Journal of Machine Learning Research 22 (2021) 1-39 Submitted 6/21; Revised 9/21; Published 11/21

VariBAD:
Variational Bayes-Adaptive Deep RL via Meta-Learning

Luisa Zintgraf LUISA.ZINTGRAFQCS.0X.AC.UK
University of Oxford
Wolfson Building, Parks Road, OX1 3QD Ozford (UK)

Sebastian Schulze SEBASTIAN.SCHULZEQENG.OX.AC.UK
University of Oxford

Cong Lu CONG.LU@STATS.OX.AC.UK
University of Oxford

Leo Feng LEO.FENG@QMILA.QUEBEC
Mila, Université de Montréal

Maximilian Igl MIGLQGOOGLE.COM
University of Oxford; Waymo

Kyriacos Shiarlis KYRIACOS@QGOOGLE.COM
Waymo

Yarin Gal YARIN@CS.OX.AC.UK

University of Ozford

Katja Hofmann KATJA.HOFMANN@MICROSOFT.COM
Microsoft Research

Shimon Whiteson SHIMON.WHITESON@QCS.0X.AC.UK
University of Oxford

Editor: George Konidaris

Abstract

Trading off exploration and exploitation in an unknown environment is key to maximising
expected online return during learning. A Bayes-optimal policy, which does so optimally,
conditions its actions not only on the environment state but also on the agent’s uncertainty
about the environment. Computing a Bayes-optimal policy is however intractable for all
but the smallest tasks. In this paper, we introduce variational Bayes-Adaptive Deep RL
(variBAD), a way to meta-learn approximately Bayes-optimal policies for complex tasks.
VariBAD simultaneously meta-learns a variational auto-encoder to perform approximate
inference, and a policy that incorporates task uncertainty directly during action selection
by conditioning on both the environment state and the approximate belief. In two toy
domains, we illustrate how variBAD performs structured online exploration as a function
of task uncertainty. We further evaluate variBAD on MuJoCo tasks widely used in meta-
RL and show that it achieves higher online return than existing methods. On the recently
proposed Meta-World ML1 benchmark, variBAD achieves state of the art results by a large
margin, fully solving two out of the three ML1 tasks for the first time.

Keywords: Reinforcement Learning, Meta Learning, Bayes-Adaptive Markov Decision
Processes, Approximate Variational Inference, Recurrent Networks

(©2021 Luisa Zintgraf, Sebastian Schulze, Cong Lu, Leo Feng, Maximilian Igl, Kyriacos Shiarlis, Yarin Gal, Katja
Hofmann, and Shimon Whiteson.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/21-0657 .html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/21-0657.html

ZINTGRAF, SCHULZE, Lu, FENG, IGL, SHIARLIS, GAL, HOFMANN, AND WHITESON

1. Introduction

Reinforcement learning (RL) is typically concerned with finding an optimal policy that max-
imises expected return for a given Markov decision process (MDP) with an unknown reward
and transition function. If these were known, the optimal policy could in theory be com-
puted without environment interactions. By contrast, learning in an unknown environment
usually requires trading off exploration (learning about the environment) and exploitation
(taking promising actions). Balancing this trade-off is key to maximising expected return
during learning, which is desirable in many settings, particularly in high-stakes real-world
applications like healthcare and education (Liu et al., 2014; Yauney and Shah, 2018). A
Bayes-optimal policy, which does this trade-off optimally, conditions actions not only on
the environment state but on the agent’s own uncertainty about the current MDP.

In principle, a Bayes-optimal policy can be computed using the framework of Bayes-
adaptive Markov decision processes (BAMDPs) (Martin, 1967; Duff and Barto, 2002), in
which the agent maintains a belief distribution over possible environments. Augmenting
the state space of the underlying MDP with this belief yields a BAMDP, a special case of
a belief MDP (see Kaelbling et al. (1998) for a discussion of belief MDPs in the context
of partially-observable MDPs). A Bayes-optimal agent maximises expected return in the
BAMDP by systematically seeking out the data needed to quickly reduce uncertainty, but
only insofar as doing so helps maximise expected return. Its performance is bounded from
above by the optimal policy for the given MDP, which does not need to take exploratory
actions but requires prior knowledge about the MDP to compute.

Unfortunately, planning in a BAMDP, i.e., computing a Bayes-optimal policy that con-
ditions on the augmented state, is intractable for all but the smallest tasks. A common
shortcut is to rely instead on posterior sampling (Thompson, 1933; Strens, 2000; Osband
et al., 2013). Here, the agent periodically samples a single hypothesis MDP (e.g., at the
beginning of an episode) from its posterior, and the policy that is optimal for the sampled
MDP is followed until the next sample is drawn. Planning is far more tractable since it is
done on a regular MDP, not a BAMDP. However, posterior sampling’s exploration can be
highly inefficient and far from Bayes-optimal.

Consider the example of a gridworld in Figure 1, where the agent must navigate to an
unknown goal located in the grey area (la). To maintain a posterior, the agent can uni-
formly assign non-zero probability to cells where the goal could be, and zero to all other
cells. A Bayes-optimal strategy searches the set of goal positions that the posterior con-
siders possible, until the goal is found (1b). Posterior sampling samples a possible goal
position, takes the shortest route there, and then resamples a new goal from the updated
posterior (1c). This example illustrates that posterior sampling is much less efficient since
the agent’s uncertainty is not reduced optimally (e.g., states are revisited unnecessarily). A
key challenge is to learn approximately Bayes-optimal policies while retaining the tractabil-
ity of posterior sampling. In addition, the inference involved in maintaining a posterior
belief, needed even for posterior sampling, may itself be intractable.

In this paper, we combine ideas from Bayesian RL, approximate variational inference,
and meta-learning to tackle these challenges, and equip an agent with the ability to strategi-
cally explore unseen (but related) environments for a given distribution, in order to maximise
its expected online return.

VARIBAD

P - =@

x % *

(a) (b) () (d)

Environment Bayes-Optimal Posterior Sampling variBAD

_____ ._I_l — =]
(] —

10
c
—
> 8
=
)
X e
S
© 4 ——— Optimal
g p —l- Bayes-Optimal
< variBAD
0 —a&— Posterior Sampling
1 2 3 4 5 6
Episodes

(e) Performance

Figure 1: Illustration of different exploration strategies. (a) Environment: The agent starts
at the bottom left and has to navigate to an unknown goal, located in the grey
area. (b) A Bayes-optimal exploration strategy that systematically searches pos-
sible grid cells to find the goal, shown in solid (past actions) and dashed (future
actions) blue lines. A simplified posterior is shown in the background in grey
(p = 1/(number of possible goal positions left) of containing the goal) and white
(p = 0). (c) Posterior sampling, which repeatedly samples a possible goal po-
sition (red squares) from the current posterior, takes the shortest route to the
sampled goal, and then updates its posterior. (d) Exploration strategy learned
by variBAD. The grey background represents the approximate posterior the agent
has learned. The predictions are not perfectly calibrated, and the model gener-
ally predicts slightly higher probabilities, shown by the darker shade compared
to (b). (e) Average return over all possible environments, over six episodes with
15 steps each (after which the agent is reset to the starting position). VariBAD
results are averaged across 20 random seeds. The performance of any exploration
strategy is bounded above by the optimal behaviour (of a policy with access to
the true goal position). The Bayes-optimal agent matches this behaviour from the
second episode, whereas posterior sampling needs six rollouts. VariBAD closely
approximates Bayes-optimal behaviour in this environment.

ZINTGRAF, SCHULZE, Lu, FENG, IGL, SHIARLIS, GAL, HOFMANN, AND WHITESON

More specifically, we propose variational Bayes-Adaptive Deep RL (variBAD), a way to
meta-learn to perform approximate inference on an unknown task,! and incorporate task
uncertainty directly during action selection. Given a distribution over MDPs p(M), we
represent a single MDP M using a learned, low-dimensional stochastic latent variable m
and simultaneously meta-train:

1. A variational auto-encoder that can infer the posterior distribution over m in a new
task, given the agent’s experience, while interacting with the environment, and

2. A policy that conditions on this posterior belief over MDP embeddings, and thus
learns how to trade off exploration and exploitation when selecting actions under task
uncertainty.

Figure le shows the performance of our method versus the hard-coded optimal strat-
egy (with privileged goal information), the Bayes-optimal strategy, and posterior sampling
strategy. VariBAD’s performance closely matches the Bayes-optimal one, matching optimal
performance from the third rollout.

We evaluate our approach on two toy domains, the GridWorld shown above and a 2D
PointRobot Navigation task, which illustrate how variBAD maximises expected online re-
turn using the meta-learned approximate belief. We further evaluate variBAD on the widely
used MuJoCo meta-RL benchmarks, and show that variBAD exhibits superior exploratory
behaviour at test time compared to existing methods, achieving higher returns during learn-
ing. Lastly, on the recently proposed challenging Meta-World ML1 benchmark, variBAD
achieves state of the art performance with a large margin compared to existing methods,
fully solving two out of the three ML1 benchmark tasks for the first time. As such, variBAD
opens a path to tractable approximate Bayes-optimal exploration for deep reinforcement
learning.?

2. Background

We define a Markov decision process (MDP) as a tuple M = (S, A, R, T, Ty, v, H) with S
a set of states, A a set of actions, R(7¢+1|S¢,at, st+1) a reward function, T'(s=s+1|s¢, ar)
a transition function, Tp(s=sp) an initial state distribution, v a discount factor, and H
the horizon.® In the standard RL setting, we want to learn a policy 7 that maximises

J(m) = Enrr [Zi?)l ’th(rHl]st,at,stH)} , the expected return. Here, we consider a

multi-task meta-learning setting, which we introduce next.

1. We use the terms environment, task, and MDP, interchangeably.

2. This paper extends the conference paper titled “VariBAD: A Very Good Method for Bayes-Adaptive
Deep RL via Meta-Learning” published in the Proceedings of the International Conference on Learning
Representations (ICLR) 2020 by Zintgraf, Shiarlis, Igl, Schulze, Gal, Hofmann, and Whiteson (Zintgraf
et al., 2020). The journal version substantially extends the experimental evaluation, adding results
on: Sparse 2D Navigation, MuJoCo AntGoal and Humanoid, and Meta-World ML1. Additionally, we
perform empirical analyses over choices in our loss function (modelling horizon and KL regularisation),
and study the robustness of the latent dimensionality.

3. Henceforth T'(s=s¢+1]|st, a:) and To(s=so) are denoted T'(S¢+1|s¢, a:) and To(so) for brevity.

VARIBAD

2.1 Training Setup

We adopt the standard meta-learning setting where we have a distribution p(M) over MDPs
from which we can sample during meta-training, with an MDP M; ~ p(M) defined by
a tuple M; = (S, A, R;,T;,T;0,7,H). Across tasks, the reward and transition functions
can vary, but typically share some structure. The index ¢ represents an unknown task
description (e.g., a goal position or natural language instruction) or task ID. Sampling an
MDP from p(M) is typically done by sampling a reward and transition function from a
distribution p(R,T). During meta-training, we aim to maximise the expected adaptation
performance across MDPs. That is, batches of tasks are repeatedly sampled, and a small
training procedure is performed on each of them, with the goal of learning to learn. At
meta-test time, the agent is evaluated based on the average online return it achieves within
a fixed amount of time on a new task drawn from p, requiring it to learn fast and trade-
off efficiently between exploration and exploitation. Doing this well requires at least two
things: (1) incorporating prior knowledge obtained in related tasks, and (2) reasoning about
task uncertainty when selecting actions to trade off exploration and exploitation. In the
following, we combine ideas from meta-learning and Bayesian RL to tackle these challenges.

