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Guillaume Lecué guillaume.lecue@ensae.fr
CREST, ENSAE, IPParis

Lucie Neirac lucie.neirac@ensae.fr

CREST, ENSAE, IPParis

Editor: Ohad Shamir

Abstract

Many statistical learning problems have recently been shown to be amenable to Semi-
Definite Programming (SDP), with community detection and clustering in Gaussian mix-
ture models as the most striking instances Javanmard et al. (2016). Given the growing
range of applications of SDP-based techniques to machine learning problems, and the rapid
progress in the design of efficient algorithms for solving SDPs, an intriguing question is to
understand how the recent advances from empirical process theory and Statistical Learning
Theory can be leveraged for providing a precise statistical analysis of SDP estimators.

In the present paper, we borrow cutting edge techniques and concepts from the Learning
Theory literature, such as fixed point equations and excess risk curvature arguments, which
yield general estimation and prediction results for a wide class of SDP estimators. From
this perspective, we revisit some classical results in community detection from Guédon and
Vershynin (2016) and Fei and Chen (2019b), and we obtain statistical guarantees for SDP
estimators used in signed clustering, angular group synchronization (for both multiplica-
tive and additive models) and MAX-CUT. Our theoretical findings are complemented by
numerical experiments for each of the three problems considered, showcasing the competi-
tiveness of the SDP estimators.

Keywords: Semi-Definite Programming, Statistical Learning, Group Synchronization,
Signed Clustering.

1. Introduction

Many statistical learning problems have recently been shown to be amenable to Semi-
Definite Programming (SDP), with community detection and clustering in Gaussian mixture
models as the most striking instances where SDP performs significantly better than other
current approaches Javanmard et al. (2016). SDP is a class of convex optimization problems
generalising linear programming to linear problems over semi-definite matrices Todd (2001),
Wolkowicz et al. (2012), Boyd and Vandenberghe (2004), and which was proved to be an
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important tool in the computational approach to difficult challenges in automatic control,
combinatorial optimization, polynomial optimization, data mining, high-dimensional statis-
tics and the numerical solution to partial differential equations. The goal of the present
paper is to introduce a new fixed point approach to the statistical analysis of SDP-based
estimators, and illustrate our method on four current problems of interest, namely commu-
nity detection, signed clustering, angular group synchronization, and Max-Cut. Our aim is
to show that all these estimators can be viewed as special instances of Empirical Risk Min-
imization (ERM), and can then benefit from the very large litterature on that subject. The
rest of this section provides historical background and presents the mathematical definition
of SDP-based estimators.

1.1 Historical background

SDP is a class of optimization problems which includes linear programming as a partic-
ular case, and can be written as the set of problems over symmetric (resp. Hermitian)
positive semi-definite matrix variables, with linear cost function and affine constraints, i.e.
optimization problems of the form

max
Zľ0

`〈
A,Z

〉
:
〈
Bj , Z

〉
“ bj for j “ 1, . . . ,m

˘

, (1)

where A,B1, . . . , Bm are given matrices. SDPs are convex programming problems which can
be solved in polynomial time when the constraint set is compact and it plays a paramount
role in a large number of convex and non-convex problems, for which they often appear as
a convex relaxation Anjos and Lasserre (2011). We will occasionally use the notation Sn,`
(resp. Sn,´) for the cone of positive (resp. negative) semi-definite matrices.

1.1.1 Early history

Early use of Semi-Definite programming in statistics can be traced back to Scobey and
Kabe (1978) and Fletcher (1981). In the same year, Shapiro used SDP in factor analysis
Shapiro (1982). The study of the mathematical properties of SDP then gained momentum
with the introduction of Linear Matrix Inequalities (LMI) and their numerous applications
in control theory, system identification and signal processing. The book Boyd et al. (1994)
is the standard reference of these type of results, mostly obtained in the 90’s.

1.1.2 The Goemans-Williamson SDP relaxation of Max-Cut and its legacy

A notable turning point is the publication of Goemans and Williamson (1995), where SDP
was shown to provide a 0.87 approximation to the NP-Hard problem known as Max-Cut.
The Max-Cut problem is a clustering problem on graphs which consists in finding two
complementary subsets S and Sc of nodes such that the sum of the weights of the edges be-
tween S and Sc is maximal. In Goemans and Williamson (1995), the authors approach this
difficult combinatorial problem by using what is now known as the Goemans-Williamson
SDP relaxation, and use the Choleski factorization of the optimal solution to this SDP in
order to produce a randomized scheme achieving the 0.87 bound in expectation. Moreover,
this problem can be seen as a first instance where the Laplacian of a graph is employed in
order to provide an optimal bi-clustering in a graph, and certainly represents the first chap-
ter of a long and fruitful relationship between clustering, embedding and graphs Laplacians.
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Other SDP schemes for approximating hard combinatorial problems are, to name a few, for
the graph coloring problem Karger et al. (1998), and the satisfiability problem Goemans
and Williamson (1995, 1994). These results were later surveyed in Lemaréchal et al. (1995);
Goemans (1997) and Wolkowicz (1999). The randomized scheme introduced by Goemans
and Williamson was then further improved in order to study more general Quadratically
Constrained Quadratic Programmes (QCQP) in various references, most notably Nesterov
(1997); Zhang (2000) and further extended in He et al. (2008). Many applications to signal
processing are discussed in Olsson et al. (2007), Ma (2010); one specific reduced complexity
implementation in the form of an eigenvalue minimization problem and its application to
binary least-squares recovery and denoising is presented in Chrétien and Corset (2009).

1.1.3 Relaxation of machine learning and high-dimensional statistical
estimation problems

Applications of SDP to problems related to machine learning is more recent and probably
started with the SDP relaxation of K-means in Peng and Xia (2005); Peng and Wei (2007)
and later in Ames (2014). This approach was then further improved using a refined statis-
tical analysis by Royer (2017) and Giraud and Verzelen. Similar methods have also been
applied to community detection Hajek et al. (2016); Abbe et al. (2015) and for the weak
recovery viewpoint, Guédon and Vershynin (2016). This last approach was also re-used via
the kernel trick for the point cloud clustering Chrétien et al. (to appear). Another incarna-
tion of SDP in machine learning is the extensive use of nuclear norm-penalized least-square
costs as a surrogate for rank-penalization in low-rank recovery problems such as matrix
completion in recommender systems, matrix compressed sensing, natural language process-
ing and quantum state tomography; these topics are surveyed in Davenport and Romberg
(2016).

The problem of manifold learning was also addressed using SDP and is often mentioned
as one of the most accurate approaches to the problem, let aside its computational com-
plexity; see Weinberger et al. (2005); Weinberger and Saul (2006b,a); Hegde et al. (2012).
Connections with the design of fast converging Markov-Chains were also exhibited in Sun
et al. (2006). Positive semi-definite embeddings for dimensionality reduction and manifold
learning, along with out-of-sample extensions, were recently explored in Fanuel et al. (2017).

In a different direction, A. Singer and collaborators have recently promoted the use of
SDP relaxation for estimation under group invariance, an active area with many applications
Singer (2011); Bandeira et al. (2014). SDP-based relaxations have also been considered in
Cucuringu (2015) in the context of synchronization over Z2 in signed multiplex networks
with constraints, and Cucuringu (2016) in the setting of ranking from inconsistent and
incomplete pairwise comparisons where an SDP-based relaxation of angular synchronization
over SO(2) outperformed a suite of state-of-the-art algorithms from the ranking literature.
Phase recovery using SDP was studied in e.g. Waldspurger et al. (2015) and Demanet and
Hand (2014). An extension to multi-partite clustering based on SDP was then proposed
in Karger et al. (1998). Other important applications of SDP are, information theory
Lovász (1979), estimation in power networks Lavaei and Low (2011), quantum tomography
Mazziotti (2011), Gross et al. (2010) and polynomial optimization via Sums-of-squares
relaxations Lasserre (2015); Blekherman et al. (2012). Sums of squares relaxations were
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recently applied to statistical problems in De Castro et al. (2019); Hopkins (2018); de Castro
et al. (2017). Extension to the field of complex numbers, with

〈
¨, ¨
〉

denoting the Hermitian
inner product, has been less extensively studied but has many interesting applications and
comes with efficient algorithms Goemans and Williamson (1995); Gilbert and Josz (2017).

1.2 Mathematical formulation of the problem

The general problem we study can be stated as follows. Let A be a random matrix in
Rnˆn and C Ă Rnˆn be a constraint. The object that we want to recover, for instance, the
community membership vector in community detection, is related to an oracle defined as

Z˚ P argmax
ZPC

〈
EA,Z

〉
, (2)

where
〈
A,B

〉
“ TrpAB̄Jq “

ř

AijB̄ij when A,B P Cnˆn where z̄ is the conjugate of z P C.
We would like to estimate Z˚, from which we can ultimately retrieve the object that really
matters to us (for instance, by considering a singular vector associated to the largest singular
value of Z˚). To that end, we consider the following natural estimator of Z˚ given by

Ẑ P argmax
ZPC

〈
A,Z

〉
, (3)

which is simply obtained by replacing the unobserved quantity EA by the observation A.
As pointed out, in many situations, Z˚ is not the object we want to estimate, but

there is a straightforward relation between Z˚ and this object. For instance, consider the
community detection problem, where the goal is to recover the class community vector
x˚ P t´1, 1un of n nodes. Here, when C is well chosen, there is a close relation between
Z˚ and x˚, given by Z˚ “ x˚px˚qJ. We therefore need a final step to estimate x˚ from Ẑ,
for instance, by letting x̂ denote a top eigenvector of Ẑ, and then using the Davis-Kahan
“sinpΘq” Theorem Davis and Kahan (1970); Yu et al. (2015) to control the estimation of
x˚ by x̂ from the one of Z˚ by Ẑ.

When the constraint C is of the form C “ tZ P Rnˆn : Z ľ 0,
〈
Z,Bj

〉
“ bj , j “ 1, . . . ,mu,

where B1, . . . , Bm P Rnˆn and Z ľ 0 is notation for “ Z is positive semidefinite”, then (3)
is a semidefinite program (SDP) Boyd and Vandenberghe (2004).

Goal of the paper. The aim of the present work is to present a general approach to the
study of the statistical properties of SDP-based estimators defined in (3). In particular,
using our framework, one is able to obtain new (non-asymptotic) rates of convergence or
exact reconstruction properties for a wide class of estimators obtained as a solution of a
semidefinite program like (3). Specifically, our goal is to show that the solution to (3)
can be analyzed in a statistical way, when EA is only partially and noisily observed in A.
Even though the constraint C may not necessarily be the intersection of the set of PSD (or
Hermitian) matrices with linear spaces – such as in the definition of SDP – in the following,
a solution Ẑ of (3) will be called a SDP estimator because, in all our examples, Ẑ will be
solution of a SDP. But for the sake of generality, we will only assume a minimal requirement
on the shape of C. We also illustrate our results on a number of specific machine learning
problems, such as various forms of clustering problems and angular group synchronization.
Three out of the four examples worked out here are concerned with real-valued matrices.
Only the angular synchronization problem is approached using complex matrices.
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Our goal here is to show that various problems can be analyzed in the same way. Our
point of view is to look at Z˚ as an oracle, and Ẑ as an ERM, and therefore to analyze the
problem from this perspective; in particular, we can benefit from the extensive literature
on the statistical properties of ERMs. Our approach reveals a general methodology and its
two crucial points, which are the local curvature of the excess risk and the computation of
a complexity fixed point.

2. Main general results for the statistical analysis of SDP estimators

From a statistical point of view, the task remains to estimate in the most efficient way the
oracle Z˚, and to that end Ẑ is our candidate estimator. The point of view we will use to
evaluate how far Ẑ is from Z˚ is coming from the Learning Theory literature. We therefore
see Ẑ as an empirical risk minimization (ERM) procedure built on a single observation
A, where the loss function is the linear one Z P C Ñ `ZpAq “ ´

〈
A,Z

〉
, and the oracle

Z˚ is indeed the one minimizing the risk function Z P C Ñ E`ZpAq over C. Having this
setup in mind, we can use all the machinery developed in Learning Theory (see for instance
Vapnik (1998); Koltchinskii (2006); Massart (2007); van de Geer (2000)) to obtain rates of
convergence for the ERM (here Ẑ) toward the oracle (here Z˚).

There is one key quantity driving the rate of convergence of the ERM: a fixed point
complexity parameter. This type of parameter carries all the statistical complexity of the
problem, and even though it is usually easy to set up, its computation can be tedious since
it requires to control, with large probability, the supremum of empirical processes indexed
by “localized classes”. We now define this complexity fixed point related to the problem we
are considering here.

Definition 1 Let 0 ă ∆ ă 1. The fixed point complexity parameter at deviation 1´∆ is

r˚p∆q “ inf

¨

˝r ą 0 : P

»

– sup
ZPC:

〈
EA,Z˚´Z

〉
ďr

〈
A´ EA,Z ´ Z˚

〉
ď p1{2qr

fi

fl ě 1´∆

˛

‚. (4)

Fixed point complexity parameters have been extensively used in Learning Theory since the
introduction of the localization argument Massart (2007); Koltchinskii (2011); van de Geer
(2000); Birgé and Massart (1993). When they can be computed, they are preferred to the
(global) analysis developed by Chervonenkis and Vapnik Vapnik (1998) to study ERM, since
the latter analysis always yields slower rates given that the Vapnik-Chervonenkis bound is
a high-probability bound on the non-localized empirical process supZPC

〈
A´ EA,Z ´ Z˚

〉
,

which is an upper bound for r˚p∆q since tZ P C :
〈
EA,Z˚´Z

〉
ď ru Ă C. The gap between

the two global and local analysis can be important since fast rates cannot be obtained using
the VC approach, whereas the localization argument resulting in fixed points such as the
one in Definition 1 may yield fast rates of convergence or even exact recovery results.

An example of a Vapnik-Chervonenkis’s type of analysis of SDP estimators can be found
in Guédon and Vershynin (2016) for the community detection problem. An improvement
of the latter approach has been obtained in Fei and Chen (2019b) thanks to a localization
argument – even though it is not stated in these words (we elaborate more on the two
approaches from Guédon and Vershynin (2016) and Fei and Chen (2019b) in Section 3).
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Somehow, a fixed point such as (4) is a sharp way to measure the statistical performances
of ERM estimators, and in particular for the SDP estimators that we are considering here.
They can even be proved to be optimal (in a minimax sense) when the noise A ´ EA is
Gaussian Lecué and Mendelson (2013), and under mild conditions on the complexity of C.

Before stating our general result, we first recall a definition of a minimal structural
assumption on the constraint C.

Definition 2 We say that the set C is star-shaped in Z˚ when for all Z P C, the segment
rZ,Z˚s is in C.

This is a pretty mild assumption satisfied, for instance, when C is convex, which is the setup
we will always encounter in practical applications, given that SDP estimators are usually
introduced after a “convex relaxation” argument. Our main general statistical bound on
SDP estimators is as follows.

Theorem 1 We assume that the constraint C is star-shaped in Z˚. Then, for all 0 ă ∆ ă

1, with probability at least 1´∆, it holds true that
〈
EA,Z˚ ´ Ẑ

〉
ď r˚p∆q.

Theorem 1 applies to any type of setup where an oracle Z˚ is estimated by an estimator
Ẑ such as in (3). Its result shows that Ẑ is almost a maximizer of the true objective function
Z Ñ

〈
EA,Z

〉
over C up to r˚p∆q. In particular, when r˚p∆q “ 0, Ẑ is exactly a maximizer

such as Z˚ and, in that case, we can work with Ẑ as if we were working with Z˚ without
any loss. Then, in this ”exact reconstruction case”, the information contained about A on
ErAs is enough for inferring Z˚ exactly.

Theorem 1 may be applied in many different settings; in the following, we study four
such instances. We will apply Theorem 1 (or one of its corollary stated below) to several
popular problems in the networks and graph signal processing literatures, namely, commu-
nity detection Fortunato (2010) (we will mostly revisit the results in Guédon and Vershynin
(2016) and Fei and Chen (2019b) from our perspective), signed clustering Cucuringu et al.
(a), group synchronization Singer (2011) and MAX-CUT.

The proof of Theorem 1 is straightforward (mostly because the loss function is linear).
Its importance stems from the fact that it puts forward two important concepts originally
introduced in Learning Theory, namely that the complexity of the problem comes from the
one of the local subset CXtZ :

〈
EA,Z˚´Z

〉
ď r˚p∆qu, and that the “radius” r˚p∆q of the

localization is the solution of a fixed point equation. For a setup given by a random matrix
A and a constraint C, we should try to understand how these two ideas apply to obtain
estimation properties of SDP estimators such as Ẑ. That is, to understand the shape of the
local subsets CXtZ :

〈
EA,Z˚´Z

〉
ď ru, r ą 0 and the maximal oscillations of the empirical

process Z Ñ
〈
A ´ EA,Z ´ Z˚

〉
indexed by these local subsets. We will consider this task

in three distinct problem instances. For a detailed proof of Theorem 1 (and Theorem 2
below), we refer the reader to Appendix A.

The main conclusion of Theorem 1 is that all the information for the problem of esti-
mating Z˚ via Ẑ is contained in the fixed point r˚p∆q. We therefore have to compute or
upper bound such a fixed point. This might be difficult in great generality but there are
some tools that can help to find upper bounds on r˚p∆q.
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A first approach is to understand the shape of the local sets C X tZ :
〈
EA,Z˚ ´ Z

〉
ď

ru, r ą 0, and to that end, it is helpful to characterize the curvature of the excess risk
Z Ñ

〈
EA,Z˚ ´ Z

〉
around its maximizer Z˚. This type of local characterization of the

excess risk is also a tool used in Learning Theory that goes back to classical conditions such
as the Margin assumption Tsybakov (2004); Mammen and Tsybakov (1999) or the Bernstein
condition Bartlett and Mendelson (2006). The latter condition was initially introduced as
an upper bound of the variance term by its expectation: for all Z P C, Ep`ApZq´`ApZ˚qq2 ď
c0Ep`ApZq ´ `ApZ˚qq for some absolute constant c0, but it has now been better understood
as a way to discriminate the oracle from the other points in the model C. These assumptions
were global assumption in the sense that they concern all Z in C. It has been recently shown
Chinot et al. (2018) that only the local curvature of the excess risk needs to be understood.
We now introduce this tool in our setup.

We characterize the local curvature of the excess risk by some function G : Rnˆn Ñ R.
Most of the time, the G function is a norm like the `1-norm or a power of a norm, such
as the `2 norm to the square. The radius defining the local subset onto which we need to
understand the curvature of the excess risk is also solution of a fixed point equation

r˚Gp∆q “ inf

˜

r ą 0 : P

«

sup
ZPC:GpZ˚´Zqďr

〈
A´ EA,Z ´ Z˚

〉
ď p1{2qr

ff

ě 1´∆

¸

. (5)

The difference between the two fixed points r˚p∆q and r˚Gp∆q is that the local subsets
are not defined using the same proximity function to the oracle Z˚; the first one uses the
excess risk as a proximity function, while the second one uses the G function as a proximity
function. The G function should play the role of a simple description of the curvature of
the excess risk function locally around Z˚; this is formalized in the next assumption.

Assumption 1 For all Z P C, if
〈
EA,Z˚´Z

〉
ď r˚Gp∆q then

〈
EA,Z˚´Z

〉
ě GpZ˚´Zq.

Typical examples of curvature functions G will have the form GpZ˚´Zq “ θ }Z˚ ´ Z}κ for
some κ ě 1, θ ą 0 and some norm }¨}. In that case, the parameter κ was initially called
the margin parameter Tsybakov (2003); Mammen and Tsybakov (1999). Even though
the relation given in Assumption 1 has been typically referred to as a margin condition
or Bernstein condition in the Learning Theory literature, we will rather call it a local
curvature assumption, following Guédon and Vershynin (2016) and Chinot et al. (2018),
since this type of relation describes the behavior of the risk function locally around its
oracle. The main advantage for finding a local curvature function G is that r˚Gp∆q should
be easier to compute than r˚p∆q and r˚p∆q ď r˚Gp∆q because of the definition of r˚Gp∆q and
tZ P C :

〈
EA,Z˚´Z

〉
ď r˚Gp∆qu Ă tZ P C : GpZ˚´Zq ď r˚Gp∆qu (thanks to Assumption 1).

We can therefore state the following corollary.

