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Abstract

Gradient descent (GD) is known to converge quickly for convex objective functions, but
it can be trapped at local minima. On the other hand, Langevin dynamics (LD) can
explore the state space and find global minima, but in order to give accurate estimates,
LD needs to run with a small discretization step size and weak stochastic force, which
in general slow down its convergence. This paper shows that these two algorithms can
“collaborate” through a simple exchange mechanism, in which they swap their current
positions if LD yields a lower objective function. This idea can be seen as the singular
limit of the replica-exchange technique from the sampling literature. We show that this
new algorithm converges to the global minimum linearly with high probability, assuming
the objective function is strongly convex in a neighborhood of the unique global minimum.
By replacing gradients with stochastic gradients, and adding a proper threshold to the
exchange mechanism, our algorithm can also be used in online settings. We also study
non-swapping variants of the algorithm, which achieve similar performance. We further
verify our theoretical results through some numerical experiments, and observe superior
performance of the proposed algorithm over running GD or LD alone.

Keywords: Non-convex optimization, Langevin dynamics, gradient descent, stochastic
gradient Langevin dynamics, stochastic gradient descent

1. Introduction

Division of labor is the secret of any efficient enterprises. By collaborating with individuals
with different skillsets, we can focus on tasks within our own expertise and produce better
outcomes than working independently. This paper asks whether the same principle can be
applied when designing an algorithm.

Given a general smooth non-convex objective function F , we consider the unconstrained
optimization problem

min
x∈Rd

F (x). (1)
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It is well-known that deterministic optimization algorithms, such as gradient descent (GD),
can converge to a local minimum quickly (Nesterov, 2013). However, this local minimum
may not be the global minimum, and GD will be trapped there afterwards. On the other
hand, sampling-based algorithms, such as Langevin dynamics (LD) can escape local minima
by their stochasticity, but the additional stochastic noise contaminates the optimization
results and slows down the convergence when the iterate is near the global minimum.
More generally, deterministic algorithms are mostly designed to find local minima quickly,
but they can be terrible at exploration. Sampling-based algorithms are better suited for
exploring the state space, but they are inefficient when pinpointing the local minima. This
paper investigates how they can “collaborate” to get the “best of both worlds”.

The collaboration mechanism we introduce stems from the idea of replica exchange in
the sampling literature. Its implementation is very simple: we run a copy of GD, denoted by
Xn; and a copy of discretized LD, denoted by Yn, in parallel. At each iteration, if F (Xn) >
F (Yn), we swap their positions. At the final iteration, we output XN . The proposed
algorithm, denoted by GDxLD and formalized in Algorithm 1 below, enjoys the “expertise”
of both GD and LD. In particular, we establish that if F is convex in a neighborhood of
the unique global minimum, then, for any ε > 0, there exists N(ε) = O(ε−1), such that for
N ≥ N(ε), |F (XN )− F (x∗)| < ε with high probability, where x∗ is the global minimum. If
F is strongly convex in the same neighborhood, we can further obtain linear convergence;
that is, N(ε) can be reduced to O(log 1

ε ).

As we will demonstrate with more details in Section 2.2, GDxLD can be seen as the
singular limit of a popular sampling algorithm, known as replica exchange or parallel tem-
pering. The exchange mechanism is in place to make the sampling algorithm a reversible
MCMC. However, for the purpose of optimization, exchanging the locations of GD and
LD is not the only option. In fact, both GD and LD can obtain the location of Yn if
F (Xn) > F (Yn). This leads to a slightly different version of the algorithm, which we will
denote as nGDxLD where “n” stands for “non-swapping”. Since the LD part will not
be swapped to the location of the GD, it is a bona-fide Langevin diffusion algorithm. In
terms of performance, we establish the same complexity estimates for both GDxLD and
nGDxLD. Our numerical experiments also verify that GDxLD and nGDxLD have similar
performance. To simply the notation, we write (n)GDxLD when we refer to both versions
of the algorithm.

Notably, the complexity bounds we establish here are the same as the complexity bounds
for standard GD when F is globally convex (or strongly convex) (Nesterov, 2013), but we
only need F to be convex ( or strongly convex) near x∗, which is significantly weaker. It is
not difficult to see intuitively why (n)GDxLD works well in such non-convex settings. The
LD explores the state space and visits the neighborhood of the global minimum. Since this
neighborhood is of a constant size, it can be found by the LD in constant time. Moreover,
this neighborhood gives lower values of F than anywhere else, so the GD will be swapped
there, if it is not there already. Finally, GD can pinpoint the global minimum as it now
starts in the right neighborhood. Figure 1 provides a visualization of the mechanism.

For many modern data-driven applications, F is an empirical loss function, so its precise
evaluation and its gradient evaluation can be computationally expensive. For these scenar-
ios, we also consider an online modification of our algorithm. The natural modification of
GD is stochastic gradient decent (SGD), and the modification of LD is stochastic gradient
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Figure 1: (Left) GDxLD in action: when LD enters a neighborhood of the global minimum
(yellow region), exchange happens and helps GD to escape the local minimum that traps it.
After exchange, GD can converge to the global minimum, and LD keeps exploring. (Right)
nGDxLD is similar to GDxLD; the only difference is that LD will stay at its original location,
instead of swapping with GD.

Langevin dynamics (SGLD). This algorithm, denoted by SGDxSGLD and formalized in
Algorithm 2 below, achieves a similar complexity bound as GDxLD if F is strongly con-
vex in the neighborhood of the unique global minimum x∗. For the theory to apply, we
also need the noise of the stochastic gradient to be sub-Gaussian and is of order O(

√
ε).

This assumption can often be met by using a mini-batch of size O(ε−1), which in principle
should be factored in for complexity. In this case, the overall complexity of SGDxSGLD is
O(ε−1 log 1

ε ). Similar to the offline scenario, the non-swapping variation, nSGDxSGLD, can
be obtained by keeping the SGLD part not swapped to the location of the SGD.

1.1 Related work

Non-convex optimization problems arise in numerous advanced machine learning, statistical
learning, and structural estimation settings (Geyer and Thompson, 1995; Bottou et al.,
2018). How to design efficient algorithms with convergence guarantees has been an active
area of research due to their practical importance. In what follows, we discuss some existing
results related to our work. As this is a fast growing and expanding field, we focus mostly
on algorithms related to GD, LD, or their stochastic gradient versions.

One main approach to study nonlinear optimization is to ask when an algorithm can find
local minima efficiently. The motivation behind finding local minima, rather than global
minima, is that in some machine learning problems, such as matrix completion and wide
neural networks, local minima already have good statistical properties or prediction power
(Ge et al., 2017; Park et al., 2017; Bhojanapalli et al., 2016; Du et al., 2018; Ge et al., 2018;
Mei et al., 2017). Moreover, the capability to find local minima or second-order stationary
points (SOSP) is nontrivial, since GD can be trapped at saddle points. When full Hessian
information is available, this can be done through algorithms such as cubic-regularization
or trust region (Nesterov and Polyak, 2006; Curtis et al., 2014). If only gradient is available,
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one general idea is to add stochastic noise so that the algorithms can escape saddle points
(Jin et al., 2017; Allen-Zhu, 2018; Jin et al., 2018; Yu et al., 2018; Daneshmand et al., 2018;
Jin et al., 2019). But the “size” of the noise and the step size need to be tuned based on
the accuracy requirement. This, on the other hand, reduces the learning rate and the speed
of escaping saddle points. For example, to find an ε-accurate SOSP in the offline setting,
the perturbed gradient descent method requires O(ε−2) iterations (Jin et al., 2017), and in
the online setting, it requires O(ε−4) iterations (Jin et al., 2019). These convergence rates
are slower than the ones of our proposed algorithms.

For problems in which local minima are not good enough, we often need to use sampling-
based algorithms to find global minima. This often involves simulating an ergodic stochastic
process for which the invariant measure is proportional to exp(− 1

γF (x)), where γ is referred
to as the “temperature”, which often controls the strength of stochasticity. Because the
process is ergodic, it can explore the state space. However, for the invariant measure to
concentrate around the global minimum, γ needs to be small. Then for these sampling
based-algorithms to find accurate approximation of global minima, they need to use weaker
stochastic noise or smaller step sizes, which in general slow down the convergence. For
LD in the offline setting and SGLD in the online setting, the complexity is first studied in
Raginsky et al. (2017), later improved by Xu et al. (2018), and generalized by Chen et al.
(2019a) to settings with decreasing step sizes. In Xu et al. (2018), it is shown that LD can
find an ε-accurate global minimum in O(ε−1) iterations, and SGLD can do so in O(ε−5)
iterations. These algorithms have higher complexity than the ones we proposed in this
paper. Note that in Xu et al. (2018), it keeps the temperature at a constant order, in which
case the step size needs to scale with ε. As we will discuss in more details in Section 2, the
algorithm we propose keeps both the temperature and the step size at constant values.

We also comment that sampling-based algorithms may lead to better dependence on
the dimension of the problem for some MCMC problems as discussed in Ma et al. (2019).
However, if the goal is to find global minima of a Lipschitz-smooth non-convex optimization
problem, the complexity in general has exponential dependence on the dimension. This has
to do with the spectral gap of the sampling process and has been extensively discussed in
Ma et al. (2019); Raginsky et al. (2017); Xu et al. (2018). Due to this, our developments in
this paper focus on settings where the dimension of the problem is fixed, and we characterize
how the complexity scales with the precision level ε.

Aside from optimization, LD and related Markov Chain Monte Carlo (MCMC) algo-
rithms are also one of the main workhorses for Bayesian statistics. Our work is closely
related to the growing literature on convergence rate analysis for LD. Asymptotic conver-
gence of discretized LD with decreasing temperature (diffusion coefficient) and step sizes is
extensively studied in the literature (see, e.g., Gidas (1985); Pelletier (1998)). Nonasymp-
totic performance bounds for discrete-time Langevin updates in the case of convex objective
functions are studied in Durmus and Moulines (2017); Dalalyan (2017); Cheng et al. (2018);
Dalalyan and Karagulyan (2019). In MCMC, the goal is to sample from the stationary dis-
tribution of LD, and thus the performance is often measured by the Wasserstein distance or
the Kullback-Leibler divergence between the finite-time distribution and the target invari-
ant measure (Ma et al., 2015; Bubeck et al., 2018). In this paper, we use the performance
metric P(|F (XN ) − F (x∗)| > ε), which is more suitable for the goal of optimizing a non-
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convex function. This also leads to a very different framework of analysis compared to the
existing literature.

1.2 Main contribution

The main message of this paper is that, by combining a sampling algorithm with an opti-
mization algorithm, we can create a better tool for some non-convex optimization problems.
From the practical point of view, the new algorithms have the following advantages:

• When the exact gradient ∇F is accessible, we propose the GDxLD algorithm and
its non-swapping variant, nGDxLD. Their implementation does not require the step
size h or temperature γ to change with the precision level ε. Such independence is
important in practice, since tuning hyper-parameters is in general difficult. As we
will demonstrate in Section 3.1.2, our algorithm is quite robust to a wide range of
hyper-parameters.

• When the dimension is fixed, for a given precision level ε, (n)GDxLD beats existing
algorithms in computational cost. In particular, we show (n)GDxLD can reach ap-
proximate global minimum with a high probability in O(log 1

ε ) iterations. Comparing
to the iteration estimate of LD in Xu et al. (2018), which is O(ε−1 log 1

ε ), our algo-
rithm is much more efficient, but we require the extra assumption that F has a unique
global minimum x∗, and F is strongly convex near x∗.

• When only stochastic approximation of ∇F is available, we propose the SGDxSGLD
algorithm and its non-swapping variant, nSGDxSGLD. Like (n)GDxLD, their imple-
mentation does not require the temperature or the step size to change with the preci-
sion level. (n)SGDxSGLD is also more efficient when comparing with other online op-
timization methods using stochastic gradients. In particular, we show (n)SGDxSGLD
can reach approximate global minimum with high probability with an O(ε−1 log 1

ε )
complexity. This is better than the complexity estimate of VR-SGLD in Xu et al.
(2018), which is O(ε−4(log 1

ε )
4). The additional assumptions we require is that the

function evaluation noise is sub-Gaussian, and F is strongly convex near the unique
global minimum x∗.

In term of algorithm design, a novel aspect we introduce is the exchange mechanism.
The idea comes from replica-exchange sampling, which has been designed to overcome some
of the difficulties associated with rare transitions to escape local minima (Earl and Deem,
2005; Woodard et al., 2009). Dupuis et al. (2012) uses the large deviation theory to define
a rate of convergence for the empirical measure of replica-exchange Langevin diffusion. It
shows that the large deviation rate function is increasing with the exchange intensity, which
leads to the development of infinite swapping dynamics. We comment that infinite swapping
is not feasible in practice as the actual swapping rate depends on the discretization step-
size. The algorithm that we propose attempts a swap at every iteration, which essentially
maximizes the practical swapping intensity. Chen et al. (2019b) extend the idea to solve
non-convex optimization problems, but they only discuss the exchange between two LD
processes. Our work further extends the idea by combining GD with LD and provides
finite-time performance bounds that are tailored to the optimization setting.
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In online settings, the function and gradient evaluations are contaminated with noises.
Designing the exchange mechanism in this scenario is more challenging, since we need to
avoid and mitigate the possible erroneous exchanges. We demonstrate such a design is
feasible by choosing a proper mini-batch size as long as the function evaluation noise is sub-
Gaussian. The analysis of SGDxSGLD is hence much more challenging and nonstandard,
when comparing with that of GDxLD.

While it is a natural idea to let two algorithms specializing in different tasks to collabo-
rate, coming up with a good collaboration mechanism is not straightforward. For example,
one may propose to let the LD explore the state-space first, after it finds the region of the
global minimum, one would turn-off the temperature, i.e., setting γ = 0, and run the GD.
However, in practice, it is hard to come up with a systematic way to check whether the
process is in the neighborhood of the global minimum or not. One may also propose to
turn down the temperature of the LD gradually. This is the idea of simulated annealing
(Kirkpatrick et al., 1983; Mangoubi and Vishnoi, 2018). The challenge there is to come up
with a good “cooling schedule”. To ensure convergence to global minima theoretically, the
temperature needs to be turned down very slowly, which could jeopardize the efficiency of
the algorithm (Gelfand and S.K., 1991). For example, Granville et al. (1994) shows that
for the simulated annealing to converge, the temperature at the n-th iteration needs to be
of order 1/ log n.

Readers who are familiar with optimization algorithms might naturally think of doing
replica exchange between other deterministic algorithms and other sampling-based algo-
rithms. Standard deterministic algorithms include GD with line search, Newton’s method,
and heavy-ball methods such as Nestrov acceleration. Sampling-based algorithms include
random search, perturbed gradient descent, and particle swarm optimization. We investi-
gate GDxLD instead of other exchange combinations, not because GDxLD is superior in
convergence speed, but because of the following two reasons:

1. GDxLD can be seen as a natural singular limit of replica-exchange LD, which is a
mathematical subject with both elegant theoretical properties and useful sampling
implications. We will explain the connection between GDxLD and replica-exchange
LD in Section 2.2.

2. GDxLD is very simple to implement. It can be easily adapted to the online setting.
We will explain how to do so in Section 2.5.

On the other hand, it would be interesting to see whether exchange between other algorithms
can provide faster rate of convergence in theory or in practice. We leave this as a future
research direction, and think the analysis framework and proving techniques we developed
here can be extended to more general settings. In particular, due to the division of labor, LD
is only used to explore the state-space. Therefore, instead of establishing its convergence as
in Raginsky et al. (2017); Xu et al. (2018), we only need to prove that it is suitably ergodic,
such that there is a positive probability of visiting the neighborhood of the global minimum.
GD is only used for exploitation and the complexity only depends on its behavior in the
neighborhood of the global minimum.

