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Abstract

Distributed machine learning systems have been receiving increasing attentions for their
efficiency to process large scale data. Many distributed frameworks have been proposed for
different machine learning tasks. In this paper, we study the distributed kernel regression
via the divide and conquer approach. The learning process consists of three stages. Firstly,
the data is partitioned into multiple subsets. Then a base kernel regression algorithm is ap-
plied to each subset to learn a local regression model. Finally the local models are averaged
to generate the final regression model for the purpose of predictive analytics or statistical
inference. This approach has been proved asymptotically minimax optimal if the kernel
is perfectly selected so that the true regression function lies in the associated reproducing
kernel Hilbert space. However, this is usually, if not always, impractical because kernels
that can only be selected via prior knowledge or a tuning process are hardly perfect. In-
stead it is more common that the kernel is good enough but imperfect in the sense that the
true regression can be well approximated by but does not lie exactly in the kernel space.
We show distributed kernel regression can still achieve capacity independent optimal rate
in this case. To this end, we first establish a general framework that allows to analyze dis-
tributed regression with response weighted base algorithms by bounding the error of such
algorithms on a single data set, provided that the error bounds have factored the impact of
unexplained variance of the response variable. Then we perform a leave one out analysis of
the kernel ridge regression and bias corrected kernel ridge regression, which in combination
with the aforementioned framework allows us to derive sharp error bounds and capacity
independent optimal rates for the associated distributed kernel regression algorithms. As
a byproduct of the thorough analysis, we also prove the kernel ridge regression can achieve
rates faster than O(N−1) (where N is the sample size) in the noise free setting which, to
our best knowledge, are first observed and novel in regression learning.

Keywords: Learning Theory, Distributed regression learning, Optimal rates, Imperfect
kernels, Leave one out analysis

1. Introduction

Distributed machine learning systems have been receiving increasing attentions for their
efficiency to process large scale data. Many distributed frameworks have been proposed for
different machine learning tasks; see for instance Dean and Ghemawat (2004); Dobriban and
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Sheng (2020); Kraska et al. (2013); Boyd et al. (2011); Xu et al. (2018); Zhang et al. (2015).
Among others, the divide and conquer approach has been proved easy to implement but
efficient for statistical estimation and predictive analytics. This approach is used when the
data is too big to be analyzed by one computer node and usually consists of three stages.
First, the data is randomly partitioned into multiple subsets. In some applications the data
may be naturally stored in different locations as a result of data collection process and there
is no need for further partitioning. Second, a base algorithm is selected according to the
learning task and applied to each subset to learn a local model. Finally, all local models are
averaged to generate the final model. This approach is computationally efficient because
the second stage can be easily parallelized. Also, because the local model training does
not require mutual communication between the computing nodes, it can largely preserve
privacy and confidentiality.

In the context of nonlinear regression analysis distributed kernel methods implemented
via the divide and conquer approach have been widely studied and showed asymptotically
minimax optimal in many situations. In particular, if the kernel is perfectly selected so that
the true regression function lies in the associated reproducing kernel space, the minimax
optimality was verified for kernel ridge regression (Zhang et al., 2015; Szabó et al., 2016; Lin
et al., 2017), kernel spectral algorithm (Guo et al., 2017a), kernel based gradient descent
(Lin and Zhou, 2018), bias corrected regularization kernel network (Guo et al., 2017b), and
minimum error entropy (Hu et al., 2020). However, it is usually, if not always, impractical to
select perfect kernels for real world problems. More commonly one has to select an imperfect
kernel by some prior knowledge and/or a tuning process. Such a kernel is empirically optimal
within a family of candidate kernels, usually good enough for applications, but there is
no guarantee of perfectness. A typical example is the widely used Gaussian radial basis
kernel. It is effective in most nonlinear data analysis problems because of its universality.
But it is well known that its associated reproducing kernel Hilbert space consists of only
infinitely differentiable functions. Functions that are not infinitely differentiable can be well
approximated by the kernel but cannot lie exactly in the associated kernel space. In this
situation the learning rates obtained in the literature are suboptimal.

The primary goal of this study is to verify the capacity independent optimality of dis-
tributed kernel regression algorithms when the kernel is imperfect. We focus on the use of
kernel ridge regression (KRR) and bias corrected kernel ridge regression (BCKRR) in the
divide and conquer approach. For this purpose, we propose a framework to analyze a broad
class of distributed regression methods and conduct rigorous leave one out analyses. More
specifically, we make the following four contributions.

• First, we introduce the concept of response weighted regression algorithm, which
covers a broad class of regression algorithms and has both KRR and BCKRR as
examples. We propose a general framework to analyze the learning performance of re-
sponse weighted distributed regression algorithms and show that, for such algorithms,
it suffices to study the learning performance of the response weighted algorithm on a
single data set provided that it characterizes the impact of the unexplained variance
of the response variable on the learning performance. This makes the analysis of such
distributed learning algorithms much easier. Because both KRR and BCKRR fall
into this framework, we will utilize it to analyze the distributed KRR and distributed
BCKRR in this study.
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• Second, we conduct a leave one out analysis of the KRR algorithm and prove capacity
independent error bounds, which are sharp in the sense that they lead to optimal
capacity independent rates regardless the kernel is perfect or imperfect. While the idea
of leave one out analysis was originally developed in Bousquet and Elisseeff (2002);
Zhang (2003), our analysis is more rigorous so that the error bounds factor in the
impact of the unexplained variance of the response variable and therefore we are
able to utilize them in combination with the aforementioned framework to derive
sharp error bounds and optimal learning rates for distributed KRR. Furthermore, our
analysis also greatly relaxes the restriction on the number of local machines used in
the distributed regression. In particular, our results indicate that fast rates can still
be achieved with the number of local machines increasing at the order of O(

√
N) (with

N being the sample size) if the true regression does lie in the kernel space. This is a
significant relaxation compared with those in the literature; see detailed comparison
in Section 2.3.

• Third, we conduct a rigorous leave one out analysis of the BCKRR and utilize the
results to derive error bounds and learning rates for distributed BCKRR algorithm.
Again, the results are optimal from a capacity independent viewpoint when the kernel
is imperfect. As the BCKRR was proposed by the idea of bias correction, its original
formula involves a two-step procedure and admits an operator representation which,
if not impossible, is unsuitable for leave one analysis in a natural way. To overcome
this difficulty we prove two alternative formulae for the algorithm, among which the
recentering regularization formula defines the target function by a Tikhonov regular-
ization scheme and allows us to conduct leave one analysis naturally. Moreover, these
two perspectives also shed light on the design of other bias corrected algorithms whose
solutions do not have an explicit representation like KRR. See Section 6.1 and the
discussions in Section 7 for details.

• Last, as a byproduct of our leave one out analysis, we derive super fast learning rates
for both KRR and BCKRR when the unexplained variance of the response variable
becomes zero, that is, the response value is determined and noise free for any fixed
input. If the kernel is perfect, the rate can be faster than O(N−1) and even as fast as
O(N−2) in the best situation. To our best knowledge, such super fast rates for kernel
regression are first observed and novel in learning theory research.

The rest of the paper is organized as follows. In Section 2 we describe the problem
setting, algorithms, and the main results. Discussions and detailed comparisons between
our results and those in the literature will be given. Empirical studies will be used to
illustrate the effectiveness of imperfect kernels in distributed regression. In Section 3 we
propose a general framework for the analysis of response weighted distributed regression
algorithms. Some preliminary lemmas were proved in Section 4. Then in Section 5 and
Section 6 we conduct leave one out analyses of KRR and BCKRR, respectively. The results
are then used to prove our main results regarding the error bounds and learning rates of
distributed KRR and distributed BCKRR. We close with conclusions and discussions in
Section 7.
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2. Problem setting and main results

Let X be the sample space of input variable x and Y the sample space of the response
variable y. They are linked by a joint probability measure ρ on the product space X × Y.
The goal is to learn the mean regression function that minimizes the mean squared prediction
error, i.e.,

f∗ = arg min E(f) where E(f) = E[(y − f(x))2].

This is usually implemented by minimizing the empirical mean squared error or its regu-
larized version when we have in hand a sampled data set D = {(xi, yi), i = 1, . . . , N}. If f∗

is linear, multiple linear regression or the regularized methods such as ridge regression or
LASSO performs well. When f∗ is nonlinear, kernel ridge regression can be used to search
a good approximating function in a suitable reproducing kernel Hilbert space.

Let K be a Mercer kernel, namely, a continuous, symmetric, and positive-semidefinite
function K : X×X → R. The inner product defined by 〈K(x, ·),K(t, ·)〉K = K(x, t) induces
a reproducing kernel Hilbert space (RKHS) HK associated to the kernel K. The space is the
closure of the function class spanned by {Kx = K(x, ·) : x ∈ X}. The reproducing property
f(x) = 〈f,Kx〉K leads to |f(x)| ≤

√
K(x, x)‖f‖K . Thus if κ = supx∈X

√
K(x, x) < ∞,

then HK can be embedded into C(X ) and ‖f‖∞ ≤ κ‖f‖K . We refer to Aronszajn (1950)
for more other properties of RKHS. The kernel ridge regression (KRR) estimates the true
regression function f∗ by the function fD,λ ∈ HK minimizing the regularized sample mean
squared error,

fD,λ = arg min
f∈HK

{
1

N

N∑
i=1

(yi − f(xi))
2 + λ‖f‖2K

}
, (1)

where λ > 0 is a regularization parameter. It is a popular kernel method for nonlinear
regression analysis. Its predictive consistency has been extensively studied in the literature;
see e.g. Evgeniou et al. (2000); Bousquet and Elisseeff (2002); Zhang (2003); De Vito et al.
(2005); Wu et al. (2006); Bauer et al. (2007); Caponnetto and De Vito (2007); Smale and
Zhou (2007); Sun and Wu (2009b); Steinwart et al. (2009) and many references therein. Its
applications were also extensively explored and shown successful in many problem domains.

