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Abstract

We design a new algorithm for the Euclidean k-means problem that operates in the local
model of differential privacy. Unlike in the non-private literature, differentially private
algorithms for the k-means objective incur both additive and multiplicative errors. Our
algorithm significantly reduces the additive error while keeping the multiplicative error
the same as in previous state-of-the-art results. Specifically, on a database of size n,
our algorithm guarantees O(1) multiplicative error and ≈ n1/2+a additive error for an
arbitrarily small constant a > 0. All previous algorithms in the local model had additive
error ≈ n2/3+a. Our techniques extend to k-median clustering.

We show that the additive error we obtain is almost optimal in terms of its dependency
on the database size n. Specifically, we give a simple lower bound showing that every
locally-private algorithm for the k-means objective must have additive error at least ≈

√
n.
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1. Introduction

In center-based clustering, we aim to find a “best” set of centers (w.r.t. some cost function),
and then partition the data points into clusters by assigning each data point to its nearest
center. With over 60 years of research, center-based clustering is an intensively-studied key-
problem in unsupervised learning (see Hartigan (1975) for a textbook). One of the most
well-studied problems in this context is the Euclidean k-means problem. In this problem
we are given a set of input points S ⊆ Rd and our goal is to identify a set C of k centers
in Rd, approximately minimizing the sum of squared distances from each input point to its
nearest center. This quantity is referred to as the cost of the centers w.r.t. the set of points,
denoted as costS(C) =

∑
x∈S minc∈C ‖x− c‖2.

The huge applicability of k-means clustering, together with the increasing awareness and
demand for user privacy, motivated a long line of research on privacy preserving k-means
clustering. In this work we study the Euclidean k-means problem in the local model of
differential privacy (LDP). Differentially private algorithms work in two main modalities:
trusted-curator and local. The trusted-curator model assumes a trusted curator that collects
all the personal information and then analyzes it. The privacy guarantee in this model
is that the outcome of the analysis “hides” the information of any single individual, but
this information is not hidden from the trusted curator. In contrast, the local model of
differential privacy, which is the model we consider in this work, does not involve a trusted
curator. In this model, there are n users and an untrusted server, where each user i is
holding a private input item xi (a point in Rd in our case), and the server’s goal is to
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Reference # Rounds Multiplicative Error Additive Error

Nissim and Stemmer (2018) O(k log n) O(k) Õ
(
n2/3+a · k4/3 · d1/3

)
Kaplan and Stemmer (2018) O(1) O(1) Õ

(
n2/3+a · k2 · d1/3

)
This work O(1) O(1) Õ

(
n1/2+a · k ·

√
d
)

Table 1: Locally-private algorithms for k-means in the d-dimensional Euclidean space. Here n is the

number of input points, k is the number of desired centers, d is the dimension, and a > 0 is an arbitrarily

small constant (the constant hiding in the multiplicative error depends on a). We assume that input

points come from the unit ball. For simplicity, we use the Õ notation to hide logarithmic factors in

k, n, d, as well as the dependency on the privacy parameters ε, δ and the failure probability β.

compute some function of the inputs (approximate the k-means objective in our case).
However, in this model, the users do not send their data as is to the server. Instead, every
user randomizes her data locally, and only sends noisy reports to the server, who aggregates
all the reports. Informally, the privacy requirement is that the input of user i has almost no
effect on the distribution on the messages that user i sends to the server. We refer to the
collection of user inputs S = (x1, . . . , xn) as a “distributed database” (as it is not stored in
one location, and every xi is only held locally by user i). This model is used in practice by
large corporations to ensure that private data never reaches their servers in the clear.

As minimizing the k-means objective objective is NP-hard (even without privacy con-
straints), the literature has focused on approximation algorithms, with the current (non-
private) state-of-the-art construction of Ahmadian et al. (2017) achieving a multiplicative
error of 6.357. That is, the algorithm of Ahmadian et al. (2017) identifies a set of k centers
whose cost is no more than 6.357 · OPTS(k), where OPTS(k) denotes the lowest possible
cost. Unlike in the non-private literature, it is known that every differentially private al-
gorithm for approximating the k-means objective must have an additive error, which scales
with the diameter of the input space Kaplan and Stemmer (2018). This is true both in the
local model and in the trusted-curator model, even for computationally unbounded algo-
rithms. Hence, a standard assumption for private k-means is that the input points come
from the d-dimensional ball of radius Λ around the origin B(0,Λ). This is the setting we
consider in this work, where we assume that Λ = 1 in the introduction.

There has been a significant amount of work aimed at constructing differentially private
k-means algorithms that work in the trusted-curator model.1 The current state-of-the-art
construction by Ghazi et al. (2020) obtains an O(1) multiplicative error (which can be made
arbitrarily close to the best non-private error) and poly(log(n), k, d) additive error. That
is, given a set of n input points S ∈ (Rd)n, the algorithm of Ghazi et al. (2020) privately
identifies a set of k centers with cost at most O(1) ·OPTS(k) + poly(log(n), k, d).

On the other hand, for the local model of differential privacy, only two constructions are
available (with provable utility guarantees). The first construction, by Nissim and Stemmer

1. Blum et al. (2005); Nissim et al. (2007); Feldman et al. (2009); McSherry (2010); Gupta et al. (2010);
Mohan et al. (2012); Wang et al. (2015); Nock et al. (2016); Su et al. (2016); Nissim et al. (2016);
Feldman et al. (2017); Balcan et al. (2017); Nissim and Stemmer (2018); Huang and Liu (2018); Kaplan
and Stemmer (2018); Shechner et al. (2020); Ghazi et al. (2020); Cohen et al. (2021)
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(2018), obtains O(k) multiplicative error and ≈ n2/3 additive error.2 In addition to the
relatively large multiplicative and additive errors, another downside of the algorithm of
Nissim and Stemmer (2018) is that it requires O(k · log(n)) rounds of interaction between
the users and the untrusted server. Following the work of Nissim and Stemmer (2018), an
improved locally-private k-means algorithm was presented by Kaplan and Stemmer (2018),
which requires only O(1) rounds of interaction and guarantees a multiplicative error of
O(1) and an additive error of ≈ n2/3. That is, the algorithm of Kaplan and Stemmer (2018)
reduced the number of interaction rounds while at the same time reducing the multiplicative
error to a constant. However, the additive error still remained large. In this work we reduce
the additive error to ≈

√
n while keeping all other complexities the same, i.e., with O(1)

rounds of interaction and with O(1) multiplicative error.3

We remark that additive error of
√
n is what one would expect in the local model of

differential privacy, as this turned out to be the correct dependency of the error in n for
many other problems, including the heavy-hitters problem, median estimations, answering
counting queries, and more. Indeed, in Section 5 we show that every locally-private algo-
rithm for the k-means must have additive error Ω(

√
n). Hence, our positive result is almost

optimal in terms of the dependency of the additive error in the database size n.

1.1 Existing Techniques

Before presenting the new ideas of this work, we need to understand the reasons for
why the previous results only achieved an additive error of ≈ n2/3. To that end, we
give here an informal overview of the construction of Kaplan and Stemmer (2018). Let
S = (x1, . . . , xn) ∈ (Rd)n be a (distributed) database. At a high level, the algorithm of
Kaplan and Stemmer (2018) can be summarized as follows:

1. Privately identify a set of candidate centers Y ⊆ Rd that contains a subset
Y ∗ ⊆ Y of size k with low cost, say costS(Y ∗) ≤ O(1) ·OPTS(k) + Γ for some
error parameter Γ.

2. For every y ∈ Y , let #S(y) denote the number of input points xi ∈ S such that
y is their nearest candidate center, that is

#S(y) = |{x ∈ S : y = argminy′∈Y ‖x− y′‖}|,

and let #̂S(y) be a noisy estimation of #S(y), satisfying LDP.

3. Post-process the set of candidate centers and the noisy counts to identify a set
C of k centers that approximately minimizes

costY,#̂(C) =
∑

y∈Y
#̂S(y) ·min

c∈C
·‖y − c‖2.

Figure 1: High level overview of the construction of Kaplan and Stemmer (2018).

2. The error bounds stated throughout the introduction are simplified; see Table 1 for more details.

3. Throughout the introduction, we write ≈
√
n and ≈ n2/3 to mean O(n1/2+a) and O(n2/3+a), respectively.
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Step 2 is done using standard LDP counting tools (to be surveyed in Section 2). Step 1
is more involved, and we will elaborate on it later. For now, it suffices to say that for any√
n . Γ . n, there is an LDP algorithm that is capable of identifying a set Y of size |Y | ≈

n/Γ that contains a subset of k centers Y ∗ ⊆ Y such that costS(Y ∗) . O(1) ·OPTS(k) + Γ.
The analysis then goes by arguing that for every set of k centers D we have that

costY,#̂(D) ≈ costY,#(D) ≈ costS(D),

where costY,#(D) is the same as costY,#̂(D) but with the “true” counts #S(y) instead of

the estimated counts #̂S(y). This means that the set C computed in Step 3 also has a low
k-means cost w.r.t. the input points S, and is hence a good output. The main question is
how tight are these connections. Using the fact that there is a subset Y ∗ ⊆ Y with low
k-means cost w.r.t. S, one can show that the connection costY,#(D) ≈ costS(D) holds,
informally, up to an additive error of O(Γ).