Corollary 1 We assume that the constraint C is star-shaped in Z˚ and that the “local
curvature” Assumption 1 holds for some 0 ă ∆ ă 1. With probability at least 1 ´ ∆, it
holds true that

r˚Gp∆q ě
〈
EA,Z˚ ´ Ẑ

〉
ě GpZ˚ ´ Ẑq.

When it is possible to describe the local curvature of the excess risk around its oracle by
some G function and when some estimate of r˚Gp∆q can be obtained, Corollary 1 applies
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and estimation results of Z˚ by Ẑ (w.r.t. both the ”excess risk” metric
〈
EA,Z˚ ´ Ẑ

〉
and

the G metric) follow. If not, either because understanding the local curvature of the excess
risk or the computation of r˚Gp∆q is difficult, it is still possible to apply Theorem 1 with the
global VC approach, which boils down to simply upper bound the fixed point r˚p∆q used
in Theorem 1 by a global parameter that is a complexity measure of the entire set C

r˚p∆q ď inf

ˆ

r ą 0 : P
„

sup
ZPC

〈
A´ EA,Z ´ Z˚

〉
ď p1{2qr



ě 1´∆

˙

. (6)

Interestingly, if the latter last resort approach is used then, following the approach form
Guédon and Vershynin (2016), Grothendieck’s inequality Grothendieck (1953); Pisier (2012)
appears to be a powerful tool to upper bound the right-hand side of (6) in the case of the
community detection problem, such as in Guédon and Vershynin (2016), as well as in the
MAX-CUT problem. Of course, when it is possible to avoid this ultimate global, one
should do so because the local approach will always provide better results.

Finally, proving a “local curvature” property such as in Assumption 1 may be difficult
because it requires to understand the shape of the local subsets C X tZ :

〈
EA,Z˚ ´ Z

〉
ď

ru, r ą 0. It is however possible to simplify this assumption if getting estimation results
of Z˚ only w.r.t. the G function (and not necessarily an upper bound on the excess risk〈
EA,Z˚´ Ẑ

〉
) is enough. In that case, Assumption 1 may be replaced by the following one.

Assumption 2 For all Z P C, if GpZ˚ ´ Zq ď r˚Gp∆q then
〈
EA,Z˚ ´ Z

〉
ě GpZ˚ ´ Zq.

Assumption 2 assumes a curvature of the excess risk function in a G neighborhood of Z˚

unlike Assumption 1 which grants this curvature in an “excess risk neighborhood”. The
shape of a neighborhood defined by the G function may be easier to understand (for instance
when G is a norm, a neighborhood defined by G is the ball of a norm centered at Z˚ with
radius r˚Gp∆q). In general, the latter assumption and Assumption 1 do not compare. In

the next result, we show that if Assumption 2 holds then Ẑ can estimate Z˚ w.r.t. the G
function.

Theorem 2 We assume that the constraint C is star-shaped in Z˚ and that the “local
curvature” Assumption 2 holds for some 0 ă ∆ ă 1. We assume that the G function is
continuous, Gp0q “ 0 and GpλpZ˚ ´ Zqq ď λGpZ˚ ´ Zq for all λ P r0, 1s and Z P C. With
probability at least 1´∆, it holds true that GpZ˚ ´ Ẑq ď r˚Gp∆q.

As a consequence, Theorem 1, Corollary 1 and Theorem 2 are the three tools at our
disposal to study the performance of SDP estimators depending on the deepness of un-
derstanding we have on the problem. The best approach is given by Theorem 1 when
it is possible to compute efficiently the complexity fixed point r˚p∆q. If the latter ap-
proach is too complicated (likely because understanding the geometry of the local subset
CXtZ :

〈
EA,Z˚´Z

〉
ď ru, r ą 0 may be difficult) then one may resort to find a curvature

function G of the excess risk locally around Z˚. In that case, both Corollary 1 and The-
orem 2 may apply depending on the hardness to find a local curvature function G on an
“excess risk neighborhood” (see Assumption 1) or a “G-neighborhood” (see Assumption 2).
Finally, if no local approach can be handled (likely because describing the curvature of the
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excess risk in any neighborhood of Z˚ or controlling the maximal oscillations of the empir-
ical process Z Ñ

〈
EA´A,Z˚´Z

〉
locally are too difficult) then one may resort ultimately

to a global approach which follows from Theorem 1 as explained in (6). In the following,
we will use these tools for various problems.

Results like Theorem 1, Corollary 1 and Theorem 2 appeared in many papers on ERM
in Learning Theory such as in Koltchinskii (2011); Bartlett and Mendelson (2006); Massart
(2007); Lecué and Mendelson (2013). In all these results, typical loss functions such as
the quadratic or logistic loss functions, were not linear ones, such as the one we are using
here. From that point of view, our problem is easier and this can be seen by the simplicity
to prove our three general results from this section. What is much more complicated
here than in other more classical problems in Learning Theory is the computation of the
fixed point because (i) the stochastic processes Z Ñ

〈
A ´ EA,Z ´ Z˚

〉
may be far from

being a Gaussian process if the noise matrix A ´ EA is complicated and (ii) the local sets
tZ P C :

〈
EA,Z˚ ´ Z

〉
ď ru or tZ P C : GpZ˚ ´ Zq ď ru for r ą 0 may be very hard to

describe in a simple way. Instrumental results are available in the literature to circumvent
this kind of problems; see Fei and Chen (2019b).

3. Revisiting two results from the community detection literature Fei
and Chen (2019b); Guédon and Vershynin (2016)

The rapid growth of social networks on the Internet has lead many statisticians and com-
puter scientists to focus their research on data coming from graphs. One important topic
that has attracted particular interest during the last decades is that of community detection
Fortunato (2010); Porter et al. (2009), where the goal is to recover mesoscopic structures
in a network, the so-called called communities. A community consists of a group of nodes
that are relatively densely connected to each other, but sparsely connected to other dense
groups present within the network. The motivation for this line of work stems not only from
the fact that finding communities in a network is an interesting and challenging problem
of its own, as it leads to understanding structural properties of networks, but community
detection is also used as a data pre-processing step for other statistical inference tasks on
large graphs, as it facilitates parallelization and allows one to distribute time consuming
processes on several smaller subgraphs (i.e., the extracted communities).

One challenging aspect of the community detection problem arises in the setting of
sparse graphs. Many of the existing algorithms, which enjoy theoretical guarantees, do so
in the relatively dense regime for the edge sampling probability, where the expected average
degree is of the order Θplog nq. The problem becomes challenging in very sparse graphs
with bounded average degree. To this end, Guédon and Vershynin proposed a semidefinite
relaxation for a discrete optimization problem Guédon and Vershynin (2016), an instance
of which encompasses the community detection problem, and showed that it can recover
a solution with any given relative accuracy even in the setting of very sparse graphs with
average degree of order Op1q.

A subset of the existing literature for community detection and clustering relies on
spectral methods, which consider the adjacency matrix associated to a graph, and employ
its eigenvalues, and especially eigenvectors, in the analysis process or to propose efficient
algorithms to solve the task at hand. Along these lines, Le et al. (2016) proposed a general
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framework for optimizing a general function of the graph adjacency matrix over discrete
label assignments by projecting onto a low-dimensional subspace spanned by vectors that
approximate the top eigenvectors of the expected adjacency matrix. The authors consider
the problem of community detection with k “ 2 communities, which they frame as an
instance of their proposed framework, combined with a regularization step that shifts each
entry in the adjacency matrix by a small constant τ , which renders their methodology
applicable in the sparse regime as well.

In the remainder of this section, we focus on the community detection problem on
random graphs under the general stochastic block model. We will mostly revisit the work
in Guédon and Vershynin (2016) and Fei and Chen (2019b) from the perspective given
by Theorem 1. Indeed, thanks to this theorem, it is possible to simplify the proof of Fei
and Chen (2019b), by avoiding both the peeling argument and the use of the bound from
Guédon and Vershynin (2016).

We first recall the definition of the generalized stochastic block model (SBM). We con-
sider a set of vertices V “ t1, ¨ ¨ ¨ , nu, and assume it is partitioned into K communities
C1, ¨ ¨ ¨ , CK of arbitrary sizes |C1| “ l1, ¨ ¨ ¨ , |CK | “ lK .

Definition 3 For any pair of nodes i, j P V , we denote by i „ j when i and j belong to the
same community (i.e., there exists k P t1, . . . ,Ku) such that i, j P Ck), and we denote by
i  j if i and j do not belong to the same community.

For each pair pi, jq of nodes from V , we draw an edge between i and j with a fixed
probability pij independently from the other edges. We assume that there exist numbers p
and q satisfying 0 ă q ă p ă 1, such that

$

&

%

pij ą p, if i „ j and i ‰ j,
pij “ 1, if i “ j,
pij ă q, otherwise.

(7)

We denote by A “ pAi,jq1ďi,j,ďn the observed symmetric adjacency matrix, such that, for all
1 ď i ď j ď n, Aij is distributed according to a Bernoulli of parameter pij . The community
structure of such a graph is captured by the membership matrix Z̄ P Rnˆn, defined by
Z̄ij “ 1 if i „ j, and Z̄ij “ 0 otherwise. The main goal in community detection is to
reconstruct Z̄ from the observation A.

Spectral methods for community detection are very popular in the literature Guédon and
Vershynin (2016); Fei and Chen (2019b); Vershynin (2018); Blondel et al. (2008); Clauset
et al. (2004). There are many ways to introduce such methods, one of which being via
convex relaxations of certain graph cut problems aiming to minimize a modularity function
such as the RatioCut Newman (2006). Such relaxations often lead to SDP estimators, such
as the ones introduced in Section 1.

Considering a random graph distributed according to the generalized stochastic block
model, and its associated adjacency matrix A (i.e. A “ AJ and Aij „ Bernppijq for
1 ď i ď j ď n and pij as defined in (7)), we will estimate its membership matrix Z̄ via the
following SDP estimator

Ẑ P argmax
ZPC

〈
A,Z

〉
,

10
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where C “ tZ P Rnˆn, Z ľ 0, Z ě 0, diagpZq ĺ In,
řn
i,j“1 Zij ď λu and λ “

řn
i,j“1 Z̄ij “

řK
k“1 |Ck|2 denotes the number of nonzero elements in the membership matrix Z̄. The

motivation for this approach stems from the fact that the membership matrix Z̄ is actually
the oracle, i.e., Z˚ “ Z̄ (see Lemma 7.1 in Guédon and Vershynin (2016) or Lemma 1
below), where

Z˚ P argmax
ZPC

〈
EA,Z

〉
.

Following the strategy from Theorem 1 and from our point of view, the upper bound on
r˚p∆q from Guédon and Vershynin (2016) is the one that is based on the global approach
– that is, without localization. Indeed, Guédon and Vershynin (2016) uses the observation
that, for all r ą 0, it holds true that

sup
ZPC:

〈
EA,Z˚´Z

〉
ďr

〈
A´ EA,Z ´ Z˚

〉 paq
ď sup

ZPC

〈
A´ EA,Z ´ Z˚

〉 pbq
ď 2KG }A´ EA}cut , (8)

where }¨}cut is the cut-norm1 and KG is the Grothendieck constant (Grothendieck’s inequal-
ity is used in (b), see Pisier (2012); Vershynin (2018)). Therefore, the localization around
the oracle Z˚ by the excess risk “band” B˚r :“ tZ :

〈
EA,Z˚´Z

〉
ď ru is simply removed in

inequality (a). As a consequence, the resulting statistical bound is based on the complexity
of the entire class C whereas, in a localized approach, only the complexity of C X B˚r mat-
ters. Next step in the proof of Guédon and Vershynin (2016) is a high-probability upper
bound on }A´ EA}cut which follows from Bernstein’s inequality and a union bound since
one has }A´ EA}cut “ maxx,yPt´1,1un

〈
A ´ EA, xyJ

〉
, then for all t ą 0, }A´ EA}cut ď

tnpn ´ 1q{2 with probability at least 1 ´ exp
`

2n log 2´ pnpn´ 1qt2q{p16p̄` 8t{3q
˘

where

p̄
def
“ 2{rnpn´ 1qs

ř

iăj pijp1´ pijq. The resulting upper bound on the fixed point obtained
in Guédon and Vershynin (2016) is

r˚p∆q ď p8{3qKGp2n logp2q ` logp1{∆qq. (9)

Finally, under the assumption of Theorem 1 in Guédon and Vershynin (2016) (i.e., for
some some ε P p0, 1q, n ě 5.104{ε2, maxppp1´ pq, qp1´ qqq ě 20{n, p “ a{n ą b{n “ q and
pa´bq2 ě 2.104ε´2pa`bq), for ∆ “ e35´n we obtain (using the general result in Theorem 1)
with probability at least 1´∆, the bound

〈
EA,Z˚´ Ẑ

〉
ď r˚p∆q ď εn2 “ ε }Z˚}22, which is

the result from Theorem 1 in Guédon and Vershynin (2016). Finally, Guédon and Vershynin
(2016) uses a (global) curvature property of the excess risk in its Lemma 7.2

Lemma 1 (Lemma 7.2 in Guédon and Vershynin (2016)) For all Z P C,
〈
EA,Z˚´

Z
〉
ě rpp´ qq{2s }Z˚ ´ Z}1.

Therefore, a (global– that is for all Z P C) curvature assumption holds for a G function
which is here the `nˆn1 norm, a margin parameter κ “ 1 and θ “ pp´qq{2 for the community

1. The cut-norm }¨}cut of a real matrix A “ paijqiPR,jPC with a set of rows indexed by R and a set of
columns indexed by C, is the maximum, over all I Ă R and J Ă C, of the quantity |

ř

iPI,jPJ aij |. It is
also the operator norm of A from `8 to `1 and the “injective norm” in the orginal Grothendieck “résumé”
Grothendieck (1956); Pisier (2012)
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detection problem. However, this curvature property is not used to compute a “better” fixed
point parameter, but only to obtain a `nˆn1 estimation bound since

›

›

›
Ẑ ´ Z˚

›

›

›

1
ď

ˆ

2

p´ q

˙ 〈
EA,Z˚ ´ Ẑ

〉
ď

16KGp2n logp2q ` logp1{∆qq

3pp´ qq
.

The latter bound together with the sin-Theta theorem allow the authors of Guédon and
Vershynin (2016) to obtain estimation bound for the community membership vector x˚.

The approach from Fei and Chen (2019b) improves upon the one in Guédon and Ver-
shynin (2016) because it uses a localization argument: the curvature property of the excess
risk function from Lemma 1 is used to improve the upper bound in (9) obtained following a
global approach. Indeed, Fei and Chen (2019b) obtain a high-probability upper bound on
the quantity

sup
ZPC:}Z˚´Z}1ďr

〈
A´ EA,Z ´ Z˚

〉
,

depending on r. This leads to an exact reconstruction result in the “dense” case and expo-
nentially decaying rates of convergence in the “sparse” case. This is a typical example where
the localization argument shows its advantage upon the global approach. The price to pay
is usually a more technical proof for the local approach compared with the global one. How-
ever, the argument from Fei and Chen (2019b) also uses an unnecessary peeling argument

together with an unnecessary a priori upper bound on
›

›

›
Ẑ ´ Z˚

›

›

›

1
(which is actually the one

from Guédon and Vershynin (2016)). It appears that this peeling argument and this a priori

upper bound on
›

›

›
Ẑ ´ Z˚

›

›

›

1
can be avoided thanks to our approach from Theorem 1. This

improves the probability estimate and simplifies the proofs (since the result from Guédon
and Vershynin (2016) is not required anymore, and neither is the peeling argument). For
the sign clustering problem we consider below as an application of our main results, we will
mostly adapt the probabilistic tools from Fei and Chen (2019b) (in the “dense” case) to the
methodology associated with Theorem 1 (without these two unnecessary arguments).

4. Contributions of the paper

This section encompasses the main contributions of our paper for the three problems we
study, namely signed clustering, angular synchronization, and MAX-CUT.

4.1 Application to signed clustering

Much of the clustering literature, including both spectral and non-spectral methods, has
focused on unsigned graphs, where each edge carries a non-negative scalar weight that en-
codes a measure of affinity (similarity, trust) between pairs of nodes. However, in numerous
instances, the above-mentioned affinity takes negative values, and encodes a measure of
dissimilarity or distrust. Such applications arise in social networks where users relation-
ships denote trust-distrust or friendship-enmity, shopping bipartite networks which capture
like-dislike relationships between users and products Banerjee et al. (2012), online news
and review websites, such as Epinions and Slashdot, that allow users to approve or de-
nounce others Leskovec et al. (2010a), and clustering financial or economic time series data
Aghabozorgi et al. (2015). Such applications have spurred interest in the analysis of signed

12



Learning with SDP estimators

networks, which has recently become an increasingly important research topic Leskovec et al.
(2010b), with relevant lines of work in the context of clustering signed networks including, in
chronological order, Kunegis et al. (2010); Chiang et al. (2012); Cucuringu et al. (a, 2021).
The latter work proposed regularized versions of signed clustering methods to handle sparse
graphs – a regime where standard spectral methods are known to underperform.

The second application of our proposed methodology is an extension of the community
detection and clustering problem to the setting of signed graphs, where, for simplicity, we
assume that an edge connecting two nodes can take either ´1 or `1 values.

4.1.1 A Signed Stochastic Block Model (SSBM)

We focus on the problem of clustering a K-weakly balanced graphs2. We consider a signed
stochastic block model (SSBM) similar to the one introduced in Cucuringu et al. (a), where
we are given a graph G with n nodes t1, . . . , nu which are divided into K communities,
tC1, ¨ ¨ ¨ , CKu, such that, in the noiseless setting, edges within each community are positive
and edges between communities are negative.

The only information available to the user is given by a nˆ n sparse adjacency matrix
A constructed as follows: A is symmetric, with Aii “ 1 for all i “ 1, . . . , n, and for all
1 ď i ă j ď n, Aij “ sijp2Bij ´ 1q where

Bij „

"

Bernppq if i „ j
Bernpqq if i  j

and sij „ Bernpδq,

for some 0 ď q ă 1{2 ă p ď 1 and δ P p0, 1q. Moreover, all the variables Bij , sij for
1 ď i ă j ď n are independent.

We remark that this SSBM model is similar to the one considered in Cucuringu et al.
(a), which was governed by two parameters, the sampling probability δ as above, and the
noise level η, which may flip entries of the adjacency matrix.

Our aim is to recover the community membership matrix or cluster matrix Z̄ “ pZ̄ijqi,jďn,
with Z̄ij “ 1 when i „ j and Z̄ij “ 0 when i  j using only the observed censored adjacency
matrix A.

Our approach is similar in nature to the one used by spectral methods in community
detection. We first observe that for α :“ δpp ` q ´ 1q and J “ p1qnˆn we have Z̄ “ Z˚

where

Z˚ P argmax
ZPC

〈
EA´ αJ,Z

〉
, (10)

and C “ tZ P Rnˆn : Z ľ 0, Zij P r0, 1s, Zii “ 1, i “ 1, . . . , nu. The proof of (10) is recalled
in Section B.

Since we do not know EA and α, we should estimate both of them. We will estimate
EA with A but, for simplicity, we will assume that α is known. The resulting estimator of
the cluster matrix Z̄ is

Ẑ P argmax
ZPC

〈
A´ αJ,Z

〉
, (11)

2. A signed graph is K-weakly balanced if and only if all the edges are positive, or the nodes can be
partitioned into K P N disjoint sets such that positive edges exist only within clusters, and negative
edges are only present across clusters Davis (1967).
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which is indeed a SDP estimator and therefore Theorem 1 (or Corollary 1 and Theorem 2)
may be used to obtain statistical bounds for the estimation of Z˚ from (10) by Ẑ.

We will use the following notations: s :“ δpp´ qq2, θ :“ δpp´ qq, ρ :“ δmaxt1´ δp2p´
1q2, 1´ δp2q´ 1q2u, ν :“ maxt2p´ 1, 1´ 2qu, rms :“ t1, ¨ ¨ ¨ ,mu for all m P N, lk :“ |Ck| for

all k P rKs, λ2 :“
řK
k“1 l

2
k, C` :“

K
Y
k“1
pCk ˆ Ckq and C´ :“ Y

k‰k1
pCk ˆ Ck1q. We also use the

notation c0, c1, . . . , to denote absolute constants whose values may change from one line to
another.

