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Abstract

We study an interesting variant of the stochastic multi-armed bandit problem, which we
call the Fair-MAB problem, where, in addition to the objective of maximizing the sum of
expected rewards, the algorithm also needs to ensure that at any time, each arm is pulled
at least a pre-specified fraction of times. We investigate the interplay between learning and
fairness in terms of a pre-specified vector denoting the fractions of guaranteed pulls. We
define a fairness-aware regret, which we call r-Regret, that takes into account the above
fairness constraints and extends the conventional notion of regret in a natural way. Our
primary contribution is to obtain a complete characterization of a class of Fair-MAB
algorithms via two parameters: the unfairness tolerance and the learning algorithm used
as a black-box. For this class of algorithms, we provide a fairness guarantee that holds
uniformly over time, irrespective of the chosen learning algorithm. Further, when the
learning algorithm is UCB1, we show that our algorithm achieves constant r-Regret for
a large enough time horizon. Finally, we analyze the cost of fairness in terms of the
conventional notion of regret. We conclude by experimentally validating our theoretical
results.
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1. Introduction

The multi-armed bandit (MAB) problem is a classic framework for sequential decision-
making in uncertain environments. Starting with the seminal work of Robbins (1952), over
the years, a significant body of work has been developed to address both theoretical aspects
and practical applications of this problem; see Bubeck and Cesa-Bianchi (2012); Lattimore
and Szepesvári (2020); Slivkins et al. (2019) for textbook expositions of the MAB problem.
Indeed, the study of the MAB problem and its numerous variants continues to be a central
pursuit in multiple fields such as online learning and reinforcement learning. In the MAB
set-up, at every round, a decision-maker (an online algorithm) is faced with k choices, which
correspond to unknown (to the algorithm) reward distributions. Each choice is referred to
as an arm. When the decision-maker pulls a specific arm, she receives a reward drawn from
the corresponding (a priori unknown) distribution1. The goal of the decision-maker is to
maximize the cumulative reward in expectation accrued through a sequence of arm pulls,
i.e., if the process repeats for T rounds, then in each round, the decision-maker selects an
arm with the objective of maximizing the total expected reward2.

Several variations of the MAB problem have been extensively studied in the literature.
Various papers study MAB problems with additional constraints which include bandits
with knapsack constraints (Badanidiyuru et al. (2018)), bandits with budget constraints
(Xia et al. (2015)), sleeping bandits (Kleinberg et al. (2010); Chatterjee et al. (2017)), etc.
In this paper, we consider Fair-MAB, a variant of the MAB problem where, in addition
to maximizing the cumulative expected reward, the algorithm also needs to ensure that
uniformly (i.e., at the end of every round) each arm is pulled at least a pre-specified fraction
of times. This imposes an additional constraint on the algorithm we refer to as a fairness
constraint, specified in terms of a vector r ∈ Rk.

Formally, each component ri of the given vector r specifies a fairness-quota for arm i
and the online algorithm must ensure that for all time steps t (i.e. uniformly), each arm
i is pulled at least bri · tc times in t rounds. The online algorithm’s goal is to minimize
expected regret while satisfying the fairness requirement of each arm. The expected regret
in this setting, which we call r-Regret, is computed with respect to the optimal fair policy
(see Definition 4). We note that the difficulty of this problem is in satisfying these fairness
constraints at the end of every round, which in particular ensures fairness even when the
time horizon is unknown to the algorithm beforehand.

It is relevant to note that the current work contributes to the long line of work in
constrained variants of the MAB problem (Badanidiyuru et al. (2018); Kleinberg et al.
(2010); Xia et al. (2015)). The fairness constraints described above naturally capture many
real-world settings wherein the arm pulls correspond to the allocation of resources among
agents with specified entitlements (quotas). The objective of ensuring an absolute minimum
allocation guarantee to each individual is, at times, at odds with the objective of maximizing
efficiency, the classical goal of any learning algorithm. However, in many applications, the
allocation rules must consider such constraints to ensure fairness. The minimum entitlement
over available resources secures the prerogative of individuals. For concreteness, we next
present a motivating example.

1. The arms that are not pulled do not give any reward.
2. We study the standard set-up in which T is not known upfront to the online algorithm.
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The US Department of Housing and Urban Development recently sued Facebook for
engaging in housing discrimination by targeting ads based on attributes such as gender,
race, religion, etc. which are protected classes under the US law3. Facebook’s algorithm that
decides which ad should be shown to a particular user inadvertently ends up discriminating
because of the objective that it is trying to optimize. For example, if the algorithm learns
that it can generate more revenue by displaying an ad to more men than women, it would
end up discriminating against women. The proposed Fair-MAB model ensures that both
men and women are shown the ad for at least a pre-specified fraction of the total number
of ad displays, thereby preserving the fundamental right of equal access to opportunities.
In a way, the minimum fraction guarantee also provides a moral justification to the chosen
allocation rule by evaluating it to be fair under the veil of ignorance doctrine of Rawls (1971)
in which an allocation rule is considered as a hypothetical agreement among free and equal
individuals unaware of the natural capabilities and circumstantial advantages and biases
they might have, i.e., a socially agreed-upon allocation in the original position (see Freeman
(2019); Heidari et al. (2018) for a detailed discussion).

The fairness model in this work naturally captures many resource allocation situations
such as the sponsored ads on a search engine where each advertiser should be guaranteed
a certain fraction of pulls in a bid to avoid monopolization of ad space; crowd-sourcing
where each crowd-worker is guaranteed a fraction of tasks in order to induce participation;
and a wireless communication setting where the receiver must ensure a minimum quality of
service to each sender. The work by Li et al. (2019) contains a detailed discussion of these
applications. We discuss other related results on fairness in Section 2.

Our contributions: We first define the Fair-MAB problem in Section 3. Any Fair-
MAB algorithm is evaluated based on two criteria: the fairness guarantees it provides and
its r-Regret. The fairness notion that we consider requires that the fairness constraints be
satisfied after each round, and the r-Regret notion is a natural extension of the conventional
notion of regret, which is defined with respect to an optimal policy that satisfies the fairness
constraints. The uniform time fairness guarantee that we seek ensures fairness even in
horizon-agnostic case, i.e., when the time horizon T is unknown to the algorithm. We
remark that, even when the horizon T is known, the intuitive approach of pulling each arm
sufficiently many times to satisfy its fairness constraint does not guarantee fairness at the
end of each round (see Section 9, Algorithm 2).

As our primary contribution, in Section 4, we define a class of Fair-MAB algorithms,
called Fair-Learn, characterized by two parameters: the unfairness tolerance and the
learning algorithm used as a black-box. We prove that any algorithm in Fair-Learn satisfies
the fairness constraints at any time step t. Thus the fairness guarantee for Fair-Learn
holds uniformly over time, independently of the learning algorithm chosen. We note here
that our meta-algorithm Fair-Learn, allows any MAB algorithm to be plugged-in as a
black-box. One can implement this simple yet elegant framework on top of any existing
MAB algorithm to ensure fairness with quantifiable loss in terms of regret. The practical
applicability of our algorithm is a notable feature of this work.

When the learning algorithm is UCB1, we prove a sub-logarithmic r-Regret bound for the
Fair-ucb algorithm. Additionally, for sufficiently large T , we see that the Fair-ucb incurs

3. https://www.technologyreview.com/s/613274/facebook-algorithm-discriminates-ai-bias/
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constant r-Regret. We then evaluate the cost of fairness in Fair-MAB with respect to the
conventional notion of regret in Section 5. We conclude by providing detailed experimental
results to validate our theoretical guarantees in Section 7. In particular, we compare the
performance of Fair-ucb with LFG algorithm proposed in Li et al. (2019), which is the
work closest to our paper. We remark here that we obtain a much stronger fairness guarantee
that holds at any time, unlike the asymptotic fairness guarantee of LFG. We also prove a
better regret bound with finer dependence on the problem instance parameters. Section 2
provides a detailed comparison.

2. Related Work

There has been a surge in research efforts aimed at ensuring fairness in decision making
by machine learning algorithms such as classification algorithms (Agarwal et al., 2018;
Narasimhan, 2018; Zafar et al., 2017a,b), regression algorithms (Berk et al., 2017; Rezaei
et al., 2019), ranking and recommendation systems (Singh and Joachims, 2019; Beutel et al.,
2019; Singh and Joachims, 2018; Celis et al., 2018; Zehlike et al., 2017), etc. This is true
even in online learning, particularly in the MAB setting, and we discuss some relevant works
below.

