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Abstract

When data is plentiful, the test loss achieved by well-trained neural networks scales as
a power-law L ∝ N−α in the number of network parameters N . This empirical scaling
law holds for a wide variety of data modalities, and may persist over many orders of
magnitude. The scaling law can be explained if neural models are effectively just performing
regression on a data manifold of intrinsic dimension d. This simple theory predicts that the
scaling exponents α ≈ 4/d for cross-entropy and mean-squared error losses. We confirm
the theory by independently measuring the intrinsic dimension and the scaling exponents
in a teacher/student framework, where we can study a variety of d and α by dialing the
properties of random teacher networks. We also test the theory with CNN image classifiers
on several datasets and with GPT-type language models.

Keywords: scaling laws, data manifold, model capacity, under-parameterized, intrinsic
dimension

1. Introduction

Neural Network based Machine Learning has made enormous progress in a wide variety of
domains. Scale has been a key ingredient in this success: large amounts of computation,
large datasets, and large models with millions or billions of parameters.

Not only is scale beneficial to performance, but the benefits from scale can be predicted
precisely. Recent works Hestness et al. (2017, 2019); Rosenfeld et al. (2019); Kaplan et al.
(2020) studying a variety of data modalities and model architectures all find the same
scaling relation in the underfitting regime. In particular, the dependence of the test loss
on the number of model parameters N has the following properties, and each suggests a
corresponding question:

• As the number of model parameters N is increased, the cross-entropy test loss of
well-trained and well-tuned models scales with N as a power-law

L(N) ∝ 1

Nα
(1.1)
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Figure 1: This figure shows the relationship between the measured intrinsic dimension (ID)
of the data manifold and 4

α , where α is the model size scaling exponent. We
include data from fully-connected teacher/student experiments, simple CNNs,
and GPT-type Radford et al. (2018, 2019) language models (represented as a
lower-bound due to large uncertainties with large IDs).

with observed values such as α ≈ 0.076 for language modeling Kaplan et al. (2020),
and much larger α ≈ 0.5 observed for image classification Rosenfeld et al. (2019).
Why do we encounter this simple functional form, and what determines the value of
the exponent α?

• Scaling holds very accurately across a wide range of N , sometimes spanning many
orders of magnitude Hestness et al. (2017, 2019); Kaplan et al. (2020). Why does
scaling persist over a large range of model sizes, and what determines the Nmax where
it eventually breaks down?

• Empirically, the scaling exponent α may not depend greatly on model architecture.
For example, LSTMs and Transformers scale similarly over a large range of N Kaplan
et al. (2020), with losses differing only by an overall, N -independent factor. Why
would scaling exponents be roughly independent of model architecture?

We will argue that a simple conjectural theory can address these questions while making a
number of testable predictions.

1.1 Main Ideas and Organization of the Paper

The key idea is that neural models map the data to a manifold with intrinsic dimension
d, and then use added capacity to carve up this manifold into ever smaller sub-regions. If
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the underlying data varies continuously on the manifold, then the size of these sub-regions
(rather than their number) determines the model’s test loss. To shrink the size of the sub-
regions by a factor of 2 requires increasing the parameter count by a factor of 2d, and so
the inverse of the scaling exponent 1/α will be proportional to the intrinsic dimension d of
the data manifold. We develop these ideas in detail in section 2.

The scaling exponent α can be measured by training a succession of models of varying
size. To verify the theory on real-world datasets, we need an independent measurement of
the intrinsic dimension. In subsection 2.3 of the same section, we measure the intrinsic di-
mension d within the final hidden layer1 activations of trained networks, using the distances
among nearest neighbor activation vectors Levina and Bickel (2005); Facco et al. (2017).
We also explain why simpler methods like principal component analysis (PCA) don’t suffice.

In section 3, we test the theory in a student/teacher framework, which makes it possible
to scan over a large range of α and d and test more idiosyncratic features of the theory (see
figure 2). We also perform tests using CNNs for image classification, and by measuring the
intrinsic dimension of GPT-type models Radford et al. (2018, 2019), where scaling exponent
have already been documented Kaplan et al. (2020).

We follow up with section 4 on related work and a discussion in section 5.

2. A Simple Theory for Scaling in the Underfitting Regime

In this section we explain our theory, beginning with a toy model to discuss properties of
regression in section 2.1. Then in section 2.2 we argue2 that the toy model can be applied to
realistic neural networks with only a few small modifications. In section 2.3 we explain how
we measure the dimension of the data manifold, a necessary step in validating the theory.

2.1 A Toy Model

Consider one of the simplest scenarios for multidimensional regression. We are given a
Lipschitz function f : [0, 1]d → R, and we would like to approximate it as a piecewise
constant function c(x), by cutting [0, 1]d into smaller hypercubes. If these hypercubes have
a side length s, then we will have

N = s−d (2.1)

cubes, and so our approximation will depend on the N constant values c(x) takes within
each hypercube. If the loss is mean-squared error (MSE), then it will be bounded by

L =

∫ 1

0
ddx|f(x)− c(x)|2 . λ2

(
s2d
)

(2.2)

where λ is the Lipschitz bound |f(x + y) − f(x)| < λ|y|, and we have ignored overall
numerical factors. Translating the s-dependence into N , this means that L(N) . 1

N2/d up
to a constant factor.

1. It was shown in Ansuini et al. (2019) that the final hidden layer activations have the smallest intrinsic
dimension in image classifiers. Our findings are largely consistent with this.

