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Abstract

Since the discovery of adversarial examples – the ability to fool modern CNN classifiers
with tiny perturbations of the input, there has been much discussion whether they are a
“bug” that is specific to current neural architectures and training methods or an inevitable
“feature” of high dimensional geometry. In this paper, we argue for examining adversarial
examples from the perspective of Bayes-Optimal classification. We construct realistic image
datasets for which the Bayes-Optimal classifier can be efficiently computed and derive
analytic conditions on the distributions under which these classifiers are provably robust
against any adversarial attack even in high dimensions. Our results show that even when
these “gold standard” optimal classifiers are robust, CNNs trained on the same datasets
consistently learn a vulnerable classifier, indicating that adversarial examples are often an
avoidable “bug”. We further show that RBF SVMs trained on the same data consistently
learn a robust classifier. The same trend is observed in experiments with real images in
different datasets.
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1. Introduction

Perhaps the most intriguing property of modern machine learning methods is their suscep-
tibility to adversarial examples (Szegedy et al., 2014): for many powerful classifiers it is
possible to perturb the input by an imperceptible amount and change the decision of the clas-
sifier. While adversarial examples were most famously reported for CNN classifiers (Szegedy
et al., 2014), subsequent research has shown that other classifiers can also fall prey to similar
attacks (Goodfellow et al., 2018). Attempts to make classifiers robust to these attacks have
generated a tremendous amount of interest (e.g. Schott et al. 2019 and references within).

As a first step towards solving the problem, many authors have attempted to understand
the source of the failure (Goodfellow et al., 2018; Szegedy et al., 2014; Tanay and Griffin,
2016; Fawzi et al., 2018b; Shamir et al., 2019). Broadly speaking, existing explanations
fall into two groups (see section 4 for a more detailed discussion of related work). One
approach argues that adversarial vulnerability is in some sense inevitable: either due to the
geometry of high dimensions (e.g. Goodfellow et al. 2018, 2015; Shamir et al. 2019) or due
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Original “male” Adversarial “female”
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Figure 1: We present realistic image datasets for which the Bayes-Optimal classifier can be
calculated efficiently and derive analytic conditions on when the optimal classifier
will be robust or vulnerable to adversarial examples. When the data distribution
satisfies certain asymmetries, the Bayes-Optimal classifier is vulnerable (b), but
when the distribution is symmetric, the optimal classifier is robust and adversarial
attacks become perceptually meaningful (c). Our experiments with these datasets
show that CNN training consistently learns a vulnerable classifier (d) even when
the optimal classifier is robust, while large-margin methods often succeed (e).

to fundamental limitations on robustness of classifiers trained from finite data (Schmidt
et al., 2018). Another approach views adversarial vulnerability as a “bug” of CNNs and
current training methods, which can be avoided by other architectures or training protocols
(e.g. Tanay and Griffin 2016; Nakkiran 2019; Lyu and Li 2020; Schott et al. 2019).

One reason for the existence of many conflicting explanations may be the difficulty
of analyzing adversarial vulnerability in a realistic yet tractable setting. In this paper,
we provide such a setting. We construct realistic image datasets for which the Bayes-
Optimal classifier can be efficiently computed and analyze the vulnerability of the optimal
classifier. We derive analytic conditions on the distributions where even the optimal classifier
will be vulnerable and other conditions where the optimal classifier will be provably robust.
Figure 1a-c shows an example: our synthetic dataset of “male” and “female” face images.
In the first, “asymmetric” distribution, the Bayes-Optimal classifier is vulnerable and an
imperceptible perturbation is sufficient to change a “male” face (Figure 1a) to one that
would be classified as “female” (Figure 1b). In the second, “symmetric” dataset, fooling the
optimal classifier requires making large, perceptually meaningful changes (Figure 1c).

By training different classifiers on the “symmetric” datasets, in which the optimal
classifiers are robust, we can disentangle the possible sources of vulnerability and avoid the
accuracy-robustness tradeoff that may occur in commonly used datasets. Our results show
that even when the optimal classifier is robust, standard CNN training consistently learns
a vulnerable classifier (Figure 1d). At the same time, for exactly the same training data,
RBF SVMs consistently learn a robust classifier (Figure 1e). Our results suggest that in
many realistic settings, adversarial vulnerability is not an unavoidable property of learning
in high dimensions but rather a direct result of suboptimal training methods used in current
practice.
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Male: Female:

Smiling: Not Smiling:

Eyeglasses: No Eyeglasses:

0: 6:

2: 7:

Figure 2: Left: A Mixture of Factor Analyzers (MFA) model for toy data in R3 (sampled
3D helical surface – blue points). Each component is a Gaussian on a learned
2-dimensional hyperplane with added axis-aligned noise. Right: Samples from our
realistic MFA datasets.

The paper is organized as follows: In section 2.1 we present our method for constructing
realistic image datasets that are equipped with computable Bayes-optimal classifiers. We
then show, in sections 2.2, under which conditions these optimal classifiers are provably
robust against adversarial attacks. Section 3 contains our experimental evaluation of the
vulnerability of different classifiers trained on these datasets. Additional related work is
discussed in section 4.

2. A Realistic Tractable Setting for Analysing Adversarial Vulnerability

This section describes our method for generating realistic image datasets with computable
Bayes-Optimal classifiers that are provably robust to all adversarial attacks.

2.1 Image datasets with computable Bayes-Optimal classifiers

We focus on a two class classification problem and denote by p1(x), p2(x) the distribution
of the two classes. We assume that p1(x), p2(x) are known and that the two classes have
equal priors, so the Bayes-Optimal classifier simply classifies x as belonging to class 1 if
p1(x) > p2(x) and to class 2 otherwise. It is well known that this classification rule is
optimal and no other classification rule can achieve higher accuracy (assuming of course
that p1(x), p2(x) are correct) (Duda et al., 1973). Several recent papers (Schmidt et al.,
2018; Ilyas et al., 2019) have analyzed adversarial examples in this setting, but only when
p1(x), p2(x) are both Gaussians with the same covariance, so that the optimal classifier is
linear. Real image classification problems are of course very different from this simplified
setting.

