Journal of Machine Learning Research 22 (2021) 1-40 Submitted 6/20; Revised 10/20; Published 4/21

Empirical Bayes Matrix Factorization

Wei Wang WEIWANG@STATISTICS.UCHICAGO.EDU
Department of Statistics

University of Chicago

Chicago, IL, USA

Matthew Stephens MSTEPHENSQUCHICAGO.EDU
Department of Statistics and Department of Human Genetics

University of Chicago

Chicago, IL, USA

Editor: Sayan Mukherjee

Abstract

Matrix factorization methods, which include Factor analysis (FA) and Principal Compo-
nents Analysis (PCA), are widely used for inferring and summarizing structure in mul-
tivariate data. Many such methods use a penalty or prior distribution to achieve sparse
representations (“Sparse FA/PCA”), and a key question is how much sparsity to induce.
Here we introduce a general Empirical Bayes approach to matrix factorization (EBMF),
whose key feature is that it estimates the appropriate amount of sparsity by estimating prior
distributions from the observed data. The approach is very flexible: it allows for a wide
range of different prior families and allows that each component of the matrix factorization
may exhibit a different amount of sparsity. The key to this flexibility is the use of a varia-
tional approximation, which we show effectively reduces fitting the EBMF model to solving
a simpler problem, the so-called “normal means” problem. We demonstrate the benefits of
EBMF with sparse priors through both numerical comparisons with competing methods
and through analysis of data from the GTEx (Genotype Tissue Expression) project on ge-
netic associations across 44 human tissues. In numerical comparisons EBMF often provides
more accurate inferences than other methods. In the GTEx data, EBMF identifies inter-
pretable structure that agrees with known relationships among human tissues. Software
implementing our approach is available at https://github.com/stephenslab/flashr.
Keywords: empirical Bayes, matrix factorization, normal means, sparse prior, unimodal
prior, variational approximation

1. Introduction

Matrix factorization methods are widely used for inferring and summarizing structure in
multivariate data. In brief, these methods represent an observed n x p data matrix Y as:

Y=L"F+E (1.1)

where L is an K X n matrix, F' is a K X p matrix, and F is an n X p matrix of residuals
(whose entries we assume to be normally distributed, although the methods we develop
can be generalized to other settings; see Section 6.4). Here we adopt the notation and
terminology of factor analysis, and refer to L as the “loadings” and F' as the “factors”.
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The model (1.1) has many potential applications. One range of applications arise from
“matrix completion” problems (e.g. Fithian et al., 2018): methods that estimate L and
F in (1.1) from partially observed Y provide a natural and effective way to fill in the
missing entries. Another wide range of applications come from the desire to summarize and
understand the structure in a matrix Y: in (1.1) each row of Y is approximated by a linear
combination of underlying “factors” (rows of F'), which—ideally—have some intuitive or
scientific interpretation. For example, suppose Y;; represents the rating of a user 7 for a
movie j. Each factor might represent a genre of movie (“comedy”, “drama”’, “romance”,
“horror” etc), and the ratings for a user i could be written as a linear combination of these
factors, with the weights (loadings) representing how much individual 7 likes that genre.
Or, suppose Y;; represents the expression of gene j in sample i. Each factor might represent
a module of co-regulated genes, and the data for sample ¢ could be written as a linear
combination of these factors, with the loadings representing how active each module is in
each sample. Many other examples could be given across many fields, including psychology
(Ford et al., 1986), econometrics (Bai and Ng, 2008), natural language processing (Bouchard
et al., 2015), population genetics (Engelhardt and Stephens, 2010), and functional genomics
(Stein-O’Brien et al., 2018).

The simplest approaches to estimating L and/or F in (1.1) are based on maximum
likelihood or least squares. For example, Principal Components Analysis (PCA)—or, more
precisely, truncated Singular Value Decomposition (SVD)—can be interpreted as fitting
(1.1) by least squares, assuming that columns of L are orthogonal and columns of F' are
orthonormal (Eckart and Young, 1936). And classical factor analysis (FA) corresponds to
maximum likelihood estimation of L, assuming that the elements of F' are independent
standard normal and allowing different residual variances for each column of Y (Rubin and
Thayer, 1982). While these simple methods remain widely used, in the last two decades
researchers have focused considerable attention on obtaining more accurate and/or more
interpretable estimates, either by imposing additional constraints (e.g. non-negativity; Lee
and Seung, 1999) or by regularization using a penalty term (e.g. Jolliffe et al., 2003; Witten
et al., 2009; Mazumder et al., 2010; Hastie et al., 2015; Fithian et al., 2018), or a prior
distribution (e.g. Bishop, 1999; Attias, 1999; Ghahramani and Beal, 2000; West, 2003). In
particular, many authors have noted the benefits of sparsity assumptions on L and/or F—
particularly in applications where interpretability of the estimates is desired—and there now
exists a wide range of methods that attempt to induce sparsity in these models (e.g. Sabatti
and James, 2005; Zou et al., 2006; Pournara and Wernisch, 2007; Carvalho et al., 2008;
Witten et al., 2009; Engelhardt and Stephens, 2010; Knowles and Ghahramani, 2011; Bhat-
tacharya and Dunson, 2011; Mayrink et al., 2013; Yang et al., 2014; Gao et al., 2016; Hore
et al., 2016; Rockova and George, 2016; Srivastava et al., 2017; Kaufmann and Schumacher,
2017; Frithwirth-Schnatter and Lopes, 2018; Zhao et al., 2018). Many of these methods
induce sparsity in the loadings only, although some induce sparsity in both loadings and
factors.

In any statistical problem involving sparsity, a key question is how strong the sparsity
should be. In penalty-based methods this is controlled by the strength and form of the
penalty, whereas in Bayesian methods it is controlled by the prior distributions. In this
paper we take an Empirical Bayes approach to this problem, exploiting variational ap-
proximation methods (Blei et al., 2017) to obtain simple algorithms that jointly estimate
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the prior distributions for both loadings and factors, as well as the loadings and factors
themselves.

Both EB and variational methods have been previously used for this problem (Bishop,
1999; Lim and Teh, 2007; Raiko et al., 2007; Stegle et al., 2010). However, most of this
previous work has used simple normal prior distributions that do not induce sparsity. Vari-
ational methods that use sparsity-inducing priors include Girolami (2001), which uses a
Laplace prior on the factors (no prior on the loadings which are treated as free parameters),
Hochreiter et al. (2010) which extends this to Laplace priors on both factors and loadings,
with fixed values of the Laplace prior parameters; Titsias and Lazaro-Gredilla (2011), which
uses a sparse “spike-and-slab” (point normal) prior on the loadings (with the same prior
on all K loadings) and a normal prior on the factors; and Hore et al. (2016) which uses a
spike-and-slab prior on one mode in a tensor decomposition. (While this work was in review
further examples appeared, including Argelaguet et al. 2018, which uses normal priors on
the loadings and point-normal on the factors.)

Our primary contribution here is to develop and implement a more general EB ap-
proach to matrix factorization (EBMF). This general approach allows for a wide range of
potential sparsity-inducing prior distributions on both the loadings and the factors within
a single algorithmic framework. We accomplish this by showing that, when using varia-
tional methods, fitting EBMF with any prior family can be reduced to repeatedly solving a
much simpler problem—the “empirical Bayes normal means” (EBNM) problem—with the
same prior family. This feature makes it easy to implement methods for any desired prior
family—one simply has to implement a method to solve the corresponding normal means
problem, and then plug this into our algorithm. This approach can work for both paramet-
ric families (e.g. normal, point-normal, laplace, point-laplace) and non-parametric families,
including the “adaptive shrinkage” priors (unimodal and scale mixtures of normals) from
Stephens (2017). It is also possible to accommodate non-negative constraints on either L
and/or F' by using non-negative prior families. Even simple versions of our approach—
e.g. using point-normal priors on both factors and loadings— provide more generality than
most existing EBMF approaches and software.

A second contribution of our work is to highlight similarities and differences between
EBMF and penalty-based methods for regularizing L and/or F. Indeed, our algorithm
for fitting EBMF has the same structure as commonly-used algorithms for penalty-based
methods, with the prior distribution playing a role analogous to the penalty (see Remark
3 later). While the general correspondence between estimates from penalized methods and
Bayesian posterior modes (MAP estimates) is well known, the connection here is different,
because the EBMF approach is estimating a posterior mean, not a mode (indeed, with
sparse priors the MAP estimates of L and F' are not useful because they are trivially 0). A
key difference between the EBMF approach and penalty-based methods is that the EBMF
prior is estimated by solving an optimization problem, whereas in penalty-based methods
the strength of the penalty is usually chosen by cross-validation. This difference makes it
much easier for EBMF to allow for different levels of sparsity in every factor and every
loading: in EBMF one simply uses a different prior for every factor and loading, whereas
tuning a separate parameter for every factor and loading by CV becomes very cumbersome.