Lastly, one of the key element in the complexity of (n)GDxLD is how long it takes
LD to find the neighborhood of the global minimum. High dimensional and multi-modal
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structures can be difficult to sample using just LD. In the literature, sampling techniques
such as dimension reduction, Laplace approximation, Gibbs-type-partition can be applied
to improve the sampling efficiency for high dimensional problems (Hairer et al., 2014; Cui
et al., 2014; Morzfeld et al., 2019; Tong et al., 2020). As for multi-modality, it is well known
that LD may have slow convergence when sampling from mixture of log-concave densities
if each component density is close to singular (Menz and Schlichting, 2014). The replica
exchange method, discussed in Section 2.2 below, considers running multiple LDs with
different temperatures and exchanging among them (Swendsen and Wang, 1986). It has
been shown to perform well for multi-modal densities (Woodard et al., 2009; Dong and Tong,
2020). Other than replica exchange, simulated tempering, which considers dynamically
changing the temperature of the LD can also handle such multimodality in general (Marinari
and Parisi, 1992; Woodard et al., 2009; Lee et al., 2018). Replacing LD with these more
advanced sampler may facilitate more efficient exploration when facing more challenging
energy landscapes.

2. Main results

In this section, we present the main algorithms: GDxLD and nGDxLD (Algorithm 1),
SGDxSGLD and nSGDxSGLD (Algorithm 2). We also provide the corresponding com-
plexity analysis. We start by developing (n)GDxLD in the offline setting (Section 2.1) and
discuss the connection between GDxLD and replica-exchange LD (Section 2.2). The rig-
orous complexity estimate is given by Theorem 2 in Section 2.3. We also study how the
complexity depends on the exploration speed of LD in Section 2.4 (see Theorem 3). We
then discuss how to adapt the algorithm to the online setting and develop (n)SGDxSGLD
in Section 2.5. Section 2.6 provides the corresponding complexity analysis – Theorems 4
and 5. To highlight the main idea and make the discussion concise, we defer the proof of
Theorems 2 and 3 to Appendix A, and the proof of Theorems 4 and 5 to Appendix B.

2.1 Replica exchange in offline setting

We begin with a simple offline optimization scenario, where the objective function F and
its gradient ∇F are directly accessible. GD is one of the simplest deterministic iterative
optimization algorithms. It involves iterating the formula

Xn+1 = Xn −∇F (Xn)h. (2)

The hyper-parameter h is known as the step size, which can often be set as a small constant.
If F is convex and x∗ is a global minimum, the GD iterates can converge to a global
minimum “linearly” fast; that is, F (Xn) − F (x∗) ≤ ε if n = O(1

ε ). If F is strongly convex
with convexity parameter m, then the convergence will be “exponentially” fast; that is,
F (Xn)− F (x∗) ≤ ε if n = O((log 1

ε )/m).

In the general non-convex optimization setting, F can still be strongly convex near a
global minimum x∗. In this case, if GD starts near x∗, the iterates can converge to x∗

very fast. However, this is hard to implement in practice, since it requires a lot of prior
knowledge of F . If we start GD at an arbitrary point, the iterates are likely to be trapped
at a local minimum. To resolve this issue, one method is to add stochastic noise to GD and
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generate iterates according to

Yn+1 = Yn −∇F (Yn)h+
√

2γhZn, (3)

where Zn’s are i.i.d. samples from N (0, Id). For a small enough step size or learning rate
h, the iterates (3) can be viewed as a temporal discretization of the LD

dYt = −∇F (Yt)dt+
√

2γdBt, (4)

where Bt is a d-dimensional standard Brownian motion. The diffusion process (4) is often
called the overdamped Langevin dynamic or unadjusted Langevin dynamic (Durmus and
Moulines, 2017). Here for notational simplicity, we refer to algorithm (3) as LD as well. γ
is referred to as the temperature of the LD.

It is known that under certain regularity conditions, (4) has an invariant measure
πγ(x) ∝ exp(− 1

γF (x)). Note that the stationary measure is concentrated around the global
minimum for small γ. Therefore, it is reasonable to hypothesize that by iterating according
to (3) enough times, the iterates will be close to x∗. Adding the stochastic noise

√
2γhZn

in (3) partially resolves the non-convexity issue, since the iterates can now escape local
minima. On the other hand, in order for (3) to be a good approximation of (4), and con-
sequently to be a good sampler of πγ , it is necessary to use a small step size h and hence
a lot of iterations. In particular, Xu et al. (2018) shows in Corollary 3.3 that in order for
E[F (Yn)]− F (x∗) = O(ε), h needs to scale linearly as ε, and the computational complexity
is O(ε−1 log 1

ε ). This is slower than GD if F is strongly convex.

In summary, when optimizing a non-convex F , one has a dilemma in choosing the types
of algorithms. Using stochastic algorithms like LD will eventually find a global minimum,
but they are inefficient for accurate estimation. Deterministic algorithms like GD is more
efficient if initialized properly, but there is the danger that they can get trapped in local
minima when initialized arbitrarily.

To resolve this dilemma, idealistically, we can use a stochastic algorithm first to explore
the state space. Once we detect that the iterate is close to x∗, we switch to a deterministic
algorithm. However, it is in general difficult to write down a detection criterion a-priori.
Our idea is to devise a simple on-the-fly criterion. It involves running a copy of GD, Xn in
(2), and a copy of LD, Yn in (3), simultaneously. Since a smaller F -value implies the iterate
is closer to x∗ in general, we apply GD in the next iteration for the one with a smaller
F -value, and LD to the one with a larger F -value. In other words, we want to exchange the
locations of Xn and Yn if F (Xn) > F (Yn) + t0, where t0 ≥ 0 is a properly chosen threshold.
Finally, to implement the non-swapping variation, that is nGDxLD, it suffices to let LD
stay at its original location when the exchange takes place. A more detailed description of
the algorithm is given in Algorithm 1.

2.2 GDxLD as a singular limit of replica-exchange Langevin diffusion

In this section, we review the idea of replica-exchange LD, and show its connection with
GDxLD. Consider an LD

dXt = −∇F (Xt)dt+
√

2νdWt,

8



Replica Exchange for Non-Convex Optimization

Algorithm 1: GDxLD and nGDxLD: offline optimization

Input: Temperature γ, step size h, number of steps N , exchange threshold
t0 ∈ [0, r0/8), and initial X0, Y0.

for n = 0 to N − 1 do
X ′n+1 = Xn −∇F (Xn)h;
Y ′n+1 = Yn −∇F (Yn)h+

√
2γhZn, where Zn ∼ N(0, Id).;

if F (Y ′n+1) < F (X ′n+1)− t0 then

(Xn+1, Yn+1) =

{
(Y ′n+1, X

′
n+1), if GDxLD is applied

(Y ′n+1, Y
′
n+1), if nGDxLD is applied

;

else
(Xn+1, Yn+1) = (X ′n+1, Y

′
n+1).

end

end
Output: XN as an optimizer for F .

where Wt is a Brownian motion independent of Bt. Under certain regularity conditions on
F , {Xt}t≥0 has a unique stationary measure πν satisfying

πν(x) ∝ exp
(
− 1
νF (x)

)
.

Note that the stationary measure is concentrated around the unique global minimum x∗,
and the smaller the value of ν, the higher the concentration is. In particular, if ν → 0,
then πν is a Dirac measure at x∗. However, from the algorithmic point of view, the smaller
the value of ν, the slower the stochastic process converges to its stationary distribution.
In practice, we can only sample the LD for a finite amount of time, which gives rise to
the tradeoff between the concentration around the global minimum and the convergence
rate to stationarity. One idea to overcome this tradeoff is to run two Langevin diffusions
with two different temperatures, high and low, in parallel, and “combining” the two in an
appropriate way so that we can enjoy the benefit of both high and low temperatures. This
idea is known as replica-exchange LD.

Consider

dXa
t = −∇F (Xa

t )dt+
√

2νdWt

dY a
t = −∇F (Y a

t )dt+
√

2γdBt

The way we would connect them is to allow exchange between Xt and Yt at random times.
In particular, we swap the positions of Xt and Yt according to a state-dependent rate

s(x, y; a) := a exp
(

0 ∧
{

( 1
ν −

1
γ )(F (x)− F (y)

})
.

We refer to a as the exchange intensity. The joint process (Xa
t , Y

a
t ) has a unique stationary

measure
πν,γ(x, y) ∝ exp

(
− 1
νF (x)− 1

γF (y)
)
.

Based on πν,γ , one would want to set ν small so that Xt can exploit local minima, and
set γ large so that Yt can explore the state space to find better minima. We exchange the
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positions of the two with high probability if Yt finds a better local minimum neighborhood
to exploit than the one where Xt is currently at.

For optimization purposes, we can send ν to zero. In this case

dXa
t = −∇F (Xa

t )dt, s(x, y; a) = a1{F (x)<F (y)},

and
π0,γ(x, y) ∝ δx∗(x) exp

(
− 1
γF (y)

)
.

We would also like to send a to infinity to allow exchange as soon as Y a
t find a better

region to explore. However, the processes (Xa, Y a) do not converge in natural senses when
a → ∞, because the number of swap-caused discontinuities, which are of size O(1), will
grow without bound in any time interval of positive length. Dupuis et al. (2012) uses a
temperature swapping idea to accommodate this. Consider a temperature exchange process

dX̃a
t = −∇F (X̃a

t )dt+
√

2γ1{Z̃at =1}dWt

dỸ a
t = −∇F (Ỹ a

t )dt+
√

2γ1{Z̃at =0}dBt,

where {Z̃at }t≥0 is a Markov jump process that switches from 0 to 1 at rate a1{F (x)>F (y)}
and 1 to 0 at rate a1{F (x)<F (y)}. Now, sending a to infinity, we have

dX̃∞t = −∇F (X̃∞t )dt+
√

2γ1{F (X̃∞t )>F (Ỹ∞t )}dWt

dỸ∞t = −∇F (Ỹ∞t )dt+
√

2γ1{F (X̃∞t )<F (Ỹ∞t )}dBt.

In actual implementations, we will not be able to exactly sample the continuous-time pro-
cesses. We thus implement a discretized version of it as described in Algorithm 1.

2.3 Complexity bound for GDxLD and nGDxLD

We next present the performance bound for GDxLD and nGDxLD. We start by introducing
some assumptions on F .

First we need the function to be smooth in the following sense:

Assumption 1 F is Lipschitz continuous with Lipschitz constant L ∈ (0,∞), i.e.,

‖∇F (x)−∇F (y)‖ ≤ L‖x− y‖.

Second, we need some conditions under which the iterates or their function values will not
diverge to infinity. The following assumption ensures the gradient will push the iterates
back once they get too large:

Assumption 2 The utility function is coercive. In particular, there exist constants λc,Mc ∈
(0,∞), such that

‖∇F (x)‖2 ≥ λcF (x)−Mc,

and F (x)→∞ when ‖x‖ → ∞.
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Note that another more commonly used definition of coerciveness (or dissipation) (Raginsky
et al., 2017; Xu et al., 2018) is

−〈∇F (x), x〉 ≤ −λ0‖x‖2 +M0. (5)

The condition (5) is stronger than Assumption 2. In general, (5) can be enforced by adding
proper regularizations. These are explained by Lemma 1. Its proof can be found in Ap-
pendix A.

Lemma 1 Under Assumption 1,

1. For any λ > 0, (5) holds for Fλ(x) = F (x) + λ‖x‖2.

2. Suppose (5) holds, then Assumption 2 holds.

The last condition we need is that F is twice differentiable and strongly convex near the
global minimum x∗. This allows GD to find x∗ efficiently when it is close to x∗.

Assumption 3 x∗ is the unique global minimum for F . There exists r0 > 0, such that the
sub-level set B0 = {x : F (x) ≤ F (x∗) + r0} is star-convex with x∗ being the center, i.e., a
line segment connecting x∗ and any x ∈ B0 is in B0. There exists m,M, r > 0 such that
the Hessian ∇2F exists for B0 ⊂ {x : ‖x− x∗‖ < r}, and for any vector v

m‖v‖2 ≤ vT∇2F (x)v ≤M‖v‖2, ∀x : ‖x− x∗‖ < r.

Note that when Assumption 1 holds, m ≤M ≤ L.

Assumption 3 is a mild one in practice, since checking the Hessian matrix is positive definite
is often the most direct way to determine whether a point is a local minimum. Figuratively
speaking, Assumption 3 essentially requires that F has only one global minimum x∗ at the
bottom of a “valley” of F . It is important to emphasize that we do not assume knowing
where this “valley” is, otherwise it suffices to run GD within this “valley”. Moreover, when
the LD process enters a “valley”, there is no mechanism required to detect whether this
“valley” contains the global minimum. In fact, designing such detection mechanism can be
quite complicated, since it is similar to finding the optimal solution in a multi-arm bandit
problem. Instead, for GDxLD, we only need to implement the simple exchange mechanism.

Requiring B0 to be star-convex rules out the scenario where there are multiple local
minima taking values only ε-apart from the global optimal value where ε can be arbitrarily
small. In this scenario, GDxLD will have a hard time to identify the true global local
minima. Indeed, GD iterates may stuck at one of the local minima, and the exchange will
take place only when LD iterate is o(ε) away from x∗, which will happen rarely due to the
noisy movement of LD. On the other hand, finding solutions whose functional values are
only ε away from the global optimal is often considered good enough in practice.

When ∇2F is not available, or F is only convex near x∗, we can also use the following
more general version of Assumption 3. Admittedly the complexity estimate under it will
be be worse than the one under Assumption 3.

Assumption 4 x∗ is the unique global minimum for F . There exists r0 > 0, such that the
sub-level set B0 = {x : F (x) ≤ F (x∗) + r0} is star-convex with x∗ being the center, i.e., a
line segment connecting x∗ and any x ∈ B0 is in B0. F is convex in B0. In addition, there
exist 0 < rl < ru <∞, such that {‖x− x∗‖ ≤ rl} ⊂ B0 ⊂ {‖x− x∗‖ ≤ ru}.

11
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With all assumptions stated, the complexity of GDxLD and nGDxLD is given in the
following theorem.

Theorem 2 Consider the iterates following Algorithm 1 ((n)GDxLD). Under Assumptions
1, 2, 3, and fixed γ = O(1), 0 < h ≤ 1

2L , 0 ≤ t0 ≤ r0/8, for any ε > 0 and δ > 0, there
exists N(ε, δ) = O(− log ε) +O(− log δ) such that for any n ≥ N(ε, δ),

P(F (Xn)− F (x∗) ≤ ε) ≥ 1− δ. (6)

Alternatively, under Assumptions 1, 2, 4, and fixed γ = O(1), 0 < h ≤ min{ 1
2L ,

r2u
r0
}, (6)

holds with N(ε, δ) = O(ε−1) +O(log(1/δ)).

In particular, if we hold δ fixed, to achieve an ε accuracy, the complexity is O(log(1/ε))
when F is strongly convex in B0 and O(ε−1) when F is convex in B0. These complexity
estimates are of the same order as GD in the convex setting. However, F does not need to
be convex globally for our results to hold.

The fast convergence rate comes partly from the fact that GDxLD does not require the
hyper-parameters h and γ to change with the error tolerance ε. This is quite unique when
compared with other “single-copy” stochastic optimization algorithms. This feature is of
great advantage in both practical implementations and theoretical analysis.

Finally, as pointed out in the introduction, our analysis and subsequent results focus
on a fixed dimension setting. The big O terms in the definition of N(ε, δ) “hide” constants
that are independent of ε and δ. Such constants can scale exponentially with d and 1

γh . In
particular, the O(log(1/δ)) term is associated with how long it takes the LD to visit B0,
which is further determined by how fast LD converges to stationarity. With a fixed value of
γ, the convergence speed in general scales inversely with the exponential of d (see the proof
of Theorem 2 in Appendix A for more details). Curse of dimensionality is a common issue
for sampling-based optimization algorithms. In (Raginsky et al., 2017; Xu et al., 2018),
this is mentioned as a problem of the spectral gap. A more detailed discussion can also be
found in Ma et al. (2019).

