relaxation is tight:

Pstrong = max
z∈{0,1}p:e>z≤k

f(z).

Proof The first inequality maxz∈[0,1]p:e>z≤k f(z) ≥ Pstrong is trivial. The second inequality

holds because Pstrong is indeed a valid relaxation of Problem (1). Indeed, ‖X‖1 ≤ k follows

from the cardinality and big-M constraints. The semidefinite constraint X � 0 impose

second-order cone constraints on the 2 × 2 minors of X, X2
i,j ≤ ziXi,iXj,j , which can be

aggregated into
∑

j∈[p]X
2
i,j ≤ Xi,izi (see Bertsimas and Cory-Wright, 2020, for derivations).

Finally, suppose that an optimal solution to Problem (20) is of rank one, i.e., the opti-

mal matrix X can be decomposed as X = xx>. Then, the SOCP inequalities imply that∑
j∈[p] x

2
ix

2
j ≤ x2

i zi. However,
∑

j∈[p] x
2
j = tr(X) = 1, which implies that x2

i ≤ x2
i zi, i.e.,

zi = 1 for any index i such that |xi| > 0. Since e>z ≤ k, this implies that ‖x‖0 ≤ k, i.e.,

X also solves Problem (2).

As our numerical experiments will demonstrate and despite the simplicity of our round-

ing mechanism in Algorithm 2, the relaxation (20) provides high-quality solutions to the

original sparse PCA problem (1), without introducing any additional variables. We remark

that other inequalities, including the second-order cone inequalities proposed in Li and Xie

(2020, Lemma 2 (ii)), could further improve the convex relaxation; we leave integrating

these inequalities within our framework as future work.

4. Numerical Results

We now assess the numerical behavior of the algorithms proposed in Section 2 and 3. To

bridge the gap between theory and practice, we present a Julia code which implements the

described convex relaxation and greedy rounding procedure on GitHub.3 The code requires

a conic solver such as Mosek and several open source Julia packages to be installed.

4.1 Performance of Exact Methods

In this section, we apply Algorithm 1 to medium and large-scale sparse principal compo-

nent analysis problems, with and without Gershgorin circle theorem bounds in the master

problem. All experiments were implemented in Julia 1.3, using Gurobi 9.1 and JuMP.jl

0.21.6, and performed on a standard Macbook Pro laptop, with a 2.9GHz 6-Core Intel i9

3. https://github.com/ryancorywright/ScalableSPCA.jl
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CPU, using 16 GB DDR4 RAM. We compare our approach to the branch-and-bound algo-

rithm4 developed by Berk and Bertsimas (2019) on the UCI pitprops, wine, miniboone,

communities, arrythmia and micromass data sets, both in terms of runtime and the num-

ber of nodes expanded; we refer to Berk and Bertsimas (2019); Bertsimas and Cory-Wright

(2020) for descriptions of these data sets. Note that we normalized all data sets before run-

ning the method (i.e., we compute the leading sparse principal components of correlation

matrices). Additionally, we warm-start all methods with the solution from the method of

Yuan and Zhang (2013), to maintain a fair comparison.

Table 1 reports the time for Algorithm 1 (with and without Gershgorin circle theorem

bounds in the master problem) and the method of Berk and Bertsimas (2019) to identify

the leading k-sparse principal component for k ∈ {5, 10, 20}, along with the number of

nodes expanded, and the number of outer approximation cuts generated. We impose a

relative optimality tolerance of 10−3 for all approaches, i.e., terminate each method when

(UB−LB)/UB ≤ 10−3 where UB denotes the current objective bound and LB denotes the

current incumbent objective value. Note that p denotes the dimensionality of the correlation

matrix, and k ≤ p denotes the target sparsity.

Our main findings from these experiments are as follows:

• For smaller problems, the strength of Algorithm 1’s cuts allows it to outperform state-

of-the-art methods such as the method of Berk and Bertsimas (2019). Moreover,

for larger problem sizes, the adaptive branching strategy performs comparably to

Algorithm 1. This suggests that the relative merits of both approaches are roughly

even, and which method is preferable may depend on the problem data.