4.1.2 Main result for the estimation of the cluster matrix in signed
clustering

Our main result concerns the reconstitution of the K communities from the observation of
the matrix A. In order to avoid solutions with some communities of degenerated size (too
small or too large), we consider the following assumption.

Assumption 3 Up to constants, the elements of the partition C1\¨ ¨ ¨\CK of t1, . . . , nu are
of same size: there are absolute constant c0, c1 ą 0 such that for any k P rKs, n{pc1Kq ď
|Ck| “ lk ď c0n{K.

We are now ready to state the main result on the estimation of the cluster matrix Z˚ from
(10) by the SDP estimator Ẑ from (11).

Theorem 3 There is an absolute positive constant c0 such that the following holds. Grant
Assumption 3. Assume that

nνδ ě log n, (12)

sn ě c0K
2ν (13)

and
K logp2eKnq

n
ď max

ˆ

θ2

ρ
,
9ρ

32

˙

. (14)

Then, with probability at least 1 ´ expp´δνnq ´ 3{p2eKnq, exact recovery holds true, i.e.,
Ẑ “ Z˚. We recall the constants defined above : s :“ δpp ´ qq2, θ :“ δpp ´ qq, ρ :“
δmaxt1´ δp2p´ 1q2, 1´ δp2q ´ 1q2u, ν :“ maxt2p´ 1, 1´ 2qu.

Therefore, we have exact reconstruction in the dense case (that is under assumption (12)),
which stems from condition (14). The latter condition is in the same spirit as the one in
Theorem 1 of Fei and Chen (2019b), it measures the SNR (signal-to-noise ratio) of the
model which captures the hardness of the SSBM. As mentioned in Fei and Chen (2019b),
it is related to the Kesten-Stigum threshold Mossel et al. (2015). The last condition (14)
basically requires that the number of clusters K is at most n{ log n. If this condition is
dropped out, then we do not have anymore exact reconstruction but only a certified expo-
nential rate of convergence: there exists a universal constant C2 such that, with probability
at least 1´ expp´δνnq ´ 3{p2eKnq, we have that

›

›

›
Z˚ ´ Ẑ

›

›

›

1
ď

2en2

c1θ
exp

ˆ

´
sn

C2K

˙

. (15)
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A proof of (15) can be found in Section 5.
This shows that in the dense case, exact reconstruction is possible when K À n{ log n

and, otherwise, when K Á n{ log n we only have a control of the estimation error with an
exponential convergence rate.

We then obtain results of the same nature as in Fei and Chen (2019b), or in the more
recent paper Xu et al. (2020). In those two articles, the authors show the existence of a
phase transition, with exact recovery in the regime K À n{logpnq, and exponential rate
with exponent » ´sn{K otherwise, where s is some measurement of the signal/noise ratio
of the problem. Note that the estimation bound is given with respect to the lnˆn1 norm.
This is not a surprise since it is the behaviour of the excess risk over C around Z˚.

In some recent works Fei and Chen (2019a, 2020), the authors were able to obtain
sharp constants in the rate (15) for the Synchronization model, the Censored Block Model
as well as the Stochastic Block Model. Their proof relies on the construction of a dual
certificate and goes through the study of the dual problem. We see the proof technique
behind Theorem 3 of different nature as a straight ’primal’ approach and it is not clear
how to relate the two approaches. The two similar approaches were both developed in the
compressed sensing and matrix completion problems (to name a few) where the ’primal’
approach was based on the Null Space property or the RIP or some neighborliness property
Foucart and Rauhut (2013); Chafäı et al. (2012) and, at the same time and for the same
problems, a ’dual’ approach relying on the construction of a dual or approximate dual
certificate was performed Candès and Tao (2010); Gross (2011). But, to the best of our
knowledge, no clear connection has been made between the two approaches. It would be
however interesting to have a clear picture on the two types of approaches, and see if they
are actually the same or coming from a more general approach.

4.2 Application to angular group synchronization

In this section, we introduce the group synchronization problem as well as a stochastic
model for this problem. We consider a SDP relaxation of the original problem (which is
exact) and construct the associated SDP estimator such as in (3).

The angular synchronization problem consists of estimating n unknown angles θ1, ¨ ¨ ¨ , θn
(up to a global shift angle) given a noisy subset of their pairwise offsets pθi´ θjqr2πs, where
r2πs is the modulo 2π operation. The pairwise measurements can be realized as the edge
set of a graph G, typically modeled as an Erdös-Renyi random graph Singer (2011).

The aim of this section is to show that the angular synchronization problem can be
analyzed using our methodology. In order to keep the presentation as simple as possible,
we assume that all pairwise offsets are observed up to some Gaussian noise: we are given
δij “ pθi ´ θj ` σgijqr2πs for all 1 ď i ă j ď n where pgij : 1 ď i ă j ď nq are npn ´ 1q{2
i.i.d. standard Gaussian variables and σ ą 0 is the noise variance. We may rewrite the
problem as follows: we observe a nˆ n complex matrix A defined by

A “ S ˝ rx˚px˚qJs where S “ pSijqnˆn, Sij “

$

&

%

eισgij if i ă j
1 if i “ j

e´ισgij if i ą j
, (16)

ι denotes the imaginary number such that ι2 “ ´1, x˚ “ px˚i q
n
i“1 P Cn, x˚i “ eιθi , i “

1, . . . , n, x̄ denotes the conjugate vector of x and S ˝ rx˚px˚qJs is the element-wise product
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pSijxix̄jqnˆn. In particular, S is a Hermitian matrix (i.e. S̄J “ S) and ESij “ expp´σ2{2q
for i ‰ j and ESii “ 1 if i “ j. We want to estimate pθ1, . . . , θnq (up to a global shift) from
the matrix of data A.

Unlike the statistical model introduced in Bandeira et al. (2016), the noise here is mul-
tiplicative in A. From a physical point of view, it makes more sense to consider an additive
noise on the offsets i.e. we observe pθi ´ θj ` σgijqr2πs. The noise becomes multipicative
by passing to the exponential. However, to compare our methodology with the one from
Bandeira et al. (2016), we also consider the model therein (that is, an additive noise on
the matrix Z˚ “ x˚px˚qJ instead of the additive noise in A). We recover similar results in
this latter model than the one in Bandeira et al. (2016). For the moment, we consider the
multiplicative noise and the data matrix A as introduced above in (16); we will turn to the
addtive noise model from Bandeira et al. (2016) at the very end of this section in a remark.

The first step is to find an (vectorial) optimization problem which solutions are given
by pθiq

n
i“1 (up to global angle shift) or some bijective function of it. Estimating pθiq

n
i“1 up

to global angle shift is equivalent to estimating the vector x˚ “ peιθiqni“1. The latter is, up
to a global rotation of its coordinates, the unique solution of the following maximization
problem

argmax
xPCn:|xi|“1

 

x̄J EA x
(

“ tpeιpθi`θ0qqni“1 : θ0 P r0, 2πqu. (17)

A proof of (17) is given in Section 6. Let us now rewrite (17) as a SDP problem. For all
x P Cn, we have x̄JEAx “ trpEAXq “

〈
EA,X

〉
where X “ xx̄J and tZ P Cnˆn : Z “

xx̄T , |xi| “ 1u “ tZ P Hn : Z ľ 0, diagpZq “ 1n, rankpZq “ 1u where Hn is the set of all nˆn
Hermitian matrices and 1n P Cn is the vector with all coordinates equal to 1. It is therefore
straightforward to construct a SDP relaxation of (17) by dropping the rank constraint. It
appears that this relaxation is exact since, for C “ tZ P Hn : Z ľ 0,diagpZq “ 1nu,

argmax
ZPC

〈
EA,Z

〉
“ tZ˚u, (18)

where Z˚ “ x˚px˚qJ. A proof of (18) can be found in Section 6. Finally, as we only observe
A, we consider the following SDP estimator of Z˚

Ẑ P argmax
ZPC

〈
A,Z

〉
. (19)

In the next section, we use the strategy from Corollary 1 to obtain statistical guarantees
for the estimation of Z˚ by Ẑ.

Intuitively, the above maximization problem (18) attempts to preserve the given angle
offsets as best as possible, by aiming to maximize the following objective function

argmax
θ1,...,θnPr0,2πq

n
ÿ

i,j“1

e´ιθiAije
ιθj , (20)

where the objective function value is incremented by `1 whenever an assignment of angles
θi and θj perfectly satisfies the given edge constraint δij “ pθi ´ θjqr2πs (i.e., for a clean
edge for which σ “ 0), while the contribution of an incorrect assignment (i.e., of a very
noisy edge) will be almost uniformly distributed on the unit circle in the complex plane.
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Due to non-convexity of optimization in (20), it is difficult to solve computationally Zhang
and Huang (2006); one way to overcome this problem is to consider the SDP relaxation
from (18) such as in (19) but it is also possible to consider a spectral relaxation such as the
one proposed by Singer (2011) which replaces the individual constraints that all zi’s should
have unit magnitude by the much weaker single constraint

řn
i“1 |zi|

2 “ n, leading to

argmax
z1,...,znPC;

řn
i“1 |zi|

2“n

n
ÿ

i,j“1

z̄iAijzj . (21)

The solution to the resulting maximization problem is simply given by a top eigenvector
of the Hermitian matrix A, followed by a normalization step. We remark that the main
advantage of the SDP relaxation (18) is that it explicitly imposes the unit magnitude
constraint for eιθi , which we cannot otherwise enforce in the spectral relaxation solved via
the eigenvector method in (21) (at the end of the day, our estimator x̂ from Corollary 2 below
is a top eigenvector which may not satisfied the unit magnitude constraint). The above SDP
program (18) is very similar to the well-known Goemans-Williamson SDP relaxation for
the seminal MAX-CUT problem of finding the maximal cut of a graph (the MAX-CUT
problem is one of the four applications considered in this work, see Section 4.3 below), with
the main difference being that here we optimize over the cone of complex-valued Hermitian
positive semidefinite matrices, not just real symmetric matrices.

4.2.1 Main results for phase recovery in the synchronization problem (in
the multiplicative noise model)

Our main result concerns the estimation of the matrix of offsets Z˚ “ x˚px˚qJ from the
observation of the matrix A. This result is then used to estimate (up to a global phase
shift) the angular vector x˚ “ pe´ιθiqni“1. Our first result follows from Corollary 1.

Theorem 4 Let 0 ă ε ă 1. If σ ď
a

logpεn4q then, with probability at least
1´ expp´εσ4npn´ 1q{2q, it holds true that

pe´σ
2{2{2q

›

›

›
Z˚ ´ Ẑ

›

›

›

2

2
ď

〈
EA,Z˚ ´ Ẑ

〉
ď p128{6q

?
εσ4npn´ 1q. (22)

Once we have an estimator Ẑ for the oracle Z˚, we can extract an estimator x̂ for the
vector of phases x˚ by considering a top eigenvector (i.e. an eigenvector associated with
the largest eigenvalue) of Ẑ. It is then possible to quantify the estimation properties of x˚

by x̂ using a sin-Theta theorem and Theorem 4.

Corollary 2 Let x̂ be a top eigenvector of Ẑ with Euclidean norm }x̂}2 “
?
n. Let 0 ă ε ă 1

and assume that σ ď
a

logpεn4q. We have the existence of a universal constant c0 ą 0
(which is the constant in the Davis-Kahan theorem for Hermitian matrices) such that, with
probability at least 1´ expp´εσ4npn´ 1q{2q, it holds true that

min
zPC:|z|“1

}x̂´ zx˚}2 ď 8c0

a

2{3ε1{4eσ
2{4σ2?n. (23)
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It follows from Corollary 2 that we can estimate x˚ (up to a global rotation z P C :
|z| “ 1) with a `n2 -estimation error of the order of σ2?n with exponential deviations. Given
that }x˚}2 “

?
n, this means that a constant proportion of the entries are well estimated

when ε is taken like a constant. For a value of ε „ 1{n2, the rate of estimation is like
σ2, we therefore get a much better estimation of x˚ but only with constant probability.
It is important to recall that Ẑ and x̂ can be both efficiently computed by solving a SDP
problem and then by considering a top eigenvector of its solution (for instance, using the
power method).

We finish the section on the angular group synchronization with the additive model as
considered in Bandeira et al. (2016). Our aim is still to put forward our methodology and
to show that it has a wide spectrum of applications and that, in particular, it covers also
the model introduced in Bandeira et al. (2016).

4.2.2 The angular group synchronization model with additive noise from
Bandeira et al. (2016)

As mentioned above, we chose to study a multiplicative noise model in A since it makes more
sense from a physical point of view to have an additive noise on the offsets δij “ θi´ θjr2πs
(this additive noise becoming multiplicative by passing to the exponential in A). However, in
Bandeira et al. (2016), the authors considered a model with additive noise on Z˚ “ x˚px˚qJ.
In this “additive” model, we observe C “ Z˚ ` σW , where W is a complex Wigner matrix
and σ ą 0 is the noise level. The MLE x̃ is solution to the problem

x̃ P argmax
xPCn,|xi|“1@i

xTCx, (24)

which can be hard to compute in practice. Using the same approach as above, a SDP
relaxation can be obtained by removing a rank one constraint, yielding the SDP estimator

Z̃ P argmax
ZPC

〈
C,X

〉
, (25)

where C :“ tZ P Hn : diagpZq “ 1n and Z ľ 0u. Statistical properties of Z̃ have been
obtained in Bandeira et al. (2016). We recall this result now.

Theorem 5 (Theorem 2.1 in Bandeira et al. (2016)) Let x̃ be a solution of (24). Then

with probability at least 1 ´ Opn´
5
4 q, minzPC:|z|“1 }zx̃´ x

˚}2 ď 12σ. Moreover, if σ ď

p1{18qn1{4, then (25) has a unique solution which is the rank one matrix x̃x̃J.

Our methodology (here Corollary 1 is applied) may also be used to handle the “additive”
noise model from Bandeira et al. (2016). We consider the same SDP estimator Z̃ as defined
in (25) and we obtain the following result.

Theorem 6 Let x̄ be a top eigenvector of Z̃. With probability at least 1´ 5 expp´n{2q,

min
zPC:|z|“1

}zx̄´ x˚}2 ď 40c0σ

where c0 is the constant appearing in the Davis-Kahan theorem for Hermitian matrices.
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Compared with Theorem 2.1 from Bandeira et al. (2016), the estimation rate that we
get for estimator x̄ is the same (up to an absolute constant) as the one obtained for the
MLE x̃ in Theorem 5, it is of the order of σ. Note however that our result for x̄ holds
without any restriction of the noise level σ, whereas in Theorem 5 one needs σ ď p1{18qn1{4

to get this result for x̄. Note also that our result holds with exponentially large probability,
whereas the one in Theorem 5 holds only with polynomial deviation. From a statistical
perspective, our result improves the one from Bandeira et al. (2016). However, the main
interest of Theorem 5 is not on the statistical performance of x̄ but on the sharpness of
the SDP relaxation since it shows that the SDP relaxation (25) is actually exact when
σ ď p1{18qn1{4. This is a result that we do not have and that our methodology cannot
obtain, since it is designed to prove only an estimation bound. But from a statistical point
of view, it does not improve the estimation rate to know that the SDP relaxation is exact:
our result shows that the SDP relaxation is doing as good as MLE, without proving that
they are the same (up to global phase).

A proof of Theorem 6 is given in Annex C. We actually provide three estimation bounds
for x̄ in this proof. We are doing so because our aim is to show how a general methodology
works in various examples. This methodology relies on the computation of a fixed point
(r˚Gp∆q from (5) here). Hence, understanding how to bound this fixed point is part of the
objective of this paper. We therefore use the angular group synchronization problem with
additive noise as a playground to show three different ways to upper bound such a fixed
point. Using the three computations, we actually obtain the following three upper bounds

min
zPC:|z|“1

}zx̄´ x˚}2 ď

$

’

&

’

%

8c0σ
?
n with probability at least 1´ expp´n2{2q

c0

b

36KC
Gσn

1{4 with probability at least 1´ expp´n{2q

40c0σ with probability at least 1´ 5 expp´n{2q,

where c0 is the constant appearing in the Davis-Kahan theorem for Hermitian matrices and
KC
G is Grothendieck constant in the complex case. Each of the three bounds above follows

from different upper bounds on the complexity fixed point r˚G; for instance, the second one
follows from the “global” approach, and the third one follows from a decomposition similar
to the one from Fei and Chen (2019b) and is the one we used in Theorem 6.

4.3 Application to the MAX-CUT problem

Let A0 P t0, 1unˆn be the adjacency (symmetric) matrix of an undirected graph G “ pV,E0q,
where V :“ t1, . . . , nu is the set of the vertices and the set of edges is E0 :“ EYEJYtpi, iq :
A0
ii “ 1u where E :“ tpi, jq P V 2 : i ă j and A0

ij “ 1u and EJ “ tpj, iq : pi, jq P Eu. We

assume that G has no self loop so that A0
ii “ 0 for all i P V . A cut of G is any subset S of

vertices in V . For a cut S Ă V , we define its weight by cutpG,Sq :“ p1{2q
ř

pi,jqPSˆS̄ A
0
ij ,

that is the number of edges in E between S and its complement S̄ “ V zS. The Max-Cut
problem is to find the cut with maximal weight

S˚ P argmax
SĂV

cutpG,Sq. (26)

The MAX-CUT problem is a NP-complete problem, but Goemans and Williamson
(1995) constructed a 0.878 approximating solution via a SDP relaxation. Indeed, one can

19



Chrétien, Cucuringu, Lecué, Neirac

write the MAX-CUT problem in the following way. For a cut S Ă V , we define the
membership vector x P t´1, 1un associated with S by setting xi :“ 1 if i P S and xi “ ´1
if i R S for all i P V . We have cutpG,Sq “ p1{4q

řn
i,j“1A

0
ijp1 ´ xixjq :“ cutpG, xq and so

solving (26) is equivalent to solving

x˚ P argmax
xPt´1,1un

cutpG, xq. (27)

Since pxixjqi,j “ xxJ, the latter problem is also equivalent to solving

max

˜

1

4

n
ÿ

i,j“1

A0
ijp1´ Zijq : rankpZq “ 1, Z ľ 0, Zii “ 1

¸

(28)

which admits a SDP relaxation by removing the rank-1 constraint. This yields the following
SDP relaxation problem of MAX-CUT from Goemans and Williamson (1995)

Z˚ P argmin
ZPC

〈
A0, Z

〉
, (29)

where C :“ tZ P Rnˆn : Z ľ 0, Zii “ 1,@i “ 1, . . . , nu.
Unlike the other examples from the previous sections, the SDP relaxation in (29) is

not exact, except for bipartite graphs; see Khot and Naor (2009); Gärtner and Matoušek
(2012) for more details. Nevertheless, thanks to the approximation result from Goemans
and Williamson (1995), we can use our methodology to estimate Z˚ and then deduce an
approximate optimal cut. The MAX-CUT problem is therefore a good setup for us to test
our methodology in a context where the SDP relaxation is not exact, but still widely used in
practice. Thus the type of question we want to answer here is: what can we say in a setup
where only partial or noisy information is available on ErAs, and when the SDP relaxation
associated with ErAs is also not exact? This differs from the previous setup where exactness
of the SDP relaxation holds, and this interesting peculiarity is one of the reasons why we
have chosen to present this problem here. Our motivation stems from the observation that,
in many situations, the adjacency matrix A0 is only partially observed, but nevertheless,
it might be interesting to find an approximating solution to the MAX-CUT problem. Let
us then introduce a stochastic model for the partial information available on ErAs, the
adjacency matrix here.

We observe A “ S ˝ A0 “ psijA
0
ijq1ďi,jďn a “masked” version of A0, where S P Rnˆn is

symmetric with upper triangular matrix filled with i.i.d. Bernoulli entries: for all i, j P V
such that i ď j, Sij “ Sji “ sij where psijqiďj is a family of i.i.d. Bernoulli random variables
with parameter p P p1{2, 1q. Let B :“ ´p1{pqA so that ErBs “ ´A0. We can write Z˚

as an oracle since Z˚ P argmaxZPC
〈
EB,Z

〉
and so we estimate Z˚ via the SDP estimator

Ẑ P argmaxZPC
〈
B,Z

〉
. Our first aim is to quantify the cost we pay by using Ẑ instead of

Z˚ in our final choice of cut. It appears that the fixed point used in Theorem 1 may be
used to quantify this loss

r˚p∆q “ inf

¨

˝r ą 0 : P

»

– sup
ZPC:

〈
EB,Z˚´Z

〉
ďr

〈
B ´ EB,Z ´ Z˚

〉
ď p1{2qr

fi

fl ě 1´∆

˛

‚. (30)

Our second result is an explicit high-probability upper bound on the latter fixed point.
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4.3.1 Main results for the MAX-CUT problem

In this section, we gather the two results on the estimation of Z˚ from Ẑ and on the
approximate optimality of the final cut constructed from Ẑ. Let us now explicitly provide
the construction of this cut. We consider the same strategy as in Goemans and Williamson
(1995). Assume that Ẑ has been constructed. Let Ĝ be a centered Gaussian vector with
covariance matrix Ẑ. Let x̂ be the sign vector of Ĝ. Using the statistical properties of Ẑ,
it is possible to prove near optimality of x̂.

