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Abstract

A common problem in econometrics, statistics, and machine learning is to estimate
and make inference on functions that satisfy shape restrictions. For example, distribu-
tion functions are nondecreasing and range between zero and one, height growth charts
are nondecreasing in age, and production functions are nondecreasing and quasi-concave
in input quantities. We propose a method to enforce these restrictions ex post on generic
unconstrained point and interval estimates of the target function by applying functional
operators. The interval estimates could be either frequentist confidence bands or Bayesian
credible regions. If an operator has reshaping, invariance, order-preserving, and distance-
reducing properties, the shape-enforced point estimates are closer to the target function
than the original point estimates and the shape-enforced interval estimates have greater
coverage and shorter length than the original interval estimates. We show that these
properties hold for six different operators that cover commonly used shape restrictions in
practice: range, convexity, monotonicity, monotone convexity, quasi-convexity, and mono-
tone quasi-convexity, with the latter two restrictions being of paramount importance. The
main attractive property of the post-processing approach is that it works in conjunction
with any generic initial point or interval estimate, obtained using any of parametric, semi-
parametric or nonparametric learning methods, including recent methods that are able to
exploit either smoothness, sparsity, or other forms of structured parsimony of target func-
tions. The post-processed point and interval estimates automatically inherit and provably
improve these properties in finite samples, while also enforcing qualitative shape restrictions
brought by scientific reasoning. We illustrate the results with two empirical applications
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to the estimation of a height growth chart for infants in India and a production function
for chemical firms in China.

Keywords: Shape Operator, Range, Monotonicity, Convexity, Quasi-Convexity, Rear-
rangement, Legendre-Fenchel, Confidence Bands, Credible Regions

1. Introduction

A common problem in econometrics, statistics, and machine learning is to estimate and
make inference on functions that satisfy shape restrictions. These restrictions might arise
either from the nature of the function and variables involved or from theoretical reasons.
Examples of the first case include distribution functions, which are nondecreasing and range
between zero and one, and height growth charts, which are nondecreasing in age. Exam-
ples of the second case include demand functions of utility-maximizing individuals, which
are nonincreasing in price according to consumer demand theory; production functions of
profit-maximizing firms, which are nondecreasing and quasi-concave in input quantities ac-
cording to production theory and can also be concave in industries that exhibit diminishing
returns to scale; bond yield curves, which are monotone and concave in time to matu-
rity; and American and European call option prices, which are concave and monotone in
the underlying stock price and increasing in volatility, according to the arbitrage pricing
theory.1

We propose a method to enforce shape restrictions ex post on any initial generic point
and interval estimates of functions by applying functional operators. If an operator has re-
shaping, invariance, order-preserving, and distance-reducing properties, enforcing the shape
restriction improves the point estimates and improves the coverage property of the inter-
val estimates. Thus, the shape-enforced point estimates are closer to the target function
than the original point estimates under suitable distances, and the shape-enforced inter-
val estimates have greater coverage and shorter length under suitable distances than the
original interval estimates. We show that these properties hold for six different operators
that enforce the following restrictions: range, convexity, monotonicity, joint convexity and
monotonicity, quasi-convexity, and joint quasi-convexity and monotonicity, as well as for
combinations of range with all of the above. We impose the range restriction with a natural
operator that thresholds the estimates to the desired range. The double Legendre-Fenchel
transform enforces convexity by transforming the estimates into their greatest convex mino-
rants. We focus on the monotone rearrangement to enforce monotonicity (though projection
on isotone class can also be used in all composition results, as well as convex combinations
of isotone projection with rearrangement). We further develop a new operator to enforce
quasi-convexity—a shape that has not been well explored in the literature, although it
is common in applications. We also show that the compositions of the monotone rear-
rangement with the double Legendre-Fenchel and the new quasi-convexity operators yield
monotone convex and monotone quasi-convex estimates, respectively. In other words, the
application of the convex and quasi-convex operators does not affect the monotonicity of
the function. We further demonstrate how to modify the operators to deal with concavity,

1. Different, but similar shape restrictions apply to put prices, with the American put price being log-
concave in the stock price, for example.
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quasi-concavity, their composition with the monotonicity and range operators, and shape
restrictions on transformations of the function.

Our method is generic in that it can be applied to any point or interval estimator of the
target function. For example, it works in combination with parametric, semi-parametric
and nonparametric approaches to model and estimate the target function. It works with
modern machine and deep learning methods that are able to exploit either smoothness
or structured parsimony (e.g., approximate sparsity) of target functions. Hence our post-
processed point and interval estimates automatically inherit the rates of convergence of
these estimators and provably improve these properties in finite samples, while also enforcing
qualitative shape restrictions brought by scientific reasoning. Moreover, our method applies
without modification to any type of function including reduced form statistical objects
such as conditional expectation, conditional density, conditional probability and conditional
quantile functions, or causal and structural objects such as dose response, production,
supply and demand functions identified and estimated using instrumental variable or other
methods. The only requirement to obtain consistent point estimators or valid confidence
bands is that the source point estimators be consistent or the source confidence bands be
valid. There are many existing methods to construct such point estimators and confidence
bands under general sampling conditions, including obtained through frequentist, Bayesian
or approximate Bayesian methods.2 Under misspecification these requirements may not be
satisfied, but the shape-enforcing operators will bring improvements to the point estimators
and confidence bands in a sense that we will make precise. To implement our method, we
develop algorithms to compute the Legendre-Fenchel transform of multivariate functions
and the new quasi-convexity enforcing operator.