2.2 Bayesian Reinforcement Learning

When the MDP is unknown, optimal decision making has to trade off exploration and
exploitation when selecting actions. In principle, this can be done by taking a Bayesian ap-
proach to reinforcement learning formalised as a Bayes-Adaptive MDP (BAMDP), the solu-
tion to which is a Bayes-optimal policy (Bellman, 1956; Duff and Barto, 2002; Ghavamzadeh
et al., 2015).

In the Bayesian formulation of RL, we assume that the transition and reward functions
are distributed according to a prior by = p(R,T"). Since the agent does not have access to
the true reward and transition function, it can maintain a belief

bt<R7 T) = p(R7 T|T:t)7

which is the posterior over the MDP given the agent’s experience 7., = {sg, ag, 1, S1, ..., St}
up until the current timestep t. This is often done by maintaining a distribution over the
model parameters.

To allow the agent to incorporate the task uncertainty into its decision-making, this
belief can be augmented to the state, resulting in hyper-states s, € ST = S x B, where B
is the belief space. These transition according to

T (s5alsd ae,re) = T (st best[se, ar, 7o, be)
= T+(3t+1|5t7at7bt) T+(bt+1’3t,at,7’tybt, St+1)
= By, [T'(st41lst, ar)] 0(ber1 = p(R, T|7:¢41)),
i.e., the new environment state s; is the expected new state w.r.t. the current posterior
distribution of the transition function, and the belief is updated deterministically according

to Bayes rule. The reward function on hyper-states is defined as the expected reward under
the current posterior (after the state transition) over reward functions,

R (s, ar, s711) = RY (¢, be, ag, Se41, beg1) = By [R(st, ag, 5041)] -

ZINTGRAF, SCHULZE, Lu, FENG, IGL, SHIARLIS, GAL, HOFMANN, AND WHITESON

This results in a BAMDP M+ = (S*, A, RT,T*, T, ,~, H") (Duff and Barto, 2002), which
is a special case of a belief MDP, i.e., the MDP formed by taking the posterior beliefs
maintained by an agent in a partially observable MDP and reinterpreting them as Markov
states (Cassandra et al., 1994). In an arbitrary belief MDP, the belief is over a hidden
state that can change over time. In a BAMDP, the belief is over the transition and reward
functions, which are constant for a given task. The agent’s objective is now to maximise
the expected return in the BAMDP,

Ht—-1

j+(7r) = EbO,T(T,T+,7r Z 7tR+(74t+1‘32—7 ag, 32—4,-1) 5 (1)
t=0

i.e., maximise the expected return in an initially unknown environment, while learning,
within the horizon H*. The MDP horizon H is distinct from the BAMDP horizon H*.
Although they often coincide, we might instead want the agent to act Bayes-optimal within
the first N MDP episodes, so HT™= NxH. Trading off exploration and exploitation op-
timally depends heavily on how much time the agent has left (e.g., to decide whether
information-seeking actions are worth it).

The objective in Equation 1 is maximised by the Bayes-optimal policy, which automat-
ically trades off exploration and exploitation: it takes exploratory actions to reduce its task
uncertainty only insofar as it helps to mazximise the expected return within the horizon by
improving expected future returns. The BAMDP framework is powerful because it provides
a principled way of formulating Bayes-optimal behaviour. However, solving the BAMDP is
hopelessly intractable for most interesting problems. The main challenges are as follows.

e We typically do not know how to parameterise the reward and/or transition model,
e The belief update (computing the posterior p(R,T|T.t)) is often intractable, and
e Even with the correct posterior, planning in belief space is typically intractable.

In the following, we propose a method that simultaneously meta-learns the reward and
transition functions, how to perform inference in an unknown MDP, and how to use the
belief to maximise expected online return. Since the Bayes-adaptive policy is learned end-
to-end with the inference framework, no planning is necessary at test time. We make
minimal assumptions (no privileged task information is required during training), resulting
in a highly flexible and scalable approach to Bayes-adaptive Deep RL.

3. Bayes-Adaptive Deep RL via Meta-Learning

In this section, we present variBAD and describe how we tackle the challenges outlined
above. We start by describing how to represent reward and transition functions, and (poste-
rior) distributions over these. We then consider how to meta-learn to perform approximate
variational inference in a given task, and finally put all the pieces together to form our
training objective.

In the typical meta-learning setting, the reward and transition functions that are unique
to each MDP are unknown, but also share some structure across the MDPs M; in p(M).
We know that there exists a true ¢ which represents either a task description or task ID,

VARIBAD

but we do not have access to this information. We therefore represent this value using a
learned stochastic latent variable m;. For a given MDP M; we can then write

Ri(ri41|se, at, se41) = R(reg1]8e, at, Se41;m;4), (2)

Ti(st4118¢, ar) = T (Spq1|5¢, ar; my), (3)

where R and T are shared across tasks. Since we do not have access to the true task
description or ID, we need to infer m; given the agent’s experience up to time step t
collected in M;,

T(i):(sarsar St—1,0¢—1,T¢, St)

-t 0,80, 71,21, U1, 7255 9t—1,Ut—-157¢,9t),

i.e., we want to infer the posterior distribution p(mi|7':§f)) over m; given T:gi) (from now on,
we drop the sub- and superscript ¢ for ease of notation).

Recall that our goal is to learn a belief over the MDPs, and given a posteriori knowledge
of the environment compute the optimal action. Given the above reformulation, it is now
sufficient to reason about the embedding m, instead of the transition and reward dynamics.
This is particularly useful when deploying deep learning strategies, where the reward and
transition function can consist of millions of parameters, but the embedding m can be a
small vector.

3.1 Approximate Inference

Computing the exact posterior is typically not possible: we do not have access to the MDP
(and hence the transition and reward function), and marginalising over tasks is computation-
ally infeasible. Consequently, we need to learn a model of the environment py (7. g+ |a.g+_1),
parameterised by 6, together with an amortised inference network gy (m|7,), parameterised
by ¢, which allows fast inference at runtime at each timestep t. The action-selection policy
is not part of the MDP, so an environmental model can only give rise to a distribution of
trajectories when conditioned on actions, which we typically draw from our current policy,
a ~ m. At any given time step t, our model learning objective is thus to maximise

IE:p(M,T:HJr) [logpe(T:H+|a:H+fl)} > (4)

where p(M, 7.7+) is the trajectory distribution induced by our policy and we slightly abuse
notation by denoting by 7 the state-reward trajectories, excluding the actions. In the
following, we drop the conditioning on a.y+_; to simplify notation.

Instead of optimising Equation 4 directly, which is intractable, we can optimise a
tractable lower bound, defined with a learned approximate posterior g4(m|r;) which can
be estimated by Monte Carlo sampling (for the full derivation see AppendixA):

Epsr) logpo(r.a+)] = Ep | By, (miry) [log po(T.5r+[m)] — K L(gy(m|7)[|[pe(m)) | (5)
= ELBO;.
The term E,[log p(7.5+|m)] is often referred to as the reconstruction loss, and pg(7|m) as

the decoder. The term K L(q(m|7.)||ps(m)) is the KL-divergence between our variational
posterior ¢4 and the prior over the embeddings py(m).

ZINTGRAF, SCHULZE, Lu, FENG, IGL, SHIARLIS, GAL, HOFMANN, AND WHITESON

Instead of using the same fixed prior for each timestep and ELBO;, we set the prior
to our previous posterior, g(m|7¢—1), with initial prior g,(m) = N(0,I). We thus have
KL(q(m|74)|lg(m|m—1)). This is akin to a Bayesian filtering update, and works better
empirically, as we confirm in Section 6.2. We take the gradient w.r.t. the entire term (i.e.,
through the current and previous approximate posterior).

As can be seen in Equation 5 and Figure 2, when the agent is at timestep ¢, we encode
the past trajectory 1. to get the current posterior g(m/|7.;) since this is all the information
available to perform inference about the current task. We then decode the entire trajectory
T.g+ including the future, i.e., model Eq[p(7.g+|m)]. This is different than the conventional
VAE setup (and possible since we have access to this information during training). Decoding
not only the past but also the future is important because this way, variBAD learns to
perform inference about unseen states given the past. The reconstruction term log p(7.+|m)
factorises as

lng(T:H+‘m, a:H+—1) = Ing((So, T0y. oy St—1,Tt—1, 5t)|m7 a:H*—l) (6)
H+—1
= log p(so|m) + Z [log p(siy1]si, ai, m)+log p(rig1|ss, as, sit1,m)].
=0

Here, p(so|m) is the initial state distribution T, p(s;i+1|s:, ai; m) the transition function 77,
and p(rip1|se, at, si+1;m) the reward function R'. Below, we include T in T” for ease of
notation.

3.2 Training Objective

We can now formulate a training objective for learning the approximate posterior distribu-
tion over task embeddings, the policy, and the generalised reward and transition functions
R’ and T'". We use deep neural networks to represent the individual components:

1. The encoder g4(m|7.), parameterised by ¢;

2. An approximate transition function 7”7 = pg(5i+1 |si, a;; m) and an approximate reward
function R’ = pf¥(rit1|st, ar, si11;m) which are jointly parameterised by 6; and

3. A policy my(at|st, gp(m|7¢)) parameterised by ¢ and dependent on ¢.

An overview of the network architecture is shown in Figure 2.

The policy 7y (a¢|st, g3(m|7.)) is conditioned on the environment state s; and the current
approximate belief by = g4(m||7.¢) over m. This is similar to the formulation of BAMDPs
introduced in Section 2.2, with the difference that we learn a unifying distribution over
MDP embeddings, instead of the transition/reward function directly. This makes learning
easier since there are fewer parameters to perform inference over, and we can use data from
all tasks to learn the shared reward/transition function. The posterior can be represented
by the distribution’s parameters (e.g., mean and standard deviation if ¢ is Gaussian).

Our overall objective is to maximise

H+

L(¢,0,%) =Epan | T, ¢) + XY ELBOW4,0) |, (7)

t=0

where J (v, ¢) is the expected return as defined in Section 2.

VARIBAD

Encoder Decoder i=0,.. H* -1
ht—l Zz—’ R
O\ — —Ti41
S Si+1—| Po +
t— IR
at—1—| 4¢ —>bt=CJ¢(m|T:t) ~ M —
’rt% — T
S;—
Policy
T |—

Figure 2: VariBAD architecture: A trajectory of states, actions and rewards is processed
online using an RNN to produce the posterior over task embeddings, g4(m|7:).
The posterior is trained using a decoder which predicts past and future states and
rewards from current states and actions. The policy conditions on the posterior
in order to act in the environment and is trained using RL.

3.3 Meta Training

During meta-training, we train the policy and the VAE using Equation 7.

In Equation 7, A weights the supervised model learning objective against the RL loss.
This is necessary since parameters ¢ are shared between the VAE and the policy. However,
we found that backpropagating the RL loss through the encoder is typically unnecessary
in practice. Not doing so speeds up training considerably, avoids the need to trade off
these losses, and prevents interference between gradients of opposing losses. In ablation
studies (see Appendix C.5) we found that backpropagating both losses through the encoder
can marginally improve performance in some cases, but can be detrimental in others, and
depends strongly on the relative weighting between the VAE and the RL loss. In our exper-
iments, we therefore optimise the policy and VAE alternatingly, with separate optimisers.