In our approach, we assume that images that belong to a single class form a nonlinear,
low-dimensional manifold in pixel space. A standard way to model such manifolds is to use a
mixture of Factor Analyzers (MFA) model (Ghahramani et al., 1996). The model is based on
the observation that locally the manifold can be represented by a Gaussian whose covariance
matrix is a sum of a low-rank matrix (representing the covariance on the manifold) and
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a diagonal matrix (representing the covariance off the manifold, e.g. due to sensor noise).
Figure 2 (left) shows an example of a nonlinear 2D manifold in three dimensions, and its
representation using an MFA model.

To create synthetic image datasets for classification, we start with a labeled training
set with two classes. We then train separate MFA models p1(x), p2(x) on images from the
two classes using the algorithm (and code) provided by Richardson and Weiss (2018). We
now create a new training set by sampling images from the two models, and similarly a
new test set. Since these datasets were created by sampling from a known model, we can
calculate the Bayes-Optimal classifier. At the same time, the images are realistic and MFA
models have been shown to capture much of the variability of the images in the original
data (Richardson and Weiss, 2018).

We created 12 such datasets of faces (based on the CelebA dataset Liu et al. 2015)
and 3 datasets of digits (based on MNIST)1. Figure 2 (right) shows samples from five such
datasets that correspond to five binary classification problems: Male vs. Female, Smiling
vs. Not-smiling, Eyeglasses vs. No-eyeglasses, 0 vs. 6, and 2 vs. 7. While these samples
are typically somewhat blurred, it can be seen they are realistic and highly variable. In
fact, in many real world applications one needs to classify somewhat blurry images (e.g.
analyzing faces in surveillance videos). We again emphasize that for all of these datasets, we
can efficiently calculate the Bayes-Optimal classifier.

The advantage of using a MFA model over other generative models such as VAEs or
GANs (Kingma and Welling, 2014; Gulrajani et al., 2017) is that the log likelihood of
any image can be calculated efficiently. Since the data were generated by the assumed
distributions, this classifier is Bayes-Optimal. Indeed in all datasets we created, the accuracy
of the classifier was close to 100%.

We now show under what conditions these optimal classifiers are provably robust to all
adversarial attacks.

2.2 Provably robust or vulnerable optimal classifiers

A textbook example of Bayes-Optimal classification is when both classes are generated using
Gaussians with the same spherical covariance, in which case the optimal classifier is a linear
discriminant that is orthogonal to the difference between the two means (Figure 3a). In this
case, if the distance between the two means is large relative to the covariance, then almost
all points are far from the decision boundary and so any adversarial attack which only makes
small changes to the input will typically fail. But as shown in the bottom of Figure 3 there
are other examples where the decision boundary is close to many of the datapoints and an
adversarial attack which only makes small changes to the input will often succeed2. What
distinguishes these two cases? The following three theorems (whose proofs are given in the
appendix) summarize our results.

Theorem 1: Symmetric isotropic Gaussian. If p1(x) = N(µ, σ2I), p2(x) =
N(µ+ d, σ2I) and σ << ‖d‖ then for almost all points the Bayes-Optimal classifier is
robust to any perturbation smaller than ‖d‖/2.

1. The datasets and models will be made publicly available after publication at https://github.com/

eitanrich/bayes-optimal-adv-examples

2. We deem an attack successful if it causes the classifier to change its prediction. Other definitions exist
(Diochnos et al., 2018), but prediction-change is the most commonly used and practical one.
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Spherical Gaussians Elliptical Gaussians Discrete Mixtures
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Figure 3: Top: examples of 2D distribution where the optimal decision boundary is far from
the datapoints. Bottom: distribution where the optimal boundary is close to
many of the datapoints.

Theorem 2: Symmetric MFA. If p1(x), p2(x) are MFA models, i.e. a GMM where
each Gaussian is of the form N(µi,Σi) and Σi is a covariance that is a sum of a low-rank
matrix plus a diagonal matrix Σi = AiA

T
i + σ2I and all Ai have the same singular values.

Let d be the minimal distance between any two subspaces of different manifolds3:

d = min
i,j,z1,z2

‖µi +Aiz1 − (µj +Ajz2)‖

As σ → 0 then for almost all points the Bayes-Optimal classifier is robust to any perturbation
smaller than d/2.

Theorems 1-2 referred to the symmetric case, in which the optimal classifier is robust.
The next theorem refers to the asymmetric case, in which the optimal classifier is vulnerable:

Lemma 1: Asymmetric Gaussian. Assume p1, p2 are Gaussian distributions. Let v
be a direction of minimal variance under Σ1: v = arg min v′TΣ1v

′. Let σ21 be the variance
projecting x onto that direction when x comes from class 1. If σ1 → 0 and Σ2 is full rank
then almost any point in class 1 is arbitrarily close to the optimal decision surface.

Theorem 3: Asymmetric GMM. Assume that both p1(x) and p2(x) are Gaussian
Mixture Models. If for every Gaussian in one class there exists a component in the other
class so that they satisfy the asymmetry conditions of Lemma 1, then almost any point will
be arbitrarily close to the optimal decision boundary.

Perhaps the most striking aspect of our three theorems is that they do not depend on
the dimensions of the inputs x. Thus Theorem 1 guarantees that for two well-separated
Gaussians, the Bayes-Optimal classifier is robust for arbitrarily large dimensions. Figure 4

3. Two low-dimensional subspaces in high dimensions will almost always not intersect.
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Samples from p1:

Samples from p2:

Perturbation Perturbation

Original:

Optimal:

CNN:

Figure 4: Top: Samples from our “noisy two-face” toy data (each class contains noisy
versions of the same face image). Bottom: Attacking test samples. The Bayes-
Optimal model is robust (middle row) while a CNN trained on this simple data is
vulnerable (bottom row).

illustrates Theorem 1 for the toy case where the two Gaussian means are two specific face
images and the inputs lie in R49,152 . As can be seen, the optimal classifier is robust – in
order to fool it, the adversary needs to make large, perceptual-meaningful changes to the
image. Specifically the decision boundary, like in Figure 3a is a plane that is evenly-distanced
to the two means. Samples drawn from these distributions can then be used as training sets
for evaluating the robustness of, for example, CNNs (Figure 4, bottom). Interestingly, even
though the Bayes-Optimal classifier is robust, the CNN learns a vulnerable classifier. We
will return to this point in section 3 using our realistic MFA datasets.