We illustrate the theoretical results with two empirical applications to the estimation
of a height growth chart for infants in India and a production function for chemical firms
in China. In the case of the growth chart, we impose natural monotonicity in the effect
of age, together with concavity that is plausible during early childhood. In the case of the
production function, we enforce that a firm’s output is nondecreasing and quasi-concave
in labor and capital inputs according to standard production theory. We also consider
imposing concavity in the effect of the inputs. In both applications we use series least
squares methods to flexibly estimate the conditional expectation functions of interest, and
construct confidence bands using bootstrap. We quantify the size of strict improvements
that imposing shape restrictions bring to point and interval estimates in small samples
through numerical simulations calibrated to the empirical applications.

Literature Review. Due to the wide range of applications of shape restrictions, shape-
constrained estimation and inference have received a lot of attention in the statistics com-
munity. Classical examples include Hildreth (1954), Ayer et al. (1955), Brunk (1955), van
Eeden (1956), Grenander (1956), Groeneboom et al. (2001), and Mammen (1991). We re-
fer to Barlow et al. (1972) and Robertson et al. (1988) for classical references on isotonic

2. Bayesian methods are often used to quantify the uncertainty of complicated methods where the frequen-
tist quantification is intractable, for example, in deep learning problems. Like in the classical approach,
one may impose constraints directly during the estimation, though this is often quite cumbersome and
is rarely done in practice. The post-processing can be applied to the unconstrained estimates and be
justified on pragmatic grounds, ease of computation, or desire to analyze data without restrictions and
accept a menu of restrictions ex-post only after validating them.
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regression for monotonicity restrictions, and to Koenker and Mizera (2010) for the work on
log-concave density estimation. In terms of risk bounds for estimation, please refer to Zhang
(2002), Chatterjee et al. (2014), Han et al. (2019), and references therein for recent devel-
opments in isotonic regression; and Kuosmanen (2008), Seijo and Sen (2011), Guntuboyina
and Sen (2015), Han and Wellner (2016), and Chen et al. (2020) for convex regression.
Bellec (2018) established sharp oracle inequalities for least squares estimators, when only
shape restrictions are known to hold. Moreover, Hengartner and Stark (1995), Dümbgen
(2003), and Anevski and Hössjer (2006) considered the construction of confidence bands for
univariate functions under monotonicity or convexity restrictions. Please refer to the book
Groeneboom and Jongbloed (2014) and the survey paper Guntuboyina and Sen (2018) for
more comprehensive reviews on estimation and inference under shape constraints.

Most existing works developed constrained methods via maximum likelihood methods
for regression or density estimation that impose only shape restrictions and produce con-
strained estimates without further restrictions. We remark here that these direct approaches
deliver advantages over our approach when such target functions are known to satisfy only
the qualitative shape constraints. By contrast, our post-processing approach delivers ad-
vantages when any generic target function, in addition to satisfying qualitative constraints,
satisfies smoothness or other structured parsimony restrictions (e.g., sparsity). Indeed, our
method applies to generic problems, and is not tied to statistical parameters such as re-
gression or density estimation. To explain where the advantages arise, we note that the
direct isotone univariate regression converges to the true regression function at the n−1/3

rate, which is minimax optimal for the parameter space of monotone functions. If the
target function is known to lie in the space of smooth functions (Hölder or Sobolev with
smoothness s > 1), the better and optimal rate n−s/(2s+1) can be achieved by an uncon-
strained estimator (e.g., Stone (1980)), making the pure isotonic regression suboptimal in
this case. To fix the direct isotonic regression in this case, we would need to impose the
smoothness constraints in the estimation directly, which ordinarily is not done in practice,
let alone theoretically analyzed. (One exception here is Chernozhukov et al. (2015) that
considered testing shape restrictions in Banach spaces, with the target function being (pos-
sibly partially) identified by general conditional moment condition problems, where shape
restrictions induce a lattice structure on the space). Smooth cases and other problems,
where unconstrained estimators achieve optimal rates, provide the chief motivation for our
approach: in such cases, our method automatically inherits the optimal rate and improves
the finite sample properties of the estimator through the distance-reducing properties. On
the other hand, unlike constrained estimators, unconstrained estimators require delicate
choices of tuning parameters to achieve the optimal rate, although adaptive estimation and
inference of smooth functions is possible using the method of Lepskĭı (1992) (e.g., Lepskĭı
and Spokoiny, 1997; Giné and Nickl, 2010b,a; Chernozhukov et al., 2014). It is worthwhile
noting that Durot and Lopuhaa (2018) investigated asymptotic properties of smoothed iso-
tonic estimators, and Jankowski and Wellner (2009) studied the method of rearrangements
for obtaining discrete monotone distributions. However, these works only consider very
specific classes of shape-constrained estimators, i.e., isotonic and/or discrete estimators.