Joseph et al. (2016) propose a variant of the UCB algorithm that ensures what they
call meritocratic fairness, i.e., an arm is never preferred over a better arm irrespective of
the algorithm’s confidence over the mean reward of each arm. This guarantees individual
fairness (Dwork et al., 2012) for each arm while achieving efficiency in terms of sub-linear
regret. The work by Liu et al. (2017) aims at ensuring “treatment equality", wherein similar
individuals are treated similarly, whereas Gillen et al. (2018) consider individual fairness
guarantees with respect to an unknown fairness metric.

The papers discussed above combine the conventional goal of maximizing cumulative
reward with that of simultaneously satisfying some additional constraints. Variants of the
MAB problem with added constraints have been widely studied in the literature. For
example, Badanidiyuru et al. (2018) and Immorlica et al. (2019) study the MAB problem
with knapsack constraints, where some arm-specific budget limits the number of times that
an algorithm can pull a particular arm. The works of Xia et al. (2015); Amin et al. (2012);
Tran-Thanh et al. (2014) consider the MAB problem in which there is some cost associated
with pulling each arm, and the learner has a fixed budget. The work by Lattimore et al.
(2014, 2015); Talebi and Proutiere (2018) investigates bandit optimization problems with
resource allocation constraints. We next discuss works that study the MAB problem with
fairness constraints similar to those considered in our work.

Recent work by Li et al. (2019) studies the combinatorial sleeping multi-armed bandit
problem with similar fairness constraints as those considered in our work. In addition
to proving a O(

√
T lnT ) distribution-free r-Regret bound as in Li et al. (2019), we show

a O(lnT ) r-Regret bound with finer dependence on the instance parameters. Our fairness
guarantee holds uniformly over time and hence is much stronger than the asymptotic fairness
guarantee in Li et al. (2019). Moreover, as our fairness guarantee is independent of the
learning algorithm used in Fair-Learn, it holds for the setting considered in Li et al.
(2019).
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Recent work by Celis et al. (2019) considers a personalized news feed setting, where at
any time step t, for a given context (user), the arm (i.e., ad to be displayed) is sampled
from a distribution pt over the set [k] of arms (ads), and fairness is achieved by ensuring a
pre-specified probability mass on each arm which restricts the allowable set of distributions
to a subset of the simplex. The algorithm by Celis et al. (2019), when applied the classical
stochastic multi-armed bandit setting considered in our work, ensures any-time fairness only
in expectation over the random pulls of arms by the algorithm. In contrast, our algorithm
(Theorem 5) provides a much stronger deterministic any-time fairness guarantee. Further,
we also provide an explicit trade-off (in terms of the unfairness tolerance α) between fairness
and regret. Also, the computational overhead of our algorithm is just O(1), whereas the
algorithms by Celis et al. (2019) need to solve at least one linear program in each round.
We also note that our model can directly be adapted to capture the setting in (Celis et al.,
2019).

3. The Model

In this section, we formally define the Fair-MAB problem, the notion of fairness, and the
concept of r-regret used in this work.

3.1 The Fair-MAB Problem

An instance of the Fair-MAB problem is a tuple 〈T, [k], (µi)i∈[k], (ri)i∈[k]〉, where T is the
time horizon, [k] = {1, 2, . . . , k} is the set of arms, µi ∈ [0, 1] represents the mean of the
reward distribution Di associated with arm i, and (ri)i∈[k] represents the fairness constraint
vector. In the Fair-MAB setting, the fairness constraints are endogenously specified to the
algorithm in the form of a vector r = (r1, r2, . . . , rk) where ri ∈ [0, 1

k−1), for all i ∈ [k], and
consequently

∑
i∈[k] ri < 1 and ri denotes the minimum fraction of times an arm i ∈ [k]

has to be pulled in T rounds, for any T . Though our results hold for ri ∈ [0, 1
k−1), we

are primarily interested in the case where ri ∈ [0, 1/k) to be consistent with the notion
of proportionality wherein, guaranteeing any arm a fraction greater than its proportional
fraction, which is 1/k, is unfair in itself. However, we show that our proposed framework
satisfies the same fairness guarantee even with ri ∈ [0, 1

k−1) for all i ∈ [k]. We remark here
that the problem of achieving fairness guarantee with ri ≥ 1/(k−1) for some i remains open
(see Section 8 for discussion).

In each round t, a Fair-MAB algorithm pulls an arm it ∈ [k] and collects the reward
Xit
∼ Dit . We assume that the reward distributions are Bernoulli(µi) for each arm i ∈

[k]. The results in this work can be easily extended to a MAB problem with general
distributions supported on [0,1] via reduction to a MAB problem with Bernoulli rewards
using the extension provided in Agrawal and Goyal (2012). Note that the true value of
µ = (µ1, µ2, . . . , µk) is unknown to the algorithm. Throughout this paper we assume without
loss of generality that µ1 > µ2 > . . . > µk and arm 1 is called the optimal arm. Next, we
formalize the notions of fairness and regret used in the paper.
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3.2 Notions of Fairness

Let Ni,t denote the number of times arm i is pulled in t rounds. We first present the
definition of fairness proposed by Li et al. (2019) and then define the stronger notion of
fairness considered in this paper.

Definition 1 (Li et al. (2019)) A Fair-MAB algorithm A is called (asymptotically) fair
if for all i ∈ [k] we have

lim inf
t→∞

EA

[
ri −

Ni,t

t

]
≤ 0.

We refer to the above notion of fairness as asymptotic fairness. Note that this fairness
guarantee is weak as it holds asymptotically and only in expectation. In other words,
this fairness notion tolerates prohibitively high value of unfairness in the system for any
reasonably large values of time-horizons. We now define a much stronger notion of fairness
that holds over all rounds and is parameterized by the unfairness tolerance allowed in the
system which is denoted by a constant α ≥ 0.

Definition 2 Given an unfairness tolerance α ≥ 0, a Fair-MAB algorithm A is said to be
α-fair if britc−Ni,t ≤ α for all t ≤ T , for all arms i ∈ [k], and for any time horizon T ≥ 1.

In particular, if the above guarantee holds for α = 0, then we call the Fair-MAB algo-
rithm fair. Note that α-fairness guarantee holds uniformly over the time horizon and for
any sequence of arm pulls (it)t≤T by the algorithm. Hence, it is much stronger than the
asymptotic fairness guarantee, which only guarantees fairness asymptotically (Definition 1).
We also remark that α does not depend on the time horizon or the fairness vector and, for
any α ≥ 0, α-fairness (Definition 2) implies asymptotic fairness (Definition 1).

3.3 Notions of Regret

In the MAB setting, the optimal policy in hindsight is the one that pulls the optimal arm
in every round. The regret of a MAB algorithm is defined as the difference between the
cumulative reward of this optimal policy and the algorithm.

Definition 3 The expected regret of a MAB algorithm A after T rounds is defined as:

RA(T ) =
∑
i∈[k]

∆i · E[Ni,T ] (1)

Here, ∆i = µ1−µi and Ni,T denotes the number of pulls of an arm i ∈ [k] by A in T rounds.

The above notion of regret does not adequately quantify the performance of a Fair-MAB
algorithm as the optimal policy here does not account for the fairness constraints. To see
this, consider a two-armed bandits instance where arm 1 is the best arm and r1 = r2 = 1/3.
Further, let A be an algorithm that pulls arm 2 in rounds that are multiples of 3 and pulls
arm 1 in the other rounds. Then, it is easy to see that A is fair. Further, note that no other
fair algorithm can have a higher expected reward than A, since A pulls the sub-optimal
arm (arm 2) exactly the number of times required to satisfy its fairness constraint. But the
expected cumulative regret of A according to Definition 3 is in fact O(T ). This motivates
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the need to define a suitable notion of regret for the Fair-MAB problem, which we call
r-Regret , that takes into account the fairness constraints. We begin with the fairness-aware
optimal policy that we consider as a baseline.

Observation 1 A Fair-MAB algorithm A is optimal if and only if A satisfies the following:
if briT c − α > 0 then Ni,T = briT c − α, else Ni,T = 0, for all i 6= 1.

From Observation 1, it follows that an optimal Fair-MAB algorithm ensures that a sub-
optimal arm is only pulled to satisfy its fairness constraint. Hence, an optimal Fair-MAB
algorithm that knows the value of µ must play sub-optimal arms exactly bri ·T c−α times in
order to satisfy the fairness constraint and play the optimal arm (arm 1) for the rest of the
rounds, that is, for T−

∑
i 6=1bri ·T c+(k−1)α rounds. The regret of an algorithm is compared

with such an optimal policy that satisfies the fairness constraints in the Fair-MAB setting.