Meta-Training the VAE. The VAE is trained by approximating expectations in Equation
7 using Monte Carlo samples, and using the reparameterisation trick (Kingma and Welling,
2014). For t = 0, we use the prior g4(m) = N(0,I). We encode past trajectories using
a recurrent network, but other types of encoders could be considered like the ones used
in Zaheer et al. (2017); Garnelo et al. (2018); Rakelly et al. (2019). The encoder outputs
an approximate belief over the current task m, by predicting the mean and variance of a
Gaussian distribution. The decoder is trained using samples from this approximate poste-
rior, and by separately predicting the rewards and state transitions of the entire current
trajectory (i.e., including future steps to which we have access during meta-training).

ZINTGRAF, SCHULZE, Lu, FENG, IGL, SHIARLIS, GAL, HOFMANN, AND WHITESON

Equation 7 shows that the ELBO appears for all possible context lengths ¢. This way,
variBAD can learn to perform inference online (while the agent is interacting with an
environment), and decrease its uncertainty over time given more data. In practice, we may
subsample a fixed number of ELBO terms for computational efficiency if H™ is large.

Meta-Training the Policy. We meta-train the policy using proximal policy optimisation
(Schulman et al., 2017, PPO), but other methods can in principle be used, including off-
policy methods (see Dorfman et al. (2020)). The policy receives the approximate belief
as an input in addition to the state, allowing it to meta-learn how to act approximately
Bayes-optimal. This approximate belief, g (m|7.), is represented by two vectors: the mean
and variance of a Gaussian distribution with diagonal covariance matrix. These two vectors
are predicted by the encoder, and are concatenated with the environment state before being
passed to the policy. In the default case, this is treated as part of the observation, and the
RL loss is not backpropagated through the encoder.

We train the RL agent and the VAE using different data buffers: the policy is only
trained with the most recent data since we use an on-policy algorithm in our experiments;
and for the VAE we maintain a separate, larger buffer of observed trajectories.

3.4 Meta Testing

At meta-test time, we roll out the policy in randomly sampled test tasks to evaluate per-
formance, by performing forward passed through the encoder (to compute the approximate
belief) and the policy (to choose how to act given the state and approximate belief). The
belief is updated after every step by feeding in the new (state, action, reward) tuple, allow-
ing the agent to adapt online. The decoder is not used at test time, and no gradient updates
are performed on the encoder or policy network: the agent has learned to act approximately
Bayes-optimal during meta-training.

4. Related Work

Bayesian Reinforcement Learning. Bayesian methods for RL can be used to quantify uncer-
tainty to support action-selection, and provide a way to incorporate prior knowledge into the
algorithms (we refer the reader Ghavamzadeh et al. (2015) for a review). A Bayes-optimal
policy is one that optimally trades off exploration and exploitation, and thus maximises
expected online return during learning. While such a policy can in principle be computed
using the BAMDP framework, it is unfortunately hopelessly intractable for all but the
smallest tasks. Existing methods are therefore restricted to small and discrete state and
action spaces (Asmuth and Littman, 2011; Guez et al., 2012, 2013), or a discrete set of tasks
(Brunskill, 2012; Poupart et al., 2006).

VariBAD opens a path to tractable approximate Bayes-optimal exploration for deep RL
by leveraging ideas from meta-learning and approximate variational inference, with the only
assumption that we can meta-train on a set of related tasks. Existing approximate Bayesian
RL methods often require us to define a prior or belief update on the reward and transition
functions, and rely on (possibly expensive) sample-based planning procedures. Due to the
use of deep neural networks however, variBAD lacks the formal guarantees enjoyed by some
of the methods mentioned above.

10

VARIBAD

Posterior sampling (Strens, 2000; Osband et al., 2013), which extends Thompson sam-
pling (Thompson, 1933) from bandits to MDPs, estimates a posterior distribution over
MDPs, in the same spirit as variBAD. This posterior is used to periodically sample a single
hypothesis MDP (e.g., at the beginning of an episode), and the policy that is optimal for the
sampled MDP is followed subsequently. This approach is less efficient than Bayes-optimal
behaviour and therefore typically has lower expected return during learning.

A related approach for inter-task transfer of abstract knowledge is to pose policy search
with priors as Markov Chain Monte Carlo inference (Wingate et al., 2011). Similarly Guez
et al. (2013) propose a Monte Carlo Tree Search method for Bayesian planning for tractable,
sample-based approximately Bayes-optimal behaviour. Osband et al. (2018) note that non-
Bayesian treatment for decision making can be arbitrarily suboptimal and propose a simple
randomised prior based approach for structured exploration. Some recent deep RL methods
use stochastic latent variables for structured exploration (Gupta et al., 2018; Rakelly et al.,
2019), which gives rise to behaviour similar to posterior sampling. Other ways to use the
posterior for exploration are, e.g., certain reward bonuses (Kolter and Ng, 2009; Sorg et al.,
2012) and methods based on optimism in the face of uncertainty (Kearns and Singh, 2002;
Brafman and Tennenholtz, 2002). Non-Bayesian methods for exploration are often used
in practice, such as other exploration bonuses (e.g., via state-visitation counts) or using
uninformed sampling of actions (e.g., e-greedy action selection). Such methods are prone
to wasteful exploration that does not help maximise expected reward.

Related to BAMDPs are contextual MDPs, where the task description is referred to as
a context, on which the environment dynamics and rewards depend (Hallak et al., 2015;
Jiang et al., 2017; Dann et al., 2019; Modi and Tewari, 2019). Research in this area is often
concerned with developing tight bounds by putting assumptions on the context, such as
having a small known number of contexts, or that there is a linear relationship between
the contexts and dynamics/rewards. Similarly, the framework of hidden parameter (HiP-)
MDPs assumes that there is a set of low-dimensional latent factors which define a family
of related dynamical systems (with shared reward structure). The assumptions in this line
of work are similar to the assumption we make in Equations 2 and 3 (Doshi-Velez and
Konidaris, 2016; Killian et al., 2017; Yao et al., 2018). These methods however do not
directly learn Bayes-optimal behaviour; instead, they allow for a longer training period in
new environments to infer the latents and train the policy.

Meta-Learning Bayes-Adaptive Policies. It has been shown theoretically (Ortega et al.,
2019) and empirically (Mikulik et al., 2020) that meta-trained agents approximate Bayes-
optimal agents on the given task distribution. A prominent model-free meta-RL approach
to this problem is to use the dynamics of recurrent networks for fast adaptation (RL?, Wang
et al. (2016); Duan et al. (2016)). At every time step, the network receives an auxiliary input
consisting of the preceding action and reward. This allows learning within a task to happen
online, entirely in the dynamics of the recurrent network, and no gradient adaptation is
needed at meta-test time. If we remove the decoder (Fig 2) and the VAE objective (Eq
4), variBAD reduces to this setting, i.e., the main differences are that we use a stochastic
latent variable (an inductive bias for representing uncertainty), together with a decoder to
reconstruct previous and future transitions and rewards (which acts as an auxiliary loss to
encode the task in latent space and deduce information about unseen states). While model-
free meta-learning methods (RL2, Wang et al. (2016); Duan et al. (2016)) can meta-learn

11

ZINTGRAF, SCHULZE, Lu, FENG, IGL, SHIARLIS, GAL, HOFMANN, AND WHITESON

approximately Bayes-optimal policies (Ortega et al., 2019; Mikulik et al., 2020), we show
empirically that they do not scale as well in terms of performance as variBAD. In addition,
variBAD provides explicit belief representations, which can be used in downstream tasks or
for auxiliary tasks (Zintgraf et al., 2021).

Closely related to our approach is the work of Humplik et al. (2019). Like variBAD, their
algorithm conditions the policy on a meta-learned approximate belief. This approximate
belief is learned using privileged information during meta-training such as a task description.
In comparison, variBAD meta-learns to represent the belief in an unsupervised way, and
does not rely on privileged task information.

Building on the conference version of this work, (Zintgraf et al., 2020), Dorfman et al.
(2020) propose a method to meta-learn Bayes-adaptive policies from offline data, and ad-
ditionally demonstrate good results when using an off-policy variant of variBAD. They use
variBAD in combination with the off-policy algorithms DQN (Mnih et al., 2015) (for dis-
crete control) and SAC (Haarnoja et al., 2018) (for continuous control), demonstrating that
variBAD can be combined with different RL algorithms.

Other Meta Reinforcement Learning Settings. Another popular approach to meta-RL
is to learn an initialisation of the model, such that at test time, only a few gradient steps
are necessary to achieve good performance (Finn et al., 2017; Nichol and Schulman, 2018).
These methods do not directly account for the fact that the initial policy needs to explore,
a problem addressed, a.o., by Stadie et al. (2018) (E-MAML) and Rothfuss et al. (2019)
(ProMP). In terms of model complexity, E-MAML and ProMP are relatively lightweight,
since they typically consist of a feed-forward policy. RL? and variBAD use recurrent mod-
ules, which increases model complexity but allows online adaptation. Other methods that
perform gradient adaptation at test time are, e.g., Houthooft et al. (2018) who meta-learn
a loss function conditioned on the agent’s experience that is used at test time to learn a
policy (from scratch); and Sung et al. (2017) who learn a meta-critic that can criticise any
actor for any task, and is used at test time to train a policy. Compared to variBAD, these
methods separate exploration (before gradient adaptation) and exploitation (after gradient
adaptation) at test time by design, making them less sample efficient.

Skill and Task Embeddings. Learning (variational) task or skill embeddings for meta or
transfer reinforcement learning is used in a variety of approaches. Hausman et al. (2018) use
approximate variational inference to learn an embedding space of skills (using a different
lower bound than variBAD). At test time a new embedder is learned that interpolates
between learned skills. Arnekvist et al. (2019) learn a stochastic embedding of optimal
Q-functions for different skills, and condition the policy on (samples of) this embedding.
Adaptation at test time is done in latent space. Co-Reyes et al. (2018) learn a latent space
of low-level skills that are controlled by a higher-level policy, framed within a hierarchical
RL setting. This embedding is learned using a VAE to encode state trajectories and decode
states and actions. Zintgraf et al. (2019) learn a deterministic task embedding, trained
similarly to MAML (Finn et al., 2017). Similar to variBAD, Zhang et al. (2018) use learned
dynamics and reward modules to learn a latent representation which the policy conditions.
They show that transferring the (fixed) encoder to new environments helps learning. Perez
et al. (2018) learn dynamic models with auxiliary latent variables, and use them for model-
predictive control. Lan et al. (2019) learn a task embedding where the encoder is updated
at test time using gradient descent, and the policy is fixed. Seemundsson et al. (2018)

12

VARIBAD

explicitly learn an embedding of the environment model, which is subsequently used for
model predictive control (and not, like in variBAD, for exploration). In the field of imitation
learning, some approaches embed expert demonstrations to represent the task; e.g., Wang
et al. (2017) use variational methods and Duan et al. (2017) learn deterministic embeddings.