Another recurrent problem with imposing shape restrictions in estimation is that the
derivation of the statistical properties of the constrained estimators is involved and specific
to the estimator and shape restriction. As a consequence, there exist very few distributional
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results, mainly for univariate functions. The results available for the Grenander and isotonic
regression estimators show that these estimators exhibit non-standard asymptotics (includ-
ing relatively slow rates, since smoothness conditions are not exploited); see Guntuboyina
and Sen (2018) for a recent review. Moreover, Horowitz and Lee (2017) and Freyberger
and Reeves (2018) have recently pointed out the difficulties of developing inference meth-
ods from shape-constrained estimators with good uniformity properties with respect to the
data generating process. They showed that for shape restrictions defined by inequalities,
the distribution of the constrained estimator depends on where the inequalities are binding,
which is unknown a priori. Inference based on this distribution therefore becomes sensitive
to how close the inequalities are to binding relative to the sample size. We avoid all of these
complications arising from the constrained estimators by enforcing the restrictions ex post
and therefore relying on the distribution of the unconstrained estimators (whenever it is
available) to construct the confidence bands. Our confidence interval method can also be
applied on top of a different constrained estimator to provide potential improvements when
the end-point functions of the generated confidence band do not themselves satisfy the re-
striction. It is worthwhile noting that the idea of ex post confidence bands was mentioned in
Section 4.2 in Dümbgen (2003), which only discussed two cases on the univariate monotone
function and univariate convex function. Moreover, the construction of confidence bands
for the convex case in Dümbgen (2003) is quite different from ours (e.g., their lower bound
is not necessarily a convex function).

Our paper generally follows the approach introduced in Chernozhukov et al. (2009),
which focused on producing improved generic point and interval estimates of monotone
functions using the monotone rearrangement. The class of shape enforcing operators cov-
ered by our paper is much bigger and much more useful, with analysis being much more
challenging, and we view both aspects as a substantial contribution of our paper. Some
of the operators that we consider have been analyzed previously in the literature. Dette
and Volgushev (2008) apply a smoothed rearranged operator to kernel estimators for mono-
tonization purposes and derive pointwise limit theory. Chernozhukov et al. (2010) applied
the monotone rearrangement to deal with the quantile crossing problem and Belloni et al.
(2019) to impose monotonicity in conditional quantile functions estimated using series quan-
tile regression methods and construct monotonized uniform confidence bands. Beare and
Fang (2017) used the double Legendre-Fenchel transform to construct point and interval
estimates of univariate concave functions on the non-negative half-line. Other applications
of the double Legendre-Fenchel transform include Delgado and Escanciano (2012), Beare
and Moon (2015), Beare and Schmidt (2016). Chernozhukov et al. (2010) and Beare and
Fang (2017) used an alternative approach to make inference on shape-constrained func-
tions. Instead of applying the shape-enforcing operator to a confidence band constructed
from an unconstrained estimator, they constructed confidence bands from the estimator
after applying the shape-enforcing operator. To do so, they characterized the distribu-
tion of the constrained estimator from the distribution of the unconstrained via the delta
method, after showing that the shape-enforcing operator is Hadamard or Hadamard direc-
tional differentiable. This approach usually yields narrower confidence bands than ours, but
it is computationally more involved and requires additional assumptions and non-standard
methods. For example, Beare and Fang (2017) showed that the bootstrap is inconsistent
for the distribution of constrained estimators after applying the double Legendre-Fenchel
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transform when the target function is not strictly concave. Finally, we refer to Matzkin
(1994), and Chetverikov et al. (2018) for excellent, insightful up-to-date surveys on the use
of shape restrictions in econometrics.

Relative to the literature, we summarize the major contributions of this paper as follows.
(1) We introduce an operator to enforce quasi-convexity and deliver improved point and
interval estimates of general multivariate quasi-convex functions. Quasi-convexity extends
the notion of unimodality to multiple dimensions and generalizes convexity constraints. De-
spite its importance, the shape restriction of quasi-convexity has not been well studied in the
literature and Guntuboyina and Sen (2018) listed quasi-convexity as an open area in shape-
constrained estimation. (2) We extend the use of the Legendre-Fenchel transform to con-
struct improved point and interval estimates of general multivariate convex functions. (3)
We show that the composition of the monotone rearrangement with the Legendre-Fenchel
transform can be used to construct improved point and interval estimates of monotone
convex functions. (4) We show that the composition of the monotone rearrangement with
our quasi-convex operator can be used to construct improved point and interval estimates
of monotone quasi-convex functions. (The third and fourth contributions proved to be the
most challenging and important steps, where the importance stems from shape restrictions
often being a composition of monotonicity with convexity or quasi-concavity). (5) We pro-
vide a new algorithm to compute the Legendre-Fenchel transform of multivariate functions.
(6) We develop an algorithm to compute our quasi-convex operator. The main advantage of
our approach is that it works in conjunction with any generic point estimate (e.g., including
recent machine and deep learning methods), or any generic interval estimate (that can be
a frequentist confidence band or a Bayesian credible region). Because of genericity, it is
able to exploit smoothness or other forms of structured parsimony through the use of the
appropriate initial estimator. It inherits the rate properties of the initial estimator, while
delivering better finite sample properties through distance-reducing inequalities.

Outline. The rest of the paper is organized as follows. Section 2 introduces the functional
shape-enforcing operators and their properties, together with examples of operators that
enforce the shape restrictions of interest. Section 3 discusses the use of shape-enforcing
operators to obtain improved point and interval estimates of functions that satisfy shape
restrictions. Section 4 provides algorithms to compute the shape-enforcing estimators. Sec-
tion 5 reports the results of two empirical applications and numerical simulations calibrated
to the applications. Section 6 concludes the paper. The proofs of the main results are gath-
ered in the Appendix.