Definition 4 Given a fairness constraint vector r = (r1, r2, . . . , rk) and the unfairness tol-
erance α ≥ 0, the fairness-aware r-Regret of a Fair-MAB algorithm A is defined as:

RrA(T ) =
∑
i∈[k]

∆i ·
(
E[Ni,T ]−max

(
0, bri · T c − α

))
(2)

The max(0, bri · T c − α) in the above definition accounts for the number of pulls of arm i
made by the optimal algorithm to satisfy its fairness constraint. Also, the r-Regret of an
algorithm that is not α-fair could be negative but this is an infeasible solution. A learning
algorithm that pulls a sub-optimal arm i for more than briT c−α rounds, incurs a regret of
∆i = µ1−µi for each extra pull. The technical difficulties in designing an optimal algorithm
for the Fair-MAB problem are the conflicting constraints on the quantity Ni,T − briT c for
a sub-optimal arm i 6= 1: at any time T , for the algorithm to be α-fair, we want Ni,T to
be at least briT c − α whereas to minimize the r-Regret we require Ni,T to be as small as
possible.

4. A Framework for Fair-MAB Algorithms

In this section, we provide the framework of our proposed class of Fair-MAB algorithms.
Our meta-algorithm Fair-Learn, which is given in Algorithm 1, defines a class of Fair-
MAB algorithms characterized by two parameters: α, the unfairness tolerance allowed in
the system, and Learn(·), the MAB algorithm used as a black-box. The simplicity of
this framework allows for any standard MAB algorithm to be adapted into a Fair-MAB
algorithm.

The key result in this work is Theorem 5, which guarantees that Fair-Learn is α-fair
(see Definition 2) independent of the choice of the learning algorithm Learn(·). The two
key properties that contribute to the technical difficulty of this result are: 1) the fairness
guarantee holds uniformly over the time horizon even when the time horizon is not known
beforehand, and 2) it holds for any sequence of arm pulls by the algorithm and not just in
expectation over the arm pulls by the MAB algorithm.

Theorem 5 For a given α ≥ 0 and for any given fairness constraint vector r = (r1, r2, . . . , rk)
where ri ∈ [0, 1

k−1) for all i ∈ [k] and
∑

i∈[k] ri < 1, Fair-Learn is α-fair irrespective of
the choice of the learning algorithm Learn(·).

7
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Algorithm 1: Fair-Learn
Input: [k], (ri)i∈[k], α ≥ 0, Learn(·)

1 Initialize:
2 Ni,0 = 0 for all i ∈ [k]
3 Si,0 = 0 for all i ∈ [k], where Si,t = total reward of arm i in t rounds
4 for t = 1, 2, . . . do
5 Define : A(t) =

{
i
∣∣ ri · (t− 1)−Ni,t−1 > α

}
6 Pull arm it =

{
arg maxi∈[k]

(
ri · (t− 1)−Ni,t−1

)
IfA(t) 6= ∅

Learn(Nt, St) Otherwise
7 Update parameters Nt and St
8 end

The proof of Theorem 5 is given in Section 6. The guarantee in the above theorem also
holds when α = 0 and hence Fair-Learn with α = 0 is fair. In particular, when the
learning algorithm Learn(·) = UCB1, we call this algorithm Fair-ucb. We provide the
r-Regret bound for Fair-ucb.

Theorem 6 The r-Regret of Fair-ucb is given by

RrFair-ucb(T ) ≤
(

1 +
π2

3

)
·
∑
i∈[k]

∆i +
∑

i∈S(T,α)
i 6=1

∆i ·
(

8 lnT

∆2
i

−
(
ri · T − α

))

where S(T, α) =
{
i ∈ [k]

∣∣ α > ri · T − 8 lnT

∆
2
i

}
. In particular, for large enough T , we get

RrFair-ucb(T ) ≤
(

1 +
π2

3

)
·
∑
i∈[k]

∆i

Note that the upper bound presented in Theorem 6 is a constant r-Regret guarantee.
Further, observe that if ri > 0 for all suboptimal arms i,4 any algorithm that uses a consistent
estimator5 of mean rewards to select the arm to be pulled, achieves a constant asymptotic
r-Regret guarantee. To see this, note that after large enough number of time steps t,
the estimate will be close to true mean by virtue of the fairness guarantee to be satisfied.
Hence, after time step t, the algorithm will pull suboptimal arms only to satisfy the fairness
constraints without incurring any additional r-Regret.

The choice of UCB1 in our framework is motivated by its any-time optimality guarantee.
The proof of Theorem 6 is presented in Section 6. Observe that the proposed framework is
very easy to implement on top of the in-place learning algorithms and hence can easily be
made operational in practice. We now define the notion of distribution-free regret and then
show that the distribution-free regret bound of Fair-ucb matches that of UCB1.

4. Note here that the algorithm does not know the true qualities of the arms beforehand.
5. A consistent estimator is defined as the sequence of estimates that converges in probability to the true

value. Empirical mean, upper confidence bound, Thompson sampling estimate, lower confidence bound
are few examples of consistent estimators of true means of reward distributions.
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Definition 7 (Slivkins et al. (2019)) Let the regret bound of Alg be denoted byRAlg(T ) =
C · f(T ), where f(.) does not depend on the reward distribution parameters (µi)i, and the
‘constant’ C does not depend on T. Such a regret bound is called distribution-free (or instance-
independent) if C does not depend on (µi)i.

We conclude this section by stating the distribution-free r-regret of Fair-ucb in Theorem
8 (proof in Section 6).

Theorem 8 The distribution-free r-Regret of Fair-ucb is O(
√
T lnT ).

This shows that the worst-case regret of Fair-ucb, which is independent of the under-
lying problem instance, is sub-linear in T and in fact matches the distribution-free regret
bound of UCB1 itself.

5. Cost of Fairness

Our regret guarantees so far have been in terms of r-Regret. Note that the notion of fairness
considered in this work requires that the sub-optimal arms be pulled some pre-specified min-
imum fraction of the times. Naturally, an algorithm that satisfies such fairness constraints
may perform worse (in terms of the expected cumulative reward) than an algorithm that
does not take such fairness considerations into account (for ex. UCB1). This leads us to
evaluate the cost of fairness in terms of the conventional notion of regret. In particular,
we show the trade-off between conventional regret and fairness in terms of the unfairness
tolerance . The cost of fairness quantifies the trade-off in regret due to the introduction of
fairness constraints, which could result in a sub-optimal arm being pulled significantly more
number of times than that required to estimate its mean reward with sufficient confidence.
The following theorem shows that, based on some instance-dependent threshold, the cost of
fairness is either logarithmic or linear in T .

Theorem 9 The expected regret of Fair-ucb is given by

R(T ) ≤
∑

i∈S(T,α)

(ri · T − α) ·∆i +
∑

i∈S(T,α)
i 6=1

8 lnT/∆i +
∑
i∈[k]

(1 + π2/3) ·∆i

Here, S(T, α) = {i | α > ri · T − 8 lnT/∆2
i }.

Theorem 9 captures the explicit trade-off between regret and fairness in terms of the
unfairness tolerance parameter α. If S(T, α) = ∅, we obtain O(lnT ) regret. This implies
that if α > riT − 8 lnT/∆2

i for all i 6= 1, then the regret is O(lnT ). However, if S(T, α) 6= ∅
then for each i ∈ S(T, α), additional regret equal to riT − α is incurred in which results in
O(T ) regret. We complement these results with simulations in Section 7.

6. Proof of Theoretical Results

This section provides the theoretical analysis of our results.

9
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6.1 Fairness guarantee of Fair-learn

In this section, we show that the Fair-Learn framework achieves α-fairness guarantee
irrespective of the choice of learning algorithm ( Theorem 5 ). We begin with an overview
of the proof. We will refer to the quantity rit − Ni,t at the end of t rounds as the fairness
potential of the arm at round t+ 1. First, for a given round t, we look at the (hypothetical)
partition (induced by the previous pulls of Fair-learn) of the set of arms satisfying the
fairness constraint. Each set in this partition contains the arms whose fairness potential at
round t+1 lies within a specified range (see Figure 1). Theorem 5 is proved by showing that
at any time step t and for any history of pulls by Fair-learn, each arm is contained in one
of the sets constituting the partition. In particular, the theorem follows using Lemma 10,
in which we prove that the number of arms in interesting sets of this partition can be
(non-trivially) upper bounded. Lemma 10 is proved inductively using Observations 2 and 3.
These two observations together determine how the partition (of arms) changes between two
consecutive time steps, and their proof crucially uses the fact that fair-learn pulls the
arm with the largest fairness potential. We now give the formal proof.