The final contribution is that we provide an R software package, flash (Factors and Load-
ings by Adaptive SHrinkage), implementing our flexible EBMF framework. We demonstrate
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the utility of these methods through both numerical comparisons with competing methods
and through a scientific application: analysis of data from the GTEx (Genotype Tissue Ex-
pression) project on genetic associations across 44 human tissues. In numerical comparisons
flash often provides more accurate inferences than other methods, while remaining compu-
tationally tractable for moderate-sized matrices (millions of entries). In the GTEx data,
flash highlight both effects that are shared across many tissues (“dense” factors) and effects
that are specific to a small number of tissues (“sparse” factors). These sparse factors often
highlight similarities between tissues that are known to be biologically related, providing
external support for the reliability of the results.

2. A General Empirical Bayes Matrix Factorization Model

We define the K-factor Empirical Bayes Matrix Factorization (EBMF) model as follows:

K
Y=Y Lfl +E (2.1)
k=1
2)

ety len ~“ g, g1, €Gi (2.2
(2.3

fkl""7fkpNiidgfk> 95, €9f 3)
Eij ~ N(O, 1/7‘1']') with 7 := (7‘1']') eT. (2.4)

Here Y is the n x p observed data matrix, l; is an n-vector (the kth set of “loadings”), fy is
a p-vector (the kth “factor”), G; and G¢ are pre-specified (possibly non-parametric) families
of distributions, g;, and gy, are unknown “prior” distributions that are to be estimated, £
is an n X p matrix of independent error terms, and 7 is an unknown n X p matrix of precisions
(737) which is assumed to lie in some space 7. (This allows structure to be imposed on T,
such as constant precision, 7;; = 7, or column-specific precisions, 7;; = 7;, for example.)
Our methods allow that some elements of Y may be “missing”, and can estimate the missing
values (Section 4.1).

The term “Empirical Bayes” in EBMF means we fit (2.1)-(2.4) by obtaining point es-
timates for the priors gy, , 9., (k = 1,..., K) and approximate the posterior distributions
for the parameters I, fi given those point estimates. This contrasts with a “fully Bayes”
approach that, instead of obtaining point estimates for g;, , gy, , would integrate over uncer-
tainty in the estimates. This would involve specifying prior distributions for g, , gy, as well
as (perhaps substantial) additional computation. The EB approach has the advantage of
simplicity — both conceptually and computationally—while enjoying many of the benefits of
a fully Bayes approach. In particular it allows for sharing of information across elements of
each loading/factor. For example, if the data suggest that a particular factor, f, is sparse,
then this will be reflected in a sparse estimate of gy, , and subsequently strong shrinkage
of the smaller elements of fi1,..., frp towards 0. Conversely, when the data suggest a
non-sparse factor then the prior will be dense and the shrinkage less strong. By allowing
different prior distributions for each factor and each loading, the model has the flexibility
to adapt to any combination of sparse and dense loadings and factors. However, to fully
capitalize on this flexibility one needs suitably flexible prior families G; and Gy capable of
capturing both sparse and dense factors. A key feature of our work is it allows for very
flexible prior families, including non-parametric families.
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Some specific choices of the distributional families G; and Gy correspond to models used
in previous work. In particular, many previous papers have studied the case with normal
priors, where G; and Gy are both the family of zero-mean normal distributions (e.g. Bishop,
1999; Lim and Teh, 2007; Raiko et al., 2007; Nakajima and Sugiyama, 2011). This family
is particularly simple, having a single hyper-parameter, the prior variance, to estimate for
each factor. However, it does not induce sparsity on either L or F’; indeed, when the
matrix Y is fully observed, the estimates of L and F' under a normal prior (when using a
fully factored variational approximation) are simply scalings of the singular vectors from an
SVD of Y (Nakajima and Sugiyama, 2011; Nakajima et al., 2013). Our work here extends
these previous approaches to a much wider range of prior families that do induce sparsity
on L and/or F.

We note that the EBMF model (2.1)-(2.4) differs in an important way from the sparse
factor analysis (SFA) methods in Engelhardt and Stephens (2010), which use a type of
Automatic Relevance Determination prior (e.g. Tipping, 2001; Wipf and Nagarajan, 2008)
to induce sparsity on the loadings matrix. In particular, SFA estimates a separate hyper-
parameter for every element of the loadings matrix, with no sharing of information across
elements of the same loading. In contrast, EBMF estimates a single shared prior distribu-
tion for elements of each loading, which, as noted above, allows for sharing of information
across elements of each loading/factor.

3. Fitting the EBMF Model

To simplify exposition we begin with the case K = 1 (“rank 1”); see Section 3.6 for the
extension to general K. To simplify notation we assume the families G;, Gy are the same, so
we can write Gy = Gy = G. To further lighten notation in the case K = 1 we use g;,gy¢,1, f
instead of gi1, 95,1, fi1-

Fitting the EBMF model involves estimating all of g;, g¢,l, f, 7. A standard EB ap-
proach would be to do this in two steps:

e Estimate g;, gy and 7, by maximizing the likelihood:

L gp.7) = / / POV I for) au(dly) - gu(dln) gp (@) - gp(dfy)  (3.1)

over g, gf € G, 7 € T. (This optimum will typically not be unique because of identi-
fiability issues; see Section 3.8.)

e Estimate I and f using their posterior distribution: p(l, f|Y, g, gf. 7).

However, both these two steps are difficult, even for very simple choices of G. Instead,
following previous work (see Introduction for citations) we use variational approximations
to approximate this approach. Although variational approximations are known to typically
under-estimate uncertainty in posterior distributions, our focus here is on obtaining useful
point estimates for I, f; results shown later demonstrate that the variational approximation
can perform well in this task.
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3.1 The Variational Approximation

The variational approach—see Blei et al. (2017) for review—begins by writing the log of
the likelihood (3.1) as:

(91,95, T) :=log L(gi, 95, T) (3.2)
= F(q¢,91,9¢,7) + Drr(qllp) (3.3)
where
Fla.gapr) = [ ot £)og"CELLIET) qray, (3.4)
and
Dicalallp) = [ a(t. £)10g BT 00T) gy 4 (3.5)

is the Kullback—Leibler divergence from ¢ to p. This identity holds for any distribution
q(l, ). Because D, is non-negative, it follows that F'(q, g1, gf,T) is a lower bound for the
log likelihood:

g, 95, 7) > F(q,91,9¢,7) (3.6)

with equality when q(I, f) = p(I, f|Y, g1, 9¢, 7).
In other words,

l(gbgfa T) = m(?“XF(qaglagfaT)v (37)

where the maximization is over all possible distributions ¢(I, f). Maximizing I(g;, g¢,T)
can thus be viewed as maximizing F' over q, g;,gf, 7. However, as noted above, this max-
imization is difficult. The variational approach simplifies the problem by maximizing F
but restricting the family of distributions for g. Specifically, the most common variational
approach—and the one we consider here—restricts ¢ to the family Q of distributions that
“fully-factorize”:

Q=<q:q0 ) =[] ai) [Jari(£) ¢ (3.8)
i=1 j=1

The variational approach seeks to optimize F' over q,g;, gg, T with the constraint ¢ € Q.

For ¢ € Q we can write ¢(1, f) = q()qs(f) where q(l) = [[[L; @ui(li) and gp(f) =
H?Zl q¢,;(fj), and we can consider the problem as maximizing F(qi, qf, g1, ¢, T)-

3.2 Alternating Optimization

We optimize F'(qi, q¢, 91, 9f, T) by alternating between optimizing over variables related to
[(q1, g1)], over variables related to f [(qf,gf)], and over 7. Each of these steps is guaranteed
to increase (or, more precisely, not decrease) F', and convergence can be assessed by (for
example) stopping when these optimization steps yield a very small increase in F. Note
that F' may be multi-modal, and there is no guarantee that the algorithm will converge to
a global optimum. The approach is summarized in Algorithm 1.
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Algorithm 1 Alternating Optimization for EBMF (rank 1)

0 0 0 0
0,404, 4

Require: Initial values ¢
1: t+0
2: repeat

3: t+—t+1
1 70 argmax, F(g' ™V gy gV, gf Y 1)

6 (t t—1 t—1

5 g9 + argmaxg,, F(qz,q} ),gz,g} ) ),
6 (¢ t t

6: q‘(f)ag‘sf) < a'rgmaxqf,gf F(Ql( )aqfagl( )7gf77-(t))'

7: until converged

8: return ql(t), qget), gl(t), ggct), ()

The key steps in Algorithm 1 are the maximizations in Steps 4-6.
Step 4, the update of 7, involves computing the expected squared residuals:

R%jj =By g, [(Yij — 1if;)?] (3.9)
= [Yij — Bq, (1) Eq; (f)]? — B, (1) Eq, (£;)? + Eq, 11)Eq, (£7)- (3.10)

This is straightforward provided the first and second moments of ¢; and gy are available
(see Appendix A.1 for details).