By the famous representer theorem, fD,λ admits a representation

fD,λ(x) =

N∑
i=1

ciK(xi, x)

with c = (c1, . . . , cN )> ∈ RN solved from the linear system (λNI + K)c = y where
I is the identity matrix, K = [K(xi, xj)]

N
i,j=1 is the kernel matrix on the input data

and y = (y1, . . . , yN )> ∈ RN . Let S : HK → RN be be the sampling operator de-
fined by Sf = (f(x1), . . . , f(xN ))> for f ∈ HK . Its dual operator S∗ is given by S∗c =∑N

i=1 ciK(xi, ·) ∈ HK for c ∈ RN . In Smale and Zhou (2007) it is proved that fD,λ has an
operator representation

fD,λ =
1

N

(
λI +

1

N
S∗S

)−1
S∗y. (2)

One objective of this paper is to study the performance of the distributed version of this
method.
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We need several assumptions that are used throughout the paper. Recall the true
regression function is f∗(x) = E[y|x] and define σ2 = E[var(y|x)] = E[(y − f∗(x))2]. Notice
that

var(y) = E
[
var(y|x)

]
+ var

(
E[y|x]

)
= σ2 + var

(
f∗(x)

)
.

The second term on the right is the part of variance of y that is explained by the regression
function while the first term is unexplained. Our first assumption is on the finiteness of
unexplained variance.

Assumption 1. The unexplained variance of the response variable is finite, i.e., σ2 <∞.

If in particular σ2 = 0, then y = f∗(x) is determined for each given x ∈ X and we call
the regression problem is noise free. Note also for any function f independent of (x, y) there
holds

E
[
(y − f(x))2

]
= E

[
(f∗(x)− f(x))2

]
+ σ2. (3)

This identity will be repeatedly used in the proof of our main results.
Next we need the so called source condition. To state it, let ρX denote the marginal

distribution on X . Define

LKf(x) =

∫
X
K(x, t)f(t)dρX (t).

Then LK defines a compact operator both on L2
ρX

(the space of square integrable functions

with respect to the probability measure ρX ) and HK . Let τi and φi be the eigenvalues and
eigenfunctions of LK as an operator on L2

ρX
. Then {φi}∞i=1 form an orthogonal basis of L2

ρX
and

LKf =
∞∑
i=1

τi〈f, φi〉
L2
ρX
φi, ∀ f ∈ L2

ρX
.

Also, {ψi =
√
τiφi : τi 6= 0} form an orthonormal basis of HK and, as an operator on HK ,

LKf =
∑
i:τi 6=0

τi〈f, ψi〉Kψi, ∀ f ∈ HK .

It is easy to verify that LK is a population version of the operator 1
N S
∗S (as operators on

HK).
Because LK is compact and admits an eigen-decomposition form, LrK is well defined for

all r > 0. In particular, let HK be the closure of HK in L2
ρX
. Then for each f ∈ HK we have

L
1
2
Kf ∈ HK and

‖f‖L2
ρX

= ‖L
1
2
Kf‖K . (4)

If the kernel K is universal in the sense that HK is dense in C(X ), then HK = L2
ρX

and (4)

holds for all f ∈ L2
ρX
. The source condition is stated as follows.

Assumption 2. There exist some u∗ ∈ L2
ρX

and r > 0 such that f∗ = LrKu
∗.

If the source condition holds with r ≥ 1
2 then f∗ ∈ HK and the kernel is perfect for

learning the regression function. If r < 1
2 , then f∗ does not lie in HK and the kernel is

imperfect. We will focus our study on the imperfect case in this paper.
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Before moving on to the distributed KRR, let us first recall that if the source condition

holds with 0 < r ≤ 1, KRR can reach the optimal capacity independent rate O(N−
2r

1+2r )
(Zhang, 2003). If 1

2 ≤ r ≤ 1 and in addition the capacity of the reproducing kernel Hilbert
space as measured by the effective dimension satisfies

N (λ) = Tr((λI + LK)−1LK) ≤ C0λ
−β (5)

for some C0 > 0 and 0 < β < 1, KRR reaches the minimax optimal capacity dependent

rate O(N
− 2r
β+2r ) (Caponnetto and De Vito, 2007). However, to our best knowledge, if r < 1

2
meaning that the kernel is imperfect, such minimax optimality has never been verified in
the literature. Note all our results in this paper will not assume any capacity conditions.

2.1 Distributed kernel ridge regression

In the context of distributed kernel regression we divide the whole data D into m disjoint
subset D =

⋃m
`=1D`. Without loss of generality we assume all data sets are of equal size

n = N/m and denote D` = {(x`,1, y`,1), . . . , (x`,n, y`,n)}. Let fD`,λ be the local estimator
learned from D` by using KRR method (1). The distributed KRR defines the final global
estimator by

fD,λ =
m∑
`=1

n

N
fD`,λ =

1

m

m∑
`=1

fD`,λ. (6)

This approach has been studied in Zhang et al. (2015); Lin et al. (2017) and the minimax
optimality was verified for 1

2 ≤ r ≤ 1. In this paper we prove the following capacity
independent bounds for all r > 0.

Theorem 1 Assume σ2 <∞ and f∗ = LrKu
∗ for some u∗ ∈ L2

ρX
and 0 < r ≤ 1.

(i) If 0 < r ≤ 1
2 , then there exists a constant C1 > 0 independent of N, n, m, or λ such

that

E

[∥∥fD,λ − f∗∥∥2L2
ρX

]
≤ C1

{
mσ2

N2λ2
+

σ2

Nλ
+ λ2r

(
1 +

m2

N2λ2
+

m

Nλ

)}
.

Consequently, if m ≤ N
2r

1+2r , then with the choice λ = N−
1

1+2r , we have

E

[∥∥fD,λ − f∗∥∥2L2
ρX

]
= O

(
N−

2r
1+2r

)
.

(ii) If 1
2 < r ≤ 1 and λn ≥ 1, then there exists a constant C2 > 0 such that

E

[∥∥fD,λ − f∗∥∥2L2
ρX

]
≤ C2

{
mσ2

N2λ2
+

σ2

Nλ
+ λ2r +

λrm
r
2
+ 1

4

N
r
2
+ 1

4

}
.

Consequently, if m ≤ N
4r2+1

(1+2r)2 , then with the choice λ = N−
1

1+2r , we have

E

[∥∥fD,λ − f∗∥∥2L2
ρX

]
= O

(
N−

2r
1+2r

)
.
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Note if r > 1 the error bounds and convergence rates are the same as r = 1 due to the
saturation effect of KRR and have been omitted. The error bounds in Theorem 1 are sharp
and the rates are capacity independent optimal. A detailed comparison with the results in
the literature is given in Section 2.3.

2.2 Bias correction

The bias corrected kernel ridge regression (BCKRR) was proposed in Wu (2017) to efficiently
handle block wise data, for which the distributed learning is an example. Notice the operator
representation (2) implies fD,λ has asymptotic bias −λ(λI + LK)−1f∗. The BCKRR is
formulated by subtracting an empirical estimate of the asymptotic bias:

f ]D,λ = fD,λ + λ

(
λI +

1

N
S∗S

)−1
fD,λ. (7)

Similar to distributed KRR, a distributed BCKRR can be designed by applying BCKRR
on each subset and averaging the local estimators to obtain the global estimator as

f ]D,λ =
1

m

m∑
`=1

f ]D`,λ.

The bias and variance of BCKRR had been characterized in Wu (2017) and the distributed
BCKRR was studied in Guo et al. (2017b). Those studies have shown that the BCKRR
benefits the block wise data analysis both theoretically and empirically. Similar to the
distributed KRR case, the distributed BCKRR has been shown asymptotically minimax
optimal when the kernel is perfect. But when the kernel is imperfect, Guo et al. (2017b)

derived the rate of O(N
− r
β+2r ) under the capacity condition (5). It implies a capacity

independent rate ofO(N−
r

1+2r ), which is far from optimal. Even with the capacity condition,
if it is weak, say β > 1

2 − r, the rate in Guo et al. (2017b) is still worse than the capacity

independent rate O(N−
2r

1+2r ). One of our main contributions is to address this question.

Theorem 2 Assume σ2 < ∞ and f∗ = LrKu
∗ for some u∗ ∈ L2

ρX
with some 0 < r ≤ 2. If

λn ≥ 1, then there exists a constant C̃ > 0 independent of N, n, m, or λ such that

E

[∥∥∥f ]D,λ − f∗∥∥∥2
L2
ρX

]
≤ C̃



σ2

Nλ
+ λ2r, if 0 < r ≤ 1

2 ;

σ2

Nλ
+ λ2r +

λrm
r
2
+ 1

4

N
r
2
+ 1

4

, if 1
2 < r ≤ 1;

λ2r +
λrm

r
2
+ 1

4

N
r
2
+ 1

4

+
λr+

1
2m

1
2

N
1
2

+
σ2

λN
, if 1 < r ≤ 3

2 ;

λ2r +
λm

N
+
λr+

1
2m

1
2

N
1
2

+
σ2

λN
, if 3

2 < r ≤ 2.
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Consequently, if choosing λ = N−
1

2r+1 and the number of local machines satisfies m ≤ N θ

with

θ =



2r

1 + 2r
, if 0 < r ≤ 1

2 ;

4r2 + 1

(1 + 2r)2
, if 1

2 < r ≤ 1+
√
2

2 ;

2

1 + 2r
, if 1+

√
2

2 < r ≤ 2,

then we have

E

[∥∥∥f ]D,λ − f∗∥∥∥2
L2
ρX

]
= O

(
N−

2r
1+2r

)
.

2.3 Comparison with literature

The minimax rate analysis of regularized least square algorithms has been extensively stud-
ied in statistics and learning theory literature. If the eigenvalues of the operator LK decays

as τi ≤ i
− 1
β , which implies the capacity condition (5), then the minimax learning rate of

kernel ridge regression is O(N
− 2r

2r+β ) for 1
2 ≤ r ≤ 1; see e.g. Caponnetto and De Vito

(2007); Lin et al. (2017); Blanchard and Mücke (2018). To our best knowledge, this rate
has never been proved for r < 1

2 without imposing additional conditions.