We denote the optimal values of the MAX-CUT problem associated with the graph G
and its SDP relaxation by

SDPpGq :“ p1{4q
〈
A0, J ´ Z˚

〉
“ max

ZPC

1

4

ÿ

i,j

A0
i,jp1´ Zijq and MAXCUTpGq :“ cutpG,S˚q,

where S˚ is a solution of (26) and J “ p1qnˆn. Our first result is to show how the 0.878-
approximation result from Goemans and Williamson (1995) is downgraded by the incom-
plete information we have on the graph (since we only partially observed the adjacency
matrix A0 via the masked matrix A).

Theorem 7 For all 0 ă ∆ ă 1. With probability at least 1´∆ (with respect to the masked
S), it holds true that

SDPpGq ě E
”

cutpG, x̂q|Ẑ
ı

ě 0.878SDPpGq ´
0.878r˚p∆q

4
.

To make the notation more precise, x̂ is the sign vector of Ĝ which is a centered Gaussian

variable with covariance Ẑ. In that context, E
”

cutpG, x̂q|Ẑ
ı

is the conditional expectation

according to Ĝ for a fixed Ẑ. Moreover, the probability “at least 1´∆” that we obtain is
w.r.t. the random masks, that is to the randomness in A.

Let us now frame Theorem 7 into the following perspective. If we had known the entire
adjacency matrix (which is the case when p “ 1), then we could have used Z˚ instead of
Ẑ. In that case, for x‹ the sign vector of G‹ „ N p0, Z˚q, we know from Goemans and
Williamson (1995) that

SDPpGq ě E rcutpG, x‹qs ě 0.878SDPpGq. (31)

Therefore, from a trade-off perspective, Theorem 7 characterizes the price we pay for not
observing the entire adjacency matrix A0, but only a masked version A of it. It is an
interesting output of Theorem 7 to observe that the fixed point r˚p∆q measures, in a
quantitative way, this loss. If we were able to identify scenarios of p and E for which
r˚p∆q “ 0, that would prove that there is no loss for partially observing A0 in the MAX-
CUT problem. The approach we use to control r˚p∆q is the global one, which does not
allow for exact reconstruction (that is, to show that r˚p∆q “ 0).

Let us now turn to an estimation result of Z˚ by Ẑ via an upper bound on r˚p∆q.

Theorem 8 With probability at least 1´ 4´n:

〈
EB,Z˚ ´ Ẑ

〉
ď r˚p4´nq ď 2n

d

p2 log 4qp1´ pqpn´ 1q

p
`

8n log 4

3
.
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In particular, it follows from the approximation result from Theorem 7 and the high-
probability upper bound on r˚p∆q from Theorem 8 that, with probability at least 1´ 4´n

E
”

cutpG, x̂q|Ẑ
ı

ě 0.878SDPpGq ´
0.878

4

˜

2n

d

p2 log 4qp1´ pqpn´ 1q

p
`

8n log 4

3

¸

. (32)

This result is non-trivial only when the right-hand side term is strictly larger than 0.5 ¨ SDPpGq,
which is the performance of a random cut. As a consequence, (32) shows that one can still
do better than randomness even in an incomplete information setup for the MAX-CUT
problem when p, n and SDPpGq are such that

0.378SDPpGq ą
0.878

4

˜

2n

d

p2 log 4qp1´ pqpn´ 1q

p
`

8n log 4

3

¸

.

For instance, when p is like a constant, it requires SDPpGq to be larger than c0n
3{2 (for

some absolute constant c0) and when p “ 1 ´ 1{n, it requires SDPpGq to be at least c0n
(for some absolute constant c0).

Remark 1 To get exact recovery, that is r˚p∆q “ 0, in the MAX-CUT problem (which
shows that there is no loss for the MAX-CUT problem by observing only a masked version
of the adjacency matrix), we have to develop a local approoach, as for the Signed Clustering
and the Group Synchronization problems. To that end, we would need to solve the following
two problems: 1q Find a curvature for the objective function Z Ñ

〈
EB,Z˚ ´ Z

〉
and 2q

Study the oscillations of the empirical process Z Ñ
〈
EB ´B,Z˚ ´Z

〉
. We leave those two

difficult problems for future research.

5. Proof of Theorem 3 (signed clustering)

The aim of this paper is to put forward a methodology developed in Learning Theory for
the study of SDP estimators. In each example, we follow this methodology. For a problem,
such as the signed clustering, where it is possible to characterize the curvature of the excess
risk, we start to identify this curvature because the curvature function G, coming out of
it, defines the local subsets of C driving the complexity of the problem. Then, we turn
to the stochastic part of the proof, which is entirely summarized into the complexity fixed
point r˚Gp∆q from (5). Finally, we put the two pieces together and apply the main general
result from Corollary 1 to obtain estimation results for the SDP estimator (11) in the signed
clustering problem, which is summarized in Theorem 3.

5.1 Curvature equation

In this section, we show that the objective function Z P C Ñ
〈
Z,EA ´ αJ

〉
satisfies a

curvature assumption around its maximizer Z˚ with respect to the `nˆn1 -norm given by
GpZ˚ ´ Zq “ θ }Z˚ ´ Z}1 with parameter θ “ δpp´ qq (and margin exponent κ “ 1).

Proposition 1 For θ “ δpp´ qq, we have for all Z P C,
〈
EA´αJ,Z˚´Z

〉
“ θ }Z˚ ´ Z}1.
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Proof Let Z be in C. We have

〈
Z˚ ´ Z,EA´ αJ

〉
“

n
ÿ

i,j“1

pZ˚ ´ ZqijpEAij ´ αq

“
ÿ

pi,jqPC`
pZ˚ij ´ Zijqpδp2p´ 1q ´ αq `

ÿ

pi,jqPC´
pZ˚ij ´ Zijqpδp2q ´ 1q ´ αq

“ δpp´ qq

»

–

ÿ

pi,jqPC`
pZ˚ ´ Zqij ´

ÿ

pi,jqPC´
pZ˚ ´ Zqij

fi

fl .

Moreover, for all pi, jq P C`, Z˚ij “ 1 and 0 ď Zij ď 1, so pZ˚´Zqij “ |pZ
˚´Zqij |. We also

have for all pi, jq P C´, pZ˚´Zqij “ ´Zij “ ´|pZ
˚´Zqij | because in that case Z˚ij “ 1 and

0 ď Zij ď 1. Hence,

〈
Z˚ ´ Z,EA´ αJ

〉
“ δpp´ qq

»

–

ÿ

pi,jqPC`
|pZ˚ ´ Zqij | `

ÿ

pi,jqPC´
|pZ˚ ´ Zqij |

fi

fl “ θ }Z˚ ´ Z}1 .

5.2 Computation of the complexity fixed point r˚Gp∆q

Define W :“ A ´ EA the noise matrix of the problem. Since W is symmetric, its entries
are not independent. In order to work only with independent random variables, we define
the following matrix Ψ P Rnˆn:

Ψij “

"

Wij if i ď j
0 otherwise,

(33)

where 0 entries are considered as independent Bernoulli variables with parameter 0 and
therefore, Ψ has independent entries, and satisfies the relation W “ Ψ`ΨJ.

In order to obtain upper bounds on the fixed point complexity parameter r˚Gp∆q associ-
ated with the signed clustering problem, we need to prove a high-probability upper bound
on the quantity

sup
ZPC:}Z´Z˚}1ďr

〈
W,Z ´ Z˚

〉
, (34)

and then find a radius r as small as possible such that the quantity in (34) is less than
pθ{2qr. We denote Cr :“ C X pZ˚ ` rBnˆn

1 q “ tZ P C : }Z ´ Z˚}1 ď ru where Bnˆn
1 is the

unit `nˆn1 -ball of Rnˆn.

We follow the strategy from Fei and Chen (2019b) by decomposing the inner product〈
W,Z ´ Z˚

〉
into two parts according to the SVD of Z˚. This observation is a key point

in the work of Fei and Chen (2019b) compared to the analysis from Guédon and Vershynin
(2016). This allows to perform the localization argument efficiently. Up to a change of
index of the nodes, Z˚ is a block matrix with K diagonal blocks of 1’s. It therefore admits
K singular vectors U‚k :“ Ipi P Ckq{

a

|Ck| with multiplicity lk associated with the singular
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value lk for all k P rKs. We can therefore write

Z˚ “
K
ÿ

k“1

lkU‚k b U‚k “ UDUJ,

where U P RnˆK has K column vectors given by U‚k, k “ 1, . . . ,K and D “ diagpl1, . . . , lKq.
We define the following projection operator

P : M P Rnˆn Ñ UUTM `MUUT ´ UUTMUUT ,

and its orthogonal projection PK by

PK : M P Rnˆn ÑM´PpMq “ pIn´UUT qMpIn´UUT q “
n
ÿ

k“K`1

〈
M,U‚kbU‚k

〉
U‚kbU‚k

where U‚k P Rn, k “ K ` 1, . . . , n are such that pU‚k : k “ 1, . . . , nq is an orthonormal basis
of Rn.

We use the same decomposition as in Fei and Chen (2019b): for all Z P C,〈
W,Z ´ Z˚

〉
“

〈
W,PpZ ´ Z˚q ` PKpZ ´ Z˚q

〉
“

〈
PpZ ´ Z˚q,W

〉
looooooooomooooooooon

S1pZq

`
〈
PKpZ ´ Z˚q,W

〉
loooooooooomoooooooooon

S2pZq

.

The next step is to control with large probability the two terms S1pZq and S2pZq uniformly
for all Z P C X pZ˚ ` rBnˆn

1 q. To that end, we use the two following propositions where we
recall that ρ “ δmaxp1´ δp2p´ 1q2, 1´ δp2q´ 1q2q and ν “ maxp2p´ 1, 1´ 2qq. The proof
of Proposition 2 and 3 can be found in Section B, it is based on Fei and Chen (2019b).

Proposition 2 There are absolute positive constants c0, c1, c2 and c3 such that the following
holds. If rc1rK{ns ě 2eKn expp´p9{32qnρ{Kq then we have

P

»

– sup
ZPCXpZ˚`rBnˆn1 q

S1pZq ď c2r

g

f

f

e

Kρ

n
log

˜

2eKn

r c1rKn s

¸

fi

fl ě 1´ 3

˜

r c1rKn s

2eKn

¸r
c1rK
n

s

.

Proposition 3 There exists an absolute constant c0 ą 0 such that the following holds.
When nνδ ě log n, with probability at least 1´ expp´δνnq,

sup
ZPCXpZ˚`rBnˆn1 q

S2pZq ď c0Kr

c

δν

n
.

It follows from Proposition 2 and Proposition 3 that when nνδ ě log n, for all r such that
rc1rK{ns ě 2eKn expp´p9{32qnρ{Kq we have, for

∆ “ ∆prq :“ expp´δνnq ´ 3

ˆ

r
c1rK

n
s{p2eKnq

˙r
c1rK
n

s

,
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with probability at least 1´∆,

sup
ZPCXpZ˚`rBnˆn1 q

〈
W,Z ´ Z˚

〉
ď c0Kr

c

δν

n
` c2r

g

f

f

e

Kρ

n
log

˜

2eKn

r c1rKn s

¸

.

Moreover, we have

c0Kr

c

δν

n
` c2r

g

f

f

e

Kρ

n
log

˜

2eKn

r c1rKn s

¸

ď
θ

2
r (35)

for θ “ δpp´ qq when K
?
ν À

?
nδpp´ qq and rc1rK{ns ě 2eKn expp´θ2n{pKρqq. In par-

ticular, when pp´ qq2nδ ě K2ν and 1 ě 2eKnmax
`

expp´θ2n{pKρqq, expp´p9{32qnρ{Kq
˘

,
we conclude that for all 0 ă r ď n{pc1Kq (35) is true. Therefore, one can take r˚Gp∆p0qq “
0 meaning that we have exact reconstruction of Z˚: if pp ´ qq2nδ ě K2ν and n Á

K maxpρ{θ2 logp2eK2ρ{θ2q, p1{ρq logp2eK2{ρqq then with probability at least 1´expp´δνnq´
3{p2eKnq, Ẑ “ Z˚.

If pp´ qq2nδ ě K2ν and 1 ă 2eKnmax
`

expp´θ2n{pKρqq, expp´p9{32qnρ{Kq
˘

then we
do not have exact reconstruction anymore, but we see that (35) is true for any r such that
2eKn expp´θ2n{p16c2

2Kρqq ď r c1rKn s ď 2eKn expp´c2
0Kδν{pc

2
2ρqq, which is possible since

pp´ qq2nδ ě K2ν, and then we can conclude that r˚p∆q ď 2en2

c1
expp´θ2n{p16c2

2Kρqq.
Therefore, it follows from Corollary 1 that

›

›

›
Z˚ ´ Ẑ

›

›

›

1
ď

2en2

c1θ
exp

ˆ

´
θ2n

16c2
2Kρ

˙

.

6. Proofs of Theorem 4 and Corollary 2 (angular synchronization)

Proof of (17): We recall that the offsets are δij “ θi ´ θjr2πs and we will use that if g

is N p0, 1q then Eeισg “ e´σ
2{2. For all γ1, . . . , γn P r0, 2πq, we have γi ´ γj “ δij for all

i ‰ j P rns if and only if eσ
2{2EAijeιγj ´ eιγi “ 0 for all i ‰ j P rns. We therefore have

argmin
xPCn:|xi|“1

#

ÿ

i‰j

|eσ
2{2EAijxj ´ xi|2

+

“ tpeιpθi`θ0qqni“1 : θ0 P r0, 2πqu. (36)

Moreover, for all x “ pxiq
n
i“1 P Cn such that |xi| “ 1 for i “ 1, . . . , n, we have

ÿ

i‰j

|eσ
2{2EAijxj ´ xi|2 “

ÿ

i‰j

|x˚i x̄
˚
j xj ´ xi|

2 “

n
ÿ

i,j“1

|x˚i x̄
˚
j ´ xix̄j |

2

“ 2n2 ´ 2<

˜

n
ÿ

i,j“1

x˚i x̄
˚
j xj x̄i

¸

“ 2n2 ´ 2|
〈
x˚, x

〉
|2

where <pzq denotes the real part of z P C. On the other side, we have

x̄Jpeσ
2{2EAqx “

ÿ

i‰j

x̄ix
˚
i x̄
˚
j xj `

n
ÿ

i“1

x̄ie
σ2{2xi “ npeσ

2{2 ´ 1q ` |
〈
x˚, x

〉
|2.
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Hence, minimizing x Ñ
řn
i‰j |e

σ2{2EAijxj ´ xi|
2 over all x “ pxiqi P Cn such that |xi| “ 1

is equivalent to maximize x Ñ x̄JEAx over all x “ pxiqi P Cn such that |xi| “ 1. This
concludes the proof with (36).

Proof of (18): Let C1 “ tZ P Cnˆn : |Zij | ď 1,@i, j P rnsu. We first prove that C Ă C1.
Let Z P C. Since Z ľ 0, there exists X P Cnˆn such that Z “ XX̄J. For all i P t1, . . . , nu,
denote by Xi‚ the i-th row vector of X. We have }Xi‚}

2
2 “

〈
Xi‚, Xi‚

〉
“ Zii “ 1 since

diagpZq “ 1n. Moreover, for all i, j P rns, we have |Zij | “ |
〈
Xi‚, Xj‚

〉
| ď }Xi‚}2 }Xj‚}2 ď 1.

This proves that Z P C1 and so C Ă C1.
Let Z 1 P argmax

`

<p
〈
EA,Z

〉
q : Z P C1

(

. Since C1 is convex and the objective function
Z Ñ <p

〈
EA,Z

〉
q is linear (for real coefficients), Z 1 is one of the extreme points of C1.

Extreme points of C1 are matrices Z P Cnˆn such that |Zij | “ 1 for all i, j P rns. We can
then write each entry of Z 1 as Z 1ij “ eιβij for some 0 ď βij ă 2π and now we obtain

<p
〈
EA,Z 1

〉
q “ <

˜

n
ÿ

i,j“1

EAijZ 1ij

¸

“ <

˜

n
ÿ

i‰j

e´σ
2{2eιδije´ιβij

¸

` <

˜

n
ÿ

i“1

eιδiie´ιβii

¸

“
ÿ

i‰j

eσ
2{2 cospδij ´ βijq `

ÿ

i

cospδii ´ βiiq ď eσ
2{2pn2 ´ nq ` n.

The maximal value eσ
2{2pn2 ´ nq ` n is attained only for βij “ δij for all i, j P rns, that is

for Z 1 “ peιδij qi,j“1,...,n “ Z˚. But we have Z˚ P C and C Ă C1, so Z˚ is the only maximizer

of Z Ñ <p
〈
EA,Z

〉
q on C. But for all Z P C we have

〈
EA,Z

〉
“ x˚

J
Zx˚ P R, then Z˚ is the

only maximizer of Z Ñ
〈
EA,Z

〉
over C.

6.1 Curvature of the objective function

Proposition 4 For θ “ e´σ
2{2{2, we have for all Z P C,

〈
EA,Z˚ ´ Z

〉
ě θ }Z˚ ´ Z}22.

Proof Let Z “ pzije
ιβij qni,j“1q P C where zij P R and 0 ď βij ă 2π for all i, j P rns. Since

Z˚ii “ Zii “ 1 for all i P rns, we have, on one side,
〈
EA,Z˚´Z

〉
“ e´σ

2{2x˚
J
pZ˚´Zqx˚ P R,

and so

〈
EA,Z˚ ´ Z

〉
“ <

`〈
EA,Z˚ ´ Z

〉˘
“ <

˜

n
ÿ

i,j“1

EAijpZ˚ ´ Zqij

¸

“ <

˜

n
ÿ

i,j“1

e´σ
2{2eιδij pe´ιδij ´ zije

´ιβij q

¸

“ e´σ
2{2<

˜

n
ÿ

i,j“1

1´ zije
ιpδij´βijq

¸

“ e´σ
2{2

n
ÿ

i,j“1

p1´ zij cospδij ´ βijqq. (37)
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On the other side, we showed in the proof of (18) that C Ă tZ P Cnˆn : |Zij | ď 1,@i, j P rnsu.
So we have |zij | ď 1 for all i, j P rns and

}Z˚ ´ Z}22 “
n
ÿ

i,j“1

|pZ˚ ´ Zqij |
2 “

n
ÿ

i,j“1

|eιδij ´ zije
ιβij |2 “

n
ÿ

i,j“1

|1´ zije
ιp´δij`βijq|2

“

n
ÿ

i,j“1

p1´ zij cospβij ´ δijqq
2 ` z2

ij sin2pβij ´ δijq “
n
ÿ

i,j“1

1´ 2zij cospβij ´ δijq ` z
2
ij

ď 2
n
ÿ

i,j“1

p1´ zij cospβij ´ δijqq. (38)

We conclude with (37) and (38).

In fact, it follows from the proof of Proposition 4 that we have the following equality: for
all Z P C, 〈

EA,Z˚ ´ Z
〉
“ θ

´

}Z˚ ´ Z}22 `
›

›|Z˚|2 ´ |Z|2
›

›

1

¯

,

where |Z|2 “ p|Zij |
2q1ďi,jďn (in particular, |Z˚|2 “ p1qnˆn). We therefore know exactly how

to characterize the curvature of the excess risk for the angular synchronization problem in
terms of the `2 (to the square) and the `1 norms. Nevertheless, we will not use the extra
term

›

›|Z˚|2 ´ |Z|2
›

›

1
in the following.