Steps 5 and 6 are essentially identical except for switching the role of I and f. One of
our key results is that each of these steps can be achieved by solving a simpler problem—the
Empirical Bayes normal means (EBNM) problem. The next subsection (3.3) describes the
EBNM problem, and the following subsection (3.4) details how this can be used to solve
Steps 5 and 6.

3.3 The EBNM Problem

Suppose we have observations @ = (x1,...,z,) of underlying quantities @ = (61,...,6,),
with independent Gaussian errors with known standard deviations s = (s1,...,8,). Sup-
pose further that the elements of 8 are assumed i.i.d. from some distribution, g € G. That
is,

x|@ ~ N,(0,diag(s?,...,s2)) (3.11)

ren

01,...,0,~"g geg, (3.12)

where N, (p, ) denotes the n-dimensional normal distribution with mean p and covariance
matrix 3.

By solving the EBNM problem we mean fitting the model (3.11)-(3.12) by the following
two-step procedure:

1. Estimate g by maximum (marginal) likelihood:
g = argmax ]| [ ola;/65,5))9(d6)). (3.13)
J

7
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2. Compute the posterior distribution for € given g,

p(0lz, s, g) x HQ(%)P(%WJ, 5j)- (3.14)

Later in this paper we will have need for the posterior first and second moments, so
we define them here for convenience:

0; == E(0)|z,s,9) (3.15)
62 .= E(63|, s, ). (3.16)

Formally, this procedure defines a mapping (which depends on the family G) from the
known quantities (x, s), to (§,p), where g, p are given in (3.13) and (3.14). We use EBNM
to denote this mapping:

EBNM(z,s) = (g,p)- (3.17)

Remark 1 Solving the EBNM problem is central to all our algorithms, so it is worth some
study. A key point is that the EBNM problem provides an attractive and flexible way to
induce shrinkage and/or sparsity in estimates of 6. For example, if 0 is truly sparse, with
many elements at or near 0, then the estimate g will typically have considerable mass near
0, and the posterior means (3.15) will be “shrunk” strongly toward 0 compared with the
original observations. In this sense solving the EBNM problem can be thought of as a
model-based analogue of thresholding-based methods, with the advantage that by estimating
g from the data the EBNM approach automatically adapts to provide an appropriate level
of shrinkage. These ideas have been used in wavelet denoising (Clyde and George, 2000;
Johnstone et al., 2004; Johnstone and Silverman, 2005a; Xing et al., 2016), and false
discovery rate estimation (Thomas et al., 1985; Stephens, 2017) for example. Here we
apply them to matriz factorization problems.

3.4 Connecting the EBMF and EBNM Problems

The EBNM problem is well studied, and can be solved reasonably easily for many choices
of G (e.g. Johnstone and Silverman, 2005b; Koenker and Mizera, 2014a; Stephens, 2017).
In Section 4 we give specific examples; for now our main point is that if one can solve the
EBNM problem for a particular choice of G then it can be used to implement Steps 5 and 6
in Algorithm 1 for the corresponding EBMF problem. The following Proposition formalizes
this for Step 5 of Algorithm 1; a similar proposition holds for Step 6 (see also Appendix A).

Proposition 2 Step 5 in Algorithm 1 is solved by solving an EBNM problem. Specifically

arg%%i(F(QIv(If?gl:gf?T) = EBNM(i(Y7 fa P?T)a Sl(PaT)) (318)
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where the functions [ : R™P x RP x RP x R™P — R" and s, : RP x R™P — R" are given
by

. 733 Y50
[(Y,v,w,T); := M (3.19)
22 TijW;
—0.5
si(w, )i == Zﬂ'jwj ) (3.20)
j

and f, ]Tz € RP denote the vectors whose elements are the first and second moments of f
under qy:

= (B () 321
£2 = (Bg, (7)) 3.22)
Proof See Appendix A. [ |

For intuition into where the EBNM in Proposition 2 comes from, consider estimating
l,g; in (2.1) with f and T known. The model then becomes n independent regressions of
the rows of Y on f, and the maximum likelihood estimate for I has elements:

- 25TiYijli

li = —=—"—>5—, (3.23)
LTl
with standard errors Cos
S; — Z Tijij . (3.24)
J
Further, it is easy to show that
I ~ N(l;, 52). (3.25)
Combining (3.25) with the prior
l1,...,1, i g, G €G (3.26)

yields an EBNM problem.

The EBNM in Proposition 2 is the same as the EBNM (3.25)-(3.26) , but with the
terms f; and f]2 replaced with their expectations under q¢. Thus, the update for (q;, g;) in
Algorithm 1, with (gg, g, T) fixed, is closely connected to solving the EBMF problem for
“known f,7”.

3.5 Streamlined Implementation Using First and Second Moments

Although Algorithm 1, as written, optimizes over (qi,qf, g, 9¢), in practice each step re-
quires only the first and second moments of the distributions ¢; and gf. For example, the
EBNM problem in Proposition 1 involves f and f? and not gy. Consequently, we can
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simplify implementation by keeping track of only those moments. In particular, when solv-
ing the normal means problem, EBNM(x, s) in (3.17), we need only return the posterior
first and second moments (3.15) and (3.16). This results in a streamlined and intuitive
implementation, summarized in Algorithm 2.

Algorithm 2 Streamlined Alternating Optimization for EBMF (rank 1)

Require: A data matrix Y (n X p) B
Require: A function, ebnm(x,s) — (0,62), that solves the EBNM problem (3.11)-(3.12)
and returns the first and second posterior moments (3.15)-(3.16).
Require: A function, init(Y) — (I, f) that produces initial estimates for I (an n vector)
and f (a p vector) given data Y. (For example, rank 1 singular value decomposition.)
Initialize first moments (I, f), using (I, f) < init(Y) B -
Initialize second moments (12, £2), by squaring first moments: 12 < (I2) and f2 + ( sz)
repeat o
Compute the matrix of expected squared residuals R?;; from (3.9).
7; <= n/ >, R%;j. [This update assumes column-specific variances; it can be modified
to make other assumptions.] B
Compute [(Y, f, f2,7) and standard errors s;(12, T), using (3.19) and (3.20).
(1,12) + ebnm(l, 51). -
: Compute f(V,1,12,7) and standard errors s¢(12,7) (similarly as for [ and s;; see
(A.14) and (A.15)).
9 (f,f?) < ebnn(f,s;).
10: until converged
11: return 1,12, f, f2, 1

Y

Remark 3 Algorithm 2 has a very intuitive form: it has the flavor of an alternating least
squares algorithm, which alternates between estimating U given f (Step 6) and f given 1
(Step 8), but with the addition of the ebnm step (Steps 7 and 9), which can be thought of as
reqularizing or shrinking the estimates: see Remark 1. This viewpoint highlights connections
with related algorithms. For example, the (rank 1 version of the) SSVD algorithm from
Yang et al. (2014) has a similar form, but uses a thresholding function in place of the ebnm
function to induce shrinkage and/or sparsity.

3.6 The K-factor EBMF Model

It is straightforward to extend the variational approach to fit the general K factor model
(2.1)-(2.4). In brief, we introduce variational distributions (g, ,qy,) for k =1,..., K, and
then optimize the objective function F(qi,, g1, qf1: 9f1; -5 Qs Gigs Qfscs Ifs; T). Similar
to the rank-1 model, this optimization can be done by iteratively updating parameters
relating to a single loading or factor, keeping other parameters fixed. And again we simplify
implementation by keeping track of only the first and second moments of the distributions
qi, and qy,, which we denote Iy, 12, fi, f2,. The updates to li,12; (and f, f2;) are
essentially identical to those for fitting the rank 1 model above, but with Y;; replaced with

10
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the residuals obtained by removing the estimated effects of the other £ — 1 factors:

Rfj = Y;j - Z ik’ifk’j- (327)
k' £k

Based on this approach we have implemented two algorithms for fitting the K-factor
model. First, a simple “greedy” algorithm, which starts by fitting the rank 1 model, and
then adds factors k = 2,..., K, one at a time, optimizing over the new factor parameters
before moving on to the next factor. Second, a “backfitting” algorithm (Breiman and
Friedman, 1985), which iteratively refines the estimates for each factor given the estimates
for the other factors. Both algorithms are detailed in Appendix A.