The difficulty lies in the connection costY,#̂(D) ≈ costY,#(D). As we mentioned, it is

known that estimating counts under LDP generally incurs an additive error of Θ(
√
n) (ig-

noring the dependency on all other parameters). As a result, for every y ∈ Y the estimation

error
∣∣∣#̂S(y)−#S(y)

∣∣∣ might be as big as
√
n. Moreover, when comparing costY,#̂(D) to

costY,#(D), the different noises “add up”. To illustrate this point, let D be a possible set
of centers, and observe that

costY,#̂(D) =
∑
y∈Y

#̂S(y) ·min
d∈D
‖y − d‖2

.
∑
y∈Y

(
#S(y) +

√
n
)
·min
d∈D
‖y − d‖2

≤ costY,#(D) + |Y | ·
√
n. (1)

Actually, it can be shown that the additive error only increases proportionally to
√
|Y | · n,

because of noise cancellations (as the sum of |Y | independent noises only scales with
√
|Y |).

In any case, at least with this type of an analysis, the error in the connection costY,#̂(D) ≈
costY,#(D) scales with

√
|Y | · n. Recall that the error in the other connection costY,#(D) ≈

costS(D) scales with Γ ≈ n
|Y | . That is, the error in one of the two connections grows with

|Y |, and the error in the second connection decreases with |Y |. These two requirements

balance at |Y | ≈ n1/3, which results in an additive error of
√
n1/3 · n = n/n1/3 = n2/3. In a

nutshell, this is the main reason for the large additive error in the construction of Kaplan
and Stemmer (2018). The construction of Nissim and Stemmer (2018) suffered from similar
issues (although their algorithm is different).

1.2 Our Contributions

The takeaway from the above discussion is that in order to obtain an algorithm with small
additive error, for every y ∈ Y , it suffices to ensure that #̂S(y) approximates #S(y) to
within a constant multiplicative factor. Indeed, in such a case Inequality (1) would be
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replaced with

costY,#̂(D) =
∑
y∈Y

#̂S(y) ·min
d∈D
‖y − d‖2

≤
∑
y∈Y

O(1) ·#S(y) ·min
d∈D
‖y − d‖2

= O(1) · costY,#(D),

which is acceptable (since we are aiming for a construction with a constant multiplicative
error anyways). Observe that, as our noisy estimations are accurate to within an additive
error of ≈

√
n, for every y ∈ Y such that #S(y) &

√
n we already have that #̂S(y)

approximates #S(y) to within a constant multiplicative factor. However, this is not the
case for candidate centers y ∈ Y such that #S(y) �

√
n, and there could be many such

candidates.
To summarize our discussion so far, we would like to identify a set Y of candidate centers

that satisfies the following two conditions.

Condition 1: ∃Y ∗ ⊆ Y of size k such that

costS(Y ∗) . O(1) ·OPTS(k) +
√
n.

Condition 2: ∀y ∈ Y we have #S(y) &
√
n.

While the set of candidate centers Y computed in the previous works of Nissim and Stemmer
(2018); Kaplan and Stemmer (2018) is guaranteed to satisfy the first condition above, we
do not have any guarantee w.r.t. the second condition.

First Attempt. One might try to achieve the second condition above by simply deleting
every y ∈ Y such that #̂S(y) .

√
n. This would indeed mean that, after the deletions, for

every y ∈ Y we have that #S(y) is at least
√
n. However, this might break condition 1.

To see how this could happen, suppose that k = d = 2, and consider a collection of points
p1, . . . , p√n around the point (1, 0), where every two points pi, pj are at pairwise distance
≈ ρ (infinitely small), and all of them are within distance ≈ ρ to the point (1, 0). Now
consider a database containing (n−n3/4) copies of the point (0, 0), and n1/4 copies of every
pi (so that S is of size n). Now suppose that Y = {(0, 0), (0, 1), p1, . . . , p√n}. Since our count

estimations are only accurate up to an error of
√
n, we will have that #̂S(0, 0) ≈ n− n3/4,

and that #̂S(y) ≈ 0 for every other candidate center in Y . Hence, if we were to delete every
y ∈ Y with a small estimated count, then we would be left only with the point (0, 0), that
misses the cluster around (0, 1), and hence costS(Y ) & n3/4, even though OPTS(k) ≈ 0.

Resolution. To overcome this challenge, we revisit the way in which the set of candidate
centers Y is constructed. Recall that the construction of Kaplan and Stemmer (2018)
(described in Figure 1) is oblivious to the way in which the set of candidate centers Y is
constructed (the only requirement is that Y contains a subset Y ∗ with low k-means cost).
For our new construction, we will need to identify additional properties of these candidate
centers, that are specific to the way in which they are constructed.
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In more details, the set of candidate centers Y is constructed in log(n) iterations, where
during the ith iteration we identify “large” subsets of input points (at least &

√
n points)

that can be enclosed in a ball of radius r = 2−i, and add to Y a (privacy preserving)
estimation for the average of every such subset of clustered input points. As the previous
works of Nissim and Stemmer (2018); Kaplan and Stemmer (2018) showed, the set Y
constructed in this process contains (w.h.p.) a subset of k centers with low k-means cost.
Informally, the additional property that we will leverage is that for every candidate center
y that is constructed during the iteration with parameter r there are &

√
n input points

within distance . r to y, which is true by the way in which the candidate centers are
constructed.

We will say that such a candidate center y was created for the radius r. Moreover, we will
say that an input point x ∈ S created y, if x was one of the points that y was computed as
their noisy average. So every candidate center has “a lot” (&

√
n) input points who created

it. Observe that this still does not guarantee that the resulting set Y is such that every
y ∈ Y has “a lot” of neighbors in S, which is what we really wanted. This can happen, e.g.,
if some (or all) of the points who created the candidate center y have a different candidate
center that is closer to them.

To overcome this issue, we assign input points to candidate centers in a different way
– not by assigning every input point to its nearest candidate center. Informally, when
assigning an input point x ∈ S to a candidate center we give a slight preference to the
candidate centers that x created. We then estimate the weight of every candidate center
y ∈ Y according to this new assignment (where the weight of a candidate center is the
number of input points assigned to it). We show that these new weights still allow us to
estimate the cost of every set of centers w.r.t. the input points. In addition, with these new
weights, we show that it is possible to delete every candidate center whose weight is lower
than ≈

√
n. While this deletion step might delete many centers from Y , and in particular,

might even delete the best k centers from Y , we show that for every deleted candidate
center y there is a sequence of alternative candidate centers y1, y2, . . . , yw such that each of
them could be a “good substitute” for y and such that at least one of them is not deleted
from Y . We obtain the following theorem (the details are given in Sections 3 and 4; see
Theorem 4.11 for the formal statement).

Theorem 1.1 (informal) There exists an LDP algorithm such that the following holds.
When executed on a (distributed) database S containing n points in the d-dimensional unit
ball, the algorithm returns a set K of k centers such that with high probability we have

costS(K) ≤ O(1) ·OPTS(k) + Õ
(
k ·
√
d · n0.5+a

)
,

where a > 0 is an arbitrarily small constant (the constant hiding in the multiplicative error
depends on a).

We remark that all of our techniques extend to k-median clustering (this will be made
precise in the technical sections). In Section 5 we show that the additive error achieved
by our construction is almost optimal. Specifically, we present a lower bound showing
that every LDP algorithm for the k-means must have additive error Ω(

√
n). This lower

bound follows from a simple reduction from a task (related to) counting bits to the task of

6



Locally Private k-Means Clustering

approximating the k-means objective of the data, together with known lower bounds for
counting bits under LDP. We obtain the following theorem (see Theorem 5.3 for the formal
statement).

Theorem 1.2 (informal) Every LDP algorithm for approximating the k-means objective
of a (distributed) database of size n must have additive error Ω(

√
n).

1.3 Followup Work

In this work, we design a new locally-private algorithm for the Euclidean k-means and k-
median problems. Our algorithms require a constant number of interaction rounds between
the users and the untrusted server, and guarantee O(1) multiplicative error and ≈ n1/2+a

additive error for an arbitrarily small constant a > 0. Following our work, Chang et al.
(2021) presented a different algorithm that uses only a single round of interaction and
obtains improved multiplicative and additive error guarantees. In particular, the algorithm
of Chang et al. (2021) obtains additive error Õ (

√
n) rather than O

(
n1/2+a

)
as in our result.

2. Preliminaries

In k-means clustering we aim to partition n points into k clusters in which each point x
belongs to the cluster whose mean is closest to x. We will also consider the k-median
clustering objective, where we aim to place centroids at the median of every cluster (rather
than the mean). Formally, for a set of points S ∈ (Rd)n and a set of centers C ⊆ Rd, the
k-means cost of C w.r.t. the points S is defined as

cost2
S(C) =

∑
x∈S

min
c∈C
‖x− c‖2,

and the k-median cost is defined as

cost1
S(C) =

∑
x∈S

min
c∈C
‖x− c‖.

For p ∈ {1, 2} and for a weighted set S = {(x1, α1), . . . , (xn, αn)} ∈ (Rd ×R)n, the weighted
cost is

costpS(C) =
∑

(x,α)∈S

α ·min
c∈C
‖x− c‖p.

We use OPTp
S(k) to denote the lowest possible cost of k centers w.r.t. S. That is,

OPTp
S(k) = min

C⊆Rd, |C|=k
{costpS(C)}.

2.1 Local Differential Privacy

The local model of differential privacy was formally defined by Dwork et al. (2006b) and
Kasiviswanathan et al. (2011). We give here the formulation presented by Vadhan (2016).
Consider n parties P1, . . . , Pn, where each party is holding a data item xi. We denote
S = (x1, . . . , xn) and refer to S as a distributed database. A protocol proceeds in a sequence
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of rounds until all (honest) parties terminate. Informally, in each round, each party selects
a message to be broadcast based on its input, internal coin tosses, and all messages received
in previous rounds. The output of the protocol is specified by a deterministic function
of the transcript of messages exchanged. For some j ∈ [n], we consider an adversary
controlling all parties other than Pj . Given a particular adversary strategy A, we write
ViewA((A ↔ (P1, . . . , Pn))(S)) for the random variable that includes everything that A
sees when participating in the protocol (P1, . . . , Pn) on input S = (x1, . . . , xn).