Note that the capacity condition (5) roughly measures the smoothness of kernel K.
The smoother the kernel is, the smaller the β. For example, it is proved in Mendelson and
Neeman (2010) that, if K ∈ Cα(X 2 × X 2) with some integer α ≥ 1 and X 2 is locally the

graph of a Lipschitz function, then (5) is satisfied with β =
(

α
2dim(X ) + 1

2

)−1
. Moreover,

the Mercer theorem guarantees all kernels satisfies (5) with β = 1. Therefore, β = 1
corresponds to the worst situation and imposing a capacity condition (5) with β = 1 is

equivalent to no capacity condition. We see the rate O(N−
2r

2r+1 ) is minimax optimal in a
capacity independent sense. It is proved in Zhang (2003) that kernel ridge regression can
achieve this capacity independent optimal rate when r ≤ 1

2 .

Concerning the distributed kernel ridge regression via the divide and conquer technique,
under the assumptions that E[|φi(x)|2k] ≤ A2k for some k > 2 and constant A < ∞,

λi ≤ ai
− 1
β , and f∗ ∈ HK (i.e. r = 1

2), it is proved in Zhang et al. (2015) that the optimal

learning rate of O(N
− 1

1+β ) can be achieved by restricting the number of local processors

m ≤ cα

(
N

k−4−kβ
1+β

A4k logkN

) 1
k−2

.

This unfortunately does not apply to the case β = 1. Later in Lin et al. (2017) the minimax

optimal rate was verified for all r ∈ [12 , 1] if m ≤ N
min(

3(2r−1)+β
5(2r+β)

, 2r−1
2r+β

)
and in Guo et al.

(2017a) the restriction was relaxed to m ≤ N
min( 2

2r+β
, 2r−1
2r+β

)
. Although their results apply

to β = 1, the restriction on m is strict. If r = 1
2 , the data is essentially not able to be

distributed according to their results. The error bounds in Lin et al. (2017); Guo et al.
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(2017a) also apply to r ≤ 1
2 but only lead to suboptimal rate O(N

− 2r
1+β ) with the restriction

m = O(1). If β = 1, the capacity independent rate is O(N−r).

In this paper our primary interest is to understand the performance of distributed kernel
regression when the kernel is imperfect, i.e., when r < 1

2 and thus the true regression function

f∗ is not in HK . For this case, Theorem 1 (i) tells that, with the restriction m ≤ N
2r

1+2r , the

capacity independent optimal rate O(N−
2r

1+2r ) for r ≤ 1
2 can be achieved. Note this rate

is even faster than the existing capacity dependent rate O(N
− 2r

1+β ) when r < β
2 , let alone

the capacity independent rate O(N−r). In other words, we proved faster rates under weaker
restrictions on m. More importantly, unlike previous results that requires m = O(1) and
thus disclaims the effectiveness of distributed kernel regression algorithms in this situation,
our results instead verified their feasibility.

If f∗ lies in HK , i.e. r ≥ 1
2 , it is as expected that the rate O(N−

2r
1+2r ) in Theorem 1

is worse than the minimax capacity dependent rate in the literature. But comparing the
restrictions on the number of local machines, we see our restriction is much relaxed. In
particular, when r is close to 1

2 , the restrictions in the literature approaches to O(1). But

our restriction still allows about O(
√
N) local machines while preserving fast rates. It is

a sacrifice of convergence rates for more local machines and may be useful for applications
where analysis of super big data is necessary.

Concerning the distributed BCKRR, similar conclusions can be made. When r < 1
2 ,

the rate in Theorem 2 is faster and the restriction is more relaxed than the results in
Guo et al. (2017b) while when r ≥ 1

2 the rate is worse than those in Guo et al. (2017b)
but the restriction on m is greatly relaxed. As noted in Wu (2017); Guo et al. (2017b) a
main theoretical advantage of BCKRR is to relax the saturation effect of KRR. Comparing
Theorem 2 with Theorem 1, we see the the rate of distributed BCKRR continues improving
beyond r > 1 and ceases to improve until r = 2. The restriction on m also continues to get

relaxed to N

√
2

1+
√
2 until r = 1+

√
2

2 .

It is worth mentioning that Shi (2019) studied coefficient regularization approach for

distributed kernel regression and obtained capacity dependent optimal rate O(N
− 2r

2r+β ) for
1
2 −

β
2 ≤ r < 1

2 , which implies the capacity independent optimal rate O(N−
2r

2r+1 ) for all

0 < r < 1
2 . But the requirement m < N−

2r
1+2r / logN is slightly more restrictive. Therefore,

on the one hand, the techniques there may be adapted to analyze DKRR and DBCKRR for
capacity dependent optimal rates under the same range of r. On the other hand, they are
not supposed to supersede leave one out analysis and provide sharpest capacity independent
error bounds.

2.4 Empirical effectiveness of imperfect kernels

In this subsection we illustrate the empirical effectiveness of using imperfect kernels in
distributed regression. To this end, we adopt the example used in Zhang et al. (2015);
Guo et al. (2017b). The true regression function is given by f∗(x) = min(x, 1 − x) with
x∼Uniform[0, 1] and the observations are generated by the additive noise model yi =
f∗(xi) + εi where εi∼N(0, σ2) and σ2 = 1

5 . We consider two kernels: the Sobolev space
kernel KS(x, t) = 1 + min(x, t) and the Guassian kernel KG(x, t) = exp(−(x − t)2/0.3).
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Recall that f∗ belongs to HKS with ‖f∗‖KS = 1. So KS is a perfect kernel for this problem.
Notice that the reproducing kernel Hilbert space associated to a Gaussian kernel consists
only infinitely differentiable functions and even polynomials may not lie in the space (Minh,
2010). We conclude f∗ does not lie inHKG and KG is an imperfect kernel. We generate N =
4098 sample points and use number of partitions m ∈ {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}.
Mean squared errors between the estimated function and the true regression function is used
to measure the performance.

According to Zhang et al. (2015), if the Soboleve space kernel KS is used, the theoreti-

cally optimal choice of the regularization parameter is λ = N−
2
3 . When Guassian kernel is

used, by Theorem 1 and Theorem 2, the optimal choice of λ should depend on the index
r in the source condition, which, unfortunately, is unknown. By 0 < r < 1

2 we know the
optimal choice should be N−α with 1

2 < α < 1 and α = 2
3 seems an acceptable choice. So

we will also use λ = N−
2
3 for the Guassian kernel to make the first comparison between

the four distributed kernel regression algorithms, namely, distributed KRR with Sobolev
space kernel (DKRR-S), distributed BCKRR with Sobolev space kernel (DBCKRR-S), dis-
tributed KRR with Guassian kernel (DKRR-G), and distributed BCKRR with Gaussian
kernel (DBCKRR-G). To do this, for each aforementioned m value and each algorithm, we
repeat the experiment 50 times and report the mean squared errors in Figure 1(a). The
results indicate that, even if KG is imperfect for the problem, it performs comparable with
the perfect kernel KS when m is small and may even outperforms KS when m becomes
large.

To our best knowledge, all rate analysis literature of distributed kernel regression, in-
cluding Zhang et al. (2015); Lin et al. (2017); Lin and Zhou (2018); Guo et al. (2017b,a)
and this study, suggest the optimal regularization parameter be selected as λ = N−α with
α an index depending on the regularity of the true regression function f∗. While this is very
helpful for researchers to understand the optimality of the algorithms, it is less informative
for their practical use because such an index is unknown for real problems. Furthermore,
distributed kernel regression becomes necessary only if the data is too big to be processed
by a single machine. In this situation, it is imaginable that globally tuning the optimal pa-
rameter is either impossible or too time consuming. At the same time, note that distributed
kernel regression requires underregularization, meaning that the regularization parameter
must be chosen according to the total sample size N , not on the local sample size n. To
resolve all these problems, Guo et al. (2017b) proposed a practical strategy to tune the
parameter for distributed kernel regression. It first cross-validates the regularization pa-
rameter locally to get optimal choice λ`,n = n−α` for each subset for D` and then use an
underregularized parameter

λ` = λ
logN
logn

`,n = N−α` (8)

to train the local model on D`. To mimic a real problem, now let us assume we have
no information about the true regression function and the regularization parameters have
to be selected by using the above tuning strategy. We run the four algorithms again for
each m value and report the mean squared errors in Figure 1(b). We see that, when a
theoretically optimal regularization parameter is not available and λ has to be tuned from
data, the performance of all four methods deteriorates faster as m increases. But Guassian
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kernel, though imperfect, seems less sensitive to the number of local machines and so the
performance deteriorates slower than Sobolev space kernel.

Finally, the results in both plots indicate that, regardless the choices of kernels and
regularization parameters, bias correction always helps to improve the learning performance
and relax the restriction on the number of local machines.

Figure 1: Mean squared error of distributed kernel regression with Sobolev space kernel and
Guassian kernel when (a) the regularization parameters is fixed as λ = N−

2
3 and

(b) the regularization parameter is locally tuned and underregularized according
to equation (8).
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3. A framework for fast rate analysis of distributed regression

In this section we first establish a general procedure to prove fast rate for a class of regression
algorithms that possess certain special features and apply to the two algorithms we study
in this paper.

Definition 3 Let Λ be a parameter space and H a set of hypothesis functions. A regression
algorithm A : (X ×Y)N×Λ→ H that tunes parameters in Λ is response weighted if for any
data D ∈ (X×Y)N and any λ ∈ Λ there exists a vector of functions g1(Dx, λ), . . . , gN (Dx, λ)
which depend only on the input data Dx = {x1, . . . , xN} and the parameter λ but not on the
output data Dy = {yi}Ni=1 such that

A(D,λ) =

N∑
i=1

yigi(Dx, λ).

There are many regression algorithms belonging to the response weighted family. By
the representation of fD,λ and f ]D,λ, it is easy to verify that both KRR and BCKRR belong
to this family. There are more examples in the literature. For instance, traditional multiple
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linear regression, the kernel smooth estimators, the stochastic gradient descent algorithms
associated with the least square loss are all response weighted regression algorithms.

Denote by A the distributed algorithm that applies the divide and conquer approach
and uses A as the base algorithm on local subsets. It is easy to derive the following lemma.

Lemma 4 If A is a response weighted regression algorithm, then A is also a response
weighted regression algorithm.

This lemma simply says that the response weighted feature can be inherited by the dis-
tributed algorithm. This property allows to derive fast rates for such distributed algorithms
by studying error bounds of the base algorithm, as shown in the following theorem.