Theorem 5 For a given α ≥ 0 and for any given fairness constraint vector r = (r1, r2, . . . , rk)
where ri ∈ [0, 1

k−1) for all i ∈ [k] and
∑

i∈[k] ri < 1, Fair-Learn is α-fair irrespective of
the choice of the learning algorithm Learn(·).

Proof After each round t (and before round t + 1), consider the sets, M1,t,M2,t, . . . ,Mk,t,
as defined below:

• For j = 1, 2, · · · k − 1,

Mj,t =

{
i ∈ [k] : α+

(k − 1)− j
k − 1

≤ rit−Ni,t < α+
k − j
k − 1

}

• Mk,t =

{
i ∈ [k] : rit−Ni,t < α

}
Let Vj,t = ]j`=1M`,t, for all j ∈ [k]. The following lemma guarantees the fairness of the
algorithm and is at the heart of the proof. The proof of the theorem is immediate from the
proof of the lemma.

Lemma 10 For t ≥ 1, we have

1. Vk,t = [k]

2. |Vj,t| ≤ j, for all j ∈ [k]

From Lemma 10 we have that all the arms i ∈ [k] satisfy rit−Ni,t < α+ 1 for all t ≥ 1,
which implies britc −Ni,t ≤ α. This completes the proof of the theorem. �

Proof of Lemma 10: We begin with a few observations and then prove the lemma by
induction. First, we note that, if an arm is pulled by the algorithm in some round t, then
it moves to either Mk,t+1 or Mk−1,t+1 at time step t+ 1 irrespective of its position at time
step t. More specifically, we have the following observation.

10
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α

α+ 1
k−1

α+ 2
k−1

α+ k−3
k−1

α+ k−2
k−1

α+ 1

Mk−1,t

Mk−2,t

M2,t

M1,t

Mk−1,t

Mk−2,t

M2,t

M1,t

Mk,t

Figure 1
A k-partition of the set of arms after t rounds is given by {Mi,t}

k
i=1. Here, Mk,t is the set of arms whose

fairness potential after round t is strictly less than α and Mi,t for 1 ≤ i < k is the set of arms whose
fairness potential lies in range [α+ 1− i

k−1
, α+ 1− i−1

k−1
).

Observation 2 Let i be the arm pulled by Fair-Learn in round t+ 1.

1. if i ∈Mk,t, then i ∈Mk,t+1

2. if i ∈Mj,t for some j ∈ [k − 1], then i ∈Mk−1,t+1 ]Mk,t+1

Proof Case 1: i ∈Mk,t =⇒ rit−Ni,t < α. Then after round t+ 1, we have

ri(t+ 1)−Ni,t+1 = rit+ ri −Ni,t − 1 (3)
< α− (1− ri) (4)
< α (Since 1− ri > 0)

=⇒ i ∈Mk,t+1

11
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Case 2: i ∈ Mj,t for some j ∈ [k − 1] =⇒ rit −Ni,t < α + k−j
k−1 . Then after round t + 1,

we have

ri(t+ 1)−Ni,t+1 = rit+ ri −Ni,t − 1 (5)

< α+
k − j
k − 1

− (1− ri) (6)

= α+
1− j
k − 1

+ ri (7)

≤ α+ ri < α+
1

k − 1
(Since ri < 1

k−1)

=⇒ i ∈Mk−1,t+1 ]Mk,t+1 (8)

Next, consider the arms that are not pulled in round t. If an arm i is in set Mj,t (for some
j ≥ 2) in round t and is not pulled then in round t+ 1 it either stays in set Mj,t+1 or moves
to Mj−1,t+1. This leads to our next observation.

Observation 3 Let i ∈ [k] be any arm that is not pulled at time step t+ 1 and i ∈Mj,t for
some j ∈ [2, k], then i ∈Mj,t+1 ]Mj−1,t+1.

Proof Case 1: i ∈Mk,t =⇒ rit−Ni,t < α. Then after round t+ 1, we have

ri(t+ 1)−Ni,t+1 = rit−Ni,t + ri (As Ni,t+1 = Ni,t)

< α+ ri < α+
1

k − 1
(Since ri < 1

k−1)

=⇒ i ∈Mk−1,t+1 ]Mk,t+1

Case 2: i ∈ Mj,t for some j ∈ [2, k − 1] =⇒ α + (k−1)−j
k−1 ≤ rit − Ni,t < α + k−j

k−1 . Then
after round t+ 1, we have

ri(t+ 1)−Ni,t+1 = rit−Ni,t + ri

< α+
k − j
k − 1

+ ri

< α+
k − j
k − 1

+
1

k − 1

= α+
k − j + 1

k − 1
,

and ri(t+ 1)−Ni,t+1 = rit−Ni,t + ri ≥ α+ (k−1)−j
k−1 + ri ≥ α+ (k−1)−j

k−1

0 =⇒ i ∈Mj−1,t+1 ]Mj,t+1

Finally, observe that at any round t, there is always an arm whose fairness potential is less
than or equal to α.

Observation 4 For all t ≥ 1 we have Mk,t 6= ∅

12
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Proof It is easy to see that Mk,1 is non-empty. In particular, arm pulled at time step t = 1
is in Mk,1. We now show that Mk,t 6= ∅ for t ≥ 2. For contradiction, let, at some time
step t, we have rit − Ni,t ≥ 0 for all i ∈ [k] this implies that

∑k
i=1 rit − Ni,t ≥ 0 =⇒∑k

i=1 rit ≥
∑k

i=1Ni,t = t =⇒
∑k

i=1 ri ≥ 1. The last inequality contradicts the assumption
that

∑
i∈[k] ri < 1.

With above observations we complete the proof of the lemma using induction.
Induction base case (t = 1): Let i1 be the arm pulled at t = 1. Then

ri1t−Ni1,1
= ri1 − 1 < 0 ≤ α

=⇒ i1 ∈Mk,1

For all i 6= i1, we have rit − Ni,1 = ri <
1

k−1 ≤ α + 1
k−1 =⇒ i ∈ Mk,1 ]Mk−1,1. Hence,

Vk,1 = [k], |Vk−1,1| ≤ k− 1, and |Vj,1| = 0 for all j ∈ [k− 2]. Thus, conditions (1) and (2) of
the lemma hold.
Inductive Step: Assuming the conditions in the lemma hold after round t, we show that
they hold after round t+ 1.
Case 1: it+1 ∈ Mk,t. From Observation 2, we know it+1 ∈ Mk,t+1. As it+1 ∈ Mk,t,
from Observation 3, we have for any arm i 6= it+1 that i ∈ Mk,t+1 ] Mk−1,t+1. Hence,
Vk,t+1 = [k] and |Vj,t+1| = 0 for all j ∈ [k − 2]. Furthermore from Observation 4 we have
|Vk−1,t+1| ≤ k − 1. Thus, Conditions (1) and (2) in the lemma hold after round t+ 1.
Case 2: it+1 ∈Ma,t, for some a ∈ [k − 1].

it+1 ∈Ma,t =⇒ it+1 ∈ Va,t
=⇒ |Vj,t| = 0 for all j ∈ [1, a− 1] if a > 1 (9)

From Observation 2, we know it+1 ∈Mk−1,t+1]Mk,t+1. Thus, from Observation 3, we infer
that Vj−1,t+1 ⊂ Vj,t \ {it+1} for all j ∈ [2, k − 1]. Also,

|Vj,t \ {it+1}| ≤ j − 1 for all j ∈ [a, k − 1]

=⇒ |V`,t+1| ≤ ` for all ` ∈ [a− 1, k − 2] (10)

Further, note that {i : ri(t + 1) −Ni,t+1 > α + 1} = ∅. This is true as, from induction
argument, we have {i : rit−Ni,t > α+ 1} = ∅ and if |M1,t| is nonempty6 then M1,t = {it+1}
and as ri < 1

k−1 we have for all i 6= it+1 that {i : rit−Ni,t ≤ α+ 1} = ∅ . Hence, Conditions
(1) of the lemma hold after round t+1. Condition (2) is established by Equation 9, Equation
10 and Observation 4 together with Condition (1).

6.2 Distribution Dependent r-Regret guarantee of Fair-Learn

The regret analysis of Fair-ucb builds on the regret analysis of UCB1 which we give in
the Section 9.3.1. In Section 9.3.1 we also introduce the notations used in this proof.