VariBAD differs from the above methods mainly in what the embedding represents (i.e.,
task uncertainty) and how it is used: the policy conditions on the posterior distribution
over MDPs, allowing it to reason about task uncertainty and trade off exploration and
exploitation online. Our objective in Equation 5 explicitly optimises for Bayes-optimal
behaviour. Unlike some of the above methods, we do not use the model at test time, but
model-based planning is a natural extension for future work.

Variational Inference and Meta-Learning. A main difference of variBAD to many exist-
ing Bayesian RL methods is that we meta-learn the inference procedure, i.e., how to do a
posterior update. Apart from (RL) methods mentioned, related work in this direction can
be found, a.o., in Garnelo et al. (2018); Gordon et al. (2019); Choi et al. (2019). In contrast
to these supervised settings, variBAD’s inference procedure is tailored to Bayes-optimal RL,
a sequential setting where the objective of inference is to model beliefs over MDPs.

Partially Observable Markov Decision Processes (POMDPs). Several deep learning ap-
proaches to model-free reinforcement learning (Igl et al., 2019) and model learning for
planning (Tschiatschek et al., 2018) in partially observable Markov decision processes have
recently been proposed and use approximate variational inference methods. VariBAD by
contrast focuses on BAMDPs (Martin, 1967; Duff and Barto, 2002; Ghavamzadeh et al.,
2015), a special case of POMDPs where the transition and reward functions constitute the
hidden state and the agent must maintain a belief over them. While in general the hidden
state in a POMDP can change at each time-step, in a BAMDP the underlying task, and
therefore the hidden state, is fixed per task. We exploit this property by learning an em-
bedding that is fized over time, unlike approaches like the one by Igl et al. (2019) which
use filtering to track the changing hidden state. While we use the power of deep approxi-
mate variational inference, other approaches for BAMDPs often use more accurate but less
scalable methods, e.g., Lee et al. (2019) discretise the latent distribution and use Bayesian
filtering for the posterior update.

5. Empirical Evaluation

In this section we first investigate the properties of variBAD on the didactic gridworld
domain from Figure 1. These results show that variBAD performs structured and online
exploration as it infers the task. We then evaluate variBAD on several more challenging
domains: a sparse 2D navigation task, a range of tasks from the MuJoCo benchmark, and
the Meta-World ML1 benchmark. On these, variBAD achieves state of the art performance.
In Section 6, we perform ablation studies to motivate our design choices, and test how robust
variBAD is to the size of the latent space.

The two main baselines we consider are RL? (Duan et al., 2016; Wang et al., 2016) and
PEARL (Rakelly et al., 2019). RL? can be seen as a model-free version of variBAD. In
principle, it can learn to act approximately Bayes-optimal by performing task inference in
the recurrent state of the RNN. RL? only consists of an encoder and a policy, and trains
both end-to-end using an RL loss only. PEARL is akin to posterior sampling, which is

13

ZINTGRAF, SCHULZE, Lu, FENG, IGL, SHIARLIS, GAL, HOFMANN, AND WHITESON

a sub-optimal exploration strategy in theory compared to Bayes-optimal exploration (see
Figure 1), but has the advantage that computing the optimal policy for a single MDP
(sample from the approximate posterior) is more tractable than doing so in a BAMDP.

Experimental details, hyperparameters, as well as additional results, can be found in the
appendix. The source code is available at https://github.com/lmzintgraf/varibad .

5.1 GridWorld

To gain insight into variBAD’s properties, we start with a didactic gridworld environment.
The task is to reach a goal in a 5 x 5 gridworld (see the visualisation in Figure 1a). The goal
can be anywhere except around the starting cell, which is at the bottom left, and is selected
uniformly at random. The goal is unobserved by the agent, inducing task uncertainty
and necessitating exploration. Actions are: wup, right, down, left, stay, and are executed
deterministically. The horizon within the MDP is H = 15, and we set the horizon in the
BAMDP to Ht = 4 x H = 60, i.e., we train our agent to maximise performance for 4 MDP
episodes. After 15 steps the agent is reset to its starting position (but the goal position
stays the same). The agent gets a sparse reward signal: —0.1 on non-goal cells, and +1
on the goal cell (repeatedly if the agent stays on the goal). We use a latent dimensionality
of 5 (see Section 6.3 for a study on how different latent sizes affect performance). The
Bayes-optimal strategy is to explore until the goal is found (see Figure 1b), and stay at the
goal or return to it when reset to the initial position.

Figure 3 illustrates how variBAD behaves at test time with deterministic actions (i.e.,
all exploration is done by the deterministic policy, not via sampling). In Figure 3a we see
how the agent interacts with the environment over the course of three episodes (with a
fixed goal), with the red background visualising the approximate posterior belief, using the
learned reward function. VariBAD learns the correct prior and adjusts its belief correctly
over time: It predicts no reward for cells it has visited, and high expected rewards for
unvisited cells. It explores the remaining cells until it finds the goal, at which point its
posterior collapses to the correct task. As the agent gathers more data, more and more
cells are excluded (p(rew = 1) = 0, white cells), until eventually the agent finds the goal.

Figure 3b show the reward predictions: each line represents a grid cell and its value the
probability of receiving a reward at that cell. As the agent gathers more data, more and
more cells are excluded (p(rew = 1) = 0), until eventually the agent finds the goal. At this
point, the predictions correspond to the true reward function. In Figure 3¢ we visualise the
5-dimensional latent space (mean and variance in separate sub-plots). We see that once the
agent finds the goal, the posterior concentrates: the variance drops close to zero, and the
mean converges to a fixed value.

As we saw in Figure le, the behaviour of variBAD closely matches that of the Bayes-
optimal policy, which optimally trades off exploration and exploitation in an unknown en-
vironment, and outperforms posterior sampling. Our results on this gridworld indicate that
variBAD is an effective way to approximate Bayes-optimal control, and has the additional
benefit of giving insight into the task belief of the policy.

14

https://github.com/lmzintgraf/varibad

1.0

° ° o
= (2] [e-]

Avg Predicted Reward

o
N}

0.0

Figure 3:

VARIBAD

Episode 1

Episode 2

Episode 3
R
K
K
K

M
M
|

(a) Example Rollout

5
C
(]
o
= 0
€
2
©
- -5

1 15 30 45
Episodes
1 15 30 45
Environment Steps
(b) Reward Predictions (¢c) Latent Space

Behaviour of variBAD in the gridworld environment. (a) Hand-picked but rep-
resentative example test rollout. The red background indicates the posterior
probability of receiving a reward at that cell. (b) Probability of receiving a re-
ward for each cell, as predicted by the decoder, over the course of interacting with
the environment (average in black, goal state in green). (c) Visualisation of the
latent space; each line is one latent dimension, the black line is the average.

15

ZINTGRAF, SCHULZE, Lu, FENG, IGL, SHIARLIS, GAL, HOFMANN, AND WHITESON

o]
o

S
E _______________ 0
oo VariBAD —:
° RL2 A A
g 40 PEARL
u% 20)\

0

0 Episod? 30 (b) VariBAD example rollout (c) PEARL example rollout

(a) Meta-Test Performance

Figure 4: Meta-test performance on the Sparse 2D Navigation environment. (a): Perfor-
mance at meta-test time (averaged over the task distribution). (b) and (c): Ex-
ample rollouts of meta-trained variBAD (b) and PEARL (c) agents. PEARL does
not optimize for optimal exploration, and thus it requires many more episodes
to find the goal. On the other hand, variBAD optimises for optimal exploration,
efficiently covering possible goal locations, and is able to quickly find the goal.

5.2 Sparse 2D Navigation

We evaluate on a Point Robot 2D navigation task used by Gupta et al. (2018); Rakelly
et al. (2019); Humplik et al. (2019), to further illustrate how variBAD performs online
adaptation. The agent must navigate to an unknown goal sampled along the border of a
semicircle of radius 1.0, and receives a reward relative to its proximity to the goal when it
is within a goal radius of 0.2. Since this is a sparse reward environment, the Bayes-optimal
exploration strategy includes walking along the semi-circle until the goal is found.

Figure 4a shows the average performance of PEARL, RL?, and variBAD at test time,
when rolling out the agent for 30 episodes in a single task. VariBAD adapts much faster
to the task compared to PEARL. RL? also adapts rapidly but is less stable compared to
variBAD when rolled out for a much longer time than during training: both variBAD and
RL? were trained to perform well over three consecutive episodes.

To shed light on the performance difference between variBAD and PEARL, Figures
4b and 4c visualise representative example rollouts for meta-trained variBAD and PEARL
agents. We picked examples where the target goals are at the end of the semi-circle, which we
found are most difficult for the agent. PEARL performs posterior sampling for exploration
which means it is restricted to a fixed hypothesised goal position during each rollout. On
the other hand, variBAD (Figure 4b) strategically explores the space within an episode to
find the goal, which is more efficient. Once the goal is found, both variBAD and PEARL
are able to quickly return to it.

The two toy experiments, GridWorld and PointRobot, illustrate how variBAD makes
decisions: it adapts to the task online while updating the approximate belief, which allows
it to rapidly adapt to new tasks. In the following sections, we test variBAD on more
challenging meta-RL benchmarks, MuJoCo and Meta-World ML1.

16

VARIBAD

5.3 MuJoCo Continuous Control Meta-Learning Tasks

We show that variBAD can scale to more complex meta-learning settings by employing
it on MuJoCo (Todorov et al., 2012) locomotion tasks commonly used in the meta-RL
literature.* We consider the Ant-Dir, HalfCheetahDir, and Humanoid environments, where
the agent has to run either forwards or backwards (i.e., there are only two tasks); the
HalfCheetahVel environment where the agent has to run at different velocities; the Ant-
Goal environment where the agent has to navigate to an initially unknown goal position;
and the Walker environment where the system parameters are randomised. The rewards in
these environments are dense, so that in principle the agent only needs a few exploratory
actions to infer the task by observing the rewards it receives.

VariBAD and RL? were trained to maximise performance within two episodes (mainly
so that we can roll them out for multiple episodes at test time; we are primarily interested
in their adaptation behaviour within the first episode). PEARL (Rakelly et al., 2019),
was trained using the open sourced code®, to maximise performance after 3-5 episodes,
depending on the environment. E-MAML (Stadie et al., 2018) and ProMP (Rothfuss et al.,
2019) were trained using the open sourced code by Rothfuss et al. (2019)°, to maximise
performance after 1 gradient step on 10-20 rollouts. To get an approximate upper bound
on performance, we train a multi-task agent which conditions on a task descriptor, and an
ensemble of expert agents (one per task) whose performances are averaged, using PPO.

Figure 5 shows the average performance at test time across different tasks. While we
show the return of the agent during the first five rollouts, we emphasise that our primary
interest lies in the agent’s performance during the first episode, while learning about the
environment, which tells us how well the agent can trade off exploration and exploitation.

Only variBAD and RL? are able to adapt to the task at hand within a single episode.
VariBAD outperforms RL? in all environments except HalfCheetahVel where they are on
par, and is close to the multi-task agent’s performance in several environments. We generally
found that learning with RL? is slower and less stable (see learning curves and runtime
comparisons in Appendix C). We hypothesise that this is because the reinforcement learning
loss is backpropagated through an RNN. In variBAD on the other hand, we train the encoder
RNN with a supervised loss only. Even though the first rollout includes exploratory steps,
this matches the optimal multitask policy (which is conditioned on the true task description)
up to a small margin.

