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Abstract

As machine learning procedures become an increasingly popular modeling option among
applied researchers, there has been a corresponding interest in developing valid tools for un-
derstanding their statistical properties and uncertainty. Tree-based ensembles like random
forests remain one such popular option for which several important theoretical advances
have been made in recent years by drawing upon a connection between their natural sub-
sampled structure and the classical theory of U -statistics. Unfortunately, the procedures
for estimating predictive variance resulting from these studies are plagued by severe bias
and extreme computational overhead. Here, we argue that the root of these problems
lies in the use of subsampling without replacement and that with-replacement subsamples,
resulting in V -statistics, substantially alleviates these problems.

We develop a general framework for analyzing the asymptotic behavior of V -statistics,
demonstrating asymptotic normality under precise regularity conditions and establishing
previously unreported connections to U -statistics. Importantly, these findings allow us to
produce a natural and efficient means of estimating the variance of a conditional expecta-
tion, a problem of wide interest across multiple scientific domains that also lies at the heart
of uncertainty quantification for supervised learning ensembles.

Keywords: V -statistics, U -statistics, Variance Estimation, Uncertainty Quantification,
Supervised Ensembles

1. Introduction

There has been considerable interest in recent years in developing inferential procedures for
random forests and related methods (Mentch and Hooker, 2016; Wager and Athey, 2018;
Cui et al., 2017). In most cases, these procedures exploit the underlying subsampling struc-
ture to represent predictions from the resulting ensemble in terms of U -statistics. This
representation then allows central limit theorems to be derived by extending those classi-
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cal results (Hoeffding, 1948). While these advances have led to promising new inferential
methodology (Mentch and Hooker, 2016; Hooker and Mentch, 2018; Zhou et al., 2018; Peng
et al., 2019; Athey et al., 2019), each necessitates explicit variance estimation of the random
forests predictions.

The primary component of this variance can be expressed as the variance of a conditional
expectation. Estimation of parameters of this form has been explored for some time in the
broader academic literature as it arises in a number of practical applications (Zouaoui and
Wilson, 2003; Staum, 2009). Mentch and Hooker (2016); Hooker and Mentch (2018) exploit
this representation explicitly, considering a structured subsampling approach that produces
a nested Monte Carlo estimate for the variance of random forest predictions. Years earlier,
Sun et al. (2011) investigated a similar estimator in an operations research context, using
failure time stability as a motivating example. Goda (2017) recently derived a generalized
version of this estimator and demonstrated that estimation could be done in a non-nested
fashion. Wang and Lindsay (2014) were explicitly interested in estimating the variance of
classical U-statistics and introduced a “partition resampling” scheme that was shown to be
the best unbiased estimator as long as the kernel degree k satisfies k ≤ n/2. In the context
of ensemble variance estimation, Sexton and Laake (2009) proposed a bootstrap-of-little-
bags approach and Wager et al. (2014); Wager and Athey (2018) utilize an extension of the
Infinitesimal Jackknife estimator put forth in Efron (2014).

Unfortunately, all of these estimation procedures exhibit considerable upward bias unless
the size of the ensemble is much larger than that required to construct a typical, predictively-
accurate random forest. Such biased estimates generally result in conservative confidence
intervals and significant decreases in the power of resulting hypothesis tests (Mentch and
Hooker, 2016; Zhou et al., 2018). Methods proposed to correct this bias also frequently
result in negative variance estimates, leading to ad hoc workarounds such as a pseudo-Bayes
approach to enable inference (Athey et al., 2019).

In this paper, we argue that the difficulty of correcting the bias in these estimates results
from the U -statistic construction itself that employs subsamples without replacement. This
structure results in negative correlation between the trees in the ensemble that induces un-
desired bias in the bias correction. By simply employing subsampling with replacement, the
entire ensemble can be represented as an expectation over the empirical distribution of the
data and we show that this framework provides considerably more reliable inference than in
the case of U -statistics as well as reducing the sensitivity of predictive performance to sub-
sample size. Buja and Stuetzle (2006) studied some equivalence for bagging on resampling
with or without replacement along with the effect of kernel size on bias and variance.

Formally, methods based around subsampling with replacement fall under the frame-
work of V -statistics. These have been treated by either demonstrating their asymptotic
equivalence to U -statistics, or via a series expansions (von Mises, 1947). However, the
equivalence hold only when the size of the V -statistic kernel grows more slowly than n1/4 –
meaning that the number of observations given to each tree grows very slowly – and series
expansions are complicated by the non-differential greedy tree-building process. Instead,
we show that a V -statistic of any order can be exactly represented as a U -statistic but em-
ploying a different kernel, allowing us to invoke the central limit theorems already derived
for infinite-order U -statistics, although some variation must be made to account for the use
of random sampling for subsets.
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Importantly, the general framework we develop allows us to present a unified theory for
the general problem of variance estimation from which we can bridge the gap between the
numerous approaches discussed above. In particular, we propose balanced method (BM) for
variance estimation and show that it enjoys lower bias than the alternatives given ensembles
of equal size. Further, we establish a close connection between the BM and the Infinitesimal
Jackknife (IJ) and prove their equivalence under a natural condition. To estimate variance
in the limiting distribution in finite sample case, we develop a bias-corrected version of
BM through an ANOVA-like framework (Sun et al., 2011). The new estimator is shown to
produce much more reliable results with a moderate number of base learners such as would
be incurred, for example, by utilizing a traditional bootstrap approach.

Through the remainder of this paper, Section 2 and 3 review U - and V -statistics, their
use in the theory of machine learning methods and derive their equivalence, although with
modifications to the expression for variance in the incomplete case. In Section 4, we then
examine variance estimates where we derive a more efficient estimate version of the estimate
in Mentch and Hooker (2016) and show that this is equivalent to the Infinitesimal Jackknife
if every observation is used the same number of times in the ensemble. This framework
allows us to explicitly derive bias corrections in Section 5 and we show that while the
natural estimate of the bias over-corrects the variance for the case of U -statistics, it is
unbiased in the case of V -statistics. Section 6 extends the asymptotic results to randomized
ensembles. Empirical studies in Section 7 corroborate the developed asymptotic theories
and the effectiveness of variance estimation procedure; it also suggest that the change from
without replacement to with replacement subsampling does not have a consistent effect
on predictive performance but that the latter makes that performance less sensitive to
subsample size, bringing the method closer to the original bootstrap sampling proposed
in Breiman (2001). These results suggest that subsampling with replacement should be
considered the appropriate default for ensemble methods.

Proofs of all results, additional experiment studies and further discussions are collected
in the Appendix. Code accompanying this paper can be found at https://github.com/

ZhengzeZhou/V-statistics-and-Variance-Estimation.

1.1 A Motivating Example

We will illustrate the practical importance of our contribution through a motivating example
using Boston Housing Data1. The data set contains 506 samples with 13 features and the
target is the median value of owner-occupied homes in $1000’s in the area of Boston Mass.
To simulate practical use cases, we leave 20% of the data as test set and train on the
remaining samples. A random sample is selected from the test set and a 95% confidence
interval for predictions are calculated by the methods described later in this paper.

Previous work suggests building ensembles by sampling without replacement (U -statistics),
and estimating predictive variance by Infinitesimal Jackknife (IJ). We build the a random
forests with subsample size 100 on the training data and calculate the intervals on the se-
lected test sample, while varying the number of base learnersB = 100, 500, 1000, 5000, 10000.
The results are depicted by dashed lines in Figure 1 . Here the confidence interval of predic-
tions are calculated as predicted value ± 1.96 × estimated standard deviation. The width

1. https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
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of the intervals decrease as B becomes larger and small values of B results in conservative
estimates. The ideal number of B is usually prohibitively large in practice (B > 5000 in this
example) in order to get accurate variance estimation. This demonstrates the insufficiency
of existing work in conducting inference for ensembles, despite solid theoretical properties
of U -statistics.

This paper proposes the use of V -statistics by sampling with replacement along with a
bias-corrected variance estimator (solid lines in Figure 1) . We can see that the proposed
bias corrected estimates yield more accurate confidence intervals with moderate size of B.
We would like to emphasize that the contributions of our work are twofold: in additional
to theoretical advancements in analyzing asymptotics of V -statistics, we also provide a
general framework for efficient variance estimation, which is of great significance for practical
applications.

We note here that this interval is based on a central limit theorem that is centered on the
expectation of the random forests, rather than using a target conditional mean E(Y |X = x).
The consistency of such intervals will then depend on the size of the bias associated with the
particular tree-building method used in the random forests; see (Wager and Athey, 2018;
Scornet et al., 2015) for examples.

Our focus in this paper is on the structure of the ensemble rather than its constituent
and we do not address confidence interval consistency here. Alternatively, Zhou and Hooker
(2018) multiplies the calculated standard error by

√
2 to produce “reproduction intervals”,

giving the range in which an independently-generated random forests would fall and thus
a notion of stability. For the sake of simplicity, we have used standard interval calculations
below.

2. Related Work on U-statistics

We first give a brief introduction on the notion of U -statistics, and then illustrate how it
can be utilized in the analysis of ensemble models.

Assume that we have a training set D = {Z1, . . . , Zn} of i.i.d. observations of the form
Zi = (Xi, Yi) drawn from an underlying distribution FZ , where X = (X1, . . . , Xp) ∈ X
are p covariates. We want to estimate a parameter of interest θ. Suppose there exists an
unbiased estimator h of θ that is a function of k ≤ n arguments (we call h a kernel of size
or degree k) so that

θ = Eh (Z1, . . . , Zk)

and without loss of generality, assume that h is permutation symmetric in its arguments
and Eh2 (Z1, . . . , Zk) < ∞. Then the minimum variance unbiased estimator for θ is given
by

Un =
1(
n
k

)∑
i

h (Zi1 , . . . , Zik) (1)

where {Zi1 , . . . , Zik} consists of k distinct elements from the original sample {Z1, . . . , Zn}
and the sum is taken over all

(
n
k

)
subsamples of size k. The estimator in (1) is referred to

as a complete U -statistic with kernel h of degree k.

There are some natural extensions of (1). To produce more predicive ensembles, we
would like k to grow with n so the kernel will have access to more information from the
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Figure 1: Confidence intervals for predictions based on U - and V -statistics. Dashed and
solid lines are for U - and V -statistics respectively. The x-axis denotes the number of base
learners used in an ensemble. Prediction values are drawn in blue, while IJ estimates of 95%
confidence intervals are drawn in red. Bias corrected estimator for V -statistics is shown in
green.
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data. This results in a kernel that varies with n, and an Infinite Order U -statistic (IOUS;
Frees, 1989)

Un,kn =
1(
n
kn

)∑
i

hkn
(
Zi1 , . . . , Zikn

)
. (2)

Further, evaluating all
(
n
kn

)
kernels is computationally infeasible for even moderately sized

n or kn and thus an estimate can be achieved by averaging over only Bn <
(
n
kn

)
subsamples.

Incorporating this, the estimator becomes an Incomplete Infinite Order U -statistic

Un,kn,Bn =
1

Bn

∑
i

hkn
(
Zi1 , . . . , Zikn

)
. (3)

In (2) and (3) we use subscripts to denote that values of k and B may depend on n, and
the degree of kernel h is kn.