2. one might say conjecture; for a more sophisticated perspective in a simpler context see Bickel et al.
(2007)
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<latexit sha1_base64="44fq65DDyzyeC/EbtZ0GHLZRJeg=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodP3+27Vq3lzkFXiF6QKBRp996s3SFgWc4VMUmO6vpdikFONgkk+rfQyw1PKxnTIu5YqGnMT5PNTp+TMKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOlUbAj+8surpHVR872af39Zrd8UcZThBE7hHHy4gjrcQQOawGAIz/AKb450Xpx352PRWnKKmWP4A+fzB9rhjYA=</latexit><latexit sha1_base64="44fq65DDyzyeC/EbtZ0GHLZRJeg=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodP3+27Vq3lzkFXiF6QKBRp996s3SFgWc4VMUmO6vpdikFONgkk+rfQyw1PKxnTIu5YqGnMT5PNTp+TMKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOlUbAj+8surpHVR872af39Zrd8UcZThBE7hHHy4gjrcQQOawGAIz/AKb450Xpx352PRWnKKmWP4A+fzB9rhjYA=</latexit><latexit sha1_base64="44fq65DDyzyeC/EbtZ0GHLZRJeg=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodP3+27Vq3lzkFXiF6QKBRp996s3SFgWc4VMUmO6vpdikFONgkk+rfQyw1PKxnTIu5YqGnMT5PNTp+TMKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOlUbAj+8surpHVR872af39Zrd8UcZThBE7hHHy4gjrcQQOawGAIz/AKb450Xpx352PRWnKKmWP4A+fzB9rhjYA=</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="gv9bEce64rmfhUQfzzFoUURuaG0=">AAAB33icbZBLSwMxFIXv1FetVatbN8EiuCozbnQpuHFZ0T6gHUomvdOGZjJDckcoQ3+CGxeK+K/c+W9MHwttPRD4OCch954oU9KS7397pa3tnd298n7loHp4dFw7qbZtmhuBLZGq1HQjblFJjS2SpLCbGeRJpLATTe7meecZjZWpfqJphmHCR1rGUnBy1mN3EAxqdb/hL8Q2IVhBHVZqDmpf/WEq8gQ1CcWt7QV+RmHBDUmhcFbp5xYzLiZ8hD2Hmidow2Ix6oxdOGfI4tS4o4kt3N8vCp5YO00idzPhNLbr2dz8L+vlFN+EhdRZTqjF8qM4V4xSNt+bDaVBQWrqgAsj3axMjLnhglw7FVdCsL7yJrSvGoHfCB58KMMZnMMlBHANt3APTWiBgBG8wBu8e8p79T6WdZW8VW+n8Efe5w/A64wr</latexit><latexit sha1_base64="gv9bEce64rmfhUQfzzFoUURuaG0=">AAAB33icbZBLSwMxFIXv1FetVatbN8EiuCozbnQpuHFZ0T6gHUomvdOGZjJDckcoQ3+CGxeK+K/c+W9MHwttPRD4OCch954oU9KS7397pa3tnd298n7loHp4dFw7qbZtmhuBLZGq1HQjblFJjS2SpLCbGeRJpLATTe7meecZjZWpfqJphmHCR1rGUnBy1mN3EAxqdb/hL8Q2IVhBHVZqDmpf/WEq8gQ1CcWt7QV+RmHBDUmhcFbp5xYzLiZ8hD2Hmidow2Ix6oxdOGfI4tS4o4kt3N8vCp5YO00idzPhNLbr2dz8L+vlFN+EhdRZTqjF8qM4V4xSNt+bDaVBQWrqgAsj3axMjLnhglw7FVdCsL7yJrSvGoHfCB58KMMZnMMlBHANt3APTWiBgBG8wBu8e8p79T6WdZW8VW+n8Efe5w/A64wr</latexit><latexit sha1_base64="vEknGFuss/jOACSTbhwPfFVMasU=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmIzGxIns2WhJtLDEKksCF7C1zsGFv77K7Z0Iu/AQbC42x9RfZ+W9c4AoFXzLJy3szmZkXplIYS+m3V1pb39jcKm9Xdnb39g+qh0dtk2SaY4snMtGdkBmUQmHLCiuxk2pkcSjxMRzfzPzHJ9RGJOrBTlIMYjZUIhKcWSfdd/p+v1qjdToHWSV+QWpQoNmvfvUGCc9iVJZLZkzXp6kNcqat4BKnlV5mMGV8zIbYdVSxGE2Qz0+dkjOnDEiUaFfKkrn6eyJnsTGTOHSdMbMjs+zNxP+8bmajqyAXKs0sKr5YFGWS2ITM/iYDoZFbOXGEcS3crYSPmGbcunQqLgR/+eVV0r6o+7Tu39Fa47qIowwncArn4MMlNOAWmtACDkN4hld486T34r17H4vWklfMHMMfeJ8/2aGNfA==</latexit><latexit sha1_base64="44fq65DDyzyeC/EbtZ0GHLZRJeg=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodP3+27Vq3lzkFXiF6QKBRp996s3SFgWc4VMUmO6vpdikFONgkk+rfQyw1PKxnTIu5YqGnMT5PNTp+TMKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOlUbAj+8surpHVR872af39Zrd8UcZThBE7hHHy4gjrcQQOawGAIz/AKb450Xpx352PRWnKKmWP4A+fzB9rhjYA=</latexit><latexit sha1_base64="44fq65DDyzyeC/EbtZ0GHLZRJeg=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodP3+27Vq3lzkFXiF6QKBRp996s3SFgWc4VMUmO6vpdikFONgkk+rfQyw1PKxnTIu5YqGnMT5PNTp+TMKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOlUbAj+8surpHVR872af39Zrd8UcZThBE7hHHy4gjrcQQOawGAIz/AKb450Xpx352PRWnKKmWP4A+fzB9rhjYA=</latexit><latexit sha1_base64="44fq65DDyzyeC/EbtZ0GHLZRJeg=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodP3+27Vq3lzkFXiF6QKBRp996s3SFgWc4VMUmO6vpdikFONgkk+rfQyw1PKxnTIu5YqGnMT5PNTp+TMKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOlUbAj+8surpHVR872af39Zrd8UcZThBE7hHHy4gjrcQQOawGAIz/AKb450Xpx352PRWnKKmWP4A+fzB9rhjYA=</latexit><latexit sha1_base64="44fq65DDyzyeC/EbtZ0GHLZRJeg=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodP3+27Vq3lzkFXiF6QKBRp996s3SFgWc4VMUmO6vpdikFONgkk+rfQyw1PKxnTIu5YqGnMT5PNTp+TMKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOlUbAj+8surpHVR872af39Zrd8UcZThBE7hHHy4gjrcQQOawGAIz/AKb450Xpx352PRWnKKmWP4A+fzB9rhjYA=</latexit><latexit sha1_base64="44fq65DDyzyeC/EbtZ0GHLZRJeg=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodP3+27Vq3lzkFXiF6QKBRp996s3SFgWc4VMUmO6vpdikFONgkk+rfQyw1PKxnTIu5YqGnMT5PNTp+TMKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOlUbAj+8surpHVR872af39Zrd8UcZThBE7hHHy4gjrcQQOawGAIz/AKb450Xpx352PRWnKKmWP4A+fzB9rhjYA=</latexit><latexit sha1_base64="44fq65DDyzyeC/EbtZ0GHLZRJeg=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpodP3+27Vq3lzkFXiF6QKBRp996s3SFgWc4VMUmO6vpdikFONgkk+rfQyw1PKxnTIu5YqGnMT5PNTp+TMKgMSJdqWQjJXf0/kNDZmEoe2M6Y4MsveTPzP62YYXQe5UGmGXLHFoiiTBBMy+5sMhOYM5cQSyrSwtxI2opoytOlUbAj+8surpHVR872af39Zrd8UcZThBE7hHHy4gjrcQQOawGAIz/AKb450Xpx352PRWnKKmWP4A+fzB9rhjYA=</latexit>

X2
<latexit sha1_base64="kmtT9ugJciGP5Za9H6MNICTHCRk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD91BbVCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmnXqp5b9e6vKo2bPI4inME5XIIHdWjAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwDcZY2B</latexit><latexit sha1_base64="kmtT9ugJciGP5Za9H6MNICTHCRk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD91BbVCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmnXqp5b9e6vKo2bPI4inME5XIIHdWjAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwDcZY2B</latexit><latexit sha1_base64="kmtT9ugJciGP5Za9H6MNICTHCRk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD91BbVCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmnXqp5b9e6vKo2bPI4inME5XIIHdWjAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwDcZY2B</latexit><latexit sha1_base64="kmtT9ugJciGP5Za9H6MNICTHCRk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD91BbVCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmnXqp5b9e6vKo2bPI4inME5XIIHdWjAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwDcZY2B</latexit>

M = X1 ⇥ X2
<latexit sha1_base64="NumH16CN9zKH42U0fWxHHF16giE=">AAAB+3icbZDLSgNBEEVr4ivG1xiXbhqD4CrMBEE3QtCNGyGCeUAyDD2dnqRJz4PuGjGE/IobF4q49Ufc+Td2kllo4oWGw60qqvoGqRQaHefbKqytb2xuFbdLO7t7+wf2Ybmlk0wx3mSJTFQnoJpLEfMmCpS8kypOo0DydjC6mdXbj1xpkcQPOE65F9FBLELBKBrLt8t35Ip0fJf0UERcG6z5dsWpOnORVXBzqECuhm9/9foJyyIeI5NU667rpOhNqELBJJ+WepnmKWUjOuBdgzE1i7zJ/PYpOTVOn4SJMi9GMnd/T0xopPU4CkxnRHGol2sz879aN8Pw0puIOM2Qx2yxKMwkwYTMgiB9oThDOTZAmRLmVsKGVFGGJq6SCcFd/vIqtGpV16m69+eV+nUeRxGO4QTOwIULqMMtNKAJDJ7gGV7hzZpaL9a79bFoLVj5zBH8kfX5A2Jckrg=</latexit><latexit sha1_base64="NumH16CN9zKH42U0fWxHHF16giE=">AAAB+3icbZDLSgNBEEVr4ivG1xiXbhqD4CrMBEE3QtCNGyGCeUAyDD2dnqRJz4PuGjGE/IobF4q49Ufc+Td2kllo4oWGw60qqvoGqRQaHefbKqytb2xuFbdLO7t7+wf2Ybmlk0wx3mSJTFQnoJpLEfMmCpS8kypOo0DydjC6mdXbj1xpkcQPOE65F9FBLELBKBrLt8t35Ip0fJf0UERcG6z5dsWpOnORVXBzqECuhm9/9foJyyIeI5NU667rpOhNqELBJJ+WepnmKWUjOuBdgzE1i7zJ/PYpOTVOn4SJMi9GMnd/T0xopPU4CkxnRHGol2sz879aN8Pw0puIOM2Qx2yxKMwkwYTMgiB9oThDOTZAmRLmVsKGVFGGJq6SCcFd/vIqtGpV16m69+eV+nUeRxGO4QTOwIULqMMtNKAJDJ7gGV7hzZpaL9a79bFoLVj5zBH8kfX5A2Jckrg=</latexit><latexit sha1_base64="NumH16CN9zKH42U0fWxHHF16giE=">AAAB+3icbZDLSgNBEEVr4ivG1xiXbhqD4CrMBEE3QtCNGyGCeUAyDD2dnqRJz4PuGjGE/IobF4q49Ufc+Td2kllo4oWGw60qqvoGqRQaHefbKqytb2xuFbdLO7t7+wf2Ybmlk0wx3mSJTFQnoJpLEfMmCpS8kypOo0DydjC6mdXbj1xpkcQPOE65F9FBLELBKBrLt8t35Ip0fJf0UERcG6z5dsWpOnORVXBzqECuhm9/9foJyyIeI5NU667rpOhNqELBJJ+WepnmKWUjOuBdgzE1i7zJ/PYpOTVOn4SJMi9GMnd/T0xopPU4CkxnRHGol2sz879aN8Pw0puIOM2Qx2yxKMwkwYTMgiB9oThDOTZAmRLmVsKGVFGGJq6SCcFd/vIqtGpV16m69+eV+nUeRxGO4QTOwIULqMMtNKAJDJ7gGV7hzZpaL9a79bFoLVj5zBH8kfX5A2Jckrg=</latexit><latexit sha1_base64="NumH16CN9zKH42U0fWxHHF16giE=">AAAB+3icbZDLSgNBEEVr4ivG1xiXbhqD4CrMBEE3QtCNGyGCeUAyDD2dnqRJz4PuGjGE/IobF4q49Ufc+Td2kllo4oWGw60qqvoGqRQaHefbKqytb2xuFbdLO7t7+wf2Ybmlk0wx3mSJTFQnoJpLEfMmCpS8kypOo0DydjC6mdXbj1xpkcQPOE65F9FBLELBKBrLt8t35Ip0fJf0UERcG6z5dsWpOnORVXBzqECuhm9/9foJyyIeI5NU667rpOhNqELBJJ+WepnmKWUjOuBdgzE1i7zJ/PYpOTVOn4SJMi9GMnd/T0xopPU4CkxnRHGol2sz879aN8Pw0puIOM2Qx2yxKMwkwYTMgiB9oThDOTZAmRLmVsKGVFGGJq6SCcFd/vIqtGpV16m69+eV+nUeRxGO4QTOwIULqMMtNKAJDJ7gGV7hzZpaL9a79bFoLVj5zBH8kfX5A2Jckrg=</latexit>