2.4 Exploration speed of LD

Intuitively, the efficiency of (n)GDxLD depends largely on how often LD visits the neigh-
borhood of x∗, B0. A standard way to address this question is to study the convergence
rate of LD to stationarity. Let

πγ ∝ exp(−F (x)/γ),

which denotes the “target” invariant distribution, i.e., it is the invariant distribution of the
Langevin diffusion defined in (4). We also write Uγ as the normalizing constant of πγ .

In the literature, the convergence of a stochastic processes is usually obtained using
either a small set argument or a functional inequality argument. Theorem 2 uses the small
set argument. In particular, in Lemma 9, we show that each “typical” LD iterate can reach
B0 with a probability lower bounded by α > 0. While such α is usually not difficult to
obtain, it is often pessimistically small and does not reveal how the convergence depends on
F . In contrast, the functional inequality approach usually provides more details about how
the convergence depends on F . In particular, using functional inequalities like log Sobolev
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inequality (LSI) or Poincaré inequality, one can show that the convergence speed of LD to
πγ depends on the pre-constant of the functional inequality. This pre-constant usually only
depends on the target density πγ , i.e., F , and can be seen as an intrinsic measure of how
difficult it is to sample πγ . In addition, the convergence speed derived from this approach
is in general better. For example, Proposition 2.8 in Hairer et al. (2014) indicates that
the convergence speed estimate from the small set argument is in general smaller than the
one derived from Poincaré inequality. Therefore, it is of theoretical importance to show
how the computational complexity estimates of (n)GDxLD depend on the pre-constant of
the functional inequality. In this paper, we use LSI as it controls the convergence speed of
LD in Kullback-Leibler (KL) divergence. Note that in general, KL divergence between two
distributions has a linear dependence on the dimension, whereas the χ2 divergence, which
is associated with Poincaré inequality, often scales exponentially in the dimension.

Let µt denote the distribution of Yt, i.e., the Langevin diffusion (4) at time t. Let µ̂n
denote the distribution of Yn, i.e., the discrete LD update (3) at step n. For two measures,
µ and π, with µ� π, the KL divergence of µ with respect to π is defined as

KL(µ‖π) =

∫
log

(
µ(x)

π(x)

)
µ(x)dx.

We impose the following assumption on πγ .

Assumption 5 πγ satisfies a log Sobolev inequality with pre-constant β > 0:∫
πγ(x)f(x)2 log f(x)2 ≤ 2

β
Eπγ‖∇f‖2.

It is well known that with LSI, the Langevin diffusion (4) satisfies

KL(µt|πγ) ≤ exp(−2γβt)KL(µ0|π).

In addition, the LD (3) satisfies a similar convergence rate (Vempala and Wibisono, 2019):

KL(µ̂n|π) ≤ exp(−γβnh)KL(µ0|π) +
8hdL2

βγ
.

Adapting these results, we can establish the following convergence results for (n)GDxLD.

Theorem 3 Consider the iterates following Algorithm 1 ((n)GDxLD). Suppose Assump-
tions 1, 2, 3, and 5 hold. In addition, for GDxLD, t0 > 0. Fix

h <

(
πγ(B0)

2RV + 6
√
dL/
√
βγ

)2

,

where RV = 8(Mc/4 + 4γLd)/λc. For any ε > 0 and δ > 0, set

K =
log(δ)

log(1− πγ(B0)/2)
and n0 =

1

βγ

1

h
log

(
1

h

)
.

There exists

N(β, ε, δ) = O(Kn0) +O(log(1/ε)) = O(log(1/δ)/β) +O(log(1/ε))

such that for n ≥ N(β, ε, δ)
P(|Xn − x∗| ≤ ε) > 1− δ.
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The big O terms in the definition of N(β, ε, δ) in Theorem 3 “hide” constants that have
polynomial dependence on d, 1/πγ(B0), and logUγ (see the proof of Theorem 3 in Appendix
A.4 for more details). The complexity bound in Theorem 3 can be viewed as a refinement
of the bound established in Theorem 2, where the hidden constant scales exponentially with
d and 1

γh . This is due to the fact that the LSI constant β characterizes how difficult it is to
sample πγ . To interpret this refined complexity bound, we note that n0 represents the time
it takes the LD to sample the approximate stationary distribution. If we check whether the
LD is in B0 every n0 steps, K is the number of trials we need to run to ensure a larger
than 1− δ probability of visiting B0. Then, the time it takes the LD to visit B0 with high
probability is upper bounded by Kn0. Note that K scales with 1/πγ(B0). In order to have
a smaller K, we want to have a larger πγ(B0). This can be achieved by using a smaller γ,
which gives rise to a πγ that is more concentrated on B0. On the other hand, to achieve
a smaller n0, we want to have a larger γ so the LD can escape local minima and converge
to stationarity faster. Thus, there is a non-trivial tradeoff to be made here to optimize the
constant term “hidden” in O(log(1/δ)/β) in the quantification of N(β, ε, δ). However, as
will be demonstrated in our numerical experiments in Section 3.1.2, (n)GDxLD achieves
good and robust performance for a reasonable range of γ (not too small or too big). This
is because in (n)GDxLD, γ does not need to depend on ε.

We also note that the analysis of nGDxLD is conceptually simpler than GDxLD, since
the LD part is a bona-fide unadjusted Langevin algorithm, so the result of (Vempala and
Wibisono, 2019) can be implemented rather straightforwardly. In contrast, the LD part
in GDxLD can be swapped with the GD part. Thus, the analysis of GDxLD is more
challenging. In particular, we need to impose the assumption that t0 > 0 in Algorithm 1.
This technical assumption limits the number of swaps between GD and LD.

2.5 Online optimization with stochastic gradient

In a lot of data science applications, we define a loss function for a given parameter x and
data sample s as f(x, s), and the loss function we wish to minimize is the average of f(x, s)
over a distribution S. Let

F (x) = ES [f(x, S)].

Since the distribution of S can be complicated or unknown, the precise evaluation of F and
the gradient ∇F may be computationally too expensive or practically infeasible. However,
we often have access to a large number of samples of S in applications. So given an iterate
Xn, we can draw two independent batches of independent and identically distributed (iid)
samples, sn,1, . . . , sn,Θ and s′n,1, . . . , s

′
n,Θ, and use

F̂n(Xn) =
1

Θ

Θ∑
i=1

f(Xn, sn,i), ∇F̂n(Xn) =
1

Θ

Θ∑
i=1

∇xf(Xn, s
′
n,i)

to approximate F and ∇F . Here we require {sn,i, 1 ≤ i ≤ Θ} and {s′n,i, 1 ≤ i ≤ Θ} to be
two independent batches, so that the corresponding approximation errors are uncorrelated.

When we replace ∇F with ∇F̂n in GD and LD, the resulting algorithms are called SGD
and SGLD. They are useful when the data samples are accessible only online: to run the
algorithms, we only need to get access to and operate on a batch of data. This is very
important when computation or storage capacities are smaller than the size of the data.
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To implement the replica exchange idea in the online setting, it is natural to replace
GD and LD with their online versions. In addition, we need to pay special attention to the
exchange criterion. Since we only have access to F̂n, not F , F̂n(X ′n+1) > F̂n(Yn+1) may not
guarantee that F (X ′n+1) > F (Yn+1). Incorrect exchanges may lead to bad performance, and
thus we need to be cautious to avoid that. One way to avoid/reduce incorrect exchanges
is to introduce a threshold t0 > 0 when comparing F̂n’s. In particular, if t0 is chosen
to be larger than the “typical” size of approximation errors of F̂n, then, F̂n(X ′n+1) >

F̂n(Yn+1) + t0 indicates that F̂ (X ′n+1) is very “likely” to be larger than F̂ (Yn+1). Lastly,

since the approximation error of F̂n(x) in theory can be very large when x is large, we avoid
exchanges if the iterates are very large, i.e., when min{‖Xn‖, ‖Yn‖} > M̂v for some large
M̂v ∈ (0,∞).

Putting these ideas together, the SGDxSGLD algorithm is given in Algorithm 2:

Algorithm 2: SGDxSGLD and nSGDxSGLD: online optimization

Input: Temperature γ, step size h, number of steps N , initial X0, Y0, estimation
error parameter Θ (when using batch means, Θ is the batch size, it controls the
accuracy of F̂n and ∇F̂n), threshold t0 ∈ (0, r0/8], and exchange boundary M̂v.

for n = 0 to N − 1 do

X ′n+1 = Xn − h∇F̂n(Xn);

Y ′n+1 = Yn − h∇F̂n(Yn) +
√

2γhZn, where Zn ∼ N(0, Id);

if F̂n(Y ′n+1) < F̂n(X ′n+1)− t0, ‖X ′n+1‖ ≤ M̂V , and ‖Y ′n+1‖ ≤ M̂V then

(Xn+1, Yn+1) =

{
(Y ′n+1, X

′
n+1), if SGDxSGLD is applied

(Y ′n+1, Y
′
n+1), if nSGDxSGLD is applied

;

else
(Xn+1, Yn+1) = (X ′n+1, Y

′
n+1).

end

end
Output: XN as an optimizer for F .

2.6 Complexity bound for SGDxSGLD

To implement SGDxSGLD, we require three new hyper-parameters, Θ, t0 and M̂v. We
discuss how they can be chosen next.

First of all, the batch-size Θ controls the accuracy of the stochastic approximations of
F and ∇F . In particular, we define

ζn(x) := F̂n(x)− F (x) and ξn(x) = ∇F̂n(x)−∇F (x),

where ζn(x)’s and ξn(x)’s are independent random noise with E[ζn(x)] = E[ξn(x)] = 0.
By controlling the number of samples we generate at each iteration, we can control the
accuracy of the estimation, as the variances of the estimation errors are of order 1/Θ. We
will see in Theorem 4 and the discussions following it that 1/Θ should be of the same order
as the error tolerance ε. For the simplicity of exposition, we introduce a new parameter
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θ = O(ε) to describe the “scale” of ζn and ξn. In addition, we assume that the errors have
sub-Gaussian tails:

Assumption 6 There exists a constant θ > 0, such that for any 0 < b < 1
2θ ,

E
[
exp

(
aT ξn(x) + b‖ξn(x)‖2

)]
≤ 1

(1− 2bθ)d/2
exp

(
‖a‖2θ

2(1− 2bθ)

)
,

and for ‖x‖, ‖y‖ ≤ M̂V , we have for any z > 0,

P(ζn(x)− ζn(y) ≥ z) ≤ exp

(
−z

2

θ

)
.

Note that Assumption 6 implies

En[‖ξn(x)‖2] ≤ dθ.

We also remark that Assumption 6 holds if ξn(x) ∼ N (0, θId) and ζn(x)−ζn(y) ∼ N (0, 1
2θ).

In practice, Assumption 6 can be verified using Hoeffding inequality or other concentration
inequalities if the stochastic gradients are bounded.

Second, the threshold t0 is related to the shape of the “valley” around x∗. To keep the
exposition concise, we set t0 ≤ r0/8 where r0 is defined in Assumption 4. Heuristically, it
can be chosen as a generic small constant such as 10−2.

Lastly, M̂V is introduced to facilitate theoretical verification of Assumption 6. In other
words, if Assumption 6 holds for M̂V = ∞, then we can set M̂V = ∞. More generally,
under Assumptions 1 and 2, we set

ĈV =
Mc

4
+ (8γLd+ 4Lθd), R̂V = 8λ−1

c ĈV and M̂V = sup{x : F (x) ≤ R̂V }.

In practice, one can set M̂V as a generic large number.
We are now ready to present the complexity of (n)SGDxSGLD:

Theorem 4 Consider the iterates following Algorithm 2 ((n)SGDxSGLD). Under Assump-

tions 1, 2, 3, 6, and fixed γ = O(1), 0 < h ≤ min{ 1
2L ,

r2u
r0
}, and 0 < t0 ≤ r0/8, for any ε > 0

and δ > 0, there exists N(ε, δ) = O(− log(δ)− log(ε)), such that for any fixed N > N(ε, δ),
there exists θ(N, ε, δ) = O

(
min{N−1, εδ}

)
, and for θ ≤ θ(N, ε, δ), we have

P(F (XN )− F (x∗) ≤ ε) ≥ 1− δ.

In particular, if we hold δ fixed, then to achieve an ε accuracy, we need to set the number
of iterations N = O(− log ε) and the batch size Θ = O(θ−1) = O(ε−1). In this case, the
total complexity (including data sample) is O(NΘ) = O(ε−1 log 1

ε ).
To see where the O(ε−1) batch size comes from, we can look at a simple example where

F (x) = 1
2x

2. As this function is strongly convex, we can focus on the SGD part. The
iterates in this case takes the form

Xn+1 = Xn − hXn + hξn(Xn).
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For simplicity, we assume ξn(Xn)’s are iid N (0, θId). Then, Xn is a linear auto-regress
sequence with the invariant measure N (0, hθ

2−hId). Now, for E[F (XN )] = hθd
2(2−h) = O(ε)

when h is a constant, θ = O(ε).
Similar to the offline case, we can also characterize how the computational cost depends

on the LSI pre-constant. Let

B̂0 =
{
x : F (x) ≤ F (x∗) +

r0

4

}
.

Theorem 5 Consider the iterates following Algorithm 2 ((n)SGDxSGLD). Suppose As-
sumptions 1, 2, 3, 5, and 6 hold. Fix.

h <

(
πγ(B̂0)

4R̂V + 8
√
dL/
√
βγ

)2

.

For any ε > 0 and δ > 0, let

K =
log(δ)

log(1− πγ(B̂0)/2)
and n0 =

4

βγ
h−1 log(1/h) + 1.

There exists

N(β, ε, δ) = O(Kn0) +O(log(1/ε)) = O(log(1/δ)/β + log(1/ε)),

such that for N > N(β, ε, δ), there exists θ(N, ε, δ) = O(min{N−1, εδ}), and for θ <
θ(N, ε, δ),

P(F (XN )− F (x∗) < ε) > 1− δ.

Similar to the offline versions, the big O term in the definition of N(β, ε) in Theorem
4 “hides” constants that scale exponentially with d and 1

γh , while the big O terms in the
definition of N(β, ε, δ) in Theorem 5 “hide” constants that have polynomial dependence on
d (see the proofs of Theorems 4 and 5 in Appendices B.3 and B.4 for more details). Lastly,
it is worth noting that the step size h and temperature γ in (n)SGDxSGLD is independent
of the error tolerance ε. This is one of the reason why it can beat existing sampling-based
algorithms on the convergence speed.

3. Numerical experiments

In this section, we provide some numerical experiments to illustrate the performance of
(n)GDxLD and (n)SGDxSGLD. Our main focus is to demonstrate that by doing exchange
between the two algorithms, (S)GD and (SG)LD, the performance of the combined algo-
rithm can be substantially better than running isolated copies of the individual algorithms.
We also demonstrate the robustness of our algorithm to different choices of the temperature
γ and step size h.

3.1 Two-dimensional Problems

We start by looking at two-dimensional examples, which are easier to visualize.
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(a) Heat map of F (b) 3-d plot of F

Figure 2: The objective function F in (7)

3.1.1 Offline setting

First, we consider how to find the mode of a two-dimensional Gaussian-mixture density.
The loss function is given by

F (x) = −
M∑
i=1

wi√
det(2πΣi)

exp
(
−1

2(x−mi)
TΣ−1

i (x−mi)
)

+ L(x). (7)

For simplicity, we choose M = 5× 5 = 25, each mi is a point in the meshgrid {0, 1, 2, 3, 4}2,
and Σi =diag(0.1) so the “valleys” are distinctive. The weights are generated randomly. As
the Gaussian-mixture density and its gradient are almost zero for x far away from mi’s, we
add a quadratic regularization term

L(x) =
2∑
i=1

{
(x(i) + 1)21x(i)≤−1 + (x(i)− 5)21x(i)≥5

}
, (8)

where x(i) is the i-th element of x.