Notation. For any measurable function f : X → R and p ≥ 1, let ‖f‖p :=
{∫
X |f(x)|pdx

}1/p
,

the Lp-norm of f , with ‖f‖∞ := supx∈X |f(x)|, the L∞-norm or sup-norm of f . We drop
the subscript p for the Euclidean norm, i.e., ‖x‖ := ‖x‖2. For p ≥ 1, let `p(X ) := {f : X →
R : ‖f‖p <∞}, the class of all measurable functions defined on X such that the Lp-norms
of these functions is finite. For x, x′ ∈ Rk, we say x ≥ x′ if every entry of x is no smaller
than the corresponding entry in x′. For two functions f and g that map X → R we say that
f ≤ g if f(x) ≤ g(x) for all x ∈ X . We also use a ∨ b := max(a, b) and a ∧ b := min(a, b)
for any a, b ∈ R. For two scalar sequences an and bn, the notation an ∼ bn means that
an/bn → 1 as n→∞. For an operator O : `∞0 (X )→ `∞0 (X ), we use O−f := −O(−f). For
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two operators O1 : `∞0 (X )→ `∞0 (X ) and O2 : `∞0 (X )→ `∞0 (X ), we define O1O2 to be the
composition O1 ◦O2.

2. Functional Shape-Enforcing Operators

2.1 Properties of Shape-Enforcing Operators

Assume that the function of interest, f , is real-valued with domain X ⊂ Rk, for some
positive integer k. Let `∞(X ) be the set of bounded measurable functions. Let `∞0 (X ) and
`∞1 (X ) be two subspaces of `∞(X ), such that `∞1 (X ) ⊂ `∞0 (X ); and let O : `∞0 (X )→ `∞0 (X )
be a functional operator. In our case, `∞0 (X ) will be the class of unconstrained functions
and `∞1 (X ) will be the subclass of functions that satisfy some shape restriction. We first
introduce three properties that an operator must satisfy to be considered a shape-enforcing
estimator.

Definition 1 (Shape-Enforcing Operator) We say that an operator O is `∞1 -enforcing
with respect to `∞0 (X ) if it satisfies the following properties:

1. Reshaping: the output of the operator is a function that satisfies the shape restriction:

Of ∈ `∞1 (X ), for any f ∈ `∞0 (X ). (2.1)

2. Invariance: the operator should do nothing when the input function has already satis-
fied the shape restriction:

Of = f, for any f ∈ `∞1 (X ). (2.2)

3. Order Preservation: the output functions preserve original order:

Of ≤ Og, for any f, g ∈ `∞0 (X ) such that f ≤ g. (2.3)

In addition to these properties, we consider the following “distance contraction” prop-
erty.

Definition 2 (Distance-Reducing Operator) Let ρ be a distance or semi-metric func-
tion on `∞(X ). We say that an operator O is a ρ-distance contraction if the output functions
are weakly closer than input functions under the ρ:

ρ(Of,Og) ≤ ρ(f, g) for any f, g ∈ `∞0 (X ). (2.4)

Some particularly interesting cases of constrained classes `∞1 (X ) are subsets of functions
that satisfy shape restrictions. In this paper, we focus on seven types of shape restrictions:
(1) range, (2) convexity, (3) monotonicity, (4) monotone convexity, (5) quasi-convexity, (6)
monotone quasi-convexity, and (7) compositions of range with all of the above. Our meth-
ods also apply to the restrictions of concavity and quasi-concavity by noting that if f is
concave (quasi-concave), then −f is convex (quasi-convex). In the case of monotonicity we
focus on the case of monotonically nondecreasing functions. The methods also apply to
monotonically nonincreasing functions noting that if f is nondecreasing then −f is nonin-
creasing.
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Remark 3 (Counterexample) There are operators to impose shape restrictions that do
not satisfy the conditions of Definitions 1 and 2. For example, Of = f/‖f‖1 is a natural
operator to enforce that a non-negative function integrates to one in density estimation.
This operator satisfies reshaping and invariance, but does not satisfy order preservation nor
distance contraction for any Lp-norm.

2.2 Range Restrictions

We first consider the subset of range-constrained functions `∞R (X ) := {f ∈ `∞(X ) : f ≤
f(x) ≤ f for all x ∈ X} for some constants f ≤ f . A natural range-enforcing operator is as
follows.

Definition 4 (R-Operator) For any set X ⊂ Rk, the range operator R : `∞(X )→ `∞(X )
is defined by thresholding the values of the function f to [f, f ].

Rf(x) := [f ∨ f(x)] ∧ f, for any x ∈ X . (2.5)

Let dp be the distance measure induced by the Lp-norm, i.e., dp(f, g) = ‖f −g‖p for any
f, g ∈ `p(X ) and p ≥ 1. The following theorem shows that R is indeed range-enforcing and
distance-reducing with respect to dp.

Theorem 5 (Range-Enforcing Operator) The operator R is `∞R -enforcing with respect
to `∞(X ) and a dp-distance contraction for any p ≥ 1.

2.3 Convexity

Let X be a convex subset of Rk. Let `∞S (X ) := {f ∈ `∞(X ) : lim infx′→x f(x′) ≥
f(x) for all x ∈ X}, the set of bounded lower semi-continuous functions on X , and `∞C (X ) :=
{f ∈ `∞S (X ) : f(αx+(1−α)x′) ≤ αf(x)+(1−α)f(x′) for all x, x′ ∈ X , α ∈ [0, 1]}, the sub-
set of convex functions on X . We consider the Double Legendre-Fenchel (DLF) transform
as a convexity-enforcing operator. To define this operator, we first recall the definition of
the Legendre-Fenchel transform (see, e.g., Hiriart-Urruty and Lemaréchal (2001)).