Definition 2.1 (Dwork et al. (2006b); Kasiviswanathan et al. (2011); Beimel
et al. (2008); Vadhan (2016)) A protocol P = (P1, . . . , Pn) satisfies (ε, δ)-local differen-
tial privacy (LDP) if, for every j ∈ [n], for every adversary A controlling all parties other
than Pj, for every two datasets S, S′ that differ on Pj’s input (and are equal otherwise), the
following holds for every set T :

Pr[ViewA((A↔ (P1, . . . , Pn))(S)) ∈ T ] ≤ eε · Pr[ViewA((A↔ (P1, . . . , Pn))(S′)) ∈ T ] + δ.

As is standard in the literature on local differential privacy, we will consider protocols
in which there is a unique player, called the server, which has no inputs. All other players
are called users. Typically, users do not communicate with other users directly, only with
the server.

2.1.1 Counting Queries and Histograms

For a database S = (x1, . . . , xn) ∈ Xn and a domain element x ∈ X, we use fS(x) to denote
the multiplicity of x in S, i.e., fS(x) = |{xi ∈ S : xi = x}|. One of the most basic tasks
in the local model of differential privacy is computing histograms, in which the goal is to
estimate fS(x) for every domain element x.

Theorem 2.2 (Hsu et al. (2012); Bassily and Smith (2015); Bassily et al. (2017);
Bun et al. (2018)) Fix β, ε ≤ 1. There exists a non-interactive (ε, 0)-LDP protocol that
operates on a (distributed) database S ∈ Xn for some finite set X, and returns a mapping
f̂ : X → R such that the following holds. For every choice of x ∈ X, with probability at
least 1− β, we have that

∣∣∣f̂(x)− fS(x)
∣∣∣ ≤ 3

ε
·

√
n · log

(
4

β

)
.

2.1.2 Composition and Post-Processing

We will later present algorithms (or protocols) that instantiate several differentially private
algorithms (or protocols). We will use the following theorems.

Theorem 1 (Dwork et al. (2006b)) Let Π be an (ε, δ)-LDP protocol, and let Π′ be a
protocol that invokes Π and output an arbitrary function of its output. Then Π′ is (ε, δ)-
LDP.

Theorem 2 (Dwork et al. (2006a, 2010)) Let Π be a protocol that consists of k (adap-
tive) executions of (ε, δ)-LDP protocols. Then Π is (kε, kδ)-LDP.

8
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We remark that stronger composition theorems exist (in terms of the dependency of
the resulting privacy guarantees in k), and refer the reader to Dwork et al. (2010) for more
details.

3. Candidates with Additional Properties

As we explained in the introduction, the first step in our construction is to privately identify
a set Y of candidate centers. Our construction makes use of an LDP tool for this task, called
GoodCenters. This tool, in its original form, was presented by Nissim et al. (2016) for the
trusted-curator model, and was refined and extended to the local model by Nissim and
Stemmer (2018). At a high level, algorithm GoodCenters takes a parameter r and works
by hashing input points using a locality sensitive hash function, that aims to maximize
the probability of a collision for “close” items (within distance ≤ r), while minimizing the
probability of collision for “far” items (at distance � r). If there is a ball of radius r that
encloses “a lot” (&

√
n) of input points, then we expect that “a lot” of them will be hashed

into the same hash value, which would allow us to isolate them and estimate their average
with small error.

We identify additional properties of algorithm GoodCenters, which will be useful in the
following section. Our contribution here is mostly conceptual – in identifying the necessary
properties and in showing that they are achieved by the algorithm. Most of the technical
details in the construction and in the analysis of GoodCenters have already appeared in
the works of Nissim and Stemmer (2018); Kaplan and Stemmer (2018). Therefore, here we
only state the properties of the algorithm, and present the formal details in the appendix.
Our modification to GoodCenters is captured by Item 1 in the following theorem.

Theorem 3.1 (Algorithm GoodCenters Nissim et al. (2016); Nissim and Stemmer
(2018); Kaplan and Stemmer (2018)) For every two constants a > b > 0 there ex-
ists a constant c = c(a, b) such that the following holds. Let β, ε, δ, n, d,Λ, r be such that

Λ/r ≤ poly(n) and such that t ≥ O
(
n0.5+a+b·

√
d

ε log( 1
β ) log

(
dn
βδ

))
. Algorithm GoodCenters

satisfies (ε, δ)-LDP. Furthermore, let S = (x1, . . . , xn) be a distributed database where ev-
ery xi is a point in the d-dimensional ball B(0,Λ), and let GoodCenters be executed on
S with parameters r, t, β, ε, δ. Denote M = 4na ln( 1

β ). The algorithm outputs a partition
I1, . . . , IM ⊆ [n], hash functions h1, . . . , hM , lists of hash values L1, . . . , LM , and sets of
centers Y1, . . . , YM , where for every m ∈ [M ] and u ∈ Lm the set Ym contains a center
ŷm,u. In addition,

1. With probability at least 1− β, for every m ∈ [M ] and every u ∈ Lm we have∣∣∣∣∣∣
i ∈ Im :

hm(xi) = u
and

‖xi − ŷm,u‖ ≤ 5cr


∣∣∣∣∣∣ ≥ t · n−b

16M
.

2. Denote Y =
⋃
m∈[M ] Ym. Then

|Y | ≤ 512 · n1+a+b

t
ln

(
1

β

)
.
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3. Let P ⊆ S be a set of t points that can be enclosed in a ball of radius r. With probability
at least 1− β there exists ŷ ∈ Y such that the ball of radius 5cr around ŷ contains all
of P .

4. Algorithm WeightedCenters

In this section we present our main construction – algorithm WeightedCenters. In order
to identify the set Y of candidate centers, the algorithm begins by executing algorithm
GoodCenters on the (distributed) database S multiple times with exponentially growing
choices for the parameter r. Recall that an execution of GoodCenters with parameter
r returns a partition Ir1 , . . . , I

r
M ⊆ [n], hash functions hr1, . . . , h

r
M , lists of hash values

Lr1, . . . , L
r
M , and sets of centers Y r

1 , . . . , Y
r
M , where for every m ∈ [M ] and u ∈ Lrm the

set Y r
m contains a center ŷrm,u. By the properties of algorithm GoodCenters, with high

probability, for every m ∈ [M ] and every u ∈ Lrm we have that∣∣∣∣∣∣
i ∈ Irm :

hrm(xi) = u
and

‖xi − ŷrm,u‖ ≤ 5cr


∣∣∣∣∣∣ ≥ t

16M
· n−b.

We introduce the following notation.

Notation 4.1 Given the outcomes of GoodCenters (with parameter r), we say that a point
xi ∈ S (or, alternatively, that the ith user) creates a center ŷrm,u ∈ Y r

m if i ∈ Irm and
hrm(xi) = u and ‖xi − ŷrm,u‖ ≤ 5cr. Observe that a point xi ∈ S creates at most one center
in Y r = Y r

1 ∪· · ·∪Y r
M . If xi ∈ S creates a center in Y r, then we say that xi creates a center

for the radius r.

Remark 4.2 Algorithm GoodCenters constructs the centers in Y r by averaging (with noise)
subsets of input points. Informally, we think of the set of points who “create” a center ŷ ∈ Y r

as the set of points s.t. ŷ was computed as their (noisy) average. The actual definition, how-
ever, is a bit different (as stated above).

After the set Y of candidate centers is constructed, algorithm WeightedCenters pro-
ceeds by assigning input points to the centers in Y (in a certain way) and estimating the
weight of every candidate center (where the weight of a candidate center is the number
of input points assigned to it). Then, the algorithm re-assigns the input points to the
candidate canters, and re-estimates the weights of the candidates. This second iteration
of re-assigning points to centers (and re-estimating candidate weights) is done in order to
“eliminate” candidates with low weights. Finally, the algorithm post-processes the weighted
set of candidate centers in order to produce the final set of centers (this post-processing is
done with a non-private algorithm for approximating either the k-means or the k-median
cost objectives, as required).

Consider the execution of WeightedCenters on a database S. For p ∈ {1, 2}, let Coptp =
(c

optp

1 , . . . , c
optp

k ) denote an optimal set of centers for S, where p = 1 corresponds to the k-
median objective and p = 2 corresponds to the k-means objective. Also, for p ∈ {1, 2}, let

10
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Algorithm WeightedCenters
Input: Failure probability β, privacy parameters ε, δ.

Setting: Each player j ∈ [n] holds a value xj ∈ B(0,Λ). Define S = (x1, . . . , xn).

1. Constructing candidate centers: Denote

t = O

(
1

ε
· n0.5+a+b ·

√
d · log(

log n

β
) log

(
dn

βδ

))
.

For r = Λ, Λ
2 ,

Λ
4 , . . . ,

Λ
n , execute (in parallel) algorithm GoodCenters on S with the pa-

rameter t and the radius r to obtain sets of centers Y r
1 , . . . , Y

r
M , lists Lr1, . . . , L

r
M , hash

functions hr1, . . . , h
r
M , and a partition Ir1 , . . . , I

r
M ⊆ [n]. Each execution of GoodCenters

is done with privacy parameters ε
4 log(n) ,

δ
log(n) . Denote Y =

⋃
r,m Y

r
m.

