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Abstract

Gaussian processes are ubiquitous in machine learning, statistics, and applied mathematics.
They provide a flexible modelling framework for approximating functions, whilst simultane-
ously quantifying uncertainty. However, this is only true when the model is well-specified,
which is often not the case in practice. In this paper, we study the properties of Gaussian
process means when the smoothness of the model and the likelihood function are misspeci-
fied. In this setting, an important theoretical question of practical relevance is how accurate
the Gaussian process approximations will be given the chosen model and the extent of the
misspecification. The answer to this problem is particularly useful since it can inform our
choice of model and experimental design. In particular, we describe how the experimental
design and choice of kernel and kernel hyperparameters can be adapted to alleviate model
misspecification.

Keywords: Gaussian Processes, Kriging, Nonparametric Regression, Reproducing Kernel
Hilbert Space, Sampling Inequality

1. Introduction

Gaussian processes (GPs) have found widespread use in machine learning (Rasmussen and
Williams, 2006) as they offer flexible and interpretable models with uncertainty quantifica-
tion. Applications include reinforcement learning (Kuss and Rasmussen, 2004), time-series
modelling (Roberts et al., 2013), robotics and control (Deisenroth et al., 2015), as well as
Bayesian numerical methods including Bayesian quadrature (Briol et al., 2019; Kanagawa
et al., 2020), Bayesian optimization (Mockus, 1989; Snoek et al., 2012; Bull, 2011) and
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Bayesian differential equations solvers (Cockayne et al., 2016). Outside of machine learn-
ing, Gaussian process regression was first used in geostatistics (Krige, 1951; Cressie, 1990;
Matheron, 1963), where the procedure was originally known as kriging and is a current ac-
tive field (Wang et al., 2019; Lederer et al., 2019). Gaussian processes are used for tackling
problems ranging from computer models (Kennedy and O’Hagan, 2001) to inverse problems
(Stuart, 2010; Stuart and Teckentrup, 2018), health monitoring (Stegle et al., 2008), engi-
neering design (Forrester et al., 2008) and tsunami modelling (Sarri et al., 2012), to name
but a few.

In most of the applications above, the central task is to approximate a function of interest
given pointwise evaluations of this function which may be corrupted by some unknown noise.
To do so, practitioners carefully design their algorithms such that the approximation error
decreases at a fast rate in the number of data points. Several modelling choices need to be
made, including the selection of a GP model and hyperparameters, of a likelihood, and of the
locations at which to obtain data. Making appropriate choices for a given application is an
extremely difficult task, and poor choices can lead to poor empirical performance. One way
to tackle this problem in a unified manner is to turn to theoretical convergence guarantees
which explicitly account for these modelling choices, and to select specific algorithms which
minimise upper bounds on the approximation error.

Of course, this approach is only sensible if the bounds apply to the problem at hand,
but most existing bounds are rather restrictive and require assumptions which users might
not be able to verify. The novel contributions of this paper include convergence guarantees
in the presence of two common modelling errors, and suggestions as to how to construct
algorithms which can mitigate these.

The first is likelihood misspecification, meaning that the observations follow a distri-
bution which is different from the one assumed by the model. This often occurs because
conditioning of Gaussian process means on data is only possible in closed-form if assuming
the data is noiseless, or contains independently and identically distributed Gaussian noise
with known variance. For more complex observations, such as input-dependent noise (Gold-
berg et al., 1998; Le et al., 2005) or distributions with heavy tails (Vanhatalo et al., 2009),
a closed-form expression for the mean is not available. In order to maintain a closed-form
expression, practitioners often use simplistic models which may not be a faithful representa-
tion of the data-generating process, leading to a lack of robustness and poor approximations
(Goldberg et al., 1998; Jylänki et al., 2011).

The second is smoothness misspecification, meaning that the Gaussian process mean is
either too rough or too smooth relative to the target function. Here, the smoothness of
a function is measured in terms of number of derivatives in the sense of Sobolev spaces.
This is known to guide the rate of convergence of Gaussian process approximations, with
faster rates attainable for smoother functions if the mean and covariance functions are
chosen appropriately. However, for many of the aforementioned applications, it is difficult
to identify the smoothness of the target function. This commonly leads to sub-optimal
choices of GPs, and as a result potentially slower convergence rates.

Our novel convergence guarantees highlight the impact that both types of misspeci-
fication can have on rates of convergence, and can provide guidance on model choice for
practitioners at risk of misspecification. In particular, the impact of the experimental design
and covariance function is made clear in the bounds. The bounds employ results from the
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scattered data approximation (SDA) literature (Wendland, 2005), which has been applied to
GP related methods in numerous works (Bull, 2011; Stuart and Teckentrup, 2018; Xi et al.,
2018; Briol et al., 2019; Teckentrup, 2020; Tuo and Wang, 2020). Smoothness misspecifi-
cation has previously been considered in this context (Narcowich et al., 2006; Teckentrup,
2020; Kanagawa et al., 2020) as has corrupted observations (Rieger and Zwicknagl, 2009;
Arcangéli et al., 2007). However, the interplay of smoothness and likelihood misspecifica-
tion has not been investigated to date. Our paper therefore unifies and extends existing
work in this area.

The main results in this paper are Theorem 1, Theorem 2, Theorem 4 and Theorem
7 which, respectively, concern the cases when a likelihood reflecting no noise is correctly
assumed, a Gaussian likelihood is correctly assumed, a Gaussian likelihood is incorrectly
assumed and a likelihood of no noise is assumed but there is arbitrary corruption. In each
case the results also facilitate the smoothness of the target function being different from the
smoothness of the approximating function. To highlight the relevance of these novel bounds,
in Section 5 we derive implications for the convergence of Bayesian numerical methods based
on GPs, specifically Bayesian quadrature and Bayesian optimization.

The paper is structured as follows. Section 2 reviews background material on GPs and
reproducing kernel Hilbert spaces. Section 3 introduces and discusses assumptions on the
design region, design points and GP model required for our theory to hold. Existing conver-
gence results are also covered. Section 4 contains the error bounds. Section 5 demonstrates
implications of these bounds for Bayesian quadrature and Bayesian optimization. Section
6 provides concluding remarks.

2. Background on Gaussian Processes and Kernel Methods

In this section, we start by introducing notation for GPs conditioned on data and recall
some of their properties, then we highlight how the smoothness of GPs can be measured
using Sobolev spaces.

2.1 Interpolation and Regression

Let (Ω,F ,P) be a probability space and X ⊆ Rd. A Gaussian process (Stein, 1999; Ras-
mussen and Williams, 2006) is a stochastic process g : X × Ω → R whose properties are
captured by its mean m : X → R, m(x) = E[g(x, ·)], and covariance function k : X×X → R,
k(x, x′) = E[(g(x, ·)−m(x))(g(x′, ·)−m(x′))]. The defining property of a GP with mean m
and covariance k, denoted g ∼ GP(m, k), is that for any finite set of points X = {xi}ni=1,
the random vector (g(x1, ·), . . . , g(xn, ·))> ∈ Rn follows the multivariate normal distribution
N (mX , kXX) with mean vector given by mX = (m(x1), . . . ,m(xn))> ∈ Rn and covariance
matrix kXX = (k(xi, xj))1≤i,j≤n ∈ Rn×n.

The covariance function is symmetric (k(x, x′) = k(x′, x)∀x, x′ ∈ X ) and positive definite
(∀n ∈ N, a1, . . . , an ∈ R, {xi}ni=1 ⊂ X ,

∑n
i,j=1 aiajk(xi, xj) ≥ 0) and we shall call any func-

tion satisfying these two properties a kernel. A GP induces a probability measure over func-
tions which we denote Πk. A significant advantage of GPs over other stochastic processes
is our ability to condition on data in closed form in some settings. Let fGP ∼ GP(m, k),
X = (x1, . . . , xn)> be a finite collection of design points and for some deterministic function
f denote by fX = (f(x1), . . . , f(xn))> the corresponding function values. Conditioning the

3



Wynne, Briol, Girolami

stochastic process fGP on noisy function evaluations, often called the regression setting, ob-
served with independent, identically distributed Gaussian noise εi with mean zero, variance
σ2, gives another GP, denoted fGP | X, y ∼ GP(m̄σ2 , k̄σ2), where yi = f(xi) + εi, m̄σ2(x) =
m(x) + kxX(kXX + σ2In×n)−1(y −mX), k̄σ2(x, x′) = k(x, x′)− kxX(kXX + σ2In×n)−1kXx′ ,
with kxX = (k(x, x1), . . . , k(x, xn)) and In×n is an identity matrix of size n. This will also be
the case if fX is observed without noise, also called the interpolation setting, in which case
the conditioned GP is denoted fGP | X, fX ∼ GP(m̄, k̄) where m̄(x) = kxXk

−1
XX(fX −mX)

and k̄ = k̄0.
Although the expressions for m̄ and m̄σ2 were obtained through conditioning of a GP,

they can also arise through non-probabilistic function approximation schemes. The function
spaces used are the reproducing kernel Hilbert spaces (RKHS) (Berlinet and Thomas-Agnan,
2004) associated with the kernel k of the GP. A Hilbert space of functions on X , denoted
H(X ), with inner product 〈·, ·〉H(X ) and norm ‖·‖H(X ) is called a reproducing kernel Hilbert
space if there exists a kernel k, such that the following two conditions are satisfied (i) ∀x ∈ X
we have k(·, x) ∈ H(X ), and (ii) ∀x ∈ X and ∀f ∈ H(X ), we have 〈f, k(·, x)〉H(X ) = f(x)
which is called the reproducing property. By the Moore-Aronszajn theorem, the relationship
between kernels and RKHS is one-to-one, so we denote the RKHS by Hk(X ) instead of
H(X ).

The optimisation problem for the interpolation setting is the following constrained prob-
lem

arg min
g∈Hk(X )

‖g‖2Hk(X ) such that g(xi) = f(xi) ∀i ∈ {1, . . . , n}.

The optimisation problem corresponding to regression is similar but does not require the
approximating function to be exactly equal to observed data at the observation points

arg min
g∈Hk(X )

S(g, λn,X ) = arg min
g∈Hk(X )

1

n

n∑
i=1

(g(xi)− yi)2 + λn‖g‖2Hk(X ).

The fit at X and the complexity of the approximating function are traded off using a reg-
ularisation parameter λn > 0. When εi = 0 ∀i ∈ {1, . . . , n}, kernel regression is sometimes
referred to as approximate kernel interpolation (Wendland and Rieger, 2005) due to the
fact that it differs from kernel interpolation as λn > 0. For further discussion regarding the
relationship between kernel methods of approximating functions and GP methods, see e.g.
(Berlinet and Thomas-Agnan, 2004; Scheuerer et al., 2013; Kanagawa et al., 2018).

To unify notation, given a function m, a vector ε ∈ Rn and λ > 0, define the function

Rmf,λ,ε(x) := m(x) + kxX(kXX + λIn×n)−1(fX + ε−mX), (1)

then m̄ = Rmf,0,0 and m̄σ2 = Rmf,σ2,ε and the functions solving the kernel interpolation and

regression problems are R0
f,0,0, R

0
f,nλn,ε

respectively and for ease of notation we will drop
the variables which are zero throughout the rest of the paper.

2.2 The Smoothness of Reproducing kernel Hilbert Spaces

As previously mentioned, we measure the smoothness of functions using Sobolev spaces,
and this smoothness will control approximation rates. For τ ∈ N, q ∈ [1,∞] and a domain
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X ⊆ Rd, meaning a non-empty, open, connected set, define the integer order Sobolev space
W τ
q (X )

W τ
q (X ) =

{
f ∈ Lq(X ) : ∀α ∈ Nd |α| ≤ τ,Dαf ∈ Lq(X )

}
,

where Nd is the set of multi-indices of size d, |α| =
∑d

i=1 αi and Dα is the weak derivative
operator corresponding to α, see e.g. Arcangéli et al. (2012). Sobolev spaces can also be
defined for τ /∈ N through a standard interpolation space argument (Arcangéli et al., 2012).
In particular for τ > d/2, the Sobolev space W τ

2 (Rd) may be written as

W τ
2 (Rd) :=

{
f ∈ L2(Rd) : ‖f‖2W τ

2 (Rd)
:=

∫
Rd

(
1 + ‖x‖22

)τ |f̂(x)|2dx <∞
}
,

where f̂ is the Fourier transform of f and ‖·‖2 denotes the Euclidean norm. Our theoretical
results shall apply to functions defined over X ⊆ Rd, recall the definition of W τ

2 (X ) via
restriction

W τ
2 (X ) :=

{
f : X → Rd : ∃f◦ ∈W τ

2 (Rd) such that f◦(x) = f(x) ∀x ∈ X
}
,

with norm

‖f‖W τ
2 (X ) = inf

{
‖f◦‖W τ

2 (Rd) : f◦ ∈W τ
2 (Rd) and f◦(x) = f(x) ∀x ∈ X

}
.