Theorem 5 Let A be a response weighted regression algorithm and, when applying to a
data D of N observations with parameter λ, have the error bound as

E

[
‖A(D,λ)− f∗‖2L2

ρX

]
≤ ε(N,λ, σ2).

Then the corresponding distributed algorithm A will have the error bound

E

[
‖A(D,λ)− f∗‖2L2

ρX

]
≤ ε(n, λ, σ2)

m
+ ε(n, λ, 0)

assuming the whole data D is equally split into m subsets with each subset containing n
observations.

Proof Let y∗`,i = f∗(x`,i) for 1 ≤ ` ≤ m, 1 ≤ i ≤ n and

D∗` = {(x`,1, y∗`,1), . . . , (x`,n, y∗`,n)}

be the noise free observations associated to the subset D`. We have

(σ∗)2 = E
[
var
(
y∗`,i|x`,i

) ]
= E

[ (
y∗`,i − f∗(x`,i)

)2 ]
= 0

and therefore

E

[∥∥∥A(D∗` , λ)− f∗
∥∥∥2
L2
ρX

]
≤ ε(n, λ, 0). (9)

Because of the response weighted feature of A we have

E
[
A(D`, λ)|D`,x

]
=

n∑
i=1

E[y`,i|x`,i]gi(D`,x, λ) =

n∑
i=1

f∗(x`,i)gi(D`,x, λ) = A(D∗` , λ).

Therefore E
[
A(D`, λ)

]
= E

[
A(D∗` , λ)

]
and we have

E

[
‖A(D,λ)− f∗‖2L2

ρX

]
12



Optimal Rates of Distributed Regression with Imperfect Kernels

= E

∥∥∥∥∥ 1

m

m∑
`=1

(
A(D`, λ)−E [A(D`, λ)]

)∥∥∥∥∥
2

L2
ρX

+

∥∥∥∥∥ 1

m

m∑
`=1

(
E [A(D`, λ)]− f∗

)∥∥∥∥∥
2

L2
ρX

≤ 1

m2

m∑
`=1

E

[∥∥∥A(D`, λ)−E [A(D`, λ)]
∥∥∥2
L2
ρX

]
+

1

m

m∑
`=1

∥∥∥ E [A(D`, λ)]− f∗
∥∥∥2
L2
ρX

=
1

m2

m∑
`=1

E

[∥∥∥A(D`, λ)− f∗
∥∥∥2
L2
ρX

]
+

(
1

m
− 1

m2

) m∑
`=1

∥∥∥E [A(D`, λ)]− f∗
∥∥∥2
L2
ρX

≤ 1

m2

m∑
`=1

ε(n, λ, σ2) +
1

m

m∑
`=1

E

[∥∥∥A(D∗` , λ)− f∗
∥∥∥2
L2
ρX

]

≤ 1

m
ε(n, λ, σ2) + ε(n, λ, 0),

where we used (9) in the last step.

Theorem 5 states that, if the base algorithm A admits sharper error bounds for the
noise free data (i.e. σ2 = 0), then the distributed algorithm will be able to converges fast in
the sense that the distributed computing is playing a rule and produces an estimator better
than the algorithm on a single subset.

In order to use this general framework to derive error bounds and fast rates for dis-
tributed algorithm, however, we must study the performance of the base algorithm on a
single data with full exploration of impact of the unexplained variance σ2. Although both
KRR and BCKRR have already been studied in the literature, the error bounds that clearly
involve σ2 and allow us to derive error bounds of their distributed version with imperfect
kernels are not available. They will be our main objectives in Sections 5 and 6.

4. Preliminaries

In this section we provide some notations and preliminary lemmas that will be used in the
proofs. For any regularization parameter λ > 0, define

fλ = arg min
f∈HK

{
‖f − f∗‖2L2

ρX
+ λ‖f‖2K

}
. (10)

It is a sample limit version of the KRR estimation fD,λ and admits an operator represen-
tation

fλ = (λI + LK)−1LKf
∗.

It plays an essential role to characterize the approximation error of the two algorithms under
study. The following lemma is well known.
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Lemma 6 Under the source condition f∗ = LrKu
∗ for some r > 0 and u∗ ∈ L2

ρX
, there hold

‖fλ − f∗‖2L2
ρX
≤ λmin(2r,2)‖u∗‖2L2

ρX
,

and

λ‖fλ‖2K ≤ λmin(2r,1)‖u∗‖2L2
ρX
.

In the analysis of BCKRR, we will need the sample limit of f ]D,λ defined by

f ]λ = fλ + λ(λI + LK)−1fλ = (λI + LK)−2(2λLK + L2
K)f∗. (11)

For this function, we have the following approximation property (Guo et al., 2017b).

Lemma 7 Under the source condition f∗ = LrKu
∗ for some r > 0 and u∗ ∈ L2

ρX
, there

holds

‖f ]λ − f
∗‖2L2

ρX
≤ λmin(2r,4)‖u∗‖2L2

ρX
.

The following lemma can be derived from operator monotone property; see e.g. Sun and
Wu (2009b).

Lemma 8 If T1 and T2 are two bounded self-adjoint positive operators, then for any α ∈
[0, 1] there holds

‖Tα1 − Tα2 ‖ ≤ ‖T1 − T2‖α.

The Lemma 9 below follows from simple calculation.

Lemma 9 Let ξ be a random variable with values in a Hilbert space H and {ξ1, . . . , ξN} be
a set of i.i.d. observations for ξ. Then

E

∥∥∥∥∥ 1

N

N∑
i=1

ξi −Eξ

∥∥∥∥∥
2
 ≤ E[‖ξ‖2]

N
.

Let HS(HK) be the class of Hilbert-Schmidt operators on HK . It is known HS(HK)
forms a Hilbert space with the Hilbert-Schmidt norm which, give an operator A on HK , is
defined by ‖A‖2HS = Trace(A∗A). Then LK as an operator on HK belongs to HS(HK) and
‖LK‖HS ≤ κ2; see e.g. Sun and Wu (2009a). Define the rank one operator Kx ⊗Kx by

Kx ⊗Kxf = 〈f,Kx〉KKx = f(x)Kx.

Then ‖Kx ⊗ Kx‖HS ≤ κ2. Note for any Hilbert-Schmidt operator A there holds ‖A‖ ≤
‖A‖HS. Applying Lemma 9 to ξ = Kx ⊗Kx we have the following lemma.

Lemma 10 We have

E

[∥∥∥∥ 1

N
S∗S − LK

∥∥∥∥2
]
≤ κ4

N
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Define

Q(λ, N) = min
f∈HK

{
‖f − f∗‖2L2

ρX
+ λ‖f‖2K

}
− λE

[
‖fD,λ‖2K

]
.

Note that Q(λ,N) depends on the regularization parameter λ and sample size N , not on
the data D. We will need a sharp bound for Q(λ,N).

Lemma 11 Assume f∗ = LrKu
∗ for some r > 0, u∗ ∈ L2

ρX
.

(i) If 0 < r ≤ 1
2 , then

Q(λ,N) ≤ 2λ2r‖u∗‖2L2
ρX
.

(ii) If 1
2 < r ≤ 1, then

Q(λ,N) ≤ λ2r‖u∗‖2L2
ρX

(
1 +

2κ2r

λrN
r
2
+ 1

4

+
2κ√
λN

)
.

(iii) If 1 < r ≤ 3
2 , then

Q(λ,N) ≤ λ2‖u∗‖2L2
ρX

(
1 +

2κ2r

λN
r
2
+ 1

4

+
2κλr−1√
λN

)
.

(iv) If r > 3
2 , then

Q(λ,N) ≤ λ2‖u∗‖2L2
ρX

(
1 +

2κ3

λN
+

2κ√
N

)
.

Proof By the definition (10) we see

Q(λ,N) = ‖fλ − f∗‖2L2
ρX

+ λ‖fλ‖2K − λE
[
‖fD,λ‖2K

]
. (12)

We see conclusion (i) follows easily from Lemma 6.
To prove conclusions (ii)-(iv), the key is to bound ‖fλ‖2K − E

[
‖fD,λ‖2K

]
. To this end,

first note that

‖fλ‖2K −E
[
‖fD,λ‖2K

]
= E

[
〈fλ − fD,λ, fλ + fD,λ〉K

]
= 2E

[
〈fλ − fD,λ, fλ〉K − ‖fλ − fD,λ‖

2
K

]
≤ 2E

[
〈fλ − fD,λ, fλ〉K

]
= 2 〈fλ −E[fD,λ], fλ〉K .

By the operator representation (2) of fD,λ we have

E[fD,λ] = E

[
1

N

(
λI +

1

N
S∗S

)−1
S∗Sf∗

]
.

It is easy to verify that fλ−E[fD,λ] = E
[(
λI+ 1

N S
∗S
)−1

U
]

with U =
(
1
N S
∗S−LK

)
(fλ−f∗).

Applying Lemma 9 to theHK-valued random variable ξ = (fλ(x)−f∗(x))Kx and by Lemma
6 we have

E
[
‖U‖2K

]
≤ κ2‖fλ − f∗‖2L2

ρX
N−1 ≤ κ2‖u∗‖2L2

ρX
λmin(2r,2)N−1.
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Then, by the assumption f∗ = LrKu
∗ for 1

2 < r ≤ 3
2 and using Lemma 8, Hölder’s inequality,

and Lemma 10, we obtain

〈fλ −E[fD,λ], fλ〉K = E

[〈(
λI +

1

N
S∗S

)−1
U,
(
λI + LK

)−1
L1+r
K u∗

〉
K

]

= E

[〈
L
r+ 1

2
K (λI + LK)−1

(
λI +

1

N
S∗S

)−1
U, L

1
2
Ku
∗
〉
K

]

≤ ‖u∗‖L2
ρX

E

[∥∥∥∥Lr− 1
2

K

(
λI +

1

N
S∗S

)−1
U

∥∥∥∥
K

]
(13)

≤ ‖u∗‖L2
ρX

E

[(
λ−1

∥∥∥∥Lr− 1
2

K −
( 1

N
S∗S

)r− 1
2

∥∥∥∥+ λr−
3
2

)
‖U‖K

]

≤ ‖u∗‖L2
ρX

E

[(
λ−1

∥∥∥∥LK − 1

N
S∗S

∥∥∥∥r− 1
2

+ λr−
3
2

)
‖U‖K

]

≤ ‖u∗‖L2
ρX

λ−1
(

E

[∥∥∥∥LK − 1

N
S∗S

∥∥∥∥2
]) r

2
− 1

4

+ λr−
3
2

(E
[
‖U‖2K

] ) 1
2

≤ ‖u∗‖2L2
ρX

(
κ2rλmin(r−1,0)

N
r
2
+ 1

4

+
κλmin(2r− 3

2
,r− 1

2
)

N
1
2

)
.