2. Assigning points to candidate centers: Define the following assignment of users
to centers in Y , denoted as a(i, xi). To compute a(i, xi), let ri ∈ {Λ, Λ

2 , . . . ,
Λ
n} be

the smallest such that xi creates a center for ri (see Notation 4.1), and let y(i, xi, ri)
denote this created center. Then, let y∗i be a center with minimal distance to xi from⋃

r<ri
m∈[M ]

Y r
m. Now, if ‖xi − y∗i ‖ < ‖xi − y(i, xi, ri)‖ then a(i, xi) = y∗i , and otherwise

a(i, xi) = y(i, xi, ri).

% Observe that each user i can compute a(i, xi) herself from i, xi and from the publicly re-

leased sets of centers Y r
1 , . . . , Y

r
M , lists Lr1, . . . , L

r
M , hash functions hr1, . . . , h

r
M , and partition

Ir1 , . . . , I
r
M ⊆ [n].

3. Estimating weights of candidate centers: Use an ε
4 -LDP algorithm for histograms

(see Theorem 2.2) to obtain for every y ∈ Y an estimation

â(y) ≈ a(y) , |{i : a(i, xi) = y}|.

4. Re-assigning points to candidate centers: Let

W =

{
y ∈ Y : â(y) ≥ Ω

(√
d

ε
· n0.5+a · log(

1

β
) log

(
dn

δ

))}
,

and define b(i, xi) = a(i, xi) if a(i, xi) ∈ W , and otherwise define b(i, xi) to be an
arbitrary center in W with minimal distance to xi.

5. Re-estimating weights of candidate centers: Use an ε
4 -LDP algorithm for his-

tograms (see Theorem 2.2) to obtain for every y ∈W an estimation

b̂(y) ≈ b(y) , |{i : b(i, xi) = y}|.

6. Output: Non-privately identify a subset K ⊆ Rd of size k with low cost w.r.t. the set
W and the weights b̂ (specifically, with cost at most O(1) times the lowest possible
cost).

11
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S
optp

1 , . . . , S
optp

k be the partition of S induced by these optimal clusters. For ` ∈ [k] let

ropt1` =
2

|Sopt1
` |

∑
x∈Sopt1

`

‖x− copt1` ‖,

and

ropt2` =

√√√√ 2

|Sopt2
` |

∑
x∈Sopt2

`

‖x− copt2` ‖2.

Now let P
optp

` = S
optp

` ∩ B(c
optp

` , r
optp

` ). Note that for every ` ∈ [k] we have that |P optp

` | ≥
1
2 |S

optp

` |, as otherwise less than half of the points in S
optp

` are within distance r
optp

` to c
optp

` ,

and so costp
S
optp
`

({coptp` }) > |S
optp
` |
2 · (roptp` )p = costp

S
optp
`

({coptp` }).

Notation 4.3 We say that an optimal cluster S
optp

` is large if |Soptp

` | ≥ Õ
(

1
ε · n

0.5+a+b ·
√
d
)
.

We begin the utility analysis by defining the following two events. The first event states
that the executions of GoodCenters (in Step 1 of WeightedCenters) succeed. Specifically,
the set of candidate centers Y (resulting from Step 1) contains a “close enough” center for
every large optimal cluster, and in addition, for every y ∈ Y there are “a lot” of users who
created y.

Event CREATION (over the executions of GoodCenters):

1. ∀y ∈ Y =
⋃
r,m Y

r
m, there are at least t̃ = Ω

(√
nd
ε log

(
dn
βδ

))
users that create

y.

2. For every large optimal cluster S
optp

` , the set Y contains a center y∗` ∈ Y that

was created for a radius r∗` such that r∗` ≤ max{2roptp` , Λ
n} and ‖y∗` − c

optp

` ‖ ≤
O(r∗` ).

Claim 4.4 Event CREATION occurs with probability at least 1− β.

Proof Item 1 follows directly from the properties of algorithm GoodCenters and a union
bound over the different choices for r. For item 2, fix ` ∈ [k] such that S

optp

` is large, and let

r∗` ∈ {Λ,
Λ
2 , . . . ,

Λ
n} be the smallest such that r∗` ≥ r

optp

` . Note that r∗` ≤ max{2roptp` , Λ
n}. By

Theorem 3.1, the execution of GoodCenters with the radius r∗` (during Step 1 of algorithm

WeightedCenters) identifies a center y∗` s.t. ‖y∗` − c
optp

` ‖ ≤ O(r∗` ) with probability at least

1− β
k . By a union bound, with probability at least 1−β, this happens for every large cluster

S
optp

` .

The next event states that the two executions of LDP histograms (in Steps 3 and 5)
succeed.

12
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Event HISTOGRAMS (over the randomness in Steps 3 and 5):
All the estimates computed in Steps 3 and 5 are accurate to within error

O
(

1
ε

√
n log(nβ )

)
.

By Theorem 2.2, Event HISTOGRAMS happens with probability at least 1−β. We continue
with the analysis assuming that Events CREATION and HISTOGRAMS occur. Recall that in
Step 1 we generate the set of candidate centers Y and that in Step 4 we define the subset
W ⊆ Y that contains only centers with “large” weights. The next two claims show that for
every center y ∈ Y there exists a center w ∈W that is “close enough” to y (even if y /∈W ).
The first claim shows that if y ∈ Y \W then there is another center y′ ∈ Y that is close to
y (but y′ might also be missing from W ). This will be leveraged in the claim that follows
to identify a center in W that is close to y.

Claim 4.5 Let y ∈ Y be a center that was created with the radius r. If y /∈ W , then there
is another center y′ ∈ Y that was created with a strictly smaller radius r′ < r such that
‖y − y′‖ ≤ O(r).

Proof By Event CREATION, there are at least t̃ = Ω
(√

nd
ε log

(
dn
βδ

))
users who created

the center y. Now, since y /∈ W , it must be that for at least one user i who created y, we
have that a(i, xi) 6= y, as otherwise a(y) would be large and y would be in W (by Event
HISTOGRAMS, the error in the estimation â(y) ≈ a(y) is of a lower order). There could be
two possible reasons for why a(i, xi) 6= y:

Case (a): User i also created another center y′ for a smaller radius r′ < r. In this case,
since user i created both y and y′ we have that ‖xi− y‖ ≤ O(r) and ‖xi− y′‖ ≤ O(r′), and
hence ‖y − y′‖ ≤ O(r + r′) = O(r) by the triangle inequality.

Case (b): User i did not create a center for any radius smaller than r, but there is a center
y′ created with radius r′ < r (that user i did not create) such that ‖xi − y′‖ < ‖xi − y‖.
Since user i did create y, we have that ‖xi − y‖ ≤ O(r), and hence, we again have that
‖y − y′‖ ≤ O(r) by the triangle inequality.

The next claim applies the previous claim iteratively to identify a sequence of centers
beginning from y ∈ Y \W and ending in a center w ∈ W such that every two adjacent
centers in this sequence are close.

Claim 4.6 Let y ∈ Y be a center that was created with the radius r. Then there is a center
w ∈W such that ‖y − w‖ ≤ O(r).

Proof First observe that, by the definition of a(·, ·), if a user i creates a center y′ for r = Λ
n

(the smallest possible radius) then a(i, xi) = y′. Therefore, for every center y′ created with
r = Λ

n we have that a(y′) is large, and hence, y′ appears also in W . Now consider a center
y ∈ Y that was created with the radius r. If y ∈W then the claim is trivial. Otherwise, by
induction using Claim 4.5, there is a sequence of centers y1, y2, . . . , yw such that

13
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1. y1 = y,

2. yw ∈W ,

3. ‖y1 − y2‖ ≤ O(r) and for i ≥ 1 we have

‖yi − yi+1‖ ≤ O
(
2−i · r

)
,

where Item 3 holds since y2 was created with a strictly smaller radius than y1, and y3 was
created with a strictly smaller radius than y2, and so on. Therefore,

‖y − yw‖ ≤ O
(
r +

r

2
+
r

4
+ . . .

)
= O(r).

The next claim shows that the set W contains a subset of k centers with low cost.

Claim 4.7 ∃W ∗ ⊆W of size |W ∗| = k such that

costpS(W ∗) ≤ O(1) ·OPTp
S(k) + Õ

(
k
√
dΛp

ε
· n0.5+a+b

)
.

Proof Recall that, by Event CREATION, for every large optimal cluster S
optp

` , the set Y
contains a center y∗` ∈ Y , which was created for a radius r∗` , such that

‖y∗` − c
optp

` ‖ ≤ O(r∗` ) = O

(
max

{
r
optp

` ,
Λ

n

})
.

Let y∗1, . . . , y
∗
k ∈ Y and r∗1, . . . , r

∗
k denote the aforementioned centers and radiuses (ignoring

small clusters). Now, by Claim 4.6, the set W contains centers w∗1, . . . , w
∗
k such that for every

large cluster S
optp

` we have ‖w∗` − y∗` ‖ ≤ O(r∗` ) = O(max{roptp` , Λ
n}). Hence, by the triangle

inequality we have that ‖w∗` − c
optp

` ‖ ≤ O(max{roptp` , Λ
n}). Denote W ∗ = {w∗1, . . . , w∗k}. If it

were the case that all of the clusters are large, then we would have that

costpS(W ∗) =
∑
x∈S

min
w∈W ∗

‖x− w‖p

=
∑
`∈[k]

∑
x∈S

optp
`

min
w∈W ∗

‖x− w‖p

≤
∑
`∈[k]

∑
x∈S

optp
`

‖x− w∗`‖p

≤
∑
`∈[k]

∑
x∈S

optp
`

O
(
‖x− coptp` ‖p + ‖coptp` − w∗`‖p

)

= O(1) ·OPTp
S(k) +O

(
Λp

np

)
+O(1) ·

∑
`∈[k]

x∈S
optp
`

(
r
optp

`

)p

= O(1) ·OPTp
S(k) +O

(
Λp

np

)
.
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Now, the cost of a small cluster is at most Γ = O
(√

d·Λp
ε · n0.5+a+b · log( kβ ) log

(
dnk
βδ

)
log(n)

)
,

and there could be at most k such small clusters. Taking them into account, we have that

costpS(W ∗) ≤ O(1) ·OPTp
S(k) +O (k · Γ) .