Definition 6 (Legendre-Fenchel transform) For any convex set X ⊂ Rk and f ∈
`∞(X ), let f∗(X ) := {ξ ∈ Rk : supx∈X {ξ′x− f(x)} <∞}. The Legendre-Fenchel transform
LX : `∞(X )→ `∞(f∗(X )) is defined by

f∗(ξ) := LX f(ξ) := sup
x∈X
{ξ′x− f(x)}, for any ξ ∈ f∗(X ).

The function ξ 7→ f∗(ξ) is a closed convex function (see Lemma 34 in the Appendix)
which is also called the convex conjugate of f , and the Legendre-Fenchel transform LX is
also called the conjugate operator. The Legendre-Fenchel transform is a functional operator
that maps any function f to a function of its family of tangent planes, which is often referred
to as the dual function of f .

Definition 7 (C-Operator) For any convex set X ⊂ Rk, the double Legendre-Fenchel
operator C : `∞S (X )→ `∞S (X ) is defined by the repeated application of the Legendre-Fenchel
transform twice:

Cf := Lf∗(X ) ◦ LX f.
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Figure 1: Left: unconstrained and convexity-enforced functions. Right: unconstrained,
monotonicity-enforced, and (convexity and monotonicity)-enforced functions. The original

function is f(x) = [10 exp(3x/2)− b10xc − 10]/25.

Lemma 36 in the Appendix shows that the double Legendre-Fenchel operator maps any
lower semi-continuous function f to its greatest convex minorant, i.e., the largest function
g ∈ `∞C (X ) such that g ≤ f . The left panel of Figure 1 illustrates this property with a
graphical example. We apply the operator C to the function f(x) = [10 exp(3x/2)−b10xc−
10]/25 on X = [0, 1], where b·c is the floor function. The convexity-enforced function Cf
is the greatest convex minorant of f , Cf(x) = 10[f(x)(x − x) + f(x)(x − x)] if x 6= x and
Cf(x) = f(x) otherwise, where x = d10xe/10, x = b10xc/10, and d·e is the ceiling function.

The following theorem is an immediate consequence of applying known results from
convex analysis.

Theorem 8 (Convexity-Enforcing Operator) For any convex set X , the operator C
is `∞C -enforcing with respect to `∞S (X ) and a d∞-distance contraction.

Remark 9 (Shifted Convexity-Enforcing Operator) The convexity-enforced function
is a minorant of the original function (see fig. 1). When the original function is estimated,
the application of the C-operator might introduce downward bias, especially in small samples.
A way of reducing bias is by shifting the C-operator, that is

SCf(x) := Cf(x) + λ(X )−1

∫
X

[f(x)−Cf(x)]dx,

where λ(X ) is the Lebesgue measure of X . The SC-operator is reshaping and invariant,
but does not preserve order nor reduce distance. We compare the C-operator with the SC-
operator in the numerical examples of Section 5.
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2.4 Monotonicity

Let `∞M (X ) := {f ∈ `∞(X ) : f(x′) ≤ f(x) for all x, x′ ∈ X such that x′ ≤ x}, the set of
bounded nondecreasing, measurable functions on X . We consider the multivariate monotone
rearrangement of Chernozhukov et al. (2009) as a monotonicity-enforcing operator.

Definition 10 (M-Operator) For any rectangular set X that is regular (i.e., has non-
empty interior in Rk), the multivariate increasing rearrangement operator M : `∞(X ) →
`∞M (X ) is defined by

Mf :=
1

|Π|
∑
π∈Π

Mπf,

where π = (π1, . . . , πk) is a permutation of the integers 1, . . . , k, Π is a non-empty subset of
all possible permutations π, and Mπf := Mπ1◦· · ·◦Mπkf, where Mjf is the one-dimensional
increasing rearrangement applied to the function x(j) 7→ f(x(j), x(−j)) defined by

Mjf(x) := inf

{
y ∈ R :

∫
X (j)

1{f(t, x(−j)) ≤ y}dt ≥ x(j)

}
,

the one-dimensional increasing rearrangement applied to the function x(j) 7→ f(x(j), x(−j)).
Here, we use f(x(j), x(−j)) to denote the dependence of f on x(j), the jth-component of x,
and all other arguments, x(−j), and X (j) to denote the domain of x(j) 7→ f(x(j), x(−j)).

Proposition 2 of Chernozhukov et al. (2009) showed that the multivariate increasing
rearrangement is monotonicity-enforcing and distance-reducing with respect to dp for any
p ≥ 1. We state this result as a theorem for the purpose of completeness.

Theorem 11 (Monotonicity Operator) For any regular rectangular set X , the operator
M is `∞M -enforcing with respect to `∞(X ) and is a dp-distance contraction for any p ≥ 1.

Remark 12 (Isotonization Operators) Isotonization operators, i.e., projections on the
set of weakly increasing functions, can also be considered in place of rearrangement and
the results below apply to them. Here we focus on the rearrangement for conciseness.
Chernozhukov et al. (2009) showed, for the one-dimensional case, that isotonization and
convex linear combinations of monotone rearrangement and isotonic regression are also
`∞M -enforcing operators with respect to `∞(X ) and dp-distance contractions for any p ≥ 1.
Extension to the multivariate case follows analogously to Chernozhukov et al. (2009) by an
induction argument.