2.3 Symmetric and asymmetric datasets

To summarize our analysis, the Bayes-Optimal classifier will be provably robust when the
covariances satisfy symmetry conditions and provably vulnerable when there are strong
asymmetries. We therefore created symmetric and asymmetric variants of the MFA datasets.
In the symmetric version, we regularized the MFA so that the “off manifold” variance σ
is small and the same in all components and the distribution approximates the conditions
of Theorem 2. In the asymmetric version, we added to each MFA model one “outlier”

6



A Bayes-Optimal View on Adversarial Examples

Male/Female Asymmetric: (L2 = 0.9)

0 25 50 75 100 125

Male/Female Symmetric: (L2 = 3.3)

0 25 50 75 100 125

Figure 5: The vulnerability of the optimal classifier depends on the presence of asymmetries.
Each result shows the original images, adversarial images and perturbations
(magnified for visibility as necessary). Histogram of the perturbations in pixel
values are on the right.

component with a diagonal covariance with much larger σ than all other covariances and a
mean that is close to the global data mean. This version approximates the conditions of
Theorem 3. In the next section we attack these optimal classifiers and compare the empirical
robustness with our theoretical analysis.

2.4 Evaluating the robustness

Unlike our theoretical results, deciding whether or not a real classifier is robust or not requires
an operational definition of what constitutes a “tiny” or “imperceptible” perturbation. We
follow the standard practice of calculating the mean perturbation `2 norms of an adversarial
attack (Schott et al., 2019; Carlini et al., 2019). We allow the adversary an unlimited budget
in attacking the classifiers, and measure how large a perturbation was required to cross the
decision boundary. The mean is calculated only over successful attacks, when the original
sample was correctly classified and the adversarial example was not. Since this definition
is sensitive to outliers and the particular choice of Euclidean norm, we also examined the
histograms of changes made to each pixel in the adversarial attack. Finally, we visually
inspected the adversarial images.

In all 15 datasets, we found that these three methods of defining robustness are consistent.
For the face images, when the mean `2 is less than 1.5, then the adversarial images are
almost indistinguishable from the original images, and the vast majority of the pixels in
the adversarial images are within 5/255 intensity levels from their original value. On the
other hand, when the mean `2 is around 3, then the adversarial images are perceptually
quite different from the original ones, and many pixels differ by more than 5/255 from
their original values. We used a simple gradient attack in which we take small steps in the
direction of the gradient of the MFA log likelihood (details in appendix C). Similar results
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Figure 6: Why are CNNs so brittle? Is it because the data distributions are asymmetric so
that the optimal classifier is also brittle (left) or is it due to non optimal learning
(orange line, right) in cases where the optimal classifier is robust (blue line, right)?

CelebA MNIST
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Figure 7: Adversarial attack perturbation sizes (mean L2 norm) for different models for all
symmetric datasets.

are achieved with a standard implementation (Papernot et al., 2016) of the CW-L2 attack
(Carlini and Wagner, 2017).

As shown in Figures 5 (similar to Figure 1b,c), the difference between the symmetric
datasets and asymmetric datasets is dramatic (see appendix D for similar results on other
classes). When there exists a large asymmetry between the minimal variances of different
Gaussians, the conditions of Theorem 3 hold, and a tiny imperceptible change is sufficient
to fool the Bayes-Optimal classifier. However, when all Gaussians have the same minimal
variance, the conditions of Theorem 2 hold, any adversary will need to make much larger
changes and the adversarial examples become perceptually meaningful.

We now turn our attention to classifiers trained on our symmetric datasets and ask –
will they be robust like the optimal classifiers for these datasets, or vulnerable.

3. Experiments: Why are CNNs So Brittle?

Given our analysis, the fact that modern machine learning methods are often susceptible to
tiny adversarial perturbations may be due to two very different reasons (Figure 6). One
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Original:

Optimal: 0 16 32 48 64

3.14

CNN: 0 16 32 48 64

0.86

Lin. SVM: 0 16 32 48 64

0.58

RBF SVM: 0 16 32 48 64

2.23

Figure 8: Adversarial examples, perturbations and histograms (with mean L2 value) for
CelebA attribute ’Smiling’.

reason could be that the data distribution is asymmetric, so that the Bayes-Optimal classifier
is not robust, and hence it is not surprising that a CNN is also not robust. A second possible
reason is illustrated in Figure 6 (right): here the data distribution is symmetric and the
Bayes-Optimal classifier is robust, yet SGD starting from a bad initial condition finds a
brittle classifier. If this is the case, then the brittleness is not due to the data distribution
but rather a failure of the learning method.

In order to separate the contribution of the dataset from the estimation method in
the vulnerability of machine learning methods, we trained a CNN on samples from all 15
symmetric datasets described in section 2.3, and measured the vulnerability of the learned
CNN. We used the CNN implementation and the CW-L2 attack from the CleverHans library
(Papernot et al., 2016) (details in appendices B, C). We asked: will the CNN find a brittle
classifier even though the optimal one is robust?

Results are shown in Figures 7 and 8. In all 15 cases, the CNN found a high accuracy
classifier that was vulnerable to small adversarial perturbations, even though the optimal
classifier is robust. The difference is most dramatic in the CelebA tasks, where the CNN
adversarial examples are almost indistinguishable from the original images (examples of
the attacks on different datasets are shown in appendix D). While there are many possible
architectures and optimization methods for CNNs, we did not find any improvement in the
CNN robustness in our attempts to change the number of filters, layers, training iterations
etc (Figure 9). In particular, Schmidt et al. (2018) have argued that one needs more training
examples to achieve robust classification, so we systematically varied the amount of training
images (generated dynamically at each SGD iteration), and found no significant improvement
in robustness as we increased the number of training examples up to 1 million examples.