Figure 2 shows the heat map and the 3-d plot of one possible realization of F . We can
see that it is highly non-convex with 25 local minima. In this particular realization of F ,
the global minimum is at (3, 2) and F (3, 2) = −0.168.

We implement GDxLD for the objective function plotted in Figure 2 with h = 0.1,
γ = 1, X0 = (0, 0), and Y0 = (1, 1). We plot F (Xn) and Xn at different iterations n in
Figure 3. We do not plot Yn, the sample path of the LD, since it is used for exploration, not
optimization. We observe that the convergence happens really fast despite the underlying
non-convexity. In particular, we find the global minimum with less than 300 iterations.
We run 100 independent copies of GDxLD and are able to find the global minimum within
1000 iterations in all cases. In Figure 4, we plot F (Xn) and Xn at different iterations for
a typical nGDxLD implementation. We again observe that the convergence happens really
fast, i.e., with less than 400 iterations.

18



Replica Exchange for Non-Convex Optimization

(a) F (Xn) (b) Xn

Figure 3: Convergence of the iterates under GDxLD

(a) F (Xn) (b) Xn

Figure 4: Convergence of the iterates under nGDxLD
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For comparison, we also implement GD and LD with the same F . For GD, the iteration
takes the form

Xn+1 = Xn − h∇F (Xn)

with h = 0.1. In this case, Xn gets stuck at different local minima depending on where we
start, i.e., the value of X0. For example, Figure 5 plots the trajectories of Xn under GD
with X0 = (0, 0), which is the same as the X0 we used in GDxLD. As for LD, Figure 6 plots
Xn following

Xn+1 = Xn − h∇F (Xn) +
√

2γhZn.

We set h = 0.1 and test two different values of γ: γ = 1, which is the γ used in GDxLD, and
γ = 0.01. When γ = 1 (Figure 6 (a)), we do not see convergence to the global minimum at
all. The process is doing random exploration in the state-space. When γ = 0.01 (Figure 6
(b)), we do observe convergence ofXn to the neighborhood of the global minimum. However,
compared with GDxLD, the convergence is much slower under LD, since the exploration is
slowed down by the small γ. In particular, we find the approximate global minimum with
around 1.2× 105 iterations.

Figure 5: Convergence of the iterates under GD

3.1.2 Sensitivity analysis of the hyper-parameters

One attractive feature of GDxLD is that we do not require the temperature γ and the
step size h to change with the precision level ε. In the theoretical analysis, we fix them as
constants. From a practical point of view, we want γ to be large enough so that it is easy
for LD to escape the local minima. On the other hand, we do not want γ to be too large
as we want it to focus on exploring the “relevant” region so that there is a good chance of
visiting the neighborhood of the global minimum. As for h, we want it to be small enough
so that the GD converges once it is in the right neighborhood of the global minimum. On
the other hand, we do not want h to be too small, as the convergence rate of GD, when it
is in the right neighborhood, increases with h.

In this section, we conduct some sensitivity analysis for different values of γ and h. We
use the same objective function as the one plotted in Figure 2.
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(a) γ = 1 (b) γ = 0.01

Figure 6: Convergence of the iterates under LD

In Figure 7, we keep h = 0.1 fixed and vary the value of γ from 0.1 to 100. The
left plot shows E[F (Xn)] estimated based on 100 independent replications of GDxLD. The
right plot shows P(‖Xn − x∗‖ ≤ 10−3), which is again estimated based on 100 independent
replications. We observe that as long as γ is not too small or too large, i.e., 0.5 ≤ γ ≤ 10,
GDxLD achieves very fast convergence. For 0.5 ≤ γ ≤ 10, the convergence speed is slightly
different for different values of γ, with γ = 2.5, 5 among the fastest.

Figure 7: Convergence of the iterates under GDxLD with different values of γ. h = 0.1.
Averages are estimated based on 100 independent replications.

In Figure 8, we keep γ = 1 fixed and vary the value of h from 0.1 to 1.5. The left plot
shows E[F (Xn)] and the right plot shows P(‖Xn − x∗‖ ≤ 10−3). We observe that as long
as h is not too big or too small, i.e., 0.05 ≤ γ ≤ 1, GDxLD achieves very fast convergence.
Taking a closer look at the sample path of GDxLD when h = 1.5, we note that Xn is
swapped to the region around the global minimum fairly quickly but it keeps oscillating
around the global minimum due to the large step size. For 0.05 ≤ h ≤ 1, the convergence

21



Dong and Tong

speed is slightly different for different values of h with h = 1 being the fastest and h = 0.05
being the slowest.

Figure 8: Convergence of the iterates under GDxLD with different values of h. γ = 1.
Averages are estimated based on 100 independent replications.

Above all, our numerical experiments suggest that while different hyper-parameters may
lead to different performances of GDxLD, the differences are fairly small as long as γ and
h are within a reasonable range. This suggests the robustness of GDxLD to the hyper-
parameters.

In Figure 9, we conduct the same analysis for nGDxLD. In particular, we plot E[F (Xn)]
at different iterations for different values of the temperature γ and step size h in nGDxLD.
The performances are very similar as those in GDxLD. In all our subsequent numerical
experiments, we implement both GDxLD and nGDxLD. Since their performances are very
similar, we only show the results for GDxLD in the figures.

3.1.3 Online setting

In this section, we consider an online version of the test problem from Section 3.1.1. In
particular, we consider the setting of kernel density estimation (KDE)

p̂N (x) =
1

N

N∑
i=1

κσ(x, si).

κσ is known as a kernel function with tuning parameter σ. It measures the similarity
between x and the sample data si’s. There are many choices of kernel functions, and here
we use the Gaussian kernel

κσ(x, si) =
1

(2πσ)
d
2

exp(− 1
2σ (x− si)2).

Then, p̂N (x) can be seen as a sample average version of

p(x) = Esκσ(x, s).
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(a) h = 0.1 (b) γ = 1

Figure 9: Convergence of the iterates under nGDxLD with different values of γ and h.
Averages are estimated based on 100 independent replications.

Notably, p is the density function of X = S +
√
σZ, where S follows the distribution of the

sample data and Z ∼ N (0, 1). In the following example, we assume S follows a mixture of
Gaussian distribution with density

f(x) =
M∑
i=1

wi√
det(2πΣi)

exp
(
−1

2(x−mi)
TΣ−1

i (x−mi)
)
. (9)

As in Section 3.1.1, we set M = 5×5 = 25, each mi is a point in the meshgrid {0, 1, 2, 3, 4}2,
Σi =diag(0.1), and the weights are randomly generated. Our goal is to find the mode of p.
In this case, we write

F (x) = −p(x) + L(x) = −Esκσ(x, s) + L(x),

where L is the quadratic regularization function defined in (8). Then, we can run SGDxS-
GLD with the mini-batch average approximations of F and ∇F :

F̂n(Xn) =
1

Θ

Θ∑
i=1

κσ(Xn, sn,i) + L(x), and ∇F̂n(Xn) =
1

Θ

Θ∑
i=1

∇xκσ(Xn, s
′
n,i) +∇L(x),

where the data-specific gradient takes the form

∇xκσ(x, si) =
1

(2πσ)
d
2σ

exp(− 1
2σ |x− si|

2)(x− si).

In Figure 10, we plot the heat map and 3-plot of one possible realization of F̂n with σ = 0.12

and n = 104. Note that in this particular realization, the global minimum is achieved at
(3, 2).

In Figure 11, we plot Xn for different values of n under SGDxSGLD with the objective
function plotted in Figure 10. We set h = 0.1, γ = 1, Θ = 103, t0 = 0.05, M̂v = 5,
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(a) Heat map of F̂n (b) 3-d plot of F̂n

Figure 10: The estimated objective function

Figure 11: Convergence of the iterates under SGDxSGLD
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(a) SGD (b) SGLD

Figure 12: Convergence of the iterates under SGD and SGLD

X0 = (0, 0), and Y0 = (1, 1). We observe that SGDxSGLD converges to the approximate
global minimum very fast, within 103 iterations.

For comparison, in Figure 12, we plot the sample path of Xn under SGD and SGLD
with the objective function plotted in Figure 10. For SGD, the iteration takes the form

Xn+1 = Xn − h∇F̂ (Xn).

For SGLD, the iteration takes the form

Xn+1 = Xn − h∇F̂ (Xn) +
√

2γhZn.

We set h = 0.1, γ = 0.01, and Θ = 103. Note that γ = 0.01 is tuned to ensure convergence.
We observe that SGD still gets stuck in local minima. For example, in Figure 12 (a), when
X0 = (0, 0), Xn gets stuck at (0, 1). SGLD is able to attain the global minimum, but at a
much slower rate than SGDxSGLD. In particular, SGLD takes more than 2×104 iterations
to converge to the approximate global minimum in Figure 12 (b).

3.2 Non-Convex Optimization Problems with d ≥ 2

In this section, we demonstrate the performance of (n)GDxLD on some classical non-convex
optimization test problems. In particular, we consider the Rastrigin function

F (x) = 10n+
d∑
i=1

(
x2
i − 10 cos(2πxi)

)
restricted to x ∈ [−5, 5]d. We also consider the Griewank function

F (x) =
d∑
i=1

x2
i

4000
−

d∏
i=1

cos

(
xi√
i

)
+ 1
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(a) Rastrigin Function (b) Griewank Function

Figure 13: 3-d plot of F when d = 2

restricted to x ∈ [−5, 5]d. For both functions, the global minimum is at the origin, i.e.,
x∗ = (0, . . . , 0), with F (x∗) = 0. We select these two functions because they are classic
simple test problems for non-convex, multimodal optimization algorithms. Existing tools
for optimizing these functions often involve metaheurstics, which lack rigorous complexity
analysis (Gämperle et al., 2002; Esquivel and Coello, 2003; Cheng and Jin, 2014). Figure
13 provides an illustration of the two test functions when d = 2. We note that the Rast-
rigin function is especially challenging to optimize as it has many local minima, while the
Griewank function restricted to [−5, 5]d has a relatively smooth landscape with only a few
local minima.

For Rastrigin functions of different dimensions, we plot F (Xn) under at different iter-
ations under GDxLD in Figure 15. We observe that as d increases, it takes longer to find
the global minimum. For example, when d = 2, it takes around 5 × 102 iterations to find
the global minim, while when d = 5, it takes around 7×104 iterations to find the the global
minimum. When d ≥ 10, we are not able to find the global minimum within 105 iterations,
but the function value reduces substantially. nGDxLD achieves very similar performances
as GDxLD. To avoid repetition, we do not include the corresponding plots here.

For Griewank functions of different dimensions, we plot F (Xn) at different iterations
under GDxLD in Figure 15. We observe that for d as large as 50, the algorithm is able to
find the global minimum within 104 iterations.

4. Conclusion

GD is known to converge quickly for convex objective functions, but it is not designed
for exploration and it can be trapped at local minima. LD is better at exploring the
state space. But in order for the stationary distribution of the LD to concentrate around
the global minimum, it needs to run with a weak stochastic force, which in general slows
down its convergence. This paper considers a novel exchange mechanism to exploit the
expertise of both GD and LD. The proposed algorithm, (n)GDxLD, can converge to the
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(a) d = 2 (b) d = 3 (c) d = 5

(d) d = 10 (e) d = 20 (f) d = 30

Figure 14: GDxLD for Rastrigin functions on [−5, 5]d. For (a), (b), and (c), h = 0.005
and γ = 5. For (d), (e), and (f), h = 0.001 and γ = 5. The initial values are generated
uniformly on [−5, 5]d

(a) d = 5 (b) d = 25 (c) d = 50

Figure 15: GDxLD for Griewank functions on [−5, 5]d. h = 0.1 and γ = 5. For (d), (e),
and (f), h = 0.001 and γ = 5. The initial values are generated uniformly on [−5, 5]d
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global minimum linearly with high probability for non-convex objective functions, under the
assumption that the objective function is strongly convex in a neighborhood of the unique
global minimum. Our algorithms can be generalized to online settings. To do so, we replace
the exact gradient and function evaluation with their corresponding batch-average versions,
and introduce an appropriate threshold for exchange. Lastly, we demonstrate the strength
of our algorithms through numerical experiments.
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Appendix A. Detailed complexity analysis of (n)GDxLD

In this section, we provide the detailed proof of Theorem 2. The proof uses a constructive
stochastic control argument, under which we can “drive” the iterates into the desired neigh-
borhood. We start by providing an overview of the construction, which can be of interests
to the analysis of other sampling-based numerical methods. We first note once Xn ∈ B0,
by convexity, Xn will converge to x∗ with properly chosen step size h (see details in Lemma
11 and 12). It thus remains to show that Xn will be in B0 with high probability for n large
enough. This task involves two key steps.

Step 1. We construct a proper exponential-type Lyapunov function V with corresponding
parameters C > 0 and 0 < ρ < 1 (Lemma 7). In particular, if ‖Yn − x∗‖ > C and
‖Xn − x∗‖ > C,

E[V (Y ′n+1)|Yn] ≤ ρV (Yn) and E[V (X ′n+1)|Xn] ≤ ρV (Xn)

Utilizing this Lyapunov function, we can show for Yn, the k-th, k ≥ 1, visit time to the set
{x : ‖x−x∗‖ ≤ C} has a finite moment generating function in a neighborhood of the origin
(Lemma 8). This implies that Yn visits the set {x : ‖x − x∗‖ ≤ C} quite “often” (i.e., the
inter-visit time has a sub-exponential distribution).

Step 2. We then show that during each visit to {x : ‖x − x∗‖ ≤ C}, there is positive
probability that Yn will also visit B0 (Lemma 9). This essentially creates a sequence of
geometric trials whenever Yn ∈ {x : ‖x − x∗‖ ≤ C}. Note that once Yn ∈ B0, Xk ∈ B0 for
any k ≥ n due to the exchange mechanism.

Remark 6 The positive probability of visiting B0 in Step 2 can decay exponentially with
the dimension d. Therefore, the complexity estimates in Theorem 2 and likewise Theorem
4 can grow exponentially in dimension as well. This is not due to the techniques we are
using, as the estimates in Raginsky et al. (2017) and Xu et al. (2018) depend on a quantity
called “spectral gap”, which can scale exponentially with the dimension as well.
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To facilitate subsequent discussion, we introduce a few more notations. We will use the
filtration

Fn = σ{Xk, Yk, Zk−1, k ≤ n},

to denote the information up to iteration n. We use Pn to denote the conditional probability,
conditioned on Fn, and En to denote the corresponding conditional expectation. Note that
these notations generalize to stopping times.

To keep our derivation concise, we assume x∗ = 0 and F (x∗) = 0. This does not sacrifice
any generality, since we can always shift the function and consider

Fc(x) = F (x− x∗)− F (x∗).

It is easy to check if F satisfy the assumptions introduced in Section 2, Fc also satisfy the
assumptions with slightly different constants that depend on x∗.

A.1 Recurrence of the small set

In this section, we provide details about Step 1 and 2 in the proof outline. We start from
checking Lemma 1.
Proof [Proof of Lemma 1] For Claim 1), note that

−〈∇Fλ(x), x〉 = −2λ‖x‖2 − 〈∇F (x), x〉.

By Assumption 1,

|〈∇F (x), x〉| ≤ ‖∇F (x)‖‖x‖ by Cauchy-Schwarz inequality

≤ (‖∇F (x)−∇F (0)‖+ ‖∇F (0)‖)‖x‖
≤ (L‖x‖+ ‖∇F (0)‖)‖x‖ by Assumption 1

= L‖x‖2 + ‖∇F (0)‖‖x‖.