U -statistics of form (1) were first studied in Halmos (1946) and Hoeffding (1948), where
the latter also shows that these statistics are asymptotically normally distributed. Sen
(1992) provides a review of Hoeffding’s seminal paper and outlines the importance of
U -statistics in modern statistical theory. A comprehensive treatment of the classical U -
statistics results can be found in Lee (1990) and Serfling (2009). Certain basic properties,
such as almost sure consistency and asymptotic normality, are proved to hold in the case
of (2) and (3) in Frees (1989). The connection between U -statistics and ensemble methods
had not been observed until very recently in the work of Mentch and Hooker (2016) and
Wager and Athey (2018).

For simplicity we will focus on the regression setting, where predictions are assumed to
be continuous. This can also incorporate binary classification as long as the model predicts
the probability by averaging outputs instead of predicting a label obtained from a majority
vote. We are interested in estimating the conditional mean function at a test point x

µ (x) = E (Y |X = x) .

Given a base learner h, ensemble methods generate resamples R1, . . . , RB of the original
data, apply h to each resample, and produce final point estimates by averaging over those
generated by each model, yielding estimates of the form

1

B

B∑
i=1

h (x;ωi, Ri) .

Here, the ωi denotes an auxiliary randomization parameter as used in randomized ensembles
like random forests, but which may be dropped for simpler (non-randomized) estimation
procedures like bagging2; Peng et al. (2019) refers to these estimators as generalized U -
statistics. When all instances of the randomness are considered, note that the kernel again
becomes nonrandom (we can write the kernel as Eωih (x;ωi, Ri)), as in Wager and Athey
(2018) where the authors assume B is large enough for Monte Carlo effects not to matter.

2. In some papers, ωi incorporates drawing the subsamples in bagging and doing both resampling and
random feature selection in random forests. Here ω has a different meaning as we write out the resamples
explicitly.
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The conventional procedure in random forests is to take R1, . . . , RB to be bootstrap
samples, which turns out very difficult to analyze statistically. Mentch and Hooker (2016)
propose the following procedure to construct an ensemble. Given a training set D of size n,
an ensemble consisting of Bn base learners is constructed using subsamples of size kn

Un,kn,Bn (x) =
1

Bn

Bn∑
i=1

hkn

(
x;Z∗i1 , . . . , Z

∗
ikn

)
(4)

where {Z∗i1 , . . . , Z
∗
ikn
} is drawn without replacement from {Z1, . . . , Zn}. This fits into the

statistical framework of U -statistics and asymptotic normality can be demonstrated under
some regularity conditions (see Peng et al. (2019) for refined results). In particular, the
explicit expression for the variance of predictions at any given point can be written in
closed-form

k2
n

n
ζ1,kn +

1

Bn
ζkn,kn . (5)

For a given c, 1 ≤ c ≤ kn, the variance parameters are defined as

ζc,kn = cov
(
hkn(Z1, . . . , Zkn), hkn(Z1, . . . , Zc, Z

′
c+1, . . . , Z

′
kn)
)

(6)

where Z
′
c+1, . . . , Z

′
kn

are i.i.d. copies from the same distribution FZ and independent of the
original data Z1, . . . , Zn. For notational simplicity, we drop the test point x in (6).

Within these results, as in ours below, the asymptotic distribution is centered at θk =
Ehkn(Z1, . . . , Zkn) instead of the true conditional mean E(Y |X = x). As noted above,
this means that any inferential statements must, in general, be made about the sampling
structure of the ensemble rather than the underlying data generating process. A careful
analysis of specific choices of the base learner h and the relationship between covariates
X and response Y are central in achieving consistent predictions and is not the focus of
this paper. Some work along these lines includes Wager and Athey (2018) which focus
on particular tree-building methods, and Scornet et al. (2015) which demonstrate the L2

consistency for random forests when the underlying response corresponds to an additive
regression model. Also note that the asymptotic normality result in Wager and Athey
(2018) can be viewed as a special case of (5). Here, the authors assume that ensemble
size B is large enough for Monte Carlo effects not to matter, in which case (5) reduces to
k2n
n ζ1,kn .

3. V -statistics

V -statistics are closely related to U -statistics except that the data used in each kernel is
sampled with replacement. Similar to (1), a complete V -statistic with kernel h of degree k
is defined as

Vn = n−k
n∑

ii=1

. . .
n∑

ik=1

hk (Zi1 , . . . , Zik) (7)

where {Zi1 , . . . , Zik} consists of k elements from {Z1, . . . , Zn} and the sum is taken over all
nk subsamples of size k. An Infinite Order V -statistic (IOVS) is defined analogously to (2)
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Vn,kn = n−kn
n∑

ii=1

. . .

n∑
ikn=1

hkn
(
Zi1 , . . . , Zikn

)
. (8)

Asymptotic equivalence between V - and U -statistics for fixed kernel degree is a well
studied topic (Lee, 1990). Previous work has also shown that the equivalence hold when

the size of V -statistic kernel grows more slowly than n
1
4 (Shieh, 1994). We provide a rigorous

analysis of this argument in Appendix A. However, this growth rate of kernel size is fairly
restrictive: the number of observations given to each base learner grows very slowly, which
can harm predictive performance. In the following, we show that a V -statistic of any order
can be exactly represented as a U -statistic but employing a different kernel, thus enabling
us to discard the restriction to attain a more general asymptotic results of V -statistics.

3.1 Representation As U-statistics

This section develops a broader connection between V - and U -statistics to show that the
former automatically achieve almost all the properties of the latter. A complete, infinite
order V -statistic Vn,kn with kernel hkn can be written as a corresponding U -statistic but
with a more complicated kernel derived from hkn(·).

Let Ω denote the set {1, 2, . . . , n}. We use Bkn(Ω) to denote all size kn permutations of
Ω with replacement, and let Skn(Ω) denote subsamples of size kn without replacement so
that |Bkn(Ω)| = nkn and |Skn(Ω)| =

(
n
kn

)
. We can write Vn,kn as

Vn,kn = n−kn
∑

b∈Bkn (Ω)

hkn (Zb)

where b has kn elements and Zb are those Z’s with index in b.
Equivalently, Vn,kn can be expressed as

Vn,kn = n−kn
∑

s∈Skn (Ω)

∑
b∈Bkn (s)

ωbhkn (Zb)

where ωb is the weight associated with each evaluation of hkn to account for the multiplicity
in sampling the same b from Bkn(s) for different s. For b = {i1, i2, . . . , ikn}, we use u(b) ∈
{1, 2, . . . , kn} to denote the number of unique elements in b and we have

ωb =
1( n−u(b)

kn−u(b)

) .
We can thus express Vn,kn as a U -statistic

Vn,kn =
1(
n
kn

) ∑
s∈Skn (Ω)

h∗kn (Zs) (9)

where the kernel h∗kn is defined as

h∗kn(Zs) =

(
n
kn

)
nkn

∑
b∈Bkn (s)

ωbhkn (Zb) .
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Here ωb is defined as before, and

∑
b∈Bkn (s)

ωb =
nkn(
n
kn

) .
A general result for the aymptotics of V -statistics is stated in the following theorem,

allowing us to remove the restriction kn = o(n
1
4 ).

First we define a class to which the kernel function hkn belongs:

H =

{
h : sup

kn

Eh2
kn

(
Zi1 , . . . , Zikn

)
<∞

}
where (i1, . . . , ikn) are chosen from {1, . . . , kn} with replacement.

Theorem 1 Let Z1, Z2, . . . , Zn
iid∼ FZ and let Vn,kn,Bn be an incomplete, infinite order V -

statistic with kernel hkn such that hkn ∈ H. Let θ∗kn = Eh∗kn. Then under the assumption

that lim
ζ∗kn,kn
nζ∗1,kn

→ 0, we have (
Vn,kn,Bn − θ∗kn

)√
k2n
n ζ
∗
1,kn

+ 1
Bn
ζkn,kn

d→ N (0, 1).

In the complete case where Bn = nkn, we have(
Vn,kn − θ∗kn

)√
k2n
n ζ
∗
1,kn

d→ N (0, 1).

Here, the variance parameter ζ∗1,kn is defined as in Equation (6) by replacing kernel hkn
with h∗kn

ζ∗1,kn = cov
(
h∗kn (Z1, . . . , Zkn) , h∗kn

(
Z1, Z

′
2, . . . , Z

′
kn

))
and ζkn,kn = var (hkn (Z1, . . . , Zkn)) is still the variance across individual kernels hkn.

As above, we note that our asymptotic distribution is centered onθ∗kn = Eh∗kn . This
theorem provides a more general result for the asymptotics of V -statistics. It is essentially
a reduction to U -statistics by constructing a new kernel representation. The variance ex-

pression k2n
n ζ
∗
1,kn

+ 1
Bn
ζkn,kn again can be viewed as two parts: the first part k2n

n ζ
∗
1,kn

comes

from the complete case; the second part 1
Bn
ζkn,kn is the additional Monte Carlo variance

introduced due to incomplete case, which is why ζkn,kn only involves the original kernel
hkn instead of the composite kernel h∗kn . Peng et al. (2019) provides a unified analysis of
these two components by incorporating the choice of subsamples into the randomization
parameters of the generalized U -statistics. This strategy is not available in our case, as
detailed in Section 6.

Unlike Theorem 10 (see Appendix A) where the expected value of V - and U -statistics

are the same asymptotically when kn = o(n
1
4 ), in the more general case here one may
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not have the expected value of the new kernel h∗kn equals that of hkn . The central limit
theorem centers at the expectation of the statistics of interest. How to quantify the bias of
the predictions is out of the scope of this paper; see Wager and Athey (2018) for a careful
treatment of decision tree based ensembles.

The introduction of new kernel h∗kn facilitates theoretical analysis, but it brings chal-
lenges in estimating variance component ζ∗1,kn directly: it is not feasible to calculate h∗kn(Zs)

for any s ∈ Skn(Ω). We will see in Section 4 that as a general variance estimation method,
the Infinitesimal Jackknife (IJ) can be applied to the original kernel function hkn . And
based on Theorem 3, Balanced Variance Estimation Method is equivalently valid without
resorting to evaluating h∗kn(Zs) directly.

4. Variance Estimation

This section addresses how to estimate variance in the limiting distribution. Mentch and
Hooker (2016) propose Internal Variance Estimation Method (IM) based on a two-level sam-
pling procedure. Inspired from this, we design the Balanced Variance Estimation Method
(BM) which is shown to have lower bias compared to IM. Unlike IM and BM, the In-
finitesimal Jackknife (IJ) employed in Wager and Athey (2018) does not depend on an
explicit expression for the variance term. All methods presented can apply to both U - and
V -statistics, though they exhibit different performances when sampling without or with
replacement, especially in terms of bias. For notational simplicity, during the development
of BM and IM we will use hkn to denote the kernel function and ζc,kn to denote variance
parameters. For general V -statistics as characterized by Theorem 1, one can substitute
them for h∗kn and ζ∗c,kn whenever needed.

IM and BM operate by directly estimating ζ1,kn and ζkn,kn as defined in (6). Notice
that ζkn,kn = var(hkn(Z1, . . . , Zkn)), which can be simply estimated as the variance across
all base learners. The estimation for ζ1,kn is much more involved. The sample covariance
between predictions may serve as a consistent estimator, but in practice it is numerically
unstable and often results in negative variance estimates (Mentch and Hooker, 2016). Thus
we work with the equivalent expression for ζ1,kn (Lee, 1990)

ζ1,kn = var (E (hkn(Z1, . . . , Zkn) |Z1 = z1)) . (10)

Expressions of the form from (10) belong to an important theme in statistics: estimating
the variance of a conditional expectation. It is usually related to uncertainty quantification
and has been studied intensively in a number of fields (Zouaoui and Wilson, 2003; Staum,
2009). For a more detailed review, we refer readers to Sun et al. (2011).