• Generating outer-approximation cuts and valid upper bounds from the Gershgorin

circle theorem are both powerful ideas, but the greatest aggregate power appears to

arise from intersecting these bounds, rather than using one bound alone.

• Once both k and p are sufficiently large (e.g. p > 300 and k > 10), no approach is able

to solve the problem to provable optimality within 600s. This motivates our study of

convex relaxations and randomized rounding methods in the next section.

4.2 Convex Relaxations and Randomized Rounding Methods

In this section, we apply Algorithm 2 to obtain high quality convex relaxations and feasible

solutions for the data sets studied in the previous subsection, and compare the relaxation to

a difference convex relaxation developed by d’Aspremont et al. (2008), in terms of the quality

of the upper bound and the resulting greedily rounded solutions. All experiments were

4. The solve times for their method, as reported here, differ from those reported in Berk and Bertsimas

(2019) due to a small typo in their implementation (line 110 of their branchAndBound.jl code should

read “if y[i] == −1 || y[i] == 1”, not “if y[i] == −1” in order to correctly compute the Gershgorin circle

theorem bound); correcting this is necessary to ensure that we obtain correct results from their method.
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Data set p k Alg. 1 Alg. 1+ Circle Theorem Method of B.+B.

Time(s) Nodes Cuts Time(s) Nodes Cuts Time(s) Nodes

Pitprops 13 5 0.30 1, 608 1, 176 0.06 38 8 1.49 22

10 0.14 414 387 0.02 18 21 0.02 14

Wine 13 5 0.57 2, 313 1, 646 0.02 46 11 0.04 34

10 0.17 376 311 0.03 54 58 0.02 12

Miniboone 50 5 0.01 0 11 0.01 0 3 0.04 2

10 0.01 0 16 0.02 0 3 0.04 2

20 0.03 0 26 0.01 0 3 1.30 5, 480

Communities 101 5 (2.87%) 28, 462 25, 483 0.20 201 3 0.57 101

10 (13.3%) 37, 479 36, 251 0.34 406 39 0.94 1, 298

20 (39.6%) 24, 566 24, 632 (12.1%) 42, 120 37, 383 (9.97%) 669, 500

Arrhythmia 274 5 (18.1%) 22, 771 20, 722 6.07 135 1, 233 4.17 1, 469

10 (32.6%) 19, 500 19, 314 (2.92%) 15, 510 6, 977 (0.83%) 471, 680

20 (74.4%) 33, 773 12, 374 (24.3%) 33, 123 19, 662 (18.45%) 311, 400

Micromass 1300 5 (1.29%) 3, 859 3, 099 163.60 2, 738 6 24.31 1, 096

10 (10.6%) 3, 366 3, 369 241.86 3, 233 121 362.4 36, 690

20 (35.9%) 2, 797 2, 839 (35.9%) 2, 676 2, 115 (10.34%) 31, 990

Table 1: Runtime in seconds per approach. We impose a time limit of 600s. If a solver fails

to converge, we report the relative bound gap at termination in brackets.

implemented using the same specifications as the previous section. Note that d’Aspremont

et al. (2008)’s upper bound5 which we compare against is

max
z∈[0,1]p:e>z≤k

max
X�0,Pi�0 ∀i∈[p]

∑
i∈[p]

〈aia>i ,Pi〉 s.t. tr(X) = 1, tr(Pi) = zi, X � Pi ∀i ∈ [p],

(21)

where Σ =
∑p

i=1 aia
>
i is a Cholesky decomposition of Σ, and we obtain feasible solutions

from this relaxation by greedily rounding an optimal z in the bound à la Algorithm 2.