Similarly, starting from Hk(Rd), we may define Hk(X ) via restriction. This function
space is still an RKHS with the kernel being the restriction of k to X × X (Berlinet and
Thomas-Agnan, 2004, Theorem 6). IfHk(Rd) is norm equivalent toW τ

2 (Rd) and X is regular
in some sense to be outlined in Section 3, then Hk(X ) is norm equivalent to W τ

2 (X ). We
call a kernel τ -smooth if Hk(X ) is norm equivalent to W τ

2 (X ).

A frequently used example of τ−smooth kernel is the Matérn kernel. For τ > d/2, it is
given by

kMat(x, x
′) =

21−(τ− d
2

)A

Γ(τ − d
2)

(√
2

(
τ − d

2

)
‖x− x′‖2

l

)τ− d
2

Kτ− d
2

(√
2

(
τ − d

2

)
‖x− x′‖2

l

)
, (2)

where l > 0, A > 0. Here, Γ is the Gamma function and Kτ−d/2 is the modified Bessel
function of second kind of order τ − d/2. The parameter l is called the lengthscale, A is the
amplitude. If τ = m+ 1/2 + d/2 for some m ∈ N then the expression drastically simplifies
thanks to properties of Bessel functions (Kanagawa et al., 2018). Another kernel which
has RKHS norm equivalent to a Sobolev space is the Wendland kernel (Wendland, 2005,
Chapter 9). This kernel is popular in the SDA literature due to the fact that it is compactly
supported and thus offers favourable computational advantages. Both these kernels are
translation invariant meaning there exists a function φ such that k(x, y) = φ(x− y).
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3. Experimental Setting

We now highlight assumptions on the experimental setting for which our theoretical results
hold. Section 3.1 outlines properties of the domain over which the approximation occurs
and of the points at which the target function is evaluated, Section 3.2 outlines properties
of the GP model and Section 3.3 compares our assumptions to those in related literature.

3.1 The Experimental Design

Throughout this paper, we will follow Arcangéli et al. (2012) and assume the domain X
is bounded and satisfies an (R, δ) interior cone condition with a Lipschitz boundary. Such
domains will be called L(R, δ)-domains, see Section A in the Appendix for full details. This
is a standard assumption to make when applying scattered data approximation type results
(Kanagawa et al., 2020; Arcangéli et al., 2012; Teckentrup, 2020; Narcowich et al., 2006).
As discussed by Stein (1970), any open bounded convex set in Rd has Lipschitz boundary.
This includes for example any open hypercube (0, 1)d and indeed any hyper cuboid. An
example of a non-Lipschitz boundary is a domain of two polygons with boundaries touching
at only one point.

The experimental design problem is well studied for GP surrogate models (Sacks et al.,
1989; Santner et al., 2018) and an intuitive requirement is that the point set X somehow
covers the whole domain X . Designs based on this rule-of-thumb are usually referred to as
space-filling designs, see the review by Pronzato and Müller (2012).

Given a bounded set X ⊆ Rd and a collection of points X ⊆ X , the fill distance hX ,
separation radius qX and mesh ratio ρX are defined as

hX := sup
x∈X

inf
y∈X
‖x− y‖2, qX := min

x,y∈X
x 6=y

1

2
‖x− y‖2, ρX =

hX
qX

.

A small fill distance guarantees that no point in the domain X is too far away from a
point in the design X, while a large separation radius guarantees that points in the design X
are not too close to one another and the mesh-ratio measures the uniformity of the points.
All of our bounds will be expressed in terms of these quantities. A sequence of points sets
{Xn}n∈N is said to be quasi-uniform, if ∃ C > 0 such that CqXn ≥ hXn ∀n ∈ N. Note that
quasi-uniformity is equivalent to a bounded mesh-ratio ρXn. Quasi-uniform points achieve
optimal rates for the fill distance on L(R, δ)-domains, namely Müller (2008, Satz 2.1.7)
showed that ∃C1, C2 > 0 such that C1n

−1/d ≤ hXn ≤ C2n
−1/d ∀n ∈ N. We now provide

several examples of point sets for which results on the fill distance or separation radius are
available

• Regular grid points in a hypercube X = (0, 1)d form a quasi-uniform point set (John-
son et al., 1990).

• Random points sampled according to some probability measure on X can be shown
to decrease the fill distance at a near-optimal rate in expectation. Indeed, Oates
et al. (2019) showed that on a L(R, δ)-domain, for any ε > 0, E[hXn ] = O(n−1/d+ε)
whenever the density p > 0 on all of X .
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• Points chosen in a restricted greedy fashion to minimise the GP posterior variance
for a τ -smooth kernel with τ > d/2 + 1 result in quasi-uniform points (Wenzel et al.,
2019).

• Another possible choice are quasi-Monte Carlo (QMC) point sets. Since quasi-
uniformity as defined above is not studied in QMC, it is unclear when common QMC
point sets are quasi-uniform. However, several special cases are known, see e.g. (Breger
et al., 2018) for quasi-uniform QMC point sets on compact Riemmanian manifolds.

• Some design schemes aim to minimise energy functionals. For the case of the Riesz
energy, Hardin et al. (2012) showed that minimum energy point sets on compact
metric spaces can be quasi-uniform.

• The seminal work of Johnson et al. (1990) termed points globally minimising hX
“minimax-distance designs”, and points globally maximising qX “maximin-distance
designs”.

There are several popular choices of point sets for which exact rates for hXn or qXn are
unknown, but which minimise these quantities numerically. The bounds in our paper clearly
motivate these designs. We now present several examples:

• Smolyak sparse grids, which originate from the partial differential equations literature,
are also popular in the GP literature. It was shown by Teckentrup (2020, Theorem 3.9)
that these points are marginally quasi-uniform when projected onto the coordinate
axis, but these will not be quasi-uniform in general.

• Latin hypercube designs (LHDs) (McKay et al., 1979). Unfortunately, these are not
necessarily quasi-uniform point sets. However, several authors have proposed what
they call maximin and minimax LHDs (Morris and Mitchell, 1995; Joseph and Hung,
2008; Wang et al., 2018), which search the space of LHDs for a design optimising the
fill distance or separation radius.

• Many designs are model-based, the point sets depend on properties of the GPs. Two
popular examples include D-optimal designs, which aim to minimise the differential
Shannon information, and G-optimal designs which are selected to minimise the maxi-
mum variance of the predicted values. It was shown by Johnson et al. (1990) that these
choices are asymptotically equivalent to minimax or maximin design when taking a
radial kernel with lengthscale going towards zero.

3.2 The Gaussian Process Model and Hyperparameter Selection

Let m(θ) and k(θ) denote the mean function and covariance kernel in the GP model param-
eterised by some θ ∈ Θ ⊂ RdΘ . In practice, it is common to learn hyperparameters as more
data points are observed, and our convergence results will allow for such adaptivity. There
exists a vast literature on parameter estimation for GPs; for an overview, see e.g. (Stein,
1999, Chapter 6), which includes a detailed discussion of Matérn kernels, or (Rasmussen
and Williams, 2006, Chapter 5).
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For the mean function m(θ), it is common to use a parametric model whose parameters
are estimated using least-squares. Of course, other methods, such as empirical-risk min-
imisation and gradient-based optimisation could also be used. For the covariance function
k(θ), parameters controlling lengthscales, amplitudes and smoothness need to be estimated.
Common approaches include maximum marginal likelihood estimation, sometimes referred
to as empirical Bayes, and cross-validation. In Bayesian settings, it is also common to
provide a full prior on these hyperparameters and consider a predictive distribution taking
into account uncertainty in the parameters.

Our bounds will be independent of the method used for parameter estimation, follow-
ing the approach of Teckentrup (2020). The convergence rates will only depend on how
the smallest and largest smoothness of the approximation function Rmf,λ,ε for θ ∈ Θ and
the corresponding norm-equivalence constants. For this reason, we will use the notation
Rmf,λ,ε(θ) to emphasise the dependence on the parameter values. If k(θ) is τ(θ)-smooth,
then we denote the norm equivalence constants by

Cl(θ)‖·‖Hk(θ)(X ) ≤ ‖·‖W τ(θ)
2 (X )

≤ Cu(θ)‖·‖Hk(θ)(X ). (3)

Assume that the parameter estimation method gives a sequence of hyperparameters {θn}∞n=1

so that once the n-th data point has been observed, the parameters θn are used. Following
Teckentrup (2020) given N ∈ N define τ−k := infn≥N τ(θn), τ+

k := supn≥N τ(θn) and CN =
supn≥N Cu(θn)Cl(θn)−1. This set of extreme values is denoted by Θ∗N = {τ+

k , τ
−
k , CN}.

These quantities represent the extremes of the smoothness of the kernel and the ratio of
norm equivalence constants after the N -th data point has been observed. Of course, these
parameters are often selected as data is observed. As a result, to bound expressions for
n ≥ N , we need to ensure the parameter selection methods used does not result in extreme
values regardless of the data observed. We note that in the context of Gaussian regression,
the observation noise parameter σ could also be estimated from data, leading to a sequence
of parameters {σn}∞n=1. A common approach is to maximise the marginal likelihood.

3.3 Comparison to Related Literature

Now that we have discussed our experimental setting, we briefly remark on connections with
related literature using kernel approximations. In our work, the target function is modelled
as an unknown deterministic function, possibly corrupted by noise, with no assumption
on the distribution of the design points. The error bounds shall be expressed in terms of
the smoothness of the approximating function, the smoothness of the true function, and
geometric properties of the design points.

The closest approach to the work in this paper can be found in the scattered data
approximation (Wendland, 2005) literature. Indeed, our proofs harness multiple results
from the field. The main difference is that we tackle the combination of corrupted data,
misspecified smoothness and misspecified likelihood, whereas existing works have only cov-
ered these cases individually. Examples include approximate interpolation (Wendland and
Rieger, 2005), deterministic corruption (Rieger and Zwicknagl, 2009) and random error
satisfying a regularity condition (Arcangéli et al., 2012; Utreras, 1988). A framework for
managing smoothness misspecification was presented by Narcowich et al. (2006) which uses
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quasi-uniform point placement. Adapting hyperparameters with no observation corruption
was studied by Teckentrup (2020).

Statistical learning theory (Steinwart and Christmann, 2008; Cucker and Zhou, 2007)
takes the view of approximation as an optimisation problem in an RKHS, outlined in Sec-
tion 2, with the target function specified by some joint probability distribution on the input
and output spaces. A sampling distribution for the location of the data points is assumed,
which is employed as the weight measure for the norm used to measure error of the ap-
proximation. This statistical assumption is the main difference with the SDA view, which
we use, since in SDA the error bounds are expressed in terms of the experimental design.
Additionally the remedy for smoothness misspecification in SLT is altering the parameters
of the approximating function (Steinwart et al., 2009) as opposed to quasi-uniform points.

Nonparametric regression (Györfi et al., 2002; Wahba, 1990) is an approach to regression
which assumes no parametric underlying form for the target function. Such techniques bare
a lot of resemblance to SDA and statistical learning theory, and indeed have similar methods
for obtaining approximating functions. Sometimes the unknown function is assumed to be
a draw from a distribution over a space of functions, for example in Kriging (Matheron,
1963; Stein, 1999). This is clearly different from the SDA paradigm which assumes the
quantity of interest is a fixed deterministic function. As done in statistical learning theory
a sampling distribution of data locations is also often assumed. Within this nonparametric
paradigm, an important subclass is Bayesian nonparametric regression (Ghosal and van der
Vaart, 2017; Giné and Nickl, 2016). These take the Bayesian view of modelling by placing
a prior measure on the unknown target function, and using a likelihood and Bayes’ rule to
obtain a posterior measure on the unknown quantity given observed data. Contraction of
the entire posterior measure is studied which is stronger than contraction of the posterior
mean function, the focus of Section 4. Again the assumption of a sampling distribution of
the points and the method of dealing with smoothness misspecification makes this modelling
paradigm distinct from the one considered in this paper.

4. Convergence Guarantees for Gaussian Process Means

We are now ready to present the main results of the paper. All of the proofs are provided in
the appendix. We will use the following notation x∧y = min(x, y), x∨y = max(x, y), (x)+ =
max(x, 0). bxc denotes the integer part of x and dxe the ceiling of x. The integrability
parameter in the Sobolev norms will be q ∈ [1,∞]. Following Arcangéli et al. (2012) define
τ0 := τ − d(1/2 − 1/q)+ and τ∗ := τ0 if τ ∈ N and either 2 < q < ∞ and τ0 ∈ N, or
q = 2, else we will have τ∗ := dτ0e − 1. Finally, for a, b > 0, let ã = a − bac and define:
Λa,b := (bã(1− ã))1/b, if ã ∈ (0, 1) and Λa,b := 1 if ã = 0.