Is it possible to learn a robust classifier for these datasets from finite training data?
To answer that question, we then trained linear and RBF Support Vector Machine (SVM)
classifiers on exactly the same datasets. The linear SVM attempts to maximize the margin
while maintaining high accuracy, but since the optimal classifier is nonlinear it ends up
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Figure 9: Wider and deeper CNNs and longer training with more data does not improve
the robustness (optimal classifiers are shown as dashed lines for reference).
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Figure 10: Accuracy/robustness tradeoff (means over the different datasets) in adversarially-
trained CNNs (Zhang et al. 2019 β values) vs. models that are both accurate
and robust – the Bayes-optimal and RBF SVM.

learning a brittle classifier. More importantly, with an appropriate bandwidth parameter RBF
SVMs find robust classifiers when trained on exactly the same data (when the bandwidth
parameter is too large, the RBF performs similarly to a linear SVM).

The robustness of CNNs can be improved using adversarial training, in which adversarial
samples (of some selected attack) are injected during training. In Figure 10 we evaluate
the robustness of CNNs trained using TRADES (Zhang et al., 2019) (first place in the
NeurIPS 2018 adversarial challenge out of ≈ 2000 submissions). This algorithm has a
tradeoff parameter β that trades off accuracy and robustness. In the only parameter setting
that yielded a robust classifier, this approach gives significantly reduced accuracy compared
to the Bayes-Optimal classifier or to the RBF SVM.

Returning to Figure 6, our results strongly support the hypothesis that for these cases
brittleness is due to suboptimal learning methods, even when the data distributions are
symmetric and the optimal classifier is robust.
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Figure 11: Adversarial examples for class Male/Female (left) and mean perturbation sizes
(right) for different models trained on real CelebA images – results are consistent
with our other experiments.

3.1 Training and testing on real data

One can ask, to what extent our analysis and experiments represent adversarial attacks
on models trained on real data? To answer this question we trained CNNs and SVMs on
five real CelebA attribute datasets, and indeed, as shown in Figure 11 and in appendix D,
the results are similar to the synthetic symmetric datasets – CNN and Linear SVM are
vulnerable while RBF SVM is robust and can only be fooled when the perturbations are
perceptually meaningful.

To verify that our findings are not limited to specific datasets (faces, digits), we trained
similar models on the more complex CIFAR-10 dataset (Krizhevsky and Hinton, 2009). We
trained multiple binary classifiers on different class pairs and compared their adversarial
robustness. As can be seen in Figure 12 the results agree with all other experiments. 4

Note that unlike our proposed symmetric data, in which the “gold standard” optimal
classifier is both robust and accurate, on real data, which may contain variance asymmetries,
different models might reach different trade-off points between accuracy and robustness. In
particular, it is known that RBF SVM accuracy is highly influenced by the hyperparameters
C, γ and we performed only a minimal search to obtain these results. In future work, it
would be interesting to explore the full regularization path as in (Hastie et al., 2004).

4. Related Work

One of the first explanations of adversarial examples in CNNs was that the decision surface
learned by neural networks is “discontinuous to a significant extent”, analogous to an attempt
to discriminate the rational numbers from the rest of the real numbers (Szegedy et al., 2014).
However as shown by our analysis, when there are strong asymmetries in the variances of

4. Accuracy does not necessarily correlate with vulnerability: The RBF-SVM clean accuracy was on average
7% lower then the CNN’s. Linear-SVM, which was the most vulnerable, had 25% lower accuracy compared
to the RBF.
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Figure 12: Robustness (mean required perturbation `2 sizes) for different binary classifiers
trained on CIFAR-10 class pairs (class i vs class i+ 1). Results are consistent
with our other experiments.

the two classes, adversarial examples can fool the optimal classifier even when the decision
boundary is smooth and continuous.

A second prominent theory suggests that the problem is that neural network classifiers are
“unreasonably linear” combined with the fact that they operate in high dimensions (Goodfel-
low et al., 2015, 2018; Gilmer et al., 2018; Fawzi et al., 2018a; Dohmatob, 2018; Mahloujifar
et al., 2019). In high dimensions the output of a random linear classifier can be changed
by making a small change in the `∞ norm of an example. Fawzi et al. (2018b) show a
connection between the error rate of linear and quadratic classifiers and the adversarial
vulnerability and show that linear classifiers in high dimensions must be vulnerable for
data that is not linearly separable. Ford et al. (2019) show that adversarial vulnerability
is closely related to the lack of generalization to random perturbations and that in high
dimensions even moderate failures to generalize to high amounts of noise imply the existence
of adversarial examples. Shamir et al. (2019) have also focused on the geometry of high
dimensions arguing that adversarial attacks may be a “natural consequence of the geometry
of Rn with the L0 (Hamming) metric”.

Both our analysis and our experiments suggest that high dimensionality is neither neces-
sary nor sufficient for vulnerability. When strong asymmetries exist, even two dimensional
datasets can be constructed such that the optimal classifier is vulnerable. At the same time,
when there are no asymmetries, the optimal classifier is robust, even in very high dimensions.
The same is true for “excessively linear” classifiers: the RBF SVM is probably no less linear
than a CNN, yet it is robust in our symmetric and in real datasets.

The accuracy-robustness trade-off has also been suggested as an explanation for adver-
sarial vulnerability (Zhang et al., 2019). Schmidt et al. (2018) present a model under which
adversarially robust generalization requires more data. As our analysis shows, for symmetric
datasets there is no trade-off between accuracy and robustness and the optimal classifier in
terms of accuracy is also robust. Our experiments also show that with proper regularization
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(i.e. a RBF SVM), one can learn adversarially robust classifiers with the same amount of
data for which CNNs learn a vulnerable classifier.

Most recently, Ilyas et al. (2019) have argued that adversarial examples are a feature,
not a bug, and showed that one can in fact obtain information about the true decision
boundary from adversarial examples. Their analysis suggests that vulnerability results from
the presence of predictive features that are not robust. They presented a synthetic dataset
which was constructed to not contain such features, and showed that CNN training on that
dataset was robust. Our analysis in terms of symmetric vs. asymmetric datasets is similar
to theirs but more general (they only considered linear classifiers). Our experimental results,
however, are quite different and suggest that in more challenging settings, CNNs consistently
learn vulnerable classifiers even when the asymmetries do not exist in the data distributions.