Remark 13 (Multivariate Distributions) Multivariate distribution functions satisfy stronger
shape restrictions than monotonicity. For example, in the bivariate case they are 2-increasing
(supermodular) and grounded Nelsen (2007). The grounded restriction can be enforced using
a simple variation of the range operator. We are not aware of any operator that enforces
supermodularity.
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2.5 Convexity and Monotonicity

Let `∞CM (X ) := `∞C (X ) ∩ `∞M (X ) be the set of bounded convex and nondecreasing functions
on X . We consider the composition of the C and M operators to enforce both convexity
and monotonicity.

Definition 14 (CM-Operator) For any regular rectangular set X , the convex rearrange-
ment operator CM : `∞S (X )→ `∞S (X ) is defined by

CMf := C ◦Mf.

Remark 15 (Rectangular Domain) The C-operator does not preserve monotonicity in
general.3 When X is a regular rectangle, the C-operator can be obtained by separate appli-
cation to each face of the rectangle and does not affect the monotonicity of the function; see
Lemma 38 in the Appendix. From a practical point of view, we do not find this assumption
very restrictive because the domains usually have the product form X = [a1, b1]×· · ·×[ak, bk]
in applications. If the domain of the target function is not rectangular, we can either restrict
the analysis to a rectangular subset of the domain or extend the function to a rectangular
set that contains the domain.

In the right panel of Figure 1, we apply the operators M and CM to the function f(x) =
[10 exp(3x/2) − b10xc − 10]/25 on X = [0, 1]. The monotonicity-enforced function Mf in
dashed line is not convex, whereas the (convexity and monotonicity)-enforced function CMf
is both monotone and convex. Indeed, CMf is the greatest convex minorant of Mf .

Theorem 16 (Convexity and Monotonicity Operator) For any regular rectangular
set X , the operator CM is `∞CM -enforcing with respect to `∞S (X ) and a d∞-distance con-
traction.

Remark 17 (Proof of Theorem 16 and ordering of composition) The proof of The-
orem 16 does not follow from combining Theorems 8 and 11. As indicated in Remark 15,
the argument is more subtle as we need to verify that the application of the C-operator pre-
serves monotonicity. Moreover, the order of the composition of the operators matters. Thus,
MC := M ◦C is not `∞CM -enforcing because the operator M does not preserve convexity in
general.

Remark 18 (Concavity and Monotonicity) Using the notation for inverse operators
given in the introduction, we can construct composite operators for all the combinations
of concavity/convexity and increasing/decreasing monotonicity restrictions. Thus, the op-
erator CM−f = C[−M(−f)] enforces convexity and decreasing monotonicity, C−Mf =
−C[−M(f)] enforces concavity and increasing monotonicity, and C−M−f = −C[M(−f)]
enforces concavity and decreasing monotonicity. It can be shown that these operators satisfy
analogous properties to CM by a straightforward modification of the proof of Theorem 16.

3. Let X ⊂ R2 be a triangular set with vertices at (−1, 3), (0, 0) and (3,−1). Then, the function f(x) =
1 + 3(x1 +x2)/2−|x1−x2| is increasing on X , but its greatest convex minorant Cf(x) = 1− (x1 +x2)/2
is decreasing on X .

11
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2.6 Quasi-convexity

Quasi-convexity is a global property of a function, which is weaker than convexity. A con-
vex function must be quasi-convex, but a quasi-convex function is not necessarily convex.
Intuitively, a function f defined on a convex domain is quasi-convex if and only if all its
level sets are convex. Please also see its definition in Eq. (2.6) below. Quasi-convexity
is commonly used in economics because it is an ordinal property, preserved by monotone
transformations, which represents well economic relationships such as utility and produc-
tion functions Guerraggio and Molho (2004); Koenker and Mizera (2010); Crouzeix (2017).
Moreover, quasi-convex functions have good optimization properties.

Consider the set of bounded lower semi-continuous quasi-convex functions on X :

`∞Q (X ) := {f ∈ `∞S (X ) : f(αx+ (1− α)x′) ≤ max{f(x), f(x′)} for all x, x′ ∈ X , α ∈ [0, 1]}.
(2.6)

We note that `∞C (X ) ⊂ `∞Q (X ), and that for any f ∈ `∞Q (X ), the lower contour sets,

If (y) := {x ∈ X : f(x) ≤ y}, are convex for all y ∈ R. For any set Z ⊂ Rk, let conv(Z)
denote the convex hull of Z. We consider the following new operator to impose quasi-
convexity:

Definition 19 (Q-Operator) For any convex and compact set X ⊂ Rk, the quasi-convexity
operator Q : `∞S (X )→ `∞S (X ) is defined by

Qf(x) := min {y ∈ R : x ∈ conv[If (y)]} . (2.7)

Remark 20 (Existence of Q-Operator) The restriction of the operator Q to `∞S (X ),
where X is convex and compact, guarantees that the minimum in (2.7) exists (see Lemma 40
in the Appendix). When the set X is non-compact or the function f /∈ `∞S (X ), there exist
counter examples such that the minimum in (2.7) does not exists.4 In such cases, one
might still define Qf(x) := inf {y ∈ R : x ∈ conv[If (y)]}, but this operator appears to lose
the contraction property stated below.

The operator Q transforms any bounded lower semi-continuous function into a quasi-
convex function. To see this, recall that a function is quasi-convex if its domain and all its
lower contour sets are convex. By construction, x ∈ conv[If (y)] if and only if Qf(x) ≤ y.
Therefore, the lower contour set of Qf at any level y ∈ R is IQf (y) = {x ∈ X : Qf(x) ≤
y} = conv[If (y)], which is a convex set.