4.1 Convergence Guarantees for Interpolation

This section considers approximations with noiseless function evaluations observed at a
finite collection of n points Xn ⊂ X . We will assume that the likelihood is well specified
in that the data is indeed noiseless. The interpolation setting is of particular interest since
it leads to a closed-form approximation, and corresponds to the use of GPs for range of
applications including to computer models (Kennedy and O’Hagan, 2001), Bayesian inverse
problems (Teckentrup, 2020) and Bayesian numerical methods (Bull, 2011; Xi et al., 2018;
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Briol et al., 2019; Chen et al., 2019). From a practical point of view, the result provide
insights into point-picking strategies and hyperparameter selection for these applications.
Before stating the first bound, we summarise all of the necessary assumptions which were
mentioned in the previous section

Assumption 1 (Assumptions on the Domain) X is an L(R, δ)-domain for some R >
0 and δ ∈ (0, π/2).

Assumption 2 (Assumptions on the Kernel Parameters) Given N ∈ N, for n ≥ N ,
k(θn) is τ(θn)-smooth and the elements of Θ∗N are finite with τ−k > d/2.

Assumption 3 (Assumptions on the Kernel Smoothness Range) Given N ∈ N,
the set {τ(θn)}n≥N has finitely many values.

Assumption 4 (Assumptions on the Target Function and Mean Function) The
target function satisfies f ∈W τf

2 (X ) for some τf > d/2 and given N ∈ N the mean function
satisfies supn≥N‖m(θn)‖

W
τf
2 (X )

<∞.

Assumption 1 ensures that the domain is sufficiently regular to use extension and em-
bedding theorems. For a discussion about examples of domains satisfying the assumptions
see Section A. Assumption 2 ensures that the RKHS of k(θn) is norm equivalent to a Sobolev
space with smoothness τ(θn) and that the parameters for the model are not so extreme as
to result in arbitrarily smooth or arbitrarily rough functions. This assumption also concerns
the ratio of the norm equivalence constants to ensure that their ratio is finite. For the case
of k being a Matérn kernel, a sufficient condition was given by Teckentrup (2020, Lemma
3.4) which shows that CN ≤ supn≥N max(ln, l

−1
n ) where ln is the lengthscale when using

parameter setting θn.

The N term facilitates a “burn-in” period for narrowing down the desired range of
hyperparameters. Assumption 3 is required in order to provide a uniform bound over
parameter values. The assumption is satisfied in the common scenario where cross validation
is used for smoothness parameter selection where there is a finite candidate set of smoothness
parameters. For example, the widely used Matérn kernel has a convenient closed form for
τ = m+ 1/2 + d/2 for m ∈ N, whereas other smoothness level require evaluations of Bessel
functions which is computationally challenging. In practice, it is therefore very common
to focus on {τ(θn)}n≥N = {m + 1/2 + d/2}m∈M for some finite set M ⊂ N. We note
that Assumption 3 is not required by Teckentrup (2020) since weaker sampling inequalities
depending only on the integer part of the smoothness parameter were used in that paper.
Assumption 4 ensures that the target function has a minimal level of regularity and that
the parameterised mean function used in the prior GP is at least as smooth as the target
function.

We are now ready to state our main result for GP interpolation. This will be split into
two parts covering the well-specified (τf ≥ τ+

k ) and misspecified (τf < τ+
k ) smoothness

settings.

10



Convergence Guarantees for Gaussian Process Means

Theorem 1 Fix N ∈ N and suppose Assumptions 1-4 hold. Let q ∈ [1,∞] and s ∈
[0, (τf ∧ τ−k )∗]. Then, ∃C0, h0 > 0 such that ∀n ≥ N , ∀Xn ⊆ X with hXn ≤ h0, when
τf ≥ τ+

k

∥∥f −Rmf (θn)
∥∥
W s
q (X )

≤ Ch
τ−k −s−d

(
1
2
− 1
q

)
+

Xn

(
‖f‖

W
τf
2 (X )

+ sup
n≥N

∥∥m(θn)
∥∥
W
τf
2 (X )

)
,

and when τf < τ+
k

∥∥f −Rmf (θn)
∥∥
W s
q (X )

≤ Ch
(τf∧τ−k )−s−d

(
1
2
− 1
q

)
+

Xn
ρ

(τ+
k −τf )

Xn

(
‖f‖

W
τf
2 (X )

+ sup
n≥N

∥∥m(θn)
∥∥
W
τf
2 (X )

)
,

where C = C0Λs,q with C0 = C0(X , d, τf , q,Θ∗N ) and h0 = h0(R, δ, d, τf ,Θ
∗
N ).

This theorem is an extension of the result by Teckentrup (2020, Theorem 3.5) since it
holds for a wider range of target functions f . In particular, it only requires τf > d/2 rather
than bτfc > d/2, as such, alleviates the issues mentioned by Teckentrup (2020, Remark 3.7).
The range of the smoothness parameter s in the norm is dictated by τf , the smoothness
of the target function, and τ−k , the minimum smoothness of the approximating function.
There is a large freedom in the norm choice, for example a bound for L2 approximation can
be recovered by setting s = 0, q = 2, and L∞ is recovered with s = 0, q = ∞. We will see
in Section 5 that this flexibility can be useful for applications.

The upper bound holds only when the data points provide a sufficient initial covering of
X , as measured via the h0 term, see e.g (Arcangéli et al., 2012, Remark 3.2) for a discussion
of h0. The behaviour of the constant Λs,q is discussed further by Arcangéli et al. (2012,
Section 4.2). Aside from the exponent of hXn , Λs,q is the only term on the right hand side
that depends on s, therefore the same C0 value can be used for different s values. We now
highlight how the bound depends on model-specific choices.

• Experimental design: The terms hXn and ρXn quantify the impact of the experimental
design. A detailed discussion of these quantities was provided in Section 3.1. In
general, the approximation error bound is always minimised by making hXn and ρXn
as small as possible. We recall that the optimal decay of hXn is n−

1
d and the optimal

case for ρXn is when it is bounded by a constant independent of n. Both of these
properties occur when quasi-uniform points are used, and this is therefore a reasonable
criterion for point selection. When quasi-uniform points are used, the optimal error
rate is obtained in terms of worst case complexity (Novak and Woźniakowski, 2008,
Theorem 4.17).

• Kernel smoothness: The rate of convergence, as a function of hXn , qXn , ρXn , is con-
trolled by τf , τ

+
k and τ−k . In general, the larger the value of τf , the faster the conver-

gence rate can be. Two regimes are highlighted. When τf < τ+
k , meaning smoothness

is misspecified, then (τ+
k − τf ) penalises overestimation of τf by increasing the ex-

ponent of ρXn . Therefore, if one believes they are in danger of over estimating the
smoothness of the true function, then quasi-uniform points should be used. When
τf ≥ τ+

k , we see τ−k penalises underestimation of τf by limiting the exponent of hXn .

11
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• Other kernel parameters: The bound can also be helpful when it comes to understand-
ing the impact of adapting hyperparameters which do not change the smoothness of
the RKHS. For those, adaptively choosing the hyperparameters does not impact the
rate of convergence in n, but only constants of the bound. Indeed, It can be seen in
the proof that C0 depends on the extremes of the norm equivalence constants.

4.2 Convergence Guarantees for Regression with Gaussian Likelihood

This section considers observations that are corrupted with independently and identically
distributed Gaussian noise so the data is yi = f(xi) + εi where εi ∼ N (0, σ2). Once again,
the mean of the GP conditioned on this data is available in closed-form, and a well-specified
likelihood is used. Three further assumptions are required.

Assumption 5 (Additional Assumptions on Kernel Parameters) Given N ∈ N
and τf > d/2 for all n ≥ N we have τ(θn) ∈ (d/2, τf ] ∪ [dτfe,∞).

Assumption 6 (Assumption on Small Ball Probabilities) Given N ∈ N, ∃c, αN > 0

such that Πk(θn)

(
‖f‖L∞(X) ≤ c

)
≤ exp(−αN ) ∀n ≥ N .

Assumption 7 (Additional Assumption on the Target Function) Given τ > d/2,
f has an extension f◦ ∈ Cτf (Rd) ∩ W τf

2 (Rd) where Cτf (Rd) is the space of τf Hölder
continuous functions.

Assumption 5 restricts slightly the smoothness values that f can take. It is required due to
the double use of a sampling inequality in our proof, see the proof of Theorem 4 for further
explanation. This is not a very restrictive assumptions since the length of interval containing
disallowed values is less than one. Assumption 6 involves the measure on functions induced
by the GP with parameters θ and ensures the size of the GP samples cannot be uniformly
small with arbitrarily high probability, since this would result in a somehow degenerate
GP. This assumption is implicitly used by Li and Linde (1999, Theorem 1.2) which is a
key auxiliary result for van der Vaart and van Zanten (2011, Theorem 1), which our proof
follows closely. In the case where an amplitude parameter is used for the kernel (e.g. A for
the Matérn kernel in Section 2), the assumption is satisfied if this parameter is bounded
away from zero. This can be seen by using concentration inequalities for the supremum
of a Gaussian process, see e.g. (Giné and Nickl, 2016, Chapter 2.4). It should be noted
that the commonly used maximum likelihood procedure can result in A decaying to zero
(Karvonen et al., 2020). Assumption 7 concerns the regularity of the target function. This
is a requirement for Lemma 4 of van der Vaart and van Zanten (2011) which is an auxiliary
result that is employed in our bound, see Appendix F for details.

We can now present our main theorem for GP regression, which is stated in expectation
over the distribution of the noise. Again, we separate the well-specified and misspecified
smoothness settings.

Theorem 2 Fix N ∈ N and suppose Assumptions 1-7 hold. Let q ∈ [1,∞] and s ∈
[0, (τf ∧ τ−k )∗]. Then, ∃C, h0 > 0 such that ∀n ≥ N , ∀Xn ⊆ X with hXn ≤ h0, when

12
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τf ≥ τ+
k

E
[∥∥f −Rmf,σ2,ε(θn)

∥∥
W s
q (X )

]
≤ Ch

d
γ
−s

Xn

[
h
τ−k −

d
2

Xn

(
‖f‖

W
τf
2 (X )

+ sup
n≥N

∥∥m(θn)
∥∥
W
τf
2 (X )

)
+ n

1
2h

τ−k −
d
2

Xn
+ n

d

4τ−
k

]
,

and when τf < τ+
k

E
[∥∥f −Rmf,σ2,ε(θn)

∥∥
W s
q (X )

]
≤ Ch

d
γ
−s

Xn

[
h

(τf∧τ−k )− d2
Xn

ρ
(τ+
k −τf)+

Xn

(
‖f‖

W
τf
2 (X )

+ sup
n≥N

∥∥m(θn)
∥∥
W
τf
2 (X )

)

+ n
1
2h

τ−k −
d
2

Xn
+ n

(
1
2
−

τf

2τ+
k

)
+

∨( d

4τ−
k

)]
,

where C = C0Λs,q with C0 = C0

(
X , d, τf , q, ‖f‖W τf

2 (X )
, supn≥N‖m(θn)‖

W
τf
2 (X )

,Θ∗N

)
, h0 =

h0 (R, δ, d, τf ,Θ
∗
N ) and γ = 2 ∨ q.

As far as we are aware this is the first combination of SDA and Bayesian nonparametrics
techniques. The closest result that we know of is by Arcangéli et al. (2007, Theorem 8.1)
but does not cover the present scenario due to that result having requirements on the noise
not satisfied by Gaussian noise.

The bounds contain a sum of three terms. The first term gives a rate identical to the
interpolation case, and the later two describe the impact of the Gaussian noise. These last
two terms will usually decrease to zero at a slower rate in n, and again, one can notice a
clear advantage of using quasi-uniform points. The dependence on the norms of f and m
in C0 arises from the use of the result by van der Vaart and van Zanten (2011, Lemma
4). This dependence is made explicit in the proof and occurs in a small-ball probability
bound. Due to Assumption 5, there is a limitation in our theory for d = 1. Specifically,
τf + d/2 could be smaller than dτfe when d = 1 so Assumption 4 might not be satisfied.
But in two dimensions and higher, Assumption 5 does not impose extra restrictions since
then τf + d/2 ≥ dτfe so τ(θn) = τf + d/2 is a permissible value.

We once again comment on the impact of model choice. The advice in terms of ex-
perimental design is once again to use quasi-uniform points. The main difference with the
previous theorem is for the smoothness parameters of the kernel.

• Kernel smoothness: The equality τf +d/2 = τ+
k = τ−k optimises the bound when using

quasi-uniform points. This corresponds to the sample paths of the GP matching the
smoothness of the target function (Kanagawa et al., 2018; Lukić and Beder, 2001).
This is a phenomenon that occurs in this setting due to the true and assumed likelihood
both being Gaussian, which is in distinct contrast to the interpolation case where the
bound is optimised when τf = τ+

k = τ−k . This choice of smoothness parameter might
seem unintuitive from the perspective of kernel ridge regression. However this can be
rationalised by observing that the connection to kernel ridge regression can only be

13
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made if the regularisation being kept constant and not altering with added data. An
in depth discussion is provided by Kanagawa et al. (2018, Section 5.1).