6.2 Computation of the complexity fixed point r˚Gp∆q

It follows from the (global) curvature property of the excess risk for the angular synchro-
nization problem obtained in Proposition 4 that for the curvature G function defined by
GpZ˚´Zq “ θ }Z˚ ´ Z}22 ,@Z P C, we just have to compute the r˚Gp∆q fixed point and then

apply Corollary 1 in order to obtain statistical properties of Ẑ (w.r.t. to both the excess
risk and the G function). In this section, we compute the complexity fixed point r˚Gp∆q for
0 ă ∆ ă 1.

Following Proposition 4, the natural “local” subsets of C around Z˚ which drive the
statistical complexity of the synchronization problem are defined for all r ą 0 by Cr “ tZ P
C : }Z ´ Z˚}2 ď ru “ C X pZ˚ ` rBnˆn

2 q.
Let Z P Cr. Denote by bRij (resp. bIij) the real (resp. imaginary) part of bij “ Z˚ijZij ´ Z

˚
ij

for all i, j P rns. Since }Z ´ Z˚}2 ď r we also have
ř

i,jpb
R
ijq

2 ` pbIijq
2 ď r2 and so

〈
A´ EA,Z ´ Z˚

〉
“

〈
pS ´ ESq ˝ Z˚, Z ´ Z˚

〉
“ 2<

˜

ÿ

iăj

pSij ´ ESijqbij

¸

“ 2
ÿ

iăj

pcospσgijq ´ E cospσgijqqb
R
ij ´ sinpσgijqb

I
ij

ď 2r

d

ÿ

iăj

pcospσgijq ´ E cospσgijqq2 ` psinpσgijqq2

ď 2r

g

f

f

e1´ e´σ2
` 2e´σ2{2

˜

ÿ

iăj

E cospσgijq ´ cospσgijq

¸
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where we used that E cospσgq “ <pEeιgq “ e´σ
2{2 for g „ N p0, 1q. Now it remains to get a

high-probability upper bound on the sum of the centered cosinus of σgij . We use Bernstein’s
inequality (see Equation 41 below) to get such a bound. For all t ą 0, with probability at
least 1´ expp´tq,

1
?
N

ÿ

iăj

E cospσgijq ´ cospσgijq ď
?

2V t`
2t

3
?
N
ď p1´ e´σ

2
q
?
t`

2t

3
?
N
,

for N “ npn ´ 1q{2 and V “ E cos2pσgq ´ pE cospσgqq2 “ p1{2qp1 ´ e´σ
2
q2 (because

E cos2pσgq “ p1{2qEp1` cosp2σgqq “ p1{2qp1` e´2σ2
q when g „ N p0, 1q).

We now have all the ingredients to compute the fixed point r˚Gp∆q for 0 ă ∆ ă 1: for

θ “ e´σ
2{2{2 and t “ logp1{∆q,

r˚Gp∆q ď
4

θ

ˆ

1´ e´σ
2
` 2e´σ

2{2

ˆ

p1´ e´σ
2
q
?
tN `

2t

3

˙˙

“
32t

3
`8p1´e´σ

2
qpeσ

2{2`2
?
tNq.

In particular, using 1 ´ e´σ
2
ď σ2 and for t “ εσ4N (where N “ npn ´ 1q{2) for some

0 ă ε ă 1, if eσ
2{2 ď 2σ2?εN then r˚Gp∆q ď p128{3qσ4N

?
ε.

6.3 End of the proof of Theorem 4 and Corollary 2: application of Corollary 1

Take ∆ “ expp´εσ4Nq (for N “ npn ´ 1q{2), we have r˚Gp∆q ď p128{3q
?
εσ4N when

eσ
2{2 ď 2

?
εσ2N (which holds for instance when σ ď

a

logpεN2q) and so it follows from
Corollary 1 (together with the curvature property in Section 6.1 and the computation of the
fixed point r˚Gp∆q from Section 6.2), that with probability at least 1´expp´εσ4npn´1q{2q,

θ
〈
Z˚ ´ Z

〉2

2
ď

〈
EA,Z˚ ´ Z

〉
ď p128{3q

?
εσ4N , which is the statement of Theorem 4.

Proof of Corollary 2: The oracle Z˚ is the rank one matrix x˚x˚
J

which has n for
largest eigenvalue and associated eigenspace tλx˚ : λ P Cu. In particular, Z˚ has a spectral
gap g “ n. Let x̂ P Cn be a top eigenvector of Ẑ with norm }x̂}2 “

?
n. It follows from the

Davis-Kahan Theorem (see, for example, Theorem 4.5.5 in Vershynin (2018) or Theorem 4
in Vu (2010)) that there exists an universal constant c0 ą 0 such that

min
zPC:|z|“1

›

›

›

›

x̂
?
n
´ z

x˚
?
n

›

›

›

›

2

ď
c0

g

›

›

›
Ẑ ´ Z˚

›

›

›

2
,

where g “ n is the spectral gap of Z˚. We conclude the proof of Corollary 2 using the

upper bound on
›

›

›
Ẑ ´ Z˚

›

›

›

2
from Theorem 4.

7. Proofs of Theorems 7 and 8 (MAX-CUT)

In this section, we prove the two main results from Section 4.3 using our general methodology
for Theorem 8 and the technique from Goemans and Williamson (1995) for Theorem 7.

7.1 Proof of Theorem 7

The proof of Theorem 7 follows the one from Goemans and Williamson (1995) up to a
minor modification due to the fact that we use the SDP estimator Ẑ instead of the oracle
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Z˚. It is based on two tools. The first one is Grothendieck’s identity: let g „ N p0, Inq and
u, v P Sn´1

2 , we have

Ersignp
〈
g, u

〉
qsignp

〈
g, u

〉
qs “

2

π
arcsinp

〈
u, v

〉
q, (39)

and the identity: for all t P r´1, 1s

1´
2

π
arcsinptq “

2

π
arccosptq ě 0.878p1´ tq. (40)

We now have enough tools to prove Theorem 7. The right-hand side inequality is trivial
since MAXCUTpGq ď SDPpGq. For the left-hand side, we denote by X̂1, . . . , X̂n (resp.
X˚1 , . . . , X

˚
n) the n columns vectors in Sn´1

2 of Ẑ (resp. Z˚). We also consider the event Ω˚

onto which 〈
EB,Z˚ ´ Ẑ

〉
ď r˚p∆q,

which hold with probability at least 1 ´∆ according to Theorem 1. On the event Ω˚, we
have

E
”

cutpG, x̂q|Ẑ
ı

“ E

«

1

4

n
ÿ

i,j“1

A0
ijp1´ x̂ix̂jq

ff

“
1

4

n
ÿ

i,j“1

A0
ij

´

1´ Ersignp
〈
X̂i, g

〉
qsignp

〈
X̂j , g

〉
qs

¯

piq
“

1

4

n
ÿ

i,j“1

A0
ij

ˆ

1´
2

π
arcsinp

〈
X̂i, X̂j

〉
q

˙

“
1

2π

n
ÿ

i,j“1

A0
ij arccosp

〈
X̂i, X̂j

〉
q

piiq
ě

0.878

4

n
ÿ

i,j“1

A0
ijp1´

〈
X̂i, X̂j

〉
q

“
0.878

4

n
ÿ

i,j“1

A0
ijp1´

〈
X˚i , X

˚
j

〉
q `

0.878

4

n
ÿ

i,j“1

A0
ijp

〈
X˚i , X

˚
j

〉
´
〈
X̂i, X̂j

〉
q

“
0.878

4

〈
A0, J ´ Z˚

〉
`

0.878

4

〈
A0, Z˚ ´ Ẑ

〉
“ 0.878SDPpGq ´

0.878

4

〈
EB,Z˚ ´ Ẑ

〉
ě 0.878 SDPpGq ´

0.878

4
r˚p∆q

where we used (39) in (i) and (40) in (ii).

7.2 Proof of Theorem 8

For the MAX-CUT problem, we do not use any localization argument; we therefore use
the (likely sub-optimal) global approach. The methodology is very close to the one used in
Guédon and Vershynin (2016) for the community detection problem. In particular, we use
both Bernstein and Grothendieck inequalities to compute high-probability upper bound for
r˚p∆q. We recall theses two tools now. First Bernstein’s inequality: if Y1, . . . , YN are N
independent centered random variables such that |Yi| ďM a.s. for all i “ 1, . . . , N then for
all t ą 0, with probability at least 1´ expp´tq,

1
?
N

N
ÿ

i“1

Yi ď σ
?

2t`
2Mt

3
?
N
, (41)
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where σ2 “ p1{Nq
řN
i“1 varpYiq. The second tool is Grothendieck inequality Grothendieck

(1956) (see also Pisier (2012) or Theorem 3.4 in Guédon and Vershynin (2016)): if C P Rnˆn
then

sup
ZPC

〈
C,Z

〉
ď KG }C}cut “ KG max

s,tPt´1,1un

n
ÿ

i,j“1

Cijsitj (42)

where C “ tZ ľ 0 : Zii “ 1, i “ 1, . . . , nu and KG is an absolute constant, called the
Grothendieck constant.

In order to apply Theorem 1, we just have to compute the fixed point r˚p∆q. As
announced, we use the global approach and Grothendieck inequality (42) to get

sup
ZPC:

〈
EB,Z˚´Z

〉
ďr

〈
B ´ EB,Z ´ Z˚

〉
ď sup

ZPC

〈
B ´ EB,Z ´ Z˚

〉
ď 2KG }B ´ EB}cut , (43)

because Z˚ P C. It follows from Bernstein’s inequality (41) and a union bound that for all
t ą 0, with probability at least 1´ 4n expp´tq,

}B ´ EB}cut “ sup
s,tPt˘1un

ÿ

1ďiăjďn

pBij ´ EBijqpsitj ` sjtiq ď 2

d

p1´ pqnpn´ 1qt

p
`

4t

3
.

Therefore, for t “ 2n log 4, with probability at least 1´ 4´n,

r˚p∆q ď }B ´ EB}cut ď 2n

d

p2 log 4qp1´ pqpn´ 1q

p
`

8n log 4

3

for ∆ “ 4´n. Then the result follows from Theorem 1.

8. Numerical experiments

This section contains the outcome of numerical experiments on the three application prob-
lems considered: signed clustering, MAX-CUT, and angular synchronization.

8.1 Signed Clustering

To assess the effectiveness of the SDP relaxation, we consider the following experimental
setup. We generate synthetic networks following the signed stochastic block model (SSBM)
previously described in Section 4.1.1, with K “ 5 communities. To quantify the effectiveness
of the SDP relaxation, we compare the accuracy of a suite of algorithms from the signed
clustering literature, before the SDP relaxation (i.e., when we perform these algorithms
directly on A) and after the SDP relaxation (i.e., when we perform the very same algorithms
on Ẑ). To measure the recovery quality of the clustering results, for a given indicator set
x1, . . . , xK , we rely on the error rate consider in Chiang et al. (2012), defined as

γ “
K
ÿ

c“1

xTc A
´
comxc ` x

T
c L

`
comxc

n2
, (44)

where xc denotes a cluster indicator vector, Acom (“ EA) is the complete K-weakly balanced
ground truth network – with 1’s on the diagonal blocks corresponding to inter-cluster edges,
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and ´1 otherwise – with Acom “ A`com ´ A
´
com, and L`com denotes the combinatorial graph

Laplacian corresponding to A´com. Note that xTc A
´
comxc counts the number of violations

within the clusters (since negative edges should not be placed within clusters) and xTc L
`
comxc

counts the number of violations across clusters (since positive edges should not belong to
the cut). Overall, (44) essentially counts the fraction of intra-cluster and inter-cluster edge
violations, with respect to the full ground truth matrix. Note that this definition can also
be easily adjusted to work on real data sets, where the ground truth matrix Acom is not
available, which one can replace with the empirical observation A.

In terms of the signed clustering algorithms compared, we consider the following algo-
rithms from the literature. One straightforward approach is to simply rely on the spectrum
of the observed adjacency matrix A. Kunegis et al. (2010) proposed spectral tools for
clustering, link prediction, and visualization of signed graphs, by solving a 2-way “signed”
ratio-cut problem based on the combinatorial Signed Laplacian Hou (2005) L̄ “ D̄ ´ A,
where D̄ is a diagonal matrix with D̄ii “

řn
i“1 |Aij |. The same authors proposed signed

extensions for the case of the random-walk Laplacian L̄rw “ I ´ D̄´1A, and the symmetric
graph Laplacian L̄sym “ I ´ D̄´1{2AD̄´1{2, the latter of which is particularly suitable for
skewed degree distributions. Finally, the last algorithm we considered is BNC of Chiang
et al. (2012), who introduced a formulation based on the Balanced Normalized Cut objective

mintx1,...,xKuPI

˜

K
ÿ

c“1

xTc pD
` ´Aqxc

xTc D̄xc

¸

, (45)

which, in light of the decomposition D`´A “ D`´pA`´A´q “ D`´A``A´ “ L``A´,
is effectively minimizing the number of violations in the clustering procedure.

In our experiments, we first compute the error rate γbefore of all algorithms on the orig-
inal SSBM graph (shown in Column 1 of Figure 1), and then we repeat the procedure but
with the input to all signed clustering algorithms being given by the output of the SDP
relaxation, and denote the resulting recovery error by γafter. The third column of the same
Figure 1 shows the difference in errors γδ “ γbefore ´ γafter between the first and second
columns, while the fourth column contains a histogram of the error differences γδ. This
altogether illustrates the fact that the SDP relaxation does improve the performance of all
signed clustering algorithms, except L̄, and could effectively be used as a denoising pre-
processing step. One potential reason why the SDP pre-processing step does not improve
on the accuracy of L̄ could stem from the fact that L̄ has a good performance to begin
with on examples where the clusters have equal sizes and the degree distribution is homoge-
neous. It would be interesting to further compare the results in settings with skewed degree
distributions, such as the classical Barabási-Albert model Albert and Barabási (2002).

8.2 MAX-CUT

For the MAX-CUT problem, we consider two sets of numerical experiments. First, we
consider a version of the stochastic block model which essentially perturbs a complete
bipartite graph

B “

∣∣∣∣0n1ˆn1 1n1ˆn2

1n2ˆn1 0n2ˆn2

∣∣∣∣ , (46)

31



Chrétien, Cucuringu, Lecué, Neirac

Before After Delta Histogram

A

L̄

L̄rw

L̄sym

BNC

Figure 1: Summary of results for the Signed Clustering problem. The first column denotes
the recovery error before the SDP relaxation step, meaning that we consider a number
of signed clustering algorithms from the literature which we apply directly the initial
adjacency matrix A. The second column contains the results when applying the same
suite of algorithms after the SDP relaxation. The third column shows the difference in
errors between the first and second columns, while the fourth column contains a histogram
of the delta errors. This altogether illustrates the fact the SDP relaxation does improve
the performance of all signed clustering algorithms except L̄. Results are averaged over 20
runs.
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where 1n1ˆn2 (respectively, 0n1ˆn2) denotes an n1 ˆ n2 matrix of all ones, respectively, all
zeros. In our experiments, we set n1 “ n2 “

n
2 , and fix n “ 500. We perturb B by deleting

edges across the two partitions, and inserting edges within each partition. More specifically,
we generated the full adjacency matrix A0 from B by adding edges independently with
probability η within each partition (i.e., along the diagonal blocks in (46)). Finally, we
denote by A the masked version we observe, A “ A0 ˝ S, where S denotes the adjacency
matrix of an Erdős-Rényi(n, δ) graph. The graph shown in Figure 2 is an instance of the
above generative model. Note that, for small values of η, we expect the maximum cut to

Figure 2: Illustration of MAX-CUT in the setting of a perturbation of a complete bipartite
graph.

occur across the initial partition PB in the clean bipartite graph B, which we aim to recover
as we sparsify the observed graph A. The heatmap in the left of Figure 3 shows the Adjusted
Rand Index (ARI) between the initial partition PB and the partition of the MAX-CUT
SDP relaxation in (29), as we vary the noise parameter η and the sparsity δ. As expected,
for a fix level of noise η, we are able to recover the hypothetically optimal MAX-CUT, for
suitable levels of the sparsity parameter. The heatmap in the right of Figure 3 shows the
computational running time, as we vary the two parameters, showing that the Manopt
solver takes the longest to solve dense noisy problems, as one would expect.

In the second set of experiments shown in Figure 4, we consider a graph A0 chosen at
random from the collection3 of graphs known in the literature as the Gset, where we vary
the sparsity level δ, and show the MAX-CUT value attained on the original full graph A0,
but using the MAX-CUT partition computed by the SDP relaxation (29) on the sparsified
graph A.

8.3 Angular Synchronization

For the angular synchronization problem, we consider the following experimental setup, by
assessing the quality of the recovered angular solution from the SDP relaxation, as we vary
the two parameters of interest. In the x-axis in the plots from Figures 5 and 6 we vary the

3. http://web.stanford.edu/~yyye/yyye/Gset/
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(a) Adjusted Rand Index. (b) Running times (MANOPT).

Figure 3: Numerical results for MAX-CUT on a perturbed complete bipartite graph, as
we vary the noise level η and the sampling sparsity δ. Results are averaged over 20 runs.

Figure 4: Max-Cut results for the G53 benchmark graph (from the Gset collection) with
n “ 1000 nodes and average degree « 12. Results are averaged over 20 runs.

noise level σ, under two different noise models, Gaussian and outliers. On the y-axis, we
vary the sparsity of the sampling graph.

We measure the quality of the recovered angles via the Mean Squared Error (MSE),
defined as follows. Since a solution can only be recovered up to a global shift, one needs
an MSE error that mods out such a degree of freedom. The following MSE is also more
broadly applicable for the case when the underlying group is the orthogonal group Opdq, as
opposed to just SOp2q as in the present work, where one can replace the unknown angles
θ1, . . . , θn with their respective representation as 2ˆ 2 rotation matrices h1, . . . , hn P Op2q.
To that end, we look for an optimal orthogonal transformation Ô P Op2q that minimizes
the sum of squared distances between the estimated orthogonal transformations and the
ground truth measurements

Ô “ argmin
OPOp2q

n
ÿ

i“1

}hi ´Oĥi}
2
F , (47)
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where ĥ1, . . . , ĥn P Op2q denote the 2 ˆ 2 rotation matrix representation of the estimated
angles θ̂1, . . . , θ̂n. In other words, Ô is the optimal solution to the alignment problem
between two sets of orthogonal transformations, in the least-squares sense. Following the
analysis of Singer and Shkolnisky (2011), and making use of properties of the trace, one
arrives at

n
ÿ

i“1

}hi ´Oĥi}
2
F “

n
ÿ

i“1

Trace

„

´

hi ´Oĥi

¯´

hi ´Oĥi

¯T


“

n
ÿ

i“1

Trace
”

2I ´ 2Oĥih
T
i

ı

“ 4n´ 2 Trace

«

O
n
ÿ

i“1

ĥih
T
i

ff

. (48)

If we let Q denote the 2ˆ 2 matrix

Q “
1

n

n
ÿ

i“1

ĥih
T
i , (49)

it follows from (48) that the MSE is given by minimizing

1

n

n
ÿ

i“1

}hi ´Oĥi}
2
F “ 4´ 2TrpOQq. (50)

In Arun et al. (1987) it is proven that TrpOQq ď TrpV UTQq, for all O P Op3q, where
Q “ UΣV T is the singular value decomposition of Q. Therefore, the MSE is minimized by
the orthogonal matrix Ô “ V UT and is given by

MSE
def
“

1

n

n
ÿ

i“1

}hi ´ Ôĥi}
2
F “ 4´ 2 TracepV UTUΣV T q “ 4´ 2pσ1 ` σ2q, (51)

where σ1, σ2 are the singular values of Q. Therefore, whenever Q is an orthogonal matrix
for which σ1 “ σ2 “ 1, the MSE vanishes. Indeed, the numerical experiments (on a log
scale) in Figures 5 and 6 confirm that for noiseless data, the MSE is very close to zero.
Furthermore, as one would expected, under favorable noise regimes and sparsity levels, we
have almost perfect recovery, both by the SDP and the spectral relaxations, under both
noise models.

9. Conclusions and future work

There are a number of other graph-based problems amenable to SDP relaxations, for which
a similar theoretical analysis of their SDP-based estimators could be suitable. For example,
the recent work of Cucuringu and Tyagi (2020) considered a problem motivated by geo-
sciences and engineering applications of recovering a smooth unknown function f : GÑ R
(where G “ ra, bs is known) from noisy observations of its mod 1 values, which is also
amenable to a solution based on an SDP relaxation solved via a Burer-Monteiro approach;
the tightness of such an SDP relaxation was recently analyzed by Fanuel and Tyagi (2021).
Another potential application concerns the problem of clustering directed graphs and un-
covering unbalanced flows arising from the edge orientations, as in the very recent work
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(a) Spectral relaxation. (b) SDP relaxation (solved via MANOPT).