Figure 2: Left: This shows the setup of a teacher network, emphasizing how we can control
the data manifold dimension via the number of input features k. Right: When
the data manifold is a product and the teacher T (X) = T1(X1) + T2(X2), then
student networks can learn T by combining sub-networks and behaving, in effect,
like an ensemble. Then we predict 4/α ≈ dmax, the maximum d among the
components.

If the model is piecewise linear instead of piecewise constant and f(x) is smooth with
bounded derivatives, then the deviation |f(x)− c(x)| ∝ s2, and so the L2 loss will scale3 as
s4. We would predict

L(N) ∝ 1

N4/d
(2.4)

This will be important later, since networks with ReLU activations produce piecewise linear
functions.

Finally, consider the case where fi(x) encode a smooth probability distribution over
i = 1, · · · , k possibilities, and we replace the MSE loss with the KL divergence. If the ci(x)
are a piecewise linear model for the logits, then we also find that L ∝ s4. So the KL and
MSE losses will scale with the same exponent in N at a given value of d. We demonstrate
this in appendix A.5; it is a simple consequence of the fact that the expansion of DKL(p||q)
in (q − p) begins at second order. Note that if we use a cross-entropy instead of the KL
divergence, the loss will scale in the same way towards a fixed constant value, the entropy
of the true distribution.

3. A straightforward generalization suggests that if c(x) is composed of piece-wise k-degree polynomials,
and we use a loss |f − c|p, then

L(s) ∝ s(k+1)p (2.3)

in the infinite data limit. But if p is large then c(x) within each hypercube will utilize many parameters.
We test the p-dependence of this prediction in figure 5.
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Scaling Laws from the Data Manifold Dimension

2.2 A Conjectural Theory for Neural Networks

Neural Networks perform well on data with thousands or even millions of dimensions. It
is widely believed that this is possible because neural networks map the data into a much
lower-dimensional ‘data manifold’, preserving and focusing on the features that are relevant
for the task.

We emphasize that the data manifold is a feature of both the dataset and the task or
loss function that has been optimized. Classifiers need only attend to features relevant
for classification. Similarly, in the case of autoregressive models the data manifold would
consist only of the features necessary to predict the next token in a sequence. So the data
manifold for such a model (as we are defining it) may have many fewer dimensions than
the space of full sequences, such as complete images or text samples. Properties of the data
manifold may also depend on the model that is learning it, such as its architecture and
activation functions.

We can explain the observed scaling relations for NNs by applying our toy theory while
replacing the ambient dimension of the dataset with the intrinsic dimension of the data
manifold. If we perform regression with a neural network with ReLU activations and a
mean-squared error or KL divergence loss, the analysis of section 2.1 implies4

L(N) ∝ 1

Nα
with α ≈ 4

d
(2.5)

In the case where the function f(x) depends in a generic way on d independent variables,
we will confirm this prediction empirically in section 3.1 (see figure 1). We also explore
some special data manifolds and other loss functions in section 2.4.

This theory also largely explains why the scaling relation holds over such a large range
of N . To double the resolution with which the model differentiates different points on the
data manifold, we need 2d times more parameters. It’s reasonable to expect that model
performance improves smoothly when we change the resolution by an order-one factor. But
this seemingly natural assumption implies that if d � 1, we will see smooth scaling with
N over many orders of magnitude. We would predict that the range in ∆N over which
smooth scaling holds satisfies log(∆N) ∝ d. This also strongly suggests logNmax ∝ d,
where Nmax is the largest network size exhibiting power-law scaling, as we do not expect
Nmin, the beginning of the power-law region, to increase with d. We discuss some reasons
why power-law scaling may cease in section 2.2.2.

Finally, the theory suggests an interpretation for the fact that different NN architectures
tend to have similar scaling exponents when applied to the same dataset. It would appear
that a given dataset and task are associated with a data manifold of fixed dimension, and
improvements in architecture do not greatly alter its properties. Network architectures that
can achieve smaller d on the same dataset can be scaled up to achieve larger gains, and so
we would expect smaller d to correlate with better performance.

The interpretation of 4/α as the dimension of the data manifold has a close connection
with the notion of fractal dimensions. Typically fractal dimensions measure how the number

4. Depending on the network architecture and parameter values, the network could represent a piecewise
linear function with C � N piecewise components Montufar et al. (2014). However, these C components
cannot be independently configured to optimize the loss. Since there are only N independent degrees of
freedom available, we expect N , rather than C, to determine the effective capacity.
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of components needed to approximate a fractal scales as the components shrink. But we can
reinterpret this definition by asking how many components are needed to obtain a certain
quality of approximation to the underlying fractal. When we use the loss itself to measure
the quality of the approximation, then 4/α is proportional to the corresponding fractal
dimension.

Before moving on, let us discuss a few subtleties.

2.2.1 A Bound, Not an Equality

The classic analysis we reviewed through the toy model in section 2.1 provides an upper
bound on the loss for function approximation (regression in the infinite data limit) using
piecewise constant or piecewise linear approximators. This bound becomes an estimate when
the function being approximated is a generic Lipschitz function in d-dimensions. However,
if the function has a simple, non-generic structure then the loss may decrease much more
quickly with increasing model size. So we should expect that

α &
4

d
(2.6)

In special cases where the true underlying function or distribution is non-generically simple,
we may find that this inequality is far from saturation.

As a concrete example, consider a data manifold M = X1 × X2 × · · · × Xn with loss
L(x) =

∑
i Li(xi), as suggested on the right of figure 2. In this case a fully connected

neural network may learn5 this decomposition, computing each Li(Xi) using a separate path
through the network, and only combining these paths in the last layer. This would result
in a scaling exponent determined by the maximum of the dimensions di of the manifolds
Xi. We test L(N) for product data manifolds in section 2.4.1 and verify these predictions.

We may end up finding d > 4
α for other reasons. We will attempt to measure d among

neural activations, but there may not be any single layer where the model compresses all of
the data onto the data manifold. For example, one might imagine a scenario where different
components of the manifold are processed or compressed in different layers of the network.
And networks with non-ReLU activations (eg Transformers and ResNets) may mix and
superimpose different data manifolds upon each other, obscuring the manifold structure
and causing the measured dimension to exceed the true dimension.

2.2.2 Why Does Power-Law Scaling Break Down?

If the dataset size is finite, then power-law scaling with model size N will cease when we
begin to overfit the data. Overfitting dominates performance on many real-world datasets,
obscuring potentially clean scalings with N . We encounter it with CIFAR10 in figure 6 and
on other datasets in appendix A.4.

Even in the infinite data limit, if the data contains any entropy or noise then the power-
law scaling must eventually end with the loss reaching a final plateau. Scaling could also end
for other, more interesting reasons. For example, perhaps beyond a certain point the loss
can only improve by exploring a higher dimensional data manifold. This is possible if the

5. If the total loss does not decompose as a sum, it is less clear that the network can learn an effective
decomposition, but it may still be possible.
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Figure 3: This figure estimates the behavior of Nmax, the maximum network size where
we find power-law scaling, as a function of the measured intrinsic dimension in
student/teacher experiments. We determine Nmax as the model size where the
test loss reaches an arbitrarily chosen small value of 0.006, as a stand-in for the
entropy of real data. We discuss this procedure in section 3.1.

data manifold has a pancake-like structure, with a small width that can only be dissected
by models with very large capacity. We will explore the simplest possibility, where the data
has entropy, with mock teacher/student experiments; see figure 3 for the result.