Corollary 3 Fix N ∈ N and suppose Assumptions 1-7 hold with τ+
k = τ−k = τf + d/2. Let

q ∈ [1, 2] and s ∈ [0, τ∗f ]. Then, ∃C, h0 > 0 such that ∀n ≥ N , ∀Xn ⊆ X quasi-uniform with
hXn ≤ h0

E
[∥∥f −Rmf,σ2,ε(θn)

∥∥
W s
q (X )

]
≤ Cn

−
τf

2τf+d
+ s
d ,

where C = C0Λs,q with C0 = C0

(
X , d, τf , q, ‖f‖W τf

2 (X )
, supn≥N‖m(θn)‖

W
τf
2 (X )

,Θ∗N

)
and

h0 = h0 (R, δ, d, τf ,Θ
∗
N ).

When q = 2, s = 0 this is the mini-max optimal rate for non-parametric regression
within the Bayesian nonparametric paradigm, see e.g. (Tsybakov, 2009, Chapter 2) and
references therein. A comparison can be made to a recent result in statistical learning theory
(Fischer and Steinwart, 2020, Corollary 6) which has s/(2τ + d) instead of s/d meaning it
is stronger than our result. However, as discussed in Section 3, the assumptions in the
statistical learning paradigm is somewhat different to our setting as we do not consider a
norm weighted by the point sampling distribution.

4.3 Convergence Guarantees with Misspecified Likelihoods

Now that we have presented our results for well-specified likelihoods, we extend these to the
misspecified case. We recall that GP approximations based on interpolation or Gaussian
likelihoods are often used due to their closed form expressions, but that these are often
idealisations of the problem.

This section illustrates the impact of this idealisation on convergence. In each case, the
bound allows for arbitrary corruption yi = f(xi) + εi where {εi}ni=1 do not have to be i.i.d.
nor Gaussian, and could even be deterministic. The corruption is manifested in the bounds
only in a E[‖ε‖2] term. The main point of this section is that quasi-uniform points are not
only essential for smoothness misspecification, but can also be of significant help to counter
likelihood misspecification. Due to the lack of assumptions on the type of corruption, our
bounds should be interpreted as worst-case type bounds.

They are particularly suitable for misspecification models studied in the robust regres-
sion literature (Rousseeuw and Leroy, 1987; Huber and Ronchetti, 2009; Christmann and
Steinwart, 2007) in particular Christmann and Steinwart (2007) studies the case of kernel
ridge regression. For example, bias robustness corresponds to the setting where the i.i.d
Gaussian assumption is satisfied up to a small number of corruptions, usually called outliers.
This is common when the data are collected from physical or medical sensors as these tend
to have faults after a certain period of time, see e.g. (Armstrong and Boufassa, 1988). It
also occurs in many applications of Bayesian optimisation (Martinez-Cantin et al., 2018).
If a fixed number of data points is contaminated by outliers, then ‖ε‖2 = O(1). Alterna-
tively, it could be that some proportion of the total number of data points is corrupted.
For example, if nα, α ∈ (0, 1) data points are corrupted, then ‖ε‖2 = O(nα/2), whereas if
βn, β ∈ (0, 1] data points are corrupted, then ‖ε‖2 = O(

√
βn).
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Another possible scenario is the (pessimistic) case of arbitrary random and unbounded
noise, see e.g. (Stegle et al., 2008). In this case, assuming that E[εi] < ∞ and E[ε2

i ] < ∞
∀i, we get that: E[‖ε‖2] = O(

√
n) regardless of the distribution of these corruptions or

of any correlation. We note that the exact distribution of these norms have been derived
for a range of distributions (Mathai and Provost, 1992). Of course, it should be possible
to improve on these worst-case bounds by using stronger assumptions on the distributions
of the noise terms. For example, the Laplace to Gaussian misspecification was previously
studied by Kleijn and van der Vaart (2006). It would be interesting, but beyond the scope
of this paper, to combine such results with scattered data approximation bounds to produce
bounds in the same fashion as Theorem 2.

Finally, one setting where our bounds will not be of help is when the noise distribution
has infinite first or second moment. In this case, E[‖ε‖2] = ∞ and the bounds will be
vacuous. This will be the case for Cauchy noise, or for certain instances of student-t or
Pareto noise.

4.3.1 Misspecified Gaussian Regression Likelihood

For the first result, the Gaussian likelihoodN (0, σ2
n) is implicitly assumed. This corresponds

to considering Rmf,σ2
n,ε

with σn > 0 as the approximating function. The subscript in σn is
kept since we might want to vary the parameter with n in order to improve the convergence
rate. This is to be interpreted as a worst-case type result since no assumption is placed
upon the corruption.

Theorem 4 Fix N ∈ N and suppose Assumptions 1-5 hold. Let q ∈ [1,∞], s ∈ [0, (τf ∧
τ−k )∗] and σn > 0 ∀n ∈ N. Then, ∃C, h0 > 0 such that ∀n ≥ N , ∀Xn ⊆ X with hXn ≤ h0,
when τf ≥ τ+

k

E
[∥∥f −Rmf,σ2

n,ε
(θn)

∥∥
W s
q (X )

]
≤ Ch

d
γ
−s

Xn

[(
h
τ−k −

d
2

Xn
+ σn

)(
‖f‖

W
τf
2 (X )

+ sup
n≥N

∥∥m(θn)
∥∥
W
τf
2 (X )

)

+

(
h
τ−k −

d
2

Xn
σ−1
n + 1

)
E[‖ε‖2]

]
,

and when τf < τ+
k

E
[∥∥f −Rmf,σ2

n,ε
(θn)

∥∥
W s
q (X )

]
≤ Ch

d
γ
−s

Xn

[(
h

(τf∧τ−k )− d2
Xn

ρ
(τ+
k −τf )

Xn
+ σnq

−(τ+
k −τf )

Xn

)(
‖f‖

W
τf
2 (X )

+ sup
n≥N

∥∥m(θn)
∥∥
W
τf
2 (X )

)

+

(
h
τ−k −

d
2

Xn
σ−1
n + 1

)
E[‖ε‖2]

]
,

where C = C0Λs,q with C0 = C0 (X , d, q, τf ,Θ∗N ), h0 = h0 (R, δ, d, τf ,Θ
∗
N ) and γ = 2 ∨ q.

This generalizes the results by Wendland and Rieger (2005, Proposition 3.6) and Ar-
cangéli et al. (2007, Theorem 7.1) to misspecified likelihood and smoothness. Assumptions
6 and 7, used in Theorem 2, are not required since the corruption is not assumed Gaussian.
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The effect of the corruption is manifested solely in the E[‖ε‖2] term and to conclude the
right hand side converges to zero, the growth of E[‖ε‖2] needs to be sufficiently bounded.
The theorem leads us to a useful recommendation for σn in settings where the data is
noiseless.

• Adaptive Likelihood/Nugget: As noted in Section 3, it is common to add a “nugget”
term to kernel matrices in order to improve numerical stability. This corresponds to
taking σn > 0, and larger values of σn are known to provide greater stability at the
cost of a slower convergence rate. When there is no corruption this is referred to as
approximate interpolation (Wendland and Rieger, 2005). Theorem 4 provides a way
of choosing σn for this scenario. Setting q = ∞ and τ−k = τ+

k = τf , meaning we are

in the well specified smoothness case, the choice σn ∝ h
(τf∧τ−k )+(τ+

k −τf )−d/2
Xn

= h
τf−d/2
Xn

optimises the bound. This coincides with the choice proven to be optimal for matrix
conditioning by Wendland and Rieger (2005, Corollary 3.7).

Thinking of this suggestion from the point of view of adaptive likelihood may seem unnat-
ural at first since the likelihood is normally a fixed object which is independent of data.
However, this suggestion can also be viewed from a regularisation perspective as altering
the penalisation in the optimisation problem S, see Section 2.

We now give two corollaries of Theorem 4 under different assumptions on τ−k and τ+
k .

In each case, these provide insights into model choices which optimise the bounds. First,
consider τ−k = τ+

k = τf , in which case the smoothness is correctly specified. The next result
gives a bound when hXn has the optimal rate n−1/d and σn is kept constant.

Corollary 5 Fix N ∈ N and suppose Assumptions 1-5 hold. Let q ∈ [1,∞], s ∈ [0, τ∗f ],

τ−k = τ+
k = τf and σn = σ. Assume hXn ≤ C1n

− 1
d for some C1 > 0. Then, ∃C, h0 > 0 such

that ∀n ≥ N with hXn ≤ h0

E
[∥∥f −Rmf,σ2,ε(θn)

∥∥
W s
q (X )

]
≤ Cn−

1
γ

+ s
d

(
E[‖ε‖2] + n−

τf
d

+ 1
2

(
‖f‖

W
τf
2 (X )

+ sup
n≥N

∥∥m(θn)
∥∥
W
τf
2 (X )

))
,

where C = C0Λs,q with C0 = C0 (X , d, q, τf ,Θ∗N ), h0 = h0 (R, δ, d, τf ,Θ
∗
N ) and γ = 2 ∨ q.

We note that when the smoothness is well specified, the value of τf does not impact the

decay rate of the right hand side since the rate will be slowed down by the h
d/γ−s
Xn

term
which does not depend on τf . This differs significantly from the noiseless case in Section
4.1 where a large value of τf led to faster convergence rates, and demonstrates how a small
amount of noise can significantly impact the convergence rate.

Well-specified smoothness is a strong requirement. For the second corollary, we instead
consider τ+

k = τ−k = τ for some τ ∈ R, but not necessarily τf = τ , when using quasi-uniform
points and varying σn according to the fill distance. Surprisingly, this is enough to obtain
the same bound as Corollary 5.
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Corollary 6 Fix N ∈ N and suppose Assumptions 1-5 hold. Let q ∈ [1,∞], s ∈ [0, (τf ∧
τ)∗], and τ+

k = τ−k = τ and σn = O(h
τ−d/2
Xn

). Then, ∃C, h0 > 0 such that ∀n ≥ N , ∀Xn ⊆ X
quasi-uniform with hXn ≤ h0

E
[∥∥f −Rmf,σ2

n,ε
(θn)

∥∥
W s
q (X )

]
≤ Cn−

1
γ

+ s
d

(
E[‖ε‖2] + n−

(τf∧τ)

d
+ 1

2

(
‖f‖

W
τf
2 (X )

+ sup
n≥N

∥∥m(θn)
∥∥
W
τf
2 (X )

))
,

where C = C0Λs,q with C0 = C0 (X , d, q, τf ,Θ∗N ), h0 = h0 (R, δ, d, τf ,Θ
∗
N ) and γ = 2 ∨ q.

On top of using quasi-uniform points, this corollary suggests the following practical ap-
proach.

• Adaptive likelihood/Nugget : When practitioners suspect that their likelihood might be

misspecified, a sensible choice of nugget is σn ∝ hτ−d/2Xn
. Interestingly, this is the same

suggestion as for the case of Gaussian regression for noiseless data, which suggests
that this choice may be sensible more broadly.

4.3.2 Misspecified Interpolation Likelihood

Our last main result considers arbitrary corruption when an interpolant is used, which is
equivalent to taking σn = 0.

Theorem 7 Fix N ∈ N and suppose Assumptions 1-5 hold. Let q ∈ [1,∞] and s ∈
[0, (τf ∧ τ−k )∗]. Then, ∃C, h0 > 0 such that ∀n ≥ N , ∀Xn ⊆ X with hXn ≤ h0, when
τf ≥ τ+

k

E
[∥∥f −Rmf,0,ε(θn)

∥∥
W s
q (X )

]
≤ Ch

d
γ
−s

Xn

[
h
τ−k −

d
2

Xn

(
‖f‖

W
τf
2 (X )

+ sup
n≥N

∥∥m(θn)
∥∥
W
τf
2 (X )

)
+ ρ

(τ+
k −

d
2

)

Xn
E[‖ε‖2]

]
,

and when τf < τ+
k

E
[∥∥f −Rmf,ε(θn)

∥∥
W s
q (X )

]
≤ Ch

d
γ
−s

Xn
ρ

(τ+
k −τf )

Xn

[
h

(τf∧τ−k )− d2
Xn

(
‖f‖

W
τf
2 (X )

+ sup
n≥N

∥∥m(θn)
∥∥
W
τf
2 (X )

)
+ ρ

(τf− d2 )

Xn
E[‖ε‖2]

]
,

where C = C0Λs,q with C0 = C0 (X , d, q, τf ,Θ∗N ), h0 = h0 (R, δ, d, τf ,Θ
∗
N ) and γ = 2 ∨ q.

If ε = 0, then there is no noise and we recover the well-specified likelihood result for
interpolation from Theorem 1. We now study the impact of model choice.