In (Nakkiran, 2019), a synthetic dataset was presented without nonrobust features,
but CNN training led to vulnerable classifiers when the dataset was noisy. This result is
consistent with Tanay and Griffin (2016) who show that adversarial vulnerability is related
to overfitting in learning algorithms that are not sufficiently regularized. Similarly, Lyu and
Li (2020) show theoretically and experimentally that the details of the training procedure
can significantly change the robustness of CNNs. Our experimental results also highlight the
need for regularization in more realistic and challenging settings (including real data), while
our analysis points out that lack of robustness may also occur with no overfitting when the
data is asymmetric. Our experiments also show that regularization is not sufficient: the
linear SVM also attempts to maximize the margin, but due to its limited expressive power
it still ends up learning a vulnerable classifier.

The analysis presented by Shafahi et al. (2019) agrees with ours: that it is not merely
the dimensionality of the problem but also the distribution of images that determines
vulnerability. Unlike Shafahi et al., we present a realistic yet tractable model to model the
distribution of images and also present experimental evidence that in many cases CNNs
learn a vulnerable classifier even when the optimal classifier for that dataset is robust.

Several works analyze adversarial attacks under the manifold hypothesis – assuming
the data resides on a low-dimensional manifold embedded in the high-dimensional image
space. Khoury and Hadfield-Menell (2018) claim that adversarial attacks are caused by
the codimension, the large difference between the manifold and data dimensions. Our
analysis uses a more general probabilistic reasoning and shows that adversarial examples
exist regardless of the codimension. Zhang et al. (2020) explain adversarial examples as
“perturbations perpendicular to the tangent plane of the data manifold”. They propose a
PCA-based model-free attack. The paper claims that under the manifold assumption, “it is
clear that data points in adversarial regions impose a potential threat to all classifiers”. In
contrast, we show that in some data distributions (even under the manifold assumption),
the optimal classifier and some trained classifier are robust and only CNNs are vulnerable.
Jha et al. (2018) detect adversarial examples by their distance from the data manifold. This
work is orthogonal to ours – we do not analyze the detectability of adversarial examples.
Stutz et al. (2019) generate on-manifold adversarial examples by first encoding the original
image and then perturbing the latent code. In our setting, all adversarial examples are
off-manifold and still we show that CNNs fail even when the optimal classifier is robust.

Intuitively, we might expect classifiers based on generative models (e.g. “analysis by
synthesis” Schott et al. 2019) to be more robust to adversarial attacks, since they model all
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the data, not just the discriminative features. But our analysis shows that even when such a
classifier is based on the true generative model, it can be arbitrarily vulnerable, when the
two distributions show strong asymmetries.

5. Discussion

Since the discovery of adversarial examples for CNNs there has been much discussion whether
they are a “bug” that is specific to neural networks or a “feature” of high dimensional
geometry. As far as we know, all previous works analyzed CNN vulnerability either on toy
domains (e.g. points on a grid, concentric spheres) that are less suitable for testing CNNs,
or on real image data for which a robust and accurate classifier may not exist. Unlike these
works, our analysis enabled us to construct datasets that are both realistic and provably
robustly-separable by the optimal classifier. This unique setting enables differentiating
between unavoidable data-related vulnerability to causes related to the specific model or
training method, and indeed we show that CNNs fail to reach the accurate and robust
classifier in ALL our symmetric datasets, even as we varied the parameters of the architecture
and training. When applying a state-of-the-art adversarial defence method (TRADES), the
achieved robustness-accuracy trade-off is significantly inferior compared to the Bayes-Optimal
and the RBF SVM classifiers. This suggests that, at least in some situations, the presence
of adversarial examples represents a failure of current, suboptimal learning methods, rather
than being an unavoidable property of learning in high dimensions.

We are by no means advocating a return to using RBF SVMs. Rather, we believe
that explicit regularization methods for CNNs may enable learning robust classifiers while
maintaining the power of deep architectures. Recent theoretical work on gradient descent
methods suggests that they implicitly reward large margin classifiers in both shallow and
deep architectures (Soudry et al., 2018; Poggio et al., 2017; Lyu and Li, 2020) although
convergence to a large margin classifier may require exponential time.

In general, when trying to understand a complex effect, it is often useful to disentangle
the different causes. The Bayes-Optimal perspective on adversarial examples identifies two
possible causes: asymmetries in the datasets and suboptimal learning. Furthermore, it
allows us to create tractable and realistic datasets in which one of the two causes can be
clearly implicated. We are optimistic that this approach will be of great use in developing
new learning algorithms that are practical and robust.

Acknowledgments

This work was supported by the Israeli Science Foundation, the Ministry of Science and
Technology, the Gatsby Foundation and the Center for Interdisciplinary Data Science
Research (CIDR).

14



A Bayes-Optimal View on Adversarial Examples

Appendix A. Additional Proofs

A.1 Proof of Theorem 1 – Symmetric Isotropic Gaussian

Proof: For spherical and equal covariances, the Bayes-Optimal classifier simply projects the
data onto the direction µ1 − µ2 and classifies a point based on whether that projection is
closer to the projection of µ1 or the projection of µ2. This means that the problem reduces
to a scalar problem, with two distributions whose means are at distance ‖d‖ and have scalar
variance σ2. With high probability, under the assumption, all the points are close to one of
the means, so they are at distance ‖d‖/2 from the decision boundary. �

A.2 Proof of Theorem 2 – Symmetric MFA

We will first handle the simpler case where each class is a single Factor Analyzer:
Lemma A.1: Symmetric low-rank + diagonal. Suppose both classes have a

covariance that is a sum of a low-rank matrix plus a diagonal matrix Σi = AiA
T
i + σ2I

and A1, A2 have the same singular values and σ is the same for both classes. Let d be the
minimal distance between the two linear subspaces:

d = min
z1,z2
‖µ1 +A1z1 − (µ2 +A2z2)‖

As σ → 0 then almost all points are at distance d/2 from the Bayes-Optimal decision
boundary.