Figure 5: Recovery rates (MSE (51) - the lower the better) for angular synchronization
with n “ 500, under the Gaussian noise model, as we vary the noise level σ and the sparsity
p of the measurement graph. Results are averaged over 20 runs.

(a) Spectral relaxation. (b) SDP relaxation (solved via MANOPT).

Figure 6: Recovery rates (MSE (51) - the lower the better) for angular synchronization
with n “ 500, under the Outlier noise model, as we vary the noise level γ and the sparsity
p of the measurement graph. Results are averaged over 20 runs.

of Cucuringu et al. (b) that proposed a spectral algorithm based on Hermitian matrices;
this problem is also amenable to an SDP relaxation. Many other situations could also be
considered under the angle of learning with a ’linear loss function’ as presented in this
work; just to name a few, we may think about the phase retrieval problem or the quadratic
assignment problem from Yurtsever et al. (2021), a graph coloring problem as in Rendl
(2010), a planted clique problem as in Hajek et al. (2016), the kernel clustering problem as
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in Giraud and Verzelen, a manifold learning problem as Tepper et al. (2018), the angular
bi-synchronization problem Cucuringu and Tyagi (2021), etc..

Our theoretical and practical findings show that running algorithms (such as spectral
methods) directly on A may be improved by using first a SDP estimator, such as Ẑ, and run-
ning the very same algorithms on Ẑ (instead of A). Somehow, Ẑ performs a pre-processing
denoising step which improve the recovery of the hidden signal, such as community vectors.
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Chinmay Hegde, Aswin C Sankaranarayanan, and Richard G Baraniuk. Near-isometric
linear embeddings of manifolds. In 2012 IEEE Statistical Signal Processing Workshop
(SSP), pages 728–731. IEEE, 2012.

Samuel B. Hopkins. Sub-gaussian mean estimation in polynomial time. CoRR,
abs/1809.07425, 2018. URL http://arxiv.org/abs/1809.07425.

Jao Ping Hou. Bounds for the least Laplacian eigenvalue of a signed graph. Acta Mathe-
matica Sinica, 21(4):955–960, 2005.

Adel Javanmard, Andrea Montanari, and Federico Ricci-Tersenghi. Phase transitions in
semidefinite relaxations. Proceedings of the National Academy of Sciences, 113(16):
E2218–E2223, 2016.

David Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by semidef-
inite programming. Journal of the ACM (JACM), 45(2):246–265, 1998.

Subhash Khot and Assaf Naor. Approximate kernel clustering. Mathematika, 55(1-2):
129–165, 2009.

Vladimir Koltchinskii. Local Rademacher complexities and oracle inequalities in risk
minimization. Ann. Statist., 34(6):2593–2656, 2006. ISSN 0090-5364. doi: 10.1214/
009053606000001019. URL http://dx.doi.org/10.1214/009053606000001019.

Vladimir Koltchinskii. Oracle inequalities in empirical risk minimization and sparse recovery
problems, volume 2033 of Lecture Notes in Mathematics. Springer, Heidelberg, 2011.
ISBN 978-3-642-22146-0. doi: 10.1007/978-3-642-22147-7. URL http://dx.doi.org/

10.1007/978-3-642-22147-7. Lectures from the 38th Probability Summer School held
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Appendix A. Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1

Denote r˚ “ r˚p∆q. Assume first that r˚ ą 0 (the case r˚ “ 0 is analyzed later). Let Ω˚ be
the event onto which for all Z P C if

〈
EA,Z˚ ´ Z

〉
ď r˚ then

〈
A´ EA,Z ´ Z˚

〉
ď p1{2qr˚.

By Definition of r˚, we have PrΩ˚s ě 1´∆.

Let Z P C be such that
〈
EA,Z˚ ´ Z

〉
ą r˚ and define Z 1 such that Z 1 ´ Z˚ “

`

r˚{
〈
EA,Z˚ ´ Z

〉˘
pZ ´ Z˚q. We have

〈
EA,Z˚ ´ Z 1

〉
“ r˚ and Z 1 P C because C is

star-shaped in Z˚. Therefore, on the event Ω˚,
〈
A ´ EA,Z 1 ´ Z˚

〉
ď p1{2qr˚ and so〈

A´EA,Z ´Z˚
〉
ď p1{2q

〈
EA,Z˚ ´Z

〉
. It therefore follows that on the event Ω˚, if Z P C

is such that
〈
EA,Z˚ ´ Z

〉
ą r˚ then〈

A,Z ´ Z˚
〉
ď p´1{2q

〈
EA,Z˚ ´ Z

〉
ă ´r˚{2

which implies that
〈
A,Z ´ Z˚

〉
ă 0 and therefore Z does not maximize Z Ñ

〈
A,Z

〉
over

C. As a consequence, we necessarily have
〈
EA,Z˚ ´ Ẑ

〉
ď r˚ on the event Ω˚ (which holds

with probability at least 1´∆).

Let us now assume that r˚ “ 0. There exists a decreasing sequence prnqn of positive
real numbers tending to r˚ “ 0 such that for all n ě 0, PrΩns ě 1 ´ ∆ where Ωn is the
event Ωn “ tψprnq ď θ{2u where for all r ą 0,

ψprq “
1

r
sup

ZPC:
〈
EA,Z˚´Z

〉
ďr

〈
A´ EA,Z ´ Z˚

〉
.

Since C is star-shapped in Z˚, ψ is a non-increasing function and so pΩnqn is a decreasing
sequence (i.e. Ωn`1 Ă Ωn for all n ě 0). It follows that PrXnΩns “ limn PrΩns ě 1 ´ ∆.
Let us now place ourselves on the event XnΩn. For all n, since Ωn holds and rn ą 0, we
can use the same argument as in first case to conclude that

〈
EA,Z˚ ´ Ẑ

〉
ď rn. Since the

latter inequality is true for all n (on the event XnΩn) and prnqn tends to zero, we conclude
that

〈
EA,Z˚ ´ Ẑ

〉
ď 0 “ r˚.

Proof of Theorem 2

Let r˚ “ r˚Gp∆q. First assume that r˚ ą 0. Let Z P C be such that GpZ˚ ´ Zq ą r˚. Let
f : λ P r0, 1s Ñ GpλpZ˚ ´ Zqq. We have fp0q “ Gp0q “ 0, fp1q “ GpZ˚ ´ Zq ą r˚ and f
is continuous. Therefore, there exists λ0 P p0, 1q such that fpλ0q “ r˚. We let Z 1 be such
that Z 1 ´ Z˚ “ λ0pZ ´ Z˚q. Since C is star-shapped in Z˚ and λ0 P r0, 1s we have Z 1 P C.
Moreover, GpZ˚ ´ Z 1q “ r˚. As a consequence, on the event Ω˚ such that for all Z P C if
GpZ˚ ´ Zq ď r˚ then

〈
A´ EA,Z ´ Z˚

〉
ď p1{2qr˚, we have

〈
A´ EA,Z 1 ´ Z˚

〉
ď p1{2qr˚.

The latter and Assumption 2 imply that, on Ω˚,

p1{2qr˚ ě
〈
A,Z 1 ´Z˚

〉
`
〈
EA,Z˚ ´Z 1

〉
ě

〈
A,Z 1 ´Z˚

〉
`GpZ˚ ´Z 1q ě

〈
A,Z 1 ´Z˚

〉
` r˚

and so
〈
A,Z 1 ´ Z˚

〉
ď ´r˚{2. Finally, using the definition of Z 1, we obtain〈
A,Z ´ Z˚

〉
“ p1{λ0q

〈
A,Z 1 ´ Z˚

〉
ď ´r˚{p2λ0q ă 0.

47



Chrétien, Cucuringu, Lecué, Neirac

In particular, Z cannot be a maximizer of Z Ñ
〈
A,Z

〉
over C and so necessarily, on the

event Ω˚, GpZ˚ ´ Ẑq ď r˚.

Let us now consider the case where r˚ “ 0. Using the same approach as in the proof of
Theorem 1, we only have to check that the function

ψ : r ą 0 Ñ
1

r
sup

ZPC:GpZ˚´Zqďr

〈
A´ EA,Z ´ Z˚

〉
is non-increasing. Let 0 ă r1 ă r2. W.l.o.g. we may assume that there exists some Z2 P C
such that GpZ˚ ´ Z2q ď r2 and ψpr2q “

〈
A ´ EA,Z2 ´ Z˚

〉
{r2. If GpZ˚ ´ Z2q ď r1

then ψpr2q ď pr1{r2qψpr1q ď ψpr1q. If GpZ˚ ´ Z2q ą r1 then there exists λ0 P p0, 1q
such that for Z1 “ Z˚ ` λ0pZ2 ´ Z˚q we have GpZ˚ ´ Z1q “ r1 and Z1 P C. Moreover,
r1 “ Gpλ0pZ

˚ ´ Z2qq ď λ0GpZ
˚ ´ Z2q ď λ0r2 and so λ0 ě r1{r2. It follows that

ψpr2q “
1

r2

〈
A´ EA,Z2 ´ Z

˚
〉
“

1

λ0r2

〈
A´ EA,Z1 ´ Z

˚
〉
ď

r1

λ0r2
ψpr1q ď ψpr1q

where we used that ψprq ą 0 for all r ą 0 because Z˚ P tZ P C : GpZ˚ ´ Zq ď ru for all
r ą 0.

Appendix B. Additional proofs for Signed Clustering

Proof of Equation (10)

We recall that the cluster matrix Z̄ P t0, 1unˆn is defined by Zij “ 1 if i „ j and Zij “ 0
when i  j and α “ δpp` q ´ 1q. For all matrix Z P r0, 1snˆn, we have

〈
Z,EA´ αJ

〉
“

n
ÿ

i,j“1

ZijpEAij ´ αq “
ÿ

pi,jqPC`
ZijpEAij ´ αq `

ÿ

pi,jqPC´
ZijpEAij ´ αq

“ rδp2p´ 1q ´ αs
ÿ

pi,jqPC`:i‰j

Yij ` rδp2q ´ 1q ´ αs
ÿ

pi,jqPC´
Zij ` p1´ αq

n
ÿ

i“1

Zii

“ δpp´ qq

»

–

ÿ

pi,jqPC`
Yij ´

ÿ

pi,jqPC´
Yij

fi

fl` p1´ αq
n
ÿ

i“1

Zii.

The latter quantity is maximal for Z P r0, 1snˆn such that Zij “ 1 for pi, jq P C` and Zij “ 0
for pi, jq P C´, that is when Z “ Z̄. As a consequence tZ̄u “ argmaxZPr0,1snˆn

〈
Z,EA´αJ

〉
.

Moreover, Z̄ P C Ă r0, 1snˆn so we also have that Z̄ is the only solution to the problem
maxZPC

〈
Z,EA´ αJ

〉
and so Z̄ “ Z˚.
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Proof of Proposition 2: control of S1pZq adapted from Fei and Chen (2019b)

The noise matrix W is symmetric and has been decomposed as W “ Ψ`ΨJ where Ψ has
been defined in (62). For all Z P C X pZ˚ ` rBnˆn

1 q, we have

S1pZq “
〈
PpZ ´ Z˚q,W

〉
“

〈
PpW q, Z ´ Z˚

〉
“

〈
UUJW,Z ´ Z˚

〉
`
〈
WUUJ, Z ´ Z˚

〉
´
〈
UUJWUUJ, Z ´ Z˚

〉
“ 2

〈
UUJW,Z ´ Z˚

〉
´
〈
UUJWUUJ, Z ´ Z˚

〉
“ 2

〈
UUJΨ, Z ´ Z˚

〉
` 2

〈
UUJΨJ, Z ´ Z˚

〉
´
〈
UUJpΨ`ΨJqUUJ, Z ´ Z˚

〉
“ 2

〈
UUJΨ, Z ´ Z˚

〉
` 2

〈
UUJΨJ, Z ´ Z˚

〉
´ 2

〈
UUJΨUUJ, Z ´ Z˚

〉
“ 2

〈
UUJΨ, Z ´ Z˚

〉
` 2

〈
UUJΨJ, Z ´ Z˚

〉
´ 2

〈
UUJΨ, pZ ´ Z˚qUUJ

〉
. (52)

An upper bound on S1pZq follows from an upper bound on the three terms in the right side
of (52). Let us show how to bound the first term. Similar arguments can be used to control
the other two terms.

Let V :“ UUTΨ. Let us find a high-probability upper bound on the term
〈
UUJΨ, Z ´

Z˚
〉
“

〈
V,Z´Z˚

〉
uniformly over Z P CXpZ˚`rBnˆn

1 q. For all k P rKs, i P Ck and j P rns,
we have

Vij “
n
ÿ

t“1

pUUT qitΨtj “
ÿ

tPCk

1

lk
Ψtj “

1

lk

ÿ

tPCk

Ψtj “
1

lk

ÿ

tPCk

Ψtj .

Therefore, given j P rns the Vij ’s are all equal for i P Ck. We can therefore fix some arbitrary
index ik P Ck and have Vij “ Vikj for all i P Ck. Moreover, pVikj : k P rKs, j P rnsq is a
family of independent random variables. We now have〈

V,Z ´ Z˚
〉
“

ÿ

kPrKs

ÿ

iPCk

ÿ

jPrns

VijpZ ´ Z
˚qij “

ÿ

kPrKs

ÿ

jPrns

lkVikj
ÿ

iPCk

pZ ´ Z˚qij
lk

“
ÿ

kPrKs

ÿ

jPrns

lkVikjwkj

which is a weighted sum of nK independent centered random variables Xk,j :“ lkVikj with
weights wk,j “ p1{lkq

ř

iPCkpZ ´Z
˚qij for k P rKs, j P rns. We now idenfity some properties

on the weights wkj .
The weights are such that

ÿ

kPrKs

ÿ

jPrns

|wk,j | ď
c1K

n

ÿ

kPrKs

ÿ

jPrns

ÿ

iPCk

|pZ ´ Z˚qij | “ }Z ´ Z
˚}1

c1K

n
ď
c1rK

n

which is equivalent to say that the weights vector w “ pwkj : k P rKs, j P rnsq is in the
`Kn1 -ball pc1rK{nqB

Kn
1 . It is also in the unit `Kn8 -ball since for all k P rKs and j P rns,

|wk,j | ď
ÿ

iPCk

|pZ ´ Z˚qij |

lk
ď }Z ´ Z˚}8 ď 1.

We therefore have w P BKn
8 X pc1rK{nqB

Kn
1 and so

sup
ZPCXpZ˚`rBnˆn1 q

〈
V,Z ´ Z˚

〉
ď sup

wPBKn8 Xpc1rK{nqBKn1

ÿ

kPrKs,jPrns

Xk,jwk,j . (53)
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It remains to find a high-probability upper bound on the latter term. We can use the
following lemma to that end.

Lemma 1 Let Xk,j “
ř

tPCk Ψtj for pk, jq P rKs ˆ rns. For all 0 ď R ď Kn, if rRs ě

2eKn expp´p9{32qnρ{Kq then with probability at least 1´ prRs{p2eKnqqrRs,

sup
wPBKn8 XRBKn1

ÿ

pk,jqPrKsˆrns

Xk,jwk,j ď 4
?

8c0R

d

nρ

K
log

ˆ

2eKn

rRs

˙

.

Proof of Lemma 1. Let N “ Kn and assume that 1 ď R ď N . We denote by X˚1 ě
X˚2 ě ¨ ¨ ¨ ,ě X˚N (resp. w˚1 ě ¨ ¨ ¨ ě w˚N ) the non-decreasing rearrangement of |Xk,j | (resp.
|wk,j |) for pk, jq P rKs ˆ rns. We have

sup
wPBN8XRB

N
1

ÿ

pk,jqPrKsˆrns

Xk,jwk,j ď sup
wPBN8XRB

N
1

N
ÿ

i“1

X˚i w
˚
i

ď sup
wPBN8

rRs
ÿ

i“1

X˚i w
˚
i ` sup

wPRBN1

N
ÿ

i“rRs`1

X˚i w
˚
i ď

rRs
ÿ

i“1

X˚i `RX
˚
rRs`1 ď 2

rRs
ÿ

i“1

X˚i .

Moreover, for all τ ą 0, using a union bound, we have

P

¨

˝

rRs
ÿ

i“1

X˚i ą τ

˛

‚“ P

¨

˝DI Ă rKs ˆ rns : |I| “ rRs and
ÿ

pk,jqPI

|Xk,j | ą τ

˛

‚

“ P

¨

˝ max
IĂrKsˆrns:|I|“rRs

max
uk,j“˘1,pk,jqPI

ÿ

pk,jqPI

uk,jXk,j ą τ

˛

‚

ď
ÿ

IĂrKsˆrns:|I|“rRs

ÿ

uPt˘1urRs

P

¨

˝

ÿ

pk,jqPI

Xk,juk,j ą τ

˛

‚

“
ÿ

IĂrKsˆrns:|I|“rRs

ÿ

uPt˘1urRs

P

¨

˝

ÿ

pk,jqPI

ÿ

tPCk

Ψt,juk,j ą τ

˛

‚.

Let us now control each term of the latter sum thanks to Bernstein inequality. The random
variables pΨt,j : t, j P rnsq are independent with variances at most ρ “ δmaxp1 ´ δp2p ´
1q2, 1 ´ δp2q ´ 1q2q since VarpΨijq “ 0 when i ą j and VarpΨijq “ VarpAij ´ ErAijsq “
VarpAijq ď ρ for j ě i. Moreover, |Ψij | “ 0 when j ă i and |Ψij | “ |Wij | “ |Aij´EAij | ď 2
for j ě i because Aij P t´1, 0, 1u. It follows from Bernstein’s inequality that for all I Ă
rKs ˆ rns satisfying |I| “ rRs and u P t˘1urRs that

P

¨

˝

ÿ

pk,jqPI

ÿ

tPCk

Ψt,juk,j ą τ

˛

‚ď exp

ˆ

´τ2

2rRslkρ` 4τ{3

˙

ď exp

ˆ

´τ2

2rRsc0nρ{K ` 4τ{3

˙

ď exp

ˆ

´τ2

4rRsc0nρ{K

˙
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when τ ď p3{2qrRsc0nρ{K. Therefore, supwPBN8XRBN1

ř

Xk,jwk,j ď 2τ with probability at
least

1´

ˆ

N

rRs

˙

2rRs exp

ˆ

´τ2

4rRsc0nρ{K

˙

ě 1´ exp

ˆ

´τ2

8rRsc0nρ{K

˙

when

p3{2qrRsc0nρ{K ě τ ě
?

8c0rRs

d

nρ

K
log

ˆ

2eN

rRs

˙

which is a non vacuous condition since rRs ě 2eN expp´p9{32qnρ{Kq. The result follows,
in the case 1 ď R ď N , by taking τ “

?
8c0rRs

a

pnρ{Kq log p2eN{rRsq and using that
2R ě rRs when R ě 1.

For 0 ď R ď 1, we have

sup
wPBKn8 XRBKn1

ÿ

pk,jqPrKsˆrns

Xk,jwk,j “ R max
pk,jqPrKsˆrns

|Xk,j |

and using Bernstein inequality as above we get that with probability at least 1´expp´Kτ2{p8c0nρqq,
maxpk,jqPrKsˆrns |Xk,j | ď τ when 3c0nρ{p2Kq ě τ ě

a

8c0nρ logpnKq{K which is a non vac-

uous condition when 9c0nρ ě 4K logpnKq. By taking τ “
a

8c0nρ logpnKq{K, we obtain,
that for all 0 ď R ď 1, if 9c0nρ ě 4K logpnKq then with probability at least 1´ 1{pnKq,

sup
wPBKn8 XRBKn1

ÿ

pk,jqPrKsˆrns

Xk,jwk,j ď R

c

8c0nρ logpnKq

K
.