In what follows, assume we have data D = {Z1, . . . , Zn} of i.i.d. observations of the form
Zi = (Xi, Yi), and a kernel function hkn(Z1, . . . , Zkn). For simplicity, we suppress notations
by dropping the test point x in the kernel expression.

4.1 Internal Variance Estimation Method

IM was first proposed in Mentch and Hooker (2016) wherein the estimates are obtained
as a result of restructuring the ensemble building procedure. It can be viewed as a nested
two-level Monte Carlo, where we need to choose nOUT and nIN for the number of outer and
inner iterations respectively. See Algorithm 1 for details.

10



V -statistics and Variance Estimation

Algorithm 1 Internal Variance Estimation Method

for i in 1 to nOUT do
Select initial fixed point z̃(i)

for j in 1 to nIN do
Select subsample Sz̃(i),j of size kn from training set that includes z̃(i)

Build base learner and evaluate hkn(Sz̃(i),j)
end for
Record average of the nIN predictions

end for
Compute the variance of the nOUT averages to estimate ζ1,kn

Compute the variance of all predictions to estimate ζkn,kn
Compute the mean of all predictions to obtain final ensemble prediction

We use the shorthand hi,j to denote hkn(Sz̃(i),j). The average across inner level is

calculated as h̄i = 1
nIN

∑nIN
j=1 hi,j . Further we use h̄ = 1

nOUT

∑nOUT
i=1 h̄i to denote the average

across outer level i. Then the estimates for ζ1,kn and ζkn,kn can be expressed as

ζ̂IM
1,kn =

1

nOUT − 1

nOUT∑
i=1

(
h̄i − h̄

)2
and

ζ̂IM
kn,kn =

1

nIN × nOUT − 1

nOUT∑
i=1

nIN∑
j=1

(
hi,j − h̄

)2
.

4.2 Balanced Variance Estimation Method

As will be shown in Figure 2 in Section 5.1, the estimator for ζ̂IM
1,kn

given by IM is severely
biased upwards when nIN and nOUT are not sufficiently large (Bn = nIN × nOUT). IM is
not optimal in the sense that it does not utilize all the information in the ensemble. In
particular, hi,j is only used once in the outer iteration i when conditioned on z̃(i). Ideally
we could also utilize hi,j by conditioning on the remaining kn − 1 inputs. Further, we
need to choose two hyperparameters nOUT and nIN instead of fixing the number of base
learners Bn. It is not clear what combination will yield optimal performance under the
same computational budget this trade-off will likely differ depending on whether we wish
to optimize predictive performance or variance estimation.

To address these issues, we design the Balanced Variance Estimation Method (Algorithm
2). In the following, we use hb to represent hkn(Sb) if there is no ambiguity. Let Ni,b denote
the number of times the ith training sample appears in subsample Sb. In the case of U -
statistics where we sample without replacement, Ni,b ∈ {0, 1}. For V -statistics Ni,b can be

larger than 1 due to sampling with replacement. Summing over b gives Ni =
∑Bn

b=1Ni,b and
the averaged version N̄i = Ni

Bn
. For 1 ≤ i ≤ n, define

mi =

Bn∑
b=1

ωi,bhb
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Algorithm 2 Balanced Variance Estimation Method

for b in 1 to Bn do
Select subsample Sb of size kn from training set D of size n.
Build base learner and evaluate hkn(Sb)

end for
for i in 1 to n do

Calculate mi as the average of hkn(Sb) where the ith training sample appears in Sb,
weighted by the number of appearance.

end for
Compute the variance of mi to estimate ζ1,kn

Compute the variance of all predictions to estimate ζkn,kn
Compute the mean of all predictions to obtain final ensemble prediction

where ωi,b =
Ni,b
Ni

. Further define the average of mi as m̄ = 1
n

∑n
i=1mi and the overall

average of hb as h̄ = 1
Bn

∑Bn
b=1 hb. The estimates for ζ1,kn and ζkn,kn can be written as

ζ̂BM
1,kn =

1

n− 1

n∑
i=1

(mi − m̄)2 ,

and

ζ̂BM
kn,kn =

1

Bn − 1

Bn∑
b=1

(
hb − h̄

)2
.

4.3 Infinitesimal Jackknife

The Infinitesimal Jackknife (IJ) was first studied by Jaeckel (1972) as an extension for the
jackknife to estimate variance. The basic idea of the jackknife is to omit one observation and
recompute the estimate using the remaining samples. Alternatively, if we assign a weight
to each observation, omitting one is equivalent to setting the corresponding weight to zero.
More generally, we can give each observation a weight slightly less than one every time. IJ
is the limiting case as this deficiency in the weight approaches zero. Efron (1982) provided
a more detailed treatment of these resampling plans. More recently, IJ was found to be a
powerful tool for estimating standard errors in bagging (Efron, 2014). Wager et al. (2014)
and Wager and Athey (2018) applied IJ in the context of random forests.

In our setting, the Infinitesimal Jackknife estimate of variance can be expressed as

V̂IJ =

n∑
i=1

cov2 (Ni,b, hb)

where cov(Ni,b, hb) =
∑Bn
b=1(Ni,b−N̄i)(hb−h̄)

Bn
and N̄i is defined in Section 4.2. As a general

variance estimation method for ensembles, IJ is applied upon the original kernel function
(Efron, 2014). Consistency results of IJ for U -statistics typed ensembles were developed in
Wager and Athey (2018); Ghosal and Hooker (2020).

IJ does not rely on an explicit expression of the variance term and is targeted at es-
timating the limiting variance assuming Bn is sufficiently large. By applying IJ, we are

12
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essentially estimating k2n
n ζ1,kn (as in Theorem 10) or k2n

n ζ
∗
1,kn

(as in Theorem 1). For general
V -statistics, it is not practical to use BM on the composite kernel h∗kn to get an estimate for
ζ∗1,kn directly, and we can instead use IJ on the original kernel hkn to get variance estimates.

A direct connection exists between BM and IJ, which we will show below.

Definition 2 Balanced Subsample Structure

We call a subsample structure balanced if Bn × kn is a multiple of n, and each training
sample appears exactly rn = Bn×kn

n times.

For U -statistics, this structure implies that each training observation appears in exactly
rn base learners. For V -statistics, each sample is required to occur rn times but may be
used in fewer than rn base learners since the sampling is done with replacement.

Theorem 3 If we have balanced subsample structure, the Balanced Variance Estimation
Method and the Infinitesimal Jackknife estimator satisfy

k2
n

n
ζ̂BM

1,kn =
n

n− 1
V̂IJ.

Remark 4 The scaling factor n
n−1 is a result of how we calculate the empirical variance. If

instead we define ζ̂BM
1,kn

= 1
n

∑n
i=1(mi−m̄)2, then the two estimators are equal: k2n

n ζ̂
BM
1,kn

= V̂IJ.
Theorem 3 also enables us to apply BM on the original kernel hkn to get valid variance
estimates in general V -statistics without resorting to the calculation of composite kernel
h∗kn, which is infeasible in practice. Further implications of this result are discussed in
Appendix I.

5. Bias Corrections for Variance Estimates

We have so far presented three variance estimation methods (IM, BM and IJ) to estimate
the variance of predictions given by an ensemble, being either U -statistics or V -statistics.
Although both IM and BM are targeted at the specific variance expression (Equation (10)),
IJ is a more general procedure. Applying IM or BM for the general V -statistics (Theorem
1) is infeasible since it involves the evaluation of the complex kernel h∗kn , while IJ can be
naturally applied on the original kernel hkn (Efron, 2014). By the connection of BM and IJ
in Theorem 3, BM applying on the original kernel also yields valid estimates. As a result,
although we need the new kernel h∗kn for theoretical analysis, variance estimates can be
achieved without explicitly evaluation. In this section, we will simply refer to the variance
components of both U− and V−statistics as ζ1,kn and ζkn,kn .

5.1 Bias in Variance Estimation

As briefly mentioned in Section 1, all existing variance estimation methods exhibit severe
bias when the number of base learners is not sufficiently large. We now conduct a simple
simulation to demonstrate the extent of this bias. Suppose X ∼ 20 × unif(0, 1) and Y =
2X +N (0, 1). An ensemble of decision trees is built to predict Y from X, and we calculate
the variance of the prediction at x = 10 using IM, BM and IJ. In our simulation, we fix

13
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the number of training observations n = 500 and kernel size kn = 100. The number of base
learners Bn is varied among 100, 1000 and 10000.

Figure 2 shows the result for both U - and V -statistics. Notice that although larger Bn
indicates lower variance (see Equation (5)), the effect of this is negligible as the dominating

component of the variance is k2n
n ζ1,kn in our case (compare Figure 6 with 7 in Appendix C). In

order to provide a fair comparison, the variance shown in the figure is for k2n
n ζ1,kn+ 1

1000ζkn,kn
for each value of Bn. Thus, different values of Bn only have effect on the estimation for ζ1,kn

and ζkn,kn . Appendix G provides at a closer look at the relationship between two variance
components as Bn varies.

We can easily observe that all three methods (IM, BM, IJ) badly overestimate the
variance (notice the log scale on y-axis). The bias mainly arises from an overestimation of
ζ1,kn (see Figure 6 and 7 in Appendix C). However, BM and IJ are better than IM since they
utilize more information. The plot also corroborates Theorem 3: BM and IJ are exactly
the same up to a scaling factor.

In Appendix C, we include additional simulation results on the effect of different kernel
size kn. It is worth noting that the pattern of bias is consistent among V -statistics: an
overestimation of ζ1,kn leads to severe bias which diminishes as the number of base learners
increases. This effect exists in U -statistics as well, as the estimated variance decreases
as Bn increases. However for U -statistics, the variance estimates tend to underestimate
when large kernels are used (Figure 4b and 5b in Appendix C). This is partly caused by
the fact that the sampling scheme with U -statistics is not equivalent to sampling from
the empirical distribution, especially when the kernel size is large. Both perspectives on
variance estimation, either on estimating the variance of conditional expectation or resorting
to Infinitesimal Jackknife, are based on the idea of using the empirical distribution of
the data to approximate the true underlying distribution. U -statistics, which operate by
sampling without replacement, are not equivalent to sampling from empirical distribution,
thus resulting in the underestimation phenomenon. In Wager and Athey (2018), the authors

use a correction factor n(n−1)
(n−kn)2

as an empirical adjustment for this effect. Figure 8 in

Appendix F shows the result when this correction is applied (denoted by corrected-IJ).
Empirically the correction mitigates the underestimation bias, and exhibits a similar pattern
as V -statistics: a bias due to overestimation of ζ1,kn .

5.2 A Bias-corrected Estimator

In this section, we present a bias-corrected estimator for ζ1,kn under the framework of V -
statistics. We use an ANOVA-like estimation of variance components similar to Sun et al.
(2011). Derivations are collected in Appendix D.

Following notation form Section 4.2, define

SSτ =
n∑
i=1

Ni (mi − m̄)2

and

SSε =
n∑
i=1

Bn∑
b=1

Ni,b (hb −mi)
2 .
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(a) Subsampling with replacement (V -statistics).

(b) Subsampling without replacement (U -statistics).