The methods PEARL (Rakelly et al., 2019), E-MAML (Stadie et al., 2018), and ProMP
(Rothfuss et al., 2019) are not designed to maximise reward during a single rollout, and
perform poorly in the first episode. They all require substantially more environment inter-
actions in each new task to achieve good performance. PEARL, which is akin to posterior
sampling, only starts performing well starting from the third episode. We evaluated E-
MAML and ProMP by performing gradient steps after every episode; however, they are
typically updated after collecting data for 20 episodes.

4. The MuJoCo environments are taken from https://github.com/katerakelly/oyster .

5. The implementation which we used for our PEARL experiments was published by Rakelly et al. (2019)
and can be found at https://github.com/katerakelly/oyster .

6. The implementation which we used for our E-MAML and ProMP experiments was published by Rothfuss
et al. (2019) and can be found at https://github.com/jonasrothfuss/ProMP .

17

https://github.com/katerakelly/oyster
https://github.com/katerakelly/oyster
https://github.com/jonasrothfuss/ProMP

ZINTGRAF, SCHULZE, LU, FENG, IGL, SHIARLIS, GAL, HOFMANN, AND WHITESON

Figure 5:

Cheetah-Dir Cheetah-Vel

250(Q = T T R o mm S S e LA R R B B § B B B &R B B B B 0§ B}

2000 -50

£ -75
=1
= 1500
Q -100 VariBAD
x -125 RL2
g) 1000 = = Expert
P ~150 — = Multi-Task
500 ~175 —@— ProMP
, ~&- E-MAML
0 00 ~- Pearl
-225
1 2 3 4 5 1 2 3 4 5
Ant-Dir Ant-Goal
1600 0
1200 R I R N o I e e e R
1200
- -200
—
5 1000 i
D 800 -
x
o) 600 -400
>
<C 400 -500
200 600
0
~700
1 2 3 4 5 1 2 3 4 5
Walker Humanoid
1200 1400
_________________ 1200
< 1000
—
2 1000
vy N "
%n .\./.H—. 800
S’ 600
< 600

400 @
&

| X)
[X)

b d
e Y0 ol —o — o o o

200
5 1 2

200
4 5

3 3
Episodes Episodes

Average test performance on six different MuJoCo environments, trained sepa-
rately with 10 seeds per MuJoCo environment per method. The meta-trained
policies are rolled out for 5 episodes to show how they adapt to the task. Values
shown are averages across tasks (95% confidence intervals shaded). Being an on-
line adaptation method, variBAD adapts within the first episode. It outperforms
other methods, even when these are given longer than one episode to adapt, and
even though the first episode includes exploratory actions. RL? is also an on-
line adaptation method and can adapt to the task within the first episode. On
most environments, variBAD outperforms RL? (Wang et al., 2016; Duan et al.,
2016) significantly. The other methods, PEARL (Rakelly et al., 2019), E-MAML
(Stadie et al., 2018), and ProMP (Rothfuss et al., 2019), need at least one episode
to adapt by design.

18

VARIBAD

Method Episode Reach Push Pick-Place
MAML* 10 48 74 12
PEARL* 10 38 71 28

RL2* 10 45 87 24
variBAD 1 100 100 29 (6/20 seeds)
variBAD 2 100 100 29

Table 1: Meta-test success rates on the ML1 Meta-World benchmark. *Results taken from
Yu et al. (2019). VariBAD was trained to maximise expected online return within
2 episodes (20 random seeds per setting). The first (few) episodes often includes
exploratory actions, yet variBAD has higher success rate in episode 1 than existing
methods. For the Pick-Place environment, in brackets we report the number of
seeds that learned something.

5.4 Meta-World

Finally, we evaluate variBAD on the challenging Meta-World ML1 benchmark (Yu et al.,
2019), which has emerged as a key challenge for the meta-learning community. In the Meta-
World environment, a robot arm has to perform different tasks like pushing objects to an
(initially unknown) target location. There are three variants of the ML1 benchmark: Reach
(where the robot has to reach different initially unknown goal positions), Push (where the
robot arm has to push objects to initially unknown goal positions), and Pick-Place (where
the robot arm has to pick up an object, and place it near a target goal in 3D space).

Table 1 shows the results for variBAD and several baselines on the ML1 benchmark.
VariBAD achieves state of the art results. On Reach and Push, variBAD outperforms the

previous state of the art results by a significant margin, and is the first to fully solve these
tasks. On the harder task Pick & Place, variBAD performs on par with PEARL.

Though the benchmark allows for up to 10 episodes for adaptation, we train variBAD to
optimise expected online return within two episodes. As these results show, variBAD can
adapt rapidly even within the first episode, which includes exploratory actions. On the Pick-
Place task, variBAD either learns to solve the task (6 seeds), or it does not meta-learn at all
(14 seeds). We hypothesise that variBAD (and the other methods) face a meta-exploration
challenge: the agent does not explore enough during meta-training, which prevents it from
learning how to adapt to the task. We found that increasing the episode horizon from 150
to 200 helps mitigate this problem to some extend (results not shown). We address the
challenge of meta-exploration more generally in follow-up work (Zintgraf et al., 2021).

6. Empirical Analysis

In this section, we first examine the impact of different VAE loss formulations on the
performance and approximate beliefs to shed light on our design choices. We further analyse
how variBAD’s performance is impacted by different choices for the latent dimension.

19

ZINTGRAF, SCHULZE, LU, FENG, IGL, SHIARLIS, GAL, HOFMANN, AND WHITESON

F—' —200 250

30
—400 200

20
150

Model All (default)
—— Model Next Timestep
—— Model Future

Model Past

|
o
o
S

Average return
|
®
<]
3
Average return
—
S
5

|
o
1
S
5}

Average return
-
o 5

50 Model All (default)

Model All (default)
—— Model Next Timestep / —— Model Next Timestep

—1200
—— Model Future o 7 —— Model Future

“1a00 | Model Past Model Past

0.0 0.5 10 15
Frames

0.4 0.6 0.8 1.0 0 1 2 3 4 5
Frames 1e8 Frames e7

[N
%o
o
o
Sy
N}

Figure 6: Performance of VAE decoding targets for (from left): GridWorld, AntGoal, and
Pointrobot (15/5/20 seeds). VariBAD’s default settings (modelling the past and
future) perform well, and behave expected in terms of predicted beliefs (Fig 7a).
Other choices either underperform (modelling only the past or only the next step),
or have undesired effects on the beliefs (modelling only the future, Fig 7c).

6.1 Modelling Horizon

When formulating our objective in Equation 4, we argue that at any time ¢ in its trajectory,
an agent should be able to model entire trajectories. In Equation 6 we see that this amounts
to reconstructing transitions and rewards from the past (< ¢) and the future (> ¢). The
intuition is that the VAE has to represent the task information in its belief, which encom-
passes a sufficient statistic about transitions the agent has already observed, and a belief
about transitions it can observe in the future. To analyse this choice empirically, we test
how different “modelling horizons” affect performance and the learned beliefs: modelling
only the past (< t), only the future (> t), or only one step into the future (¢ + 1).

Figure 6 shows the resulting learning curves for the GridWorld, Mujoco AntGoal, and
PointRobot tasks. The traditional VAE approach of reconstructing only the embedded part
of the trajectory (past) tends to produce latent codes not sufficiently informative to predict
future transitions and therefore leads to suboptimal performance. Similarly, targeting only
the subsequent transition (next) does not encode sufficient information to reliably inform
the policy. While decoding only the entire remainder of the observed training trajectories
(future) performs well, we find that this has an undesired effect on the learned beliefs,
discussed below.

Figure 7 visualises the approximate belief for different decoding targets in the Gridworld
environment. We do so by plotting the reward predictions of the decoder from the VAE
latent for each cell in the grid. Decoding only the past or only the next step leads to em-
beddings that predict no or only spurious rewards until the goal has been found (Figures
7b and 7d). Only decoding the future enables learning about the rewards prior to actually
encountering them, but leads to spurious predictions for visited states (Figure 7¢): predic-
tions of non-zero rewards at visited non-goal states are not penalised, as these are unlikely
to be revisited. These artefacts are cleared up by decoding full trajectories (Figure 7a),
which is the default setting we chose for the variBAD objective.

20

VARIBAD

~
I
o
-~
I
IS
-
]
~
-

H—{~
wn

TN

Episode 1
Episode 1
X
X
X

- HES

Episode 2
[T
[]
[]
[
]
[
[]
[

~
(]
°
o
2
o
w

|
[

Episode 3
[T
[
[]
[
[]
[
[T
[

|
[
|
[

Episode 3

(a) M

Episode 1
X
X
X
=
®
X

Episode 1

Episode 2

o
I

Episode 2
X
X
[
[1
Tl]
[|

]
[

Episode 3

Episode 3
D

N | L] o oG]
of [T 11441 = T T
(¢) Model Future (d) Model Next Step

E=5

i

Figure 7: Belief visualisation in the Gridworld environment for different decoding targets.
Compared to the default variBAD objective which models both the past and the
future (a), the approximate belief is less accurate when decoding only the past
(b), only the future (c), or only one step into the future (d). In (b) the agent
only learns to decode the past, and assigns low probability to all cells (seen and
unseen), when it has not found the goal yet. This strategy minimises the loss: for
seen cells it correctly predicts that they do not contain the goal; for unseen cells
it predicts the same (even though one of them actually contains the goal), which
however is not penalised through the loss. In (c) the agent only learns to decode
the future, and assigns high probability to all unseen cells, and also to some seen
cells, when it has not found the goal yet. Again, this minimises the loss: for
unseen cells it correctly predicts that they could contain the goal; for seen cells
the loss does not incentivise it to predict the correct thing and the predictions are
noisy. We believe some predictions are zero because there is a chance of the agent
re-visiting states. In (d) the agent only learns to predict the immediate-next step,
and assigns non-zero (but low) probability to these, when it has not found the
goal yet. Only when decoding both the entire past and future (default setting,
(a)), does the agent correctly predict that seen cells do not contain the goal, and
unseen cells could all contain the goal. All methods (a)-(d) learn to correctly
predict the goal position with high certainty once they have seen it once.

21

ZINTGRAF, SCHULZE, Lu, FENG, IGL, SHIARLIS, GAL, HOFMANN, AND WHITESON

30 7

/
20
0 R /
—— Filtering KL + detached gradients ['¥ — Filtering KL + detached gradients 50 —— Filtering KL + detached gradients
|’ —— KL to Fixed Prior b —— KL to Fixed Prior

—— KL to Fixed Prior ~1200 y
No KL regularisation No KL regularisation 0 No KL regularisation
Filtering KL (default) Filtering KL (default) Filtering KL (default)

|
o
o
S

Average return
Average return
|
®
<]

3
Average return
—

S
5

|
o
1
S
5}

-1400 0

0.0 0.5 10 15
Frames

0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4
Frames Le8 Frames 1e7

5N
5o

Figure 8: Comparison of VAE regularisation penalties

Figure 9: Performance of different KL regularisations in the VAE. Domains from left to
right are GridWorld (15 seed average), Ant-Goal (5 seed average) and Pointrobot
(20 seed average). Using the filtering KL objective performs well consistently
across these environments. Using the KL to a fixed prior works well except
in the PointRobot environment. We hypothesise this is due to the sparsity of
the environment, and the fact that “excluding” certain regions without rewards
becomes more challenging when the prior is fixed.