In Step 4 of WeightedCenters we define an assignment b(·, ·) of the input points to the
centers in W . If this assignment would simply assign each point to its nearest center in W ,
then (as W contains a good set of centers by the previous claim) this assignment would
trivially have a low cost. However, the assignment b(·, ·) does not necessarily match every
point to its nearest center. Nevertheless, as the next claim shows, this assignment still has
low cost.

Claim 4.8

∑
i∈[n]

‖b(i, xi)− xi‖p ≤ O(1)·OPTp
S(k)+O

(
k
√
d · Λp

ε
· n0.5+a+b · log

(
k

β

)
log

(
dnk

βδ

)
log(n)

)
.

Proof Fix a large optimal cluster S
optp

` , let c
optp

` denote its center, and let xi ∈ S
optp

` . By

Event CREATION, a center y∗` for the cluster S
optp

` is created with radius r∗` ≤ max{2roptp` , Λ
n}

such that ‖y∗` − c
optp

` ‖ ≤ O(r∗` ). (But it is not necessarily the case that xi created y∗` .) Let
y(xi) ∈ Y denote the center with the smallest radius that was created by xi, and let r(xi)
denote the radius for which y(xi) was created. Note that y(xi) might not be in W . There
are two cases:

Case (a): r(xi) > r∗` . Then ‖a(i, xi) − xi‖ ≤ ‖xi − y∗` ‖, because a(i, xi) can take the
value y∗` if it minimizes the distance to xi. Now, we either have that b(i, xi) = a(i, xi) if
a(i, xi) ∈W , or else b(i, xi) is set to be the closest center in W to xi, denoted as W (xi). So

‖xi − b(i, xi)‖ ≤ ‖xi − a(i, xi)‖+ ‖xi −W (xi)‖
≤ ‖xi − y∗` ‖+ ‖xi −W (xi)‖
≤ ‖xi − c

optp

` ‖+ ‖coptp` − y∗` ‖+ ‖xi −W (xi)‖

≤ ‖xi − c
optp

` ‖+O

(
r
optp

` +
Λ

n

)
+ ‖xi −W (xi)‖.

Case (b): r(xi) ≤ r∗` . Then, as xi created y(xi),

‖xi − a(i, xi)‖ ≤ O(r(xi)) = O(r∗` )

Recall that a(i, xi) might be missing from W , and hence,

‖xi − b(i, xi)‖ ≤ O
(
r
optp

` +
Λ

n

)
+ ‖xi −W (xi)‖.
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So, in any case, we have that

‖xi − b(i, xi)‖ ≤ ‖xi − c
optp

` ‖+O

(
r
optp

` +
Λ

n

)
+ ‖xi −W (xi)‖.

Therefore,∑
i∈[n]

‖b(i, xi)− xi‖p =
∑
`∈[k]

∑
xi∈S

optp
`

‖b(i, xi)− xi‖p

≤
∑
`∈[k]

xi∈S
optp
`

O

(
‖xi − c

optp

` ‖p + (r
optp

` )p +
Λp

np
+ ‖xi −W (xi)‖p

)

= O(1) ·OPTp
S(k) +O

(
Λp

np

)
+O(1) · costpS(W )

≤ O(1) ·OPTp
S(k) +O

(
Λp

np

)
+O(1) · costpS(W ∗)

≤ O(1) ·OPTp
S(k)

+O

(
k

ε
· n0.5+a+b ·

√
d · log

(
k

β

)
log

(
dnk

βδ

)
log(n) · Λp

)
,

where W ∗ ⊆W is a subset of size |W ∗| = k that minimizes costpS(W ∗), and where the last
inequality follows from Claim 4.7.

Recall that we denote b(w) , |{i : b(i, xi) = w}|, and that in Step 5 we obtain estima-
tions b̂(w) ≈ b(w) for every w ∈W . We write B to denote the set W with weights {b(w)}.
That is, B is a multiset of points containing b(w) copies of every w ∈ W . Alternatively, B
is the multiset B = {b(i, xi) : i ∈ [n]}. We also write B̂ to denote the set W with the noisy
weights {b̂(w)}. These noisy weights might not be integers (and, in principle, could also be
negative, but this does not happen when Event HISTOGRAMS occurs). The next claim shows
that for every set of centers D we have that costpS(D) ≈ costpB(D).

Claim 4.9 Denote

Γ =
k

ε
· n0.5+a+b ·

√
d · log

(
k

β

)
log

(
dnk

βδ

)
log(n) · Λp.

For every set of centers D ⊆ Rd we have

costpB(D) ≤ 2 · costpS(D) +O(1) ·OPTp
S(k) +O (Γ) ,

and,

costpS(D) ≤ 2 · costpB(D) +O(1) ·OPTp
S(k) +O (Γ) .
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Proof For a set of centers C and a point x we write C(x) to denote the closest neighbor
of x in C. By Claim 4.8, for any set of centers D ⊆ Rd we have,

costpB(D) =
∑
i∈[n]

∥∥b(i, xi)−D(b(i, xi))∥∥p
≤
∑
i∈[n]

‖b(i, xi)−D(xi)‖p

≤
∑
i∈[n]

(2 · ‖b(i, xi)− xi‖p + 2 · ‖xi −D(xi)‖p)

≤ O(1) ·OPTp
S(k) +O (Γ) + 2 · costpS(D),

and similarly,

costpS(D) =
∑
i∈[n]

‖x−D(x)‖p

≤
∑
i∈[n]

‖x−D
(
b(i, xi)

)
‖p

≤
∑
i∈[n]

(
2 ‖x− b(i, xi)‖p + 2

∥∥b(i, xi)−D(b(i, xi))∥∥p)
≤ O(1) ·OPTp

S(k) +O (Γ) + 2 · costpB(D).

The next claim shows that for every set of centers D we have that costpB(D) ≈ costp
B̂

(D).

Claim 4.10 For every set of centers D ⊆ Rd we have 1
2costpB(D) ≤ costp

B̂
(D) ≤ 2costpB(D).

Proof First observe that, by Event HISTOGRAMS, for every w ∈ W we have that 1
2b(w) ≤

b̂(w) ≤ 2b(w). To see this, note that by the definition of the set W in Step 4, for every
w ∈W we have that

b(w) ≥ Ω

(
1

ε
· n0.5+a ·

√
d · log

(
1

β

)
log

(
dn

δ

))
.

In addition, by Event HISTOGRAMS, for every w ∈W we have that

|b(w)− b̂(w)| ≤ O
(

1

ε

√
n · log(

n

β
)

)
� b(w),

and hence, for every w ∈ W we have 1
2b(w) ≤ b̂(w) ≤ 2b(w). Now let D ⊆ Rd be a set of

centers. We have that

costpB(D) =
∑
w∈W

b(w) ·min
d∈D
‖w − d‖p

≤
∑
w∈W

2 · b̂(w) ·min
d∈D
‖w − d‖p

= 2 · costp
B̂

(D).
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The other direction is symmetric.

So, by the last two claims, for every set of centersD we have that costpS(D) ≈ costpB(D) ≈
costp

B̂
(D). Hence, we can use the (privately computed) weighted set B̂ as a proxy in order

to identify k centers with low cost w.r.t. S. This is formalized in the following theorem.

Theorem 4.11 Let p ∈ {1, 2}. Algorithm WeightedCenters satisfies (ε, δ)-LDP. In addi-
tion, when executed on a (distributed) database S containing n points in the d-dimensional
ball B(0,Λ), the algorithm returns a set K of k centers such that with probability at least
1−O(β) we have

costpS(K) ≤ O(1) ·OPTp
S(k) + Õ

(
k
√
dΛp

ε
n0.5+a+b

)
,

where a > b > 0 are arbitrarily small constants (the constant hiding in the multiplicative
error depends on a and b).

Proof The privacy properties of WeightedCenters are straightforward (follow from com-
position and post-processing). We proceed with the utility analysis. Let C

optp

S ⊆ Rd be a

subset of k centers minimizing costpS(·), and let C
optp

B̂
⊆ Rd be a subset of k centers mini-

mizing costp
B̂

(·). The output of algorithm WeightedCenters is a set K ⊆ Rd of size |K| = k

such that costp
B̂

(K) ≤ O(1) · costp
B̂

(C
optp

B̂
). We now show that the set K has low cost w.r.t.

S. Denote Γ = k
ε · n

0.5+a+b ·
√
d · log( kβ ) log

(
dnk
βδ

)
log(n) · Λp. By Claims 4.9 and 4.10,

costpS(K) ≤ O(1) · costp
B̂

(K) +O(1) ·OPTp
S(k) +O(Γ).

Now, by the fact that K approximately minimizes costp
B̂

(·), the last expression is at most

≤ O(1) · costp
B̂

(C
optp

B̂
) +O(1) ·OPTp

S(k) +O(Γ).