Figure 2: Variance estimation by three different methods: Internal Variance Estimation
Method (IM), Balanced Variance Estimation Method (BM) and Infinitesimal Jackknife
(IJ). The red line denotes true (log) variance obtained by generating data, training the
ensemble 100 times and calculating the empirical variance of predictions. For IM, we choose
nOUT = (10, 20, 50) for n estimators = (100, 1000, 10000) respectively.
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A bias-corrected estimate is given by

ζ̂1,kn =
SSτ − (n− 1) σ̂2

ε

C −
∑n

i=1N
2
i /C

where C =
∑n

i=1Ni = Bnkn and σ̂2
ε = SSε

C−n .
As a special case for the Balanced Subsample Structure, we have N1 = N2 = . . . = Ni =

rn, then

σ̂2
ε =

SSε
C − n

=
1

n (rn − 1)

n∑
i=1

Bn∑
b=1

Ni,b (hb −mi)
2

and

ζ̂1,kn =
1

n− 1

n∑
i=1

(mi − m̄)2 − 1

rn
σ̂2
ε . (11)

The calculation for ζ̂1,kn in (11) may seem complicated at first. In Appendix E, we show

that under Balanced Subsample Structure we have ζ̂1,kn ≈ 1
n−1

∑n
i=1(mi−m̄)2− 1

Bn
n
kn
ζ̂BM
kn,kn

,

which is simply the original BM estimator minus a correction term calculated from ζ̂BM
kn,kn

.
This indicates that one can actually calculate the bias-corrected estimator without any extra

computational effort. In this case, the estimate for the limiting variance k2n
n ζ1,kn + 1

Bn
ζkn,kn

is k2n
n(n−1)

∑n
i=1(mi− m̄)2− kn−1

Bn
ζ̂BM
kn,kn

, where it’s clear that the incomplete part is negligible
relative to the bias correction term we need to apply.

Figure 3 shows simulation results for this bias-corrected estimator (we call it corrected-
V in the remaining part of this paper) compared with BM and IJ under the framework of
V -statistics. Here we no longer display IM since it is systematically worse. We can see that
even with only 100 base learners, the bias-corrected estimator achieves relatively accurate
estimation of the variance. The bias-corrected term may introduce some instability when
Bn is very small, but for a moderate size Bn it has much lower bias compared to BM and
IJ.

It is worth pointing out that this bias correction method does not work for U -statistics,
for the same reason mentioned before: the sampling schema is not equivalent to sampling
from empirical distribution. Figure 9 in Appendix F shows that the bias-corrected estima-
tor over-corrects the variance for U -statistics. In Athey et al. (2019), the authors developed
a method called the bootstrap of little bags to estimate variance based on the work of
Sexton and Laake (2009). They also encountered the challenge of negative variance when
Bn is small. In their software, an improper uniform prior over [0,∞) was employed to
help mitigate this issue. We conjecture that the phenomenon also stems from the mecha-
nism of sampling without replacement. In Appendix F, we present an empirically accurate
correction to U -statistics as well.

We briefly discuss computational costs to end this section. The majority of computa-
tional efforts are spent at building the ensembles, which is scaled with the total number of
base learners Bn. The time needed for variance calculation using either IM, BM or IJ along
with the bias correction are only marginal. That being said, in many cases to get accurate
variance estimates a prohibitively large Bn is needed. The bias correction method we de-
veloped in this section can reduce Bn to a moderate size, and thus improves computational
efficiency for statistical inference.
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Figure 3: Variance estimation by three different methods: corrected-V, BM and IJ. The
red line denotes true (log) variance obtained by generating data, training the ensemble 100
times and calculating the empirical variance of predictions.

6. Randomized Ensembles

As briefly mentioned before, randomized ensembles are widely used in practice. A general
principle to achieve good performance in ensembles is to make individual learners both
accurate and diverse (Zhou, 2012). To increase diversity, randomization is added to each
base learner. For example in random forests (Breiman, 2001), each split is chosen from a
randomly selected subset of all possible features.

Similar to Peng et al. (2019), we define the notion of a generalized complete V -statistic

Vn,kn,ω = n−kn
n∑

i1=1

. . .
n∑

ikn=1

hkn
(
Zi1 , . . . , Zikn ;ω

)
. (12)

Note that for each kernel hkn we consider an i.i.d. sample of random ωi but the subscript
is dropped for notational convenience.

Similarly define the generalized incomplete statistic by

Vn,kn,Bn,ω =
1

Bn

∑
i

hkn
(
Zi1 , . . . , Zikn ;ω

)
. (13)

Following the same idea developed in Mentch and Hooker (2016) and Wager and Athey
(2018), consider the expected version of (12)

V ∗n,kn,ω = EωVn,kn,ω = n−kn
n∑

i1=1

. . .

n∑
ikn=1

Eωhkn
(
Zi1 , . . . , Zikn ;ω

)
(14)

where the expectation is taken over the randomization parameter ω. In this case, V ∗n,kn,ω
can be viewed as a non-randomized V -statistic with kernel hEkn = Eωhkn where Theorem 1
applies. We state this result formally in the following corollary.
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Corollary 5 Let Z1, Z2, . . . , Zn
iid∼ FZ and let Vn,kn,ω be a generalized complete V -statistic

defined in (12) and the corresponding expected version V ∗n,kn,ω in (14). Under the same
conditions as Theorem 1, we have(

V ∗n,kn,ω − θ
∗
kn

)
√

k2n
n ζ
∗
1,kn

d→ N (0, 1),

where all parameters θ∗kn , ζ
∗
1,kn

, ζ∗kn,kn are defined using new non-randomized kernel hEkn in-
stead of hkn.

Given this, in order to retain the asymptotic normality of the corresponding randomized

case (13), there are two steps: first we show that
Vn,kn,ω−V ∗n,kn,ω

Var(V ∗n,kn,ω)

P→ 0 and thus Vn,kn,ω has

the same asymptotic distribution as V ∗n,kn,ω. Then the asymptotics of Vn,kn,Bn,ω can be
derived from that of Vn,kn,ω.

Theorem 6 Let Vn,kn,Bn,ω be a generalized incomplete V -statistic of the form defined in
(13). Further assume the corresponding statistic V ∗n,kn,ω in (14) satisfies Corollary 5 and

limn→∞ k
2
nζ
∗
1,kn

> 0. Then as long as

sup
kn

E
(
hkn

(
Zi1 , . . . , Zikn ;ω

)
− Eωhkn

(
Zi1 , . . . , Zikn ;ω

))
<∞

where (i1, . . . , ikn) are chosen from {1, . . . , kn} with replacement, we have(
Vn,kn,Bn,ω − θ∗kn

)√
k2n
n ζ
∗
1,kn

+ 1
Bn
ζkn,kn

d→ N (0, 1).

Here, ζkn,kn = var (hkn (Z1, . . . , Zkn , ω)) is the variance across individual randomized ker-
nels, and all parameters θ∗kn , ζ

∗
1,kn

, ζ∗kn,kn are defined using new kernel hEkn instead of hkn as
in Corollary 5.

The analysis for randomized ensembles in Peng et al. (2019) directly treats the random-
ized kernel, rather than first establishing a result for the expectation over ω. This is easier
in the framework of U -statistics; in the case of V -statistics, the new kernel h∗kn constructed
as in Section 3.1 no longer has independent randomization parameters, since different h∗kn
might share the same kernel hkn .

The condition limn→∞ k
2
nζ
∗
1,kn

> 0 required here has also appeared in Lemma 4.1 of
Song et al. (2019). We believe it is generally satisfied with many base learners including
trees, see Peng et al. (2019) for an in-depth analysis for the behavior of ζ1,kn .

7. Empirical Studies

Here, we conduct two suites of experiments. All simulations are implemented in Python.
For building random forests, we apply RandomForestClassifier and RandomForestRegressor
from scikit-learn Friedman (1991). Unless otherwise noted, default parameter values are
used.
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7.1 Predictive Performance

In this section, we evaluate the predictive performance for different sampling strategies. In
particular, we focus on the scenario of U -statistics (sample without replacement) and V -
statistics (sample with replacement), and varying subsample size (proportion of the size of
training data to be 0.2, 0.4, 0.6, 0.8, 1.0). We address the following two questions empirically:

1. Should we subsample with or without replacement in terms of prediction performance?

2. What is the best subsample size?

There are six datasets taken from UCI Machine learning Repository (see Appendix K for
details) and we also include a regression function (denoted by MARS) which was initially
considered by Friedman (1991) for multivariate adaptive regression splines, and has since
been used as a benchmark in many random forests publications.

Each model is built using 100 trees and to full depth until a leaf is pure or contain
fewer than 2 data points. 20% of samples are left as test set. For classification,

√
p of

features are considered when searching for best splits, and bp/3c for regression. Table 7.1
summarizes our results. The first three datasets are regression tasks for which we report
root-mean-squared error and the remaining four are classification with accuracy given by
correct classification percentage. We repeat the process 20 times and denote standard error
in parenthesis. Top performance entries are marked in bold separately for sampling with
vs. without replacement and an asterisk indicates the best performance across all scenarios.

We make two observations here. First, for both sampling with replacement or without,
there is a best subsample size for prediction, though the proportion varies across different
datasets. Accuracy decreases as the subsample size moves away from the ideal proportion.
It is worth noting that performance discrepancy, which is defined to be the maximum
performance difference across five subsample size settings, is generally larger in the case of
U -statistics than V -statistics. For example, in diabetes dataset, there is a 4.1357 RMSE
difference in U -statistics scenario compared to 1.03 in V -statistics. Similarly for retinopathy
dataset, the accuracy discrepancy is 2.79% versus 1.26%. It may suggest that sampling with
replacement is more robust to changes in subsample sizes; possibly as a result of combining
trees built on different numbers of unique data points.

On the other hand, we did not see an obvious performance gap between two sampling
techniques. The best result can be generated either by sampling with replacement or without
depending on the specific data at hand. In practice, one will need to use cross validation
to choose the best sampling strategy and subsample size, if predictive performance is the
primary concern.
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7.2 Asymptotic Normality and Variance Estimation

In this section, we illustrate empirically the asymptotic normality property and variance
estimation algorithms for V -statistics. We will first utilize the MARS function (Fried-
man, 1991; Mentch and Hooker, 2016) such that we have access to the underlying data
generating distribution: y = f(x) = 10 sin(πx1x2) + 20(x3 − 0.05)2 + 10x4 + 5x5 + ε, where
X ∼ U([0, 1]5) and ε ∼ N (0, 1).

Our simulation runs for 500 iterations. In each iteration we generate n = 500 train-
ing observations and train random forests with subsample size k = 100, 250, 500 and the
number of trees B = 500, 1000, 2500, 5000. We make evaluation on three test points:
p1 = [0.5, 0.5, 0.5, 0.5, 0.5] and p2, p3 are randomly drawn from U([0, 1]5).

For each k and B, let f̂i,j denote the prediction at the ith data point and jth iteration
(i = 1, 2, 3 and j = 1, . . . , 500). Similarly V̂u,ij and V̂c,ij are the variance estimates for IJ
and corrected-V respectively. The following three metrics are reported:

• Normality: We test the normality of predictions f̂i,j for j = 1, 2, . . . 500 based on
D’Agostino (1971) and D’Agostino and Pearson (1973) which combine skewness and
kurtosis, and is implemented by scipy.stats.normaltest3 in Python. In Table 2, we
report test statistics and corresponding p-values (in parenthesis). We can see from
the p-values reported that normality for predictions generally hold, even for large
subsample size. See Appendix H for a larger scale of experiments on asymptotic
normality for ensembles.