Then, applying Young’s inequality, we have

−〈∇Fλ(x), x〉 ≤ −2λ‖x‖2 + L‖x‖2 + ‖∇F (0)‖‖x‖

≤ −2λ‖x‖2 + 2L‖x‖2 +
‖∇F (0)‖2

L

≤ −λ‖x‖2 +
L2

λ
+
‖∇F (0)‖2

L
,

which is of form (5).
For Claim 2), note that

− 〈∇F (x), x− x∗〉
≤ − λ0‖x‖2 +M0 + ‖∇F (x)‖‖x∗‖ by (5)

≤− λ0‖x‖2 +M0 + L‖x− x∗‖‖x∗‖ by Assumption 1

≤− λ0‖x− x∗‖2 + λ0‖x∗‖2 + (2λ0 + L)‖x− x∗‖‖x∗‖+M0

≤− 1

2
λ0‖x− x∗‖2 + λ0‖x∗‖2 +

2λ0 + L

2λ0
‖x∗‖2 +M0 by Young’s inequality.
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Setting M1 = λ0‖x∗‖2 + 2λ0+L
2λ0
‖x∗‖2 +M0, then,

−〈∇F (x), x− x∗〉 ≤ −1

2
λ0‖x− x∗‖2 +M1.

Using Young’s inequality again, we have,

1

λ0
‖∇F (x)‖2 +

1

4
λ0‖x∗ − x‖2 ≥ 〈∇F (x), x− x∗〉 ≥ 1

2
λ0‖x− x∗‖2 −M1.

Thus,

‖∇F (x)‖2 ≥ 1

4
λ2

0‖x− x∗‖2 − λ0M1.

Our first result provides a proper construction of the Lyapunov function V . It also
establishes that F (Xn) is monotonically decreasing.

Lemma 7 For (n)GDxLD, under Assumption 1, if Lh ≤ 1/2,

1. The value of F (Xn) keeps decreasing:

F (Xn+1) ≤ F (X ′n+1) ≤ F (Xn)− 1

2
‖∇F (Xn)‖2h ≤ F (Xn).

2. Assume also Assumption 2, for η ≤ (8γ)−1, V (x) := exp(ηF (x)) satisfies the follow-
ing:

En[F (Y ′n+1)] ≤ F (Yn)− 1

2
‖∇F (Yn)‖2h+ 2γLhd

≤ (1− 1

2
λch)F (Yn) + 2CV h.

En[V (Y ′n+1)] ≤ exp

(
−1

4
ηhλcF (Yn) + ηhCV

)
V (Yn),

En[V (Xn+1)] ≤ En[V (X ′n+1)] ≤ exp

(
−1

4
ηhλcF (Xn) + ηhCV

)
V (Xn),

where CV = Mc/4 + 4γLd.

Proof For claim 1), note that by Rolle’s theorem, there exits xn on the line segment
between Xn and X ′n+1, such that

F (X ′n+1) =F (Xn)−∇F (xn)T∇F (Xn)h

=F (Xn)−∇F (Xn)T∇F (Xn)h− (∇F (xn)−∇F (Xn))T∇F (Xn)h

≤F (Xn)− ‖∇F (Xn)‖2h+ h‖∇F (xn)−∇F (Xn)‖‖∇F (Xn)‖
by Cauchy-Schwarz inequality

≤F (Xn)− ‖∇F (Xn)‖2h+ Lh2‖∇F (Xn)‖2 by Assumption 1

≤F (Xn)− 1

2
‖∇F (Xn)‖2h as Lh < 1

2 .
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Claim 1) then follows, as F (X ′n+1) ≤ F (Xn+1).

Next, we turn to claim 2). We start by establishing a bound for F (Y ′n+1). Let ∆Yn =
Y ′n+1 − Yn = −∇F (Yn)h+

√
2γhZn. Note that again by Rolle’s theorem, there exits yn on

the line segment between Yn and Y ′n+1, such that

F (Y ′n+1) =F (Yn) +∇F (yn)T∆Yn

=F (Yn) +∇F (Yn)T∆Yn − (∇F (yn) +∇F (Yn))T∆Yn

≤F (Yn) +∇F (Yn)T∆Yn + L‖∆Yn‖2

by Cauchy-Schwarz inequality and Assumption 1

≤F (Yn)−∇F (Yn)T∇F (Yn)h+
√

2γh∇F (Yn)TZn

+ L∇F (Yn)T∇F (Yn)h2 − 2
√

2γhhL∇F (Yn)TZn + 2LγhZTn Zn

≤F (Yn)− 1

2
‖∇F (Yn)‖2h+ β

√
2γh∇F (Yn)TZn + 2γLh‖Zn‖2 as Lh < 1

2 ,

with β = 1 − 2Lh ∈ (0, 1). Taking conditional expectation and using Assumption 2, we
have our first estimate.

Recall that V (y) = exp(ηF (y)). Then,

En[V (Y ′n+1)] ≤V (Yn) exp

(
−ηh

2
‖∇F (Yn)‖2

)
En
[
exp

(
βη
√

2γh∇F (Yn)TZn + 2ηγLh‖Zn‖2
)]

=V (Yn) exp

(
−ηh

2
‖∇F (Yn)‖2

)
(1− 4ηγLh)−d/2 exp

(
β2η2γh

1− 4ηγLh
‖∇F (Yn)‖2

)
as Zn ∼ N (0, Id) and 4ηγLh < 1/4

≤V (Yn) exp

(
−ηh

2
‖∇F (Yn)‖2

)
exp

(
ηh

4
‖∇F (Yn)‖2 + 8ηγLh

d

2

)
as ηγ < 1/8 and β < 1

≤V (Yn) exp

(
−ηh

4
‖∇F (Yn)‖2 + 4ηγLhd

)
≤V (Yn) exp

(
−ηh

4
λcF (Yn) +

ηh

4
Mc + 4ηγLhd

)
by Assumption 2.

Similarly, from the derivation of claim 1), we have

F (X ′n+1) ≤ F (Xn)− 1

2
‖∇F (Xn)‖2h.

Then,

En[V (X ′n+1)] ≤ V (Xn) exp

(
−ηh

2
‖∇F (Xn)‖2

)
≤ V (Xn) exp

(
−ηh

4
λcF (Xn) +

ηh

4
Mc

)
.
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In the following, we set RV = 8λ−1
c CV and define a sequence of stopping times:

τ0 = min{n ≥ 0 : F (Xn) ≤ RV },

and for k = 1, 2, . . . ,

τk = min{n > τk−1, F (Yn) ≤ RV }.

Utilizing the Lyapunov function V , our second result establishes bounds for the moment
generating function of τk’s, k ≥ 0.

Lemma 8 For (n)GDxLD, under Assumptions 1 and 2, if Lh ≤ 1/2 and η ≤ (8γ)−1, then
for any K ≥ 0, the stopping time τK satisfies

E[exp(hηCV τK)] ≤ exp(2KhηCV +KηRV )(V (X0) + V (Y0)).

Proof Note that for n < τ0, F (Yn) ≥ F (Xn) > RV = 8λ−1
c CV . Then, by Lemma 7,

En[V (Xn+1) + V (Yn+1)] ≤ exp(−hηCV )(V (Xn) + V (Yn)).

This implies

(V (Xτ0∧n) + V (Yτ0∧n)) exp(hηCV (τ0 ∧ n))

is a supermartingale. As V (x) ≥ 1, we have, by sending n→∞,

E[exp(hηCV τ0)] ≤ V (X0) + V (Y0).

By Lemma 7, F (Xn+1) ≤ F (X ′n+1) < RV for n ≥ τ0. Therefore, for k ≥ 0, if τk+1 >
τk + 1, F (Y ′n) > RV and there is no jump for Xn at step n for τk < n < τk+1.

Given Fτk (starting from τk), for n ≤ τk+1− 1, we have F (Yn) > RV , and by Lemma 7,

En[V (Yn+1)] ≤ exp(−hηCV )V (Yn).

This implies V (Yτk+1∧n) exp(hηCV (τk+1∧n)) is a supermartingale. Then, because V (x) ≥ 1,
by sending n→∞, we have

Eτk+1[exp(hηCV (τk+1 − τk − 1))] ≤ V (Yτk+1).

Next,

Eτk [exp(hηCV (τk+1 − τk − 1))] ≤Eτk [V (Yτk+1)]

≤ exp

(
−1

4
hηF (Yτk) + hηCV

)
V (Yτk) by Lemma 7

≤ exp(hηCV + ηRV ).

Now because

E[exp(hηCV τ0)] ≤ V (X0) + V (Y0),
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we have

E[exp(hηCV (τK −K))] = E

[
K−1∏
k=0

exp(hηCV (τk+1 − τk − 1))

]

≤

(
K−1∏
k=0

exp(hηCV + ηRV )

)
(V (X0) + V (Y0)).

Then,
E[exp(hηCV τK)] = exp(2hηKCV +KηRV )(V (X0) + V (Y0)).

Let
D = max{‖x− h∇F (x)‖ : F (x) ≤ RV }.

The last result of this subsection shows that if F (Yn) ≤ RV , there is a positive probability
that ‖Y ′n+1‖ ≤ r for any r > 0. In particular, this includes r = rl.

Lemma 9 For (n)GDxLD, if F (Yn) ≤ RV , for any r > 0, there exist an α(r,D) > 0, such
that

Pn(‖Y ′n+1‖ ≤ r) > α(r,D).

In particular, a lower bound for α(r,D) is given by

α(r,D) ≥ Sdr
d

(4γhπ)
d
2

exp

(
− 1

2γh
(D2 + r2)

)
> 0,

where Sd is the volume of a d-dimensional unit-ball.

Proof

Pn(‖Y ′n+1‖ ≤ r) = Pn(‖Yn − h∇F (Yn) +
√

2γhZn‖ ≤ r)

= Pn
(
‖Zn −Qn‖ ≤

r√
2γh

)
,

where Qn := −(Yn−h∇F (Yn))/
√

2γh. Note that as F (Yn) ≤ RV , ‖Qn‖ ≤ D/
√

2γh. Thus,

Pn
(
‖Zn −Qn‖ ≤

r√
2γh

)
=

∫
‖z‖≤r/

√
2γh

1

(2π)
d
2

exp

(
−1

2
‖z +Qn‖2

)
dz

≥
∫
‖z‖≤r/

√
2γh

1

(2π)
d
2

exp

(
− 1

2γh
(D2 + r2)

)
dz

≥ Sdr
d

(4γhπ)
d
2

exp

(
− 1

2γh
(D2 + r2)

)
.
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A.2 Convergence to global minimum

In this subsection, we analyze the “speed” of convergence for {Xn+k : k ≥ 0} to x∗ = 0 when
Xn ∈ B0. Most of these results are classical. In particular, if we assume B0 = Rd, then
these rate-of-convergence results can be found in Nesterov (2005). For self-completeness,
we provide the detailed arguments here adapted to our settings. First of all, we show
Assumption 3 leads to Assumption 4.

Lemma 10 Under Assumption 3, Assumption 4 holds with

ru = r, r0 =
1

2
a, rl =

√
a

M
.

Moreover for any x, y ∈ B0,

F (y)− F (x) ≥ 〈∇F (x), y − x〉+
m

2
‖y − x‖2. (10)

Proof Without loss of generality, we assume x∗ = 0 and F (0) = 0. Let a = minx:‖x‖≥r F (x).

Then a > 0 by our assumption. We choose r0 = 1
2a, ru = r, then B0 = {x : F (x) ≤

F (x∗) + r0} ⊂ {‖x‖ ≤ r}.
Next by Taylor expansion, we know F is convex within B0 and {|x| ≤ r}. This also

leads to B0 being convex since it is a sublevel set. Moreover for any x so that ‖x‖ ≤ r, for
some x′ on the line between x and 0,

F (x) = F (0) + xT∇F (0) +
1

2
xT∇2F (x′)x =

1

2
xT∇2F (x′)x.

So F (x) ≤ 1
2M‖x‖

2. So if we let rl =
√

a
M , {‖x − x∗‖ ≤ rl} ⊂ B0. Finally, using Taylor’s

expansion leads to (10).

Lemma 11 For (n)GDxLD, under Assumptions 1 and 4, and assuming h ≤ min{1/(2L), r2
u/r0},

if Xn ∈ B0,

F (Xn+k) ≤
1

1/r0 + kh/r2
u

for all k ≥ 0.

Proof From Lemma 7, we have, if F (Xn) ≤ r0, i.e, Xn ∈ B0, F (Xn+1) ≤ r0.
We first note for any k ≥ 0,

F (Xn+k) ≤ 〈∇F (Xn+k), Xn+k〉 ≤ ru‖∇F (Xn+k)‖, (11)

where the first inequality follows by convexity (Assumption 4) and the second inequality
follows by Hölder’s inequality.

Next, by Lemma 7,

F (Xn+k) ≤ F (Xn+k−1)− 1

2
‖∇F (Xn+k−1)‖2h ≤ F (Xn+k−1)− h

2r2
u

F (Xn+k−1)2,
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where the last inequality follows from (11). This implies

1

F (Xn+k)
≥ 1

F (Xn+k−1)− h
2r2u
F (Xn+k−1)2

=
1

F (Xn+k−1)
+

1

2r2
u/h− F (Xn+k−1)

.

Because F (Xn+k) ≤ r0 < r2
u/h by assumption,

1

F (Xn+k)
≥ 1

F (Xn+k−1)
+
h

r2
u

.

Then, by induction, we have

1

F (Xn+k)
≥ 1

F (Xn)
+
kh

r2
u

≥ 1

r0
+
kh

r2
u

.

Lemma 12 For (n)GDxLD, under Assumptions 1 and 3, if F (Xn) ≤ r0, Lh ≤ 1/2,

F (Xn+k) ≤ (1−mh)kF (Xn)

for all k ≥ 0.

Proof We first note if F (x) is strongly convex in B0, for x ∈ B0,

F (x∗)− F (x) ≥ 〈∇F (x), x∗ − x〉+
m

2
||x− x∗||2.

By rearranging the inequality, we have

F (x)− F (x∗) ≤ 〈∇F (x), x− x∗〉 − m

2
||x− x∗||2 ≤ 1

2m
‖∇F (x)‖2, (12)

where the last inequality follows from Young’s inequality.
Next, from Lemma 7, we have

F (Xn+1) ≤ F (Xn)− 1

2
‖∇F (Xn)‖2h ≤ (1−mh)F (Xn),

where the second inequality follows from (12). Note that by Lemma 7, F (Xn+k) ≤ r0 for
k ≥ 0. Thus, by induction, we have

F (Xn+k) ≤ (1−mh)kF (Xn).

Remark 13 The proof of Lemma 12 deals with F (Xn) and ∇F (Xn) directly. It is thus
easily generalizable to the online setting as the noise is additive (see Lemma 23). In contrast,
the proof for Lemma 11 requires investigating (F (Xn))−1. Its generalization to the online
setting can be much more complicated, as the stochastic noise can make the inverse singular.
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A.3 Proof of Theorem 2

We are now ready to prove the main theorem.
Note from Lemma 11 that if Xn ∈ B0, for any

k ≥
(

1

ε
− 1

r0

)
r2
u

h
,

F (Xn+k) ≤ ε. We set
k(ε) = (1/ε− 1/r0)r2

u/h = O(ε−1).

Next, we study “how long” it takes for Xn to reach the set B0. From Lemma 9, every
time Yn ∈ {x : F (x) ≤ RV },

Pn(‖Xn+1‖ ≤ rl) ≥ Pn(‖Y ′n+1‖ ≤ rl) ≥ α(rl, D) > 0.

Then,

P(F (XτK+1) > r0) = E

[
l∏

k=1

Pτk(F (Xτk+1) > r0)

]
≤ (1− α(rl, D))K .

Thus, if

K >
log(δ/2)

log(1− α(rl, D))
,

P(F (XτK+1) > r0) < δ/2. We set

K(δ) = log(δ/2)/ log(1− α(rl, D)) = O(− log δ).