• Experimental design: In this bound, there is a ρXn term multiplied by E[‖ε‖2] whose
exponent does not vanish when the smoothness is well specified. This is in contrast
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to Theorem 4 where the exponent of the ρXn term vanished when the smoothness
was well specified, and ρXn did not interact with E[‖ε‖2]. This can be interpreted
as Rmf,ε being less stable than Rmf,σ2

n,ε
with respect to noise and point placement, and

suggests that the use of quasi-uniform point is strongly recommended, even when the
smoothness is well-specified.

The following corollary shows the same bound as Corollary 5 and Corollary 6 can be
obtained without the assumption of fixed kernel smoothness as long as quasi-uniform points
are used.

Corollary 8 Fix N ∈ N and suppose Assumptions 1-5 hold. Let q ∈ [1,∞] and s ∈
[0, (τf ∧ τ−k )∗]. Then, ∃C, h0 > 0 such that ∀n ≥ N , ∀Xn ⊆ X quasi-uniform with hXn ≤ h0

E
[∥∥f −Rmf,0,ε(θn)

∥∥
W s
q (X )

]
≤ Cn−

1
γ

+ s
d

(
E[‖ε‖2] + n−

(τf∧τ
−
k

)

d
+ 1

2

(
‖f‖

W
τf
2 (X )

+ sup
n≥N

∥∥m(θn)
∥∥
W τ

2 (X )

))
,

where C = C0Λs,q with C0 = C0 (X , d, q, τf ,Θ∗N ), h0 = h0 (R, δ, d, τf ,Θ
∗
N ) and γ = 2 ∨ q.

Compared to Corollary 5 the requirement of quasi-uniform points is stronger than just
hXn ≤ Cn−

1
d , but this allows us to weaken the assumptions on the smoothness of the

kernel. Indeed, as opposed to Corollary 6, the kernel smoothness is allowed to alter with n.
However, σn = 0 means the approximation is harder to compute due to the matrix inversion
being less stable.

5. Implications for Bayesian Numerical Methods

We demonstrate the applicability of our theorems to Bayesian probabilistic numerical meth-
ods, specifically Bayesian quadrature and Bayesian optimisation. These methods use GP
approximations to solve numerical tasks, and can therefore inherit some of the convergence
guarantees presented in the previous section.

5.1 Bayesian Quadrature

In Bayesian quadrature (BQ), the goal is to approximate some integral
∫
X f(x)p(x)dx. To

do so, a GP prior is placed on f . This is conditioned on function evaluations to obtain
a posterior on f , which itself implies a Gaussian posterior on the value of the integral.
The posterior mean on this integral is used as an estimate of the integral, see e.g. (Briol
et al., 2019) and the accompanying discussion for an in-depth overview. The most up-to-
date convergence guarantees are available from Kanagawa et al. (2020). These consider the
problem of smoothness misspecification in the interpolation setting.

We now highlight how the results of this paper can refine theory for BQ, but also lead
to results in settings with likelihoods which have not yet been considered. First we consider
interpolation, the proof is a combination of Theorem 1 with q = 1, s = 0 and Hölder’s
inequality.
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Theorem 9 Fix N ∈ N suppose Assumptions 1-4 hold. Then ∃C0, h0 > 0 such that ∀n ≥
N , ∀Xn ⊆ X with hXn ≤ h0 and ∀p ∈ L2(X )∣∣∣∣∫

X
f(x)p(x)dx−

∫
X
Rmf (θn)(x)p(x)dx

∣∣∣∣
≤ C‖p‖L2(X )h

(τf∧τ−k )

Xn
ρ

(τ+
k −τf )+

Xn

(
‖f‖

W
τf
2 (X )

+ sup
n≥N

∥∥m(θn)
∥∥
W
τf
2 (X )

)
,

where C = C(X , d, τf ,Θ∗N ), h0 = h0(R, δ, d, τf ,Θ
∗
N ).

This result generalizes (Kanagawa et al., 2020, Theorem 3) by allowing a greater range
of values for τ−k , τ

+
k and τf . It also takes into account the adaptation of hyperparameters

with n, which has not been considered in the literature. Next, we consider a correctly
specified Gaussian likelihood. The proof is a combination of Corollary 3 with q = 1, s = 0
and Hölder’s inequality.

Theorem 10 Fix N ∈ N and suppose Assumptions 1-7 hold. Let τ+
k = τ−k = τf + d/2.

Then, ∃C, h0 > 0 such that ∀n ≥ N , ∀Xn ⊆ X quasi-uniform with hXn ≤ h0 and ∀p ∈
L2(X )

E
[∣∣∣∣∫
X
f(x)p(x)dx−

∫
X
Rmf,σ2,ε(θn)(x)p(x)dx

∣∣∣∣] ≤ C‖p‖L2(X )n
−

τf
2τf+d ,

where C = C
(
X , d, τf , ‖f‖W τf

2 (X )
, supn≥N‖m(θn)‖

W
τf
2 (X )

,Θ∗N

)
, h0 = h0 (R, δ, d, τf ,Θ

∗
N ).

This result provides the very first bound for BQ with a correctly specified Gaussian like-
lihood. This may be particularly useful for applications of BQ in inverse problems and
computer models, where the integrand cannot be evaluated exactly.

The two results above are illustrations of bounds that can be obtained using the theory in
our paper. However, it would be straightforward to obtain results in other settings, including
misspecified smoothness or misspecified likelihoods, using the same proof technique with
some of the other bounds in Section 4. All of the previous recommendation on model choice
are also appropriate for BQ, with the exception of the experimental design, for which it is
recommended to use quasi-uniform points which concentrate in areas where p is large.

5.2 Bayesian Optimization

In Bayesian optimization (BO), the goal is to maximise some unknown function. This is
done using a GP surrogate, and points are usually chosen using an acquisition function
which balances exploration and exploitation of the GP model given the observed data up
to that iteration. Common examples include the Upper Confidence Bound and Expected
Improvement acquisition functions (Shahriari et al., 2016). In the noiseless case, SDA results
were employed by Bull (2011) and a modification was proposed to the standard expected
improvement acquisition function, to ensure greater coverage of the domain1.

1. It is important to note that the definition of “quasi-uniformity” by Bull (2011) is strictly weaker than
the standard definition in SDA. It only requires hXn ≤ Cn−1/d, which is implied by standard definition
used in this paper.
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Existing theoretical work on Bayesian optimization that establishes convergence under
various acquisition functions do not accommodate for misspecification of functions smooth-
ness (Bull, 2011; Srinivas et al., 2010; Vazquez and Bect, 2010). This problem is addressed
by Berkenkamp et al. (2019) using a hyperparameter alteration regime which enlarges the
RKHS until the target function is contained in it. Motivated by the content of Theorem
1, we investigate a different approach to tackle smoothness misspecification, relying on a
modification of existing acquisition functions to promote quasi-uniform points and then
employing the proof technique by Bull (2011).

The γ-stabilized algorithm framework (Wenzel et al., 2019) facilitates such a modifi-
cation. For any acquisition function F : X → R, kernel k and γ ∈ (0, 1], the (n + 1)-th
step consists of picking xn+1 = supx∈Xn,γ F (x) where Xn,γ = {x ∈ X : Pn(x) ≥ γ‖Pn‖L∞},
Pn(x) = k̄(x, x)

1
2 and k̄ is the posterior variance after observing the first n points, see

Section 2. Such point selection encourages exploration since it only allows points to be
picked from areas of non-trivial variance. If k is translation invariant and τ -smooth with
τ > d/2 + 1 then the resulting point set is quasi-uniform (Wenzel et al., 2019, Theorem 14,
Theorem 18). This is a modification to the standard BO procedure of picking xn+1 as the
maximum of F over all of X .

For n ∈ N and any acquisition function F define the (γ, F, n) strategy as picking x1

arbitrarily, then points {xi}n−1
i=2 according to the γ-stabilized F , and xn as the maximum

of Rf , the kernel interpolant of f based on {xi}n−1
i=1 . The next result gives a bound for the

performance of this strategy.

Theorem 11 Suppose Assumptions 1 & 4 hold, k is a τ -smooth translation invariant kernel
with τ > d/2 + 1. Then, ∃n0 ∈ N such that if n ≥ n0, the (γ, F, n)-strategy satisfies:

|arg max
x∈X

f(x)− f(xn)| = Cn−
(τ∧τf )

d
+ 1

2 ,

where C = C(X , d, τf ) and n0 = n0(R, δ, d, τf ).

In terms of worst-case error, in which the slowest rate is considered over the unit ball of the
RKHS, this is the best possible rate given the smoothness of the target function and kernel,
as shown by Bull (2011, Theorem 1). The 1/2 appears in our bound due to a different
parameterisation of kernel smoothness than Bull (2011). However, Theorem 11 is more
general than the result by Bull (2011, Theorem 1) since it applies to functions outside the
RKHS of k. This is the first BO strategy which achieves the optimal rate in the case of
smoothness misspecification.

Once again, we conclude by noting that this theorem is only an illustration of the
implications of our results on convergence guarantees for GPs to the BO setting, and many
other cases could be considered including likelihood misspecification.

6. Conclusions

In this paper, we have presented novel error bounds for GP means under misspecified
likelihoods and smoothness, expressed in terms of observation error, point placement and
choice of GP model. Our results apply under four different observation models. Where
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the assumption of no noise is correct, where the assumption of no noise is incorrect, where
the assumption of a Gaussian likelihood is correct and when the assumption of a Gaussian
likelihood is incorrect. In each setting, our results demonstrate the impact of the choice of
hyperparameters and the experimental design. As such, our results can guide practitioners
who need to select a specific GP algorithm, by allowing them to tailor this choice to the
application at hand.

The bounds offer improvements over existing results which we have highlighted. Ap-
plications to Bayesian numerical methods were presented such as the first error bounds
for BQ with deterministic point selection and Gaussian observation noise and BO with
misspecified smoothness. In both instances the use of point picking strategies which pro-
duce quasi-uniform points, as opposed to specific hyperparameter selection methods, are of
critical importance.

We believe there are many more opportunities to combine GP and SDA methods. For
example dealing with smoothness and likelihood misspecification when the approximating
function is infinitely smooth, such as when a Gaussian kernel is used for approximation a
common choice in practice. Additionally, analogies of the results in this paper for functions
with vector valued output or structured output, such as additive functions, would be an
important avenue of research and would follow naturally from the insights that SDA offers
for such scenarios.
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Appendix A. The Design Region

In this first appendix, we briefly recall common terminology from the literature on scattered
data approximation which is used throughout the paper.

A domain shall mean an open connected set in Rd. A domain satisfies the (R, δ) interior
cone condition if for R > 0 and angle δ ∈ (0, π/2) we have that ∀x ∈ X , ∃ ξ(x) such that
the cone

C (x, ξ(x), δ, R) =
{
x+ λy : y ∈ Rd, ‖y‖2 = 1, y>ξ(x) ≥ cos(δ), λ ∈ [0, R]

}
,

is contained in X . An open set Xi ⊆ Rd is called a special Lipschitz domain (Stein, 1970,
Page 181) if there exists a rotation of Xi, denoted by X̃i, and a function ψ : Rd−1 −→ R
which satisfies the following

1. X̃i = {(x, y) ∈ Rd y > ψ(x)},
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2. ψ is a Lipschitz function such that |ψ(x)− ψ(x′)| ≤M‖x− x′‖2 ∀x, x′ ∈ Rd−1 where
M > 0.

Consider a domain X ⊆ Rd and denote its boundary by ∂X . We say ∂X is a Lipschitz
boundary (Stein, 1970, Page 189) if ∃ ε > 0, N ∈ N, M > 0, and open sets U1, U2, . . . , UL ⊂
Rd, where L ∈ N ∪ {∞}, such that the following conditions are satisfied

1. For any x ∈ ∂X , there exists an index i such that B(x, ε) ⊂ Ui,

2. Ui1 ∩ · · · ∩ UiN+1 = ∅ for any distinct indices {i1, . . . iN+1},

3. For each index i there exists a special Lipschitz domain Xi ⊂ Rd with Lipschitz bound
b such that b ≤M and Ui ∩ X = Ui ∩ Xi.

and we call any bounded domain satisfying the (R, δ) interior cone condition with a Lipschitz
boundary a L(R, δ)-domain.

Appendix B. Preliminary Results

This section covers results to be used throughout the rest of the proofs, namely a sampling
inequality, restriction and extension of functions in RKHS and the Pythagorian property.

Sampling inequalities (Narcowich et al., 2006; Rieger et al., 2010; Arcangéli et al., 2012;
Arcangéli and Torrens, 2014) are powerful inequalities for functions in Sobolev spaces which
facilitate the systemisation of approximation error bounds. The result below is a special
case of the result by Arcangéli et al. (2012, Theorem 3.2) where the integrability parameter
in the right hand side Sobolev norm is set to two and so is the parameter p of the lp norm.

Theorem 12 Let X be a L(R, δ)-domain, τ > d/2 and q ∈ [1,∞]. Then, ∃C, h0 > 0 such
that ∀X ⊆ X with hX ≤ h0, any f ∈W τ

2 (X ) and any s ∈ [0, τ∗]

‖f‖W s
q (X ) ≤ CΛs,q

(
h
τ−s−d

(
1
2
− 1
q

)
+

X ‖f‖W τ
2 (X ) + h

d
γ
−s

X ‖fX‖2

)
,

where C = C(X , d, τ, q), h0 = h0(δ,R, d, τ) and γ = 2 ∨ q.