• Variance ratio: The estimated variance for each setting is given by
¯̂
Vu,i = 1

500

∑500
t=1 V̂u,ij

and
¯̂
Vc,i = 1

500

∑500
t=1 V̂c,ij . And true variance V (f̂i) is approximated by the empirical

variance of f̂i,j for j = 1, 2, . . . 500. Note that in practice we cannot calculate the
true asymptotic variance, but the between-simulation variance can serve as a good

approximation. The variance ratio is defined as
¯̂
Vu,i

V (f̂i)
and

¯̂
Vc,i

V (f̂i)
, where a value close to

1 is ideal. We can see similar patterns across three tables. The original version of IJ
produces highly biased variance estimates, where the bias diminishes as the number
of trees B becomes larger. The bias-corrected version successfully alleviates the issue.
For k = 100, it starts to produce reasonable estimates for 1000 trees, and the variance
ratios are close to one for larger B values. We can also see that it becomes harder to
estimate the variance as the subsample sizes grow.

• Coverage probability: constructing 95% confidence intervals by f̂i,j ± 1.96 ×
√
V̂u,ij

or f̂i,j ± 1.96 ×
√
V̂c,ij for j = 1, 2, . . . 500 in each setting and we can calculate a

coverage probability by checking whether the expected prediction value (approximated

by
¯̂
fi = 1

500

∑500
t=1 f̂i,j) falls into this interval. (Note that this does not assess coverage of

an underlying θ∗kn = Eh∗kn .) This is strongly related to our results for variance ratios.
A larger variance ratios will produce conservative intervals, thus generating higher
coverage probability. The bias-corrected algorithm produces coverage probability close
to 0.95 with reasonable number of base learners.

3. https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.normaltest.html
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p1 p2 p3

original corrected original corrected original corrected

B = 500
normality 3.5285 (0.1713) 0.2274 (0.8925) 0.6600 (0.7189)
var ratio 7.6985 1.4962 8.3871 1.5648 5.7719 1.2725
coverage 100.0 97.2 100.0 96.4 100.0 95.2

B = 1000
normality 1.2341 (0.5395) 1.1715 (0.5567) 1.2146 (0.5448)
var ratio 4.9540 1.3839 4.9290 1.3116 3.8187 1.2048
coverage 100.0 96.4 100.0 96.6 99.8 96.0

B = 2500
normality 1.9708 (0.3733) 2.8710 (0.2380) 0.1502 (0.9276)
var ratio 2.3068 1.0328 2.5635 1.1058 2.1548 1.0770
coverage 99.2 94.2 99.8 94.6 99.4 94.4

B = 5000
normality 3.2266 (0.1992) 0.8750 (0.6456) 2.7195 (0.2567)
var ratio 1.7073 1.0305 1.7748 1.0460 1.5446 1.0138
coverage 98.0 95.0 99.2 94.8 97.3 93.0

(a) k = 100

p1 p2 p3

original corrected original corrected original corrected

B = 500
normality 0.0309 (0.9846) 2.9390 (0.2300) 1.1261 (0.5695)
var ratio 9.2069 2.6342 9.1624 2.5651 7.0298 2.1752
coverage 100.0 99.2 100.0 99.0 100.0 98.6

B = 1000
normality 0.6423 (0.7253) 0.4018 (0.8180) 1.1071 (0.5749)
var ratio 5.7815 2.0194 5.1873 1.7729 4.6717 1.7826
coverage 100.0 99.4 100.0 98.4 100.0 97.8

B = 2500
normality 8.7518 (0.0126) 3.4691 (0.1765) 0.9235 (0.6302)
var ratio 2.6779 1.3200 2.5242 1.2031 2.1364 1.1433
coverage 99.8 95.0 99.4 95.4 98.8 94.8

B = 5000
normality 2.0317 (0.3621) 2.2734 (0.3209) 0.7299 (0.6942)
var ratio 1.8688 1.1504 1.8303 1.1103 1.5598 1.0553
coverage 98.8 95.0 99.0 94.2 96.8 92.0

(b) k = 250

p1 p2 p3

original corrected original corrected original corrected

B = 500
normality 0.5147 (0.7731) 2.1454 (0.3421) 2.3230 (0.3130)
var ratio 10.5311 4.4362 11.3409 4.7405 7.3644 3.1930
coverage 100.0 99.8 100.0 100.0 100.0 99.4

B = 1000
normality 8.0832 (0.0176) 0.5806 (0.7481) 0.3763 (0.8285)
var ratio 6.2113 2.8874 6.4252 2.9916 4.5268 2.2424
coverage 100.0 99.8 100.0 99.4 100.0 99.4

B = 2500
normality 1.0393 (0.5947) 2.6963 (0.2579) 0.7730 (0.6794)
var ratio 2.8223 1.5995 3.3763 1.9137 2.4909 1.5236
coverage 99.8 96.2 99.4 97.8 99.0 96.4

B = 5000
normality 2.5268 (0.2827) 1.2847 (0.5361) 0.0623 (0.9693)
var ratio 2.0838 1.405 1.9944 1.3492 1.6583 1.2001
coverage 98.4 94.8 98.2 95.8 96.4 93.6

(c) k = 500

Table 2: Asymptotic normality and variance estimation results for MARS function.
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k = 100 k = 250 k = 500
original corrected original corrected original corrected

B = 500
normality 0.10 0.00 0.15
var ratio 12.34(3.64) 1.41(0.36) 13.81(3.41) 2.32(0.53) 20.73(8.75) 5.08(1.98)
coverage 100.0(0.0) 94.33(0.04) 100.0(0.0) 98.3(0.02) 100.0(0.0) 99.7(0.01)

B = 1000
normality 0.15 0.00 0.05
var ratio 7.12(2.07) 1.25(0.34) 7.62(2.10) 1.63(0.39) 11.07(4.87) 3.08(1.23)
coverage 100.0(0.0) 95.0(0.05) 100.0(0.0) 96.9(0.03) 100.0(0.0) 98.7(0.02))

B = 2500
normality 0.10 0.05 0.05
var ratio 3.49(0.93) 1.10(0.28) 3.67(0.90) 1.21(0.25) 5.00(2.10) 1.78(0.06)
coverage 100.0(0.0) 94.7(0.05) 100.0(0.0) 94.1(0.04) 99.6(0.02) 96.6(0.03)

B = 5000
normality 0.10 0.00 0.05
var ratio 2.32(0.63) 1.08(0.28) 2.31(0.54) 1.06(0.22) 2.93(1.08) 1.34(0.39)
coverage 99.2(0.02) 94.0(0.05) 99.3(0.01) 91.7(0.05) 98.7(0.03) 93.3(0.02)

Table 3: Asymptotic normality and variance estimation results for Protein Tertiary Struc-
ture across 20 test samples.

In order to see how our results work in real world settings, we pick a relatively large
scale dataset: Physicochemical Properties of Protein Tertiary Structure Data Set4. The
data set contains 45730 samples with 9 covariates and the target is the size of the residue.

To simulate the situation where one can attain alternative training data drawn from
the same data generating distribution to quantify sampling uncertainty, we randomly select
45000 samples and partition them to 45 sets with 1000 in each. These 45 sample sets act
as independent draws from the unknown data generating distribution. As in the previous
experiment, we run for 45 iterations with subsample size k = 100, 250, 500 and the number
of trees B = 500, 1000, 2500, 5000. We treat the average of the resulting 45 random forests
as the target for inference.

We evaluate normality, variance ratio and coverage probability across 20 randomly se-
lected test points. In Table 3 we report the average rejection percentage for the normality
test, average variance ratio and average coverage probability. Numbers in the parentheses
denote standard deviations. We observe similar patterns as in the MARS setting.

8. Conclusion

In this paper, we present a framework for analyzing the asymptotics of V -statistics where
the kernel size kn grows with the number of samples n. It is shown that a central limit
theorem can be established similar to the work in Mentch and Hooker (2016), Wager and
Athey (2018) and Peng et al. (2019), which focus on the case of U -statistics. The result
brings new insight into the analysis of ensemble methods.

We also provide unified treatment of variance estimation in both U - and V -statistics.
We observe that existing methods for estimating the limiting variance exhibit severe bias
and would require a prohibitively large number of base learners to achieve accurate results,
hindering any practical applications such as constructing confidence intervals or conducting

4. https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+

Structure
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hypothesis tests. To this end, we propose a new method called Balanced Variance Estima-
tion Method (BM), and carefully analyze its connection to other methods. In particular,
we demonstrate an equivalence between BM and Infinitesimal Jackknife. Additionally, a
bias correction method is developed which is shown to produce more accurate variance
estimation with a moderate size of base learners.

Practically, we would suggest sampling with replacement in building ensembles since
the bias correction for V -statistics is theoretically sound and much less involved. What’s
more, it appears that the asymptotic normality for V -statistics holds across a broarder
spectrum compared to its U -statistics counterpart (Appendix H). We speculate that the
relative insensitivity of V-statistics performance to subsample size results from averaging
over trees with different numbers of unique samples. More generally, we might speculate
that our equivalent kernel representation in fact admits an approximation in terms of U -
statistics of somewhat lower orders. For example, the weight given to the value of the kernel
with kn unique data points is asymptotically negligible. This analysis may lead to better
understanding of these properties and the rates at which V -statistics subsamples can be
allowed to grow.

From another theoretical point of view, the analysis we provide here is essentially a
reduction to U -statistics. We will further explore whether other approaches like Taylor ex-
pansion using differential methods Serfling (2009) could be applied to attain similar results.
It would also be valuable to see if the results presented in this paper could be extended to
high dimensional cases.
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Appendix A. Equivalence between V - and U-statistics

We first show that the asymptotic behavior of Vn,kn is the same as that of Un,kn , provided

kn = o(n
1
4 ). The following important lemma relates Vn,kn to a family of U -statistics, which

is a simple extension from Theorem 1 in (Lee, 1990, p.183) to the case where the kernel size
kn is changing with n.

Lemma 7 Let Vn,kn be a complete, infinite order V -statistic based on a permutation sym-
metric kernel hkn of degree kn as defined in (8). Then we may write

Vn,kn = n−kn
kn∑
j=1

j!S
(j)
kn

(
n

j

)
U (j)
n

where U
(j)
n is a U -statistic of degree j. The kernel φ(j) of U

(j)
n is given by

φ(j) (z1, . . . , zj) =
(
j!S

(j)
kn

)−1∑∗

(j)
hkn

(
zi1 , . . . , zikn

)
where the sum

∑∗
(j) is taken over all kn-tuples (i1, . . . , ikn) formed from {1, 2, . . . , j} having

exactly j indices distinct, and the quantities S
(j)
kn

are Stirling numbers of the second kind
Rennie and Dobson (1969).

Intuitively, as n grows, if kn grows slowly enough, Vn,kn should behave like Un,kn , as the
difference brought by sampling with or without replacement becomes negligible. Theorem
8 extends a result in Shieh (1994) which makes this argument rigorous.

Theorem 8 Suppose hkn ∈ H, kn = o(n
1
4 ) and limn→∞Var(

√
nUn,kn) > 0. Then Vn,kn

and Un,kn have the same asymptotic distribution.