3.7 Selecting K

An interesting feature of EB approaches to matrix factorization, noted by Bishop (1999),
is that they automatically select the number of factors K. This is because the maximum
likelihood solution to g, ,gs, is sometimes a point mass on 0 (provided G includes this
distribution). Furthermore, the same is true of the solution to the variational approximation
(see also Bishop, 1999; Stegle et al., 2012). This means that if K is set sufficiently large
then some loading/factor combinations will be optimized to be exactly 0. (Or, in the greedy
approach, which adds one factor at a time, the algorithm will eventually add a factor that
is exactly 0, at which point it terminates.)

Here we note that the variational approximation may be expected to result in conserva-
tive estimation (i.e. underestimation) of K compared with the (intractable) use of maximum
likelihood to estimate g, gy. We base our argument on the simplest case: comparing K =1
vs K = 0. Let §y denote the degenerate distribution with all its mass at 0. Note that
the rank-1 factor model (2.1), with g; = do (or gy = do) is essentially a “rank-0” model.
Now note that the variational lower bound, F', is exactly equal to the log-likelihood when
g1 = 0o (or g¢ = dp). This is because if the prior is a point mass at 0 then the posterior
is also a point mass, which trivially factorizes as a product of point masses, and so the
variational family Q includes the true posterior in this case. Since F' is a lower bound to
the log-likelihood we have the following simple lemma:

Lemma 4 If F(qughgfa%) > F((SO:(SOv(SOa%O) then l(glvgfa’f-) > 1(5076077:0)‘

Proof
Wg1,9f.7) = F(4,91,9¢,7) > F (b0, 00, d0, 7o) = (0, o, 70) (3.28)
|

Thus, if the variational approximation F' favors gj, gr, 7 over the rank 0 model, then it
is guaranteed that the likelihood would also favor g;, g, 7 over the rank 0 model. In other
words, compared with the likelihood, the variational approximation is conservative in terms
of preferring the rank 1 model to the rank 0 model. This conservatism is a double-edged
sword. On the one hand it means that if the variational approximation finds structure it
should be taken seriously. On the other hand it means that the variational approximation
could miss subtle structure.
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In practice Algorithm 2 can converge to a local optimum of F' that is not as high as
the trivial (rank 0) solution, F'(do,do,d0,70). We can add a check for this at the end of
Algorithm 2, and set §; = g = dp and 7 = 79 when this occurs.

3.8 Identifiability

In EBMF each loading and factor is identifiable, at best, only up to a multiplicative constant
(provided G is a scale family). Specifically, scaling the prior distributions gy, and g;, by
¢, and 1/c respectively results in the same marginal likelihood, and also results in a
corresponding scaling of the posterior distribution on the factors fi and loadings l;, (e.g. it
scales the posterior first moments by c, 1/c; and the second moments by ¢2,1/c?). However,
this non-identifiability is not generally a problem, and if necessary it could be dealt with
by re-scaling factor estimates to have norm 1.

4. Software Implementation: flash

We have implemented Algorithms 2, 4 and 5 in an R package, flash (“factors and loadings
via adaptive shrinkage”). These algorithms can fit the EBMF model for any choice of
distributional family G;,G¢: the user must simply provide a function to solve the EBNM
problem for these prior families.

One source of functions for solving the EBNM problem is the “adaptive shrinkage”
(ashr) package, which implements methods from Stephens (2017). These methods solve
the EBNM problem for several flexible choices of G, including:

e G =S8N, the set of all scale mixtures of zero-centered normals;
e G = S8U, the set of all symmetric unimodal distributions, with mode at 0;
e G =U, the set of all unimodal distributions, with mode at 0;

e G =U,, the set of all non-negative unimodal distributions, with mode at 0.

These methods are computationally stable and efficient, being based on convex optimization
methods (Koenker and Mizera, 2014b) and analytic Bayesian posterior computations.

We have also implemented functions to solve the EBNM problem for additional choices
of G in the package ebnm (https://github.com/stephenslab/ebnm). These include G
being the “point-normal” family:

e G ="PN, the set of all distributions that are a mixture of a point mass at zero and a
normal with mean 0.

This choice is less flexible than those in ashr, and involves non-convex optimizations, but
can be faster.

Although in this paper we focus our examples on sparsity-inducing priors with G; =
Gy = G we note that our software makes it easy to experiment with different choices, some
of which represent novel methodologies. For example, setting G; = U, and Gy = SN yields
an EB version of semi-non-negative matrix factorization (Ding et al., 2008), and we are
aware of no existing EB implementations for this problem. Exploring the relative merits of
these many possible options in different types of application will be an interesting direction
for future work.
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EMPIRICAL BAYES MATRIX FACTORIZATION

4.1 Missing Data

If some elements of Y are missing, then this is easily dealt with. For example, the sums over
J in (3.19) and (3.20) are simply computed using only the j for which Yj; is not missing.
This corresponds to an assumption that the missing elements of Y are “missing at random”
(Rubin, 1976). In practice we implement this by setting 7;; = 0 whenever Y;; is missing (and
filling in the missing entries of Y to an arbitrary number). This allows the implementation
to exploit standard fast matrix multiplication routines, which cannot handle missing data.
If many data points are missing then it may be helpful to exploit sparse matrix routines.

4.2 Initialization

Both Algorithms 2 and 4 require a rank 1 initialization procedure, init. Here, we use the
softImpute function from the package softImpute (Mazumder et al., 2010), with penalty
parameter A = 0, which essentially performs SVD when Y is completely observed, but can
also deal with missing values in Y.

The backfitting algorithm (Algorithm 5) also requires initialization. One option is to
use the greedy algorithm to initialize, which we call “greedy+backfitting”.

5. Numerical Comparisons

We now compare our methods with several competing approaches. To keep these com-
parisons manageable in scope we focus attention on methods that aim to capture possible
sparsity in L and/or F'. For EBMF we present results for two different shrinkage-oriented
prior families, G: the scale mixture of normals (G = SN), and the point-normal fam-
ily (G = PN). We denote these flash and flash_pn respectively when we need to distin-
guish. In addition we consider Sparse Factor Analysis (SFA) (Engelhardt and Stephens,
2010), SFAmix (Gao et al., 2013), Nonparametric Bayesian Sparse Factor Analysis (NBSFA)
(Knowles and Ghahramani, 2011), Penalized Matrix Decomposition (Witten et al., 2009)
(PMD, implemented in the R package PMA), and Sparse SVD (Yang et al., 2014) (SSVD,
implemented in R package ssvd). Although the methods we compare against involve only
a small fraction of the very large number of methods for this problem, the methods were
chosen to represent a wide range of different approaches to inducing sparsity: SFA, SFAmix
and NBSFA are three Bayesian approaches with quite different approaches to prior specifi-
cation; PMD is based on a penalized likelihood with L; penalty on factors and/or loadings;
and SSVD is based on iterative thresholding of singular vectors. We also compare with
softlmpute (Mazumder et al., 2010), which does not explicitly model sparsity in L and F,
but fits a regularized low-rank matrix using a nuclear-norm penalty. Finally, for reference
we also use standard (truncated) SVD.

All of the Bayesian methods (flash, SFA, SFAmix and NBSFA) are “self-tuning”, at
least to some extent, and we applied them here with default values. According to Yang
et al. (2014) SSVD is robust to choice of tuning parameters, so we also ran SSVD with
its default values, using the robust option (method="method"). The softlmpute method
has a single tuning parameter (A, which controls the nuclear norm penalty), and we chose
this penalty by orthogonal cross-validation (OCV; Appendix B). The PMD method can use
two tuning parameters (one for I and one for f) to allow different sparsity levels in I vs f.
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However, since tuning two parameters can be inconvenient it also has the option to use a
single parameter for both I and f. We used OCV to tune parameters in both cases, referring
to the methods as PMD.cv2 (2 tuning parameters) and PMD.cv1l (1 tuning parameter).