Since C
optp

B̂
minimizes costp

B̂
(·), the last expression is at most

≤ O(1) · costp
B̂

(C
optp

S ) +O(1) ·OPTp
S(k) +O(Γ).

Finally, by using again Claims 4.9 and 4.10, we get that the last expression is at most

≤ O(1) · costpS(C
optp

S ) +O(1) ·OPTp
S(k) +O(Γ)

= O(1) ·OPTp
S(k) +O(Γ).

18



Locally Private k-Means Clustering

Protocol B
Setting: Each user i ∈ [n] holds a bit bi ∈ {0, 1}. Define S = (b1, . . . , bn).

Parameter: r = β/4, where β is the constant from Theorem 5.2.

1. The server: Let R = {[0, r], [r, 2r], . . . , [1 − r, 1]}, sample (uniformly) an interval
I ∈ R, and let µ denote the center of I. Send µ to all the users.

2. Every user i: If bi = 0 then ignore µ and set xi = 0. Otherwise, set xi = µ.

2. The server and the users: Execute protocol A on the database X = (x1, . . . , xn)
to obtain a set of centers C = {c1, c2}.

3. The server: If c1 ∈ I or c2 ∈ I then return 1. Otherwise return 0.

5. A Lower Bound on the Additive Error

In this section we present a simple lower bound on the error of every LDP algorithm for
approximating the k-means (or the k-median) cost objective. To get our lower bound,
we show a reduction from the following problem, called Gap-Threshold, to the k-means
problem, and then use an existing lower bound for the Gap-Threshold problem.

Definition 5.1 (Beimel et al. (2008)) For τ > 0 and x1, . . . , xn ∈ {0, 1},

GAP-TRτ (x1, . . . , xn) =

{
0, If

∑
i∈[n] xi = 0

1, If
∑

i∈[n] xi ≥ τ

Note that GAP-TRτ (x1, . . . , xn) is not defined when 0 <
∑

i∈[n] xi < τ .

Theorem 5.2 (Beimel et al. (2008); Joseph et al. (2019)) There exist constants

0 < ε, β < 1 such that the following holds. Let δ = o
(

1
n2 logn

)
and let A be an (ε, δ)-LDP

protocol for computing GAP-TRτ with success probability 1− β. Then τ = Ω(
√
n).

Theorem 5.2 is stated in (Beimel et al., 2008) for (ε, 0)-LDP protocols with a bounded
number of interaction rounds. The extension to arbitrary LDP protocols follows from
(Joseph et al., 2019, Theorem 5.3). We now show that this theorem implies a lower bound
of Ω(

√
n) on the additive error of LDP algorithms for the k-means or the k-median, even

when the dimension d is 1 and k = 2.

Theorem 5.3 There exists constant 0 < ε, β < 1 such that the following holds. Let δ =

o
(

1
n2 logn

)
, and let A be an (ε, δ)-LDP protocol such that for any (distributed) database

X ∈ ([0, 1])n, with probability 1−β the algorithm outputs a set C of k = 2 centers satisfying
costpX(C) ≤ γ ·OPTp

X(k) + τ , where γ <∞ and p ∈ {1, 2}. Then τ = Ω(
√
n).

Proof Let β, ε be the constants from Theorem 5.2. Let A be an (ε, δ)-LDP protocol that
operates on a (distributed) database X ∈ ([0, 1])n and outputs a set C of size k = 2. We
use A to construct a protocol for GAP-TR, described in protocol B.

By Theorem 5.2, there exists an error parameter τ = Ω(
√
n), and a database S∗ ∈ {0, 1}n

such that B(S∗) 6= GAP-TRτ (S∗) with probability at least β. We now show that S∗ cannot
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be the all zero database. To that end, observe that if the input S is the all zero database,
then all of the users in the protocol B ignore µ, and hence, algorithm A gets no information
about the selected interval I. In that case, the probability that one of c1, c2 falls in I is
at most 2r. That is, the probability that B(~0) 6= 0 = GAP-TRτ (~0) is at most 2r = β/2.
Therefore, the database S∗ (on which B errs with probability at least β) is not the all zero
database ~0. Hence, S∗ contains at least τ ones. Therefore, whenever B errs on S∗, we
have that costpX(C) ≥

(
r
2

)p · τ = Ω(
√
n), even though OPTp

X(k) = 0. This happens with
probability at least β, which completes the proof.

Acknowledgments

The author was partially supported by the Israel Science Foundation (grant No. 1871/19),
and by the Cyber Security Research Center at Ben-Gurion University of the Negev. The
author would like to thank Haim Kaplan and the anonymous reviewers for their helpful
comments.

Appendix A.

In this section we provide the details that were omitted from Section 3, and prove Theo-
rem 3.1.

A.1 Additional Preliminaries

A.1.1 Average of Vectors in Rd Under LDP

Consider a (distributed) database X = (x1, . . . , xn) where every user i is holding xi ∈ Rd.
One of the most basic tasks we can apply under local differential privacy is to compute a
noisy estimation for the sum (or the average) of vectors in X. Specifically, every user sends
the server a noisy estimation of its vector (e.g., by adding independent Gaussian noise to
each coordinate), and the server simply sums all of the noisy reports to obtain an estimation
for the sum of X.

Theorem A.1 (folklore) Consider a (distributed) database X = (x1, . . . , xn) where every
user i is holding a point xi in the d dimensional ball B(0,Λ). There exists an (ε, δ)-LDP
protocol for computing an estimation a for the sum of the vectors in X, such that with
probability at least (1− β) we have∥∥∥∥∥∥a−

∑
i∈[n]

xi

∥∥∥∥∥∥ ≤ 2Λ
√
nd ln( 2

βδ )

ε
.

For our constructions we will need a tool for computing averages of subsets of X. Specif-
ically, assume that there are n users, where user i is holding a point xi ∈ Rd. Moreover,
assume that we have a fixed (publicly known) partition of Rd into a finite number of regions:
R1, . . . , RT ⊆ Rd. For every region R`, we would like to obtain an estimation for the average
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of the input points in that region. This can be done using the following simple protocol,
called LDP-AVG.

Protocol LDP-AVG
Public parameters: Partition of Rd into t regions R1, . . . , RT .

Setting: Each user i ∈ [n] holds a point xi ∈ Rd. Define X = (x1, . . . , xn).

1. Every user i: Let yi = (yi,1, . . . , yi,T ) ∈ (Rd)T be a vector whose every coordinate is
an independent Gaussian noise. Specifically, every yi,t ∈ Rd is a vector whose every

coordinate is sampled i.i.d. from N(0, σ2
t ), for σt = 8·diam(Rt)

ε

√
ln(1.25/δ). Let t be s.t.

xi ∈ Rt. Add xi to yi,t. Send yi to the server.

2. The server and the users: Run the protocol from Theorem 2.2 with privacy pa-
rameter ε

2 . For every t ∈ [T ] the server obtains an estimation r̂t ≈ |{i : xi ∈ Rt}| , rt.

3. The server: Output a vector â ∈ (Rd)T , where ât = 1
r̂t
·
∑

i∈[n] yi,t.

Claim A.2 LDP-AVG satisfies (ε, δ)-LDP. Moreover, with probability at least (1 − β), for

every t ∈ [T ] s.t. rt ≥ 12
ε ·
√
n · log

(
4T
β

)
we have that

∥∥∥∥∥∥∥∥
1

r̂t
·
∑
i∈[n]

yi,t −
1

rt
·
∑
i∈[n]:
xi∈Rt

xi

∥∥∥∥∥∥∥∥ ≤
36
√
dn · ln(8dT

βδ )

ε · rt
· diam(Rt).

Proof The privacy properties of LDP-AVG follow from the privacy properties of the Gaussian
mechanism and the protocol from Theorem 2.2, together with composition. Observe that
by Theorem 2.2, with probability at least (1 − β

2 ), for every t ∈ [T ] we have |rt − r̂t| ≤
6
ε ·
√
n · log

(
4T
β

)
. We continue with the analysis assuming that this is the case. Fix t ∈ [T ]

such that rt ≥ 12
ε ·
√
n · log

(
4T
β

)
, and observe that r̂t ≥ rt/2. Denote ∆t = diam(Rt).

Using a standard tail bound for normal variables, with probability at least 1− β
2T we have

that

∥∥∥∥∥∑i∈[n] yi,t −
∑

i∈[n]:
xi∈Rt

xi

∥∥∥∥∥ ≤ 12
√
dnΛt·ln( 4dT

βδ
)

ε . Hence,

∥∥∥∥∥∥∥∥
1

r̂t
·
∑
i∈[n]

yi,t −
1

rt
·
∑
i∈[n]:
xi∈Rt

xi

∥∥∥∥∥∥∥∥ ≤
∣∣∣∣ 1

r̂t
− 1

rt

∣∣∣∣ ·
∥∥∥∥∥∥
∑
i∈[n]

yi,t

∥∥∥∥∥∥+

∥∥∥∥∥∥∥∥
1

rt
·

∑
i∈[n]

yi,t −
∑
i∈[n]:
xi∈Rt

xi


∥∥∥∥∥∥∥∥
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≤
∣∣∣∣ 1

r̂t
− 1

rt

∣∣∣∣ ·
12
√
dnΛt · ln(4dT

βδ )

ε
+

∥∥∥∥∥∥∥∥
∑
i∈[n]:
xi∈Rt

xi

∥∥∥∥∥∥∥∥
+

12
√
dnΛt · ln(4dT

βδ )

ε · rt

=

∣∣∣∣ 1

r̂t
− 1

rt

∣∣∣∣ · 12
√
dnΛt · ln(4dT

βδ )

ε
+

∣∣∣∣ 1

r̂t
− 1

rt

∣∣∣∣ ·
∥∥∥∥∥∥∥∥
∑
i∈[n]:
xi∈Rt

xi

∥∥∥∥∥∥∥∥+
12
√
dnΛt · ln(4dT

βδ )

ε · rt

≤ 1

rt
·

12
√
dnΛt · ln(4dT

βδ )

ε
+
|rt − r̂t|
|rt · r̂t|

·
∑
i∈[n]:
xi∈Rt

‖xi‖+
12
√
dnΛt · ln(4dT

βδ )

ε · rt

≤
24
√
dnΛt · ln(4dT

βδ )

ε · rt
+
|rt − r̂t|
|rt · r̂t|

· Λt · rt

≤
24
√
dnΛt · ln(4dT

βδ )

ε · rt
+

12Λt ·
√
n · log

(
8T
β

)
ε · rt

≤
36
√
dnΛt · ln(8dT

βδ )

ε · rt
.