Discussion of how the domain, smoothness of the function and point set affect the constants
is provided by Arcangéli et al. (2012). It is important to note that the dependence on τ in h0

is only through bτc, this can be seen from inspection of the proof. The sampling inequality
above is defined for norms over X , but our proofs will be based on Fourier transforms
which will be defined for functions over Rd therefore results facilitating the restriction and
extension of functions between X and Rd are required. To this end the Sobolev extension
theorem is required, stated below.

Theorem 13 Let X ⊆ Rd be a bounded Lipschitz domain, τ ≥ 0 and p ∈ [1,∞). There
exists an extension map E : W τ

p (X )→W τ
p (Rd) such that ∀f ∈W τ

p (X ) we have Ef |X = f |X
and ‖Ef‖W τ

p (Rd) ≤ C‖f‖W τ
p (X ) where C = C(X , d, τ, p) > 0 is a constant independent of f .
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The Sobolev extension theorem is used by Wendland (2005, Corollary 10.48) to ensure
that, along with some assumptions on X satisfied by Assumption 1, if Hk(Rd) is norm
equivalent to W τ

2 (Rd) then Hk(X ) is norm equivalent to W τ
2 (X ). Finally, the next two

lemmas assure us that the minimal norm properties of the kernel interpolant and kernel
regression function still hold along with the Pythagorean property for kernel interpolant.
For a proof, see e.g. (Wendland, 2005, Corollary 10.25).

Lemma 14 Let X ⊆ Rd, X ⊆ X a finite subset, k a kernel over Rd×Rd and f ∈ Hk(X )
then

Rf |X = arg min
g∈Hk(X )
gX=fX

‖g‖Hk(X ) Rf,nλ,ε|X = arg min
g∈Hk(X )

S(g, λ,X ),

where S(g, λ,X ) is the regularized least squares problem defined in Section 2.

Proof The case of X = Rd is obtained by standard arguments (Kanagawa et al., 2018,
Theorem 3.4, Theorem 3.5) so we restrict to the case when X is a strict subset of Rd. We
shall only prove the first statement since the second proof is analogous. The interpolant
restricted to X equals f on X since X ⊆ X and by definition Rf |X ∈ Hk(X ), therefore∥∥Rf |X∥∥Hk(X )

≥ min
g∈Hk(X )
g|X=f |X

‖g‖Hk(X ).

The rest of the proof will be done by contradiction. Suppose ∃g ∈ Hk(X ) such that
g|X = f |X and ‖g‖Hk(X ) <

∥∥Rf |X∥∥Hk(X )
. Then, by definition of the norm on Hk(X )

‖g‖Hk(X ) = inf
h∈Hk(Rd)
h|X=g|X

‖h‖Hk(Rd) <
∥∥Rf |X∥∥Hk(X )

≤
∥∥Rf∥∥Hk(Rd)

.

By definition of the infimum, ∃h ∈ Hk such that h|X = g|X and ‖h‖Hk(Rd) < ‖Rf‖Hk(Rd).

But X ⊆ X hence hX = gX = fX which contradicts norm minimality of Rf over Rd. This
completes the proof.

Lemma 15 Let X ⊆ Rd, k a kernel over X × X and f ∈ Hk(X ) then we have the

Pythagorean property for the interpolant:
∥∥f −Rf∥∥2

Hk(X )
+
∥∥Rf∥∥2

Hk(X )
= ‖f‖2Hk(X )

.

Appendix C. Proof of Theorem 1

A key intermediate result is a slight generalisation of the sampling inequality by Narcowich
et al. (2006, Theorem 4.2) which facilitates bounds for the misspecified smoothness scenario.

Theorem 16 Suppose X is a L(R, δ)-domain and k is γ-smooth for γ > d/2. Then,
∃C, h0 > 0 such that ∀X ⊆ X with hX ≤ h0, we have ∀f ∈W τ

2 (X ) ∀µ ∈ [0, τ ]∥∥f −Rf∥∥Wµ
2 (X )

≤ Chτ−µX ργ−τX ‖f‖W τ
2 (X ),

where C = C(X , d, τ), h0 = h0(δ,R, d, τ).
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Proof The proof is identical to the proof by Narcowich et al. (2006, Theorem 4.2), but
with different assumptions on γ and X . Specifically the proof by Narcowich et al. (2006,
Theorem 4.2) uses the result by Narcowich et al. (2006, Lemma 4.1) for which a strictly
smaller range of γ is permitted. However Theorem 12 generalises the older bound by Nar-
cowich et al. (2006, Lemma 4.1) and simply requires γ > d/2. Additionally compactness
of X was assumed by Narcowich et al. (2006, Theorem 4.2) to use a version of the Sobolev
extension theorem but Theorem 13 can instead be used to obtain the same conclusion for
L(R, δ)-domains.

We begin by expressing the error for the interpolant Rmf (θn) in terms of two zero-mean
GP interpolation problems∥∥f −Rmf (θn)

∥∥
W s
q (X )

=
∥∥f −Rf (θn)−m(θn) +Rm(θn)(θn)

∥∥
W s
q (X )

≤
∥∥f −Rf (θn)

∥∥
W s
q (X )

+
∥∥m(θn)−Rm(θn)(θn)

∥∥
W s
q (X )

. (4)

The equality follows by the definition in (1) and the inequality is the triangle inequality.
Therefore zero-mean GP interpolation problems only needs to be dealt with. An upper-
bound on the first term naturally leads to an upper bound on the second since Assumption
4 imposes that m(θn) is at least as smooth as the target function. For n ≥ N and s ∈[
0, (τf ∧ τ−N )∗

]
, applying Theorem 12 to the function f −Rf (θn) over all smoothness levels

{τf ∧ τ(θn)}n≥N yields

∥∥f −Rf (θn)
∥∥
W s
q (X )

≤ C1Λs,qh
(τf∧τ(θn))−s−d

(
1
2
− 1
q

)
+

Xn

∥∥f −Rf (θn)
∥∥
W
τf∧τ(θn)

2 (X )
, (5)

for hXn ≤ h1 where C1 = C1(X , d, τf , q,Θ∗N ) and h1 = h1(R, δ, d, τf ,Θ
∗
N ) are respectively

the supremum and infimum over n ≥ N of the constants obtained from applying Theorem
12 with smoothness parameter τf∧τ(θn). Due to Assumption 3, τf∧τ(θ) takes finitely many
values so the infimum and supremum are over a finite number of values. This immediately
gives C1 <∞ and h1 > 0 and the same logic will be employed whenever Theorem 12 is used
again. The residual terms are zero since Rf (θn) interpolates f at the observation points.

For the case τf ≥ τ(θn), the target function f is in the RKHS of k(θn) so we can derive
the following inequality∥∥f −Rf (θn)

∥∥
W
τf∧τ(θn)

2 (X )
=
∥∥f −Rf (θn)

∥∥
W
τ(θn)
2 (X )

≤ Cu(θn)‖f −Rf (θn)‖Hk(θn)(X ) (6)

≤ Cu(θn)‖f‖Hk(θn)(X ) (7)

≤ Cu(θn)Cl(θn)−1‖f‖
W
τ(θn)
2 (X )

(8)

≤ CN‖f‖W τf
2 (X )

. (9)

The inequalities in (6) and (8) follow from the norm equivalence between the RKHSs and
Sobolev spaces with constants given in (3). The inequality in (7) is due to the Pythagorean
property in Lemma 15, (9) is obtained by upper bounding by the largest constants over all
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values of {θn}n≥N , which can be done by Assumption 2, and the fact that the ‖·‖
W
τf
2 (X )

norm which is larger than the ‖·‖
W
τ(θn)
2 (X )

norm since we are currently dealing with the

case τf ≥ τ(θn).
For the case τ(θn) > τf , setting γ = τ(θn) and µ = τf in Theorem 16 gives∥∥f −Rf (θn)

∥∥
W
τf
2 (X )

≤ C2ρ
τ(θn)−τf
Xn

‖f‖
W
τf
2 (X )

, (10)

for hX ≤ h2 where C2 = C2(X , d, τf ,Θ∗N ) and h2 = h2(R, δ, d, τf ,Θ
∗
N ). By the same

reasoning as the discussion after (5) h2 > 0 and C2 <∞. Now combine (5), (9) and (10)∥∥f −Rf (θn)
∥∥
W s
q (X )

≤


C1CNΛs,qh

(τf∧τ(θn))−s−d
(

1
2
− 1
q

)
+

X ‖f‖
W
τf
2 (X )

if τf < τ(θn)

C1C2Λs,qh
(τf∧τ(θn))−s−d

(
1
2
− 1
q

)
+

X ρ
τ(θn)−τf
X ‖f‖

W
τf
2 (X )

if τf ≥ τ(θn)

≤ C3Λs,qh
(τf∧τ−k )−s−d

(
1
2
− 1
q

)
+

X ρ
(τ+
k −τf )+

X ‖f‖
W
τf
2 (X )

, (11)

where the inequality in (11) is obtained by taking the largest bound over parameter values
{θn}n≥N and C3 = max(C1CN , C1C2). To conclude the proof apply the upper bound in
(11) to each term of (4) then set C0 to be two times the maximum of the constants for each
term and h0 the minimum of the fill distance constants related to each term.

Appendix D. Proof of Theorem 4

To obtain a bound in the scenario of corrupted data, we cannot use Theorem 16 or Lemma
15 since they only apply to interpolants. Instead, Theorem 4 will follow from Theorem 18
and Lemma 17 along with the band-limited function techniques pioneered by Narcowich
et al. (2006).

Lemma 17 Let k be a kernel on X × X , f ∈ Hk(X ), σ > 0 and assume observations
yi = f(xi) + εi at X = {xi}ni=1 for some ε ∈ Rn then∥∥Rf,σ2,ε

∥∥
Hk(X )

≤
(
σ−2‖ε‖22 + ‖f‖2Hk(X )

) 1
2

∥∥(f −Rf,σ2,ε)X
∥∥

2
≤ ‖ε‖2 +

(
‖ε‖22 + σ2‖f‖2Hk(X )

) 1
2
.

Proof By triangle inequality∥∥(f −Rf,σ2,ε)X
∥∥

2
=
∥∥(y − ε−Rf,σ2,ε)X

∥∥
2
≤
∥∥(y −Rf,σ2,ε)X

∥∥
2

+ ‖ε‖2.

Combining this with the inequality below completes the proof

max
(∥∥(y −Rf,σ2,ε

)
X

∥∥2

2
, σ2

∥∥Rf,σ2,ε

∥∥2

Hk(X )

)
≤ nS(Rf,σ2,ε, σ

2n−1,X ) (12)

≤ nS(f, σ2n−1,X ) = ‖ε‖22 + σ2‖f‖2Hk(X ). (13)
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Where (12) uses the definition of the optimisation problem S, see Section 2, and (13) follows
since Rf,σ2,ε solves the optimisation problem S.

Theorem 18 Fix N ∈ N suppose Assumptions 1-5 hold and each observation is corrupted
by some εi and let q ∈ [1,∞]. Then, ∃C, h0 > 0 such that ∀n ≥ N , ∀Xn ⊆ X with hXn ≤ h0

and ∀s ∈ [0, (τf ∧ τ−k )∗] the approximation error is bounded as

E
[∥∥f −Rmf,σ2

n,ε
(θn)

∥∥
W s
q (X )

]
≤ CΛs,q

[
h

(τf∧τ−k )−s−d
(

1
2
− 1
q

)
+

Xn
ρ

(τ+
k −τf )+

Xn

(
‖f‖

W
τf
2 (X )

+
∥∥m(θn)

∥∥
W
τf
2 (X )

)
+ h

τ−k −s−d
(

1
2
− 1
q

)
+

Xn
σ−1
n E[‖ε‖2]

+ h
d
γ
−s

Xn
E
[∥∥(f −Rf,σ2

n,ε
(θn))Xn

∥∥
2

]
+ h

d
γ
−s

Xn
E
[∥∥(m(θn)−Rm(θn),σ2

n,ε
(θn))Xn

∥∥
2

] ]
,

where C = C (X , d, q, τf ,Θ∗N ), h0 = h0 (R, δ, d, τf ,Θ
∗
N ), γ = 2 ∨ q.