The left panel of Figure 2 shows a graphical example. We apply the operator Q to the
function f(x) = [10 exp(3x/2) − b10xc − 10]/25 on X = [0, 1]. Here we can see that the
function Qf is the greatest quasi-convex minorant of f , Qf(x) = min{f(x), f(d10xe/10)}.

Theorem 21 (Quasi-Convexity Operator) For any convex and compact set X , the op-
erator Q is `∞Q -enforcing with respect to `∞S (X ) and a d∞-distance contraction.

4. For example, the function f(x) = x[1(x ≤ 0)/(2+x)−1(x > 0)/(2−x)] if |x| 6= 1 and f(1) = f(−1) = −1
is not lower-semicontinuous on X = [−1, 1]. In this case, for any x ∈ (−1, 1), {y : x ∈ conv[If (y)]} =
(−1,+∞), so that Q(x) is not well-defined. The same problem arises if X := (−1, 1), i.e., the domain
X is not compact.
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Figure 2: Left: unconstrained and quasiconvexity-enforced functions. Right:
unconstrained and (convexity, monotonicity and range)-enforced functions. The original

function is f(x) = [10 exp(3x/2)− b10xc − 10]/25.

Remark 22 (Shifted Quasi-Convexity-Enforcing Operator) By similar reasons to
Remark 9, we introduce the shifted quasi-convexity-enforcing operator:

SQf(x) := Qf(x) + λ(X )−1

∫
X

[f(x)−Qf(x)]dx,

where λ(X ) is the Lebesgue measure of X .

2.7 Quasi-Convexity and Monotonicity

Let `∞QM (X ) := `∞Q (X )∩`∞M (X ) be the set of bounded quasi-convex and partially nondecreas-
ing functions on X . This case is only relevant when k > 1 because univariate monotone
functions are quasi-convex. We consider the composition of the Q and M operators to
impose both quasi-convexity and monotonicity.

Definition 23 (QM-Operator) For any regular rectangular set X , the quasi-convex re-
arrangement operator QM : `∞S (X ) 7→ `∞S (X ) is defined by

QMf := Q ◦Mf.

Theorem 24 (Quasi-Convexity and Monotonicity Operator) For any regular rect-
angular set X , the operator QM is `∞QM -enforcing with respect to `∞S (X ) and a d∞-distance
contraction.

The comments and example in Remark 15 also apply to the QM-operator. Thus,
the assumption that X is a rectangular set is sufficient to guarantee that the Q-operator
preserves monotonicity.
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Remark 25 (Quasi-Concavity and Monotonicity) Similar to Remark 18, we can con-
struct composite operators for all the combinations of quasi-concavity/quasi-convexity and
increasing/decreasing monotonicity restrictions. Thus, the operator QM−f = Q[−M(−f)]
enforces quasi-convexity and decreasing monotonicity, Q−Mf = −Q[−M(f)] enforces quasi-
concavity and increasing monotonicity, and Q−M−f = −Q[M(−f)] enforces quasi-concavity
and decreasing monotonicity. It can be shown that these operators satisfy analogous prop-
erties to QM by a straightforward modification of the proof of Theorem 24.

2.8 Range and Other Shape Restrictions

The following theorem shows that the operator R can be composed with C, M and Q
to produce range-constrained convex, monotone or quasi-convex functions. Let `∞CR(X ) :=
`∞C (X ) ∩ `∞R (X ), `∞MR(X ) := `∞M (X ) ∩ `∞R (X ), `∞QR(X ) := `∞Q (X ) ∩ `∞R (X ), CR := C ◦R,
MR := M ◦R, and QR := Q ◦R.

Theorem 26 (Composition with Range Operator) (i) For any convex set X , the op-
erator CR is `∞CR-enforcing with respect to `∞S (X ) and a d∞-distance contraction; (ii) for
any regular rectangular set X , the operator MR is `∞MR-enforcing with respect to `∞(X )
and a dp-distance contraction for any p ≥ 1; and (iii) for any convex and compact set X ,
the operator QR is `∞QR-enforcing with respect to `∞S (X ) and a d∞-distance contraction.

The operator MR can be composed with C and Q to produce range-constrained mono-
tone convex or quasi-convex functions. The properties of the resulting operators CMR :=
C ◦MR and QMR := Q ◦MR follow from combining Theorem 26 with Theorems 16
and 24, respectively. Let `∞CMR(X ) := `∞CM (X )∩ `∞R (X ) and `∞QMR(X ) := `∞QM (X )∩ `∞R (X ).

Corollary 27 (Composition with Range and Monotonicity Operators) (i) For any
regular rectangular set X , the operator CMR is `∞CMR-enforcing with respect to `∞S (X ) and
a d∞-distance contraction; and (ii) for any regular rectangular set X , the operator QMR
is `∞QMR-enforcing with respect to `∞S (X ) and a d∞-distance contraction.

In the right panel of Figure 2, we apply the operators MR and CMR to the function
f(x) = [10 exp(3x/2) − b10xc − 10]/25 on X = [0, 1]. We enforce that the range be in
the interval [0.1, 0.9]. The (monotonicity and range)-enforced function MRf in dashed
line satisfies the monotonicity and range restrictions but is not convex. The (convexity,
monotonicity and range)-enforced function CMRf satisfies the three shape restrictions.

2.9 Shape Restrictions on Transformations

The shape operators can be combined with other functions to enforce shape restrictions on
transformations of the function f . An example is log-concavity where we assume that log f
is concave.5 Let h be a real-valued bijection with inverse function h−1. We consider the
operator Oh that applies the operator O to the transformation h(f) and then recovers the
shape-constrained version of f by inversion, that is

Ohf = h−1 ◦O(h ◦ f).