The claim now follows from a union bound.

A.1.2 Random Rotation

We also use the following technical lemma to argue that if a set of points P is contained
within a ball of radius r in Rd, then by randomly rotating the Euclidean space we get that
(w.h.p.) P is contained within an axis-aligned rectangle with side-length ≈ r/

√
d.

Lemma A.3 (e.g., Vazirani and Rao) Let P ∈ (Rd)m be a set of m points in the d
dimensional Euclidean space, and let Z = (z1, . . . , zd) be a random orthonormal basis for
Rd. Then,

Pr
Z

[
∀x, y ∈ P : ∀1 ≤ i ≤ d : |〈x− y, zi〉| ≤ 2

√
ln(dm/β)/d · ‖x− y‖

]
≥ 1− β.

A.1.3 Locality Sensitive Hashing

A locality sensitive hash function aims to maximize the probability of a collision for similar
items, while minimizing the probability of collision for dissimilar items. Formally,

Definition A.4 (Indyk and Motwani (1998)) Let M be a metric space, and let r>0,
c>1, 0≤q<p≤1. A family H of functions mapping M into domain U is an (r, cr, p, q)
locality sensitive hashing family (LSH) if for all x, y ∈ M (i) Prh∈RH[h(x) = h(y)] ≥ p if
dM(x, y) ≤ r; and (ii) Prh∈RH[h(x) = h(y)] ≤ q if dM(x, y) ≥ cr.
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A.2 Algorithm CentersProcedure

Before presenting algorithm GoodCenters and its analysis, we introduce the following pro-
cedure, called CentersProcedure, which is the main ingredient in the construction of al-
gorithm GoodCenters. This procedure identifies a set of candidate centers that, with no-
ticeable probability, “captures” every large enough cluster of input points. In algorithm
GoodCenters, we will later apply CentersProcedure multiple times to boost the success
probability. The privacy properties of CentersProcedure are immediate (follow from com-
position), and are specified in the following observation.

In more detail, algorithm CentersProcedure first samples a locality sensitive hash func-
tion h, identifies (using standard LDP tools for histograms) a list of hash values that are
“heavy” in the sense that many of the users’ input are mapped to these values. Then,
for every such heavy hash value, the algorithm averages (with noise to ensure LDP) all
the input points that are mapped (by h) to this hash value. In order to reduce the noise
incurred by averaging, before applying the LDP averaging tool, the algorithm encloses each
cluster of input points that corresponds to a heavy hash value in a small box (with random
rotation).

Observation A.5 Algorithm CentersProcedure satisfies ε-LDP.

We now proceed with the utility analysis of algorithm CentersProcedure. We will as-
sume the existence of a family H of (r, cr, p=n−b, q=n−2−a)-sensitive hash functions mapping
Rd to a universe U , for some constants a > b, r > 0, and c > 1.

Lemma A.6 Let β, ε, δ, n, d,Λ, r be such that Λ/r ≤ poly(n) and t ≥ O
(
n0.5+b·

√
d

ε log
(
dn
βδ

))
and β ≤ n−a/28. Let S = (x1, . . . , xn) be a distributed database where every xi is a point in
the d-dimensional ball B(0,Λ), and let CentersProcedure be executed on S with the family
H and with parameters r, t, β, ε, δ. The algorithm outputs a list of hash values L, a hash
function h, and a set Y containing a center ŷu for every u ∈ L, such that

1. The list L and the set Y are size at most 32·n1+b

t each.

2. With probability at least 1− β, for every u ∈ L we have

|{x ∈ S : h(x) = u and ‖x− ŷu‖ ≤ 5cr}| ≥ t

8
· n−b.

3. Let P ⊆ S be a set of t points which can be enclosed in a ball of radius r. With
probability at least n−a/4 there exists u∗ ∈ L such that the ball of radius 3cr around
ŷu∗ ∈ Y contains at least one point from P .

Remark 3 Lemma A.6 can be interpreted as follows. Item 3 states that, with noticeable
probability, the set of candidate Y “captures” every large enough cluster P of input points
that can be enclosed in a ball of radius r, in the sense that Y contains a candidate center
that is close to this cluster. Item 1 states that the number of candidate centers (i.e., the
size of Y ) is not too big. Item 2 states that every candidate center y ∈ Y corresponds to a
hash value u ∈ L such that there are “a lot” of input points that are hashed to u and are
“close” to y.
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Algorithm CentersProcedure
Input: Radius r, target number of points t, failure probability β, privacy parameter ε.

Tool used: Family H of (r, c · r, p, q)-locality sensitive hash functions mapping Rd to a
universe U .

Setting: Each player j ∈ [n] holds a value xj ∈ B(0,Λ). Define S = (x1, . . . , xn).

1. Sample a hash function h ∈ H mapping Rd to U .

2. Use Theorem 2.2 with ε
4 to identify a list L ⊆ U such that

(a) Every u ∈ U s.t. |{x ∈ S : h(x) = u}| ≥ t
16 · n

−b is in L,

(b) For every u ∈ L we have |{x ∈ S : h(x) = u}| ≥ t
32 · n

−b,

(c) The list L is of size at most 32n1+b/t.

3. Let Z = (z1, . . . , zd) be a random orthonormal basis of Rd, and denote p =

2rc
√

ln(dnβ )/d. Also let I = {I1, I2, . . . , I4Λ/p} be a partition of [−2Λ, 2Λ] into in-

tervals of length p.

4. Randomly partition S into subsets S1, . . . , Sd of size |Si| = n
d . For every basis vector

zi ∈ Z, use Theorem 2.2 with ε
4 to obtain for every pair (I, u) ∈ I×U an estimation

ai(I, u) for
|{x ∈ Si : h(x) = u and 〈x, zi〉 ∈ I}|.

5. For every basis vector zi ∈ Z and for every hash value u ∈ L, denote I(i, u) =
argmaxI∈I{ai(I, u)}, and define the interval Î(i, u) by extending I(i, u) by p to each
direction (that is, Î(i, u) is of length 3p).

6. For every hash value u ∈ L, let B(u) denote the box in Rd whose projection on every
axis zi ∈ Z is Î(i, u).

7. Use algorithm LDP-AVG to obtain, for every u ∈ L, an approximation ŷu for the average
of {x ∈ S : h(x) = u and x ∈ B(u)} .

8. Use Theorem 2.2 with ε
4 to identify for every u ∈ L an estimation v̂(u) ≈ v(u) , |{x ∈

S : h(x) = u and ‖x − ŷu‖ ≤ 5cr}|. Delete from L every element u ∈ L such that
v̂(u) ≤ t

4 · n
−b.

9. Output the set of centers Y = {ŷu : u ∈ L}, the list L, and the hash function h.

Proof Items 1 and 2 of the lemma follow from the fact that in Step 8 we delete from
the list L every element u that does not satisfy the condition of item 2. Specifically, for

t ≥ O
(

1
εn

0.5+b
√

log( 1
β )
)

, our estimations in Step 8 are accurate enough such that item 2

holds with probability at least 1− β, in which case the list L is short (a longer list can be
trimmed). We now proceed with the analysis of item 3.

First observe that, w.l.o.g., we can assume that the range U of every function in H is
of size |U | ≤ n3. If this is not the case, then we can simply apply a (pairwise independent)
hash function with range n3 onto the output of the locally sensitive hash function. Clearly,
this will not decrease the probability of collusion for “close” elements (within distance r),
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and moreover, this can increase the probability of collusion for “non-close” elements (at
distance at least cr) by at most n−3 = o(n−2−a) = o(q).

Now recall that by the properties of the family H, for every x, y ∈ Rd s.t. ‖x− y‖ ≥ cr
we have that Prh∈H[h(x) = h(y)] ≤ q = n−2−a. Using the union bound we get

Pr
h∈RH

[h(x) 6= h(y) for all x, y ∈ S s.t. ‖x− y‖ ≥ cr] ≥ (1− n−a/2).

Let P ⊆ S denote the guaranteed set of t input points that are contained in a ball of
radius r, and let x ∈ P be an arbitrary point in P . By linearity of expectation, we have
that

E
h∈H

[|{y ∈ P : h(y) 6= h(x)}|] ≤ t(1− p) = t(1− n−b).

Hence, by Markov’s inequality,

Pr
h∈H

[
|{y ∈ P : h(y) 6= h(x)}| ≥ t(1− n−b)

1− n−a

]
≤ 1− n−a.

So,

Pr
h∈H

[
|{y ∈ P : h(y) = h(x)}| ≥ t

(
1− 1− n−b

1− n−a

)]
≥ n−a.