6.2 KL Regularisation

The second component of the ELBO, the KL term between the posterior and prior, acts as
a regulariser and prior for the latent codes. In the variBAD objective, the prior is set to
the previous approximate posterior, i.e., the KL term is defined as K L(q(m/|7.¢)||q(m|7-1)),
which is akin to Bayesian filtering. The gradient is taken w.r.t. both terms in the KL.

In this subsection, we empirically motivate this choice, by comparing to using a fixed
standard Normal distribution as a prior, N'(0,), across all times steps (“fixed prior”), de-
taching the gradient of the approximate previous posterior, or not doing KL regularisation.

The learning curves are shown in Figure 8 for the GridWorld, AntGoal, and Pointrobot
environment, and visualisations of the learned approximate beliefs in the GridWorld are
shown in Figure 10. Using a fixed prior is not sufficiently flexible to allow the learning of
good latent codes in all cases: the performance is significantly worse in PointRobot (Fig 8,
right), and when rolling out the meta-learned policy the variance increases sharply after the
agent finds the goal in the GridWorld (Fig 10c¢). This is undesirable—the variance should
collapse once the agent is certain about the task. By forcing the VAE to adhere to a fixed
prior we artificially increase uncertainty as the embedding is encouraged to regress towards
the prior even once the goal has been identified.

When training with the default variBAD objective we get reasonable variance estimates
that decay with progressing exploration and collapse when the goal is found (Fig 10a).
Using no KL regularisation at all slightly reduces performance (Fig 8) and a total collapse
in variance (Fig 10c). A lack of regularisation allows the VAE to encode observed trajectories
as point masses with no variance, indicating it overfits by producing a unique code for each
of them. Detaching the gradient on the previous approximate posterior significantly harms
performance in all cases (Fig 8) and yields an inflexible latent space (Fig 10b).

22

VARIBAD

10 || e
5.0
c S o5 c c
© © © ©
9} [} 9] @ 25
£ € oo\ £ £
« Y — o 00
c c ______ _______________ c c
g 8 o5 | Femmmmmmmmmssssssssses g 8 -2
i}] K] K
10 \ 5.0
L B I 7.5
-15
0.0016 0.10 0.14
12
0.0014 N 0.12
1.0 [) 0.08 — [0}
ﬂg) S 0.0012 g S 00
@08 @ 0.0010 © 0.06 O 508
z 2 z 2
© o6 @ 0.0008 © ©
> > > 0.06
- 4 0.0006 - 0.04 o
C 04 b g QC) 0.04
g 9 0.0004 =002 s
o2 £ 0002] 002
0.0 0.0000 0.00 0.00
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
env steps env steps env steps env steps
(a) (b) (c) (d)
Filtering KL Detached Gradient Fixed Prior No regularisation

Figure 10: Visualisation of latent estimates for different decoding targets, for a represen-
tative GridWorld rollout. The agent finds the goal after ~ 25 steps. When
using a filtering KL (variBAD’s default setting), the variance collapses once the
goal is found (a). When using a fixed Gaussian prior (c), the posterior behaves
unexpectedly: the variance increases once the goal is found.

6.3 Belief Dimensionality

Finally, we examine how the size of the latent belief impacts performance in Figure 11,
for the GridWorld and Ant-Goal tasks. As expected, if the latent dimensionality is too
small, then not all relevant information can be retained and the policy is unable to adapt to
different tasks. This only happens when using a dimensionality of size 1 or 2, and any choice
larger than this leads to decent performance. Interestingly, very large parameterisations
(1000 for GridWorld and 300 for AntGoal which was the maximum we could fit into the
memory of a single GPU) have a comparatively minute impact despite artificially increasing
the size of the state space on which the policy acts. In practice this means that as long as
we do not underparameterise the latent dimension, we achieve good performance.

7. Conclusion & Future Work

We presented variBAD, a novel deep RL method to learn approximately Bayes-optimal
behaviour, which uses meta-learning to exploit knowledge obtained in related tasks and
perform approximate inference in unknown environments. In a didactic gridworld environ-
ment, our agent closely matches Bayes-optimal behaviour, and in more challenging MuJoCo
tasks, variBAD outperforms existing methods in terms of achieved reward during a single
episode. On the recently proposed Meta-World ML1 benchmark, variBAD outperforms
existing methods by a large margin and fully solves two out of the three benchmark tasks
for the first time. In summary, we believe variBAD opens a path to tractable approximate
Bayes-optimal exploration for deep reinforcement learning.

23

ZINTGRAF, SCHULZE, Lu, FENG, IGL, SHIARLIS, GAL, HOFMANN, AND WHITESON

g 1.0 -'\\\

Qv

= N

[1v]

e 08

o

=

c 06

2

[}

=04

[+

=

@ 0.2

o

E .

o —— GridWorld
0.0

< AntGoal

100 2 3 10! 102 103

#Latent features

Figure 11: Normalised performance for different number of latent features, for the Grid-
world and Ant environment. As long as the latent is not underparameterised,
variBAD achieves good performance. Only when vastly overparameterising the
latent we see a small performance decrease.

There are several interesting directions of future work based on variBAD. For example,
we currently do not use the decoder at test time, but it could be used for online planning,
or to get a sense for how wrong the predictions are (which might indicate we are out
of distribution, and further training is necessary). Another exciting direction for future
research is considering settings where the training and test distribution of environments
are different. Generalising to out-of-distribution tasks poses additional challenges and in
particular for variBAD two problems are likely to arise: the inference procedure will be
wrong (the prior and/or posterior update) and the policy will not be able to interpret a
changed posterior. In this case, further training of both the encoder/decoder might be
necessary, together with updates to the policy and/or explicit planning.

Acknowledgments

We thank Anuj Mahajan, Joost van Amersfoort, Andrei Rusu, Dushyant Rao, and everyone
at WhiRL for useful discussions and feedback. Luisa Zintgraf is supported by the 2017
Microsoft Research PhD Scholarship Program, and the 2020 Microsoft Research EMEA
PhD Award. Sebastian Schulze is supported by Dyson. Maximilian Igl and Cong Lu are
supported by the UK EPSRC CDT in Autonomous Intelligent Machines and Systems. This
work was supported by a generous equipment grant and a donated DGX-1 from NVIDIA,
and enabled in part by computing resources provided by Compute Canada. This project has
received funding from the European Research Council under the European Union’s Horizon
2020 research and innovation programme (grant agreement number 637713).

24

VARIBAD

Appendix A. Full ELBO derivation

Equation 5 can be derived as follows.

)% m!n)d }
qp(m|7:t)

s [253]

po(TH,m)]

qg(m|7+)

=E,, g5(mlr) [log pg(T.zr|m) + log po(m) — log g4 (m|T.t)]

E,0,7.) logpe(T.)] = E, [bg/pe(TH,

> Ep qs(mlre) [log

= By |Egyonir) 108 20 (7am)] = K L{gs(mIo)][po(m)
= ELBO;.

Appendix B. Experiments: GridWorld

Here we provide additional remarks and figures for the GridWorld results from Section 5.1.

B.1 Additional Remarks

Figure 3c visualises how the latent space changes as the agent interacts with the environ-
ment. As we can see, the value of the latent dimensions starts around mean 0 and variance
1, which is the prior we chose for the beginning of an episode. Given that the variance
increases for a little bit before the agent finds the goal, this prior might not be optimal. A
natural extension of variBAD is therefore to also learn the prior to match the task at hand.

B.2 Comparison to RL2

Figure 12a shows the learning curves for variBAD and RL2, in comparison to a multitask
policy (which has access to the goal position). We trained these policies on a horizon of
H™ =4 x H = 60, i.e., on a BAMDP in which the agent has to maximise online return
within four episodes. We indicate the values of a hard-coded Bayes-optimal policy, and a
hard-coded posterior sampling policy using dashed lines.

Figure 12b shows the end-performance of variBAD and RL2?, compared to the hard-
coded optimal policy (which has access to the goal position), Bayes-optimal policy, and
posterior sampling policy. VariBAD and RL? both closely approximate the Bayes-optimal
solution. By inspecting the individual runs, we found that variBAD learned the Bayes-
optimal solution for 4 out of 20 seeds, RL? zero times. Both otherwise find solutions that
are very close to Bayes-optimal, with the difference that during the second rollout, the cells
left to search are not all on the shortest path from the starting point.

VariBAD and RL? were trained on 4, and evaluated on 6 episodes. After the fourth
rollout, we do not fix the latent / hidden state, but continue rolling out the policy as before.
We find that the performance of RL? drops again after the fourth episode: this is likely due
to instabilities in the 128-dimensional hidden state. VariBAD’s latent representation, the
approximate task posterior, is concentrated and does not change with more data.

25

ZINTGRAF, SCHULZE, LU, FENG, IGL, SHIARLIS, GAL, HOFMANN, AND WHITESON

£ £
5 0 3
8 B o
[0}] Q
& S
§ —— Oracle g 4 --- Optimal
< variBAD < -l Bayes-Optimal
10
— RL2 z variBAD
Bayes-Optimal —i— RL2
0 Posterior Sampling ¢ —a— Posterior Sampling
00 0z 04 06 0.8 1.0 12 14 1 2 3 4 5]
Frames te7 Episodes
(a) Learning curves. (b) Average return per test episode.

Figure 12: Results for the GridWorld toy environment. Results are averages over 20 seeds
(with 95% confidence intervals for the learning curve).

Appendix C. Experiments: MuJoCo

In this section we provide the learning curves (C.1) for the MuJoCo environments from
Section 5.3. We also provide additional analyses of the learned agent behaviour (C.2 and
how the latent space behaves at test time C.3). C.4 provides a runtime comparison, and
C.5 an ablation on backpropagating the RL loss through the VAE encoder.

C.1 Learning Curves

Figure 13 shows the learning curves for the MuJoCo environments for all approaches. The
multitask and expert policies were trained using PPO. PEARL (Rakelly et al., 2019) was
trained using the reference implementation provided by the authors. The environments we
used are also taken from this implementation. E-MAML (Stadie et al., 2018) and ProMP
(Rothfuss et al., 2019) were trained using the reference implementation provided by Rothfuss
et al. (2019).

As we can see, PEARL is much more sample efficient in terms of number of frames
than the other methods (Fig 13), which is because it is an off-policy method. On-policy vs
off-policy training is an orthogonal issue to our contribution, but an extension of variBAD
to off-policy methods has been done in Dorfman et al. (2020). Doing posterior sampling
using off-policy methods also requires PEARL to use a different encoder (to maintain order
invariance of the sampled trajectories) which is non-recurrent (and hence faster to train,
see next section).

For all MuJoCo environments, we trained variBAD with a reward decoder only (even
for Walker, where the dynamics change, we found that this has superior performance).

26

Cheetah-Dir
2500 oy |

2000

—— ProMP
.. RL2
—— E-MAML

Average Return (Episode 1)

00 02 04 06 08
Frames

Ant-Dir
1600
1400

1200

1000

Frames

500 ! ------ Multi-Task
' === Expert H
i VariBAD
)

VARIBAD

Cheetah-Vel

Frames

Ant-Goal

Frames

Walker
1400

1200 -

1000 /

Frames et

Humanoid
3000

2500

2000

1500

1000

Frames ted

Figure 13: Learning curves for the MuJoCo results presented in Section 5.3. The plots
show the performance at the N-th rollout. For variBAD and RL?, N = 2. For
PEARL, N = 10. For ProMP and E-MAML, N = 30 — 60 (3 gradient steps on
rollouts of length 10-20 depending on the environment).