Lastly, we establish a bound for τK . From Lemma 8, we have, by Markov inequality,

P(τK > T ) ≤ E[exp(hηCV τK)]

exp(hηCV T )
≤ exp(2KhηCV +KηRV )(V (X0) + V (Y0))

exp(hηCV T )
.

Thus, if

T > − log(δ/2)

hηCV
+ 2K +

KRV
hCV

+
log(V (X0) + V (Y0))

hηCV
P(τK > T ) < δ/2. We set

T (δ) = − log(δ/2)

hηCV
+ 2K(δ) +

K(δ)RV
hCV

+
log(V (X0) + V (Y0))

hηCV
= O(− log δ).

Above all, we have, for any N ≥ T (δ) + k(ε),

P(F (XN ) > ε) = P(F (XN ) > ε, τK > T (δ)) + P(F (XN ) > ε, τK < T (δ))

≤ P(τK > T (δ)) + P(F (XτK+1) > r0) ≤ δ.
When Assumption 3 holds, F is strongly convex in B0, from Lemma 12, if Xn ∈ B0, for

any

k ≥ log(ε)− log(r0)

log(1−mh)
,

F (Xn+k) ≤ ε. In this case, we can set

k(ε) = (log(ε)− log(r0)) / log(1−mh) = O(− log ε). (13)

Note that T scales with K and 1/α(rl, D). Lemma 9 shows that 1/α(rl, D) depends
exponentially on d and 1

γh .

36



Replica Exchange for Non-Convex Optimization

A.4 Proof of Theorem 3

The proof of Theorem 3 follows similar lines of arguments as the proof of Theorem 2. In
particular, it relies on a geometric trial argument. The key difference is that the success
probability of the geometric trial is bounded using the pre-constant of LSI rather than the
small set argument in Lemma 9.

Let

Ỹn+1 = Ỹn −∇F (Ỹn)h+
√

2γhZn

= Ỹn −
1

γ
∇F (Ỹn)γh+

√
2γhZn

This is to be differentiated with Yn in Algorithm 1, which can swap position with Xn. Note
that Ỹn is also known as the unadjusted Langevin algorithm (ULA). We denote µ̃n as the
distribution of Ỹn. Recall that πγ(x) = 1

Uγ
exp(− 1

γF (x)). We first prove an auxiliary bound

for V (x) = exp(ηF (x)) that will be useful in our subsequent analysis.

Lemma 14 Under Assumptions 1 and 2, for η ≤ (8γ)−1, h ≤ 1/(2L),

En[V (Ỹn+m)] ≤ V (Ỹn) + 4 exp(ηRV ),

where RV = 8CV /λc.

Proof From the second claim in Lemma 7, we have

En[V (Ỹn+1)] ≤ exp

(
−1

4
ηhλcF (Ỹn) + ηhCV

)
exp(ηF (Ỹn)).

When F (Ỹn) < RV ,

En[V (Ỹn+1)] ≤ exp (ηhCV ) exp(ηF (Ỹn))

≤
(

1− 1

2
ηhCV

)
exp(ηF (Ỹn)) +

(
exp (ηhCV )− 1 +

1

2
ηhCV

)
exp(ηRV )

≤
(

1− 1

2
ηhCV

)
exp(ηF (Ỹn)) + 2ηhCV exp(ηRV )

When F (Ỹn) ≥ RV , we have

En[V (Ỹn+1)] ≤ exp (−ηhCV ) exp(ηF (Ỹn)) ≤
(

1− 1

2
ηhCV

)
exp(ηF (Ỹn))

In both cases,

En[V (Ỹn+1)] ≤
(

1− 1

2
ηhCV

)
V (Ỹn) + 2ηhCV exp(ηRV ),

which implies that
En[V (Ỹn+m)] ≤ V (Ỹn) + 4 exp(ηRV ).
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Lemma 15 Under Assumptions 1 and 5,

KL(µ̃n‖πγ) ≤ exp(−β(n− 1)hγ)

(
1

γ
F (Ỹ0) + C̃d

)
+

8hdL2

βγ

where M̃d := 2Lhd− d
2(log(4πh) + 1) + log(Uγ).

Proof Given Ỹ0,

Ỹ1 ∼ N (m(Ỹ0), 2γhId), where m(Ỹ0) = Ỹ0 −∇F (Ỹ0)h.

Then, given Ỹ0,

KL(µ̃1‖πγ) =

∫
log

(
µ̃1(y)

πγ(y)

)
µ̃1(y)dy

=

∫ (
−d

2
log(4πγh)− ‖y −m(Ỹ0)‖2

4γh
+ logUγ +

F (y)

γ

)
µ̃1(y)dy

= −d
2

log(4πγh)− d

2
+ logUγ +

1

γ
E[F (Ỹ1)|Ỹ0]

≤ −d
2

log(4πγh)− d

2
+ logUγ +

1

γ
(F (Ỹ0) + 2γLhd) by Lemma 7 claim 2.

For

M̃d = −d
2

(log(4πγh) + 1) + logUγ + 2Lhd,

we have

KL(µ̃1‖πγ) ≤ 1

γ
F (Ỹ0) + M̃d

Next, from Theorem 2 in (Vempala and Wibisono, 2019) with L = L/γ and ε = γh, we
have

KL(µ̃n‖πγ) ≤ exp(−β(n− 1)hγ)KL(µ̃1‖πγ) +
8hdL2

βγ

≤ exp(−β(n− 1)hγ)

(
1

γ
F (Ỹ0) + M̃d

)
+

8hdL2

βγ
.

Based on Lemma 15, let

n0 =
2

βγ
h−1 log(1/h) + 1.

Note that for n ≥ n0 and h small enough,

KL(µ̃n‖πγ) ≤ h2

(
1

γ
F (Ỹ0) + M̃d

)
+

8hdL2

βγ

≤ hF (Ỹ0) +
9hdL2

βγ
.

(14)
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We next draw connection between the bound (14) and the hitting time of Yn to B0. For
nGDxLD, let

φ = min
n
{Yn ∈ B0}.

With a slight abuse of notation, for GDxLD, let

φ = min
n
{Xn = Y ′n or Yn ∈ B0}.

Lemma 16 For nGDxLD or GDxLD, under Assumptions 1, 2, and 5,

P(φ ≤ n0) ≥ πγ(B0)−
√
hF (Ỹ0)− 3

√
hdL√
βγ

.

Proof For nGDxLD, Yn = Ỹn. For GDxLD, before replica exchange, we also have Yn = Ỹn.
Therefore, P(φ > n) ≤ P(Zn /∈ B0), which further implies that

P(φ ≤ n) ≥ P(Zn ∈ B0).

By Pinsker’s inequality, the KL divergence provides an upper bound for the total varia-
tion distance. Let dtv(µ, π) denote the total variation distance between µ and π. Then, for
n ≥ n0,

dtv(µ̃n, πγ) ≤
√

1

2
KL(µ̃n‖πγ) ≤

√
1

2
hF (Ỹ0) +

1

2

9hdL2

βγ
≤
√
hF (Ỹ0) + 3

√
hdL√
βγ

,

where the second inequality follows from (14). Thus,

P(Ỹn0 ∈ B0) ≥ πγ(B0)− dtv(µ̃n, πγ) ≥ πγ(B0)−
√
hF (Ỹ0)− 3

√
hdL√
βγ

.

Lemma 17 For (n)GDxLD, fix any K and T ≥ (n0 + 1)K,

P0(φ > T ) ≤ exp(2(n0 + 1)KhηCV + (n0 + 1)KηRV − hηCV T )(V (X0) + V (Y0))

+

(
1− πγ(B0) +

√
hRV + 3

√
hdL√
βγ

)K
.

Proof Recall the sequence of stopping times τj = inf{n > τj−1 : F (Yn) ≤ RV }. From
Lemma 8, we have

E[exp(hηCV τk)] ≤ exp(2khηCV + kηRV )(V (X0) + V (Y0)).

We next define a new sequence of stopping times:

ψ0 = inf {n : F (Yn) ≤ RV } , ψ′0 = ψ0 + n0,
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and for k = 1, . . . ,

ψk = inf
{
n ≥ ψ′k−1 + 1, F (Yn) ≤ RV

}
, ψ′k = ψk + n0 + 1.

Note that ψi always coincide with one of τj ’s, and as τj − τj−1 ≥ 1,

ψk ≤ τ(n0+1)k.

Thus,

P0(φ ≥ T ) ≤P0

(
τ(n0+1)K ≥ T

)
+ P0

(
Yψ′k /∈ B0, ∀k ≤ K

)
≤ exp(2(n0 + 1)KhηCV + (n0 + 1)KηRV − hηCV T )(V (X0) + V (Y0))

+

(
1− πγ(B0) +

√
hRV + 3

√
hdL√
βγ

)K
by Lemma 16.

We are now ready to prove Theorem 3. Set

h <

(
πγ(B0)

2RV + 6
√
dL/
√
βγ

)2

.

Then,

1− πγ(B0) +
√
hRV + 3

√
hdL√
βγ

< 1− πγ(B0)

2
.

For nGDxLD, based on Lemma 17, let

K(δ) =
log(δ/2)

log(1− πγ(B0)/2)
.

For K ≥ K(δ), (
1− πγ(B0) +

√
hRV + 3

√
hdL√
γβ

)K
≤ δ

2
.

In addition, let

T (β, δ) = − log(δ/2)

hηCV
+ 2(n0 + 1)K(δ) +

(n0 + 1)K(δ)RV
hCV

+
log(V (X0) + V (Y0))

hηCV
.

Note that T (β, δ) = O(K(δ)n0) = O(log(1/δ)/β). For T ≥ T (δ), P(τK > T ) ≤ δ/2. Above
all, P(φ > T (δ)) ≤ δ.

Lastly, note that once Yn is in B0, Xn will be moved there if it is not in B0 already.
After Xn is in B0, it takes at most k(ε) = (log(ε)− log(r0)) / log(1−mh) iterates to achieve
the desired accuracy. Therefore, we can set

N(β, ε, δ) = T (β, δ) + k(ε).
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For GDxLD, let J = dRv/t0e. We also define

φ0 = min{n ≥ 0 : F (Xn) ≤ RV }

and for k = 1, 2, . . . ,

φk = min{n ≥ 0 : Xφk−1+n = Y ′φk−1+n or Yφk−1+n ∈ B0}.

We next make a few observations. First, for n ≥ φ0, F (Xn) ≤ RV . Second, F (Yφk) ≤ RV
for k ≥ 1. Lastly, the value of F (Xn) will decrease by t0 every time swapping takes place.
Thus, after φ0, there can be at most J swapping events. The last observation implies that
before time φJ , Yn must visit B0 at least once. Let

Ξ = min{n ≥ 0 : Yn ∈ B0 or F (Xn) ≤ ε}.

Then,

P0(Ξ > (J + 1)T )

≤P0

(
J∑
k=0

φk > T

)

≤Eφ0

[
J∑
k=0

Pφk−1
(φk > T )

]
where φ−1 ≡ 0

≤(J + 1) exp(2(n0 + 1)KhηCV + (n0 + 1)KηRV − hηCV T )(V (X0) + V (Y0) + 2RV )

+ (J + 1)

(
1− πγ(B0) +

√
hRV + 3

√
hdL√
βγ

)K
by Lemma 17 and the fact that V (Xφk) ≤ RV , V (Yφk) ≤ RV .

Let

K̃(δ) =
log(δ)− log(4(J + 1))

log(1− πγ(B0)/2)

and

T (β, δ) =− log(δ)− log(4(J + 1))

hηCV
+ 2(n0 + 1)K(δ) +

(n0 + 1)K(δ)RV
hCV

+
log(V (X0) + V (Y0) + 2RV )

hηCV
.

For T > T (β, δ), P(Ξ > (J + 1)T ) ≤ δ/2. In this case, we can set

N(β, ε, δ) = (J + 1)T (β, δ) + k(ε).

Appendix B. Detailed complexity analysis of (n)SGDxSGLD

In this section, we provide the proof of Theorem 4. The proof follows a similar construction
as the proof of Theorem 2. However, the stochasticity of F̂ (x) and ∇F̂ (x) substantially
complicates the analysis.
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To facilitate subsequent discussions, we start by introducing some additional notations.
We denote

ζXn = F̂n(Xn)− F (Xn) and ζYn = F̂n(Yn)− F (Yn).

Similarly, we denote

ξXn = ∇F̂n(Xn)−∇F (Xn) and ξYn = ∇F̂n(Yn)−∇F (Yn).

We also define

Fn = σ{Xk, Yk, Zk−1, k ≤ n},

and

Gn = Fn ∨ σ{X ′n+1, Y
′
n+1}.

We use P̃n to denote the conditional probability, conditioned on Gn, and Ẽn to denote the
corresponding conditional expectation.

Following the proof of Theorem 2, the proof is divided into two steps. We first establish
the positive recurrence of some small sets centered around the global minimum. We then
establish convergence to the global minimum conditional on being in the properly defined
small set. Without loss of generality, we again assume x∗ = 0 and F (x∗) = 0.

B.1 Recurrence of the small set

Our first result establishes some bounds for the decay rate of F (Xn).

Lemma 18 For (n)SGDxSGLD, under Assumptions 1 and 6, if Lh ≤ 1/2,

1. The value of F (Xn) keeps decreasing on average:

En[F (X ′n+1)] ≤ F (Xn)− 1

2
‖∇F (Xn)‖2h+ dLh2θ.

If θ ≤ − t20
log(2Lh2t0)

,

En[F (Xn+1)] ≤ F (Xn)− 1

2
‖∇F (Xn)‖2h+ 2dLh2θ.

2. Assume also Assumption 2, for η̂ ≤ min{(16γ)−1, (8hθ)−1}, V̂ (x) := exp(η̂F (x))
satisfies the following:

En[F (Yn+1)] ≤ (1− 1

2
λch)F (Yn)− 1

2
‖∇F (Yn)‖2h+ 2CV h.

En[V̂ (Y ′n+1)] ≤ exp

(
−1

4
η̂hλcF (Yn) + η̂hĈV

)
V̂ (Yn),

En[V̂ (X ′n+1)] ≤ exp

(
−1

4
η̂hλcF (Xn) + η̂hĈV

)
V̂ (Xn),

where ĈV = Mc/4 + (8γLd+ 4Lhθd).
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3. If η̂ < min
{

(8hθ)−1, 2t0/θ
}

, for θ ≤ − t20
log(exp(η̂hθd)−1) ,

En[V̂ (Xn+1)] ≤ V̂ (Xn) exp
(

1
4d
)
.

Proof For Claim 1), by Rolle’s theorem, there exits xn on the line segment between Xn

and X ′n+1, such that

En[F (X ′n+1)] =F (Xn)− En
[
∇F (xn)T (∇F (Xn) + ξXn )

]
h

=F (Xn)− En
[
∇F (Xn)T (∇F (Xn) + ξXn )

]
h

+ En
[
(∇F (xn)−∇F (Xn))T (∇F (Xn) + ξXn )

]
h

≤F (Xn)− ‖∇F (Xn)‖2h

+ h
(
En
[
‖∇F (xn)−∇F (Xn)‖2

])1/2 (En [‖∇F (Xn) + ξXn ‖2
])1/2

by Hölder inequality

≤F (Xn)− ‖∇F (Xn)‖2h+ Lh2En
[
‖∇F (Xn) + ξXn ‖2

]
by Assumption 1

≤F (Xn)− 1

2
‖∇F (Xn)‖2h+ dLh2θ

as Lh < 1
2 and En[‖ξXn ‖2] ≤ dθ by Assumption 6.

For Xn+1, we first note that when ‖X ′n+1‖ > M̂V or ‖Y ′n+1‖ > M̂V , F (Xn+1) = F (X ′n+1).