We apply Lemma 1 for R “ c1rK{n to control (53):

P

»

– sup
ZPCXpZ˚`rBnˆn1 q

〈
V,Z ´ Z˚

〉
ď c2r

g

f

f

e

Kρ

n
log

˜

2eKn

r c1rKn s

¸

fi

fl ě 1´

˜

r c1rKn s

2eKn

¸r
c1rK
n

s

when rc1rK{ns ě 2eKn expp´p9{32qnρ{Kq.
Using the same methodology, we can prove exactly the same result for the quantity

sup
ZPCXpZ˚`rBnˆn1 q

〈
UUJΨJ, Z ´ Z˚

〉
.

We can also use the same method to upper bound supZPCXpZ˚`rBnˆn1 q

〈
UUJΨJ, pZ´Z˚qUUJ

〉
,

we simply have to check that the weights vector w1 “ pw1kj : k P rKs, j P rnsq where

w1kj “ p1{lkq
ř

iPCkrpZ ´Z
˚qUUJsij is also in BKn

8 X pc1rK{nqB
Kn
1 for any Z P C such that

}Z ´ Z˚}1 ď r. This is indeed the case, since we have for all i P rns, k1 P rKs and j P Ck1 ,
rpZ ´ Z˚qUUJsij “

řn
p“1pZ ´ Z˚qippUU

Jqpj “
ř

pPCk1
pZ ´ Z˚qip{lk1 which is therefore

constant for all elements in j P Ck1 . Therefore, we have

ÿ

kPrKs

ÿ

jPrns

|w1kj | “
ÿ

kPrKs

ÿ

k1PrKs

ÿ

jPCk1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

lklk1

ÿ

iPCk

ÿ

pPCk1
pZ ´ Z˚qip

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

kPrKs

ÿ

k1PrKs

ÿ

jPCk1

1

lklk1

ÿ

iPCk

ÿ

pPCk1
|pZ ´ Z˚qip| ď }Z ´ Z

˚}1
c1K

n
ď
c1rK

n
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and for all k1 P rKs and j P Ck1 ,

|w1kj | “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

lklk1

ÿ

iPCk

ÿ

pPCk1
pZ ´ Z˚qip

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď }Z ´ Z˚}8 ď 1.

Therefore, w1 P BKn
8 X pc1rK{nqB

Kn
1 and we obtain exactly the same upper bound for the

three terms in (52). This concludes the proof of Proposition 2.

Proof of Proposition 3: control of the S2pZq term from Fei and Chen (2019b)

In this section, we prove Proposition 3. We follow the proof from Fei and Chen (2019b)
but we only consider the “dense case” which is when nδν ě log n – we recall that ν “
maxp2p ´ 1, 1 ´ 2qq. For a similar uniform control of S2pZq in the “sparse case ”, when
c0 ď nδν ď log n for some absolute constant c0, we refer the reader to Fei and Chen (2019b).

For all Z P C, we have S2pZq “
〈
PKpZ ´ Z˚q,W

〉
“

〈
PKpZq,W

〉
because, by con-

struction of the projection operator, PKpZ˚q “ 0. Therefore, S2pZq ď
›

›PKpZq
›

›

˚
}W }op

where }¨}˚ denotes the nuclear norm (i.e. the sum of singular values) and }¨}op denotes the
operator norm (i.e. maximum of the singular value). In the following Lemma 2, we prove
an upper bound for

›

›PKpZq
›

›

˚
and then, we will obtain a high-probability upper bound onto

}W }op.

Lemma 2 For all Z P C X pZ˚ ` rBnˆn
1 q, we have

›

›PKpZq
›

›

˚
“ TrpPKpZqq ď c1k

n
}Z ´ Z˚}1 ď

c1Kr

n
.

Proof Since Z ľ 0 so it is for pIn´UUJqZpIn´UUJq and so PKpZq “ pIn´UUJqZpIn´
UUJq ľ 0 therefore

›

›PKpZq
›

›

˚
“ TrpPKpZqq. Next, we bound the trace of PKpZq.

Since In´UUJ is a projection operator, it is symmetric and pIn´UUJq2 “ In´UUJ,
moreover, TrpZq “ n “ TrpZ˚q when Z P C so

TrpPKpZqq “ TrpPKpZ ´ Z˚qq “ TrppIn ´ UUJqpZ ´ Z˚qpIn ´ UUJqq
“ TrppIn ´ UUT q2pZ ´ Z˚qq “ TrppIn ´ UUT qpZ ´ Z˚qq

“ TrpZq ´ TrpZ˚q ` TrpUUT pZ˚ ´ Zqq “
ÿ

i,j

pUUT qijpZ
˚ ´ Zqij

“
ÿ

kPrKs

ÿ

i,jPCk

1

lk
pZ˚ ´ Zqij

(i)
“

ÿ

kPrKs

1

lk

ÿ

i,jPCk

|pZ˚ ´ Zqij |

ď
c1K

n

ÿ

kPrKs

ÿ

i,jPCk

|pZ˚ ´ Zqij | ď
c1K

n
}Z ´ Z˚}1

where we used in (i) that for i and j in a same community, we have Z˚ij “ 1 and Zij P r0, 1s,

thus pZ˚ ´ Zqij “ |pZ
˚ ´ Zqij |. Finally, when Z is in the localized set C X pZ˚ ` rBnˆn

1 q,
we have }Z ´ Z˚}1 ď r which concludes the proof.
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Now, we obtain a high-probability upper bound on }W }op. In the following, we apply
this result in the “dense case” (i.e. nδν ě log n) to get the uniform bound onto S2pZq over
Z P C X pZ˚ ` rBnˆn

1 q.

Lemma 3 (Lemma 4 in Fei and Chen (2019b)) With probability at least 1´expp´δνnq,
}W }op ď 16

?
δνn` 168

a

logpnq.

Proof Let A1 be an independent copy of A and R P Rnˆn be a random symmetric matrix
independent from both A and A1 whose sub-diagonal entries are independent Rademacher
random variables. Using a symmetrization argument (see Chapter 2 in Koltchinskii (2011)
or Chapter 2.3 in van der Vaart and Wellner (1996)), we obtain for W “ A´ EA,

E }W }op “ E
›

›A´ EA1
›

›

op

(i)
ď E

›

›A´A1
›

›

op
(ii)
“ E

›

›pA´A1q ˝R
›

›

op

(iii)
ď 2E }A ˝R}op

where ˝ is the entry-wise matrix multiplication operation, (i) comes from Jensen’s inequality,
(ii) occurs since A´A1 and pA´A1q ˝R are identically distributed and (iii) is the triangle
inequality. Next, we obtain an upper bound onto E }A ˝R}op.

We define the family of independent random variables pξij : 1 ď i ď j ď nq where for
all 1 ď i ď j ď n

ξij “

$

’

’

&

’

’

%

1?
|EAij |

with probability
EAij

2

´ 1?
|EAij |

with probability
EAij

2

0 with probability 1´ EAij .

(54)

We also put bij :“
a

|EAij | for all 1 ď i ď j ď n. It is straightforward to see that
pξijbij : 1 ď i ď j ď nq and pAijRij : 1 ď i ď j ď nq have the same distribution. As
a consequence, }A ˝R}op and }X}op have the same distribution where X P Rnˆn is a
symmetric matrix with Xij “ ξijbij for 1 ď i ď j ď n. An upper bound on E }X}op follow
from the next result due to Bandeira and Van Handel (2016).

Theorem 9 (Corollary 3.6 in Bandeira and Van Handel (2016)) Let ξij , 1 ď i ď
j ď n be independent symmetric random variables with unit variance and pbij , 1 ď i ď j ď
nq be a family of real numbers. Let X P Rnˆn be the random symmetric matrix defined by

Xij “ ξijbij for all 1 ď i ď j ď n. Let σ :“ max1ďiďn

!b

řn
j“1 b

2
ij

)

. Then, for any α ě 3,

E }X}op ď e
2
α

„

2σ ` 14α max
1ďiďjďn

!

}ξijbij}2rα logpnqs

)

a

logpnq



where, for any q ą 0, }¨}q denotes the Lq-norm.

Since pξij : 1 ď i ď j ď nq are independent symmetric such that Varpξijq “ Erξ2
ijs “ 1 we

can apply Lemma 9 to upper bound E }X}op “ E }A ˝R}op. We have }ξijbij}2rα logpnqs ď 1

for any α ě 3 and b2ij “ |EAij | ď δν. It therefore follows from Lemma 9 for α “ 3 that

E }W }op ď 2e
2
3

”

2
?
nδν ` 42

a

logpnq
ı

ď 8
?
nδν ` 168

a

logpnq. (55)
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The final step to prove Lemma 3 is a concentration argument showing that }W }op is
close to its expectation with high-probability. To that end we rely on a general result for
Lipschitz and separately convex functions from Boucheron et al. (2013). We first recall that
a real-valued function f of N variables is said separately convex when for every i “ 1, . . . , N
it is a convex function of the i-th variable if the rest of the variables are fixed.

Theorem 10 (Theorem 6.10 in Boucheron et al. (2013)) Let X be a convex compact
set in R with diameter B. Let X1, ¨ ¨ ¨ , XN be independent random variables taking values
in X . Let f : XN Ñ R be a separately convex and 1-Lipschitz function, w.r.t. the `N2 -norm
(i.e. |fpxq ´ fpyq| ď }x´ y}2 for all x, y P XN ). Then Z “ fpX1, . . . , XN q satisfies, for all
t ą 0, with probability at least 1´ expp´t2{B2q, Z ď ErZs ` t.

We apply Theorem 10 to Z :“ }W }op “ fpAij´EAij , 1 ď i ď j ď nq “ 1?
2
}A´ EA}op

where f is a 1-Lipschitz w.r.t. `N2 -norm for N “ npn´ 1q{2 and separately convex function
and pAij ´ EAij , 1 ď i ď j ď nq is a family of N independent random variables. Moreover,
for each i ě j, pA´ EAqij P r´1´ δp2p´ 1q, 1´ δp2q ´ 1qs, which is a convex compact set
with diameter B “ 2p1` δpp´ qqq ď 4. Therefore, it follows from Theorem 10 that for all
t ą 0, with probability at least 1 ´ expp´t2{16q, }W }op ď E }W }op `

?
2t. In particular,

we finish the proof of Lemma 3 for t “ 4
?
δνn and using the bound from (55).

It follows from Lemma 3 that when nνδ ě log n, }W }op ď 184
?
nδν with probability

at least 1´ expp´δνnq. Using this later result together with Lemma 2 concludes the proof
of Proposition 3.

Appendix C. Proof of Theorem 6 for Angular Synchronization with
additive noise

Here we consider the following model: we observe C “ Z˚ ` σW , where Z˚ “ x˚px˚qJ,

x˚ “ peιθiqni“1 and W P Cnˆn is a complex Wigner matrix (i.e. W “ W
T

, its above-
diagonal entries are complex numbers whose real and imaginary parts are independent
normally distributed random variables with mean zero and variance 1{2, and its diagonal
entries are zero).

Let us first show that Z˚ is the oracle in our approach. That is to show that

Z˚ P argmax
ZPC

〈
EC,Z

〉
(56)

where C :“ tZ P Hn : Z ľ 0,diagpZq “ 1nu.
We recall that the offsets are δij “ θi´ θjr2πs for i, j “ 1, . . . , n. Let γ1, . . . , γn P r0, 2πr

and define xi “ eιγi , i “ 1, . . . , n. We have for all i, j “ 1, . . . , n,

γi ´ γj “ δijr2πs ðñ eιγi ´ eιδijeιγj “ 0 ðñ Z˚ijxj ´ xi ðñ ECijxj ´ xi “ 0

It follows that

argmin
xPCn:|xi|“1@i

#

n
ÿ

i,j“1

|ECijxj ´ xi|2
+

“

!

peιpθi`θ0qqni“1 : θ0 P r0, 2πq
)

. (57)
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Let us now rewrite the latter optimization problem as a SDP problem.
Let x P Cn be such that |xi| “ 1 for all i “ 1, . . . , n. We have
n
ÿ

i,j“1

|ECijxj ´ xi|2 “
n
ÿ

i,j“1

pECijxj ´ xiqpECijxj ´ xiq

“

n
ÿ

i,j“1

»

–|ECijxj |
looomooon

“1

2
` |xi|
loomoon

“1

2
´ pECijxj ` ECijxj x̄iq

fi

fl “ 2n2 ´ 2<

˜

n
ÿ

i,j“1

ECijxj x̄i

¸

“ 2n2 ´ 2<
`

xJECx
˘

“ 2n2 ´ xJECx,

where we used in the last inequality that ErCs “ Z˚ “ x˚x˚
J

so that xJECx “ |
〈
x, x˚

〉
|2 P

R. Next, we see that xJECx “
〈
EC,X

〉
where X “ xxJ, hence, minimizing x P Cn Ñ

řn
i,j“1 |ErCsijxj ´ xi|

2 over all x P Cn such that |xi| “ 1 boils down to maximizing X P

Cnˆn Ñ trpErCsXq P R over the set tX “ xxJ : x P Cn, |xi| “ 1@iu “ tX P Hn : X ľ

0,diagpXq “ 1n, rankpXq “ 1u where Hn is the set of hermitian matrices of size n ˆ n.
Then, it follows from (57) that

argmax
XPHn:Xľ0,diagpXq“1n,rankpXq“1

〈
EC,X

〉
“ tZ˚u

because for all θ0 P r0, 2πq, pe
ιpθi`θ0qqni“1pe

ιpθi`θ0qqni“1

J
“ Z˚. The latter inequality is almost

the result that we want to prove in (56); it only remains to show that the rank one constraint
may be dropped. We use the same approach as the one we used to show (18).

First, one can easily check that the following inclusion holds true

C Ă C1 :“ tZ P Cnˆn : |Zij | ď 1,@i, j P rnsu.

Second, the objective function Z Ñ <p
〈
EC,Z

〉
q is linear (w.r.t. to real coefficient), hence,

maximizing it over the convex set C1 yields a solution at an extreme point of C1, that is in
the set of matrices Z P Cnˆn such that |Zij | “ 1 for all pi, jq. Let X “ peιβij qi,jďn with
0 ď βij ă 2π be an extreme point of C1. We have

<
`〈
EC,X

〉˘
“ <

˜

n
ÿ

i,j“1

ECijXij

¸

“ <

˜

n
ÿ

i,j“1

eιδije´ιβij

¸

“

n
ÿ

i,j“1

cospδij ´ βijq ď n2

and the maximum is achieved when βij “ δijr2πs for all pi, jq, that is when X “ Z˚. Since
Z˚ P C Ă C1, then Z˚ is the unique maximizer of Z Ñ

〈
EC,Z

〉
over C. Therefore (56) holds

and so Z˚ is also the oracle in this model.

Curvature of the objective function

Let Z P C. We can write Z “ pxije
ιβij qi,j“1,...,n, with 0 ď xij ď 1 (we recall that C Ă C1

defined above) and βij P r0, 2πq. On one side, we have〈
EC,Z˚ ´ Z

〉
“ <

`〈
EC,Z˚ ´ Z

〉˘
“ <

˜

n
ÿ

i,j“1

ECijpZ˚ ´ Zqij

¸

“ <

˜

n
ÿ

i,j“1

eιδij pe´ιδij ´ xije
´ιβij q

¸

“ <

˜

n
ÿ

i,j“1

p1´ xije
ιpδij´βijqq

¸

“

n
ÿ

i,j“1

p1´ xij cospδij ´ βijqq.
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On the other side, we have

}Z˚ ´ Z}22 “
n
ÿ

i,j“1

|pZ˚ ´ Zqij |
2 “

n
ÿ

i,j“1

|eιδij ´ xije
ιβij |2 “

n
ÿ

i,j“1

|1´ xije
ιp´δij`βijq|2

“

n
ÿ

i,j“1

p1´ xij cospβij ´ δijqq
2 ` x2

ij sin2pβij ´ δijq “
n
ÿ

i,j“1

p1´ 2xij cospβij ´ δijq ` x
2
ijq

ď 2
n
ÿ

i,j“1

p1´ xij cospβij ´ δijqq “ 2
〈
EC,Z˚ ´ Z

〉
where we used in the last but one inequality that 0 ď xij ď 1.

We conclude that the excess risk satisfies the following curvature: for all Z P C,〈
EC,Z˚ ´ Z

〉
ě

1

2
}X˚ ´X}22 . (58)

That is Assumption 1 holds with G : M P Cnˆn Ñ p1{2q }M}22.

Three upper bounds on the fixed point r˚Gp∆q in the angular group
synchronization model with additive noise

According to our methodology (associated with Corollary 1), we need to calculate the
following fixed point: let ∆ P p0, 1q, and consider

r˚Gp∆q “ inf

#

r ą 0 : P

˜

sup
ZPC:GpZ˚´Zqďr

〈
C ´ EC,Z ´ Z˚

〉
ď r{2

¸

ě 1´∆

+

“ inf

"

r ą 0 : P
ˆ

sup
ZPCr

〈
σW,Z ´ Z˚

〉
ď r{2

˙

ě 1´∆

*

where Cr :“
 

Z P C : }Z ´ Z˚}2 ď
?

2r
(

.
For pedagogical purposes, we show how to perform this computation via three different

means, yielding three different results. We obtain the following upper bounds

r˚Gpexpp´n2{2qq ď 32σ2n2, r˚Gpexpp´n{2qq ď 36KC
Gσn

3{2 and r˚Gp5 expp´n{2qq ď 2p20σq2n.

Each of the three bounds follows from a different strategy. The first one is based on the
inclusion Cr Ă Z˚`

?
2rBnˆn

2 , the second one on Cr Ă C and is therefore the approach that
we called “global”, and the last one follows from the strategy used in Fei and Chen (2019b)
that we already used for the signed clustering problem.

First upper bound on the fixed point r˚G using Cr Ă Z˚ `
?

2rBnˆn
2

In this section, we use the following inclusion to obtain the result

Cr Ă Z˚ `
?

2rBnˆn
2 , (59)

where Bnˆn
2 is the Euclidean ball in Rnˆn. We have

sup
ZPC:}Z´Z˚}2ď

?
2r

〈
σW,Z ´ Z˚

〉
ď σ sup

ZP
?

2rBnˆn2

〈
W,Z

〉
“ σ

?
2r }W }2 .
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Next, we use Borell’s concentration inequality for Gaussian processes Ledoux (2001):
for all u ą 0, with probability at least 1´ expp´u2{2q, we have that

}W }2 ď E }W }2 ` sup
ZPBnˆn2

b

E
〈
W,Z

〉2
u ď n` u.

As a consequence, for ∆ “ expp´n2{2q and r “ 32σ2n2, we have, with probability at least
1´∆,

sup
ZPC:}Z´Z˚}2ď

?
2r

〈
σW,Z ´ Z˚

〉
ď 2nσ

?
2r ď r{2.

Hence, one has r˚Gp∆q ď 32σ2n2.
We apply Corollary 1 to get that with probability at least 1´ expp´n2{2q

1

2

›

›

›
Z̃ ´ Z˚

›

›

›

2

2
ď

〈
EC,Z˚ ´ Z̃

〉
ď r˚Gpexpp´n2{2qq ď 32σ2n2. (60)

Next, we know that the oracle Z˚ is the rank-one matrix x˚x˚
J

which has n as its
largest eigenvalue and associated eigenspace tλz˚ : λ P Cu. In particular, Z˚ has a spectral
gap g “ n. Let x̄ P Cn be a top eigenvector of Z̃ with norm }x̄}2 “

?
n. It follows from

Davis-Kahan Theorem (see, for example, Theorem 4.5.5 in Vershynin (2018) or Theorem 4
in Vu (2010)) that there exists an universal constant c0 ą 0 such that

min
zPC:|z|“1

›

›

›

›

x̄
?
n
´ z

x˚
?
n

›

›

›

›

2

ď
c0

g

›

›

›
Z̃ ´ Z˚

›

›

›

2
,

where g “ n is the spectral gap of Z˚. Using (61), we conclude that, with probability at
least 1´ expp´n2{2q, it holds true that

min
zPC:|z|“1

}x̄´ zx˚}2 ď 8c0σ
?
n.

Second upper bound on the fixed point r˚G: the global approach

One may wonder what type of result we can get for the angular group synchronization
problem with additive noise using the global approach. It is the aim of this last section to
answer this question.