To allow for a fair comparison, we also consider augmenting this formulation with the

inequalities derived in Section 3.2 to obtain the following stronger yet more expensive to

5. Strictly speaking, d’Aspremont et al. (2008) does not actually write down this formulation in their work.

Indeed, their bound involves dual variables which cannot be used directly to generate feasible solutions

via greedy rounding. However, the fact that this bound and (d’Aspremont et al., 2008, Problem (8))

are dual to each other follows directly from strong semidefinite duality, and therefore we refer to this

formulation as being due to d’Aspremont et al. (2008) (it essentially is).
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Data set p k Alg. 2 with (19) Alg. 2 with (21)

R. gap (%) O. gap (%) Time(s) R. gap (%) O. gap (%) Time(s)

Pitprops 13 5 23.8% 0.00% 0.02 23.8% 16.1% 0.46

10 1.10% 0.30% 0.03 1.10% 1.33% 0.46

Wine 13 5 36.8% 0.00% 0.02 36.8% 40.4% 0.433

10 2.43% 0.26% 0.03 2.43% 15.0% 0.463

Miniboone 50 5 781.3% 235.6% 7.37 781.2% 34.7% 1, 191.0

10 340.6% 117.6% 7.50 340.6% 44.9% 1, 102.6

20 120.3% 38.08% 6.25 120.3% 31.9% 1, 140.2

Table 2: Quality of relaxation gap (upper bound vs. optimal solution-denoted R. gap),

objective gap (rounded solution vs. optimal solution-denoted O. gap) and runtime

in seconds per method.

solve relaxation:

max
z∈[0,1]p:e>z≤k

max
X�0,

Pi�0 ∀i∈[p]

∑
i∈[p]

〈aia>i ,Pi〉 s.t. tr(X) = 1, tr(Pi) = zi, X � Pi ∀i ∈ [p],

∑
j∈[p]

X2
i,j ≤ Xi,izi, ‖X‖1 ≤ k.

(22)

We first apply these relaxations on data sets where Algorithm 1 terminates, hence the

optimal solution is known and can be compared against. We report the quality of both

methods with and without the additional inequalities discussed in Section 3.2, in Tables 2-3

respectively.6

Observe that applying Algorithm 2 without the additional inequalities (Table 2) yields

rather poor relaxations and randomly rounded solutions. However, by intersecting our re-

laxations with the additional inequalities from Section 3.2 (Table 3), we obtain extremely

high quality relaxations. Indeed, with the additional inequalities, Algorithm 2 using formu-

lation (20) identifies the optimal solution in all instances (0% O. gap), and always supplies

a bound gap of less than 2%. Moreover, in terms of obtaining high-quality solutions, the

new inequalites allow Problem (20) to perform as well or better as Problem (21), despite

optimizing over one semidefinite matrix, rather than p+ 1 semidefinite matrices. This sug-

gests that Problem (20) should be considered as a viable, more scalable and more accurate

alternative to existing SDO relaxations such as Problem (21). For this reason, we shall only

consider using Problem (20)’s formulation for the rest of the paper.

6. For the instances of (21) or (22) where p > 13 we used SCS version 2.1.1 (with default parameters) instead

of Mosek, since Mosek required more memory than was available in our computing environment, and

SCS takes an augmented Lagrangian approach which is less numerically stable but requires significantly

less memory. That is, (21)’s formulation is too expensive to solve via IPMs on a laptop when p = 50.
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Data set p k Alg. 2 with (20) Alg. 2 with (22)

R. gap (%) O. gap (%) Time(s) R. gap (%) O. gap (%) Time(s)

Pitprops 13 5 0.71% 0.00% 0.17 1.53% 0.00% 0.55

10 0.12% 0.00% 0.27 1.10% 0.00% 3.27

Wine 13 5 1.56% 0.00% 0.24 2.98% 15.03% 0.95

10 0.40% 0.00% 0.22 2.04% 0.00% 1.15

Miniboone 50 5 0.00% 0.00% 163.3 0.00% 0.01% 500.7

10 0.00% 0.00% 148.5 0.00% 0.02% 489.9

20 0.00% 0.00% 194.5 0.00% 0.00% 776.3

Table 3: Quality of relaxation gap (upper bound vs. optimal solution-denoted R. gap),

objective gap (rounded solution vs. optimal solution-denoted O. gap) and runtime

in seconds per method, with additional inequalities from Section 3.2.

We remark however that the key drawback of applying these methods is that, as im-

plemented in this section, they do not scale to sizes beyond which Algorithm 1 successfully

solves. This is a drawback because Algorithm 1 supplies an exact certificate of optimality,

while these methods do not. In the following set of experiments, we therefore investigate

numerical techniques to improve the scalability of Algorithm 2.