40
30
E
2 20
I
(1]
o
O 10
2
< /4
0 —_1 —_ 5
2 — 10
— & —— 100
-10

0.00 0.25 0.50 0.75 1.00
Frames

— 250

— 500

— 1000
125 150 175

(a) GridWorld.

2.00
1e7

—200

—400

—600

—800

—1000

Average return

-1200

—1400

—_—1 — 5 —— 50

2 — 10 —— 100

-3 — 25 — 300
0.2 0.4 0.6 0.8 1.0
Frames 1e8

(b) AntGoal.

Figure 14: Learning curves for different VAE latent dimensions, for the GridWorld environ-
ment (a) and the MuJoCo AntGoal environment (b).

27

ZINTGRAF, SCHULZE, LU, FENG, IGL, SHIARLIS, GAL, HOFMANN, AND WHITESON

Episode 1 Episode 2 Episode 3
200
150
[72]
% 100
n
50
0
200 variBAD
— RL2
150 = PEARL
w ProMP
8_ 100 E-MAML
n
80
o
-50 0 50 -50 0 50 -50 0 50
X-position X-position X-position

Figure 15: Test time behaviour for the task “walk left” in HalfCheetahDir. The x-axis
reflects the agent’s position; the y-axis the environment steps (to be read from
bottom to top). Rows are separate examples, columns the number of rollouts.

C.2 CheetahDir Test Time Behaviour

To get a sense for where these differences between the different approaches might stem
from, consider Figure 15 which shows example behaviour of the policies during the first
three rollouts in the HalfCheetahDir environment, for the task “go left”. VariBAD and
RL? adapt to the task online, whereas PEARL acts according to the current sample, which
in the first two rollouts can mean walking in the wrong direction. For a visualisation of the
variBAD latent space at test time for this environment see Figure 16.

C.3 Latent Space Visualisation

A nice feature of variBAD is that it can give us insight into the uncertainty of the agent
about what task it is in. Figure 16 shows the latent space for the HalfCheetahDir tasks
"go right” (top row) and ”go left” (bottom row). We observe that the latent mean and
log-variance adapt rapidly, within just a few environment steps (left and middle figures).
This is also how fast the agent adapts to the current task (right figures). As expected, the
variance decreases over time as the agent gets more certain. It is interesting to note that
the values of the latent dimensions swap signs between the two tasks.

Visualising the belief in the reward/state space directly, as we have done in the Grid-
World example, is more difficult for MuJoCo tasks, since we now have continuous states
and actions. What we could do instead, is to additionally train a model that predicts a
ground-truth task description (separate from the main objective and just for further analy-
sis, since we do not want to use this privileged information for meta-training). This would
give us a more direct sense of what task it thinks it is in.

28

VARIBAD

Task: walk right

) 175
2 150
0.0 \
K a 125
o L Q 100
2
~ @

latent mean
latent variance

0 20 60 80 100
1 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 position
env steps env steps
Task: walk left
N 050 200
175
025
2 ° 150
< 2 oo
© c
o s o 1
g ° S 025 g 100
2 g s
© 2 050 1
=, =
- \7 50
0.75
25
-4
1.00 0
. -120 -100 -80 -60 -40 -20 0
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 position
env steps env steps

Figure 16: Visualisation of the latent space at meta-test time, for the HalfCheetahDir en-
vironment and the tasks ”go right” (top) and the task "go left” (bottom). Left:
value of the posterior mean during a single rollout (200 environment steps). The
black line is the average value. Middle: value of the posterior log-variance dur-
ing a single rollout. Right: Behaviour of the policy during a single rollout. The
x-axis show the position of the Cheetah, and the y-axis the step (should be read
from bottom to top).

C.4 Runtime Comparison

The following are rough estimates of average run-times for the HalfCheetahDir environment
(from what we have experienced; we often ran multiple experiments per machine, so some
of these might be overestimated and should be mostly understood as giving a relative sense
of ordering).

e ProMP, E-MAML: 5-8 hours

variBAD: 48 hours
RL2: 60 hours

e PEARL: 24 hours

E-MAML and ProMP have the advantage that they do not have a recurrent part such
as variBAD or RL?. Forward and backward passes through recurrent networks can be slow,
especially with large horizons.

Even though both variBAD and RL? use recurrent modules, we observed that variBAD
is faster than RL? when training the policy with PPO. This is because we do not back-
propagate the RL-loss through the recurrent part, which allows us to make the PPO mini-

29

ZINTGRAF, SCHULZE, Lu, FENG, IGL, SHIARLIS, GAL, HOFMANN, AND WHITESON

1500

1400
-100

1300 /
200

Y 4
1200
-300
1100
-400
1000
500 | e
900 /
00 W
500 VariBAD o0
VariBAD; Backprop RL loss (w_VAE = 1)
700 —— VariBAD: Backprop RL loss (w_VAE = 1e-3) 700
RL2
60000 ‘ 02 04 06 08 10 _80000 02 04 06 08 0
Frames Te8 Frames 1e8
(a) AntDir (b) AntGoal

Figure 17: Learning curves for the MuJoCo AntDir (a) and AntGoal (b) environments,
when backpropagating the RL loss through the encoder. Depending on the
task, this can help (a) or hurt (b) performance, and critically depends on the
relative weight between VAE and RL loss.

batch updates without having to re-compute the embeddings (so it saves us a lot of for-
ward /backward passes through the recurrent model). This difference would likely be less
if we used a different RL algorithm which does not rely on this many forward/backward
passes per policy update.

C.5 Ablation Study: Backpropagating the RL loss Through the Encoder

In the main experiments presented in the paper, we do not backpropagate the RL loss
through the encoder. Instead, we alternate between updating the VAE with the ELBO
loss, and updating the policy with the PPO loss (and detaching the gradient when feeding
the belief into the policy). We do so because this performs sufficiently well, and has two
advantages: first, we do not have to calibrate the relative weighting between the RL and
the VAE loss; second, it is much faster in practice because otherwise we would have to
re-compute the belief embedding for each PPO mini-batch.

Figure 17 shows the learning curves of the variBAD agent in the AntDir and AntGoal
environments, when backpropagating the RL loss compared to our standard setting and
compared to RL2. These results show that sometimes, combining the RL and VAE loss can
marginally improve performance (Figure 17a), but it can also significantly hurt performance
(Figure 17b) if the relative weighting is not calibrated correctly. In terms of experiment
runtime, when backpropagating the RL loss through the encoder is as slow as RL? (around
66% slower in these environments).

30

VARIBAD

Appendix D. Experiments: Meta-World

Figure 18 shows the learning curves for the Meta-World ML1 tasks for variBAD (20 seed
averages with 95% confidence intervals). We followed the evaluation protocol of Yu et al.
(2019).

=10 7 v = 1.0 g
8 o8 —— reach 2 o8
o ——— push "
P 06 p. 0 0.6
o —— pickplace 8
S 04 O 04
S >
(7)) . (7))
o 02 o 02
>
< 00 < o0
= 300000 — 300000
.(—U w
5)
S~
— 200000 = 200000
| -
= 3
-
) ()
£ 100000 < 100000
< 2
>
< <
0 0
o 1 2 3 4 5 o 1 2 3 4 5
Frames le7 Frames le7

Figure 18: Learning curves for the different ML1 Meta-World tasks. Shown are the success
rates (top row) and average returns (bottom row) for the training set (first
column) and test set (second column).

Appendix E. Hyperparameters

We used the PyTorch framework (Paszke et al., 2017) for our experiments. The hyper-
parameters for GridWorld, MuJoCo CheetahDir, PointRobot and MetaWorld ML1-Push
can be found in the tables below. For more details, see our reference implementation at
https://github.com/lmzintgraf/varibad.

We used different number of seeds per experiment to balance significance of results and
computational required, due to the inherent randomness/difficulty of different tasks. For
the main experiments, we used 20 seeds for GridWorld/Navigation/Meta-World, and 10

31

https://github.com/lmzintgraf/varibad

ZINTGRAF, SCHULZE, Lu, FENG, IGL, SHIARLIS, GAL, HOFMANN, AND WHITESON

seeds per MuJoCo environment. For the ablation studies, we used fewer for MuJoCo (5
instead of 10), and GridWorld (15 instead of 20) due to computational constraints.

Grid Cheetah Point ML1

World Dir Robot Push
max_rollouts_per_task 4 2 3 3
policy_state_embedding dim 16 64 64 64
policy_latent_embedding_dim 16 64 64 64
norm_state_for_policy True True True True
norm _latent_for_policy True True True True
norm_rew _for_policy True True True True
norm_actions_pre_sampling False True False False
norm_actions_post_sampling False False False False
policy_layers [32] [128, 128] [128, 128, 128] [128, 128, 128]
policy_activation_function tanh tanh tanh tanh
policy_initialisation normec norme normec norme
policy_anneal Ir False False False False
policy ppo ppo ppo ppo
policy_optimiser adam adam adam adam
ppo_num_epochs 2 16 2 2
ppo_num_minibatch 4 4 8 8
ppo_clip_param 0.05 0.1 0.1 0.1
Ir_policy 0.0007 0.0007 0.0007 0.0007
num._processes 16 16 16 16
policy_num_steps 60 800 200 200
policy_eps 1le-08 1e-08 1e-08 1e-08
policy_value_loss_coef 0.5 0.5 0.5 0.5
policy_entropy_coef 0.01 0.01 0.001 0.001
policy_gamma 0.95 0.97 0.99 0.99
policy_use_gae True True True True
policy_tau 0.95 0.9 0.9 0.9
use_proper_time_limits False True True True
encoder_max_grad_norm None 1.0 None None
decoder_max_grad_norm None 1.0 None None
Ir_vae 0.001 0.001 0.001 0.001
size_vae_buffer 100000 10000 10000 10000
precollect_len 5000 5000 5000 5000
vae_buffer_add_thresh 1 1 1 1
vae_batch_num_trajs 25 10 15 15
tbptt_stepsize None 50 None None
vae_subsample_elbos None 50 None None
vae_subsample_decodes None 50 None None

32

VARIBAD

Grid Cheetah Point ML1

World Dir Robot Push
vae_avg_reconstruction_terms False False False False
num_vae_updates 3 1 3 3
pretrain_len 0 0 0 0
kl_weight 0.01 0.1 1.0 1.0
action_embedding_size 0 16 16 16
state_embedding_size 8 32 32 32
reward_embedding_size 8 16 16 16
encoder _layers_before_gru I I I I
encoder_gru_hidden _size 64 128 128 128
encoder_layers_after_gru I I I I
latent_dim 5 5) 5
decode_reward True True True True
rew _loss_coeff 1.0 1.0 1.0 1.0
input_prev_state False True False False
input_action False True False False
reward_decoder_layers [32, 32] [64, 32] [64, 32] [64, 32]
decode_state False False False False
state_loss_coeff 1.0 1.0 1.0 1.0
state_decoder_layers (32, 32] [64, 32] [64, 32] [64, 32]
disable_kl_term False False False False
rlloss_through_encoder False False False False

33

ZINTGRAF, SCHULZE, Lu, FENG, IGL, SHIARLIS, GAL, HOFMANN, AND WHITESON

References

Isac Arnekvist, Danica Kragic, and Johannes A Stork. Vpe: Variational policy embed-
ding for transfer reinforcement learning. In International Conference on Robotics and
Automation, 2019.