Remark 9 This theorem only states that asymptotically Vn,kn and Un,kn are indistinguish-
able. The assumption that limn→∞Var(

√
nUn,kn) > 0 simply indicates that the rate of

convergence for Un,kn is
√
n. Theorem 8 may possibly hold under other regimes, such as

with degenerate kernels, where the convergence rate is not
√
n, but this is out of the scope

of this paper.

As in Equation (3), by averaging only Bn < nkn set of subsamples we have an incomplete,
infinite order V -statistic

Vn,kn,Bn =
1

Bn

∑
i

hkn
(
Zi1 , . . . , Zikn

)
(15)

where {Zi1 , . . . , Zik} is again drawn with replacement from {Z1, . . . , Zn}. Under some reg-
ularity conditions, similar asymptotic results as Theorem 1 in Mentch and Hooker (2016);
Theorem 1 in Peng et al. (2019) can be shown.
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Theorem 10 Let Z1, Z2, . . . , Zn
iid∼ FZ and let Vn,kn,Bn be an incomplete, infinite order

V -statistic with kernel hkn. Let θkn = Ehkn(Z1, . . . , Zkn) such that hkn ∈ H. Then under

the assumptions that kn = o(n
1
4 ), limn→∞ k

2
nζ1,kn > 0 and limn→∞

ζkn,kn
nζ1,kn

→ 0, we have

(Vn,kn,Bn − θkn)√
k2n
n ζ1,kn + 1

Bn
ζkn,kn

d→ N (0, 1).

In the complete case where Bn = nkn, we have

(Vn,kn − θkn)√
k2n
n ζ1,kn

d→ N (0, 1).

Note that the first two assumptions kn = o(n
1
4 ) and limn→∞ k

2
nζ1,kn > 0 ensure that we

can apply Theorem 8. The proof requires an additional lemma and is collected together in
Appendix B.2.

Appendix B. Proofs

B.1 Proof of Theorem 8

Proof By Slutsky’s theorem, we only need to show
(Vn,kn−Un,kn )√

Var(Un,kn )

p→ 0. Since we assume

limn→∞Var(
√
nUn,kn) > 0, it suffices to prove

√
n(Vn,kn −Un,kn)

p→ 0. We seek to prove L1

convergence, which implies convergence in probability. According to Lemma 7, Vn,kn could
be written as

Vn,kn =

kn∑
j=1

j!S
(j)
kn

(
n
j

)
nkn

U (j)
n

=
kn!S

(kn)
kn

(
n
kn

)
nkn

Un,kn +

kn−1∑
j=1

j!S
(j)
kn

(
n
j

)
nkn

U (j)
n

=
n(n− 1) . . . (n− kn + 1)

nkn
Un,kn +

kn−1∑
j=1

j!S
(j)
kn

(
n
j

)
nkn

U (j)
n .

Since we assume the second moment of kernel h is bounded, U
(j)
n could also be bounded

by a constant C <∞. We have

E
∣∣√n (Vn,kn − Un,kn)

∣∣ =
√
nE

∣∣∣∣∣∣
(
n(n− 1) . . . (n− kn + 1)

nkn
− 1

)
Un,kn +

kn−1∑
j=1

j!S
(j)
kn

(
n
j

)
nkn

U (j)
n

∣∣∣∣∣∣
≤
√
nE
∣∣∣∣(n(n− 1) . . . (n− kn + 1)

nkn
− 1

)
Un,kn

∣∣∣∣+ E

∣∣∣∣∣∣
kn−1∑
j=1

j!S
(j)
kn

(
n
j

)
nkn

U (j)
n

∣∣∣∣∣∣
≤ C

∣∣∣∣√n(n(n− 1) . . . (n− kn + 1)

nkn
− 1

)∣∣∣∣+
√
n

kn−1∑
j=1

j!S
(j)
kn

(
n
j

)
nkn

 .
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First it’s easy to see

√
n

(
n(n− 1) . . . (n− kn + 1)

nkn
− 1

)
∼
√
n

(
1−

∑kn−1
i=1

n
− 1

)

∼ k2
n√
n
→ 0

as n → ∞ when kn = o(n
1
4 ). An upper bound for S

(j)
kn

is provided in Rennie and Dobson
(1969)

S
(j)
kn
≤ 1

2

(
kn
j

)
jkn−j .

Thus,

j!S
(j)
kn

(
n
j

)
nkn

=
j!
(
n
j

)
nj

S
(j)
kn

nkn−j

≤ 1

2

j!
(
n
j

)
nj

(
kn
j

)
jkn−j

nkn−j

≤ 1

2

j!
(
n
j

)
nj

kkn−jn kkn−jn

nkn−j

=
1

2

j!
(
n
j

)
nj

(
k2
n

n

)kn−j
≤
(
k2
n

n

)kn−j
.

Let an = k2n√
n

, and we know an → 0. Taking the sum yields

√
n

kn−1∑
j=1

j!S
(j)
kn

(
n
j

)
nkn

≤
√
n

kn−1∑
j=1

(
k2
n

n

)kn−j

≤
kn−1∑
j=1

(
k2
n√
n

)kn−j

=

kn−1∑
j=1

akn−jn

≤ an
1− an

→ 0.

We could conclude that E|
√
n(Vn,kn − Un,kn)| → 0.
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B.2 Proof of Theorem 10

Since kn = o(n
1
4 ) and limn→∞ k

2
nζ1,kn > 0, the complete case follows directly from Theorem

8 and Theorem 1 in Peng et al. (2019). We will need the following lemma for the incomplete
case.

Lemma 11 Let a1, a2, . . . be a sequence of constants such that limn→∞
1
n

∑n
i=1 ai = 0 and

limn→∞
1
n

∑n
i=1 a

2
i = σ2 and let random variables M1, . . . ,Mn have a multinomial distribu-

tion, multinomial(Bn; 1
n , . . . ,

1
n). Then as Bn, n→∞, the limiting distribution of

B
− 1

2
n

n∑
i=1

ai

(
Mi −

Bn
n

)
is N (0, σ2).

Proof The characteristic function of (M1, . . . ,Mn) is ( 1
ne

it1 + . . . + 1
ne

itn)Bn since it’s

multinomial(Bn; 1
n , . . . ,

1
n). Thus the characteristic function of B

− 1
2

n
∑n

i=1 ai
(
Mi − Bn

n

)
is

given by

E
(
eitB

− 1
2

n
∑n
i=1 ai(Mi−Bnn )

)
= e−itB

− 1
2

n
Bn
n

∑n
i=1 aiE

(
eitB

− 1
2

n
∑n
i=1 aiMi

)
= e−itānB

1
2
n

(
1

n
eita1B

− 1
2

n + . . .+
1

n
eitanB

− 1
2

n

)Bn
= e−itānB

1
2
n

(
1

n

(
n+ itB

− 1
2

n

n∑
i=1

ai +
1

2

(
itB
− 1

2
n

)2 n∑
i=1

a2
i + . . .

))Bn

= e−itānB
1
2
n

(
1 + itB

− 1
2

n ān +
1

2
σ2
n

(
itB
− 1

2
n

)2

+ o
(
B−1
n

))Bn
where ān = 1

n

∑n
i=1 ai and σ2

n = 1
n

∑n
i=1 a

2
i . Taking the logarithm gives

logE
(
eitB

− 1
2

n
∑n
i=1 ai(Mi−Bnn )

)
= −itānB

1
2
n +Bn log

(
1 + itB

− 1
2

n ān +
1

2
σ2
n

(
itB
− 1

2
n

)2

+ o
(
B−1
n

))

= −itānB
1
2
n +Bn

(
itB
− 1

2
n ān +

1

2

(
σ2
n − ā2

n

)(
itB
− 1

2
n

)2
)

+ o (1)

= −1

2

(
σ2
n − ā2

n

)
t2 + o (1) .

Since we assume tht ān → 0 and σ2
n → σ2, the above quantity converges to −1

2σ
2t2, which

is the logarithm of the characteristic function of N (0, σ2).

Now we could prove the major part of Theorem 10.
Proof Without loss of generality we will assume θkn = 0. Suppose (M1, . . . ,Mnkn ) have a
multinomial distribution, multinomial (Bn; 1

nkn
, . . . , 1

nkn
). We could rewrite Vn,kn,Bn as
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Vn,kn,Bn =
1

Bn

∑
i

hkn
(
Zi1 , . . . , Zikn

)
=

1

Bn

nkn∑
i=1

Mihkn
(
Zi1 , . . . , Zikn

)
=

1

Bn

nkn∑
i=1

(
Mi −

Bn
nkn

+
Bn
nkn

)
hkn

(
Zi1 , . . . , Zikn

)
=

1

Bn

nkn∑
i=1

(
Mi −

Bn
nkn

)
hkn

(
Zi1 , . . . , Zikn

)
+

1

nkn

nkn∑
i=1

hkn
(
Zi1 , . . . , Zikn

)
=

1

Bn

nkn∑
i=1

(
Mi −

Bn
nkn

)
hkn

(
Zi1 , . . . , Zikn

)
+ Vn,kn .

To show
Vn,kn,Bn√

k2n
n
ζ1,kn+ 1

Bn
ζkn,kn

d→ N (0, 1), it is equivalent to prove

lim
n→∞

E

exp

it Vn,kn,Bn√
k2n
n ζ1,kn + 1

Bn
ζkn,kn

 = exp

(
−1

2
t2
)
.

From the above decomposition of Vn,kn,Bn , we have

lim
n→∞

E

exp

it Vn,kn,Bn√
k2n
n
ζ1,kn + 1

Bn
ζkn,kn


= lim
n→∞

E

exp

it ( 1
Bn

∑nkn

i=1 (Mi − Bn

nkn
)hkn(Zi1 , . . . , Zikn

) + Vn,kn)√
k2n
n
ζ1,kn + 1

Bn
ζkn,kn


= lim
n→∞

E

E
exp

it ( 1
Bn

∑nkn

i=1 (Mi − Bn

nkn
)hkn(Zi1 , . . . , Zikn

) + Vn,kn)√
k2n
n
ζ1,kn + 1

Bn
ζkn,kn

 |Z1, . . . , Zn


= lim
n→∞

E

exp

it Vn,kn√
k2n
n
ζ1,kn + 1

Bn
ζkn,kn

E

exp

it 1
Bn

∑nkn

i=1 (Mi − Bn

nkn
)hkn(Zi1 , . . . , Zikn

)√
k2n
n
ζ1,kn + 1

Bn
ζkn,kn

 |Z1, . . . , Zn


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Since
Vn,kn√
k2n
n
ζ1,kn

d→ N (0, 1) and by Lemma 11,

lim
n→∞

E

exp

it Vn,kn,Bn√
k2n
n
ζ1,kn + 1

Bn
ζkn,kn


= lim
n→∞

E

exp

it Vn,kn√
k2n
n
ζ1,kn + 1

Bn
ζkn,kn

E

exp

it 1
Bn

∑nkn

i=1 (Mi − Bn

nkn
)hkn(Zi1 , . . . , Zikn

)√
k2n
n
ζ1,kn + 1

Bn
ζkn,kn

 |Z1, . . . , Zn


= exp

− k2n
n
ζ1,kn

2
(
k2n
n
ζ1,kn + 1

Bn
ζkn,kn

) t2
 exp

− 1
Bn
ζkn,kn

2
(
k2n
n
ζ1,kn + 1

Bn
ζkn,kn

) t2


= exp

(
−1

2
t2
)
.

B.3 Proof of Theorem 1

Proof By Equation (9), the complete case follows directly from Theorem 1 in Peng et al.
(2019). The incomplete case follows exactly the same proof as Theorem 10.