6. If M1,t = ∅ then we are done.

13
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Theorem 6 The r-Regret of Fair-ucb is given by

RrFair-ucb(T ) ≤
(

1 +
π2

3

)
·
∑
i∈[k]

∆i +
∑

i∈S(T,α)
i 6=1

∆i ·
(

8 lnT

∆2
i

−
(
ri · T − α

))

where S(T, α) =
{
i ∈ [k]

∣∣ α > ri · T − 8 lnT

∆
2
i

}
. In particular, for large enough T , we get

RrFair-ucb(T ) ≤
(

1 +
π2

3

)
·
∑
i∈[k]

∆i

Proof The UCB1 estimate of the mean of arm i denoted as µ̄i(t) = µ̂i,Ni,t−1
(t−1)+ct,Ni,t−1

,
where µ̂i,Ni,t−1

(t− 1) is the empirical estimate of the mean of arm i when it is pulled Ni,t−1

times in t− 1 rounds and ct,Ni,t−1
=
√

2 ln t
Ni,t−1

is the confidence interval of the arm i at round
t. Similar to the analysis of the UCB1 algorithm, we upper bound the expected number
of times a sub-optimal arm is pulled. We do this by considering two cases dependent on
the number of times the sub-optimal arm is required to be pulled for satisfying its fairness
constraint. Note, from the proof of UCB1 (Theorem 12 in Section 9), that the expected
number of pulls of any sub-optimal arm i is at-most O(8 lnT

∆
2
i

). We have following two cases.
.
Case 1: Let i 6= 1 and ri · T − α ≥ 8 lnT

∆
2
i

. Then

E[Ni,T ] ≤
(
ri · T − α

)
+

T∑
t=1

1{it = i,Ni,t−1 ≥ ri · T − α}

≤
(
ri · T − α

)
+

∞∑
t=1

t∑
s1=1

t∑
si=ri·T−α

1

{
µ̂1,s1

(t) + ct,s1 ≤ µ̂1,si
(t) + ct,si

}
.

(Follows from Section 9 , Theorem 12)

Since ri · T −α ≥ 8 lnT

∆
2
i

, it follows from the proof of Theorem 12 in Section 9 that E[Ni,T ] ≤

ri · T − α+
(

1 + π
2

3

)
. Hence, E[Ni,T ]−

(
ri · T − α

)
≤
(

1 + π
2

3

)
.

Case 2: Let i 6= 1 and ri · T − α < 8 lnT

∆
2
i

Then E[Ni,T ] ≤ 8 lnT

∆
2
i

+
(

1 + π
2

3

)
. Hence

E[Ni,T ]−
(
ri · T − α

)
≤ 8 lnT

∆2
i

+
(

1 +
π2

3

)
−
(
ri · T − α

)
Suppose S(T, α) =

{
i ∈ [k]

∣∣ α > ri · T − 8 lnT

∆
2
i

}
.

Then from the two cases discussed above, we can conclude that

RrFair-ucb(T ) ≤
(

1 +
π2

3

)
·
∑
i∈[k]

∆i +
∑

i∈S(T ),i 6=1

∆i ·
(

8 lnT

∆2
i

−
(
ri · T − α

))
Hence, RrFair-ucb(T ) = O(

∑
i 6=1

lnT
∆i

).
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6.3 Distribution-free r-Regret bound for Fair-ucb

Theorem 8 The distribution-free r-Regret of Fair-ucb is O(
√
T lnT ).

Proof Recall from Definition 4 our expression for the r-Regret of a Fair-MAB algorithm
A. We know,

E[RrA(T )] =
∑
i∈[k]

∆i ·
(
E[Ni,T ]−max

(
0, bri · T c − α

))
≤ k +

∑
i∈[k]

∆i ·
(
E[Ni,T ]−max

(
0, ri · T − α

))

Note that, given any instance with k arms, µ = (µ1, µ2, . . . , µk), and a constant α ≥ 0,

E[RrA(T )] ≤ max
ri∈[0,1]

k
,
∑

i∈[k] ri<1

[
k +

∑
i∈[k]

∆i ·
(
E[Ni,T ]−max

(
0, ri · T − α

))]
≤ k +

∑
i∈[k]

∆i · E[Ni,T ]

The last inequality follows from the fact that ri ≥ 0 for all i ∈ [k] and that α is a constant.
This implies that the r-regret for any instance with given value of r = (r1, r2, . . . , rk) is
upper bounded by the regret of the same instance for r1 = r2 = . . . = rk = 0. But when
r1 = r2 = . . . = rk = 0, Fair-ucb is the same as UCB1. Finally, the said result follows
from the distribution-free regret bound of UCB1 (see Section 9.3.2).

6.4 Cost of Fairness in the MAB Problem

Theorem 9 The expected regret of Fair-ucb is given by

R(T ) ≤
∑

i∈S(T,α)

(ri · T − α) ·∆i +
∑

i∈S(T,α)
i 6=1

8 lnT/∆i +
∑
i∈[k]

(1 + π2/3) ·∆i

Here, S(T, α) = {i | α > ri · T − 8 lnT/∆2
i }.

Proof From Section 3, Definition 3 we know that RA(T ) =
∑

i∈[k] ∆i · E[Ni,T ] and hence,
we can bound the expected regret of an algorithm by bounding the expected number of
pulls of a sub-optimal arm. In particular, we want to bound the quantity E[Ni,T ] for every
sub-optimal arm i 6= 1. We do this by considering two cases dependent on how many times
the arm i has been pulled to satisfy the fairness constraint, i.e. on how large is the quantity
ri · T − α.
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Case 1: Let i 6= 1 and ri · T − α ≥ 8 lnT

∆
2
i

. Then

E[Ni,T ] ≤ (ri · T − α) +

T∑
t=1

1{it = i,Ni,t−1 ≥ ri · T − α}

≤ (ri · T − α) +

∞∑
t=1

t∑
s1=1

t∑
si=ri·T−α

1

{
µ̂1,s1

(t) + ct,s1 ≤ µ̂1,si
(t) + ct,si

}
(Follows from Section 9.3.1)

Since (ri · T − α) ≥ 8 lnT

∆
2
i

, it follows from the proof of Theorem 12 that E[Ni,T ] ≤ (ri · T −

α) +
(

1 + π
2

3

)
.

Case 2: Let i 6= 1 and ri · T − α < 8 lnT

∆
2
i

Then the proof of Theorem 12 can be appropriately adapted to show that E[Ni,T ] ≤ 8 lnT

∆
2
i

+(
1 + π

2

3

)
. Hence

ri · T − α ≤ E[Ni,T ] ≤ 8 lnT

∆2
i

+
(

1 +
π2

3

)
Then from the two cases discussed above, we can conclude that

R(T ) ≤
∑
i∈S(T )

(ri · T − α) ·∆i +
∑
i/∈S(T )
i 6=1

(
8 lnT

∆i

)
+
∑
i∈[k]

(
1 +

π2

3

)
·∆i

where S(T, α) =
{
i ∈ [k]

∣∣ α > ri · T − 8 lnT

∆
2
i

}
.

7. Experimental Results

In this section, we show the results of simulations that validate our theoretical findings.
First, we represent the cost of fairness by showing the trade-off between regret and fairness
with respect to the unfairness tolerance α. Second, we evaluate our algorithms’ performance
in terms of r-Regret and fairness guarantee by comparing them with the algorithm by Li
et al. (2019), called Learning with Fairness Guarantee (LFG), as a baseline. We discuss the
rationale behind the choice of instance parameters in Section 9.2.

Trade-off between Fairness and Regret: For the experiments in Figure 2a, we
consider a Fair-MAB instance with k = 10, µ1 = 0.8, and µi = µ1 − ∆i, where ∆i =
0.01i, and r = (0.05, 0.05, . . . , 0.05) ∈ [0, 1]k. We show the results with regret computed
over T = 106 time steps. Figure 2a shows the trade-off between regret in terms of the
conventional regret and maximum fairness violation equal to maxi∈[k]rit−Ni,t, with respect
to α, and this in particular captures the cost of fairness. As can be seen, the regret decreases,
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and maximum fairness violation increases respectively as α increases till a threshold for α
is reached. For values of α less than this threshold, the fairness constraints cause some
sub-optimal arms to be pulled more than the number of times required to determine its
mean reward with sufficient confidence. On the other hand, for values of α more than
this threshold, the regret reduces drastically, and we recover logarithmic regret as could be
expected from the classical UCB1 algorithm. Note that the threshold for α is problem-
dependent.

Next, in Figure 2b, we consider Fair-MAB instance with k = 10, µ = (0.8, 0.75, 0.7,
0.6, 0.5, 0.4, 0.3, 0.2, 0.15, 0.1), and r = (0.05, . . . , 0.05). Note that, to highlight our results in
respective settings, we use a different µ vectors in Figures 2a and 2b while keeping the other
instance parameters the same. Here, we show how the cumulative regret varies as α takes
different values. As expected, the cumulative regret decreases as the unfairness tolerance α
increases.