Plugging this estimate into (12) and applying Lemma 6 again we obtain the desired bounds
in conclusion (ii) and conclusion (iii).

If r > 3
2 , then by (13), we have

〈fλ −E[fD,λ], fλ〉K ≤ ‖u
∗‖L2

ρX
E

[(
λ−1

∥∥∥∥LK − 1

N
S∗S

∥∥∥∥+ 1

)
‖U‖K

]

≤ ‖u∗‖2L2
ρX

(
κ3

N
+
κλ

N
1
2

)
.

The conclusion (iv) follows by plugging this estimate into (12).

Next we define

Q](λ,N) = ‖f ]λ − f
∗‖2L2

ρX
+ λ

(
E
[
‖f ]λ − fD,λ‖

2
K

]
−E

[
‖f ]D,λ − fD,λ‖

2
K

])
.

It will be used to derive the error bound for BCKRR when r ≥ 1.

Lemma 12 Assume f∗ = LrKu
∗ for some r ≥ 1

2 and u∗ ∈ L2
ρX

. If λ ≤ 1, then

Q](λ,N) ≤ 20(κ2r + κ2 + κ)‖u∗‖2L2
ρX

(
λmin(2r,4) +

λmin(2r−1,1)

N
+

λmin(r,1)

Nmin( r
2
+ 1

4
,1)
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+
λmin(2r− 1

2
,r+ 1

2
,2)

N
1
2

)
+

4κ2σ2

λN
.

Proof First note that

E
[
‖f ]λ − fD,λ‖

2
K

]
−E

[
‖f ]D,λ − fD,λ‖

2
K

]
≤ 2E

[〈
f ]λ − f

]
D,λ, f ]λ − fD,λ

〉
K

]
.

Let

f ]x,λ = E
[
f ]D,λ|Dx

]
=
(
λI +

1

N
S∗S

)−2(
2λI +

1

N
S∗S

) 1

N
S∗Sf∗

and

fx,λ = E [fD,λ|Dx] =
(
λI +

1

N
S∗S

)−1 1

N
S∗Sf∗.

Then we have that

E
[〈
f ]D,λ, fD,λ

〉
K

]
−E

[〈
f ]x,λ, fx,λ

〉
K

]
=E

[〈(
λI +

1

N
S∗S

)−2(
2λI +

1

N
S∗S

) 1

N
S∗(y − Sf∗),

(
λI +

1

N
S∗S

)−1 1

N
S∗(y − Sf∗)

〉
K

]
=E

[∥∥∥∥(λI +
1

N
S∗S

)−1 1

N
S∗(y − Sf∗)

∥∥∥∥2
K

]
+ E

[∥∥∥∥λ 1
2

(
λI +

1

N
S∗S

)− 3
2 1

N
S∗(y − Sf∗)

∥∥∥∥2
K

]

≤ 2λ−2E

[∥∥∥∥ 1

N
S∗(y − Sf∗)

∥∥∥∥2
K

]
≤ 2κ2σ2

λ2N
.

Therefore,

E
[
‖f ]λ − fD,λ‖

2
K

]
−E

[
‖f ]D,λ − fD,λ‖

2
K

]
≤ 2E

[〈
f ]λ − f

]
x,λ, f ]λ − fx,λ

〉
K

]
+

4κ2σ2

λ2N
.

By the fact λ2f ]λ = (2λLK + L2
K)(f∗ − f ]λ) we have

f ]λ − f
]
x,λ =

(
λI +

1

N
S∗S

)−2{(
2λI +

1

N
S∗S

) 1

N
S∗S − (2λI + LK)LK

}
(f ]λ − f

∗)

=
(
λI +

1

N
S∗S

)−2(
2λI +

1

N
S∗S

)( 1

N
S∗S − LK

)
(f ]λ − f

∗)

+
(
λI +

1

N
S∗S

)−2( 1

N
S∗S − LK

)
LK(f ]λ − f

∗).

Applying Lemma 9 to the random variable ξ = (f∗(x) − f ]λ(x))Kx and by Lemma 7 we
obtain

E

[∥∥∥∥( 1

N
S∗S − LK

)
(f ]λ − f

∗)

∥∥∥∥2
K

]
≤
κ2‖f ]λ − f

∗‖2L2
ρX

N
≤
κ2‖u∗‖2L2

ρX
λmin(2r,4)

N
.

Similarly, we have

E

[∥∥∥∥( 1

N
S∗S − LK

)
LK(f ]λ − f

∗)

∥∥∥∥2
K

]
≤
κ2‖LK(f ]λ − f

∗)‖2L2
ρX

N
≤
κ2‖u∗‖L2

ρX
p2λmin(2r+2,4)

N
.
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Hence we have

E

[∥∥∥f ]λ − f ]x,λ∥∥∥2
K

]
≤

10κ2‖u∗‖2L2
ρX
λmin(2r−2,0)

N
.

By Lemma 8 and Lemma 10 we have

E

[∥∥∥f ]x,λ − fx,λ∥∥∥2
K

]
= E

[∥∥∥∥λ(λI +
1

N
S∗S

)−2 1

N
S∗SLrKu

∗
∥∥∥∥2
K

]

≤ 2λ2E

[∥∥∥∥(λI +
1

N
S∗S

)−2 1

N
S∗S

(
L
min(r− 1

2
, 1)

K −
( 1

N
S∗S

)min(r− 1
2
, 1)
)
L
max(r−1, 1

2
)

K u∗
∥∥∥∥2
K

]

+ 2λ2E

[∥∥∥∥(λI +
1

N
S∗S

)−2( 1

N
S∗S

)min(r+ 1
2
, 2)
L
max(r−1, 1

2
)

K u∗
∥∥∥∥2
K

]

≤ 2‖u∗‖2L2
ρX
κmax(4r−6, 0)

(
E

[∥∥∥∥Lmin(r− 1
2
, 1)

K −
( 1

N
S∗S

)min(r− 1
2
, 1)
∥∥∥∥2
]

+ λmin(2r−1, 2)

)

≤ 2‖u∗‖2L2
ρX
κmax(4r−6, 0)

(
κmin(4r−2, 4)

Nmin(r− 1
2
,1)

+ λmin(2r−1,2)

)
.

So we have

E
[〈
f ]λ − f

]
x,λ, f ]λ − fx,λ

〉
K

]
= E

[∥∥∥f ]λ − f ]x,λ∥∥∥2
K

]
+ E

[〈
f ]λ − f

]
x,λ, f ]x,λ − fx,λ

〉
K

]
≤ 10(κ2r + κ2 + κ)‖u∗‖2L2

ρX

(
λmin(2r−2,0)

N
+

λmin(r−1,0)

Nmin( r
2
+ 1

4
,1)

+
λmin(2r− 3

2
,r− 1

2
,1)

N
1
2

)

and therefore

λ
(
E
[
‖f ]λ − fD,λ‖

2
K

]
−E

[
‖f ]D,λ − fD,λ‖

2
K

])
≤ 20(κ2r + κ2 + κ)‖u∗‖2L2

ρX

(
λmin(2r−1,1)

N
+

λmin(r,1)

Nmin( r
2
+ 1

4
,1)

+
λmin(2r− 1

2
,r+ 1

2
,2)

N
1
2

)
+

4κ2σ2

λN
.

This together with Lemma 7 gives the desired conclusion.

5. Error bounds for KRR and distributed KRR

The main result of this section is the following error bound for KRR on a single data set.

Theorem 13 Assume f∗ = LrKu
∗ for some 0 < r ≤ 2 and u∗ ∈ L2

ρX
.
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(i) If 0 < r ≤ 1
2 , then

E

[
‖fD,λ − f∗‖2L2

ρX

]
≤ 2λ2r‖u∗‖2L2

ρX

(
1 +

κ4

N2λ2
+

2κ2

Nλ

)
+

(
κ4

N2λ2
+

2κ2

Nλ

)
σ2.

(ii) If r ≥ 1
2 and λ is chosen so that λN ≥ 1, then there is a constant c1 > 0 such that

E

[
‖fD,λ − f∗‖2L2

ρX

]
≤ c1

(
λmin(2r,2) +

λmin(r,1)

Nmin( r
2
+ 1

4
,1)

+
σ2

λN

)
.

The proof of Theorem 13 will be proved in Section 5.1 below. With this theorem, the
following corollary on the capacity independent rate of KRR follows immediately.

Corollary 14 Under the assumption of Theorem 13, by choosing λ = N−max( 1
1+2r

, 1
3
) we

have

E

[
‖fD,λ − f∗‖2L2

ρX

]
= O

(
N−min( 2r

1+2r
, 2
3
)
)
.

If, in addition, σ2 = 0, then we can choose λ = N−1 to obtain

E

[
‖fD,λ − f∗‖2L2

ρX

]
=



O
(
N−2r

)
, if 0 < r ≤ 1

2 ;

O
(
N−(

3r
2
+ 1

4
)
)
, if 1

2 < r ≤ 1;

O
(
N−(

r
2
+ 5

4
)
)
, if 1 < r ≤ 3

2 ;

O
(
N−2

)
, if r ≥ 3

2 .

While the capacity independent rate of O(N−
2r

1+2r ) is well known in the literature and
it is expected the noise free learning should intuitively be better, it is still surprising to
see the rate for noise free learning in Corollary 14 can be faster than O(N−1). Moreover,
KRR was known to suffer from a saturation effect that says the rate ceases to increase for
r ≥ 1. We see from Corollary 14 that for noise free learning the rate can continue to increase
beyond r ≥ 1 and the saturation effect occurs when r ≥ 3

2 . To our best knowledge, both the
super fast rate and the relaxed saturation effect for noise free regression learning are novel
observations.