When ‖X ′n+1‖ ≤ M̂V and ‖Y ′n+1‖ ≤ M̂V , we note that if F (Y ′n+1) ≤ F (X ′n+1), then
F (Xn+1) ≤ F (X ′n+1). If F (Y ′n+1) > F (X ′n+1), we may “accidentally” move Xn+1 to Y ′n+1

due to the estimation errors. In particular,

Ẽn[F (Xn+1)] =F (X ′n+1)P̃n(Fn(X ′n+1) ≤ Fn(Y ′n+1) + t0)

+ F (Y ′n+1)P̃n(Fn(X ′n+1) > Fn(Y ′n+1) + t0).

This implies

Ẽn[F (Xn+1)]− F (X ′n+1)

=(F (Y ′n+1)− F (X ′n+1))P̃n(F̂n(X ′n+1) > F̂n(Y ′n+1) + t0)

=(F (Y ′n+1)− F (X ′n+1))P̃n(ζXn+1 − ζYn+1 > F (Y ′n+1)− F (X ′n+1) + t0)

≤(F (Y ′n+1)− F (X ′n+1)) exp(−(F (Y ′n+1)− F (X ′n+1) + t0)2/θ) by Assumption 6

≤ θ

2t0
exp

(
− t

2
0

θ

)
as F (Y ′n+1) > F (X ′n+1) and e−x ≤ 1/x for x > 0

≤Lh2θ as θ ≤ − t20
log(2Lh2t0)

.

Thus, En[F (Xn+1)] ≤ F (Xn)− 1
2‖∇F (Xn)‖2h+ 2dLh2θ.

For Claim 2), we start by establishing a bound for F (Y ′n+1). Let

Wn = −
√
hξYn +

√
2γZn and ∆Yn = Y ′n+1 − Yn = −∇F (Yn)h+

√
hWn.
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By Rolle’s theorem, there exits yn on the line segment between Yn and Y ′n+1, such that

F (Y ′n+1) =F (Yn) +∇F (yn)T∆Yn

=F (Yn) +∇F (Yn)T∆Yn + (∇F (yn)−∇F (Yn))T∆Yn

≤F (Yn) +∇F (Yn)T∆Yn + L‖∆Yn‖2

by Cauchy-Schwarz inequality and Assumption 1

≤F (Yn)−∇F (Yn)T∇F (Yn)h+
√
h∇F (Yn)TWn

+ L∇F (Yn)T∇F (Yn)h2 − 2
√
hhL∇F (Yn)TWn + LhW T

nWn

≤F (Yn)− 1

2
‖∇F (Yn)‖2h+ β

√
h∇F (Yn)TWn + Lh‖Wn‖2 as Lh < 1

2 , (15)

where β = 1− 2hL ∈ (0, 1). Taking conditional expectation yields the first estimate.
Next, note that for any 0 < b < min{1/(8γ), 1/(4hθ)}, we have

E
[
exp(aTWn + b‖Wn‖2)

]
≤E

[
exp

(
−
√
haT ξYn +

√
2γaTZn + 4γb‖Zn‖2 + 2bh‖ξYn ‖2

)]
by Young’s inequality ‖Wn‖2 ≤ 4γ‖Zn‖2 + 2h‖ξYn ‖2

≤(1− 8γb)−d/2 exp

(
γ‖a‖2

1− 8γb

)
(1− 4bhθ)−d/2 exp

(
h‖a‖2θ

2(1− 4bhθ)

)
(16)

by Assumption 6 and the fact that Zn ∼ N (0, I).

Then,

En[V̂ (Y ′n+1)]

≤V̂ (Yn) exp

(
− η̂h

2
‖∇F (Yn)‖2

)
En
[
exp

(
η̂β
√
h∇F (Yn)TWn + η̂Lh‖Wn‖2

)]
by (15)

=V̂ (Yn) exp

(
− η̂h

2
‖∇F (Yn)‖2

)
(1− 8γη̂Lh)−d/2 exp

(
γη̂2β2h‖∇F (Yn)‖2

1− 8γη̂Lh

)
(1− 4η̂Lh2θ)−d/2 exp

(
hθη̂2β2h‖∇F (Yn)‖2

2(1− 4η̂Lh2θ)

)
by (16) as γη̂ < 1/16, η̂hθ < 1/8 and Lh < 1/2

≤V̂ (Yn) exp

(
− η̂h

2
‖∇F (Yn)‖2

)
exp

(
η̂h

4
‖∇F (Yn)‖2 + 16η̂γLh

d

2
+ 8η̂Lh2θ

d

2

)
as 8γη̂Lh < 1/4, 4η̂Lh2θ < 1/4 and β < 1

≤V̂ (Yn) exp

(
− η̂h

4
‖∇F (Yn)‖2 + η̂h(8γLd+ 4Lhθd)

)
≤V̂ (Yn) exp

(
− η̂h

4
λcF (Yn) +

η̂h

4
Mc + η̂h(8γLd+ 4Lhθd)

)
by Assumption 2.

The upper bound for En[V̂ (X ′n+1)] can be obtained in a similar way.
Lastly, for Claim 3), we first note following the same argument as (15), we have

F (X ′n+1) ≤ F (Xn)− 1

2
‖∇F (Xn)‖2h− βh∇F (Xn)T ξXn + Lh2‖ξXn ‖2.
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Then,

En[V̂ (X ′n+1)] ≤V̂ (Xn) exp

(
−1

2
‖∇F (Xn)‖2η̂h

)
(1− 2η̂Lh2θ)−d/2 exp

(
η̂2β2h2θ‖∇F (Xn)‖2

2(1− 2η̂Lh2θ)

)
≤V̂ (Xn) exp

(
4η̂Lh2θ d2

)
as η̂hθ < 1/8 and hL < 1/2

≤V̂ (Xn) exp(η̂hθd) as hL < 1/2.

Next, note that when ‖X ′n+1‖ > M̂V or ‖Y ′n+1‖ > M̂V , V̂ (Xn+1) ≤ V̂ (X ′n+1). When

max{‖X ′n+1‖, ‖Y ′n+1‖} ≤ M̂V , if F (Y ′n+1) ≤ F (X ′n+1), V̂ (Xn+1) ≤ V̂ (X ′n+1). If F (Y ′n+1) >
F (X ′n+1), we have

Ẽn[V̂ (Xn+1)]

=V̂ (X ′n+1)P
(
F̂n(X ′n+1) ≤ F̂n(Y ′n+1) + t0

)
+ V̂ (Y ′n+1)P

(
F̂n(X ′n+1) > F̂n(Y ′n+1) + t0

)
≤V̂ (X ′n+1)

(
1 + exp(η̂(F (Y ′n+1)− F (X ′n+1))) exp

(
−1

θ

(
F (Y ′n+1)− F (X ′n+1) + t0

)2))
by Assumption 6

≤V̂ (X ′n+1)
(

1 + exp
(
− t20

θ

))
as η̂ < 2t0/θ

≤V̂ (X ′n+1) exp(η̂hθd) as 1 + exp(−t20/θ) < exp(η̂hθd).

Thus,

En[V̂ (Xn+1)] ≤ En[V̂ (X ′n+1) exp(η̂hθd)] ≤ V̂ (Xn) exp(2η̂hθd).

Recall that R̂V = 8λ−1
c ĈV . We define a sequence of stopping times:

τ̂0 = min
{
n ≥ 0 : F (Yn) ≤ R̂V

}
,

and for k = 1, 2, . . . ,

τ̂k = min
{
n > τ̂k−1 : F (Yn) ≤ R̂V

}
.

Utilizing the Lyapunov function V̂ , our second result establishes bounds for the moment
generating function of the stopping times.

Lemma 19 For (n)SGDxSGLD, under Assumptions 1, 2 and 6, if Lh ≤ 1/2 and η̂ ≤
min{(16γ)−1, (8hθ)−1}, for any K ≥ 0, the stopping time τ̂K satisfies

E[exp(hη̂ĈV τ̂K)] ≤ exp(2Khη̂ĈV +Kη̂R̂V )V̂ (Y0).
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The proof of Lemma 19 follows exactly the same lines of arguments as the proof of Lemma
8. We thus omit it here.

Let
D̂ = max{‖x− h∇F (x)‖ : F (x) ≤ R̂V }.

Following the similar lines of arguments as Lemma 9, we have the following result.

Lemma 20 For (n)SGDxSGLD, under Assumption 6, if F (Yn) ≤ R̂V , then, for any r > 0,
there exists α̂(r, D̂) > 0, such that

Pn(‖Y ′n+1‖ ≤ r) > α̂(r, D̂).

In particular,

α̂(r, D̂) ≥ Sdr
d

(8τhπ)
d
2

(
1− 4h2θ

r2

)
exp

(
− 1

2τh
(D̂2 + r2)

)
> 0.

Proof

Pn(‖Y ′n+1‖ ≤ r) = Pn(‖Yn − h∇F (Yn)− hξYn +
√

2γhZn‖ ≤ r)

≥ Pn
(
‖Zn −Qn‖ ≤

r

2
√

2τh

)
Pn
(
h‖ξYn ‖ ≤

r

2

)
,

where Qn = −(Yn − h∇F (Yn))/
√

2τh. Note that as F (Yn) ≤ R̂V , ‖Qn‖ ≤ D̂/
√

2τh. Thus,

Pn
(
‖Zn −Qn‖ ≤

r√
2τh

)
=

∫
‖z‖≤ r

2
√
2τh

1

(2π)
d
2

exp

(
−1

2
‖z +Qn‖2

)
dz

≥
∫
‖z‖≤ r

2
√
2τh

1

(2π)
d
2

exp

(
− 1

2τh
(D̂2 + r2)

)
dz

≥ Sdr
d

(8τhπ)
d
2

exp

(
− 1

2τh
(D̂2 + r2)

)
.

Lastly, by Markov inequality,

Pn
(
h‖ξYn ‖ ≤

r

2

)
≥ 1− E[4h2‖ξYn ‖2]

r2
≥ 1− 4h2θd

r2
.

Our next result shows that if F (Y ′n+1) ≤ 1
4r0, there is a positive probability that

F (Xn+1) ≤ 1
2r0.

Lemma 21 For (n)SGDxSGLD, under Assumption 6, if t0 ≤ 1
8r0, θ ≤ r20

64 log 2 , F (Y ′n+1) ≤
1
4r0, and ‖X ′n+1‖ ≤ M̂V , then

P̃n
(
F (Xn+1) ≤ 1

2
r0

)
≥ 1

2
.
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Proof Note that if F (X ′n+1) ≤ 1
2r0, F (Xn+1) is guaranteed to be less than 1

2r0. If
F (X ′n+1) > 1

2r0, the probability of exchange is

P̃n
(
F̂n(X ′n+1) ≥ F̂n(Y ′n+1) + t0

)
=P̃n

(
F (X ′n+1)− F (Y ′n+1) + ξXn − ξYn ≥ t0

)
≥P̃n

(
ξXn − ξYn ≥ 1

8r0

)
as F (X ′n+1)− F (Y ′n+1) > 1

4r0 and t0 ≤ 1
8r0

≥1− exp

(
− r2

0

64θ

)
under Assumption 6

≥1

2
as θ ≤ r20

64 log 2 .

If exchange takes place, Xn+1 = Y ′n+1 and F (Xn+1) ≤ 1
4r0.

B.2 Convergence to global minimum

In this subsection, we analyze the “speed” of convergence {Xn+k : k ≥ 0} to x∗ when
F (Xn) ≤ 1

2r0. Let

κn = inf{k > 0 : F (Xn+k) > r0}.

Lemma 22 For (n)SGDxSGLD, under Assumption 1 and 6, and assuming Lh ≤ 1/2 and
η̂ < (8hθ)−1, if F (Xn) ≤ 1

2r0, then for any fixed k > 0,

Pn(κn > k) ≥ 1− exp

(
− r0

16hθ
+

1

4
dk

)
.

Proof From Lemma 18, the following is a supermartingale

V̂ (Xn+k) exp

(
−1

4
dk

)
1κn≥k.

In particular,

En+k

[
V̂ (Xn+k+1)] exp

(
−1

4
d(k + 1)

)
1κn≥k+1

]
≤ V̂ (Xn+k) exp

(
−1

4
dk

)
1κn≥k.

Therefore,

En[V̂ (Xn+(κn∧k)) exp(−1
4d(κn ∧ k))] ≤ V̂ (Xn) ≤ exp

(
1

2
η̂r0

)
.

We also note

En
[
V̂ (Xn+(κn∧k))] exp

(
−1

4
d(κn ∧ k)

)]
≥ En

[
exp(η̂r0) exp

(
−1

4
dk

)
1κn≤k

]
.
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Then,

Pn(κn ≤ k) ≤ exp

(
−1

2
η̂r0 +

1

4
dk

)
≤ exp

(
− r0

16hθ
+

1

4
dk

)
,

since 8η̂hθ < 1.

Lemma 23 For (n)SGDxSGLD, under Assumptions 1 and 6, and assuming F is strongly
convex in B0 and h ≤ min{1/(2L), 1/m}, if F (Xn) ≤ 1

2r0,

En[F (Xn+k)1κn>k] ≤ (1−mh)kF (Xn) +
dθ

m
,

for all k ≥ 0.

Proof We first note from Lemma 18, if F (Xn) ≤ r0,

En+j [F (Xn+j+1)] ≤ F (Xn+j)−
1

2
‖∇F (Xn+j)‖2h+ 2dLh2θ

≤ (1−mh)F (Xn+j) + 2dLh2θ,

where the second inequality follows from (12) as F (x) is strongly convex in B0.
Next, we note

En[F (Xn+(κn∧k))] ≤ En

(1−mh)(κn∧k)−1F (Xn) +

κn∧k∑
j=1

(1−mh)(κn∧k)−jdLh2θ


≤ F (Xn) +

2dLhθ

m
≤ F (Xn) +

dθ

m
as Lh < 1/2.

Because En[F (Xn+(κn∧k))] > En[F (Xn+k)1κn>k],

En[F (Xn+k)1κn>k] ≤ (1−mh)kF (Xn) +
dθ

m
.

B.3 Proof of Theorem 4

For any fixed accuracy ε > 0 and δ, we set

K(δ) =
log(δ/3)

log(1− α̂(r0/4, D̂))
= O(− log(δ)),

k(ε, δ) =
log(2δε/(9r0))

log(1−mh)
= O(− log(δ)− log(ε)),

and

N(ε, δ) = k(ε, δ)+
2K(δ)hη̂vCV +K(δ)η̂R̂V + log V̂ (Y0)− log(δ/3)

hη̂ĈV
= O(− log(δ)− log(ε)).
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For any fixed N > N(ε, δ), we set

θ(N, ε, δ)

≤min

{
δεm

9d
,

r0

16h(dN/4− log(δ/9))
,− t20

log(2Lh2t0)
,− t20

log(exp(d/8)− 1)
,

r2
0

64 log 2

}
=O(min{N−1, εδ}).

Now for fixed N > N(ε, δ) and θ ≤ θ(N, ε, δ), we first note if F (Xn) ≤ 1
2r0 for n ≤

N − k(ε, δ),

Pn(F (XN ) > ε) =Pn(F (XN ) > ε, κn > N − n) + Pn(F (Xn+k) > ε, κn ≤ N − n)

≤Pn(F (XN )1κn>N−n > ε) + Pn(κn ≤ N − n)

≤1

ε

(
(1−mh)N−nF (Xn) +

dθ

m

)
+ exp

(
− r0

16hθ
+

1

4
dN

)
by Markov inequality, Lemma 23, and Lemma 22

≤1

ε

(
(1−mh)k(ε,δ) r0

2
+
dθ

m

)
+ exp

(
− r0

16hθ
+

1

4
dN

)
≤1

3
δ by our choice of θ(N, ε, δ) and k(ε, δ).

Next, we study how long it takes Xn to visit the set {x : F (x) ≤ r0/2}. In particular,
we denote T = inf{n : F (Xn) ≤ r0/2}. From Lemma 20 and 21, every time Yn ∈ {x :
F (x) ≤ R̂V },

Pn
(
F (Xn+1) ≤ 1

2
r0

)
≥ 1

2
Pn
(
‖Y ′n+1‖ ≤

1

4
r0

)
≥ 1

2
α̂(r0/4, D̂) > 0.