Proof Expectation with respect to ε shall be taken at the final step. By the definition of
Rmf,σ2

n,ε
(θn)

Rmf,σ2
n,ε

(θn) = m(θn) +Rf,σ2
n,ε

(θn)−Rm,σ2
n,ε

(θn) +R0,σ2
n,ε

(θn),

therefore ∥∥f −Rmf,σ2
n,ε

(θn)
∥∥
W s
q (X )

≤
∥∥f −Rf,σ2

n,ε
(θn)

∥∥
W s
q (X )

+
∥∥m(θn)−Rm(θn),σ2

n,ε
(θn)

∥∥
W s
q (X )

+
∥∥R0,σ2

n,ε

∥∥
W s
q (X )

, (14)

so as in the proof of Theorem 1, see (4), without loss of generality it suffices to only consider
the case m = 0. Use Theorem 12 on f −Rf,σ2

n,ε
(θn) to see ∃h1 > 0 such that for hXn ≤ h1

and any s ∈ [0,
(
τf ∧ τ−k

)∗
]

∥∥f −Rf,σ2
n,ε

(θn)
∥∥
W s
q (X )

≤ C1Λs,q

(
h

(τf∧τ(θn))−s−d
(

1
2
− 1
q

)
+

Xn

∥∥f −Rf,σ2
n,ε

(θn)
∥∥
W
τf∧τ(θn)

2 (X )

+ h
d
γ
−s

Xn

∥∥(f −Rf,σ2
n,ε

(θn)
)
Xn

∥∥
2

)
, (15)

where C1 = C1(X , d, q, τf ,Θ∗N ), h1 = h1(R, δ, d, τf ,Θ
∗
N ) and γ = max(2, q). The rest of the

proof is spent bounding the W
τf∧τ(θn)
2 (X ) norm term.
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For the case τ(θn) ≤ τf , the triangle inequality and Lemma 17 can be employed∥∥f −Rf,σ2
n,ε

(θn)
∥∥
W
τf∧τ(θn)

2 (X )
=
∥∥f −Rf,σ2

n,ε
(θn)

∥∥
W
τ(θn)
2 (X )

≤ ‖f‖
W
τ(θn)
2 (X )

+
∥∥Rf,σ2

n,ε
(θn)

∥∥
W
τ(θn)
2 (X )

≤ C2

(
‖f‖

W
τf
2 (X )

+ σ−1
n ‖ε‖2

)
,

with C2 bounding the ratio of norm equivalence constants which facilitates the use of RKHS
norms in Lemma 17, this is analogous to the use of ratio of norm equivalence constants in
(9). Then, combined with (15)

∥∥f −Rf,σ2
n,ε

(θn)
∥∥
W s
q (X )

≤ C ′Λs,q

[
h
τ(θn)−s−d

(
1
2
− 1
q

)
+

Xn
‖f‖

W
τf
2 (X )

+ h
τ(θn)−s−d

(
1
2
− 1
q

)
+

Xn
σ−1
n ‖ε‖2 (16)

+ h
d
γ
−s

Xn

∥∥(f −Rf,σ2
n,ε

(θn))Xn
∥∥

2

]
,

which recovers the desired result for this case.
For the case when τ(θn) > τf first apply the triangle inequality∥∥f −Rf,σ2

n,ε
(θn)

∥∥
W s
q (X )

≤
∥∥f −Rf (θn)

∥∥
W s
q (X )

+
∥∥Rf (θn)−Rf,σ2

n,ε
(θn)

∥∥
W s
q (X )

, (17)

where Rf (θn) is an interpolant of f at the data points. The first term on the right hand
side of (17) can be bounded by a direct application of Theorem 1 (the bound for GPs in
the interpolation setting with well-specified likelihood). The second term can be bounded
using (16) by replacing f with Rf (θn). This can be done since f and Rf (θn) agree at the
data points and Rf (θn) and Rf,σ2

n,ε
(θn) have the same smoothness. Combining these two

bounds yields∥∥f −Rf,σ2
n,ε

(θn)
∥∥
W s
q (X )

≤ C ′Λs,q
[
h
τ(θn)−s−d

(
1
2
− 1
q

)
+

Xn

∥∥Rf∥∥W τ(θn)
2 (X )

+ h
τ(θn)−s−d

(
1
2
− 1
q

)
+

Xn
σ−1
n ‖ε‖2

+ h
d
γ
−s

Xn

∥∥(Rf (θn)−Rf,σ2
n,ε

(θn)
)
Xn

∥∥
2

]
,

≤ C ′′Λs,q
[
h
τf−s−d

(
1
2
− 1
q

)
+

Xn
ρ
(τ(θn)−τf)
Xn

∥∥f∥∥
W
τf
2 (X )

+ h
τ(θn)−s−d

(
1
2
− 1
q

)
+

Xn
σ−1
n ‖ε‖2

+ h
d
γ
−s

Xn

∥∥(f −Rf,σ2
n,ε

(θn)
)
Xn

∥∥
2

]
, (18)

where (18) uses the fact that Rf (θn) interpolates f to obtain the final term and employs
the proof technique involving band limited functions by (Narcowich et al., 2006, Theorem

4.2) to express the W
τ(θn)
2 (X ) norm in terms of the W

τf
2 (X ) norm.

Combining (18) with the bound obtained when applying Theorem 1 to the first term
on the right hand side of (17) then taking appropriate upper and lower bounds of τ(θn)
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completes the proof.

Combining the following lemma with Theorem 18 completes the proof of Theorem 4.

Lemma 19 Suppose the assumptions of Theorem 4 hold then for any f ∈W τf
2 (X )

∥∥(f −Rf,σ2
n,ε

(θn)
)
Xn

∥∥
2
≤ C

(
‖ε‖2 + σnq

−(τ+
k −τf )+

Xn
‖f‖

W
τf
2 (X )

)
,

where C = C (X , d, τf ,Θ∗N ).

Proof As discussed in the proof by Narcowich et al. (2006, Theorem 4.2) for each n
there exists a band-limited function fαn , where αn is the bandwidth and depends on qXn ,

such that fα equals f at the points Xn and ‖fα‖W τ(θn)
2 (X )

≤ C1q
−(τ(θn)−τf )+

Xn
for some

C1 = C1(X , d, τf , τ(θn)). Using this,∥∥(f −Rf,σ2
n,ε

(θn)
)
Xn

∥∥
2

=
∥∥(fα −Rfα,σ2

n,ε
(θn)

)
Xn

∥∥
2

(19)

≤ ‖ε‖2 +
(
‖ε‖22 + σ2

n‖fαn‖2Hk(θn)(X )

) 1
2

(20)

≤ C
(
‖ε‖2 + σnq

−(τ+
k −τf )+

Xn
‖f‖

W
τf
2 (X )

)
(21)

where (20) used Lemma 17 and (21) used the norm equivalence of the RKHS to a Sobolev
space and the aforementioned property of fαn to obtain the qXn term.

Appendix E. Proof of Theorem 7

We will denote by Rε the kernel interpolant of the the noise, meaning Rε(x) = kxXk
−1
XXε.

Lemma 20 Let k be a τ -smooth kernel for τ > d/2, ε ∈ Rn and Xn ⊂ X . Then, ∃C > 0

such that ‖Rε‖Hk(X ) ≤ C‖ε‖2q−(τ−d/2)
Xn

for some C = C(d, k) with the dependence on k
entering through the RKHS norm equivalence constants.

Proof Denote by λmin(A), λmax(A) the minimum and maximum eigenvalues of some matrix
A. Then:

‖Rε(θn)‖2Hk(X ) = ε>k−1
XXε ≤ ‖ε‖

2
2 sup
x∈Rn,x 6=0

x>k−1
XXx

‖x‖22
= ‖ε‖22λmax(k−1

XX) (22)

= ‖ε‖22λmin(kXX)−1 ≤ C‖ε‖22q
−(2τ−d)
Xn

, (23)

where the first inequality in (22) is by the reproducing property and the last inequality
is by the Rayleigh-Ritz theorem (Horn and Johnson, 2013), (23) is by using the bounds
on minimum eigenvalues of kernel matrices discussed by Wendland (2005, Theorem 12.3)
which are applicable since k is τ -smooth. See e.g. (Narcowich et al., 2006, Section 3) for
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further discussion.

To prove Theorem 7 proceed as in the proof of Theorem 18 up to (15) and note the
residual term is simply ‖ε‖2 since Rf,0,ε(θn) interpolates the corrupted data, rather than
fX . So ∃ C1, h1 > 0 with C1 = C1(X , d, q, τf ,Θ∗N ), h1 = h1(R, δ, d, τf ,Θ

∗
N ) such that for

any Xn with hXn ≤ h1∥∥f −Rf,0,ε(θn)
∥∥
W s
q (X )

≤ C1Λs,q

(
h

(τf∧τ(θn))−s−d
(

1
2
− 1
q

)
+

Xn

∥∥f −Rf,0,ε(θn)
∥∥
W
τf∧τ(θn)

2 (X )
+ h

d
γ
−s

Xn
‖ε‖2

)
. (24)

First consider the case when τf ≥ τ(θn)

‖f −Rf,0,ε(θn)‖
W
τf∧τ(θn)

2 (X )
≤ ‖f −Rf (θn)‖

W
τf
2 (X )

+ ‖Rε(θn)‖
W
τ(θn)
2 (X )

(25)

≤ ‖f‖
W
τf
2 (X )

+ C2‖ε‖2q
−(τ(θn)− d

2
)

Xn
, (26)

where (25) is the triangle inequality and (26) is by Lemma 15 and Lemma 20 with C2 =
C(d,Θ∗N ), the dependency on Θ∗N manifested by using the ratio of norm equivalence con-
stants to move from Sobolev to RKHS norm. Combining this with (24)

∥∥f −Rf,0,ε(θn)
∥∥
W s
q (X )

≤ C1Λs,q

(
h
τ(θn)−s−d

(
1
2
− 1
q

)
+

Xn

(
‖f‖

W
τf
2 (X )

+ C2‖ε‖2q
−(τ(θn)− d

2
)

Xn

)
+ h

d
γ
−s

Xn
‖ε‖2

)
≤ C3Λs,q

(
h
τ(θn)−s−d

(
1
2
− 1
q

)
+

Xn
‖f‖

W
τf
2 (X )

+
(
h
d
γ
−s

Xn
+ ρ

τ(θn)− d
2

Xn
h
d
2
−s−d

(
1
2
− 1
q

)
+

Xn

)
‖ε‖2

)
(27)

≤ C4Λs,q

(
h
τ(θn)−s−d

(
1
2
− 1
q

)
+

Xn
‖f‖

W
τf
2 (X )

+ h
d
γ
−s

Xn
ρ
τ(θn)− d

2
Xn

‖ε‖2
)
, (28)

where (27) is absorbing the constants to the front and (28) is because the exponents of the
hXn terms that are multiplied by ‖ε‖2 are the same and ρXn ≥ 1. Taking upper and lower
bounds of τ(θn) completes the proof for this case.

Now consider τf < τ(θn). In a similar fashion to the second part of the proof of Theorem
18, we use the triangle inequality

∥∥f −Rf,0,ε(θn)
∥∥
W s
q (X )

≤
∥∥f −Rf (θn)

∥∥
W s
q (X )

+
∥∥Rf (θn)−Rf,0,ε(θn)

∥∥
W s
q (X )

, (29)

where the first term on the right hand side can be bounded by Theorem 1 since it does not
involve observation corruption, and the second term on the right hand side can be bounded
by (28) by replacing f with Rf (θn) since Rf (θn) and Rf,0,ε(θn) have the same smoothness.
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Therefore∥∥f −Rf,0,ε(θn)
∥∥
W s
q (X )

≤ C5Λs,q

(
h
τ(θn)−s−d

(
1
2
− 1
q

)
+

Xn
‖Rf (θn)‖

W
τ(θn)
2 (X )

+ h
d
γ
−s

Xn
ρ
τ(θn)− d

2
Xn

‖ε‖2
)

(30)

≤ C6Λs,q

(
h
τ(θn)−s−d

(
1
2
− 1
q

)
+

Xn
q
−(τ(θn)−τf )
Xn

‖f‖
W
τf
2 (X )

+ h
d
γ
−s

Xn
ρ
τ(θn)− d

2
Xn

‖ε‖2
)

(31)

≤ C6Λs,qh
d
γ
−s

Xn
ρ
τ(θn)−τf
Xn

(
h
τf− d2
Xn

‖f‖
W
τf
2 (X )

+ ρ
τf− d2
Xn

‖ε‖2
)
, (32)

where (30) is applying Theorem 1 and (28) to the terms on the right hand side of (29).
Then (31) uses, as was done in the proof of Theorem 18, the proof technique involving
band-limited functions by Narcowich et al. (2006, Theorem 4.2). Finally (32) is collecting
the mesh ratio and fill distance terms to the front. Taking appropriate upper and lower
bounds for τ(θn) in terms of τ+

k , τ
−
k completes the proof of Theorem 7.

Appendix F. Proof of Theorem 2

The proof of Theorem 2 is simply combination of Theorem 18 with a bound on the residual
terms and substituting in a bound for E[‖ε‖2]. The bound on the residual terms is obtained
from an adaptation of the result by van der Vaart and van Zanten (2011, Theorem 1,
Theorem 5) to the case of altering hyperparamters. Proving this adaptation is a tedious
matter of checking that the constants involved in the bound by van der Vaart and van
Zanten (2011, Theorem 1, Theorem 5), which are different for each parameter value, may
be controlled given our assumptions on the hyperparameters. The adaptation is stated next
along with an explanation of how it is used to prove Theorem 2 and then a proof of the
adaptation is given.