(a) Cost of Fairness (b) Variation in Regret with α

Figure 2
Figure (a) captures the trade-off between the cumulative regret at T = 10

6 and the unfairness tolerance α.
Figure (b) shows the growth of cumulative regret over T = 10

5 rounds for different values of α.

Comparison of Regret Guarantees: We now compare the r-Regret guarantee of
Fair-ucb with other algorithms. The work closest to ours is by Li et al. (2019) and their
algorithm, which is called Learning with Fairness Guarantee (LFG), is used as a baseline in
the following simulation results. The simulation parameters that we consider for comparing
r-Regret are the same as in Figure 2a. Figure 3a shows the plot of time vs. r-Regret for
Fair-ucb and LFG. Note that Fair-ucb and LFG perform comparably in terms of the
r-Regret suffered by the algorithm. Also, the simulation results validate our theoretical
result of logarithmic r-Regret bound. Further, in Figure 3b, we compare the performance of
Fair-ucb with Fair-Thompson Sampling (Fair-TS). Fair-TS is an instance of Fair-Learn
where the black-box learning algorithm is chosen to be Thompson Sampling Thompson
(1933). As in the MAB problem without fairness constraints, the fair variant of Thompson
Sampling also converges faster than UCB but provides a comparable r-Regret guarantee in
order terms.

We next compare fairness guarantee of Fair-ucb with that of LFG. We consider an
instance with k = 3, µ = (0.7, 0.5, 0.4), r = (0.2, 0.3, 0.25) and, α = 0. Figure 4a shows
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(a) r-Regret : Fair-UCB vs. LFG (b) r-Regret : Fair-UCB vs. Fair-TS

Figure 3
In Figure (a), we compare the r-Regret of Fair-ucb and LFG over T = 10

6 rounds. In Figure (b), we
compare the r-Regret of Fair-ucb and Fair-TS over T = 8× 10

4. We see that Fair-TS converges faster
than Fair-ucb, similar to their respective variants for the MAB problem without fairness constraints.

The cumulative regret is plotted on a logarithmic scale.

the plot of time vs. maximum fairness violation in terms of the number of arm pulls, i.e.,
maxi∈[k] rit − Ni,t. Observe that the fairness guarantee of Fair-ucb holds uniformly over
the time horizon T . On the other hand, the fairness violation of LFG can increase up to a
significantly large value as they only provide an asymptotic fairness guarantee. This implies
that, in the initial rounds, the algorithm could be unfair to some arms. In Figure 4b we plot
maxi∈[k] ri−Ni,t/t, which is the per round fairness violation. For Fair-ucb (and any other
algorithm in Fair-Learn ), this quantity immediately approaches zero, whereas for LFG
it only asymptotically goes to zero.

Figure 4a only shows the plot over T = 200 time steps to provide a better contrast in
the fairness guarantees of Fair-ucb (or any algorithm in Fair-Learn) and LFG. Figure
4b is plotted over T = 105 to depict the asymptotic fairness guarantee of Li et al. (2019).
As the red curve in Figure 4b goes to zero, the red curve in Figure 4a plateaus (not shown
in the figure).To summarize, the simulation results reaffirm our theoretical guarantees for
both fairness and r-Regret of Fair-Learn in general, and Fair-ucb in particular.

Periodicity Property of allocation: In Figure 5a, we observe that the allocation
returned by the proposed algorithm, Fair-Learn, satisfies a certain periodicity property.
That is, any arm i with ri > 0 is allocated exactly one round in d1/rie number of rounds
after a sufficiently large time Ti. We consider a Fair-MAB instance with k = 5 and
reward distributions are Bernoulli with means µ = (0.9, 0.5, 0.3, 0.1, 0.1), ri = 0.01 for all
i and T = 2.5 × 104. We observe that after a certain Ti, when the optimal arm has been
identified with high enough confidence, the sub-optimal arm i is only pulled to satisfy its
fairness constraint. That is, in any time window of size d 1

ri
e, arm i is pulled exactly once

by the algorithm. We note that the time Ti depends on the sub-optimality of the arm. The
arms with lower values of mean rewards observe periodic allocations sooner than others i.e.
Ti > Tj for i > j (since we have assumed µ1 > µ2 > . . . > µk). This is expected as the arms
with lower mean rewards can be separated from the optimal arms with fewer samples.
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(a) Fairness Violation (b) Fairness Convergence

Figure 4
Figure (a) shows the number of rounds in which fairness is violated over time. Figure (b) shows the

fraction of rounds in which fairness is violated over time. The two figures are complementary to each other
since the red curve in Figure (a) will plateau after some number of rounds (>20000, not shown in the plot

for better resolution) which is confirmed by the red curve asymptotically going to zero in Figure (b).

Note that in many real-world applications, it is important to spread out the allocation of
opportunities evenly over time. That is, no individual should be starved of opportunities for
a long period of time. However, Fair-Learn may not provide this guarantee. In particular,
arm 2 is allocated only 9 rounds in the period starting from round 5000 to round 15000.
We leave the design of an algorithm that guarantees the uniform allocations over time as an
interesting future direction.

As proven in Theorem 5, Fair-Learn is α-fair when ri ∈ [0, 1/(k−1)) for all i ∈ [k] and∑
i∈[k] ri < 1. We next show via simulations that, for some instances, when there exists an

arm i ∈ [k] with ri > 1/(k−1), Fair-Learn may not be α-fair. Figure 5b provides one such
instances where the Y -axis shows the value of rit −Ni,t for the top-3 arms in terms of the
fairness violation value, and the X-axis shows the time steps. Recall that for Fair-Learn
to be α-fair, we should have rit−Ni,t < α+ 1. We consider the following instance: k = 12
and r = (0.3, 0.3, 0.3, 0.01 repeated 9 times) with µi = (0.8 − i ∗ 0.001). It can be noted
in the simulations that, given an unfairness tolerance α (= 0 in this case), even though
Fair-Learn is not α-fair, it is in fact (α + 1)-fair i.e. rit − Ni,t < 2 = ((α + 1) + 1). We
observed this behaviour in all other instances we considered for this simulation. This leads
us to conjecture that for a general fairness constraint vector r ∈ [0, 1)k with

∑
i∈[k] ri < 1,

Fair-Learn is in fact (α+ 1)-fair, which is still an extremely strong fairness guarantee.

8. Discussion and Future Work

The constraints considered in this paper capture fairness by guaranteeing a minimum fraction
of pulls to each arm at all times. There are many situations where such fairness constraints
are indispensable, and in such cases the r-Regret notion compares the expected loss of any
online algorithm with the expected loss of an optimal algorithm that also satisfies such
fairness constraints. An important feature of our proposed meta algorithm Fair-Learn is
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(a) Periodicity of Fair-Learn (b) Counter Example for General r

Figure 5
Figure (a) shows the periodic nature of Fair-Learn, and Figure (b) demonstrates one instance where,

given that some ri > 1/k − 1, Fair-Learn is not α-fair.

the uniform time fairness guarantee that it provides irrespective of the learning algorithm
used. We also elucidate the cost of imposing such fairness constraints by evaluating the
trade-off between the conventional regret and fairness in terms of an unfairness tolerance
parameter. Additionally, we also provide detailed simulations to validate our theoretical
results with respect to the fairness guarantee of Fair-Learn and regret guarantee of Fair-
ucb. Finally, with extensive simulations, some important observations are drawn about the
periodicity of the allocation returned by the Fair-Learn framework.

Notions of fairness such as disparate impact, statistical parity, equalized odds have been
extensively studied in the machine learning literature (see Barocas et al. (2019)). Incorpo-
rating such fairness notions in online learning framework, as done by Blum et al. (2018);
Blum and Lykouris (2020); Bechavod et al. (2019), is an exciting future direction.

Our proof of uniform time fairness guarantee requires that the fairness quota assured for
each arm is at most 1

k−1 . Even though this case is well-motivated in the context of individual
fairness, from a theoretical perspective, proving similar uniform time fairness guarantee when
the fairness quota allocated for one or more of the arms exceeds 1

k−1 remains unresolved.
We conjecture that given one can achieves a α-fair fairness guarantee in this case.