John Asmuth and Michael L Littman. Learning is planning: near bayes-optimal rein-
forcement learning via monte-carlo tree search. In Conf on Uncertainty in Artificial
Intelligence, 2011.

Richard Bellman. A problem in the sequential design of experiments. Sankhya: The Indian
Journal of Statistics (1933-1960), 16(3/4):221-229, 1956.

Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm
for near-optimal reinforcement learning. Journal of Machine Learning Research, pages
3:213-231, 2002.

Emma Brunskill. Bayes-optimal reinforcement learning for discrete uncertainty domains.
In International Conference on Autonomous Agents and Multiagent Systems, 2012.

Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman. Acting optimally
in partially observable stochastic domains. In Twelfth National Conference on Artificial
Intelligence, 1994. AAAI Classic Paper Award, 2013.

Kristy Choi, Mike Wu, Noah Goodman, and Stefano Ermon. Meta-amortized variational
inference and learning. In International Conference on Learning Representation, 2019.

John D Co-Reyes, YuXuan Liu, Abhishek Gupta, Benjamin Eysenbach, Pieter Abbeel,
and Sergey Levine. Self-consistent trajectory autoencoder: Hierarchical reinforcement
learning with trajectory embeddings. In International Conference on Machine Learning,
2018.

Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill. Policy certificates: Towards
accountable reinforcement learning. 2019.

Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline meta learning of exploration. arXiv
preprint arXiw:2008.02598, 2020.

Finale Doshi-Velez and George Konidaris. Hidden parameter markov decision processes:
A semiparametric regression approach for discovering latent task parametrizations. In
International Joint Conference on Artificial Intelligence, 2016.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel.
RL?: Fast reinforcement learning via slow reinforcement learning. arXiv:1611.02779,
2016.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAl Jonathan Ho, Jonas Schneider,
Ilya Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. In
Advances in Neural Information Processing Systems, 2017.

34

VARIBAD

Michael O’Gordon Duff and Andrew Barto. Optimal learning: Computational procedures
for Bayes-adaptive Markov decision processes. PhD thesis, Univ of Massachusetts at
Ambherst, 2002.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In International Conference on Machine Learning, 2017.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Es-
lami, and Yee Whye Teh. Neural processes. In ICML 2018 Workshop on Theoretical
Foundations and Applications of Deep Generative Models, 2018.

Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, Aviv Tamar, et al. Bayesian rein-
forcement learning: A survey. Foundations and Trends® in Machine Learning, 8(5-6):
359-483, 2015.

Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, and Richard E
Turner. Meta-learning probabilistic inference for prediction. In International Conference
on Learning Representation, 2019.

Arthur Guez, David Silver, and Peter Dayan. Efficient bayes-adaptive reinforcement learn-
ing using sample-based search. In Advances in Neural Processing Systems, 2012.

Arthur Guez, David Silver, and Peter Dayan. Scalable and efficient bayes-adaptive rein-
forcement learning based on monte-carlo tree search. Journal of Artificial Intelligence
Research, 48:841-883, 2013.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. In Advances in Neural Pro-
cessing Systems, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In Inter-
national Conference on Machine Learning, 2018.

Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov decision processes.
arXw preprint arXiw:1502.02259, 2015.

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Ried-
miller. Learning an embedding space for transferable robot skills. In International Con-
ference on Learning Representation, 2018.

Rein Houthooft, Yuhua Chen, Phillip Isola, Bradly Stadie, Filip Wolski, OpenAl Jonathan
Ho, and Pieter Abbeel. Evolved policy gradients. In Advances in Neural Information
Processing Systems, 2018.

Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A Ortega, Yee Whye Teh,
and Nicolas Heess. Meta reinforcement learning as task inference. arXiv:1905.06424,
2019.

35

ZINTGRAF, SCHULZE, Lu, FENG, IGL, SHIARLIS, GAL, HOFMANN, AND WHITESON

Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep
variational reinforcement learning for pomdps. In International Conference on Machine
Learning, 2019.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire.
Contextual decision processes with low bellman rank are pac-learnable. In International
Conference on Machine Learning, 2017.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting
in partially observable stochastic domains. Artificial intelligence, 101(1-2):99-134, 1998.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial
time. Machine learning, 49(2-3):209-232, 2002.

Taylor W Killian, Samuel Daulton, George Konidaris, and Finale Doshi-Velez. Robust and
efficient transfer learning with hidden parameter markov decision processes. In Advances
in neural information processing systems, 2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International
Conference on Learning Representation, 2014.

J Zico Kolter and Andrew Y Ng. Near-bayesian exploration in polynomial time. In Inter-
national Conference on Machine Learning, 2009.

Lin Lan, Zhenguo Li, Xiaohong Guan, and Pinghui Wang. Meta reinforcement learning
with task embedding and shared policy. In International Joint Conference on Artificial
Intelligence, 2019.

Gilwoo Lee, Brian Hou, Aditya Mandalika, Jeongseok Lee, and Siddhartha S Srinivasa.
Bayesian policy optimization for model uncertainty. In International Conference on
Learning Representation, 2019.

Yun-En Liu, Travis Mandel, Emma Brunskill, and Zoran Popovic. Trading off scientific
knowledge and user learning with multi-armed bandits. In EDM, pages 161-168, 2014.

James John Martin. Bayestan decision problems and Markov chains. Wiley, 1967.

Vladimir Mikulik, Grégoire Delétang, Tom McGrath, Tim Genewein, Miljan Martic, Shane
Legg, and Pedro A Ortega. Meta-trained agents implement bayes-optimal agents. In
Advances in neural information processing systems, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529-533,
2015.

Aditya Modi and Ambuj Tewari. Contextual markov decision processes using generalized
linear models. In Reinforcement Learning for Real Life Workshop at the International
Conference on Machine Learning, 2019.

36

VARIBAD

Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm.
arXiv:1803.02999, 2018.

Pedro A Ortega, Jane X Wang, Mark Rowland, Tim Genewein, Zeb Kurth-Nelson, Razvan
Pascanu, Nicolas Heess, Joel Veness, Alex Pritzel, Pablo Sprechmann, et al. Meta-learning
of sequential strategies. arXiv:1905.03030, 2019.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning
via posterior sampling. In Advances in Neural Information Processing Systems, 2013.

Tan Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep
reinforcement learning. In Advances in Neural Information Processing Systems, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-
ferentiation in pytorch. 2017.

Christian F Perez, Felipe Petroski Such, and Theofanis Karaletsos. Efficient transfer learn-
ing and online adaptation with latent variable models for continuous control. In Continual
Learning Workshop, NeurIPS 2018, 2018.

Pascal Poupart, Nikos Vlassis, Jesse Hoey, and Kevin Regan. An analytic solution to discrete
bayesian reinforcement learning. In International Conference on Machine Learning, 2006.

Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, and Sergey Levine. Efficient off-
policy meta-reinforcement learning via probabilistic context variables. In International
Conference on Machine Learning, 2019.

Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp:

proximal meta-policy search. In International Conference on Learning Representation,
2019.

Steinddér Seemundsson, Katja Hofmann, and Marc Peter Deisenroth. Meta reinforcement
learning with latent variable gaussian processes. In Conference on Uncertainty in Artifi-
cial Intelligence, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv:1707.06547, 2017.

Jonathan Sorg, Satinder Singh, and Richard L Lewis. Variance-based rewards for ap-
proximate bayesian reinforcement learning. In Conference on Uncertainty in Artificial
Intelligence, 2012.

Bradly C Stadie, Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel,
and Ilya Sutskever. Some considerations on learning to explore via meta-reinforcement
learning. In Advances in Neural Processing Systems, 2018.

Malcolm Strens. A bayesian framework for reinforcement learning. In International Con-
ference on Machine Learning, 2000.

37

ZINTGRAF, SCHULZE, Lu, FENG, IGL, SHIARLIS, GAL, HOFMANN, AND WHITESON

Flood Sung, Li Zhang, Tao Xiang, Timothy Hospedales, and Yongxin Yang. Learning to
learn: Meta-critic networks for sample efficient learning. arXiv:1706.09529, 2017.

William R Thompson. On the likelihood that one unknown probability exceeds another in
view of the evidence of two samples. Biometrika, 25(3/4):285-294, 1933.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In TROS, pages 5026-5033. IEEE, 2012. ISBN 978-1-4673-1737-5.

Sebastian Tschiatschek, Kai Arulkumaran, Jan Stithmer, and Katja Hofmann. Variational
inference for data-efficient model learning in pomdps. arXiv:1805.09281, 2018.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi
Munos, Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to rein-
forcement learn. In Annual Meeting of the Cognitive Science Community, 2016.

Ziyu Wang, Josh S Merel, Scott E Reed, Nando de Freitas, Gregory Wayne, and Nico-
las Heess. Robust imitation of diverse behaviors. In Adwvances in Neural Information
Processing Systems, 2017.

David Wingate, Noah D Goodman, Daniel M Roy, Leslie P Kaelbling, and Joshua B Tenen-
baum. Bayesian policy search with policy priors. In International Joint Conference on
Artificial Intelligence, 2011.

Jiayu Yao, Taylor Killian, George Konidaris, and Finale Doshi-Velez. Direct policy transfer
via hidden parameter markov decision processes. In LLARLA Workshop, FAIM, 2018.

Gregory Yauney and Pratik Shah. Reinforcement learning with action-derived rewards
for chemotherapy and clinical trial dosing regimen selection. In Machine Learning for
Healthcare Conference, pages 161-226, 2018.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn,
and Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta
reinforcement learning. In Conference on Robot Learning, 2019. URL https://arxiv.
org/abs/1910.10897.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhut-
dinov, and Alexander J Smola. Deep sets. In Advances in Neural Processing Systems,
2017.

Amy Zhang, Harsh Satija, and Joelle Pineau. Decoupling dynamics and reward for transfer
learning. In ICLR workshop track, 2018.

Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hof-
mann, and Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl
via meta-learning. In International Conference on Learning Representations, 2020.

Luisa Zintgraf, Leo Feng, Cong Lu, Maximilian Igl, Kristian Hartikainen, Katja Hofmann,
and Shimon Whiteson. Exploration in approximate hyper-state space for meta reinforce-
ment learning. In International Conference on Machine Learning, 2021.

38

https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897

VARIBAD

Luisa M Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, and Shimon White-
son. Fast context adaptation via meta-learning. In International Conference on Machine
Learning, 2019.

39

	Introduction
	Background
	Training Setup
	Bayesian Reinforcement Learning

	Bayes-Adaptive Deep RL via Meta-Learning
	Approximate Inference
	Training Objective
	Meta Training
	Meta Testing

	Related Work
	Empirical Evaluation
	GridWorld
	Sparse 2D Navigation
	MuJoCo Continuous Control Meta-Learning Tasks
	Meta-World

	Empirical Analysis
	Modelling Horizon
	KL Regularisation
	Belief Dimensionality

	Conclusion & Future Work
	Full ELBO derivation
	Experiments: GridWorld
	Additional Remarks
	Comparison to RL2

	Experiments: MuJoCo
	Learning Curves
	CheetahDir Test Time Behaviour
	Latent Space Visualisation
	Runtime Comparison
	Ablation Study: Backpropagating the RL loss Through the Encoder

	Experiments: Meta-World
	Hyperparameters