4.3 Scalable Dual Bounds and Randomized Rounding Methods

To improve the scalability of Algorithm 2, we relax the PSD constraint on X in (19) and

(20). With these enhancements, we demonstrate that Algorithm 2 can be successfully scaled

to generate high-quality bounds for 1000s× 1000s matrices.

As discussed in Remark 13, we can replace the PSD constraint X � 0 by requiring that

the p(p−1)/2 two by two minors ofX are non-negative: X2
i,j ≤ Xi,iXj,j . Second, we consider

adding 20 linear inequalities of the form 〈X,xtx
>
t 〉 ≥ 0, for some vector xt (see Bertsimas

and Cory-Wright, 2020, for a discussion). Table 4 reports the performance of Algorithm 2

(with the relaxation (20)) with these two approximations of the positive semidefinite cone,

“Minors” and “Minors + 20 inequalities” respectively. Note that we report the entire duality

gap (i.e. do not break the gap down into its relaxation and objective gap components) since,

as reflected in Table 1, some of these instances are currently too large to solve to optimality.

Observe that if we impose constraints on the 2×2 minors only then we obtain a solution

certifiably within 13% of optimality in seconds (resp. minutes) for p = 100s (resp. p =

1000s). Moreover, adding 20 linear inequalities, we obtain a solution within 6% of optimality

in minutes (resp. hours) for p = 100s (resp. p = 1000s). Moreover, the bound gaps compare

favorably to Algorithm 1 and the method of Berk and Bertsimas (2019) for instances which

these methods could not solve to certifiable optimality. For instance, for the Arrhythmia
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Data set p k Minors Minors + 20 inequalities

Gap (%) Time(s) Gap (%) Time(s)

Pitprops 13 5 1.51% 0.02 0.72% 0.36

10 5.29% 0.02 1.12% 0.36

Wine 13 5 2.22% 0.02 1.59% 0.38

10 3.81% 0.02 1.50% 0.37

Miniboone 50 5 0.00% 0.11 0.00% 0.11

10 0.00% 0.12 0.00% 0.12

20 0.00% 0.39 0.00% 0.39

Communities 101 5 0.07% 0.67 0.07% 14.8

10 0.66% 0.68 0.66% 14.4

20 3.32% 1.84 2.23% 33.5

Arrhythmia 274 5 3.37% 27.2 1.39% 203.6

10 3.01% 25.6 1.33% 184.0

20 8.87% 21.8 4.48% 426.8

Micromass 1300 5 0.04% 239.4 0.01% 4, 639

10 0.63% 232.6 0.32% 6, 392

20 13.1% 983.5 5.88% 16, 350

Table 4: Quality of bound gap (rounded solution vs. upper bound) and runtime in seconds

of Algorithm 2 with (20), outer-approximation of the PSD cone.

data set when k = 20 we obtain a bound gap of less than 9% in 20s, while the method

of Berk and Bertsimas (2019) obtains a bound gap of 18.45% in 600s. This illustrates the

value of the proposed relax+round method on data sets which are currently too large to be

optimized over exactly.

To conclude this section, we explore Algorithm 2’s ability to scale to even higher di-

mensional data sets in a high performance setting, by running the method on one Intel

Xeon E5–2690 v4 2.6GHz CPU core using 600 GB RAM. Table 5 reports the methods

scalability and performance on the Wilshire 5000, and Arcene UCI data sets. For the

Gisette data set, we report on the methods performance when we include the first 3, 000

and 4, 000 rows/columns (as well as all 5, 000 rows/columns). Similarly, for the Arcene

data set we report on the method’s performance when we include the first 6, 000, 7, 000 or

8, 000 rows/columns. We do not report results for the Arcene data set for p > 8, 000, as

computing this requires more memory than was available (i.e. > 600 GB RAM). We do

not report the method’s performance when we impose linear inequalities for the PSD cone,

as solving the relaxation without them is already rather time consuming. Moreover, we do

not impose the 2× 2 minor constraints to save memory, do not impose |Xi,j | ≤Mi,jzi when
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p ≥ 4000 to save even more memory, and report the overall bound gap, as improving upon

the randomly rounded solution is challenging in a high-dimensional setting.