B.4 Proof of Theorem 3

Proof

In the case of Balanced Subsample Structure where rn = Bn×kn
n , we have m̄ = h̄ and

Ni = rn for all i.

First we can rewrite ζ̂BM
1,kn

as

ζ̂BM
1,kn =

1

n− 1

n∑
i=1

(mi − m̄)2

=
1

n− 1

n∑
i=1

(
Bn∑
b=1

ωi,bhb − h̄

)2

=
1

n− 1

n∑
i=1

(
Bn∑
b=1

Ni,b

Ni
hb − h̄

)2

=
1

n− 1

1

r2
n

n∑
i=1

(
Bn∑
b=1

Ni,b

(
hb − h̄

))2

.
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Then for V̂IJ =
∑n

i=1 cov2(Ni,b, hb), we look at each individual term

cov (Ni,b, hb) =

∑Bn
b=1(Ni,b − N̄i)(hb − h̄)

Bn

=
1

Bn

 ∑
b,Zi∈b

(
Ni,b − N̄i

) (
hb − b̄

)
+
∑
b,Zi /∈b

(
Ni,b − N̄i

) (
hb − b̄

)
=

1

Bn

 ∑
b,Zi∈b

(
Ni,b −

kn
n

)(
hb − h̄

)
+
∑
b,Zi /∈b

(
0− kn

n

)(
hb − h̄

)
=

1

Bn

 ∑
b,Zi∈b

Ni,b

(
hb − h̄

)
− kn

n

∑
b

(
hb − h̄

)
=

1

Bn

∑
b,Zi∈b

Ni,b

(
hb − h̄

)
=

1

Bn

Bn∑
b=1

Ni,b

(
hb − h̄

)
where Zi denotes the ith training sample.

Combining two previous identities

V̂IJ =

n∑
i=1

cov2(Ni,b, hb)

=
1

B2
n

n∑
i=1

(
Bn∑
b=1

Ni,b(hb − b̄)

)2

=
(n− 1)r2

n

B2
n

ζ̂BM
1,kn

=
n− 1

n

k2
n

n
ζ̂BM

1,kn

as claimed.

B.5 Proof of Theorem 6

Proof The assumption limn→∞ k
2
nζ
∗
1,kn

> 0 implies limn→∞Var(
√
nV ∗n,kn,Bn,ω) > 0. We

first show the complete case. Similar to the proof of Theorem 2 in Mentch and Hooker
(2016), we have

E(Vn,kn,ω − V ∗n,kn,ω)2 =
1

(nkn)2
E
∑
i

(
hkn

(
Zi1 , . . . , Zikn ;ω

)
− Eωhkn

(
Zi1 , . . . , Zikn ;ω

))2
.
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Thus,

lim
n→∞

E

√n(Vn,kn,ω − V ∗n,kn,ω)√
Var(
√
nV ∗n,kn,ω)

2

= lim
n→∞

E
n

nkn
1

Var(
√
nV ∗n,kn,ω)

1

nkn

∑
i

E
(
hkn

(
Zi1 , . . . , Zikn ;ω

)
− Eωhkn

(
Zi1 , . . . , Zikn ;ω

))2
=0

since supkn E
(
hkn

(
Zi1 , . . . , Zikn ;ω

)
− Eωhkn

(
Zi1 , . . . , Zikn ;ω

))
<∞ and limn→∞Var(

√
nV ∗n,kn,ω) >

0.

The incomplete case follows exactly as in Mentch and Hooker (2016).

Appendix C. Additional Simulation Results

Simulations in this section are based on a simple setting where X ∼ 20 × unif(0, 1) and
Y = 2X + N (0, 1). The number of training observations n = 500. The model is an
ensemble of decision trees.

Figure 4 and 5 displays variance estimation by IM, BM and IJ for kernel size kn = 250
and 400.

Figure 6 and Figure 7 shows the estimated values for each variance components ζ1,kn and
ζkn,kn for kn = 100. Since IJ does not target at ζ1,kn directly, we rescaled the estimated by

a factor k2n
n according to Theorem 3. The estimators for ζkn,kn for the three methods shown

are essentially the same as they are all calculating the variance across all base learners’
predictions.

Appendix D. Derivations on Bias-corrected Estimator

Our goal is to provide an estimator of ζ1,kn based on expression given in (10)

ζ1,kn = var (E (hkn (Z1, . . . , Zkn) |Z1 = z1)) .

To simplify notations, we introduce a more general mathematical representation. Con-
sider a random variable X and its conditional distribution given a random variable Z,
denoted by M = E(X|Z). We want to estimate the variance of σ2

M = Var(M). Use FZ
and FX|Z to denote the distribution for Z and the conditional distribution X given Z
respectively.

Consider the following sampling framework: for k = 1, . . . ,K:

1. Sample Zk randomly from FZ .

2. For j = 1, . . . , nk: Sample Xkj randomly from FX|Z=Zk .
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(a) Subsampling with replacement (V -statistics).

(b) Subsampling without replacement (U -statistics).

Figure 4: Variance estimation by three different methods: IM, BM and IJ. The kernel
size kn = 250. The variance shown is for prediction at test point x = 10. The red line
denotes true (log) variance obtained by generating data, training the ensemble 100 times
and calculating the empirical variance of predictions.
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(a) Subsampling with replacement (V -statistics).

(b) Subsampling without replacement (U -statistics).

Figure 5: Variance estimation by three different methods: IM, BM and IJ. The kernel
size kn = 400. The variance shown is for prediction at test point x = 10. The red line
denotes true (log) variance obtained by generating data, training the ensemble 100 times
and calculating the empirical variance of predictions.
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(a) Subsampling with replacement (V -statistics).

(b) Subsampling without replacement (U -statistics).

Figure 6: ζ1,kn estimated by three different methods: IM, BM and IJ. The kernel size
kn = 100. The variance shown is for prediction at test point x = 10.
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(a) Subsampling with replacement (V -statistics).

(b) Subsampling without replacement (U -statistics).

Figure 7: ζkn,kn estimated by three different methods: IM, BM and IJ. The kernel size
kn = 100. The variance shown is for prediction at test point x = 10.
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We’ll use the collections of samples Xkj (k = 1, . . . ,K, j = 1, . . . , nk) to provide an estimator

for σM . Define C =
∑K

k=1 nk, σ
2
ε = E(Var(X|Z)) and the following two sum of squares

SSτ =
K∑
k=1

nk(X̄k − ¯̄X)2,

SSε =
K∑
k=1

nk∑
j=1

(Xkj − X̄k)
2

where ¯̄X = 1
C

∑K
k=1 nkX̄k, X̄k = 1

nk

∑nk
j=1Xkj . Following the calculations in Sun et al.

(2011), we have

E(SSτ ) =

(
C −

K∑
i=1

n2
i /C

)
σ2
M + (K − 1)σ2

ε ,

E(SSε) = (C −K)σ2
ε .

Thus we can get the estimator for σ2
M as

σ̂2
M =

SSτ − (K − 1)σ̂2
ε

C −
∑K

i=1 n
2
i /C

where

σ̂2
ε =

SSε
C −K

.

The unbiasedness of these estimators is shown by Searle et al. (2009). By setting Z = Z1

and X = hkn (Z1, . . . , Zkn) gives the estimator presented in Section 5.2.

Appendix E. An Alternative Version of Bias Correction

Our subsampling methods choose each data point with equal probability and we thus expect
to obtain an approximately balanced subsample. For simplicity, our derivation assumes this
structure holds exactly.

Recall that we have N1 = N2 = . . . = Ni = rn, then

σ̂2
ε =

SSε
C − n

=
1

n(rn − 1)

n∑
i=1

Bn∑
b=1

Ni,b(hb −mi)
2,

and

ζ̂1,kn =
1

n− 1

n∑
i=1

(mi − m̄)2 − 1

rn
σ̂2
ε .

We could rewrite σ̂2
ε as
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σ̂2
ε =

1

n(rn − 1)

n∑
i=1

Bn∑
b=1

Ni,b(hb −mi)
2

=
1

n(rn − 1)

n∑
i=1

Bn∑
b=1

Ni,b(hb − h̄+ h̄−mi)
2

=
1

n(rn − 1)

n∑
i=1

Bn∑
b=1

Ni,b(hb − h̄)2 +
1

n(rn − 1)

n∑
i=1

Bn∑
b=1

Ni,b(h̄−mi)
2

+
2

n(rn − 1)

n∑
i=1

Bn∑
b=1

Ni,b(hb − h̄)(h̄−mi)

=
1

n(rn − 1)

Bn∑
b=1

(hb − h̄)2
n∑
i=1

Ni,b +
1

n(rn − 1)

n∑
i=1

(h̄−mi)
2
Bn∑
b=1

Ni,b

+
2

n(rn − 1)

n∑
i=1

(h̄−mi)

Bn∑
b=1

Ni,b(hb − h̄)

=
1

n(rn − 1)

Bn∑
b=1

(hb − h̄)2kn +
1

n(rn − 1)

n∑
i=1

(h̄−mi)
2rn

+
2

n(rn − 1)

n∑
i=1

(h̄−mi)rn(mi − h̄)

=
kn

n(rn − 1)

Bn∑
b=1

(hb − h̄)2 − rn
n(rn − 1)

n∑
i=1

(h̄−mi)
2

=
kn

n(rn − 1)

Bn∑
b=1

(hb − h̄)2 − rn
n(rn − 1)

n∑
i=1

(mi − m̄)2.

Plug this into the expression for ζ̂1,kn , we have
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ζ̂1,kn =
1

n− 1

n∑
i=1

(mi − m̄)2 − 1

rn
σ̂2
ε

=
1

n− 1

n∑
i=1

(mi − m̄)2 − 1

rn

(
kn

n(rn − 1)

Bn∑
b=1

(
hb − h̄

)2 − rn
n(rn − 1)

n∑
i=1

(mi − m̄)2

)

=

(
1

n− 1
− 1

n(rn − 1)

) n∑
i=1

(mi − m̄)2 − kn
rnn(rn − 1)

Bn∑
b=1

(
hb − h̄

)2
=

(
1

n− 1
− 1

n(rn − 1)

) n∑
i=1

(mi − m̄)2 − kn
rnn(rn − 1)

(Bn − 1) ζ̂BM
kn,kn

≈ 1

n− 1

n∑
i=1

(mi − m̄)2 − 1

Bn

n

kn
ζ̂BM
kn,kn .

The approximation in the last line holds as long as rn grows with n, which is a reasonable
assumption in most cases.

Appendix F. Bias Correction for U-statistics

Simulations in this section are based on a simple setting where X ∼ 20 × unif(0, 1) and
Y = 2X+N (0, 1). The number of training observations n = 500. The model is an ensemble
of decision trees built under the framework of U -statistics: each tree is constructed using
subsamples without replacement.

Figure 8 shows the result for U -statistics by employing the correction by Wager and
Athey (2018).

Figure 9 shows the result of corrected-V developed in Section 5.2 applied to U -statistics.

For simplicity, we will use the simpler but approximate variance estimation described
in Appendix E

ζ̂1,kn =
1

n− 1

n∑
i=1

(mi − m̄)2 − 1

Bn

n

kn
ζ̂BM
kn,kn .

We find that if we scale the correction term by n−kn
n , and include the correction term in

Wager and Athey (2018), it works for U -statistics empirically. The estimator for ζ1,kn for
U -statistics is

ζ̂U1,kn =
n(n− 1)

(n− kn)2

(
1

n− 1

n∑
i=1

(mi − m̄)2 − 1

Bn

n− kn
kn

ζ̂BM
kn,kn

)
.