5.1 Simple Simulations
5.1.1 A SINGLE FACTOR EXAMPLE

We simulated data with n = 200, p = 300 under the single-factor model (2.1) with sparse
loadings, and a non-sparse factor:

5
1
i ~ w80 + (1 —m0) Y 5N(0aa72n) (5.1)
m=1
fi ~N(0,1) (5:2)
where dp denotes a point mass on 0, and (a%, e ,052)) := (0.25,0.5,1,2,4). We simulated

using three different levels of sparsity on the loadings, using 7o = 0.9,0.3,0. (We set the
noise precision 7 = 1,1/16,1/25 in these three cases to make each problem not too easy
and not too hard.)

We applied all methods to this rank-1 problem, specifying the true value K = 1. (The
NBSFA software does not provide the option to fix K, so is omitted here.) We compare
methods in their accuracy in estimating the true low-rank structure (B := If7) using
relative root mean squared error:

>, (Bij — Bij)?
2
Y B

Despite the simplicity of this simulation, the methods vary greatly in performance (Fig-
ure 1). Both versions of flash consistently outperform all the other methods across all
scenarios (although softlmpute performs similarly in the non-sparse case). The next best
performances come from softImpute (Sl.cv), PMD.cv2 and SFA, whose relative perfor-
mances depend on the scenario. All three consistently improve on, or do no worse than,
SVD. PMD.cvl performs similarly to SVD. The SFAmix method performs very variably,
sometimes providing very poor estimates, possibly due to poor convergence of the MCMC
algorithm (it is the only method here that uses MCMC). The SSVD method consistently
performs worse than simple SVD, possibly because it is more adapted to both factors and
loadings being sparse (and possibly because, following Yang et al. 2014, we did not use CV
to tune its parameters). Inspection of individual results suggests that the poor performance
of both SFAmix and SSVD is often due to over-shrinking of non-zero loadings to zero.

RRMSE(B, B) := (5.3)

5.1.2 A SPARSE BI-CLUSTER EXAMPLE (RANK 3)

An important feature of our EBMF methods is that they estimate separate distributions
g1, 95 for each factor and each loading, allowing them to adapt to any combination of
sparsity in the factors and loadings. This flexibility is not easy to achieve in other ways.
For example, methods that use CV are generally limited to one or two tuning parameters
because of the computational difficulties of searching over a larger space.
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Figure 1: Boxplots comparing accuracy of flash with several other methods in a simple
rank-1 simulation. This simulation involves a single dense factor, and a loading
that varies from strong sparsity (90% zeros, left) to no sparsity (right). Accu-
racy is measured by difference in each methods RRMSE from the flash RRMSE,
with smaller values indicating highest accuracy. The y axis is plotted on a non-
linear (square-root) scale to avoid the plots being dominated by poorer-performing
methods.

To illustrate this flexibility we simulated data under the factor model (2.1) with n =
150,p =240, K = 3,7 = 1/4, and:

L, ~N(0,2%) i=1,...,10 (5.4)
l, ~N(0,1) i=11,...,60 (5.5)
ls; ~N(0,1/2%) i=61,...,150 (5.6)
fij ~N(0,1/22) j=1,...,80 (5.7)
f2;  ~N(0,1) j=81,...,160 (5.8)
f35 ~N(0,2%) j=161,...,240, (5.9)

with all other elements of I and fj set to zero for k = 1,2,3. This example has a sparse
bi-cluster structure where distinct groups of samples are each loaded on only one factor
(Figure 2a), and both the size of the groups and number of variables in each factor vary.
We applied flash, softlmpute, SSVD and PMD to this example. (We excluded SFA and
SFAmix since these methods do not model sparsity in both factors and loadings.) The

15



WANG AND STEPHENS

Latent structure (truth) Box plot of RRMSE compared with flash
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(a) Left: Illustration of the true latent rank-3 block structure used in these simulations. Right
boxplots comparing accuracy of flash with several other methods across 100 replicates. Accuracy is
measured by the difference of each methods RRMSE from the flash RRMSE, so smaller is better.
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(b) Tlustration of tendency of each method to either over-shrink the signal (SSVD) or under-shrink
the noise (SI.cv, PMD.cvl, SVD) compared with flash. Each panel shows the mean absolute value
of the estimated structure from each method.

Figure 2: Results from simulations with sparse bi-cluster structure (K = 3).

results (Figure 2) show that again flash consistently outperforms the other methods, and
again the next best is softImpute. On this example both SSVD and PMD outperform
SVD. Although SSVD and PMD perform similarly on average, their qualitative behavior is
different: PMD insufficiently shrink the 0 values, whereas SSVD shrinks the 0 values well but
overshrinks some of the signal, essentially removing the smallest of the three loading/factor
combinations (Figure 2b).
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5.2 Missing Data Imputation for Real Data Sets

Here we compare methods in their ability to impute missing data using five real data sets.
In each case we “hold out” (mask) some of the data points, and then apply the methods to
obtain estimates of the missing values. The data sets are as follows:

MowieLens 100K data, an (incomplete) 943 x 1682 matrix of user-movie ratings (integers
from 1 to 5) (Harper and Konstan, 2016). Most users do not rate most movies, so the matrix
is sparsely observed (94% missing), and contains about 100K observed ratings. We hold
out a fraction of the observed entries and assess accuracy of methods in estimating these.
We centered and scaled the ratings for each user before analysis.

GTEx eQTL summary data, a 16 069 x 44 matrix of Z scores computed testing associ-
ation of genetic variants (rows) with gene expression in different human tissues (columns).
These data come from the Genotype Tissue Expression (GTEx) project (Consortium et al.,
2015), which assessed the effects of thousands of “eQTLs” across 44 human tissues. (An
eQTL is a genetic variant that is associated with expression of a gene.) To identify eQTLs,
the project tested for association between expression and every near-by genetic variant,
each test yielding a Z score. The data used here are the Z scores for the most significant
genetic variant for each gene (the “top” eQTL). See Section 5.3 for more detailed analyses
of these data.

Brain Tumor data, a 43 x 356 matrix of gene expression measurements on 4 different
types of brain tumor (included in the denoiseR package, Josse et al., 2018). We centered
each column before analysis.

Presidential address data, a 13 x 836 matrix of word counts from the inaugural addresses
of 13 US presidents (1940-2009) (also included in the denoiseR package, Josse et al., 2018).
Since both row and column means vary greatly we centered and scaled both rows and
columns before analysis, using the biScale function from softImpute.

Breast cancer data, a 251 x 226 matrix of gene expression measurements from Carvalho
et al. (2008), which were used as an example in the paper introducing NBSFA (Knowles and
Ghahramani, 2011). Following Knowles and Ghahramani (2011) we centered each column
(gene) before analysis.

Among the methods considered above, only flash, PMD and softlmpute can handle
missing data. We add NBSFA (Knowles and Ghahramani, 2011) to these comparisons. To
emphasize the importance of parameter tuning we include results for PMD and softImpute
with default settings (denoted PMD, SI) as well as using cross-validation (PMD.cv1, SL.cv).

For these real data the appropriate value of K is, of course, unknown. Both flash and
NBSFA automatically estimate K. For PMD and softimpute we specified K based on the
values inferred by flash and NBSFA. (Specifically, we used K = 10, 30, 20, 10, 40 respectively
for the five data sets.)

We applied each method to all 5 data sets, using 10-fold OCV (Appendix B) to mask
data points for imputation, repeated 20 times (with different random number seeds) for
each data set. We measure imputation accuracy using root mean squared error (RMSE):

RMSE(Y,Y; Q) = \/\;M 3 (v - Vi) (5.10)
ijen
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Figure 3: Comparison of the accuracy of different methods in imputing missing data. Each
panel shows a boxplot of error rates (RMSE) for 20 simulations based on masking
observed entries in a real data set.

where {2 is the set of indices of the held-out data points.

The results are shown in Figure 3. Although the ranking of methods varies among data
sets, flash, PMD.cvl and Sl.cv perform similarly on average, and consistently outperform
NBSFA, which in turn typically outperforms (untuned) PMD and unpenalized softImpute.
These results highlight the importance of appropriate tuning for the penalized methods,
and also the effectiveness of the EB method in flash to provide automatic tuning.