2.3 Measuring the Intrinsic Dimension of the Data Manifold

In section 2.2 we extended the toy model in order to make a variety of predictions relating
the scaling of the loss with model size to d, the intrinsic dimension (ID) of the data manifold.
In some of our experiments, we will control d by constructing generic functions of d inputs
and then measuring α. But the theory would be tautological for real-world data if we could
not independently measure the data manifold’s ID.

We will define d by measuring the ID of neural activations as the network processes data
from the distribution on which it was trained. There is an extensive literature on intrinsic
dimension estimation (for a review see Camastra and Staiano (2016)). In most cases we
use the simple two-nearest neighbors (TwoNN) method Facco et al. (2017), though we also
compare to the MLE estimation Levina and Bickel (2005) method on which TwoNN was
based.

To summarize the method, let rk be the distance from a given datapoint to its kth
nearest neighbor, and define µk ≡ rk/r1. Then the cumulative distribution C(µk) takes the
form

C(µk) =

(
1− 1

µdk

)k−1
(2.7)

and so we can measure the intrinsic dimension d by using the relation

d =
log
(

1− C(µk)
1

k−1

)
logµk

(2.8)
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Figure 4: This figure shows L(N) along with power-law fits for teacher/student experi-
ments. The students learn from a randomly initialized 2-layer teacher with 2-19
features and use a cross-entropy loss. The students have 2,3, or 4 layers, but for
k > 5 input features the 2-layer students perform best and determine the model-
size scaling. The measured 4/α increases linearly with the number of features, as
shown in figure 7.
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Practically speaking, we evaluate µk for every point on the manifold, and then apply linear
regression to measure the slope d. We measure d using various k and verify that different
values of k give consistent results. We also verify that the MLE method Levina and Bickel
(2005) agrees with the TwoNN method. Fortunately, nearest neighbors can be efficiently
identified Buitinck et al. (2013).

The TwoNN method (the case k = 2) has already been applied to neural networks
Ansuini et al. (2019). There it was found that the dimension is smallest when measured
using the activations of the final hidden layer of the network (immediately before the logits
or output, so sometimes we refer to this as ‘prefinal’). We will use these activations to
measure d and compare to 1/α. For GPT-type models (and for some others as a test in
appendix C) we show ID measurements for every layer.

For convenience we provide a self-contained derivation of these ID measurement algo-
rithms and a minor extension (k > 2) in appendix B. We also provide several tests of
the method in appendix C, using both synthetic and neural activation data. We find that
the method is fairly accurate for d . 20, while for larger dimensions it’s less reliable, and
typically (but not always) underestimates the true dimension. Statistical errors from these
methods are often fairly small (particularly from TwoNN), but we expect there may be
larger systematic errors, as discussed in the appendices.

2.3.1 Why PCA and other linear methods don’t suffice

Linear methods like principal component analysis (PCA) don’t measure the intrinsic dimen-
sion of a manifold. For example, if data is distributed uniformly on the surface of a sphere
S2 in three dimensional space R3, then the intrinsic dimension of the data is 2. But PCA
on this data would yield three equal components. Thus, PCA overestimates the dimension
of a manifold that has a non trivial curvature.

2.4 Product Data Manifolds and Other Loss Functions

2.4.1 Product Data Manifolds M = X1 × · · · ×Xn

If the data manifold takes the form M = X1×X2× · · · ×Xn, with the underlying function
of x ∈ M decomposing as F (x) =

∑
i fi(xi), then we expect that a neural network should

be capable of separately modeling each fi within separate blocks of activations, and then
combining them in the final layer to compute the full F . This means that although the ID
of M will be measured as dM =

∑
i dXi , we should expect

α =
4

max(dXi)
(2.9)

as we discussed briefly in section 2.2.1, and demonstrate diagrammatically on the right of
figure 2.

To test this prediction we use a vetted teacher network with 3 real inputs T3(x1, x2, x3)
and another vetted teacher taking 6 real inputs T6(x1, · · ·x6). Individually, these had ID
d3 = 2.98 and d6 = 5.31 and their L(N) exponents satisfied 4

α3
= 3.3 and 4

α6
= 4.9. These

teachers each produce a pair of logits. We then constructed the new teacher functions with
logits

T3+3(x) = T3(x1, x2, x3) + T3(x4, x5, x6)
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Figure 5: This figure shows the relationship between α and the power p when we use the
generalized loss |y − y∗|p. As expected from section 2.1, we find α = 2

dp. This is
a student/teacher experiment with d ≈ 7.

T3+3+3(x) = T3(x1, x2, x3) + T3(x4, x5, x6) + T3(x7, x8, x9)

T3+6(x) = T3(x1, x2, x3) + T6(x4, x5, · · · , x9) (2.10)

and trained students to imitate these teachers using the cross-entropy loss. We then mea-
sured the resulting ID and α for these three product-manifold teachers. For the T3+3 and
T3+3+3 cases we used two or three different teachers to make sure the network could not
take advantage of the exact repetition of a single teacher.

As shown in figure 11, the results confirm our predictions. This provides a concrete
example where we may find that α > 4

d for reasons that the theory precisely anticipates.
More importantly, it provides a very detailed test of our theoretical picture relating scaling
exponents to properties of the data manifold.

2.4.2 Other Loss Functions

The factor of ‘4’ in the relation d ≈ 4
α is derived from the behavior of the loss function and

the expectation that networks with ReLU activations form piecewise linear functions. If we
use a loss function such as L(y, y∗) = |y − y∗|p for regression, from the argument of section
2.1 we would expect

α ≈ 2p

d
(2.11)

where the MSE case corresponds to p = 2. We verify this in figure 5 using a fixed teacher
with intrinsic dimension d ≈ 7, as measured in the usual student/teacher context.

3. Experiments and Results

In this section we discuss results from teacher/student experiments and various extensions,
and also some tests using image classification and language modeling. We relegate a variety
of technical details and a few minor observations to appendix A. We discuss potential errors
in the ID measurement, along with several examples, in appendix C.
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Figure 6: The left figure shows the test and training loss L(N) for various sizes of CNN
trained on CIFAR10, while the right figure shows error (1− accuracy). All results
are evaluated at the early stopping step, where the test loss is minimized. We
report test loss results in figure 1, but note that the exponents for accuracy are
very close to those for loss.
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Figure 7: These figures show the correlation between the inverse scaling exponent 4/α and
both the measured intrinsic dimension and the number of input features (dimen-
sions) in the teacher network. Both notions of dimension are linearly correlated
with 1/α, and the intrinsic dimension scales almost exactly as 4/α, as predicted
in section 2.2.
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3.1 Teacher/Student with Random Teachers

We generate functions of k = 2, 3, · · · , 19 input features using a randomly initialized, fully
connected ‘teacher’ neural network with a 20-dimensional input space. To achieve k < 20
we simply zero out all other inputs to this single teacher. We refer to k as the number of
features, and distinguish it from d, the intrinsic dimension, which we measure using the
activations of trained student networks.

For each value of k, we train fully connected student networks of various widths and
depths to imitate the outputs of the teacher. We work in the online setting, generating
random inputs in [−1

2 ,
1
2 ]k so the dataset size is effectively infinite.

We measure the intrinsic dimension from the activations of the final hidden layer of each
trained student. We use 12, 000 activation vectors for each ID measurement. In all cases
we find that using more nearest neighbors, as discussed in section 2.3, does not change the
result significantly. The ID changes by only about 10% with the size of the student, as
shown in figure 8. Details of the network topologies, training procedure, fits, errors, and ID
measurements are documented in appendix A.2.

After training the students, we evaluate the loss Lk(N) for each number of features k.
Then we fit

Lk(N) =
c

Nα
(3.1)

to measure c, α for each k. The results of this process (with cross-entropy loss) are shown
in figure 4.

3.2 Image Classification with Simple CNNs

Our goal with these experiments was to study a simple, all ReLU architecture that could
scale down to a small enough size to avoid overfitting CIFAR10 Krizhevsky (2009). So
we used a version of the default tutorial CNN in tensorflow Abadi et al. (2015), which we
modified only by scaling the number of channels (ie the width). Figure 6 shows the scaling
of the test loss with number of parameters N . Our only regularization was early stopping.
The results match 4/α = d quite well.

In an ideal test of the theory, we would measure α fully in the underfitting regime, with
no distinction between train and test performance. But there is a train/test gap even for
the smallest network sizes, so its unclear how to model the error in the α measurement. In
addition to the test loss, we also measured the scaling of the training loss for these models,
recording it at the early-stopping step, and found that it also scales similarly. Furthermore,
note that on the right of figure 6 we record the error rate (≡ 1− accuracy), and find that
it scales very similarly to the loss.