The blue bars (denoted by corrected-U) in Figure 10 shows the result. We can see that
by combining both correction terms, the estimator yields stable and accurate variance es-
timation. How to theoretically analyze bias correction for U -statistics remains a promising
future endeavor.
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(a) kn = 100.

(b) kn = 250.

(c) kn = 400.

Figure 8: Variance Estimation by three different methods: corrected-IJ, BM and IJ. The
kernel size kn = 100, 250, 400. The variance shown is for prediction at test point x = 10.
The red line denotes true (log) variance obtained by generating data, training the ensemble
100 times and calculating the empirical variance of predictions.
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Figure 9: Variance estimation by three different methods: corrected-V, BM and IJ. The
variance shown is for prediction at test point x = 10. The red line denotes true (log)
variance obtained by generating data, training the ensemble 100 times and calculating the
empirical variance of predictions.

Appendix G. A Closer Look at Variance Components

A major difference between our work and Wager and Athey (2018) is that we also take into
account the effect of Monte Carlo effect brought by the number of base learners Bn. Thus

our variance has two components, where the first part k2n
n ζ1,kn corresponds to the complete

case and the second part 1
Bn
ζkn,kn is the additional Monte Carlo variance introduced due

to the incomplete case.

One can imagine that for smaller Bn, the second part of Monte Carlo variance might
be much larger than the first part, while as Bn gets larger the effect diminishes and
k2n
n ζ1,kn becomes the dominating one. We conduct an experiment to visualize this tran-

sition. As before, let X ∼ 20 × unif(0, 1) and Y = 2X + N (0, 1). The model is an
ensemble of decision trees built under the framework of V -statistics. We fix the number
of training observations n = 1000 and kernel size kn = 10 and build the ensembles with
Bn = 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000. For each Bn, 100 models are built and
we calculate empirical variance of the predictions at test point x = 10. This procedure is
repeated 10 times and we report the average of empirical variance.

Figure 11 shows four lines: the empirical variance; the two variance components k2n
n ζ1,kn

and 1
Bn
ζkn,kn ; the total estimated variance which is simply the sum k2n

n ζ1,kn + 1
Bn
ζkn,kn . We

estimate ζ1,kn and ζkn,kn using an ensemble of size Bn = 1000. The dotted black line aligns
well with the black line, which indicates that our variance estimates give accurate results.
For small Bn = 100, each observation is expected to only appear once in the ensemble (since
rn = kn×Bn

n = 1), and as a result base learners will be approximately independent. In this
case, the variance of the ensemble prediction should mainly come from 1

Bn
ζkn,kn . When Bn

grows, dependence between some base learners kicks in and the effect of k2n
n ζ1,kn gradually

becomes the dominating part as 1
Bn
ζkn,kn decreases. This transition is depicted in Figure
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(a) kn = 100.

(b) kn = 250.

(c) kn = 400.

Figure 10: Variance Estimation by three different methods: corrected-U, BM and IJ. The
kernel size kn = 100, 250, 400. The variance shown is for prediction at test point x = 10.
The red line denotes true (log) variance obtained by generating data, training the ensemble
100 times and calculating the empirical variance of predictions.
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Figure 11: Variance components for different Bn. The number of training observations
n = 1000 and kernel size kn = 10. The variance shown is for prediction at test point

x = 10. Four lines shown are: empirical variance, two variance components (k
2
n
n ζ1,kn and

1
Bn
ζkn,kn) and their sum as estimated variance.

11. Note that in practice the additional Monte Carlo variance introduced due to incomplete
case is usually negligible as we would choose larger kn and Bn.

Appendix H. Additional Simulation Results on Normality for Ensembles

The experiment is conducted under the same setting of Section 7.2. Let y = f(x) =
10 sin(πx1x2) + 20(x3 − 0.05)2 + 10x4 + 5x5 + ε, where X ∼ U([0, 1]5) and ε ∼ N (0, 1).

We fix B = 500 and vary subsample size k = 100, 200, 300, 400, 500. We randomly
general 100 test points from U([0, 1]5). For each test point, we conduct 100 simulations
where in each iteration we generate n = 500 training observations to fit a random forests
and record its prediction. Finally a normality test is conducted on 100 predictions of the
same test point. The experiment is repeated for both V - and U -statistics. Table 4 shows
the percentage of p-values falls below 0.05 (a normal hypothesis is rejected). We can see
that in our setting normality for predictions generally hold for V -statistics across all kernel
size, while for U -statistics it starts to break down for large kernel size.
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V -statistics U -statistics

100 0.1 0.07

200 0.06 0.05

300 0.06 0.04

400 0.05 0.11

500 0.07 0.18

Table 4: Normality Test for Ensembles.

Appendix I. Variance Estimation for V -statistics and Its Implications

We prove the theoretical asymptotics for general V -statistics utilizing a composite kernel
h∗kn , which is infeasible to evaluate in practice. Thus it remains a challenge to quantify its
variance directly which involves ζ∗1,kn , and we use Infinitesimal Jackknife as a workaround.
IJ was initially developed for computing standard errors and confidence interval in bagging
(Efron, 2014). As a general tool, IJ does not rely on any specific variance expressions and is
applied upon the original kernel hkn instead of h∗kn . Consistency of IJ under the framework
of U -statistics was proved in Wager and Athey (2018); Ghosal and Hooker (2020).

The result in Theorem 3 establishes a connection between BM and IJ. Thus applying
BM on the original kernel hkn of a V-statistic should yield valid variance estimates. This
is how we calculate limiting variance in all of the empirical studies. Although we do not
theoretically prove IJ is consistent for V -statistics, the empirical results in Table 2 show a
promising sign. If this is the case, then we should have ζ1,kn = ζ∗1,kn for a general V -statistics
under the conditions of Theorem 1. We leave this conjecture as a future work.

Appendix J. U-statistics Results for Section 7.2

This section shows the results for U -statistics under the same setting of Section 7.2.

Table 5 presents the normality test, variance ratio and coverage for the same three
test points as in Table 2 using the original BM variance estimation method. This further
supports our previous finding that for U -statistics a prohibitive number of base learner is
needed for valid inference; while for larger kernel sizes, normality starts to break down and
as a result the estimated variance is no longer valid.

Corresponding U -statistics result for Protein Tertiary Structure data is shown in Table
6.

Appendix K. Datasets Information

Six of the seven datasets in Table 7.1 are taken from UCI Machine Learning Repository5:

• boston: https://archive.ics.uci.edu/ml/machine-learning-databases/housing/.
The dataset contains information collected by the U.S Census Service concerning hous-
ing in the area of Boston Mass. This is a regression task to predict median value of
owner-occupied homes in $1000’s.

5. https://archive.ics.uci.edu/ml/index.php
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p1 p2 p3

original original original

B = 500
normality 2.4464 (0.2943) 1.7276 (0.4216) 3.9023 (0.1421)
var ratio 5.6619 6.1710 4.1774
coverage 100.0 100.0 99.8

B = 1000
normality 4.0015 (0.1352) 0.7224 (0.6968) 0.0999 (0.9513)
var ratio 3.5290 3.6977 2.7600
coverage 99.8 100.0 99.8

B = 2500
normality 1.6279 (0.4431) 4.2958 (0.1167) 0.4680 (0.7914)
var ratio 1.6725 1.8111 1.6239
coverage 98.2 99.0 97.2

B = 5000
normality 3.8553(0.1455) 0.7108 (0.7009) 2.1749 (0.3371)
var ratio 1.2396 1.3060 1.1624
coverage 96.6 98.2 94.6

(a) k = 100

p1 p2 p3

original original original

B = 500
normality 3.8301 (0.1473) 3.0423 (0.2185) 1.3942 (0.4980)
var ratio 3.2972 2.9889 2.3566
coverage 99.6 100.0 99.0

B = 1000
normality 5.9749 (0.0504) 0.3142 (0.8546) 0.0418 (0.9793)
var ratio 1.9543 1.7152 1.6739
coverage 98.4 98.6 97.2

B = 2500
normality 7.4631 (0.0239) 2.0683 (0.0.3555) 2.3659 (0.3064)
var ratio 0.9110 0.8726 0.7628
coverage 91.8 92.0 89.6

B = 5000
normality 6.2611 (0.0437) 1.4629 (0.4812) 1.9362 (0.3798)
var ratio 0.5918 0.6795 0.5756
coverage 85.4 87.6 83.4

(b) k = 250

p1 p2 p3

original original original

B = 500
normality 28.9413 (5.19e-07) 1.7923 (0.4081) 7.0993 (0.0287)
var ratio 12.27e-05 17.39e-05 16.13e-05
coverage 1.4 1.4 0.4

B = 1000
normality 11.3388 (0.0034) 3.8287 (0.1474) 8.5205 (0.0141)
var ratio 9.03e-05 9.63e-05 8.48e-05
coverage 1.2 0.6 1.4

B = 2500
normality 2.9161 (0.2327) 0.3811 (0.8265) 13.3368 (0.0013)
var ratio 3.17e-05 3.63e-05 3.48e-05
coverage 0.6 0.6 0.6

B = 5000
normality 5.2564 (0.7222) 4.0334 (0.1331) 10.9238 (0.0042)
var ratio 1.63e-05 1.91e-05 1.65e-05
coverage 0.4 0.4 0.6

(c) k = 500

Table 5: Asymptotic normality and variance estimation results for MARS function: U -
statistics. 45
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k = 100 k = 250 k = 500
original original original

B = 500
normality 0.10 0.15 0.10
var ratio 10.77(2.65) 13.20(5.70) 6.88(1.73)
coverage 100.0(0.0) 100.0(0.0) 99.88(0.00)

B = 1000
normality 0.15 0.15 0.15
var ratio 6.03(1.49) 6.95(2.46) 3.62(1.01)
coverage 100.0(0.0) 100.0(0.0) 99.33(0.01)

B = 2500
normality 0.10 0.20 0.15
var ratio 3.07(0.77) 3.29(1.20) 1.67(0.40)
coverage 99.33(0.01) 99.7(0.01) 96.8(0.03)

B = 5000
normality 0.20 0.15 0.15
var ratio 2.00(0.46) 2.05(0.72) 1.01(0.24)
coverage 98.22(0.02) 97.67(0.03) 91.0(0.05)

Table 6: Asymptotic normality and variance estimation results for Protein Tertiary Struc-
ture across 20 test samples: U -statistics.

• diabetes: https://archive.ics.uci.edu/ml/datasets/diabetes. The attributes
are diabetes patient records and the target is an integer between 25 and 346. We
simply cast it as a regression problem.

• iris: https://archive.ics.uci.edu/ml/datasets/Iris. This is a classification
problem. The dataset contains 3 classes of 50 instances each, where each class refers
to a type of iris plant.

• digits: https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+
digits. A classification task to predict integers from 0 to 9 with 64 attributes.

• retinopathy: https://archive.ics.uci.edu/ml/datasets/Diabetic+Retinopathy+
Debrecen+Data+Set. This dataset contains features extracted from the Messidor im-
age set to predict whether an image contains signs of diabetic retinopathy or not.

• breast cancer: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+
(Diagnostic). This is a classification task to predict whether the diagnosis is ma-
lignant or benign based on features computed from a digitized image of a fine needle
aspirate (FNA) of a breast mass.
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