In these comparisons, as in the simulations, the two flash methods typically performed
similarly. The exception is the GTEx data, where the scale mixture of normals (G = SN)
performed worse. Detailed investigation revealed this to be due to a very small number
of very large “outlier” imputed values, well outside the range of the observed data, which
grossly inflated RMSE. These outliers were so extreme that it should be possible to imple-
ment a filter to avoid them. However, we did not do this here as it seems useful to highlight
this unexpected behavior. (Note that this occurs only when data are missing, and even
then only in one of the five data sets considered here.)
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5.3 Sharing of Genetic Effects on Gene Expression Among Tissues

To illustrate flash in a scientific application, we applied it to the GTEx data described
above, a 16,069 x 44 matrix of Z scores, with Z;; reflecting the strength (and direction) of
effect of eQTL ¢ in tissue j. We applied flash with G = SN using the greedy-+backfitting
algorithm (i.e. the backfitting algorithm, initialized using the greedy algorithm).

The flash results yielded 26 factors (Figure 4-5) which summarize the main patterns
of eQTL sharing among tissues (and, conversely, the main patterns of tissue-specificity).
For example, the first factor has approximately equal weight for every tissue, and reflects
the fact that many eQTLs show similar effects across all 44 tissues. The second factor has
strong effects only in the 10 brain tissues, from which we infer that some eQTLs show much
stronger effects in brain tissues than other tissues.

Subsequent factors tend to be sparser, and many have a strong effect in only one tissue,
capturing “tissue-specific” effects. For example, the 3rd factor shows a strong effect only
in whole blood, and captures eQTLs that have much stronger effects in whole blood than
other tissues. (Two tissues, “Lung” and “Spleen”, show very small effects in this factor
but with the same sign as blood. This is intriguing since the lung has recently been found
to make blood cells—see Lefrancais et al. 2017—and a key role of the spleen is storing of
blood cells.) Similarly Factors 7, 11 and 14 capture effects specific to “Testis”, “Thyroid”
and “Esophagus Mucosa” respectively.

A few other factors show strong effects in a small number of tissues that are known to
be biologically related, providing support that the factors identified are scientifically mean-
ingful. For example, factor 10 captures the two tissues related to the cerebellum, “Brain
Cerebellar Hemisphere” and “Brain Cerebellum”. Factor 19 captures tissues related to fe-
male reproduction, “Ovary”, “Uterus” and “Vagina”. Factor 5 captures “Muscle Skeletal”,
with small but concordant effects in the heart tissues (“Heart Atrial Appendage” and “Heart
Left Ventricle”). Factor 4, captures the two skin tissues (“Skin Not Sun Exposed Suprapu-
bic”, “Skin Sun Exposed Lower leg”) and also “Esophagus Mucosa”, possibly reflecting the
sharing of squamous cells that are found in both the surface of the skin, and the lining of
the digestive tract. In factor 24, “Colon Transverse” and “Small Intestine Terminal Ileum”
show the strongest effects (and with same sign), reflecting some sharing of effects in these
intestinal tissues. Among the 26 factors, only a few are difficult to interpret biologically
(e.g. factor 8).

To highlight the benefits of sparsity, we contrast the flash results with those for soft-
Impute, which was the best-performing method in the missing data assessments on these
data, but which uses a nuclear norm penalty that does not explicitly reward sparse factors
or loadings. The first eight softlmpute factors are shown in Figure 6. The softImpute
results—except for the first two factors—show little resemblance to the flash results, and
in our view are harder to interpret.

5.4 Computational Demands

It is difficult to make general statements about computational demands of our methods,
because both the number of factors and number of iterations per factor can vary consid-
erably depending on the data. However, to give a specific example, running our current
implementation of the greedy algorithm on the GTEx data (a 16,000 by 44 matrix) takes
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Figure 4: Results from running flash on GTEx data (factors 1 - 8). The pve (”Percentage
Variance Explained”) for loading/factor k is defined as pve, = si/(> ;. sk +
>_ij 1/7ij) where sp = Zij(ikifkj)2. It is a measure of the amount of signal in
the data captured by loading/factor k& (but its naming as ”percentage variance
explained” should be considered loose since the factors are not orthogonal).
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Figure 5: Results from running flash on GTEx data (factors 15 - 26)
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| Small Intestine - Terminal lleum
|l spleen
Stomach
Testis
[ Thyroid
Uterus
| vagina
| whole Blood

Figure 6: Results from running softImpute on GTEx data (factors 1-8). The factors are
both less sparse and less interpretable than the flash results.
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about 140s (wall time) for G = PN and 650s for G = SN (on a 2015 MACBOOK AIR with a
2.2 GHz Intel Core i7 processor and 8Gb RAM). By comparison, a single run of softImpute
without CV takes 2-3s, so a naive implementation of 5-fold CV with 10 different tuning
parameters and 10 different values of K would take over 1000s (although one could improve
on this by use of warm starts for example).

6. Discussion

Here we discuss some potential extensions or modifications of our work.

6.1 Orthogonality Constraint

Our formulation here does not require the factors or loadings to be orthogonal. In scien-
tific applications we do not see any particular reason to expect underlying factors to be
orthogonal. However, imposing such a constraint could have computational or mathemat-
ical advantages. Formally adding such a constraint to our objective function seems tricky,
but it would be straightforward to modify our algorithms to include an orthogonalization
step each update. This would effectively result in an EB version of the SSVD algorithms
in Yang et al. (2014), and it seems likely to be computationally faster than our current ap-
proach. One disadvantage of this approach is that it is unclear what optimization problem
such an algorithm would solve (but the same is true of SSVD, and our algorithms have the
advantage that they deal with missing data.)

6.2 Non-negative Matrix Factorization

We focused here on the potential for EBMF to induce sparsity on loadings and factors.
However, EBMF can also encode other assumptions. For example, to assume the loadings
and factors are non-negative, simply restrict G to be a family of non-negative-valued distri-
butions, yielding “Empirical Bayes non-negative Matrix Factorization” (EBNMF). Indeed,
the ashr software can already solve the EBNM problem for some such families G, and so
flash already implements EBNMF. In preliminary assessments we found that the greedy
approach is problematic here: the non-negative constraint makes it harder for later factors
to compensate for errors in earlier factors. However, it is straightforward to apply the
backfitting algorithm to fit EBNMF, with initialization by any existing NMF method. The
performance of this approach is an area for future investigation.
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6.3 Tensor Factorization

It is also straightforward to extend EBMF to tensor factorization, specifically a CANDE-
COMP/PARAFAC decomposition (Kolda and Bader, 2009):

K
Yijm = Z Ui frjhiem + Eijm (6.1)

k=1
ety lon ~™ g a1, €G (6.2
fkla"'vfkpNiidgfkv gfkeg (63
Mty her ~" gy, gh, €G (6.4
Eijm ~" N(0,1/Tijm)- (6.5

The variational approach is easily extended to this case (a generalization of methods in
Hore et al., 2016), and updates that increase the objective function can be constructed by
solving an EBNM problem, similar to EBMF. It seems likely that issues of convergence
to local optima, and the need for good initializations, will need some attention to obtain
good practical performance. However, results in Hore et al. (2016) are promising, and the
automatic-tuning feature of EB methods seems particularly attractive here. For example,
extending PMD to this case—allowing for different sparsity levels in [, f and h—would
require 3 penalty parameters even in the rank 1 case, making it difficult to tune by CV.

6.4 Non-Gaussian Errors

It is also possible to extend the variational approximations used here to fit non-Gaussian
models, such as binomial data; see for example Jaakkola and Jordan (2000); Seeger and
Bouchard (2012); Klami (2015). The extension of our EB methods using these ideas is
detailed in Wang (2017).
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Appendix A. Variational EBMF with K Factors

Here we describe in detail the variational approach to the K factor model, including deriving
updates that we use to optimize the variational objective. (These derivations naturally
include the K = 1 model as a special case, and our proof of Proposition 5 below includes
Proposition 2 as a special case.)

Let qi, q¢ denote the variational distributions on the K loadings/factors:

Ql(lh' o 7lK) = quk(lk‘) (Al)
K

a5 (fis - Fre) = [ ] a5 (F0)- (A.2)
K

The objective function F' (3.4) is thus a function of ¢ = (q1,, .-, i) ¢ = A1y -5 Uf ),
gt = (G115 91,) and gg = (g, -- -, 9fx ), as well as the precision 7:

pYalaf;glag s s Qs 9fF s T
Fla,qf,91,9f,T) = / | IQIk(lk)ka(fk)IOg ( LI 10 I )dlkz dfi,
i

[Ty @ (W) ag, (fr)
(A.3)
= Egqplogp(Y[L, f57) + > By log glk + Z 1, 10 gfk ;::;
k (A.4)

We optimize F' by iteratively updating parameters relating to 7, a single loading &
(a1, g1,) or factor k (qg,, ¢, ), keeping other parameters fixed. We simplify implementation
by keeping track of only the first and second moments of the distributions ¢;, and gy, , which
we denote Iy, 12y, fi, 2. We now describe each kind of update in turn.