As with teacher/student experiements, we measure the intrinsic dimension from the
activations of the final hidden layer of each trained student. We use 12, 000 activation
vectors for each ID measurement. As before, we find that the ID changes by only about
10% across network sizes, as shown in figure 8.

We performed a very similar analysis on the MNIST LeCun and Cortes (2010), fashion
MNIST Xiao et al. (2017), and SVHN Netzer et al. (2011) datasets using slightly smaller
networks (see section A.4). We plot L(N) in figure 15, which we have relegated to the
appendix, as the power-law trends on these datasets are less clear than on CIFAR10.
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Figure 8: We show how ID measurements vary among different student network sizes N
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Figure 9: These figures show the ID estimates for the attention and fully-connected outputs
of a 117M parameter GPT-type model, where 4/α ≈ 53. The left figure shows
results from the nearest neighbor method, with 2,3, and 4 neighbors, while the
right plot shows results from the MLE method. The results roughly agree for the
first layer, but the MLE method gives smaller IDs for later layers, and is likely
an under-estimate.

Power-law exponents and IDs for CIFAR10 have been measured elsewhere using more
powerful architectures, finding both a larger value of α ≈ 0.5 (for the error rate) Rosenfeld
et al. (2019) and a smaller ID ≈ 8 Ansuini et al. (2019). We cannot make a clean comparison,
but given that we find that the exponent for error-rate and loss scaling seem to be similar,
these results appear to match our predictions.
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3.3 Language Modeling with GPT-type Models

The GPT-type language models display power-law scaling of L(N) over at least five orders
of magnitude in N , with exponent α ≈ 0.076 Kaplan et al. (2020). This value of α is much
smaller than those observed for many other datasets Rosenfeld et al. (2019), meaning that
it allows us to probe a rather different regime, where we predict the quite large value d & 53.

We generated activation vectors from the ‘small’ 117M parameter GPT-2 model using
test data drawn from the same distribution as the training data Radford et al. (2018,
2019), and measured the IDs. Decoder-only Liu et al. (2018) Transformers Vaswani et al.
(2017) have a residual structure with blocks including an attention mechanism and a fully-
connected component. For each layer of blocks, one can measure the ID from the output
of the attention mechanism, the fully-connected layer, or from the output of the residual
re-combination.

The activations that contribute to the Transformer’s outputs at any given token-position
depend on all activations from earlier in the sequence, except for the case of the final layer
(before multiplying by the unembedding matrix). Thus it is only the final hidden layer
activations that can be said to capture the data manifold associated with the model’s
prediction for a single token. The mean loss over tokens has scaling exponent α ≈ 0.076,
and from figure 21 of Kaplan et al. (2020) we see that α is roughly constant for tokens
that occur late in any text sequence. So we use the activations from the last token in each
sequence to measure the ID, though the ID does not vary significantly across token positions
(see figure 10).

In figure 9 we plot the measured ID for the attention output, the fully connected output,
and the combined output of the residual blocks for all layers. For these measurements we
used 10,000 activation vectors, each from the last token in a different text sequence (for
more details see appendix C.2). We see that unlike the case of image classifiers Ansuini
et al. (2019), the ID is roughly constant across layers, with the exception of the first layer,
where it is significantly smaller. If instead we measure the ID from the 1024 tokens in a
single contiguous passage of text, we instead find an ID ≈ 7. This strongly suggests that
the data manifold has a scale-dependent structure, and may not be well-characterized by a
single intrinsic dimension.

It is tempting to observe that the intrinsic dimension of activations from the first at-
tention layer is of order 50-80, which matches well with 4/α for these models. One might
argue that this bounds the total data manifold dimensionality entering the model through
its input tokens. But as discussed above, this reasoning seems untrustworthy as an esti-
mate of the data manifold dimensionality relevant for next-token predictions. So we take a
conservative attitude and do not use early layer IDs as an estimate of the relevant ID for
scaling.

We conclude that since d > 90, we have that d ≥ 4/α ≈ 53, which accords with
our expectations (see 2.2.1). Given the very small value of α in language modeling, it is
satisfying to observe that the corresponding ID is very large. But it would have been more
exciting to discover α ≈ 4/d for language modeling. We do not know if the discepancy
is due to added complexities from the structure of the Transformer, special structure on
the data manifold itself, a scrambling of data manifolds due to the residual structure and
attention mechanism, or some other oversimplification in our theory.
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Figure 10: ID estimates from a single 1024-token text sequence (left) and the final layer ID
as measured using tokens with fixed positions within distinct sequences (right).
The data manifold associated with a single sequence has a much, much smaller
dimension than the full manifold.

3.4 Summary of Predictions and Results

In this section we list the concrete predictions made by our theory, and their status based
on our results6 and information in the literature.

1. Prediction: Models with size N ∈ [Nmin, Nmax] where the loss scales as a power-law
in N all map the data to a manifold with the same intrinsic dimension d.

Results: We measure the intrinsic dimension from the activations of the final hidden
layer of each trained student. We use 12, 000 activation vectors for each ID measure-
ment. In all cases we find that using more nearest neighbors, as discussed in section
2.3, does not change the result significantly. In figure 8 we show the measured ID of
the final hidden layer of a student network with various sizes N , along with a plot
of the loss L(N). We see that the ID is approximately constant for these networks,
though it does slowly grow by about 10% from the smallest to the largest student
network and for CIFAR10 in figure 6. This prediction holds to about 10% for these
models.

2. Prediction: In the range of N where the loss scales as L(N) ∝ 1
Nα , we predict α ∝ 1

d ,
where d is the intrinsic dimension of the data manifold for the dataset and task in
question. If the network is composed of ReLU non-linearities and the loss is mean
squared error or cross-entropy (or KL divergence), we predict

α &
4

d
(3.2)

with equality expected in the generic case.

Results: We plot the relationship between 4/α and either the number of features or
the measured ID d for the teacher/student framework. The result, along with linear

6. Code for our experiments will be available at: https://github.com/U-Sharma/NeuralScaleID
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fits, are shown in figure 7. For both the cross-entropy and MSE loss functions, 4
α ≈ d.

The inverse exponent 1/α is linearly related to the number of input features k, but
the multiplier is larger than 4. See figure 1 for the summary combining all datasets.
Further, we show in figure 5 that this factor can be modified if we use other loss
functions. For language modeling with GPT Radford et al. (2018, 2019), we know
4
α ≈ 53 while we measure the intrinsic dimension as d ≥ 90 (figure 9), in accord with
the inequality, but quite far from equality.

3. Prediction: The maximum network size Nmax where we obtain power-law scaling
grows with d via logNmax ∝ d. Larger d should correspond with much larger Nmax.

Results: In section 2.2.2 we argued that scaling should end at an Nmax that grows as
logNmax ∝ d. We would like to test this prediction with teacher/student experiments,
but in this case the data has no entropy. So instead we will introduce an artificial
threshold for the loss, as a fictitious stand-in for the entropy of real data. Then we
simply ask at what Nmax the loss L(N) reaches this fixed, arbitrary value.

We chose L = 6 × 10−3 as an arbitrary threshold in figure 3. Note that for the
teacher networks with fewer features we used the power-law fit for L(N) to estimate
Nmax, as it was smaller than any network tested. This means we had to extrapolate
L(N), so these results are not purely empirical. We also compare logNmax and d by
defining Nmax as the end of the purely empirical power-law scaling region for 2-layer
students (due to a failure of optimization or numerical precision issues); these results
are relegated to figure 12 in the appendix.

4. Prediction: If the data manifoldM = X1×X2 · · ·×Xn and the loss L(x) =
∑

i Li(xi),
then we should replace the dimension of M with the maximum dimension of Xi

when estimating α, as the network can behave as an ensemble, modeling each Xi

independently (see the right of figure 2).

Results: This was predicted in section 2.4.1. The results of the relevant experiments
are in figure 11.

While we verified all of the above predictions through experiments, we leave the next
one to future work.

5. Prediction: The exponent α will not depend significantly on model architecture
except through the intrinsic dimension d. Since larger α and smaller d lead to improved
performance with scale, the best architectures will tend to have the smallest d.

Results: In Ansuini et al. (2019) it was discovered empirically that better performing
image classifiers have smaller d, and Kaplan et al. (2020) showed that LSTMs and
Transformers have very similar exponents. We leave the measurement of both α and
d across distinct architectures to future work.

The ID is typically a bit smaller than the number of input features. This may arise
from a combination of two factors: the ID measurement may be underestimating the data
manifold dimension, and randomly initialized networks may not provide sufficiently generic
or non-linear functions of their inputs. We explore the second hypothesis in appendix A.3,
where we show that by vetting the teacher networks we can improve agreement between ID
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Figure 11: This figure shows results for α and d for product data manifolds with teach-
ers T3+3 (left), T3+3+3 (middle), and T3+6 (right). We see that in all cases
4
α ≈ max(di) among the product factor manifolds. The total measured IDs are
approximately equal to the sum of the dimensions of the product factors, as
expected.

and the number of input features. Figure 18 provides some idea of the potential errors in
the ID measurements. Since the inputs themselves are drawn from a uniform distribution
it is plausible that the ID is somewhat of an underestimate due to boundary effects.