Another immediate direction for future work could be to study the trade-off between
fairness and regret in other variants of Multi-armed Bandits such as adversarial bandits,
combinatorial bandits (with general reward structure), contextual bandits, Markovian ban-
dits.
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9. Supplimentary Material

9.1 Horizon-aware Algorithms

An algorithm that has access to time horizon T and has to satisfy fairness constraints only
at the end of T rounds (and not uniformly at the end of all rounds) can trade-off fairness and
regret more effectively. To see this, notice that in order to identify the best arm quickly it is
important that an algorithm should explore the arms in the initial rounds. This observation
along with Observation 1 gives us that if the arms are pulled initially to satisfy the fairness
constraints, the algorithm incurs no regret and at the same time learns the rewards from
each arm. In other words the algorithm incurs no regret for first T ′ :=

∑
i∈[k] ri · T number

of rounds. If r is such that the T ′ is sufficient to explore each arm and find the best arm
with high probability then one can pull the best arm for rest of the T − T ′ rounds. Notice
that now the fairness constraints are only satisfied after T ′ rounds. Guided by this intuition
we propose a UCB1 based T-aware algorithm called T-fair-ucb algorithm that satisfies
the fairness requirement at the end of T rounds and achieves logarithmic r-Regret.

Algorithm 2: T-fair-ucb
Input: [k], (ri)i∈[k]

Output: i1, i2, · · · , iT
1 Initialize: ni ← max

(
1, ri · T

)
for each i ∈ [k] and T ′ =

∑
i∈[k] ni ;

2 for t = 1, 2, . . . , T ′ do
3 - Pull each arm i ∈ [k] exactly ni times
4 end
5 for t = T ′ + 1, . . . , T do
6 - it = arg maxi∈[k] µi(t)

7 - Update µi(t+ 1)

8 end

UCB1 based Algorithm (T-fair-ucb): This T-fair-ucb algorithm knows the time
horizon T , and effectively separates the fairness constraint satisfaction phase and the regret
minimization phase and achieves logarithmic r-Regret in terms of T with dependence on
the values of the fairness fractions. T-fair-ucb is presented in Algorithm 2. Note that
T-fair-ucb satisfies the fairness requirements of all arms at T ′ itself, but does not provide
uniform time fairness guarantee as Fair-ucb . Next we show that T-fair-ucb achieves
logarithmic r-Regret.

Theorem 11 For Fair-MAB problem, T-fair-ucb has r-RegretRrT-fair-ucb(T ) = O(lnT ).
In particular, its r-dependent regret is given by

RrT-fair-ucb(T ) ≤
(

1 +
π2

3

)
·
∑
i∈[k]

∆i +
∑
i∈S(T )
i 6=1

∆i ·
(

8 lnT

∆2
i

− ri · T
)

where S(T ) =
{
i ∈ [k]

∣∣ ri · T < 8 lnT

∆
2
i

}
.

Proof Recall µ̄i(t) = µ̂i,Ni,t−1
(t − 1) + ct,Ni,t−1

is the UCB estimate of the mean of arm i,
where µ̂i,Ni,t−1

(t− 1) is the empirical estimate of the mean of arm i when it is played Ni,t−1
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in t−1 rounds and ct,Ni,t−1
=
√

2 ln t
Ni,t−1

is the confidence interval of the arm i at round t. Sim-
ilar to the proof of Theorem 12 (UCB1 algorithm), we upper bound the expected number
of times a sub-optimal arm is pulled. We do this for each sub-optimal arm by considering
two cases dependent on the number of times the sub-optimal arm is pulled in the fairness
constraint satisfaction phase, i.e. in the first T ′ rounds.
Case 1: Let i 6= 1 and ri · T ≥ 8 lnT

∆
2
i

. Then

E[Ni,T ] ≤ ri · T +

T∑
t=T

′
+1

1{it = i,Ni,t−1 ≥ ri · T}

≤ ri · T +
∞∑
t=T

′

t∑
s=1

t∑
si=ri·T

1

{
µ̂1,s(t) + ct,s ≤ µ̂1,si

(t) + ct,si

}
(Follows from Section 9.3)

Since ri ·T ≥ 8 lnT

∆
2
i

, it follows from the proof of Theorem 12 that E[Ni,T ] ≤ ri ·T +
(

1 + π
2

3

)
.

Hence, the expected number of pulls of a sub-optimal arm i 6= 1 in the regret minimization
phase is E[Ni,T ]− ri · T ≤

(
1 + π

2

3

)
.

Case 2: Let i 6= 1 and ri · T < 8 lnT

∆
2
i

Then the proof of Theorem 12 can be appropriately adapted to show that E[Ni,T ] ≤ 8 lnT

∆
2
i

+(
1 + π

2

3

)
. Thus the expected number of pulls of a sub-optimal arm i 6= 1 in the regret

minimization phase is

E[Ni,T ]− ri · T ≤
8 lnT

∆2
i

+
(

1 +
π2

3

)
− ri · T

≤ 8 lnT

∆2
i

+
(

1 +
π2

3

)
Suppose S(T ) =

{
i ∈ [k]

∣∣ ri ·T < 8 lnT

∆
2
i

}
. Then from the two cases discussed above, we can

conclude that

RrT-fair-ucb(T ) ≤
(
1 +

π2

3

)
·
∑
i∈[k]

∆i +
∑
i∈S(T )
i 6=1

∆i ·
(

8 lnT

∆2
i

− ri · T
)

Hence, RrT-fair-ucb(T ) = O(lnT ).

9.2 Rationale for Simulation Parameters

For evaluating the performance of our algorithm, we perform experiments on synthetic data
sets as this allows for finer control on the tuning of the parameters of the experiment. In
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particular, we consider the following two Fair-MAB instances:

Instance 1: Fairness vs. Regret

• Number of arms: k = 10

• Time horizon: T = 106

• Mean rewards: µ1 = 0.8 and µi = µ1 −∆i where ∆i = 0.01i

• Fairness constraint: r = (0.05)i∈[k]

Instance 2: FUCB vs. LFG

• Number of arms: k = 3

• Time horizon: T = 200

• Mean rewards: µ = (0.7, 0.5, 0.4)

• Fairness constraints: r = (0.2, 0.3, 0.25)

Note that a large value for the time horizon T significantly increases the simulation
time. On the other hand, a small value for T does not capture the convergence of a MAB
algorithm. In Instance 1, we choose a sufficiently large value of T so that the convergence of
Fair-ucb is captured. On the other hand, we use a smaller value of T in Instance 2 because
it allows us to capture the maximum fairness violation at each round more clearly.

Next, we use Instance 1 to evaluate the performance of the algorithms in terms of r-
Regret , whereas Instance 2 is used to evaluate the fairness guarantee. First, we consider
the number of arms chosen. If the number of arms is very small, a learning algorithm will
correctly identify the optimal arm very soon. On the other hand, a larger number of arms
increases the simulation time required to depict the convergence behaviour of the algorithm.
Our choice of k in Instance 1 is sufficient to depict the behaviour of our algorithm in terms
of regret without significantly increasing the simulation time. On the other hand, we choose
a small value of k in Instance 2 to showcase the fairness guarantee. Keeping k small allows
us more flexibility in terms of choosing ri’s (since

∑
i∈[k] ri < 1). Thus, by choosing ri’s of

sub-optimal arms such that the number of times Fair-ucb is required to play these arms
is significantly more than that by classic UCB1, allows us to test the fairness guarantee of
Fair-ucb.

Our choice of the expected rewards of the arms, µ = (µ)i∈[k] in Instance 1 is such
that the difference in the expected rewards of two adjacent arms is small. Consequently, the
algorithm needs more time to correctly decide the optimal arm. Furthermore, we also carried
out simulations with µi’s with a higher difference between them. However, our current choice
of µi’s captures the contrast in the regret performance of the Fair-MAB algorithms much
better. In contrast, the choice of µ in Instance 2 is because the fairness guarantee of Fair-
ucb can be tested more rigorously when the differences in µi’s is significant as this causes
the algorithm to correctly identify the optimal arm quickly. In the standard UCB algorithm,
this would lead to the sub-optimal arms being pulled a significantly fewer number of times.
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As a result, choosing greater values of ri’s for these arms allows for more strict evaluation
of the fairness guarantees of Fair-ucb.

The fairness constraint vector r = (ri)i∈[k] in Instance 1 is again selected such that
it provides a clear depiction of the cost of fairness in terms of the conventional notion of
regret. The choice of r in Instance 2 allows for more meticulous assessment of the fairness
guarantees of the two algorithms. We have also carried out the experiments with different
values of the fairness constraint vector but our choice turns out to be the one suitable for
the purpose of representation.

9.3 Additional Preliminaries

The proofs of some of our results (Theorem 6 and Theorem 9) rely on the regret analysis of
UCB1 algorithm Auer et al. (2002), which we provide below for completeness.