A.1 Updates for Precision Parameters

Here we derive updates to optimize F' over the precision parameters 7. Focusing on the
parts of F' that depend on T gives:

F(1) = EyEq, Y 0.5log(ri;) — 0.573;(Y; Z Iki frj)? + const (A.5)
]
=0.5 Z [log(nj) + 7'in72¢]'] -+ const (AG)
(]

where R? is defined by:

]?21.]. Eqp g4 (Y5 Zlkz.fk] (A.7)

= zg Zlklfk] - Z lkz fk] Zlelf kj* (AS)
k
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If we constrain 7 € T then we have

7 = argmax ¥ [log(r;;) — 75, R24]- (A.9)
TET 7

For example, assuming constant precision 7;; = 7 yields:

- a0)
igtvig

Assuming column-specific precisions (7;; = 7;), which is the default in our software, yields:

N
PN (A11)
> R

Other variance structures are considered in Appendix A.5 of Wang (2017).

A.2 Updating Loadings and Factors

The following Proposition, which generalizes Proposition 2 in the main text, shows how
updates for loadings (and factors) for the K-factor EBMF model can be achieve by solving
an EBNM problem.

Proposition 5 For the K-factor model, arg maxg, g, F(ai,qf,91,9¢,T) is solved by solving
an EBNM problem. Specifically

arg max F(qlvqfvglagfvT) = EBN (i(Rkafk’.f_kaT)7sl(.f_2k’T)) (A12)

qlk 79lk

where the functions | and s; are given by (3.19) and (3.20), fr. f_2k € RP denote the vectors
whose elements are the first and second moments of fi under qy,, and RF denotes the
residual matriz (3.27).

Similarly, arg maxg, gz F(q,qf,91,9¢f,T) is solved by solving an EBNM problem. Specif-
ically,

argqfnla;; F(QlanaglvgfaT) = EBNM(f(Rkal_kvﬁk’>T)ﬂ Sf(l_2k‘a7-)) (A13)
k'7JE

where the functions f : R™P x R" x R™ x R"P — RP and sy R" < R"P — RP are given
by

. Yo
FYvw, ) = AT (A14)
D i Tijwi

-0.5
Sf(’w,T)j = (Zﬂ'jwi> . (A.15)
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A.2.1 A LEMMA ON THE NORMAL MEANS PROBLEM
To prove Proposition 5 we introduce a lemma that characterizes the solution of the normal
means problem in terms of an objective that is closely related to the variational objective.
Recall that the EBNM model is:
r=0+e (A.16)
O1,....0, ~" g  geg. (A.17)

where e; ~ N(0, 7).
Solving the EBNM problem involves estimating g by maximum likelihood:

g = argmax((g), (A.18)
geg
where
I(g) = log p(x|g). (A.19)
It also involves finding the posterior distributions:
p(|x, ) Hp (6], §) Hg (4105, ;). (A.20)

Lemma 6 Solving the EBNM problem also solves:

max F¥(gq, g) (A.21)
40,9€G
where
FNM(CIG g)=FE 1 Z(AHZ —2B;0;)| + E,4, log 9(6) + const (A.22)
) q0 9 A 77 q0 q@(e)

J

with Aj = l/s? and Bj = :cj/(s?, and g(0) =[], 9(0;).
Equivalently, (A.21)-(A.22) is solved by g = g in (A.18) and g9 = p(O|x,g) in (A.20),
with x; = Bj/A; and 8]2- =1/A;.

Proof The log likelihood can be written as

I(g) := log[p(z|g)] (A.23)
= log[p(, 81g)/p(6]z, g)] (A.24)
:/qg(a) E oo |9;d0 (A.25)

_ #(@.0l9) w(®)
_/ =0 d0+/q9(0)1 5 ola g (A.26)
= FN"M(qp, )+DKL(Q0HP9\xg) (A.27)

where

F*™ (g9, g) = /qe(é’) logwdé’ (A.28)
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and

_ p(Blz, g)
Dict(aollms) = = [ 0(0)10g X250 do (429

Here py|, 4, denotes the posterior distribution p(@|x,g). This identity holds for any distri-
bution g(8).
Rearranging (A.27) gives:

(g, 9) = U(g) — Dk (q0]Pojr.g)- (A.30)

Since Drr.(golpg),g) = 0, with equality when gy = pyj, 4, FNM(gp, g) is maximized over gg
by setting gy = pg|;,4. Further

max ™ gy, g) = I(g), (A31)
a0
SO
arg max max FNM(gy, g) = argmaxi(g) = g. (A.32)
geG o geg

It remains only to show that FNM has the form (A.22).
By (A.16) and (A.17), we have

logp(x,0|g) = —= Z 572 (x 2 1 log g(8) + const. (A.33)
Thus
FNM(q9,9) = E,, —% Z(AJH? —2Bj0;) | + Egy, log qge((ee)) + const. (A.34)
J
|

A.2.2 PROOF OF PROPOSITION 5

We are now ready to prove Proposition 5.
Proof We prove the first part of the proposition since the proof for the second part is
essentially the same.

The objective function (A.3) is

g 9 f
F(q, 5,995 7) = Egqp logp(YIL f;7) + Y Ey 1o lk + Z fk |
(A.35)
- E 21 Z(Azkl;% — 2Bily;) | + Eq log 9t (br) + G (A.36)
qi,, 9 L ? s qi, (lk‘)

1
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where C1 is a constant with respect to ¢, , g, and

A = 7ijBq, () (A.37)
J

By=> 7 (Rijqf fkj) . (A.38)
J

Based on Lemma 6, we can solve this optimization problem (A.36) by solving the EBNM
problem with:

Zj Tij (R%qu fkj)

i = A.39

! ZjTiquf(flgj) ( )
2__ 1 A.40

T i ) (4.40)
]

A.3 Algorithms

Just as with the rank 1 EBMF model, the updates for the rank K model require only the
first and second moments of the variational distributions ¢. Thus we implement the updates
in algorithms that keep track of the first moments (f:i(fl, . ,_ZK) and f:= (f1,..., fx))
and second moments (12 := (I2q,...,12k) and f2:= (f2,,..., f%?k)), and the precision 7.

Algorithm 3 implements a basic update for 7, and for the parameters relating to a
single factor k (Iy,12x, fx, f2,). Note that the latter updates are identical to the updates
for fitting the single factor EBMF model, but with Y;; replaced with the residuals obtained
by removing the estimated effects of the other k — 1 factors.
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Algorithm 3 Single-factor update for EBMF (rank K)

Require: A data matrix Y (nxp)
Require: A function, ebnm(x,s) — (0, 02), that solves the EBNM problem (3.11)-(3.12)
and returns the first and second posterior moments (3.15)-(3.16).

Require: Current values for first moments I := (I, .., lx) and f = (fl, e fK)_
Require: Current values for second moments 12 := (I21,...,12¢) and f? :=
(f217"'7f2K)'

Require: An index k indicating which loading/factor to compute updated values for.
1: Compute matrix of expected squared residuals, R2, using (A.7)
2T /Y, R2;;. [Assumes column-specific variances; can be modified to make other
assumptions.]
Compute residual matrix R¥ :=Y — > Kk L fL.
Compute i(Rk, f’i’ Pk,T) and its standard error s;(T, Pk), using (3.19) and (3.20).
(lk, l2k) — ebnm(l, Sl).
Compute f(Rk, l;;,12;,, 7) and its standard error Sf(ﬁ, Tk).
(Fo f2) & ebnn(f,sp).
return updated values Iy, 1%, fi, 25, T

Based on these basic updates we implemented two algorithms for fitting the K-factor
EBMF model: the greedy algorithm, and the backfitting algorithm, as follows.

A.3.1 GREEDY ALGORITHM

The greedy algorithm is a forward procedure that, at the kth step, adds new factors and
loadings 1, fi by optimizing over q,,qy,, g1,,9f. While keeping the distributions related
to previous factors fixed. Essentially this involves fitting the single-factor model to the
residuals obtained by removing previous factors. The procedure stops adding factors when
the estimated new factors (or loadings) are identically zero. The algorithm as follows:
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Algorithm 4 Greedy Algorithm for EBMF

Require: A data matrix Y (n X p)

Require: A function, ebnm(x,s) — (5,@), that solves the EBNM problem (3.11)-(3.12)
and returns the first and second posterior moments (3.15)-(3.16).