As for the community detection problem we will use Grothendieck inequality for the
global approach. As in (59), the global approach is also using an inclusion of the localized
set Cr, but unlike (59), we just drop off the localization: we are simply using Cr Ă C. We
have that

sup
ZPC:}Z´Z˚}2ď

?
2r

〈
σW,Z ´ Z˚

〉
ď σ sup

ZPC

〈
W,Z ´ Z˚

〉
ď 2KC

Gσ }W }cut ,

where we used Grothendieck’s inequality as in (42) but in the complex case (KC
G denoting

Grothendieck’s constant in the complex case). Here the cut norm in the complex case is
defined as

}W }cut “ sup
si,tjPC:|si|“|tj |“1

ˇ

ˇ

ˇ

ÿ

i,j

Wijsitj

ˇ

ˇ

ˇ
.
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We therefore end up with the computation of the cut norm of the noise as in Guédon and
Vershynin (2016) for the community detection problem.

Here the noise being Gaussian, the cut norm }W }cut is the supremum of a Gaussian
process for which we can use Borell’s concentration inequality (see Ledoux (2001)) to get
for all u ą 0, with probability at least 1´ expp´u2{2q,

}W }cut ď E }W }cut ` u sup
si,tjPC:|si|“|tj |“1

d

E
ˇ

ˇ

ˇ

ÿ

i,j

Wijsitj

ˇ

ˇ

ˇ

2
ď }W }cut ` un.

Next, we use Slepian’s lemma (see Chapter 3 from Ledoux and Talagrand (1991)) to handle
the complexity term E }W }cut. First, we need to upper bound the canonical metric associ-
ated with the Gaussian process: for every si, s

1
i, tj , t

1
j P C : |si| “ |tj | “ |s

1
i| “ |t

1
j | “ 1 we

have

E
ˇ

ˇ

ˇ

ÿ

i,j

Wijsitj ´
ÿ

i,j

Wijs
1
it
1
j

ˇ

ˇ

ˇ

2
“

ÿ

i,j

|sitj ´ s
1
it
1
j |

2

“
ÿ

i,j

|siptj ´ t
1
jq ´ ps

1
i ´ siqt

1
j |

2 ď 2n

˜

ÿ

j

|tj ´ t
1
j |

2 `
ÿ

i

|si ´ s
1
i|

2

¸

“ 2nE
ˇ

ˇ

ˇ

ÿ

i

gipsi ´ s
1
iq `

ÿ

j

ηjptj ´ t
1
jq

ˇ

ˇ

ˇ

2
,

where pgiqi, pηjqj are i.i.d. N p0, 1q. It follows from Slepian’s lemma that

E }W }cut ď
?

2nE sup
si,tjPC:|si|“|tj |“1

ˇ

ˇ

ˇ

ÿ

i

gipsi ´ s
1
iq `

ÿ

j

ηjptj ´ t
1
jq

ˇ

ˇ

ˇ
ď 4

?
2nn.

Together with Borell’s inequality above for u “
?
n, we obtain that with probability at least

1´ expp´n{2q, }W }cut ď 9n3{2.
As a consequence, for ∆1 “ expp´n{2q, we have r˚Gp∆

1q ď 36KC
Gσn

3{2. It follows from
Corollary 1 that with probability at least 1´ expp´n{2q

1

2

›

›

›
Z̃ ´ Z˚

›

›

›

2

2
ď

〈
EC,Z˚ ´ Z̃

〉
ď r˚Gpexpp´n{2qq ď 36KC

Gσn
3{2. (61)

and so

min
zPC:|z|“1

}x̄´ zx˚}2 ď c0

b

36KC
Gσn

1{4.

We conclude that the global approach is better than the local approach using the inclu-
sion in (59).

Third upper bound on the fixed point r˚G: end of the proof of Theorem 6

The final approach is based on a decomposition from Fei and Chen (2019b) that we already
used for the signed clustering problem. Here, for the angular group synchronization prob-

lem, the projection operator is simpler since Z˚ is the rank-one matrix x˚x˚
J

and all the
processes are Gaussian processes.
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In order to work with independent random variables, we consider the following matrix
Ψ P Cnˆn

Ψij “

"

Wij if i ď j
0 otherwise,

(62)

where 0 entries are considered as independent Gaussian variables with 0 variance and there-

fore, Ψ has independent Gaussian entries, and satisfies the relation W “ Ψ`Ψ
J

.

Like we did for the signed clustering problem, we decompose the inner product
〈
W,Z´

Z˚
〉

into two parts according to the SVD of Z˚. We know that Z˚ is the rank-one matrix

Z˚ “ xx˚
J

, then v :“ x˚{
?
n is a unit singular vector of Z˚ and we define the following

projection operator

P : M P Cnˆn Ñ vv̄JM `Mvv̄J ´ vv̄JMvv̄J,

and its associated orthogonal projection

PK : M P Cnˆn ÑM ´ PpMq “ pIn ´ vv̄JqMpIn ´ vv̄Jq.

For any Z P Cr :“ C X tZ˚ `
?

2rBnˆn
2 u, we consider the following decomposition as in Fei

and Chen (2019b) 〈
W,Z ´ Z˚

〉
“

〈
PpZ ´ Z˚q,W

〉
looooooooomooooooooon

S1pZq

`
〈
PKpZ ´ Z˚q,W

〉
loooooooooomoooooooooon

S2pZq

.

Next, we upper bound with large probability each of the two last terms uniformly over all
Z P Cr. We start with the S1pZq term: for any Z P Cr, we have

S1pZq “
〈
W,PpZ ´ Z˚q

〉
“

〈
PpW q, Z ´ Z˚

〉
“

〈
vv̄JW,Z ´ Z˚

〉
`
〈
Wvv̄J, Z ´ Z˚

〉
´
〈
vv̄JWvv̄J, Z ´ Z˚

〉
“ 2

〈
vv̄JW,Z ´ Z˚

〉
´
〈
vv̄JWvv̄J, Z ´ Z˚

〉
“ 2

〈
vv̄JΨ, Z ´ Z˚

〉
` 2

〈
vv̄JΨ

J
, Z ´ Z˚

〉
´
〈
vv̄JpΨ`Ψ

J
qvv̄J, Z ´ Z˚

〉
“ 2

〈
vv̄JΨ, Z ´ Z˚

〉
` 2

〈
vv̄JΨ̄J, Z ´ Z˚

〉
´ 2

〈
vv̄JΨvv̄J, Z ´ Z˚

〉
“ 2

〈
vv̄JΨ, Z ´ Z˚

〉
` 2

〈
vv̄JΨ̄J, Z ´ Z˚

〉
´ 2

〈
vv̄JΨ, pZ ´ Z˚qvv̄J

〉
.

Then, bounding separately each of those three terms will lead us to a bound for S1pZq. Let
us show how to bound the first term. Similar arguments can be used to control the other
two terms.

We define V :“ vv̄JΨ, so that Vij “
ř

k viv̄kΨkj “
ř

kďj viv̄kWkj . We want to find

a high-probability upper bound on
〈
V,Z ´ Z˚

〉
. To that end we simply use the inclusion

Cr Ă Z˚ `
?

2rBnˆn
2 to get

sup
ZPCr

〈
V,Z ´ Z˚

〉
ď sup

ZP
?

2rBnˆn2

〈
V,Z

〉
“
?

2r }V }2
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so that

E
„

sup
ZPCr

〈
V,Z ´ Z˚

〉
ď
?

2rE }V }2 ď
?

2r

¨

˝

ÿ

i,j

ÿ

kďj

|vi|
2|vj |

2E|Ψkj |
2

˛

‚

1
2

“
?

2r

˜

1

n

ÿ

j

j

¸1{2

ď
?

2rn.

Moreover, we have

Er|
〈
V,Z ´ Z˚

〉
|2s “ Er|

〈
Ψ, vv̄T pZ ´ Z˚q

〉
|2s “

ÿ

i,j

|pvv̄T pZ ´ Z˚qqij |
2

“
ÿ

i,j

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

k

viv̄kpZ ´ Z
˚qkj

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď
1

n2

ÿ

i,j

ÿ

k

|pZ ´ Z˚qkj |
2 ď

}Z ´ Z˚}22
n

ď
2r

n
.

Now, we apply Borell’s inequality (see, for instance, Theorem 4.1 in Ledoux (2001)
or page 56-57 in Ledoux and Talagrand (1991)): for u “ n, with probability at least
1´ expp´u2{2q,

sup
ZPCr

〈
V,Z ´ Z˚

〉
ď E

„

sup
ZPCr

〈
V,Z ´ Z˚

〉
` sup
ZPCr

b

E
“

|
〈
V,Z ´ Z˚

〉
|2
‰

u

ď
?

2rn`

c

2r

n
u “ 2

?
2rn.

Similar calculus yield to the same upper bounds for the two other terms. Therefore, we
obtain, with probability at least 1´ 3 expp´n2{2q, it holds true that

sup
ZPCr

S1pZq ď 6
?

2rn. (63)

Now, it remains to control the second S2pZq term. For any Z P Cr, we have

S2pZq “
〈
W,PKpZ ´ Z˚q

〉
“

〈
W,PKpZq

〉
ď

›

›PKpZq
›

›

˚
}W }op .

Since Z ľ 0, we have pIn ´ vv̄
JqZpIn ´ vv̄

Jq ľ 0, that is PKpZq ľ 0 and so

›

›PKpZq
›

›

˚
“ TrpPKpZqq piq“ TrpPKpZ ´ Z˚qq “ TrppIn ´ vv̄

JqpZ ´ Z˚qpIn ´ vv̄
Jqq

piiq
“ TrppIn ´ vv̄

JqpZ ´ Z˚qq “ TrpZ ´ Z˚q ´ Trpvv̄JpZ ´ Z˚qq

piiiq
“ Trpvv̄JpZ˚ ´ Zqq “

ÿ

i,j

viv̄jpZ
˚ ´ Zqij ď }v}

2
2 }Z ´ Z

˚}2

“ }Z ´ Z˚}2 ď
?

2r.

where piq is due to the fact that PKpZ˚q “ 0 by construction, piiq holds because pIn´ vv̄
Jq

is Hermitian and pIn ´ vv̄Jq2 “ pIn ´ vv̄Jq and piiiq holds since TrpZq “ TrpZ˚q “ 1 for
any Z P Cr.
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Moreover, it follows from Davidson and Szarek (2001) that, for all u ą 0, with probability
at least 1 ´ 2 expp´u2{2q, }W }op ď 2

?
n ` u. We conclude that with probability at least

1´ 2 expp´2nq, we have
sup
ZPCr

S2pZq ď 4
?

2nr. (64)

It follows from (63) and (64) that with probability at least 1´ 5 expp´n{2q

sup
ZPCr

〈
W,Z ´ Z˚

〉
ď 10

?
2rn.

Then, for ∆ “ 5 expp´n{2q and r “ 2p20σq2n we have, with probability at least 1 ´ ∆,
supZPCr

〈
σW,Z ´ Z˚

〉
ď r{2. Hence, we conclude that r˚Gp∆q ď 2p20σq2n.

Now, we apply Corollary 1 to get that, with probability at least 1´ 5 expp´n{2q

1

2

›

›

›
Z̃ ´ Z˚

›

›

›

2

2
ď 2p20σq2n.

Next, we know that the oracle Z˚ is the rank-one matrix x˚x˚
J

which has n for largest
eigenvalue and associated eigenspace tλz˚ : λ P Cu. In particular, Z˚ has a spectral gap
g “ n. Let x̄ P Cn be a top eigenvector of Z̃ with norm }x̄}2 “

?
n.

It follows from Davis-Kahan Theorem (see, for example, Theorem 4.5.5 in Vershynin
(2018) or Theorem 4 in Vu (2010)) that there exists an universal constant c0 ą 0 such that

min
zPC:|z|“1

›

›

›

›

x̄
?
n
´ z

x˚
?
n

›

›

›

›

2

ď
c0

g

›

›

›
Ẑ ´ Z˚

›

›

›

2
,

where g “ n is the spectral gap of Z˚. Using the previous inequality, we conclude that,
with probability at least 1´ 5 expp´n{2q

min
zPC:|z|“1

}x̄´ zx˚}2 ď 40c0σ.

Appendix D. Solving SDPs in practice

The practical implementation of our approach to the problems of synchronization, signed
clustering and MAX-CUT resorts to solving a convex optimization problem. In the present
section, we describe the various algorithms we used for solving these SDPs.

Pierra’s method

For SDPs with constraints on the entries, we propose a simple modification of the method
initially proposed by Pierra in Pierra (1984). Let f : Rnˆn ÞÑ R be a convex function. Let C
denote a convex set which can be written as the intersection of convex sets C “ S1X¨ ¨ ¨XSJ .
Let us define H “ Rnˆn ˆ ¨ ¨ ¨ ˆ Rnˆn (J times) and let D denote the (diagonal) subspace
of H of vectors of the form pZ, . . . , Zq. In this new formalism, the problem can now be
formulated as a minimization problem over the intersection of two sets only, i.e.

min
ZPH

˜

1

J

J
ÿ

j“1

fpZjq : Z “ pZjq
J
j“1 P pS1 ˆ ¨ ¨ ¨ ˆ SJq X D

¸

.
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Define F pZq “ 1
J

řJ
j“1 fpZjq. The algorithm proposed by Pierra in Pierra (1984) consists

of performing the following iterations

Zp`1 “ ProxIS1ˆ¨¨¨ˆSJ`
1
2
εF pB

pq and Bp`1 “ ProjDpZ
p`1q.

Pierra’s method can be shown to converge in the setting of our finite dimensional experi-
ments using (Martinet, 1972, Chapter V).

Application to community detection

Let us now present the computational details of Pierra’s method for the community detec-
tion problem. We will estimate its membership matrix Z̄ via the following SDP estimator

Ẑ P argmaxZPCxA,Zy,

where C “ tZ P Rnˆn, Z ľ 0, Z ě 0,diagpZq ĺ In,
ř

Zij ď λu and λ “
řn
i,j“1 Z̄ij “

řK
k“1 |Ck|2 denotes the number of nonzero elements in the membership matrix Z̄. The

motivation for this approach stems from the fact that the membership matrix Z̄ is actually
the oracle, i.e., Z˚ “ Z̄ , where Z˚ P argmaxZPCxErAs, Zy. The function f to minimize in
the Pierra algorithm is defined as fpZq “ ´xA,Zy.

Let us denote by S` the set of symmetric positive semi-definite matrices in Rnˆn. The
set C is the intersection of the sets

S1 “ S`; S2 “
 

Z P Rnˆn | Z ě 0
(

; S3 “
 

Z P Rnˆn | diagpZq ĺ I
(

;

and S4 “

#

Z P Rnˆn |
n
ÿ

i,j“1

Zij ď λ

+

.

We now compute for all B “ pBjq
4
j“1 P pRnˆnq4 and j “ 1, . . . , 4 (J “ 4 here)

ProxIS1ˆ¨¨¨ˆS4`
1
2
εF pBqj “ ProxISj`

1
2J
εf pBjq .

We have for J “ 4

ProxISj`
1
2J
εf pBjq “ argminZPSj ´

ε

2J
xA,Zy `

1

2
}Z ´ Bj}

2
F “ PSj

´

Bj `
ε

2J
A
¯

On the other hand, the projections operators PSj , j “ 1, 2, 3, 4 are given by

PS1pZ1q “ U max tΣ, 0uUJ, where Z1 has eigenvalue decomposition Z1 “ UΣUJ,

PS2pZ2q “ max tZ2, 0u , PS3pZ3q “ Z3 ´ diagpZ3q `min t1,diagpZ3qu ,

PS4pZ4q “
λ

ř

ij pZ4qij
Z4.

To sum up, Pierra’s method can be formulated as follows.

For all iterations k in N, compute the SVD of Bk1 `
ε

2¨4A “ UkΣkpUkqJ. Then compute
for all j “ 1, . . . , 4

Bk`1
j “

1

4

˜

Uk max
!

Σk, 0
)

pUkqJ `max
!

Bk
2 `

ε

2 ¨ 4
A, 0

)

` Bk3 `
ε

2 ¨ 4
A´ diagpBk3 `

ε

2 ¨ 4
Aq

`min
!

1,diagpBk3 `
ε

2 ¨ 4
Aq

)

`
λ

ř

ij pB
k
4 `

ε
2¨4Aqij

Bk4 `
ε

2 ¨ 4
A

¸

.
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Application to signed clustering

Let us now turn to the signed clustering problem. We will estimate its membership matrix
Z̄ via the following SDP estimator Ẑ P argmaxZPC xA,Zy, where C “ tZ P Rnˆn : Z ľ

0, Zij P r0, 1s, Zii “ 1, i “ 1, . . . , nu. As in the community detection case, the function f to
minimize in the Pierra algorithm is defined as fpZq “ ´xA,Zy.

Let us denote by S` the set of symmetric positive semi-definite matrices in Rnˆn. The
set C is the intersection of the sets S1 “ S`, S2 “ tZ P Rnˆn | Z P r0, 1snˆnu and S3 “

tZ P Rnˆn | Zii “ 1, i “ 1, . . . , nu .

As before, for j “ 1, . . . , 3

ProxISj`
1
2¨3
εf pBjq “ PSj

´

Bj `
ε

2 ¨ 3
A
¯

and the projection operators PSj , j “ 1, 2, 3 are given by

PS1pZ1q “ U max tΣ, 0uUJ, PS2pZ2q “ min tmax tZ2, 0u , 1u and PS3pZ3q “ Z3´diagpZ3q` I

To sum up, Pierra’s method can be formulated as follows.

At each iteration k, compute the SVD of Bk1 `
ε

2¨3A “ UkΣkpUkqJ. Then compute for
all j “ 1, . . . , 3

Bk`1
j “

1

3

˜

Uk max
!

Σk, 0
)

Uk
t
`min

!

max
!

Bk2 `
ε

2 ¨ 3
A, 0

)

, 1
)

` Bk3 `
ε

2 ¨ 3
A´ diag

´

Bk3 `
ε

2 ¨ 3
A
¯

` I

¸

.

The Burer-Monteiro approach and the Manopt Solver

To solve the MAX-CUT and Angular Synchronization problems, we rely on Manopt,
a freely available Matlab toolbox for optimization on manifolds Boumal et al. (2014).
Manopt runs the Riemannian Trust-Region method on corresponding Burer-Monteiro non-
convex problem with rank bounded by p as follows. The Burer-Monteiro approach consists
of replacing the optimization of a linear function

〈
A,Z

〉
over the convex set Z “ tZ ľ 0 :

ApZq “ bu with the optimization of the quadratic function
〈
AY, Y

〉
over the non-convex

set Y “ tY P Rnˆp : ApY Y T q “ bu.

In the context of the MAX-CUT problem, the Burer-Monteiro approach amounts to
the following steps. Denoting by Z the positive semidefinite matrix Z “ zzT , note that
both the cost function and the constraints lend themselves to be expressed linearly in terms
of Z. Dropping the NP-hard rank-1 constraint on Z, we arrive at the well-known convex
relaxation of MAX-CUT from Goemans and Williamson (1995)

Ẑ P argmin
ZPC

〈
A,Z

〉
,

where C :“ tZ P Rnˆn : Z ľ 0, Zii “ 1,@i “ 1, . . . , nu.
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If a solution Ẑ of this SDP has rank 1, then Ẑ “ z˚z˚
T

for some z˚, which then gives
the optimal cut. Recall that in the general case of higher rank Ẑ,

Ŷ P argmin
XPB

〈
AY, Y

〉
, (65)

where B :“ tY P Rnˆp : diagpY Y T q “ 1u. Note that the constraint diagpY Y T q “ 1 requires
each row of Y to have unit `p2 norm, rendering Y to be a point on the Cartesian product of

n unit spheres Sp´1
2 in Rp, which is a smooth manifold. Also note that the search space of

the SDP is compact, since all Z feasible for the SDP have identical trace equal to n.
If the convex set Z is compact, and m denotes the number of constraints, it holds true

that whenever p satisfies ppp`1q
2 ě m, the two problems share the same global optimum

Barvinok (1995); Burer and Monteiro (2005). Building on pioneering work of Burer and
Monteiro (2005), Boumal et al. (2016) showed that if the set Z is compact and the set Y
is a smooth manifold, then ppp`1q

2 ě m implies that, for almost all cost matrices A, global
optimality is achieved by any Y satisfying a second-order necessary optimality conditions.
Following Boumal et al. (2016), for p “ r

?
2ns, for almost all matrices A, even though

(65) is non-convex, any local optimum Y is a global optimum (and so is Z “ Y Y T ), and
all saddle points have an escape (the Hessian has a negative eigenvalues). Note that for
p ą n{2 the same statement holds true for all A, and was previously established by Boumal
(2015).
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