4. Related Work

The theory of scaling we have advocated applies basic, ‘textbook’ Wasserman (2006) ideas
from regression and density estimation. Our work was also partly inspired by similar scaling
relations in random forest models; with some added assumptions, it is possible to prove them
Biau (2012). As one passes from classical techniques, to random forests, and then to neural
networks, the models become increasingly powerful but less and less amenable to a direct
analysis. Nevertheless, we argue that similar principles apply and underly their scaling
behavior. A similar overall perspective has been discussed by Bickel and collaborators
Bickel et al. (2007).

There is a large literature on dimensionality estimation; for a nice overview see Camastra
and Staiano (2016). We have primarily used the two nearest neighbor method Facco et al.
(2017), which was based on the MLE method Levina and Bickel (2005) for distances among
points in a local neighborhood. In neural image classifiers, the intrinsic dimension of the data
manifold was studied Ansuini et al. (2019) using the TwoNN method. They demonstrated
that the ID is much smaller than the dimension estimated via linear methods such as PCA,
among other interesting results. Other authors have established a connection between ID
and noisy labels Ma et al. (2018), and demonstrated that neural models can effectively
identify a low-dimensional manifold in a larger ambient space Basri and Jacobs (2016). It
would be interesting to understand the relationship between the data manifold and neural
circuits Olah et al. (2020), and how the manifold changes when non-robust features are
eliminated Ilyas et al. (2019). Recent work Spigler et al. (2019) relates data dimensionality
and dataset size scaling exponents for kernel methods. The intrinsic dimension of the neural
network parameter space has also been discussed Li et al. (2018).
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Neural scaling laws have been studied in a number of papers. Perhaps the first work
on the subject was Hestness et al. (2017). The more recent work Rosenfeld et al. (2019)
studies scaling with model size and dataset size, both independently and simultaneously.
Language models were studied in Kaplan et al. (2020), where scaling relations with model
size, dataset size, training compute, and training steps were identified. EfficientNet Tan
and Le (2019) displays near power-law scaling with model size, though these models are
not in the underfitting regime.

5. Discussion

We have proposed a theory connecting the model-size scaling exponent with the intrinsic
dimension of the data manifold. Many other neural scaling laws have been identified Hes-
tness et al. (2017); Rosenfeld et al. (2019); Kaplan et al. (2020), including scalings with
dataset size and compute budget, and fairly accurate power-law fits to learning curves. We
have focused on scaling with model size in the infinite data limit because we expect it to
be the simplest and most theoretically tractable scaling relation. Scaling with dataset size
may involve issues of regularization, requiring a balance between bias and variance, while
understanding the scaling with compute would require that we contend with optimization.

Nevertheless, neural scaling exponents with dataset size are often very similar7 to model
size exponents. One might argue that dataset size scaling can be understood as a conse-
quence of interpolation between points on the data manifold, and so should have a similar
relationship to the data manifold dimension. Recent works have made this case Spigler et al.
(2019). Compute scaling exponents Kaplan et al. (2020) are also not far from model-size
exponents, but combine optimization and model scaling. It seems most natural to interpret
them by modeling learning curves, but perhaps optimization can be re-interpreted as the
identification and dissection of the data manifold. Something like this will be necessary in
order to explain the fact that larger models are much more sample efficient Kaplan et al.
(2020) than small models. This may be the most impactful direction for future work.

It will be interesting to test this theory with a wider variety of models and datasets.
Generative modeling may be the ideal setting, since the abundance of unlabeled text, image,
and video data provides many opportunities to train large models on nearly unlimited
datasets. In this context, it may be interesting to explore what the theory suggests for
finetuning pre-trained generative models on downstream tasks. We would expect that these
tasks benefit from the pre-established existence of the data manifold; perhaps finetuning
can be understood as a process of zooming-in and refining performance in a small region of
this manifold. It would also be interesting to understand how scaling relations for the loss
compare to those for quantities that are not directly optimized, such as prediction accuracies.
In the case of CIFAR10 we saw that accuracy and loss exhibit similar exponents. Finally,
it’s worth thinking about the extent to which larger models perform better in reinforcement
learning Cobbe et al. (2019). Due to the non-stationary distribution in RL it may be difficult
to understand model-size scaling quantitatively, and it’s less clear how to apply our theory

7. Though in almost all cases Rosenfeld et al. (2019); Kaplan et al. (2020) dataset exponents are slightly
larger. This runs somewhat counter to classical expectations Wasserman (2006), where the number of
parameters determines a tradeoff between bias and variance, and dataset size exponents are smaller than
the bias-scaling exponents that depend on model size.
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in that context. A theory of sample efficiency scaling would be more likely to be relevant
to RL.
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Appendix A. Technical Details and Minor Results

A.1 Fitting

To extract the scaling exponent α we need to fit power-laws to the empirical L(N) for
trained models with N parameters. For this purpose we simply fit straight lines to logL
vs logN , assuming that the error in logL was independent of N (ie we assumed Gaussian
errors in logL). We fit from the smallest value of N tested until the power-law behavior
breaks down. This point is quite clear visually in most cases, as seen in figures 4, 13, and
6. For the case where we had networks with both different widths and different depths 4
we only used the networks that performed among the best at each model size (ie we used
points on the ‘convex hull’ in the L vs N plane).

However, to avoid bias we determined the last point to include in the fit in the following
way. We fit a circle (parameterized by its center and radius) to the first n ≥ 3 points in the
logL vs logN plane (starting at N = Nmin), and evaluated r(n), the radius of the best-fit
circle for each n. We then chose the value of n that achieved the maximal radius r, as this
is the ‘most linear’ set of points. Finally, we fit a straight line logL = −α logN + b to this
collection of points to determine α.

Note that this provides an alternative way to determine Nmax, the largest network in
the power-law scaling region. This was the input for figure 12, where we show Nmax as a
function of d for teacher/student experiments.

The power-law scaling breaks down in CIFAR10 and other small image datasets due
to overfitting. We do not have a complete understanding of why it breaks down for the
teacher/student experiments, but it seems to be due to a failure of optimization, perhaps
related to numerical precision. We note that the power-law behavior persists to larger model
size and smaller loss with the deeper networks in figure 4.

A.2 Teacher/Student Experiments

A.2.1 Network Architectures

Our teacher networks had shape [20, 600, 600, 2] (i.e. 20 dimensional input, two hidden layers
of output dimension 600, and final layer ouput of dimension 2) for experiments with cross
entropy loss (figures 4, 11 and 5), [20, 600, 600, 1] for MSE loss (figure 13) and [9, 240, 240, 2]
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Figure 12: This figure shows the maximum number of parameters Nmax at which we ob-
serve power-law scaling of L(N), as a function of the intrinsic dimension, for
teacher/student experiments. This Nmax is determined as described in appendix
A.1. The left plot uses cross-entropy loss, while the right uses MSE loss. This
plot should be viewed as a more empirical (but less well understood) alternative
to figure 3.

for cross entropy loss with vetted teacher (figure 14). The teachers are randomly initialized,
with biases set to zero, and weights picked from a gaussian distribution of mean zero and
standard deviation 1/

√
N , where N is the input size of the layer. We experimented with

including random non-zero biases, but did not find that they significantly alter the behavior
of teachers.

For experiments with mean-squared error loss, the teacher and student networks each
outputted a single real value. For experiments using a cross-entropy loss, networks output
two logits, and we computed the cross entropy directly from these teacher outputs (ie we
did not sample discrete values from the teacher, but used its exact output distribution).
For cross-entropy experiments we used students with 2, 3, and 4 hidden layers, and let the
best performing models define the L(N) fits, while for MSE loss we simply used students
with 2 hidden layers.

We ran 10 trials each for cross-entropy and MSE losses, and in each case selected the
ones with the 9 lowest losses. Intrinsic dimension calculations were done using the same 9
networks. For vetted teacher experiments, we took 90 trials and computed the mean of the
loss excluding the 10 worst performing students.