Require: A function, init(Y) — (I; f) that provides initial estimates for the loadings and
factors (see Section 4.2).

Require: A function single update(Y,I, f,12, f2,k) — (I, 12, f, f21, ) implementing
Algorithm 3.

1: initialize K < 0.

2: repeat

3: K+ K+1.

4: Compute residual matrix R;; = Y;; — Zf;ll i fkj.

5: Initialize first moments (Ix, fx) < init(R).

6: Initialize second moments by squaring first moments: 25 E(; JTQ K f?(
T repeat

8: (I, 2k, fic, f25c,T) < single_update(Y, 1,12, f, f2, K)
9: until converged

10: until fg is identically 0 or Ix is identically 0.

11: return l_,l_2, fT,f_Z,T

A.3.2 BACKFITTING ALGORITHM

The backfitting algorithm iteratively refines a fit of K factors and loadings, by updating
them one at a time, at each update keeping the other loadings and factors fixed. The name
comes from its connection with the backfitting algorithm in Breiman and Friedman (1985),
specifically the fact that it involves iteratively re-fitting to residuals.

Algorithm 5 Backfitting algorithm for EBMF (rank K)

Require: A data matrix Y (nxp)
Require: A function, ebnm(x,s) — (6, 0?), that solves the EBNM problem (3.11)-(3.12)
and returns the first and second posterior moments (3.15)-(3.16).

Require: A function, init(Y) — (I1,...,lx; f1,..., fx) that provides initial estimates
for the loadings and factors (e.g. the greedy algorithm from Appendix A.3.1, or a rank
K SVD).

Require: A function single update(Y,I, f,12, f2,k) — (I, 12, fr, f21, T) implementing
Algorithm 3.
1: Initialize first moments (I1,...,1x; fi,..., fx) < init(Y).
Initialize second moments by squaring first moments: 12, «+ l%; 2, f,? [alternatively
the init function could provide these initial values].
repeat
fork=1,...,K do B o
(Ig, g, fr, f25, T) < single_update(Y, 1,12, f, 2, k)
until converged
return 1,12, f, f2, 1

v

31



WANG AND STEPHENS

A.4 Objective Function Computation

The algorithms above all involve updates that will increase (or, at least, not decrease) the
objective function F(qi,qf, g1, 9¢, 7). However, these updates do not require computing the
objective function itself. In iterative algorithms it can be helpful to compute the objective
function to monitor convergence (and as a check on implementation). In this subsection we
describe how this can be done. In essence, this involves extending the solver of the EBNM
problem to also return the value of the log-likelihood achieved in that problem (which is
usually not difficult).
The objective function of the EBMF model is:

l g (f
Flaqu qf, 91,98, 7) = Eqq; logp(Y|L, f57) + Eq, logLO+qu log () (A.41)

a(l) a5 (f)

The calculation of Ey, 4, logp(Y|l, f;7) is straightforward and Eg, log Zlgl; and E,, log g’glg
can be calculated using the log-likelihood of the EBNM model using the following Lemma
7.

Lemma 7 Suppose §,q solves the EBNM problem with data (x,s):
(9,9) = EBNM(z, s), (A.42)

where q := (q1,...,qn) are the estimated posterior distributions of the normal means pa-
rameters 01,...,0,. Then

E,(log(IT9(0)/ 1T 4i(0:)) = 1(g; 2, 5) Zlog (2ms3) + (1/57) (a5 + Eq(67) — 22, Eq(6;)
j j

(A.43)
where 1(g; x, s) is the log of the likelihood for the normal means problem (A.27).
Proof We have from (A.28)
ol
P¥a0,5) = [ a0(6)10g 2200 g (A1)
()
p(x[0)5(6)
= 0) log ——————=do A.45
[ @020 (A.45)
= E,(log([[905)/ [T a:(09))) - *E Zlog (2ms3) + (1/57)(x; — 6;)°]
J J
(A.46)
And the result follows from noting that FNM (g, §) = 1(g). [ ]

A.5 Inference with Penalty Term

Conceivably, in some settings one might like to encourage solutions to the EBMF problem
be sparser than the maximum-likelihood estimates for g;, g¢ would produce. This could
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be done by extending the EBMF model to introduce a penalty term on the distributions
g1, 95 so that the maximum likelihood estimates are replaced by maximizing a penalized
likelihood. We are not advocating for this approach, but it is straightforward given existing
machinery, and so we document it here for completeness.

Let hi(g1) and h¢(g¢) denote penalty terms on g; and g¢, so the penalized log-likelihood
would be:

Ugr,98,7) = log[p(Ylgr,g¢, 72| + ha(g) + hs(gs) (A.47)
= F(q,q1,98.7%) + lu(g) + hy(g) + Drcr(q||p)

where F(q, g1, 9¢,7%) and Dgr(q||p) are defined in (3.4) and (3.5). And the corresponding
penalized variational objective is:

max F(q, g1, g5, 7°) + hu(q1) + hg(gy). (A.48)

It is straightforward to modify the algorithms above to maximize this penalized objec-
tive: simply modify the EBNM solvers to solve a corresponding penalized normal means
problem. That is, instead of estimating the prior g by maximum likelihood, the EBNM
solver must now maximize the penalized log-likelihood:

g = arg max leBNM(9) + h(g), (A.49)

where lggny denote the log-likelihood for the EBNM problem. (The computation of the
posterior distributions given § is unchanged).

For example, the ashr software (Stephens, 2017) provides the option to include a penalty
on g to encourage overestimation of the size of the point mass on zero. This penalty
was introduced to ensure conservative behavior in False Discovery Rate applications of
the normal means problem. It is unclear that such a penalty is desirable in the matrix
factorization application. However, the above discussion shows that using this penalty
(e.g. within the ebnm function used by the greedy or backfitting algorithms) can be thought
of as solving a penalized version of the EBMF problem.

Appendix B. Orthogonal Cross Validation

Cross-validation assessments involving “holding out” (hiding) data from methods. Here we
introduce a novel approach to selecting the data to be held out, which we call Orthogonal
Cross Validation (OCV). Although not the main focus of our paper, we believe that OCV
is a novel and appealing approach to selecting hold-out data for factor models, e.g. when
using CV to select an appropriate dimension K for dimension reduction methods, as in
Owen and Wang (2016).

Generic k-fold CV involves randomly dividing the data matrix into k parts and then,
for each part, training methods on the other k — 1 parts before assessing error on that part,
as in Algorithm 6.
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Algorithm 6 k-fold CV

1: procedure K-FOLD CROSS VALIDATION
2: randomly divide data matrix Y into Yy, --,Y¥(y) with “hold-out” index

Sy, Q)
fori=1,--- ,k do
take Y(;) as missing and run flash
Yo = ?[YQ(MY—Q@)]
322 = HY(z) - YQ(Z-)H%

>k Si
return RMSE: score = \/ Si5-

The novel part of OCV is in how to choose the “hold-out” pattern. We randomly divide
the columns and rows into k sets. and put these sets into k orthogonal parts, and then take
all Y;; with the chosen column and row indices as “hold-out” Y{;).

To illustrate this scheme, we take 3-fold CV as an example. We randomly divide the
columns into 3 sets and the rows into 3 sets as well. The data matrix Y is divided into 9
partition (by row and column permutation):

Yii Y2 Yis
Y=Yy Yo Yo
Y31 Y3 Y33

Then Y1) = {Y11, Y22, Y33}, Y(2) = {Y12, Ya3, Y31} and Y3y = {Y13, Y21, Y32} are orthog-
onal to each other. Then the data matrix Y is marked as:

Yoy Yo Y
Y=1Ys Yo Yo
Yoy Y5 Y

In OCV, each fold k, Y(;) contains equally balanced part of data matrix and includes all
the row and column indices. This ensures that all i’s and j’s are included into each Y_ ).
In 3-fold OCV, we have:

Yiu Yo Yis L

Y=Yy Yo Yo3|=|L? | x[FO F® FO |+E (B.1)
Y31 Y3z Va3 L®
Yoy Yo Y O O 1) pE)

=Yy Yo Yo |= L) @Op2 Op®| +F (B.2)
Yoy Y Y L®rp1) Bp2 B p@)

where Y1y = {Y11, Y22, Y33}, Y(2) = {V12, Ya3, Y31} and Y(3) = {Y13, Ya1, Y32}. We can see for
each “hold-out” part, Y, LM 1@ LG and FO, F@ FG) show up once and only once.
In this sense the hold-out pattern is “balanced”.
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