Proof: If x ∼ N(µ,AAT + σ2I) then the distribution of x can be described by the
following generative model:

z ∼ N(0, I) (1)

η ∼ N(0, σ2I) (2)

x = Az + µ+ η (3)

We can also write the likelihood of x as:

P (x) =

∫
z
P (x, z)dz (4)

Since x, z are jointly Gaussian, P (x, z) is an unnormalized Gaussian function of x and
the integral is given by the height of the unnormalized Gaussian divided by the square root
of the determinant of the second derivative of logP (x, z) with respect to z (see for example
MacKay and Mac Kay 2003 p. 341). So we can write:

logP (x) = −min
z

(
1

2σ2
‖µ+Az − x‖2 − 1

2
zT z

)
− 1

2
log det(I +

1

σ2
ATA) +

N

2
log(2π)

Since A1, A2 are assumed to have the same singular values, the log determinant term in
the log likelihood is the same for both classes so the Bayes-Optimal classifier will classify a
point as belonging to class 1 if:

−min
z

(
1

2σ2
‖µ1 +A1z − x‖2 −

1

2
zT z

)
> −min

z

(
1

2σ2
‖µ2 +A2z − x‖2 −

1

2
zT z

)
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As σ → 0 the Bayes-Optimal decision rule will simply be:

min
z
‖µ1 +A1z − x‖2 < min

z
‖µ2 +A2z − x‖2

so that a point is classified based on which subspace it is closer to.
Now, as σ → 0 almost any point x from class 1 will have distance close to 0 to the first

linear subspace and distance of at least d to the second subspace. If we perturb x by a
vector δ then the distance to each subspace can change by no more than ‖δ‖. This means
that if ‖δ‖ < d/2, the distance to the first subspace will remain smaller than the distance
to the second subspace, and hence the Bayes-Optimal classifier will not be fooled by any
perturbation whose norm is less than d/2. �

Mixture Model. We now assume that the distribution in each class can be represented
as a Gaussian Mixture Model and denote by pik the kth Gaussian in class i and by πik its
prior probability. We also assume that within each class, the components are well separated,
i.e. that for each datapoint the assignment probabilities put all their mass on one of the
components. More formally, denote by gik(x) = πikpik(x)∑

j πijpij(x)
the assignment probability of

a datapoint x to component k, then we assume that for each x, gik(x) = δ(k − k∗i (x))
where k∗i (x) is the index of the component that is most likely to have generated x under
probability pi(x). Under this assumption, the probability of generating a point x under p1
is simply p1(x) = πk∗1(x)p1k∗1(x)(x). We will also assume that within each distribution, the
assigned component does not change when we perturb x by a perturbation δ smaller than
d/2: k∗i (x) = k∗i (x+ δ).

Proof: By the well separateness assumption, the optimal classifier simply compares the
likelihood of a point x under the most likely Gaussian component in each class. This means
we can directly apply Lemma A.1, where p1, p2 are the most likely Gaussian component in
each class. �

A.3 Proof of Theorem 3 – Asymmetric GMM

We will first prove Lemma 1 – Asymmetric Gaussian:
Proof: We denote by σ2 = dTΣ2d the variance of the data in direction d under the

distribution of the second class p2. Note that by the assumption that Σ2 is full rank, this
variance must be nonzero. We write the vector x as (t, s) where t is the projection in
direction d and s is a vector of projections in directions orthogonal to d. We denote by ti
the projection of µi in direction d. The decision surface as a function of t is a solution to:(

1

σ21
− 1

σ22

)
t2 + 2

(
t2
σ22
− t1
σ21

)
t+

(
t21
σ21
− t22
σ22

+ log
σ21
σ22

)
= log p2(s|t)− log p1(s|t)

Now since d is a direction of minimal variance, it must be an eigenvector of Σ1 so that s
and t are independent under p1 and we can write log p1(s|t) = log p1(s). Using the standard
equation for conditional Gaussians, p2(s|t) will also be a Gaussian with the following mean
and covariance:

µs|t = µs + Σst
2 (t− t2) (5)

Σs|t = Σss
2 − Σst

2

1

σ22
Σts
2 (6)
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where Σss
2 ,Σ

st
2 are the appropriate submatrices of the covariance matrix Σ2. As σ1 → 0 then

t→ t1 and µs|t, Σs|t will not depend on t. This means that the right-hand side of equation 5
depends only on s and not on t or σ1.

As σ1
σ2

approaches zero, the solutions of this equation approach t1. And because σ1 → 0,
almost all samples from the first Gaussian will be close to t1, so moving x by a tiny amount
in direction d will change the optimal decision. �

The proof of the GMM case is now similar to that of the mixture model in Theorem 2,
but using Lemma 1 instead of Lemma A.1.

A.4 Robustness of the Optimal Classifier – Non Gaussian Distributions

A natural question following Theorems 1-3 is to what extent the result depends on the
Gaussian distribution. To address this, we now consider discrete distributions. We assume
that every instance x is described by quantized features that can take on a discrete number of
values. For example, the features can be wavelet coefficients of an image that are discretized
into 256 possible values. This means that p1(f), p2(f) are simply very large tables that give
the probability of observing a particular discrete set of image features given each of the
classes. Of course learning such a large table is infeasible without additional assumptions,
but recall that we are analyzing the Bayes-Optimal case, where we assume p1(f), p2(f) are
known.

Lemma A.2: Assume there exists a feature i and a quantization level k so that
p1(fi = k) → 1. Assume also that for any feature vector f , p2(f) > 0. Then almost any
point in class 1 is one quantization level away from the optimal decision boundary.

Proof: We again write f = (s, t) where s is the ith feature and t are all other features.

p1(s, t) = p1(s)p1(t|s); (7)

Now since p1(s) approaches 1 for s = k and 0 otherwise, for almost any point in class 1 the
value of that feature is equal to k. We now change the feature by one quantization level and
obtain a new feature vector (s̃, t) and p1(s̃, t) = p1(s̃)p1(t|s̃)→ 0. On the other hand, by the
assumption p2(s̃, t) > 0, so that this point would now be classified as belonging to class 2. �

As in the Gaussian case, we do not need p1(s) to be exactly equal to a delta function
for the decision surface to be close to most points. It is enough that p1(s̃) be much smaller
than the minimal values of p2 for the decision to be flipped when we replace s with s̃.
Figures 3g,c illustrate this dependence. In both cases, the data is sampled from a discrete
distribution where the features are simply discretization of the two spatial coordinates into
100 levels each. In other words, p1 and p2 are tables of size 10, 000 and each entry in the
table represents the probability of generating a point at one of the 10, 000 possible locations.
In the top example, the minimal value of the probability table is approximately the same in
both classes, while in the bottom example, there is a strong asymmetry and the decision
boundary becomes close to all points in one of the classes.