Data set p k Algorithm 2 (SOC relax)+Inequalities

Bound gap (%) Time(s)

Wilshire 5000 2130 5 0.38% 1, 036

10 0.24% 1, 014

20 0.36% 1, 059

Gisette 3000 5 1.67% 2, 249

10 35.81% 2, 562

20 10.61% 3, 424

Gisette 4000 5 1.55% 1, 402

10 54.4% 1, 203

20 11.84% 1, 435

Gisette 5000 5 1.89% 2, 169

10 2.22% 2, 455

20 7.16% 2, 190

Arcene 6000 5 0.01% 3, 333

10 0.06% 3, 616

20 0.14% 3, 198

Arcene 7000 5 0.03% 4, 160

10 0.05% 4, 594

20 0.25% 4, 730

Arcene 8000 5 0.02% 6, 895

10 0.17% 8, 479

20 0.21% 6, 335

Table 5: Quality of bound gap (rounded solution vs. upper bound) and runtime in seconds.

These results suggest that if we solve the SOC relaxation using a first-order method

rather than an interior point method, our approach could successfully generate certifiably

near-optimal PCs when p = 10, 000s, particularly if combined with a feature screening

technique (see d’Aspremont et al., 2008; Atamtürk and Gómez, 2020).

4.4 Performance of Exact and Approximate Methods on Synthetic Data

We now compare the exact and approximate methods against existing state-of-the-art meth-

ods in a spiked covariance matrix setting. We use the experimental setup laid out in

d’Aspremont et al. (2008, Section 7.1). We recover the leading principal component of a
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test matrix7 Σ ∈ Sp+, where p = 150, Σ = 1
nU
>U + σ

‖v‖22
vv>, U ∈ [0, 1]150×150 is a noisy

matrix with i.i.d. standard uniform entries, v ∈ R150 is a vector of signals such that

vi =


1, if i ≤ 50,

1
i−50 , if 51 ≤ i ≤ 100,

0, otherwise,

(23)

and σ = 2 is the signal-to-noise ratio. The methods which we compare are:

• Exact: Algorithm 1 with Gershgorin inequalities and a time limit of 600s.

• Approximate: Algorithm 2 with Problem (20), the SOC outer-approximation of the

PSD cone, no PSD cuts, and the additional SOC inequalities.

• Greedy: as proposed by Moghaddam et al. (2006) and laid out in (d’Aspremont et al.,

2008, Algorithm 1), start with a solution z of cardinality 1 and iteratively augment this

solution vector with the index which gives the maximum variance contribution. Note

that d’Aspremont et al. (2008) found this method outperformed the 3 other methods

(approximate greedy, thresholding and sorting) they considered in their work.

• Truncated Power Method: as proposed by Yuan and Zhang (2013), alternate

between applying the power method to the solution vector and truncating the vector

to ensure that it is k-sparse. Note that Berk and Bertsimas (2019) found that this

approach performed better than 5 other state-of-the-art methods across the real-

world data sets studied in the previous section of this paper and often matched the

performance of the method of Berk and Bertsimas (2019)—indeed, it functions as a

warm-start for the later method.

• Sorting: sort the entries of Σi,i by magnitude and set zi = 1 for the k largest entries of

Σ, as studied in d’Aspremont et al. (2008). This naive method serves as a benchmark

for the value of optimization in the more sophisticated methods considered here.

Figures 1 depicts the ROC curve (true positive rate vs. false positive rate for recovering

the support of v) over 20 synthetic random instances, as we vary k for each instance. We

observe that among all methods, the sorting method is the least accurate, with a substan-

tially larger false detection rate for a given true positive rate than the remaining methods

(AUC= 0.7028). The truncated power method and our exact method8 then offer a sub-

stantial improvement over sorting, with respective AUCs of 0.7482 and 0.7483. The greedy

method then offers a modest improvement over them (AUC= 0.7561) and the approximate

relax+round method is the most accurate (AUC= 0.7593).

7. This statement of the test matrix is different to d’Aspremont et al. (2008, Section 7.1), who write

Σ = U>U + σvv>, rather than Σ = 1
n
U>U + σ

‖v‖22
vv>. However, it agrees with their source code.