Then,

P(F (Xτ̂k+1) for k = 1, . . . ,K(δ)) = E

K(δ)∏
k=1

Pτ̂k

(
F (Xτ̂k+1) >

1

2
r0

)
≤
(

1− 1

2
α̂(r0/4, D̂)

)K(δ)

<
δ

3
.

From Lemma 19, by Markov inequality,

P(τ̂K(δ) > N − k(ε, δ))

≤
E[exp(hη̂ĈV τ̂K(δ))]

exp(hη̂ĈV (N − k(ε, δ)))

≤ exp(2K(δ)hη̂vCV +K(δ)η̂R̂V )V (Y0)

exp(hη̂ĈV (N − k(ε, δ)))

≤ δ

3
since N − k(ε, δ) >

2K(δ)hη̂vCV +K(δ)η̂R̂V + log V (Y0)− log δ + log 3

hη̂ĈV
.
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Then,

P(T ≤ N − k(ε, δ)) ≥ P
(
τ̂K(δ) ≤ N − k(ε, δ) and F (X̂τ̂k+1) for some k = 1, . . . ,K(δ)

)
≥
(

1− δ

3

)
+

(
1− δ

3

)
− 1 = 1− 2δ

3
.

Lastly,

P(F (XN ) ≤ ε) ≥ P(F (XN ) ≤ ε, T ≤ N − k(ε, δ))

≥ E[PT (F (XN ) ≤ ε)|T ≤ N − k(ε, δ)]P(T ≤ N − k(ε, δ))

≥
(

1− 2δ

3

)(
1− δ

3

)
≥ 1− δ.

B.4 Proof of Theorem 5

Let

Ŷn+1 = Ŷn −∇F (Ŷn)h− ξYn h+
√

2γhZn.

This is to be differentiated with Yn in Algorithm 2, which can swap position with Xn. We
denote µ̂n as the distribution of Ŷn.

Lemma 24 Under Assumptions 1, 5, and 6, for h < β

4
√

2L2 ,

KL(µ̂n|πγ) ≤ exp(−1
2βγh(n− 1))

(
1

γ
F (Ŷ0) + M̂d

)
+

6hL2d+ θd/γ

βγ
,

where M̂d = 2Lhd− d
2(log(4πh) + 1) + log(Uγ).

Proof For a given realization of ξY0 and Ŷ0,

Ŷ1 ∼ N (m(Ŷ0), 2γhId), where m(Ŷ0) = Ŷ0 −∇F (Ŷ0)h− ξY0 h.

Then, given Ỹ0,

KL(µ̂1‖πγ) =

∫
log

(
µ̂1(y)

πγ(y)

)
µ̂1(y)dy

=

∫ (
−d

2
log(4πγh)− ‖y −m(Ŷ0)‖2

4γh
+ logUγ +

F (y)

γ

)
µ̂1(y)dy

= −d
2

(log(4πγh) + 1) + logUγ +
1

γ
E[F (Ŷ1)|Ŷ0]

≤ −d
2

(log(4πγh) + 1) + logUγ +
1

γ
(F (Ŷ0) + 2Lh‖ξY0 ‖2 + 2γLhd)

=
1

γ
F (Ŷ0) + M̂d +

2Lh

γ
‖ξY0 ‖2,

(17)

where the last inequality follows from (15).
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Next, following the proof of Lemma 3 in (Vempala and Wibisono, 2019), for a given ξY1 ,
with slight abuse of notation, consider the modified diffusion process:

dYt = −∇F (Ŷ1)dt− ξY1 dt+
√

2γdBt, Y1 = Ŷt

for t ≥ 1. Note that Ŷ2 follows the same law as Y1+h. Let µt denote the distribution of Yt.
Then

d

dt
KL(µt‖πγ)

=− γ
∫ ∥∥∥∥∇ log

µt(x)

πγ(x)

∥∥∥∥2

µt(x)dx+ E
[〈
∇F (Yt)− ξY1 −∇F (Ŷ1),∇ log

µt(Yt)

πγ(Yt)

〉]
≤− 3γ

4

∫ ∥∥∥∥∇ log
µt(x)

πγ(x)

∥∥∥∥2

µt(x)dx+
1

γ
E
[∥∥∥∇F (Yt)− ξY1 −∇F (Ŷ1)

∥∥∥2
]

≤− 3γ

4

∫ ∥∥∥∥∇ log
µt(x)

πγ(x)

∥∥∥∥2

µt(x)dx+
2

γ
L2E[‖Yt − Ŷ1‖2] +

2

γ
‖ξY1 ‖2.

Because Yt
d
= Ŷ1−(∇F (Ŷ1)+ξY1 )(t−1)+

√
2γ(t− 1)Z1, where Z1 is a standard d-dimensional

Gaussian random vector,

E[‖Yt − Ŷ1‖2] = 2(t− 1)2E[‖∇F (Ŷ1)‖2] + 2(t− 1)2‖ξY1 ‖2 + 2γ(t− 1)d

≤ 8(t− 1)2L2

β
KL(µ̂1‖πγ) + 4(t− 1)2dL+ 2(t− 1)2‖ξY1 ‖2 + 2γ(t− 1)d.

In addition, because, ∫ ∥∥∥∥∇ log
µt(x)

πγ(x)

∥∥∥∥2

µt(x)dx ≥ 2βKL(µt(x)‖πγ),

we have

d

dt
KL(µt‖πγ)

≤− 3βγ

2
KL(µt‖πγ)

+ 2
L2

γ

(
8(t− 1)2L2

β
KL(µ̂1‖πγ) + 4(t− 1)2dL+ 2(t− 1)2‖ξY1 ‖2 + 2γ(t− 1)d

)
+

2

γ
‖ξY1 ‖2

≤− 3βγ

2
KL(µt‖πγ) +

16(t− 1)2L4

βγ
KL(µ1‖πγ) +

1

γ
(4(t− 1)2L2 + 2)‖ξY1 ‖2

+ 8(t− 1)2d
L3

γ
+ 4(t− 1)dL2,

which further implies that

KL(µ1+h‖πγ) ≤ e−
3
2βγhKL(µ1‖πγ)+

16h3L4

βγ
KL(µ1‖πγ)+

4h3L2 + 2h

γ
‖ξY1 ‖2+

8h3dL3

γ
+4h2dL2
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For h < βγ

4
√

2L2 , we have

KL(µ1+h‖πγ) ≤ (1− βhγ) KL(µ1‖πγ) +
3h

γ
‖ξY1 ‖2 + 6h2L2d.

The above analysis implies that given ξYk ’s,

KL(µ̂n‖πγ) ≤ (1− βhγ) KL(µ̂n−1‖πγ) +
3h

γ
‖ξY1 ‖2 + 6h2L2d

≤ exp(−1
2βh(n− 1)γ)KL(µ̂1‖πγ) +

6hL2d

βγ
+

3h

γ

n−1∑
k=1

(1− hβγ)n−k‖ξYk ‖2.

Plug in the bound for KL(µ̂1‖πγ) in (17) and taking the expectation with respect to ξYk ’s,
we have

KL(µ̂n‖πγ) ≤ exp(−1
2βh(n− 1)γ)

(
1

γ
F (Ŷ0) + M̂d

)
+

6hL2d

βγ
+

1

γ
h
n−1∑
k=0

(1− hβγ)n−kθd

≤ exp(−1
2βh(n− 1)γ)

(
1

γ
F (Ŷ0) + M̂d

)
+

6hL2d+ θd/γ

βγ
.

Based on Lemma 24, let

n0 =
4

βγ
h−1 log(1/h) + 1.

For n ≥ n0 and h small enough,

KL(µ̂n‖πγ) ≤ h2

(
1

γ
F (Ŷ0) + M̂d

)
+

6hL2d+ θd/γ

βγ

≤ hF (Ŷ0) +
8hL2d+ θd/γ

βγ

(18)

Recall that
B̂0 = {x : F (x) ≤ r0/4}.

We next draw connection between the bound (18) and the hitting time of Yn to B̂0. For
nSGDxSGLD, let φ̂ = minn{Yn ∈ B̂0}. With a slight abuse of notation, for SGDxSGLD,
let φ̂ = minn{Xn = Y ′n or Yn ∈ B̂0}.

Lemma 25 For (n)SGDxSGLD, under Assumptions 1, 2, 5, and 6,

P(φ̂ ≤ n0) ≥ πγ(B̂0)−
√
hF (Ŷ0)− 2

√
h

√
dL√
βγ
−
√
θd√
βγ
.

Proof For both nSGDxSGLD and SGDxSGLD,

P(φ̂ ≤ n) ≥ P(Ŷn ∈ B̂0).
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By Pinsker’s inequality,

dtv(µ̂n, πγ) ≤
√

1

2
KL(µ̂n‖πγ) ≤

√
hF (Ŷ0) + 2

√
h

√
dL√
βγ

+

√
θd√
βγ

where the last inequality follows from (18). Then

P(Ŷn0 ∈ B̂0) ≤ πγ(B̂0)−
√
hF (Ŷ0)− 2

√
h

√
dL√
βγ
−
√
θd√
βγ

Lemma 26 For (n)GDxLD, fix any K and T ≥ (n0 + 1)K,

P0(φ̂ > T ) ≤ exp(2(n0 + 1)Khη̂ĈV + (n0 + 1)Kη̂R̂V − hη̂ĈV T )V̂ (Y0)

+

(
1− πγ(B̂0) +

√
hR̂V + 2

√
h

√
dL√
βγ

+

√
θd√
βγ

)K
.

Proof Recall the sequence of stoping times τ̂j = inf{n > τj−1 : F (Yn) ≤ R̂V }. Applying
Lemma 19, we have

E[exp(hη̂ĈV τ̂k)] ≤ exp(2khη̂ĈV + kη̂R̂V )V̂ (Y0).

We next define a new sequence of stopping times:

ψ̂0 = inf
{
n : F (Yn) ≤ R̂V

}
, ψ̂′0 = ψ̂0 + n̂0,

and for k = 1, . . . ,

ψ̂k = inf
{
n ≥ ψ̂′k−1 + 1, F (Yn) ≤ R̂V

}
, ψ̂′k = ψ̂k + n̂0 + 1.

Note that ψ̂i always coincide with one of τ̂j ’s, and as τ̂j − τ̂j−1 ≥ 1,

ψ̂k ≤ τ̂(n0+1)k.

Thus,

P0(φ̂ ≥ T ) ≤P0

(
τ̂(n0+1)K ≥ T

)
+ P0

(
Yψ′k /∈ B0, ∀k ≤ K

)
≤ exp(2(n0 + 1)Khη̂ĈV + (n0 + 1)Kη̂R̂V − hη̂ĈV T )V̂ (Y0)

+

(
1− πγ(B̂0) +

√
hR̂V + 2

√
h

√
dL√
βγ

+

√
θd√
βγ

)K
by Lemma 25.
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We are now ready to prove Theorem 5. For a fixed N , let AN denote the event{
ξXn − ξYn >

1

2
t0 for some n ≤ N

}
Note that

P(AN ) ≤
N∑
n=1

P
(
ζXn − ζYn >

1

2
t0

)
≤ N exp

(
− t

2
0

θ

)
.

Next, set

h <

(
πγ(B̂0)

4R̂V + 8
√
dL/
√
βγ

)2

and θ <
πγ(B̂0)2βγ2

16d
.

Then,

1− πγ(B̂0) +
√
hR̂V + 2

√
h

√
dL√
βγ

+

√
θd√
βγ
≤ 1− πγ(B̂0)/2

Following the proof of Theorem 4, we also set

k(ε, δ) =
log(2δε/(9r0))

log(1−mh)

and

θ(N, δ) = min

{
1

t20
log

(
δ

3N

)
,
δεm

9d
,

r0

16h(dN/4− log(δ/9))
,
πγ(B̂0)2βγ2

16d

}
.

In what follows we assume θ ≤ θ(N, δ).
For nSGDxSGLD, define J = 1,

φ̂0 = min{n ≥ 0 : F (Yn) ∈ B̂0},

and for k ≥ 1,

φ̂k = min{n > 0 : F (Yφk+n) ∈ B̂0}.

For SGDxSGLD, with a slight abuse of notation, define J = R̂v/t0,

φ̂0 = min{n ≥ 0 : F (Xn) ≤ R̂V },

and for k ≥ 1,

φ̂k = min{n : Xφk−1+n = Y ′φk−1+n or Yφk−1+n ∈ B̂0}.

We next note that

P(F (XN ) > ε) ≤P(AN ) + P(F (XN ) > ε, φJ < N,AcN )

+ P(φJ > N,AcN )
(19)

We shall look at the three terms on the left hand side of (19) one by one. First, with our
choice of θ, P(AN ) ≤ δ/3.
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Second, suppose there exist n < N − k(ε, δ) such that F (Xn) < r0/2. Let κn = inf{k >
0 : F (Xn) > r0}. Then,

Pn(F (XN ) > ε) =Pn(F (XN ) > ε, κn > N − n) + Pn(F (XN ) > ε, κn ≤ N − n)

≤Pn(F (XN )1κn>N−n > ε) + Pn(κn ≤ N − n)

≤1

ε

(
(1−mh)N−nF (Xn) +

dθ

m

)
+ exp

(
− r0

16hθ
+

1

4
dN

)
by Markov inequality, Lemma 23, and Lemma 22

≤1

ε

(
(1−mh)k(ε,δ) r0

2
+
dθ

m

)
+ exp

(
− r0

16hθ
+

1

4
dN

)
≤1

3
δ by our choice of θ and k(ε, δ).

In addition, from Lemma 21,

P
(
F (Xn) ≤ 1

2
r0

∣∣∣Y ′n ∈ B̂0

)
≥ 1

2

Thus every time Y ′n ∈ B̂0, there is a chance larger than or equal to 1
2 for Xn to visit

{x : F (x) ≤ r0/2}.
Lastly, we study how long it takes Yn to visit B̂0. Conditional on AcN and φJ < N ,

there exists at least one φk, k ≤ J , such that Yφk ∈ B̂0. In addition, at all φk, 1 ≤ k ≤ J ,

F (Yφk) ≤ R̂V + t0. Let φ−1 ≡ 0. Then, for N > (J + 1)T

P0(φJ ≥ (J + 1)T |AcN )

≤E0

[
J∑
k=0

Pφk−1
(φk+1 > T |AcN )

]
≤(J + 1) exp

(
2(n0 + 1)Khη̂ĈV + (n0 + 1)Kη̂R̂V − hη̂ĈV T

)
(V̂ (Y0) + R̂V + t0)

+ (J + 1)

(
1− πγ(B̂0) +

√
hR̂V + 2

√
h

√
dL√
βγ

+

√
θd√
βγ

)K
by Lemma 26

≤(J + 1) exp
(

2(n0 + 1)Khη̂ĈV + (n0 + 1)Kη̂R̂V − hη̂ĈV T
)

(V̂ (Y0) + R̂V + t0)

+ (J + 1)
(

1− πγ(B̂0)/2
)K

by our choice of h and θ.

Set

K(δ) =
log(δ)− log(6(J + 1))

log(1− πγ(B̂0)/2)

and

T (β, δ) =
2(n0 + 1)K(δ)hη̂ĈV + (n0 + 1)K(δ)η̂R̂V

hη̂ĈV

+
log
(
V̂ (Y0) + R̂V + t0

)
− log(δ) + log(6(J + 1))

hη̂ĈV
.
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We have for K > K(δ) and T > T (δ, β), P(φJ ≥ T,AcN ) < δ/3.

Above all, if we set

N(β, ε, δ) = T (β, δ) + k(δ, ε) = O(log(1/δ)/β) +O(1/ε),

we have for N ≥ N(β, ε, δ), P(F (XN ) > ε) ≤ δ.
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