It is easy to see that Theorems 2,3 that discusses mixture distributions are applicable to
the discrete case as well.
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Appendix B. Models

In this section we provide additional information about the different classification models –
architecture, hyper-parameters and training procedure.

B.1 MFA

A Mixture of Factor Analyzers (MFA) (Ghahramani et al., 1996) is a Gaussian Mixture
Model where each component is a Factor Analyzer parameterized by a low rank plus diagonal
covariance matrix. MFA provides a good trade-off between the non-expressive diagonal-
covariance model and a full-covariance model, which is too computationally expensive for
high-dimensional data such as full images.

The model for a single Factor Analyzer component is:

x = Az + µ+ η , z ∼ N (0, I) , η ∼ N (0, D) , (8)

where A is the rectangular factor loading matrix, z is a low-dimensional latent factors vector,
µ is the mean and η is the added noise with a diagonal covariance D (which may be isotropic:
D = σ2I) This results in the Gaussian distribution x ∼ N (µ, AAT + D). The MFA is a
mixture of such Gaussians.

The MFA model was trained using the code provided by Richardson and Weiss (2018).
The models are trained using Stochastic Gradient Descent. The training data (CelebA,
MNIST) is first split by the desired binary attribute (e.g. Smiling / Not Smiling) and
then a separate MFA model was trained independently for each subset of training samples.
Because of imbalance in the number of samples per class in CelebA, we set the number of
components as the number of samples divided by 1000. For MNIST we used a fixed value of
25 components per class. We chose an MFA latent dimension of 10 for CelebA and 6 for
MNIST.

To allow attacking the MFA model with standard adversarial attacks such as CW-L2,
we implemented it in TensorFlow as a standard CleverHans (Papernot et al., 2016) model.

B.2 Bayes-Optimal

The MFA model is the Bayes-Optimal classifier when the data is sampled from that model.
We modified the MFA models that were trained for the different classes to define pairs of
Bayes-optimal models – symmetric and asymmetric.

For the symmetric models, we simply fixed all noise variance values in D to a small value
(σ = 0.01). To construct the asymmetric models we added two outlier components (one
for each class) that are equal to the dataset global mean plus changes along a direction of
low-variance: We performed PCA over the entire dataset and took the eigenvector for the
50th largest eigenvalue as this direction, where the mean of one outlier is in the positive
direction and the mean of the other in the negative one. We set A = 0 and σ = 0.5 for
both outliers, making them spherical Gaussians around the two means with relatively large
noise compared to the other components. See Figure 13 for the outlier component means for
CelebA and for MNIST.
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(a) (b)

Figure 13: Outlier components means for CelebA (a) and for MNIST (b). Samples from
these components are the shown means plus strong isotropic noise with σ = 0.5.

B.3 CNN

We used the reference CNN implementation from the CleverHans library (Papernot et al.,
2016), which is a benchmark library for evaluating adversarial attacks and defences. The
network consists of 2D convolution layers with a kernel size of 3 and Leaky ReLU activations.
We used a stride of 2 in several equally-spaced layers along the depth of the network to reduce
the spatial dimension and at each such layer we doubled the width (number of channels).
The network ends with a single fully-connected layer. All other hyper-parameters were left
at their default values and the optimization method was Adam. Our baseline small CNN
achieves 100% train and test accuracy on the symmetric datasets and we also experimented
with increasing both the depth and the width of the CNN by a large factor (see Figure 9).

B.4 Linear SVM

We used the standard 2-class linear SVC implementation provided by sklearn/libsvm (Pe-
dregosa et al., 2011). Linear SVM is trained directly on the vectorized image samples. The
learned model consists of a weight vector W and a scalar bias b. The decision for a sample
x is simply sign(W Tx+ b).

B.5 RBF SVM

We used sklearn for the Radial Basis Function (RBF) kernel SVM as well. Selection of two
hyper-parameters is required, the radial kernel coefficient γ = 1

2σ2 and C, a regularization
term. We used the default C = 1.0 and the highest γ value that still provided a high
classification accuracy.

Appendix C. Attacks

C.1 CW-L2

The Carlini & Wagner L2 attack (Carlini and Wagner, 2017) is a recommended strong attack
that minimizes the perturbation L2 norm. The attack minimizes a weighted combination of
a classification loss with the perturbation L2 size. The relative weight is a parameter that is
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found using a binary-search. We used the CleverHans implementation with the following
hyper-parameters: 500 iterations, 3 binary-searches and a learning rate of 0.01.

C.2 Gradient Descent Attack

Since the MFA and SVM models provides a simple closed-form expression for the likelihood
and its gradient, we implemented a simple and fast version of a gradient-attack for these
models. Our attack performs multiple fixed-size steps in the direction of the gradient of
the difference in log-likelihood between the source and target Gaussian components, until
the decision boundary is crossed. We repeated some of the experiments with the (much
slower) CW-L2 attack and verified that the results are similar (i.e. models that are shown to
be robust to our gradient descent attack are also robust to the CW-L2 attack with similar
perturbation magnitudes).

Appendix D. Additional Results

In this section we provide additional experimental results for the different datasets, attributes
and models.

D.1 Distance to the Decision Surface – Symmetric Datasets

According to Theorem 2, if the data can be represented as a mixture of low-rank plus
diagonal Gaussians and the off-manifold (diagonal) variances are all small and similar (no
strong asymmetries), then the distance from a sample to the optimal decision surface will
be half the distance to the nearest component subspace in the other (target) class.

In toy distributions (e.g. Figure 3) we can control these distances arbitrarily, but what
will the distances between subspaces be in our symmetric datasets, which approximate the
manifold of real image datasets? As can be seen in Figure 14 (for Male/Female dataset), the
distances to the nearest subspace in the other class are large – mean of 6.2). These values
are consistent with the mean adversarial perturbation sizes that were actually required to
fool the Bayes-Optimal classifier (mean `2 of 3 – half of the mean distance to the nearest
component subspace). The same is true for the other symmetric datasets.