8. Note that the exact method would dominate the remaining methods if given an unlimited runtime budget.

Its poor performance reflects its inability to find the true optimal solution within 600 seconds.
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Figure 1: ROC curve over 20 synthetic instances where p = 150, ktrue = 100 is unspecified.

In addition to support recovery, Figure 2 reports average runtime (left panel) and average

optimality gap (right panel) over the same instances. Observe that among all methods, only

the exact and the approximate relax+round methods provide optimality gaps, i.e., numerical

certificates of near optimality. On this metric, relax+round supplies average bound gaps of

1% or less on all instances, while the exact method typically supplies bound gaps of 30%

or more. This comparison illustrates the tightness of the valid inequalities from Section 3.2

that we included in the relaxation. Moreover, the relax+round method converges in less

than one minute on all instances. All told, the relax+round method is the best performing

method overall, although if k is set to be sufficiently close to 0 or p all methods behave

comparably. In particular, the relax+round method should be preferred over the exact

method, even though the exact method performs better at smaller problem sizes.

4.5 Summary and Guidelines from Experiments

In summary, our main findings from our numerical experiments are as follows:

• For small or medium scale problems where p ≤ 100 or k ≤ 10, exact methods such as

Algorithm 1 or the method of Berk and Bertsimas (2019) reliably obtain certifiably

optimal or near-optimal solutions in a short amount of time, and should therefore be

preferred over other methods. However, for larger-scale sparse PCA problems, exact

methods currently do not scale as well as approximate or heuristic methods.
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Figure 2: Average time to compute solution, and optimality gap over 20 synthetic instances

where p = 150, ktrue = 100 is unspecified.

• For larger-scale sparse PCA problems, our proposed combination of solving a second-

order cone relaxation and rounding greedily reliably supplies certifiably near-optimal

solutions in practice (if not in theory) in a relatively small amount of time. More-

over, it outperforms other state-of-the-art heuristics including the greedy method of

Moghaddam et al. (2006); d’Aspremont et al. (2008) and the Truncated Power Method

of Yuan and Zhang (2013). Accordingly, it should be considered as a reliable and more

accurate alternative for problems where p = 1000s.

• In practice, for even larger-scale problem sizes, we recommend using a combination

of these methods: a computationally cheaper method (with k set in the 1000s) as

a feature screening method, to be followed by the approximate relax+round method

(with k set in the 100s) and/or the exact method, if time permits.

5. Three Extensions and their Mixed-Integer Conic Formulations

We conclude by discussing three extensions of sparse PCA where our methodology applies.

5.1 Non-Negative Sparse PCA

One potential extension to this paper would be to develop a certifiably optimal algorithm

for non-negative sparse PCA (see Zass and Shashua, 2007, for a discussion), i.e., develop a

tractable reformulation of

max
x∈Rp

〈xx>,Σ〉 s.t. x>x = 1,x ≥ 0, ‖x‖0 ≤ k.

Unfortunately, we cannot develop a MISDO reformulation of non-negative sparse PCA

mutatis mutandis Theorem 1. Indeed, while we can still set X = xx> and relax the
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rank-one constraint, if we do so then, by the non-negativity of x, lifting x yields

max
z∈{0,1}p:e>z≤k

max
X∈Cn

〈Σ,X〉

s.t. tr(X) = 1, Xi,j = 0 if zi = 0, Xi,j = 0 if zj = 0 ∀i, j ∈ [p].
(24)

where Cn := {X : ∃ U ≥ 0,X = U>U} denotes the completely positive cone, which

is NP-hard to separate over and cannot currently be optimized over tractably (Dong and

Anstreicher, 2013). Nonetheless, we can develop relatively tractable mixed-integer conic

upper and lower bounds for non-negative sparse PCA. Indeed, we can obtain a fairly tight

upper bound by replacing the completely positive cone with the larger doubly non-negative

cone Dn := {X ∈ Sp+ : X ≥ 0}, which is a high-quality outer-approximation of Cn, indeed

exact when k ≤ 4 (Burer et al., 2009).