We can now prove Theorem 1 by combining Theorem 5 and Theorem 13.

Proof [Proof of Theorem 1.] Theorem 13 tells that, if 0 < r ≤ 1
2 , the error bound for KRR

with a single data set of sample size n is

ε(n, λ, σ2) ≤ 2λ2r‖u∗‖2L2
ρX

(
1 +

κ4

n2λ2
+

2κ2

nλ

)
+

(
κ4

n2λ2
+

2κ2

nλ

)
σ2.

Consequently

ε(n, λ, 0) ≤ 2λ2r‖u∗‖2L2
ρX

(
1 +

κ4

n2λ2
+

2κ2

nλ

)
.
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By Theorem 5 and the fact N = mn, we obtain

E

[
‖fD,λ − f∗‖2L2

ρX

]
≤ ε(n, λ, σ2)

m
+ ε(n, λ, 0)

≤ 4λ2r‖u∗‖2L2
ρX

(
1 +

κ4

n2λ2
+

2κ2

nλ

)
+

(
κ4

mn2λ2
+

2κ2

mnλ

)
σ2

≤ C1

{
λ2r
(

1 +
m2

N2λ2
+

m

Nλ

)
+
σ2m

N2
+

σ2

Nλ

}
with C1 = (1 + κ4) max(4‖u∗‖2L2

ρX
, 1). If λ = N−

1
2r+1 and m ≤ N

2r
1+2r , then m ≤ Nλ and

therefore

E

[
‖fD,λ − f∗‖2L2

ρX

]
≤ 3C1

{
λ2r +

σ2

Nλ

}
= 3C1(1 + σ2)N−

2r
1+2r .

This proves the claim in (i).
To prove claim (ii) we note that if 1

2 ≤ r ≤ 1 and λn ≥ 1, the error bound for KRR is

ε(n, λ, σ2) ≤ c1
(
λ2r +

λr

n
r
2
+ 1

4

+
σ2

λn

)
.

By Theorem 5 we have

E

[
‖fD,λ − f∗‖2L2

ρX

]
≤ 2c1

(
λ2r +

λr

n
r
2
+ 1

4

+
σ2

λnm

)
= 2c1

(
λ2r +

λrm
r
2
+ 1

4

N
r
2
+ 1

4

+
σ2

λN

)
.

With the choice λ = N−
1

2r+1 and m ≤ N
4r2+1

4r2+4r+1 , we obtain

E

[
‖fD,λ − f∗‖2L2

ρX

]
≤ 2c1(2 + σ2)N−

2r
2r+1 .

This finishes the proof.

5.1 Leave one out analysis for KRR

In this subsection we bound the error of KRR on a single data set and prove Theorem 13.
To this end, we perform a leave one out analysis of KRR. While the idea of leave one out
analysis roots in the work of Zhang (2003), we need a more rigorous analysis to quantify
the dependence on σ2.

Let D̃ be a sample of N + 1 observations D̃ = {zi = (xi, yi) : 1 ≤ i ≤ N + 1}, and
D̃(i) denote the sample of N observations generated by removing the ith observation (xi, yi)

from D̃, that is, D̃(i) = {zj = (xj , yj) : 1 ≤ j ≤ N + 1, j 6= i}. Let

ĝ = arg min
f∈HK

 1

N

N+1∑
j=1

(f(xj)− yj)2 + λ‖f‖2K


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and define the leave one out estimators associated to D̃(i) by

f̂(i) = arg min
f∈HK

 1

N

N+1∑
j=1
j 6=i

(f(xj)− yj)2 + λ‖f‖2K

 .

It is easy to verify that ĝ = f
D̃, Nλ

N+1
and fD,λ = f̂(N+1). We also note that f̂(i), 1 ≤ i ≤ N+1

are identically distributed (but not independent).
The following bound for the leave one out estimator is referred to leave one out stability

and has been proved in Zhang (2003). We still give the proof for the purpose of self-
containing.

Lemma 15 We have
‖f̂(i) − ĝ‖K ≤

κ

Nλ
|ĝ(xi)− yi|.

Proof We denote 4fi = f̂(i) − ĝ and

Ei(f) =
N+1∑
j=1
j 6=i

(
f(xj)− yj

)2
.

Recall that, if h is convex, then for any a, b ∈ R and t ∈ [0, 1], there holds

h(a+ t(b− a))− h(a) ≤ t
(
h(b)− h(a)

)
.

By the convexity of the square loss, we have

Ei(ĝ + t4fi)− Ei(ĝ) ≤ t
(
Ei(f̂(i))− Ei(ĝ)

)
(14)

and

Ei(f̂(i) − t4fi)− Ei(f̂(i)) ≤ t
(
Ei(ĝ)− Ei(f̂(i))

)
. (15)

By the definition of f̂(i), we have

1

N
Ei(f̂(i)) + λ

∥∥∥f̂(i)∥∥∥2
K
≤ 1

N
Ei(f̂(i) − t4fi) + λ

∥∥∥f̂(i) − t4fi∥∥∥2
K
.

This together with (15) leads to

2t
〈
f̂(i), 4fi

〉
K
− t2‖4fi‖2K =

∥∥∥f̂(i)∥∥∥2
K
−
∥∥∥f̂(i) − t4fi∥∥∥2

K
≤ t

Nλ

(
Ei(ĝ)− Ei(f̂(i))

)
. (16)

Similarly, by the definition of ĝ, we have

1

N
Ei(ĝ) + λ ‖ĝ‖2K +

1

N
(ĝ(xi)− yi)2 ≤

1

N
Ei(ĝ + t4fi) + λ ‖ĝ + t4fi‖2K

+
1

N
(ĝ(xi) + t4fi(xi)− yi)2 .
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By (14), we obtain

− 2t 〈ĝ, 4fi〉K − t
2‖4fi‖2K =

∥∥∥ĝ∥∥∥2
K
−
∥∥∥ĝ + t4fi

∥∥∥2
K

≤ t

Nλ

(
Ei(f̂(i))− Ei(ĝ)

)
+

1

Nλ

{
(ĝ(xi) + t4fi(xi)− yi)2 − (ĝ(xi)− yi)2

}
. (17)

Adding (16) and (17) together, we obtain

2t(1− t) ‖4fi‖2K ≤
1

Nλ

{
(ĝ(xi) + t4fi(xi)− yi)2 − (ĝ(xi)− yi)2

}
=

t

Nλ
4fi(xi)

(
2ĝ(xi) + t4fi(xi)− 2yi

)
≤ κt

Nλ
‖4fi‖K

∣∣∣2ĝ(xi) + t4fi(xi)− 2yi

∣∣∣.
Therefore,

2(1− t) ‖4fi‖K ≤
κ

Nλ

∣∣∣2ĝ(xi) + t4fi(xi)− 2yi

∣∣∣.
Letting t→ 0, we obtain

‖4fi‖K ≤
κ

Nλ

∣∣∣ĝ(xi)− yi
∣∣∣.

This proves Lemma 15.

We will need the following lemma.

Lemma 16 We have

E

[
1

N + 1

N+1∑
i=1

(
ĝ(xi)− yi

)2] ≤ Q( Nλ

N + 1
, N + 1

)
+ σ2.

Proof Let λ̃ = Nλ
N+1 and fλ̃ be defined by (10) associated with the regularization parameter

λ̃. By the definition of ĝ, we have

E

[
1

N + 1

N+1∑
i=1

(
ĝ(xi)− yi

)2]

=
N

N + 1
E

[
1

N

N+1∑
i=1

(
ĝ(xi)− yi

)2
+ λ

[
‖ĝ‖2K

] ]
− Nλ

N + 1
E‖ĝ‖2K

≤ N

N + 1
E

[
1

N

N+1∑
i=1

(
fλ̃(xi)− yi

)2
+ λ‖fλ̃‖

2
K

]
− Nλ

N + 1
E
[
‖ĝ‖2K

]
= ‖fλ̃ − f

∗‖2L2
ρX

+ λ̃‖fλ̃‖
2
K − λ̃E‖ĝ‖2K + σ2

= Q
(
λ̃, N + 1

)
+ σ2,
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where we have used the fact that fλ̃ is independent of (xi, yi) and the identity (3).

Proposition 17 There holds that

E

[
‖fD,λ − f∗‖2L2

ρX

]
≤
(

1 +
κ4

N2λ2
+

2κ2

Nλ

)
Q
( Nλ

N + 1
, N + 1

)
+

(
κ4

N2λ2
+

2κ2

Nλ

)
σ2.

Proof By the facts thatfD,λ = f̂(N+1) and f̂(i), 1 ≤ i ≤ N + 1 are identically distributed,
we have

E

[
‖fD,λ − f∗‖2L2

ρX

]
= E

[
‖f̂(N+1) − f∗‖2L2

ρX

]
=

1

N + 1

N+1∑
i=1

E

[
‖f̂(i) − f∗‖2L2

ρX

]
By the fact that f(i) is independent of (xi, yi) and the identity (3) we obtain

E

[
‖fD,λ − f∗‖2L2

ρX

]
=

1

N + 1

N+1∑
i=1

E

[(
f̂(i)(xi)− f∗(xi)

)2]

=
1

N + 1

N+1∑
i=1

(
E
[
(f̂(i)(xi)− yi)2

]
− σ2

)
= E

[
1

N + 1

N+1∑
i=1

(
f̂(i)(xi)− yi

)2]− σ2
= E

[
1

N + 1

N+1∑
i=1

(
f̂(i)(xi)− yi

)2 − 1

N + 1

N+1∑
i=1

(
ĝ(xi)− yi

)2]

+

(
E

[
1

N + 1

N+1∑
i=1

(
ĝ(xi)− yi

)2]− σ2)

By Lemma 15 and the reproducing property we have

|f̂(i)(xi)− ĝ(xi)| ≤ κ‖f̂(i) − ĝ‖K ≤
κ2

Nλ
|ĝ(xi)− yi|.