Simplifying, for large enough n (specifically, for na−b ≥ 2) we get

Pr
h∈H

[
|{y ∈ P : h(y) = h(x)}| ≥ t

2
· n−b

]
≥ n−a.

So far we have established that with probability at least n−a/2 over the choice of h ∈ H
in Step 1 the following events occur:

(E1) For every x, y ∈ S s.t. ‖x− y‖ ≥ cr it holds that h(x) 6= h(y); and,

(E2) There exists a hash value in U , denoted u∗, such that |{y ∈ P : h(y) = u∗}| ≥ t
2 ·n

−b.

Event (E1) states that if two points in S are mapped into the same hash value, then
these points are close. Event (E2) states that there is a “heavy” hash value u∗ ∈ U , such
that “many” of the points in P are mapped into u∗. We proceed with the analysis assuming
that these two events occur.

On step 2, we identify a list L containing all such “heavy” hash values u ∈ U . Assuming

that t ≥ O
(

1
ε · n

0.5+b ·
√

log(n/β)
)

, Theorem 2.2 ensures that with probability at least

1− β we have that u∗ ∈ L. We continue with the analysis assuming that this is the case.

On Step 3 we generate a random orthonormal basis Z. By Lemma A.3, with probability
at least (1 − β), for every x, y ∈ S and for every zi ∈ Z, we have that the projection of
(x − y) onto zi is of length at most 2

√
ln(dn/β)/d · ‖x − y‖. In particular, for every hash

value u ∈ L we have that the projection of Su , {x ∈ S : h(x) = u} onto every axis zi ∈ Z
fits within an interval of length at most p = 2rc

√
ln(dn/β)/d. Recall that we assume that

input point come from B(0,Λ). Hence, for every x, y ∈ S we have (x− y) ∈ B(0, 2Λ). Now,
as I = {I1, I2, . . . } is a partition of [−2Λ, 2Λ] into intervals of length p, for every axis zi ∈ Z
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and for every u ∈ U , we have that the projection of Su onto zi is contained within 1 or 2
consecutive intervals from I.

On step 4 we partition S into d subsets Si ⊆ S of size n
d . By the Hoeffding bound,

assuming that t ≥ 2 ·n0.5+b ·
√

2d ln(2d
β ), with probability at least 1−β, for every i ∈ [d], we

have that |Si∩Su∗ | ≥ |Su∗ |2d ≥
t·n−b

4d . Recall that the projection of Su∗ onto every axis zi ∈ Z
fits within (at most) 2 consecutive intervals from I. Hence, for every axis zi ∈ Z, at least 1

interval from I contains at least half of the points from Si ∩ Su∗ , i.e., at least t·n−b
8d points.

Therefore, for t ≥ O
(

1
ε · n

0.5+b ·
√
d · log(dnβ )

)
, Theorem 2.2 ensures that with probability

at least 1 − β, for every zi ∈ Z we have that I(i, u∗) = argmaxi∈I{ai(I, u∗)} (defined on
step 5) contains at least one point from Su∗ .

4 Hence, the interval Î(i, u∗) obtained by
extending I(i, u∗) by p to each direction, contains (the projection of) all of the points from
Su∗ (onto the ith axis). As a result, the box B(u∗), defined on step 7 as the box whose
projection onto every axis i is Î(i, u∗), contains all of Su∗ . We continue with the analysis
assuming that this is the case. Observe that the diameter of B(u∗), as well as the diameter
of every other box B(u) defined on step 6, is at most 3p

√
d = 6cr

√
ln(dn/β) = Õ(cr).

On step 7 we use algorithm LDP-AVG to obtain, for every u ∈ L, an estimation ŷu for the
average of {x ∈ S : h(x) = u and x ∈ B(u)}. Let us denote the true average of every such set

as yu. By the properties of LDP-AVG (Claim A.2), assuming that t ≥ O
(

1
ε ·
√
dn · log

(
dn
βδ

))
,

with probability at least 1−β we have that ‖yu∗− ŷu∗‖2 ≤ cr. We continue with the analysis
assuming that this is the case.

Observe that yu∗ is the average of (some of) the points in Su∗ , and that every two points
in Su∗ are within distance cr from each other. Hence, we get that a ball of radius 2cr around
yu∗ contains all of Su∗ . In particular, as Su∗ contains at least some of the points from P
(the guaranteed cluster radius r with t input points from S), we have that the ball of radius
2cr around yu∗ contains at least 1 point from P , and that the ball of radius 4cr around yu∗

contains all of P . Therefore, as ‖yu∗ − ŷu∗‖2 ≤ cr we get that a ball of radius 3cr around
ŷu∗ contains at least one point from P , and that the ball of radius 5cr around ŷu∗ contains
all of P .

Recall that, by Event (E2), there are at least t
2 · n

−b input points x ∈ P such that
h(x) = u∗. Therefore, in Step 8 we have that v(u∗) ≥ t

2 · n
−b. Therefore, with probability

at least 1 − β we also have that v̂(u∗) ≥ t
2 · n

−b, because when t ≥ O
(

1
εn

0.5+b
√

log( 1
β )
)

then the error |v(u∗)− v̂(u∗)| is small compared to v(u∗). This means that u∗ is not deleted
from the list L in Step 8.

Overall, with probability at least n−a

2 − 7β we have that the output set Y (from Step 9)
contains at least one vector ŷu∗ s.t. the ball of radius 3cr around ŷ contains at least one
point from P .

4. The constraint on t in Theorem 2.2 depends logarithmically on the number of possible bins. In our case,
there are 4Λ/p ≤ Λ

√
d/r ≤ poly(n

√
d) possible bins, where the last inequality is because we assumed

that Λ/r ≤ poly(n).
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A.3 Algorithm GoodCenters

We are now ready to present algorithm GoodCenters, and to prove Theorem 3.1 (restated
here as Theorem A.7). As we mentioned, algorithm GoodCenters is obtained by applying
algorithm CentersProcedure multiple times to boost its success probability.

Algorithm GoodCenters
Input: Radius r, target number of points t, failure probability β, privacy parameters ε, δ.

Optional input: Parameter t. Otherwise set t = O
(

1
ε · n

0.5+a+b ·
√
d · log( 1

β ) log
(
dn
βδ

))
.

Setting: Each player j ∈ [n] holds a value xj ∈ B(0,Λ). Define S = (x1, . . . , xn).

1. Denote M = 4na ln( 1
β ) and randomly partition [n] into M subsets I1, . . . , Im ⊆ [n].

For m ∈ [M ] define Sm = {xi ∈ S : i ∈ Im}.

2. For m ∈ [M ] apply algorithm CentersProcedure on Sm with the following parameters:
radius r, failure probability β̂ = β

7M , privacy parameters ε, δ, and target number of
points t̂ = t

2M . For every m ∈ [M ] denote the outcomes as Ym, Lm, and hm.

3. Return the sets of centers Y1, . . . , YM , the lists L1, . . . , LM , the hash functions
h1, . . . , hM , and the partition I1, . . . , IM .

Theorem A.7 Let β, ε, δ, n, d,Λ, r be such that t ≥ O
(
n0.5+a+b·

√
d

ε log( 1
β ) log

(
dn
βδ

))
and

such that Λ/r ≤ poly(n). Let S = (x1, . . . , xn) be a distributed database where every xi is a
point in the d-dimensional ball B(0,Λ), and let GoodCenters be executed on S with parame-
ters r, t, β, ε, δ. Denote M = 4na ln( 1

β ). The algorithm outputs a partition I1, . . . , IM ⊆ [n],
lists L1, . . . , LM , hash functions h1, . . . , hM , and sets of centers Y1, . . . , YM , where for every
m ∈ [M ] and u ∈ Lm, the set Ym contains a center ŷm,u. The following holds.

1. With probability at least 1 − β, for every m ∈ [M ] and u ∈ Lm we have |{i ∈ Im :
hm(xi) = u and ‖xi − ŷm,u‖ ≤ 5cr}| ≥ t

16M · n
−b.

2. Denote Y =
⋃
i∈[M ] Ym. Then |Y | ≤ 512·n1+a+b

t ln( 1
β ).

3. Let P ⊆ S be a set of t points which can be enclosed in a ball of radius r. With
probability at least 1 − β there exists ŷ ∈ Y such that the ball of radius 5cr around ŷ
contains all of P .

Proof Items 1 and 2 of the lemma follow directly from the properties of algorithm
CentersProcedure. We now proceed with the analysis of item 3. Let P ⊆ S be s.t.
|P | = t and diam(P ) ≤ r, and consider the following good event, which happens with
probability at least 1− β by the Chernoff bound (assuming that t ≥ 24M ln( eMβ )).

Event E1 (over partitioning S into S1, . . . , SM):

(a) For every m ∈ [M ] we have |P ∩ Sm| ≥ t
2M .

(b) For every m ∈ [M ] we have n
2M ≤ |Im| ≤

2n
M .
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We proceed with the analysis assuming that Event E1 occurred. Let us say that the
mth execution of CentersProcedure succeeds if ∃ym ∈ Ym such that the ball of radius
3cr around ym contains at least one point from P ∩ Sm. Recall that we assume that t ≥
O
(
n0.5+a+b·

√
d

ε log( 1
β ) log(dnβδ )

)
. Hence, by the properties of algorithm CentersProcedure,

every single execution succeeds with probability at least n−a/4. As the different executions
of CentersProcedure are independent, when M ≥ 4na ln( 1

β ), the probability that at least
one execution succeeds is at least 1− β. In this case, there is a point y ∈ Y = Y1 ∪ · · · ∪ Ym
such that the ball of radius 3cr around it contains at least one point from P , and hence,
the ball of radius 5cr around y contains all of P .
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