Unfortunately, this relaxation is strictly different in general, since the extreme rays

of the doubly non-negative cone are not necessarily rank-one when k ≥ 5 (Burer et al.,

2009). Nonetheless, to obtain feasible solutions which supply lower bounds, we could inner

approximate the completely positive cone with the cone of non-negative scaled diagonally

dominant matrices (see Ahmadi and Majumdar, 2019; Bostanabad et al., 2020).

5.2 Sparse PCA on Rectangular Matrices

A second extension would be to extend our methodology to the non-square case:

max
x∈Rm,y∈Rn

x>Ay s.t. ‖x‖2 = 1, ‖y‖2 = 1, ‖x‖0 ≤ k, ‖y‖0 ≤ k. (25)

Observe that computing the spectral norm of a matrix A is equivalent to

max
X∈Rn×m

〈A,X〉 s.t.

(
U X

X> V

)
� 0, tr(U) + tr(V ) = 2, (26)

where, in an optimal solution, U stands for xx>, V stands for yy> and X stands for

xy>—this can be seen by taking the dual of (Recht et al., 2010, Equation 2.4).

Therefore, by using the same argument as in the positive semidefinite case, we can

rewrite sparse PCA on rectangular matrices as the following MISDO:

max
w∈{0,1}m,z∈{0,1}n

max
X∈Rn×m

〈A,X〉

s.t.

(
U X

X> V

)
� 0, tr(U) + tr(V ) = 2,

Ui,j = 0 if wi = 0 ∀i, j ∈ [m],

Vi,j = 0 if zi = 0 ∀i, j ∈ [n], e>w ≤ k, e>z ≤ k.

(27)
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5.3 Sparse PCA with Multiple Principal Components

A third extension where our methodology is applicable is the problem of obtaining multiple

principal components simultaneously, rather than deflating Σ after obtaining each principal

component. As there are multiple definitions of this problem, we now discuss the extent to

which our framework encompasses each case.

Common Support: Perhaps the simplest extension of sparse PCA to a multi-component

setting arises when all r principal components have common support. By retaining the

vector of binary variables z and employing the Ky-Fan theorem (c.f. Wolkowicz et al.,

2012, Theorem 2.3.8) to cope with multiple principal components, we obtain the following

formulation in much the same manner as previously:

max
z∈{0,1}p:e>z≤k

max
X∈Sp+

〈X,Σ〉 s.t. 0 �X � I, tr(X) = r, Xi,j = 0 if zi = 0 ∀i ∈ [p]. (28)

Notably, the logical constraint Xi,j = 0 if zi = 0, which formed the basis of our subproblem

strategy, still successfully models the sparsity constraint. This suggests that (a) one can

derive an equivalent subproblem strategy under common support, and (b) a cutting-plane

method for common support should scale equally well as with a single component.

Disjoint Support: In a sparse PCA problem with disjoint support (Vu and Lei, 2012),

simultaneously computing the first r principal components is equivalent to solving

max
z∈{0,1}p×r:e>zt≤k ∀t∈[r],

ze≤e

max
W∈Rp×r

〈WW>,Σ〉

W>W = Ir, Wi,j = 0 if zi,t = 0 ∀i ∈ [p], t ∈ [r],

(29)

where zi,t is a binary variable denoting whether feature i is a member of the tth principal

component. By applying the technique used to derive Theorem 1 mutatis mutandis, and

invoking the Ky-Fan theorem (c.f. Wolkowicz et al., 2012, Theorem 2.3.8) to cope with the

rank-r constraint, we obtain

max
z∈{0,1}p:e>z≤k

max
X∈Sp

〈X,Σ〉

0 �X � I, tr(X) = r, Xi,j = 0 if Yi,j = 0 ∀i ∈ [p],
(30)

where Yi,j =
∑r

t=1 zi,tzj,t is a binary matrix denoting whether features i and j are members

of the same principal component; this problem can be addressed by a cutting-plane method

in much the same manner as when r = 1.
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Appendix A. A Doubly Non-Negative Relaxation and a