D.2 Symmetric vs. Asymmetric

Figure 15 presents additional examples comparing symmetric and asymmetric datasets and
the relative robustness of their Bayes-Optimal classifiers to adversarial examples.

D.3 Symmetric Datasets

Table 1 lists the clean and adversarial classification accuracy of all models for all symmetric
datasets.

Figures 16-19 show original and adversarial samples and perturbations as well as his-
tograms of the perturbations in pixel values for all models in different symmetric datasets
(the number at the top of each histogram is the mean perturbation L2 over all test samples).
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Figure 14: Histogram of distances (`2) from samples from the Male/Female symmetric
dataset to the nearest Gaussian subspace in the other class. Results are consistent
with the required adversarial perturbation magnitude.

Smiling/NotSmiling Asymmetric: (L2 = 0.8)

Smiling/NotSmiling Symmetric: (L2 = 3.1)

0/6 Asymmetric: (L2 = 0.5)

0/6 Symmetric: (L2 = 3.0)

Figure 15: The vulnerability of the optimal classifier depends on the presence of asymmetries.
Each result shows the original images, adversarial images and perturbations
(magnified for visibility as necessary). In the symmetric datasets, attacking the
optimal classifier requires large and perceptually meaningful perturbations.
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Table 1: Clean and adversarial (in brackets) classification accuracy values for different
models for the symmetric datasets.

Dataset / Attribute Bayes-Optimal CNN Linear SVM RBF SVM
CelebA / Bangs 100% (0%) 100% (0%) 100% (0%) 96% (18%)
CelebA / Black Hair 100% (0%) 98% (2%) 100% (0%) 96% (26%)
CelebA / Brown Hair 100% (0%) 99% (1%) 100% (0%) 86% (16%)
CelebA / Heavy Makeup 100% (0%) 100% (0%) 100% (0%) 96% (14%)
CelebA / High Cheekbones 100% (0%) 100% (0%) 100% (0%) 96% (10%)
CelebA / Male 100% (0%) 100% (0%) 100% (0%) 100% (8%)
CelebA / Mouth Slightly Open 100% (0%) 100% (0%) 100% (0%) 94% (8%)
CelebA / No Beard 100% (0%) 100% (0%) 100% (0%) 94% (10%)
CelebA / Smiling 100% (0%) 100% (0%) 100% (0%) 96% (10%)
CelebA / Wearing Earrings 100% (0%) 99% (1%) 100% (0%) 94% (16%)
CelebA / Wearing Lipstick 100% (0%) 100% (0%) 100% (0%) 92% (18%)
CelebA / Eyeglasses 100% (0%) 100% (0%) 100% (0%) 100% (22%)
MNIST / 06 100% (0%) 100% (0%) 100% (0%) 100% (4%)
MNIST / 27 100% (0%) 100% (0%) 100% (0%) 100% (7%)
MNIST / 45 100% (0%) 100% (0%) 100% (0%) 100% (8%)

Table 2: Clean and adversarial (in brackets) classification accuracy values for different
models for real CelebA data.

Dataset / Attribute CNN Linear SVM RBF SVM
CelebA / Male 94.7% (5.30%) 89.7% (10.3%) 89.7% (11.3%)
CelebA / Smiling 88.0% (12.0%) 88.3% (11.7%) 84.3% (16.3%)
CelebA / Bangs 94.0% (6.00%) 87.0% (13.0%) 93.7% (24.7%)
CelebA / Heavy Makeup 86.0% (14.0%) 83.7% (16.3%) 85.7% (20.7%)
CelebA / Eyeglasses 100.% (0.00%) 93.7% (6.33%) 96.3% (32.3%)

D.4 Results on Real Data

D.4.1 Training and testing on real data

As shown in the main paper (Figure 11), results on real data are consistent with our
symmetric datasets results – CNN and Linear SVM learn a vulnerable classifier while RBF
SVM is robust. Table 2 lists the clean and adversarial accuracy values for the different
models trained on different real image datasets.

D.4.2 Training on symmetric data and testing on real data

To estimate how close our symmetric datasets are to the real datasets, we tested the CNNs
that were trained on the symmetric dataset on real test samples and compared the test
accuracy to that of CNNs that were trained on the real training data. As can be seen in
Table 3, there is an average accuracy reduction of just 5%, indicating that the symmetric
datasets are not that far from the original data.
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Table 3: Real test images classification accuracy for CNNs trained on real training data vs
CNNs trained on samples from the symmetric dataset.

Dataset / Attribute Real Train Data Symmetric Train Data
CelebA / Male 92.3% 88.0%
CelebA / Smiling 89.5% 85.6%
CelebA / Bangs 94.3% 90.4%
CelebA / Heavy Makeup 86.3% 79.9%
CelebA / Eyeglasses 98.4% 91.7%

Orig

Optimal 0 16 32 48 64

3.89

CNN 0 16 32 48 64

0.98

Lin. SVM 0 16 32 48 64

0.50

RBF SVM 0 16 32 48 64

2.39

Figure 16: Samples, perturbations and histograms for CelebA attribute ’Eyeglasses’

Orig

Optimal 0 16 32 48 64

3.07

CNN 0 16 32 48 64

0.83

Lin. SVM 0 16 32 48 64

0.39

RBF SVM 0 16 32 48 64

2.36

Figure 17: Samples, perturbations and histograms for CelebA attribute ’Heavy Makeup’
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Orig

Optimal 0 16 32 48 64

2.98

CNN 0 16 32 48 64

1.84

Lin. SVM 0 16 32 48 64

1.09

RBF SVM 0 16 32 48 64

2.69

Figure 18: Samples, perturbations and histograms for MNIST digits 0 vs. 6
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Optimal 0 16 32 48 64

3.16

CNN 0 16 32 48 64

2.22

Lin. SVM 0 16 32 48 64

1.02

RBF SVM 0 16 32 48 64

2.83

Figure 19: Samples, perturbations and histograms for MNIST digits 4 vs. 5
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