A.2.2 Optimization and LR Schedule

We use the ADAM optimizer Kingma and Ba (2014) with default settings except for the
learning rate. In order to optimize effectively, we scanned over a grid of learning rates,
and experimented with cosine, linear, and step-function learning rate schedules. We ended
up using step function schedules for teacher/student experiments, and a constant learning
rate for CIFAR10 and other image datasets, as these performed roughly as well or better
than other choices. We did not find it necessary to vary the overall learning rate among
different network sizes, but the schedules themselves were important for optimization. Our
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Experiment student training steps batch size learning rate
(T/S) architecture (ADAM)

(random) MSE: [20,n,n,1] 0-200k 200 0.01
figures 7, 11, 5 CE: [20,n,n,2] 200-220k 1000 0.01

220-240k 4000 0.001

(vetted) 0-100k 200 0.01
figure 14 [9,n,n,2] 100-150k 200 0.001

150-170k 200 0.0001

Table 1: Architectures and training schedules for Teacher/Student experiments in the pa-
per, referenced by the figures in which the results are described.
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Figure 13: This figure shows L(N) with a MSE loss for students (all with 2 hidden layers)
learning from a randomly initialized teacher with 2-19 features. Figure 4 shows
the results for cross-entropy loss.

learning rate schedules for the various teacher/student experiments in the paper (labeled
by associated figures) are summarized in table 1.

A.3 Vetting Teachers to Increase Intrinsic Dimension

In figure 7, the ID is typically smaller than the number of features, especially when the
latter is large. One might worry that this indicates ID measurements are inaccurate. In
fact, we believe that this occurs partly because randomly initialized teacher networks do
not typically produce fully generic functions of their inputs.
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Figure 14: This figure shows the number of features and ID vs 1/α for vetted teachers. ID
is still smaller than the number of input features, but vetting partially closes
the gap. Compare the slope of 4.61 for number of features vs 1/α here to the
left of figure 7, where the slope was 5.48. Slopes for ID vs 1/α are very similar
with or without vetting.

We can partially remedy this problem by generating a large number of teachers and
vetting them, keeping only those that produce the most complicated and non-linear func-
tions of their inputs. The result is pictured in figure 14, where we repeat the experiment of
section 3.1 with up to 9 features. We see that sufficiently vetted teachers have ID nearly
equal to their feature count, and that the relationship α ≈ 4

d continues to hold.

Presumably many vetting procedures could be successfully applied to filter the teacher
networks. To increase the complexity and non-linearity of teachers so that ID would better
match the number of input features, we followed this ad-hoc approach:

1. For a given teacher, we took a random slice along each input coordinate axis (i.e. the
values of the other coordinates are chosen uniformly at random from [−1/2, 1/2)). We
performed linear regression on this slice and computed the score(R2, the coefficient of
determination), and took the mean of the scores across coordinate axes. A low score
implies more non-linearity.

2. We repeated this procedure 200 times and computed the mean score of all the trials.
This is the score for the teacher.

3. We iterated over 5000 randomly generated teachers and selected the one with the
minimum score.

A.4 CNNs on CIFAR10, MNIST, FMNIST, and SVHN

For CIFAR10 we used the architecture from the tensorflow CNN tutorial Abadi et al. (2015),
and modified the channel width. The architecture is recorded in table 2.

The networks were trained for 50 epochs with the ADAM optimizer with default hyper-
parameters. We use 40 iterations of each network and average the loss (on log scale) over
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test 4/ : 10.71
train 4/ : 9.76
ID: 11.43

Figure 15: This shows train and test loss on MNIST, Fashion MNIST, and test loss on
SVHN, along with the exponents and ID measurement.

Layer Output shape

Conv2D (32, 32, n)

MaxPooling2D (16, 16, n)

Conv2D (16, 16, 2n)

MaxPooling2D (8, 8, 2n)

Conv2D (6, 6, 2n)

Dense (64)

Output (10)

Table 2: Architecture of the CNN network used for CIFAR10. We chose n in the range
1 ≤ n ≤ 13 to minimize overfitting. All convolutions were 3 × 3 with unit stride,
and the images have 3 colors, so the network has a total of N = 714+4640n+54n2

parameters.

the iterations. Note that we record the test and training loss at the early stopping point
where the test loss reaches its minimum value. These are the results in figure 6.

For MNIST LeCun and Cortes (2010), fashion MNIST Xiao et al. (2017), and SVHN
Netzer et al. (2011), we use a slightly smaller network (3 instead of 4 hidden layers) with
architecture shown in table 3. We used a smaller network in the hopes of identifying a
power-law scaling region without significant overfitting.

For MNIST and fashion MNIST, we ran each network for 20 trials and took the mean
loss (on log scale). The networks were trained for 50 epochs with the ADAM optimizer
with default hyperparameters. As with CIFAR10, we take the minimum test loss during
training (i.e. early stopping), and also report training loss at this point.

For SVHN, the networks were trained for 5 epochs with both training and additional
datasets used for training (total 604k images), and test dataset (26k images) for testing.
We used default hyperparameters.

A.5 Scaling of KL Divergence with Piecewise Linear Logits

We assume the logits ci(x) are linear in a small region of volume sd we take to surround
the origin, and that the underlying probability distribution fi(x) over k discrete choices is
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Layer Output shape

Conv2D (28, 28, n)

MaxPooling2D (14, 14, n)

Conv2D (12, 12, n)

MaxPooling2D (6, 6, n)

Dense (32)

Output (10)

Layer Output shape

Conv2D (32, 32, n)

MaxPooling2D (16, 16, n)

Conv2D (14, 14, n)

MaxPooling2D (7, 7, n)

Dense (32)

Output (10)

Table 3: Architecture of the CNN network used for MNIST and fashion MNIST (left) and
SVHN (right). All convolutions were 3× 3 with unit stride.

smooth. The loss in this region is

L =
k∑
i=1

∫
ddxfi(x) log

fi(x)

qi(x)
(A.1)

where log qi(x) = ci(x) + log
(∑k

j=1 e
cj(x)

)
. If we write qi(x) = fi(x) + δi(x) then as is well

known

L =
k∑
i=1

∫
ddxfi(x) log

fi(x)

fi(x) + δi(x)

=

∫
ddx

k∑
i=1

fi(x)

(
0− δi(x)

fi(x)
+

1

2

(
δi(x)

fi(x)

)2

+ · · ·
)

≈
∫
ddx

k∑
i=1

1

2

δi(x)2

fi(x)
(A.2)

After optimization the linear ci(x) will determine a δi(x) that is quadratic in x, and so the
loss per unit volume will scale as s4, as claimed.

Appendix B. Review of Intrinsic Dimension Estimation Methods

In this section we review the two nearest neighbor method Ansuini et al. (2019) and explain
that it can be extended to k-nearest neighbors. Then we note that the same analysis derives
the maximum likelihood method Levina and Bickel (2005).

B.1 The Two Nearest Neighbor Method

Assume that points are drawn from a distribution with density ρ(x) with support on a d-
dimensional manifold in a potentially much higher dimensional ambient space. We will see
that ρ(x) drops out of our results, assuming that it is constant across the first few nearest
neighbors, so we will drop its explicit x-dependence in what follows.
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The probability of finding n points from the dataset in a region with d-dimensional
volume V is Poisson:

Pn(V ) =
(ρV )n

n!
e−ρV (B.1)

To see this, note that in an infinitesimal volume δV , P0 = 1− ρδV and P1 = ρδV , with all
Pn>1 = 0. Thus the generating function for Pn in a finite volume V can be found by taking
the product of binomial distributions over all δV in V , giving

G(x;V ) = lim
δV→0

((1− ρδV ) + xρδV )
V
δV =

∞∑
n=0

(xρV )n

n!
e−ρV (B.2)

The coefficients of xn are the Pn above.

With this result in hand, we can consider the distribution of nearest-neighbor distances.
Consider some point in the dataset. The probability for its nearest neighbor to be in
[r1, r1 + dr] is given by the product of the probability that there are no points in r < r1
times the probability of finding a point in the shell r1 < r < r1 + dr, which is

P (r1)dr1 =
(
dρωdr

d−1
1 dr1

)
e−ρωdr

d
1 (B.3)

where ωd is the volume of a unit d-ball. This result easily generalizes to the case where there
are many ri corresponding to the first k nearest neighbors. For example for two nearest
neighbors we find

P (r1, r2)dr1dr2 = (ρωdd)2e−ρωdr
d
2rd−11 rd−12 dr1dr2 (B.4)

since we are demanding that there are two points on two infinitesimal shells at radii r1, r2
and no points otherwise.

Now we can compute the distribution over nearest neighbor distances, and their ratios.
The TwoNN method Ansuini et al. (2019) is based on the distribution of the ratio µ2 =
r2/r1, which we can compute by integrating over r1, r2 while fixing their ratio:

P (µ2) =

∫
dr1dr2δ

(
µ2 −

r2
r1

)
(ρωdd)2e−ρωdr

d
2rd−11 rd−12

=

∫
dr1(ρωdd)2e−ρωdµ

drd1r2d−11 µd−12

=
d

µd+1
2

(B.5)

This means that the cumulative distribution for µ2 is

C(µ) =

∫ µ

1

d

µd+1
2

dµ = 1− 1

µd2
(B.6)

This means that we can identify the dimension d by measuring the slope of a linear fit of
logµ2 vs log(1− C(µ2)). That’s the TwoNN method, as seen in figure 16.
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Figure 16: This figure shows the relationship in equation B.16, which we use to deter-
mine the ID using the nearest neighbor method. We display examples using
teacher/student data, CIFAR10, and GPT.