Therefore,

E

[
1

N + 1

N+1∑
i=1

(
f̂(i)(xi)− yi

)2 − 1

N + 1

N+1∑
i=1

(
ĝ(xi)− yi

)2]

= E

[
1

N + 1

N+1∑
i=1

(
f̂(i)(xi)− ĝ(xi)

)(
f̂(i)(xi) + ĝ(xi)− 2yi

)]

= E

[
1

N + 1

N+1∑
i=1

(
f̂(i)(xi)− ĝ(xi)

)2
+

2

N + 1

N+1∑
i=1

(
f̂(i)(xi)− ĝ(xi)

)(
ĝ(xi)− yi

)]
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≤ E

[
1

N + 1

N+1∑
i=1

κ4

N2λ2
(
ĝ(xi)− yi

)2
+

2

N + 1

N+1∑
i=1

κ2

Nλ

(
ĝ(xi)− yi

)2]

=

(
κ4

N2λ2
+

2κ2

Nλ

)
E

[
1

N + 1

N+1∑
i=1

(
ĝ(xi)− yi

)2]
.

Then

E

[
‖fD,λ − f∗‖2L2

ρX

]
≤
(

1 +
κ4

N2λ2
+

2κ2

Nλ

)
E

[
1

N + 1

N+1∑
i=1

(
ĝ(xi)− yi

)2]− σ2
and the desired conclusion follows by using Lemma 16.

Note that Theorem 13 follows immediately from Proposition 17 and Lemma 11.

6. Error bound for BCKRR and distributed BCKRR

The main result of this section is the following error bounds for BCKRR on a single data
set that will be used in combination with Theorem 5 to derive the error bounds for its
distributed version.

Theorem 18 Assume σ2 <∞ and f∗ = LrKu
∗ for some 0 < r ≤ 2 and u∗ ∈ L2

ρX
.

(i) If 0 < r ≤ 1
2 , then

E

[
‖f ]D,λ − f

∗‖2L2
ρX

]
≤ 8λ2r‖u∗‖2L2

ρX

(
1 +

κ4

N2λ2
+

κ2

Nλ

)
+ 4σ2

(
κ4

N2λ2
+

κ2

Nλ

)
.

(ii) If 1
2 < r ≤ 1 and λN ≥ 1, then there is a constant c̃1 > 0 such that

E

[
‖f ]D,λ − f

∗‖2L2
ρX

]
≤ c̃1

(
λ2r +

λr

N
r
2
+ 1

4

+
σ2

λN

)
.

(iii) If 1 < r ≤ 3
2 , λ ≤ 1 and λN ≥ 1, then there is a constant c̃2 > 0 such that

E

[
‖f ]D,λ − f

∗‖2L2
ρX

]
≤ c̃2

(
λ2r +

λ

N
r
2
+ 1

4

+
λr+

1
2

√
N

+
σ2

λN

)
.

(iv) If r ≥ 3
2 , λ ≤ 1 and λN ≥ 1, then there is a constant c̃3 > 0 such that

E

[
‖f ]D,λ − f

∗‖2L2
ρX

]
≤ c̃3

(
λmin(2r, 4) +

λ

N
+

σ2

λN
+

λ2√
N

)
.

The proof of Theorem 18 will be proved in Section 6.2 below. The following corollary
on the capacity independent rate of BCKRR follows immediately.
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Corollary 19 Under the assumption of Theorem 18, by choosing λ = N−
1

1+2r we have

E

[
‖f ]D,λ − f

∗‖2L2
ρX

]
= O

(
N−

2r
1+2r

)
.

If, in addition, σ2 = 0, then we can choose λ = N−1 to obtain

E

[
‖f ]D,λ − f

∗‖2L2
ρX

]
=



O
(
N−2r

)
, if 0 < r ≤ 1

2 ;

O
(
N−(

3r
2
+ 1

4
)
)
, if 1

2 < r ≤ 1;

O
(
N−(

r
2
+ 5

4
)
)
, if 1 < r ≤ 3

2 ;

O
(
N−2

)
, if r ≥ 3

2 .

BCKRR suffers from a saturation effect when r ≥ 2, which relaxed the saturation effect
of KRR (Guo et al., 2017b). For noise free learning, however, we see the result for BCKRR
is the same as that for KRR in Corollary 14 and the saturation occurs when r = 3

2 . A
plausible interpretation of this phenomenon is that the rate O(N−2) might be the fastest
rate a regression learning algorithm can achieve and thus bias correction cannot help further
improve the rate.

Theorem 2 can now be proved by combining Theorem 5 and Theorem 18. The proof is
similar to that of Theorem 1 in Section 5. We omit the details.

6.1 Two alternative perspectives for bias correction

Recall the BCKRR estimator is defined by a two step procedure. Although it admits an
explicit expression and an operator representation, neither is suitable for leave one out
analysis, if not impossible. In this section we show that BCKRR can be interpreted by
two alternative perspectives, fitting the residual and recentering regularization. The latter
represents BCKRR as a Tikhonov regularization scheme and plays an essential role in
the leave one out analysis of BCKRR in the next subsection. These two perspectives on
bias correction may also be of independent interest by themselves; see the discussions in
Section 7.

Suppose KRR estimator fD,λ fit the data by trading off the fitting error and model

complexity. If we further fit the residuals by a function ĥ and add it to fD,λ, the resulted
function will have smaller fitting error. In other words, the bias is reduced. The following
proposition tells that BCKRR defined in (7) is equivalent to this process.

Proposition 20 Let ri = yi−fD,λ(xi) be the residual and ĥ is the KRR estimator obtained
by fitting the residual, i.e.,

ĥ = arg min
g∈HK

{
1

N

N∑
i=1

(ri − g(x))2 + λ‖g‖2K

}
.

Then we have f ]D,λ = fD,λ + ĥ.
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Proof Denote by r = (r1, r2, . . . , rn)> the column vector of residuals. By the operator
representation of the KRR estimator we have

ĥ =
1

N

(
λI +

1

N
S∗S

)−1
S∗r. (18)

It can be easily verified that

S∗r = S∗(y − SfD,λ) = S∗y − 1

N
S∗S

(
λI +

1

N
S∗S

)−1
S∗y

= λ

(
λI +

1

N
S∗S

)−1
S∗y = λNfD,λ.

Plugging it into (18) we obtain

ĥ = λ

(
λI +

1

N
S∗S

)−1
fD,λ = f ]D,λ − fD,λ.

This proves the conclusion.

Recall that KRR is somewhat equivalent to search a minimizer of the fitting error in a
ball of radius 1√

λ
centered at the zero function. The following proposition explains BCKRR

as a re-search for a minimizer of the fitting error in a ball centered at fD,λ. This is somewhat
equivalent to increasing the searching region to reduce the fitting error and thus implement
bias reduction.

Proposition 21 We have

f ]D,λ = arg min
f∈HK

{
1

N

N∑
i=1

(yi − f(xi))
2 + λ‖f − fD,λ‖2K

}
. (19)

Proof By the fact yi = fD,λ(xi) + ri and Proposition 20, for all f ∈ HK , we have

1

N

N∑
i=1

(yi − f ]D,λ(xi))
2 + λ‖f ]D,λ − fD,λ‖

2
K

=
1

N

N∑
i=1

(ri − ĥ(xi))
2 + λ‖ĥ‖2K

≤ 1

N

N∑
i=1

(ri − [f(xi)− fD,λ(xi)])
2 + λ‖f − fD,λ‖2K

=
1

N

N∑
i=1

(yi − f(xi))
2 + λ‖f − fD,λ‖2K .
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Therefore, f ]D,λ is a minimizer of the recentered risk functional

1

N

N∑
i=1

(yi − f(xi))
2 + λ‖f − fD,λ‖2K .

Since the recentered risk functional is convex in f , the minimizer is unique. This proves
(19).

Proposition 21 writes the BCKRR as a recentering Tikhonov regularization scheme. It
enables the use of convex analysis to derive the leave one out error bound for BCKRR.

6.2 Leave one out analysis of BCKRR

We now perform a leave one analysis of BCKRR by the similar framework as that we have
done in Section 5. The result will be used to prove Theorem 18. To this end, recall the
definitions of D̃, f̂(i) and ĝ in Section 5.1. We define

f̂ ](i) = arg min
f∈HK

{
1

N

N+1∑
j=1
j 6=i

(
f(xj)− yj

)2
+ λ‖f − f̂(i)‖2K

}
(20)

ĝ] = arg min
f∈HK

{
1

N

N+1∑
j=1

(
f(xj)− yj

)2
+ λ‖f − ĝ‖2K

}
. (21)

Notice that that f̂ ](N+1) = f ]D,λ and ĝ] = f ]
D̃,λ̃

where again λ̃ = Nλ
N+1 .

Lemma 22 For all 1 ≤ i ≤ n+ 1, there is

‖f̂ ](i) − ĝ
]‖K ≤

κ

Nλ

[
|ĝ(xi)− yi|+ |ĝ](xi)− yi|

]
.

Proof Recall

Ei(f) =

N+1∑
j=1
j 6=i

(
f(xj)− yj

)2
.

Let 4fi = f̂ ](i) − ĝ
]. By the convexity of the square function, for any t ∈ (0, 1), we have

Ei(ĝ] + t4fi)− Ei(ĝ]) ≤ t
[
Ei(f̂ ](i))− Ei(ĝ

])
]
, (22)

and
Ei(f̂ ](i) − t4fi)− Ei(f̂

]
(i)) ≤ t

[
Ei(ĝ])− Ei(f̂ ](i))

]
. (23)

By the definition of f̂ ](i) in (20), for any t ∈ (0, 1)

1

N
Ei(f̂ ](i)) + λ‖f̂ ](i) − f̂(i)‖

2
K ≤

1

N
Ei(f̂ ](i) − t4fi) + λ‖f̂ ](i) − t4fi − f̂(i)‖

2
K .
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This yields

λ
{

2t
〈
f̂ ](i) − f̂(i), 4fi

〉
K
− t2‖4fi‖2K

}
≤ 1

N

{
Ei(f̂ ](i) − t4fi)− Ei(f̂

]
(i))
}
. (24)

Similarly, by the definition of ĝ] in (21), we have for any t ∈ (0, 1)

1

N
Ei(ĝ]) +

1

N
(ĝ](xi)− yi)2 + λ‖ĝ] − ĝ‖2K

≤ 1

N
Ei(ĝ] + t4fi) +

1

N

(
(1− t)ĝ](xi) + tf̂ ](i)(xi)− yi

)2
+ λ‖ĝ] − ĝ + t4fi‖2K .