Goemans-Williamson Rounding Scheme

The MISDO formulation (5) we derived in Section 2 features big-M constraints of the form

|Xi,j | ≤ Mi,jzi. We did not include the equally valid inequalities |Xi,j | ≤ Mi,jzj , because

they are redundant with the fact that X is symmetric. Actually, (5) is equivalent to

max
z∈{0,1}p:e>z≤k

max
X∈Sp+

〈Σ,X〉 s.t. tr(X) = 1, |Xi,j | ≤Mi,jzizj , ∀i, j ∈ [p]. (31)

The formulation above features products of binary variables zizj . Therefore, unlike several

other problems involving cardinality constraints such as compressed sensing, relaxations of

sparse PCA benefit from invoking an optimization hierarchy (see d’Aspremont and Boyd,

2003, Section 2.4.1, for a counterexample specific to compressed sensing). In particular, let

us model the outer product zz> by introducing a matrix Z and imposing the semidefinite

constraint Z � zz>. We tighten the formulation by requiring that Zi,i = zi and imposing

the linear inequalities max(zi + zj − 1, 0) ≤ Zi,j ≤ min(zi, zj). Hence, we obtain

max
z∈[0,1]p:e>z≤k,

Z∈Rp×p+

max
X�0

〈Σ,X〉 s.t. tr(X) = 1, |Xi,j | ≤Mi,jZi,j , 〈E,Z〉 ≤ k2, Zi,i = zi, (32)

max(zi + zj − 1, 0) ≤ Zi,j ≤ min(zi, zj),

(
1 z>

z Z

)
� 0.

Problem (32) is a doubly non-negative relaxation, as we have intersected the Shor and

RLT relaxations. This is noteworthy, because doubly non-negative relaxations dominate

most other popular relaxations with O(p2) variables (Bao et al., 2011, Theorem 1).

Relaxation (32) is amenable to a Goemans-Williamson rounding scheme (Goemans and

Williamson, 1995). Namely, let (z?,Z?) denote optimal choices of (z,Z) in Problem (32),

ẑ be normally distributed random vector such that ẑ ∼ N (z?,Z? − z?z?>), and z̄ be

a rounding of the vector such that z̄i = 1 for the k largest entries of ẑi; this is, up to

feasibility on ẑ, equivalent to the hyperplane rounding scheme of Goemans and Williamson

(1995) (see Bertsimas and Ye, 1998, for a proof). We formalize this procedure in Algorithm

3. As Algorithm 3 returns one of multiple possible z̄’s, a computationally useful strategy

is to run the random rounding component several times and return the best solution.

A very interesting question is whether it is possible to produce a constant factor guaran-

tee on the quality of Algorithm 3’s rounding, as Goemans and Williamson (1995) successfully

did for binary quadratic optimization. Unfortunately, despite our best effort, this does not

appear to be possible as the quality of the rounding depends on the value of the optimal

dual variables, which are hard to control in this setting. This should not be too surprising

for two distinct reasons. Namely, (a) sparse regression, which reduces to sparse PCA (see

d’Aspremont et al., 2008, Section 6.1) is strongly NP-hard (Chen et al., 2019), and (b)

sparse PCA is hard to approximate within a constant factor under the Small Set Expansion
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Algorithm 3 A Goemans-Williamson rounding method for Problem (1)

Require: Covariance matrix Σ, sparsity parameter k

Compute z?,Z? solution of (32)

Compute ẑ ∼ N (z?,Z? − z?z?>)

Construct z̄ ∈ {0, 1}p : e>z̄ = k such that z̄i ≥ z̄j if ẑi ≥ ẑj .
Compute X solution of

max
X∈Sp+

〈Σ,X〉 s.t. tr(X) = 1, Xi,j = 0 if z̄iz̄j = 0 ∀i, j ∈ [p].

return z,X.

(SSE) hypothesis (Chan et al., 2016), meaning that producing a constant factor guarantee

would contradict the SSE hypothesis of Raghavendra and Steurer (2010).

We close this appendix by noting that a similar in spirit (although different in both

derivation and implementation) combination of taking a semidefinite relaxation of z ∈
{0, 1}p and rounding à la Goemans-Williamson has been proposed for sparse regression

problems (Dong et al., 2015).
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