9.3.1 Upper Confidence Bound (UCB) based Algorithm

In this section we describe the UCB1 algorithm that was introduced by Auer et al. (2002)
and for completeness we also give a proof of its regret bound. In the UCB1 algorithm for
each arm the algorithm maintains a UCB1 estimate and at each round the algorithm plays
the arm with the highest UCB1 estimate. Such a UCB1 estimate for an arm i ∈ [k] at
round t is dependent on the empirical mean of the rewards of arm i and a confidence interval
associated with arm i. To state it formally let Ni,t−1 denote the number of times arm i is
pulled in t−1 rounds. Then the UCB1 estimate for arm i ∈ [k] at round t ≥ 1 is µ̄i(t) = 0 if
Ni,t−1 = 0, otherwise µ̄i(t) = µ̂i,Ni,t−1

(t−1)+
√

2 ln(t)
Ni,t−1

where µ̂i,Ni,t−1
(t−1) is the empirical

mean of the rewards of arm i after being pulled Ni,t−1 times in t− 1 rounds and
√

2 ln(t)
Ni,t−1

is
its associated confidence interval. For ease of notation, we will denote by ct,si the confidence

interval of arm i at time t when it is pulled si times i.e. ct,si =
√

2 ln(t)
si

. Technically for the
first k rounds the algorithm plays each arm once to compute a non-zero UCB1 estimate for
each arm and for every round t ≥ k + 1 it plays the arm with the highest UCB1 estimate.
The total expected regret of UCB1 after T rounds is given by the following theorem, where
∆i = µ1 − µi for all i ∈ [k], and ∆i > 0 as µ1 > µi for i 6= 1.

Theorem 12 For the MAB problem, the UCB1 has expected regret E[RUCB(T )] ≤
∑

i 6=1

(
8 lnT

∆i

)
+(

1 + π
2

3

)∑
i∈[k] ∆i .

Proof To bound the regret of the UCB1 algorithm, we first upper bound E[Ni,T ] for i 6= 1,
i.e. the expected number of pulls of a sub-optimal arm i 6= 1 in T rounds. Denote the
arm pulled by the algorithm at the t-th round as it. In the equation below 1{it = i} is
an indicator random variable that is equal to 1 if it = i and is 0 otherwise. In general
1{E} denotes an indicator random variable that is equal to 1 if the event E is true and is 0
otherwise.

Ni,T = 1 +
T∑

t=k+1

1

{
it = i

}
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For any positive integer ` we may rewrite the above equation as

Ni,T ≤ `+
T∑
t=`

1

{
it = i,Ni,t−1 ≥ `

}
(11)

If it = i then µ̄1(t) < µ̄i(t) i.e. µ̂1,N1,t−1
(t − 1) + ct,N1,t−1

< µ̂i,Ni,t−1
(t − 1) + ct,Ni,t−1

.
Hence from Equation 11

Ni,T ≤ `+
T∑
t=`

1

{
µ̂1,N1,t−1

(t− 1) + ct,N1,t−1
< µ̂i,Ni,t−1

(t− 1) + ct,Ni,t−1
, Ni,t−1 ≥ `

}
≤ `+

T∑
t=`

1

{
min

0<s1<t
µ̂1,s1

(t− 1) + ct,s1 < max
`≤si<t

µ̂i,si(t− 1) + ct,si

}
≤ `+

T∑
t=`

t∑
s1=1

t∑
si=`

1

{
µ̂1,s1

(t− 1) + ct,s1 < µ̂i,si(t− 1) + ct,si

}

At time t, µ̂1,s1
(t − 1) + ct,s1 < µ̂i,si(t − 1) + ct,si implies that at least one of the following

events is true

{
µ̂1,s1

(t− 1) ≤ µ1 − ct,s1
}

(12){
µ̂i,si(t− 1) ≥ µi + ct,si

}
(13){

µ1 < µi + 2ct,si
}

(14)

The probability of the events in Equations 12 and 13 can be bounded using Hoeffding’s
inequality as:

P
({
µ̂1,s1

(t− 1) ≤ µ1 − ct,s1
})
≤ t−4

P
({
µ̂i,si(t− 1) ≥ µi + ct,si

})
≤ t−4

The event in equation 14
{
µ1 < µi + 2ct,si

}
can be written as

{
µ1 − µi − 2

√
2 ln t
si

< 0
}
.

Substituting ∆i = µ1 − µi and if si ≥
⌈

8 lnT

∆
2
i

⌉
≥
⌈

8 ln t

∆
2
i

⌉
then

P

({
∆i − 2

√
2 ln t

si
< 0

})
= 0 (15)
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Thus if ` = d8 lnT

∆
2
i

e then

Ni,T ≤ d
8 lnT

∆2
i

e+

T∑
t= 8 ln T

∆
2
i

t∑
s1=1

t∑
si=

8 ln T

∆
2
i

1

{
µ̂1,s1

(t− 1) + ct,s1 < µ̂i,si(t− 1) + ct,si

}

E[Ni,T ] ≤ d8 lnT

∆2
i

e+
T∑

t= 8 ln T

∆
2
i

t∑
s1=1

t∑
si=

8 ln T

∆
2
i

2t−4

≤ d8 lnT

∆2
i

e+
∞∑

t= 8 ln T

∆
2
i

t∑
s1=1

t∑
si=

8 ln T

∆
2
i

2t−4 ≤ 8 lnT

∆2
i

+ 1 +
π2

3

In the last inequality we use
∑∞

t=d 8 lnT

∆
2
i

e
∑t

s1=1

∑t
si=d 8 ln t

∆
2
i

e 2t−4 ≤
∑∞

t=1 2t−2 = π
2

3 . Recall

from Section 3, Equation 3, that

E[RUCB(T )] =
∑
i∈[k]

∆i · E[Ni,T ] ≤
∑
i 6=1

8 lnT

∆i
+
(

1 +
π2

3

)
·
∑
i∈[k]

∆i

9.3.2 Distribution-free Regret Bound for UCB1

Theorem 13 For the MAB problem, the UCB1 has expected (distribution-free) regret
E[RUCB(T )] = O

(√
T lnT

)
.

Proof Recall from Section 9.3.1 that the expected cumulative regret of the UCB1 algorithm
in any round T is given by

E
[
RUCB(T )

]
=
∑
i in[k]

∆i · E[Ni,T ].

To bound the above quantity, we begin by defining the event

C :=

{∣∣µ̂i(t)− µi∣∣ ≤
√

2 lnT

Ni,t
,∀i ∈ [k],∀t ≤ T

}
.

By applying Hoeffding’s inequality, and taking union bound, we get

P
(
C̄
)
≤ 2kT

T 4 ≤
2

T 2 .

Next, we will bound the value of E
[
RUCB(T )

]
by conditioning on C and C̄. Let us first

bound E
[
RUCB(T )

∣∣C]. Assume the event C holds and some arm it 6= 1 is pulled in round
t ∈ [T ]. Then, by definition of UCB1 algorithm, we have µ̄1(t) < µ̄i(t). Then,

µ1 − µit ≤ µ1 − µit + µ̄i(t)− µ̄1(t)

=
(
µ1 − µ̄1(t)

)
+
(
µ̄i(t)− µit

)
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Since event C holds, we have

µ1 − µ̄1(t) = µ1 − µ̂1(t− 1)−

√
2 lnT

Ni,t−1
≤ 0.

and

µ̄i(t)− µit = µ̂it(t− 1)− µit +

√
2 lnT

Nit,t−1
≤ 2 ·

√
2 lnT

Nit,t−1
.

Therefore,

µ1 − µit ≤ 2 ·
√

2 lnT

Nit,t−1
(16)

Now, consider any arm i ∈ [k] and consider the last round ti ≤ t when this arm was last
pulled. Since the arm has not been pulled between ti and t, we know Ni,ti

= Ni,t−1. Hence,
applying the inequality in Equation 16 to arm i in round ti, we get

µ1 − µi ≤ 2 ·

√
2 lnT

Ni,t−1
, for allt ≤ T

. Thus, the regret in t rounds is bounded by

R(t) =
∑
i∈[k]

∆i ·Ni,t ≤ 2
√

2 lnT ·
∑
i∈[k]

√
Ni,t.

Square root is a concave function, and hence from Jensen’s inequality, we obtain∑
i∈[k]

√
Ni,t ≤

√
kt.

Therefore, we have
E
[
RUCB(T )

∣∣C] ≤ 2
√

2kt lnT .

Hence, the expected cumulative regret in t rounds can be bounded as

E
[
RUCB(T ) = E

[
RUCB(T )

∣∣C]P(C) + E
[
RUCB(T )

∣∣C̄]C̄
≤ 2
√

2kt lnT + t · 2

T 2

= O
(√
kt lnT

)
, ∀t ≤ T

Thus, the distribution-free regret bound of UCB1 algorithm at some time T is O(
√
T lnT ).
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