Thus,

λ
{
−2t

〈
ĝ] − ĝ,4fi

〉
K
− t2‖4fi‖2K

}
≤ 1

N

{
Ei(ĝ] + t4fi)− Ei(ĝ])

}
+

t

N

(
f̂ ](i)(xi)− ĝ

](xi)
)(

(2− t)ĝ](xi) + tf̂ ](i)(xi)− 2yi

)
. (25)

Adding (24) and (25) together and applying (22), (23), we obtain

2(1− t)‖4fi‖2K + 2
〈
ĝ − f̂(i), 4fi

〉
K

≤ 1

Nλ

(
f̂ ](i)(xi)− ĝ

](xi)
)(

(2− t)ĝ](xi) + tf̂ ](i)(xi)− 2yi

)
.

Letting t→ 0, we have

‖4fi‖2K +
〈
ĝ − f̂(i), 4fi

〉
K
≤ 1

Nλ

(
f̂ ](i)(xi)− ĝ

](xi)
)(

ĝ](xi)− yi
)

=
1

Nλ
4fi(xi)

(
ĝ](xi)− yi

)
.

Therefore,

‖4fi‖2K ≤ ‖ĝ − f̂(i)‖K‖4fi‖K +
κ

Nλ
‖4fi‖K

∣∣ĝ](xi)− yi∣∣,
which implies

‖4fi‖K ≤ ‖ĝ − f̂(i)‖K +
κ

Nλ

∣∣ĝ](xi)− yi∣∣,
By Lemma 15, we obtain the desired bound.

Proposition 23 We have

E

[
‖f ]D,λ − f

∗‖2L2
ρX

]
≤
(

1 +
4κ2

Nλ
+

4κ4

N2λ2

)
Q
( Nλ

N + 1
, N + 1

)
+

(
4κ2

Nλ
+

4κ4

N2λ2

)
σ2.
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Proof Note that f̂ ](i), 1 ≤ i ≤ N + 1, are identically distributed, and f̂ ](i) is independent of

the observation (xi, yi). By the fact f ]D,λ = f̂ ](N+1), we have

E

[
‖f ]D,λ − f

∗‖2L2
ρX

]
= E

[
1

N + 1

N+1∑
i=1

∥∥∥f̂ ](i) − f∗∥∥∥2L2
ρX

]

= E

[
1

N + 1

N+1∑
i=1

(f̂ ](i)(xi)− yi)
2

]
− σ2

=

{
E

[
1

N + 1

N+1∑
i=1

(ĝ](xi)− yi)2
]
− σ2

}

+ E

[
1

N + 1

N+1∑
i=1

(
f̂ ](i)(xi)− ĝ

](xi)
)2]

+ 2E

[
1

N + 1

N+1∑
i=1

(
f̂ ](i)(xi)− ĝ

](xi)
)(

ĝ](xi)− yi
)]

:= J1 + J2 + J3. (26)

Recall Lemma 16 tells that

E

[
1

N + 1

N+1∑
i=1

(ĝ(xi)− yi)2
]
≤ Q

( Nλ

N + 1
, N + 1

)
+ σ2. (27)

By the definition of ĝ] we also obtain

E

[
1

N + 1

N+1∑
i=1

(ĝ](xi)− yi)2
]
≤ E

[
1

N + 1

N+1∑
i=1

(ĝ(xi)− yi)2
]
≤ Q

( Nλ

N + 1
, N + 1

)
+ σ2.

(28)

Therefore, we can bound J1 by

J1 ≤ Q
( Nλ

N + 1
, N + 1

)
. (29)

To estimate J2, we apply Lemma 22 and obtain(
f̂ ](i)(xi)− ĝ

](xi)
)2
≤ κ2‖f̂ ](i) − ĝ

]‖2K ≤ κ2
( κ

Nλ
|ĝ(xi)− yi|+

κ

Nλ
|ĝ](xi)− yi|

)2
≤ 2κ2

(
κ2

N2λ2
(ĝ(xi)− yi)2 +

κ2

N2λ2
(ĝ](xi)− yi)2

)
.

Then by (27) and (28) we obtain

J2 ≤
4κ4

N2λ2

(
Q
( Nλ

N + 1
, N + 1

)
+ σ2

)
. (30)
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For J3, by Lemma 22 again, we have

2
∣∣∣(f̂ ](i)(xi)− ĝ](xi))(ĝ](xi)− yi)∣∣∣ ≤ 2κ‖f̂ ](i) − ĝ

]‖K |ĝ](xi)− yi|

≤ 2κ
( κ

Nλ
|ĝ(xi)− yi|+

κ

Nλ
|ĝ](xi)− yi|

)
|ĝ](xi)− yi|

≤ κ2

Nλ
(ĝ(xi)− yi)2 +

3κ2

Nλ
(ĝ](xi)− yi)2

By (27) and (28) again, we have

J3 ≤
4κ2

Nλ

(
Q
( Nλ

N + 1
, N + 1

)
+ σ2

)
. (31)

The desired error bound follows by combining the estimation for J1, J2 and J3.

Theorem 18 part (i) and part (ii) now follow immediately from Proposition 23 and
Lemma 11.

If r ≥ 1, the bound in Proposition 23 is still true but the estimation for Q(λ,N) is not
sufficient to prove sharp bounds for BCKRR. Instead, we will estimate J1 in (26) alterna-
tively to obtain the following error bound for BCKRR, which together with by Lemma 12
allows to derive the sharp bounds in Theorem 18 part (iii) and part (iv).

Proposition 24 If r ≥ 1, we have

E

[
‖f ]D,λ − f

∗‖2L2
ρX

]
≤ Q]

( Nλ

N + 1
, N + 1

)
+

(
4κ2

Nλ
+

4κ4

N2λ2

){
Q
( Nλ

N + 1
, N + 1

)
+ σ2

}
.

Proof Let λ̃ = Nλ
N+1 and f ]

λ̃
be defined by (11) associated to the parameter λ̃. Since

ĝ] = f ]
D̃,λ̃

, we can regard f ]
λ̃

as the sample limit of ĝ. Recall the error decomposition in (26).

By (19) and a similar process to the proof of Lemma 16, we have

E

[
1

N + 1

N+1∑
i=1

(ĝ](xi)− yi)2
]

≤ N

N + 1
E

[
1

N

N+1∑
i=1

(ĝ](xi)− yi)2 + λ‖ĝ] − ĝ‖2K

]
− Nλ

N + 1
E
[
‖ĝ] − ĝ‖2K

]
≤ E

[
1

N + 1

N+1∑
i=1

(f ]
λ̃
(xi)− yi)2

]
+ λ̃E

[
‖f ]
λ̃
− ĝ‖2K − ‖ĝ] − ĝ‖2K

]
≤ ‖f ]

λ̃
− f∗‖2L2

ρX
+ σ2 + λ̃E

[
‖f ]
λ̃
− ĝ‖2K − ‖ĝ] − ĝ‖2K

]
.

Hence we can bound J1 as

J1 ≤ ‖f ]λ̃ − f
∗‖2L2

ρX
+ λ̃E

[
‖f ]
λ̃
− ĝ‖2K − ‖ĝ] − ĝ‖2K

]
= Q]

( Nλ

N + 1
, N + 1

)
.

Combining this with the estimations in (30) for J2 and (31) for J3 we obtain the desired
bound.
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7. Conclusions and discussions

In this paper, we first proposed a general framework to analyze the performance of response
weighted distributed regression algorithms. Then we conducted leave one analyses of KRR
and BCKRR, which lead to sharp error bounds and capacity independent optimal rates
for both approaches. The error bounds factored in the impact of unexplained variance of
the response variable and hence are able to be used in combination with aforementioned
framework to deduce sharp error bounds and optimal learning rates for distributed KRR and
distributed BCKRR even when the kernel is imperfect in the sense that the true regression
function does not lie in the associated reproducing kernel Hilbert space.

Our analysis involves two interesting byproducts. The first one is the super fast rates
for noise free learning. To our best knowledge, rates that are faster than O(N−1) have been
observed for classification learning in some special situations (Smale and Zhou, 2007) but
have never been observed for regression learning in the literature. In this paper we first
show that they are also possible for regression learning.

The second one is the two alternative perspectives to reformulate BCKRR. They are
not only critical for us to analyze the performance of BCKRR in this study, but also shed
light on the design of bias corrected algorithms for other machine learning tasks. Recall
that the original design of BCKRR in Wu (2017) heavily depends on the explicit operator
representation of KRR. In machine learning, most regression or classification algorithms
are solved by an iterative optimization process and no explicit analytic solution exists.
It is thus impractical to characterize or estimate the bias. However, the idea of fitting
residuals may apply to all regression problems while recentering regularization can apply to
all regularization schemes. Regression learning usually adopts a loss function L(|y − f(x)|)
and minimizes the regularized empirical loss:

f̂L = arg min
f∈HK

{
1

N

N∑
i=1

L(|yi − f(xi)|) + λ‖f‖2K

}
.

Define the residuals ri = yi − f̂L(xi) and fit the residual by a function ĝL such that

ĝL = arg min
g∈HK

{
1

N

N∑
i=1

L(|ri − g(xi)|) + λ‖g‖2K

}
.

The bias corrected estimator with respect to the loss L can then be defined as f̂ ]L = f̂L +
ĝL. In binary classification one usually uses a loss function of form L(yf(x)) where y ∈
{1,−1}, for instance, the hingle loss in support vector machines or the logistic loss in
logistic regression. Because yi are labels and residuals are meaningless, it is not appropriate
to implement bias correction by fitting residuals in binary classification. Instead, we can
still use recentering regularization. Namely, suppose the regularized binary classification
algorithm estimates a classifier f̂L by

f̂L = arg min
f∈HK

{
1

N

N∑
i=1

L(yif(xi)) + λ‖f‖2K

}
.
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We define the bias corrected classifier by

f̂ ]L = arg min
f∈HK

{
1

N

N∑
i=1

L(yif(xi)) + λ‖f − f̂L‖2K

}
.

It would be interesting to study these bias corrected algorithms in the future and investigate
their theoretical properties as well as empirical application domains.
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