B.2 Extension to k-Neighbors and MLE

The beauty of the TwoNN method Ansuini et al. (2019) is that it uses very short-distance
information, and so it’s plausible that the density ρ(x) can be well-approximated as a
constant. A down-side of this method is that it primarily measures the dimension on short
scales. This can be mitigated by applying the method while sampling different numbers
of points from the data distribution, but it’s also easy to validate the TwoNN method by
simply using more neighbors.

Let’s see what happens with three neighbors, and then we will generalize. We can
compute the distribution of µ2 = r2/r1, µ3 = r3/r1, and use it for validation. We have

P (µ2, µ3) =

∫
driδ

(
µ2 −

r2
r1

)
δ

(
µ3 −

r3
r1

)
(ρωdd)3e−ρωdr

d
3 (r1r2r3)

d−1

=

∫
dr1(ρωdd)3e−ρωdµ3r

d
3r3d−11 µd−12 µd−13

=
2d2µd−12

µ2d+1
3

(B.7)

Intuitively, large µ3 becomes unlikely because it implies that there are few points inside
a large radius, but with fixed µ3, a larger value of µ2 is more probable due to the larger
volume at large radius.

We find a nice simplification when we study P (µ3) and its cumulative distribution after
marginalizing over µ2. The probability distribution is

P (µ3) =

∫ µ3

1
dµ2

2d2µd−12

µ2d+1
3

=
2d

µ2d+1
3

(
µd3 − 1

)
(B.8)

The cumulative distribution is then

C(µ3) =

(
1− 1

µd3

)2

(B.9)

Thus we also find a simple method for identifying d based on µ3 alone, namely

d =
log
(

1−
√
C(µ3)

)
logµ3

(B.10)
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Figure 17: These figures show a histogram of the results for d from MLE (with 100 neigh-
bors) among all of the points used for measurement. On the left we have a
teacher with 10 features, in the middle we have the n = 5 CNN trained on CI-
FAR10, while on the right we have the GPT model’s prefinal attention output
for the last token in the text sequence. Smaller numbers of neighbors typically
give larger IDs.

This directly generalizes the TwoNN; in practice we measure d via a linear fit to the nu-
merator as a function of the denominator in this expression.

Generalizing to k neighbors, the probability distribution for µ2, · · · , µk is

P (µi) = dk−1(k − 1)!

∏k−1
i=2 µ

d−1
i

µ
1+d(k−1)
k

(B.11)

for µi = ri/r1. This can be used directly for maximum likelihood estimation Levina and
Bickel (2005). If we maximize logP with respect to d we find

d =
k − 1

(k − 1) logµk −
∑k−1

j=2 logµj
(B.12)

In fact, this MLE estimator is biased; the unbiased estimator is Levina and Bickel (2005)

d = E

[
k − 2

(k − 1) logµk −
∑k−1

j=2 logµj

]
(B.13)

In practice, we can compute the RHS for all points in the manifold (after fixing some value
for the number of neighbors k) and compute the mean. We display a histogram of the MLE
estimates over many points in the data manifold for two examples in figure 17. The variance
provides some measure of the errors. Alternatively, we could directly measure logP and
evaluate the likelihood as a function of d. The variance of this estimator was studied in
Levina and Bickel (2005). They also found numerically that it can be useful to tune of the
value of k, as very small k overestimates ID while large k underestimates ID.

We can use these results to extend the TwoNN method in a simple way to general k.
Marginalizing over all but µk, we find that

P (µk) =
(k − 1)d

µ
(k−1)d+1
k

(
µdk − 1

)k−1
(B.14)
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which leads to the cumulative distribution

C(µk) =

(
1− 1

µdk

)k−1
(B.15)

and the formula

d =
log
(

1− C(µk)
1

k−1

)
logµk

(B.16)

for the kth nearest neighbor. This can be used as a cross-check for TwoNN. For examples of
the relationship between the numerator and denominator with various k, and the relevant
fits, see figure 16. Just as with MLE, we find empirically that larger k leads to smaller
estimates of ID (see figure 21).

Appendix C. Examples and Tests of Intrinsic Dimension Estimation

The MLE and TwoNN methods have been tested and demonstrated by their authors Levina
and Bickel (2005); Ansuini et al. (2019). We conduct a few tests with synthetic data. Then
we provide some other examples of the ID measurement process, including errors, using our
student/teacher, CIFAR10, and language data.

C.1 Tests on Synthetic Data

As a baseline test, we evaluate the TwoNN and MLE methods on synthetic datasets with
dimensions ranging from 2 to 128, with results in figure 18. We display synthetic data on
the hypercube [0, 1]d as well as a d-torus S1×S1× · · · ×S1 embedded in 2d dimensions (in
the simplest way, by embedding each circle factor in 2 Euclidean dimensions).

We notice that 1) results are more accurate for smaller d, with quite reliable results
for the TwoNN method for d . 20, 2) at large d all methods tend to underestimate the
true ID, but 3) its certainly possible to both under and over-estimate the true ID, and
measurements are not necessarily even monotonic with the number of points used for the
measurement. We also see that for the torus the ID estimates are reasonably accurate even
for dimensions ∼ 100, though there’s certainly no guarantee that this will hold for unknown
data manifolds.

As other authors have noted Camastra and Staiano (2016), the ID is under-estimated
on the hypercube, likely because cubes have sharp boundaries and corners which reduce the
number of neighbors. Similarly, we believe that the ID is often over-estimated for the torus
because (due to the curvature of the circles in the embedding space) points are often closer
together than they would be in flat Euclidean space. We have also seen as shown in Levina
and Bickel (2005) that for small k the MLE method typically overestimates ID. The NN
method seems a bit less sensitive to k as compared to MLE.

C.2 Tests on Neural Network Activations

In all cases we measure ID from fully trained networks, and we always use students (not
teachers) in that context. There are a large variety of potential statistical and systematic
errors associated with these measurements:
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Figure 18: Here we show measured ID as a function of the number of points in the dataset
used for the measurement, for both the TwoNN (top) and MLE (bottom) meth-
ods (with k = 100). The left plots show a uniform distribution in the hypercube
[0, 1]d, while the plot on the right show a d-torus embedded in 2d dimensions.
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Figure 19: Variation of Intrinsic Dimension(ID) with number of vectors for a single student
network (left), for the last layer of an n = 5 CNN trained on CIFAR10 (middle),
and also for the last layer and last token of GPT (right). The student is of size
[15, 28, 28, 2] and was trained on teacher with 15 features.
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Figure 20: Variation of Intrinsic Dimension (ID) across network sizes for a single teacher.
The figure on the left shows number of inputs features = 10 and the one on the
right has 15. Each point on either figure is one student. All students on each
figure are trained on the same teacher, but the teacher for the left and right
figures are different.
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Figure 21: Variation of Intrinsic Dimension (ID) with number of neighbors used in the
algorithm. The figure on the left shows a student of size [20, 25, 25, 2] trained
on a teacher with 10 features, while the one on the right has student shape
[15, 28, 28, 2] trained on teacher with 15 features.
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• Variation among IDs measured from students of the same size and trained with the
same teacher network (or dataset), but with different initialization (see figure 20).

• Variation of ID measurements among random groups of points sampled from the same
data manifold

• Dependence of ID on the number of points used (and so the overall density) from
the data manifold. More points samples shorter distance scales on the manifold. See
figure 19.

• Dependence of ID on how many nearest neighbor points are used, either for NN (see
figure 21) or MLE type estimation.

• Variation of ID from among points in different locations on the data data manifold
(we show a histogram of results from MLE in figure 17)

• Dataset specific distinctions, eg from the same or different classes in an image classifier,
or from the same or different text sequences in a language model (discussed in section
3.3)

• Dependence of ID measurements on the layer studied (see figures 9 and 19)

We provide some brief information about many of these sources of variation in the referenced
plots. In most cases we find that the variation of the ID is small as long as it is measured
with sufficiently many vectors. It would be interesting obtain a more precise theoretical
and experimental characterization of these methods in the future.

But as evidenced by the synthetic examples in figure 18, this does not lead us to believe
that the IDs are fully trustworthy, especially when they are measured to be large. Though
the apparent statistical errors in ID measurements may seem small, there may be systematic
errors that are more difficult to observe.

It’s conceivable that deficiencies in ID measurement actually work to the advantage of
the theory relating d and 4/α. For example, d tends to be underestimated when the data
manifold has a boundary (or simply less support in some region), but this may also correlate
with regions of the manifold where there really is less data, and these regions do not need
to be modeled as precisely to achieve a good test loss. But we leave a more thorough
investigation of such subtleties to future work.
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