Proposition 21 Suppose Assumptions 1-7 then ∃C = C
(
‖f‖

W
τf
2 (X )

,Θ∗N

)
such that for

n ≥ N

E
[∥∥(f −Rf,σ2,ε(θn)

)
Xn

∥∥
2

]
≤ C

n
(

1
2
−

τf

2τ+
k

)
+

∨ d

4τ−
k

 .

Direct substitution of this bound into the residuals in Theorem 18 and noting that
σ−1E[‖ε‖2] ≤ n

1
2 completes the proof of Theorem 2. Proposition 21 is proved by using

Jensen’s inequality on Theorem 22 in combination with Corollary 26 to obtain the desired
bound. The rest of this section shall prove these intermediate results.

Before starting the details of the proof of Proposition 21 we recall the definition of
Hölder spaces of functions Cτ (X ). For τ > 0 and X ⊆ Rd an open set, Cτ (X ) is the space
of functions f : X → R with ‖f‖Cτ (X ) <∞ where

‖f‖Cτ (X ) = max
m : |m|≤bτ−1c

sup
x∈X
|Dmf(x)|+ max

m : |m|≤bτ−1c
sup
x,y∈X
x6=y

|Dmf(x)−Dmf(y)|
‖x− y‖τ−bτ−1c

2

,
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where m = (m1, . . . ,md) is a multi-index, |m| =
∑d

i=1mi and Dm is the partial differential
operator corresponding to m. Now the framework by van der Vaart and van Zanten (2011) is
presented which views the Gaussian process as a measure on function space. The techniques
discussed are detached from the results in the present paper and are discussed only to prove
Proposition 21, for further details of their origin and use in Bayesian nonparametrics see
e.g. (Ghosal and van der Vaart, 2017).

Let Πk(θn) denote the probability measure associated with a GP with zero mean and
kernel k(θn) over X . Set we Πθn = Πk(θn) for ease of notation. Given a target function f
and a set of points Xn = {xi}ni=1 and observations yi = f(xi) + εi with εi i.i.d N (0, σ2)
denote the posterior distribution of Πθn given {yi}ni=1 as Πθn(·|y1:n). For ε > 0 and f a
continuous function over the closure of X define the concentration function

φθn,f (ε) = inf
h∈Hk(θn)(X )

‖h−f‖L∞(X )<ε

1

2
‖h‖2Hk(θn)(X ) − log Πθn(g : ‖g‖L∞(X ) < ε).

The first term is called the decentering function and the second the small ball probability.
This is finite if and only if f is contained in the closure of Hk(θn)(X ) with respect to the
supremum norm, which will be true under the assumptions of the theorems in Section 4.2.
The next result by van der Vaart and van Zanten (2011, Theorem 1) shows the residuals
may be controlled by the concentration function.

Theorem 22 Let X be a compact set then ∃C > 0 such that for every f ∈ C(X )

1

n
E
[∫ ∥∥(g − f)Xn

∥∥2

2
dΠθn(g|y1:n)

]
≤ Cψ−1

θn,f
(n)2,

where the expectation is being taken with respect to the noise, ψθn,f (ε) = φθn,f (ε)/ε2 and
ψ−1
θn,f

is the generalised inverse of ψθn,f .

Compactness of X is assumed whereas in Theorem 2 we assumed X is open. This is not
an issue since it is assumed the target function can be extended to all of Rd so Theorem 22
may be applied to the restriction of the extension to the closure of X , which is compact and
contains all the observation points. The decentering function and the small ball probability
needs to be bounded. The decentering function is bounded in Lemma 23 and the small ball
probability in Lemma 25 which requires more technical work.

Specifically the decentering term is dealt with by upper bounding norm equivalence
constants that occur in the proof by van der Vaart and van Zanten (2011, Lemma 4) when
performing the kernel convolution approximation argument in that proof, this is summarised
in the next lemma.

Lemma 23 Let f be the restriction to the closure of X of some f◦ ∈ Cτf (Rd) ∩W τf
2 (Rd)

with τ(θn) > τf > d/2. Then, ∃C = C
(
‖f‖

W
τf
2 (X )

,Θ∗N

)
such that for ε < 1

inf
h∈Hk(θn)(X )

‖h−f‖L∞(X )<ε

1

2
‖h‖2Hk(θn)(X ) ≤ Cε

−
2(τ(θn)−τf )

τf ≤ Cε
−2

(τ+
k
−τf )

τf .
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If τf ≥ τ(θn) then f ∈ Hk(θn)(X ) therefore we could take h = f and the bound would be
1
2‖f‖W τ(θn)

2 (X )
which has no dependence on ε so in this case the growth of the concentration

function is dictated entirely by the small ball probability term.

The small ball probability bound requires the result by Li and Linde (1999, Theorem
1.2) which relates small ball probabilities to the metric entropy of the unit ball of the RKHS
corresponding to the kernel. Metric entropy is a method of measuring the size of a given
function space denoted H(M, ε) and is defined as the logarithm of the ε-covering number
of M , for more discussion see e.g. (Giné and Nickl, 2016, Chapter 2.3). A bound on metric
entropy is given by Giné and Nickl (2016, Theorem 4.3.36) which illuminates the way the
hyperparameters effect the bound. The constants in the proof can easily be bounded by
replacing τ(θn) by τ+

k and τ−k where appropriate and doing so yields the next lemma.

Lemma 24 Fix N ∈ N and suppose Assumptions 1-7 hold. Let H(1)
k(θn)(X ) denote the unit

ball of the RKHS of k(θn) over the closure of X . Then ∃Cmet = Cmet (Θ∗N ) such that
∀n ≥ N and ∀ε < 1

H
(
H(1)
k(θn)

(
X
)
, ε
)
≤ Cmet ε−

d
τ(θn) .

The proof by van der Vaart and van Zanten (2011, Theorem 5) is now followed to link
metric entropy to small ball probability. This will involve going through auxiliary results by
Li and Linde (1999) to make sure the possible altering hyperparameters result in constants
that are controlled, this is a tedious process and the referenced paper should be consulted
for greater context. Before this is started note that the two auxiliary results by Li and Linde
(1999, Lemma 2.1, Lemma 2.2) used to link entropy numbers to GPs do not depend on the
hyperparameter choices since they hold with constants not depending on the smoothness of
the RKHS, see e.g. (Pisier, 1989, Theorem 9.1) and (Artstein et al., 2004, Page 1315). The
first step is to use (Li and Linde, 1999, Proposition 2.4) in combination with the bound we
have derived for metric entropy to get that ∀γ > 2d/(2τ(θn)− d), ∃C(θn, γ) > 0 such that

φθn(ε) := − log Πθn (‖f‖∞ ≤ ε) ≤ C(θn, γ)ε−γ . (33)

Next we explain the result by Li and Linde (1999, Proposition 3.1). First, using the result
by Li and Linde (1999, Equation 3.4) and Lemma 24

φθn(ε) ≤ log 2 +H
(
H(1)
k(θn), ε(8φθn(ε/2))−

1
2

)
≤ log 2 + Cmetε

− d
τ(θn) 8

d
2τ(θ)φθn (ε/2)

d
2τ(θn) , (34)

then once ε gets smaller than some ε∗ the second term on the right hand side of (34)
becomes greater than L log 2 for some constant L > 0 (Li and Linde, 1999, Equation 3.4).
This argument does not consider changing hyperparameters. Indeed, for a fixed constant
L > 0 for different hyperparameters θn we might need different ε∗n to conclude that the
second term is greater than L log 2. Assumption 5 introduces the required uniformity by
allowing us to say that once ε is small enough (34) can be bounded by a constant times the
second term in (34) for all hyperparameter choices. Specifically, by Assumption 6 we know
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that if ε < c then φθn(ε/2) ≥ αN , therefore if we set

ε∗ := min

c,
(
α

d

2τ+
k

N (log 2)−1

) τ−
k
d

 , (35)

then for ε < ε∗, we have

φθn(ε) ≤ log 2 + Cmet ε
− d
τ(θn) 8

d
2τ(θn)φθn (ε/2)

d
2τ(θn)

≤ (Cmet + 1) ε
− d
τ(θn) 8

d
2τ(θn)φθn (ε/2)

d
2τ(θn) .

Now take logarithms and employ the iterative procedure from the proof by Li and Linde
(1999, Proposition 3.1). Taking logarithms gives

log φθn(ε) ≤ d

2τ(θn)
log φθ (ε/2) + logχn(ε),

where χn(ε) = (Cmet + 1)ε
− d
τ(θn) 8

d
2τ(θn) . Now iterate this inequality so that for any m ∈ N

log φθn(ε) ≤
(

d

2τ(θn)

)m
log φθn

(
2−mε

)
+
m−1∑
j=0

(
d

2τ(θn)

)j
logχ

(
2−jε

)
, (36)

and note that the left hand side does not depend on m and substituting the bound in (33)
reveals the first term on the right hand side of (36) converges to zero as m→∞(

d

2τ(θn)

)m
log φθn

(
2−mε

)
≤
(

d

2τ(θn)

)m
log
(
C(θn, γ)2mγε−γ

)
=

(
d

2τ(θn)

)m (
mγ log 2 + log(C(θn, γ)ε−γ)

) m→∞−−−−→ 0.

So taking the limit of m in (36) gives

log φθn(ε) ≤
∞∑
j=0

(
d

2τ(θn)

)j
logχn

(
2−jε

)
=

2τ(θn)

(2τ(θn)− d)
logχn(ε) +

∞∑
j=0

(
d

2τ(θn)

)j
log

(
χn(2−jε)

χn(ε)

)

≤ 2τ(θn)

(2τ(θn)− d)
logχn(ε) + log(2)

d

τ−k

∞∑
j=0

(
d

2τ−k

)j
j,

and sum has a closed form which we can upper bound

log φθn(ε) ≤ 2τ(θn)

(2τ(θn)− d)
logχn(ε) + log(2)

(
d

τ−k

)(
d

2τ−k

)(
d

2τ−k
− 1

)−2

.
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Finally, exponentiating tells us that ∀ε < ε∗:

φθn(ε) ≤ C∗ε−2d/(2τ(θn)−d) ≤ C∗ε−2d/(2τ−k −d),

where we have collected the dependencies on Θ∗N into C∗. In summary the following lemma
which is analogous to the result by van der Vaart and van Zanten (2011, Lemma 3), but
with possibly changing hyperparameters, has been proved.

Lemma 25 Fix N ∈ N and suppose Assumptions 1-7 hold. Then, for ε < ε∗, where ε∗ is

from (35), and n ≥ N : − log Πθn

(
‖f‖L∞(X) ≤ ε

)
≤ C∗ε−2d/(2τ−k −d).

Corollary 26 Fix N ∈ N and suppose Assumptions 1-7 hold. Then, ∃C =

C
(
‖f‖

W
τf
2 (X )

,Θ∗N

)
such that for n ≥ N , ψ−1

θn,f
(n) ≤ C max

(
n−τf/2τ

+
k , nd/4τ

−
k −1/2

)
.

Proof By Lemma 23 and Lemma 25, using the restriction of f◦ to the closure of X , ∃C1 > 0
such that ∀ n ≥ N and ε < ε∗, where ε∗ is from (35)

φθn,f (ε)ε−2 ≤ C1

(
ε−(2d/(2τ(θn)−d))−2 + ε−2((τ(θn)−τ)/τ)−2

)
≤ C1ε

− 2τ(θn)
min (τ,τ(θn)−(d/2)) ≤ C1

(
ε−2τ+

N/τ ∨ ε(d/(4τ
−
N )−1/2)

−1)
.

Set εn = n−(τ/2τ+
k )∧(d/4τ−k −1/2) then we know once n is large enough that we have εn < ε∗

therefore ∃ C2 such that ∀n ≥ N φθn,f (εn)ε−2
n ≤ C2n. Multiplying εn by a constant to

remove the factor of C2 in the previous expression completes the proof.

Appendix G. Proof of Theorem 11

The proof follows the proof by (Bull, 2011, Theorem 1). The point xn satisfies

f(x∗)− f(xn) ≤ f(x∗)−Rf (x∗)− f(xn) +Rf (xn) ≤ 2
∥∥f −Rf∥∥L∞(X )

,

since Rf (xn) ≥ Rf (x∗) since xn was chosen as the maximizer of Rf . The points picked by
the (γ, F, n) strategy are quasi-uniform by Wenzel et al. (2019, Theorem 14, Theorem 18)
therefore taking n0 to be large enough to ensure that the fill distance obtained from the
strategy is small enough to employ Theorem 1 completes the proof.
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Rémi Arcangéli and Juan José Torrens. Sampling inequalities in Sobolev spaces. Journal
of Approximation Theory, 182:18–28, 2014.
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