5. Bagnoli and Bergstrom (2005) discussed applications of log-concavity to economics and statistics, and
analyzed the log-concavity properties of common distributions.
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For example, if f is log-concave, then h(x) = log x and

Ohf = C−logf = exp[C−(log f)].

The following theorem gives conditions under which the transformations h and h−1

preserve the properties of the operator O. Define `∞h,j(X ) = {f ∈ `∞0 (X ) : h ◦ f ∈ `∞j (X )}
for j ∈ {0, 1}.

Theorem 28 (Properties of Oh-Operator) Let O be a `∞1 (X )-enforcing operator with
respect to `∞0 (X ), and y 7→ h(y) be a real valued strictly monotonic bijection on the domain
Y ⊂ R. Then, Oh is a `h,1-enforcing operator with respect to `∞h,0(X ). Moreover, if O is a
ρ-distance contraction, then Oh is a ρh-distance contraction for ρh(f, g) := ρ(h ◦ f, h ◦ g).

2.10 Other Ways of Generating Shape Enforcing Operators

When `∞0 (X ) is a Hilbert space and `∞1 (X ) is a closed set in the L2 metric, it is possible to
construct generic shape-enforcing operators via L2-projection in `∞1 (X ):

Definition 29 (P-Operator) The L2-projection operator on the Hilbert space `∞0 (X ), P :
`∞0 (X )→ `∞0 (X ), is defined by

Pf(x) := arg min
g∈`∞1 (X )

‖f − g‖2. (2.8)

The P-operator involves an infinite dimensional optimization program that can be com-
putationally challenging except for special cases. For example, when `∞1 (X ) = `∞M (X ), the
P-operator corresponds to the isotonization operator that can be computed using the pool
adjacent violators algorithm described in Barlow et al. (1972). The following result, dis-
cussed on p.45 of Chetverikov et al. (2018) and stated here as a theorem for the purpose
of completeness, shows that P is range-enforcing and distance-reducing with respect to d2

under some conditions on `∞1 (X ).

Theorem 30 (L2-Projection Operator) If `∞0 (X ) is a Hilbert space, `∞1 (X ) is a closed
and convex set, and for any f1, f2 ∈ `∞1 (X ) the pointwise maximum and minimum of f1

and f2 belongs to `∞1 (X ), then the operator P is `∞1 -enforcing with respect to `∞0 (X ) and a
d2-distance contraction.

The condition that `∞0 (X ) is a Hilbert space is satisfied when X is bounded. The sets
`
∞
C (X ), `

∞
M (X ), `

∞
Q (X ) and their intersections are convex and closed.6 The condition on

the maximum and minimum is a more restrictive Hilbert lattice property. It is satisfied
by `

∞
M (X ), but not by `

∞
C (X ) and `

∞
Q (X ). Theorem 30 therefore covers the isotonization

operator, but not the convex and quasi-convex projections.

Remark 31 (Proof of Theorem 30) Chetverikov et al. (2018) referred to Lemma 2.4 in
Nishimura and Ok (2012) for the order-preserving and to Lemma 46.5.4 in Zeidler (1984)
for the distance contraction. Reshaping and invariance hold trivially by the definition of the
operator.

6. The set `
∞
O (X ) denotes the intersection of `∞O (X ) with the set of uniformly bounded functions, for

O ∈ {C,M,Q}. The intersection ensures that `
∞
O (X ) is closed in the L2 metric. Alternatively, we can

ensure that `∞O (X ) is closed in the L2 metric by restricting X to be a countable set.
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3. Improved Point and Interval Estimation

We show how to use shape-enforcing operators to improve point and interval estimators of
a shape-constrained function. Let f0 : X → R be the target function, which is known to
satisfy a shape restriction, i.e., f0 ∈ `∞1 (X ). Assume we have a point estimator f of f0,
and an interval estimator or uniform confidence band [fl, fu] for f0. These estimators are
unconstrained and therefore do not necessarily satisfy the shape restrictions, i.e., f, fl, fu ∈
`∞0 (X ) but f, fl, fu 6∈ `∞1 (X ) in general.

There are many different ways to obtain these initial estimators, ranging from parametric
to modern adaptive nonparametric methods (e.g., Fan and Gijbels, 1996; Li and Racine,
2007; Hastie et al., 2009). These methods can be tailored to properties of the target function
such as smoothness or sparsity. A common frequentist confidence band for the function f0

is constructed as

fl(x) = f(x)− cps(x), fu(x) = f(x) + cps(x),

where s(x) is the standard error of f(x) and cp is a critical value chosen such that

P(f0 ∈ [fl, fu]) ≥ p,

for some confidence level p, where event f0 ∈ [fl, fu] means {f0(x) ∈ [fl(x), fu(x)] for all x ∈
X}. Wasserman (2006) provides an excellent overview of methods for constructing the crit-
ical value; see also Giné and Nickl (2010a) and Chernozhukov et al. (2014) for constructions
of adaptive confidence bands in low-dimensional smooth nonparametric models and Bach
et al. (2020) for a recent proposal in high-dimensional generalized additive models. With
a slight abuse of notation, an initial Bayesian credible region [fl, fu] can be constructed
similarly with the constant cp determined such that

Π{f0 ∈ [fl, fu] | S} ≥ p,

where S denotes data (can be a set of statistics derived from data in robust Bayes procedures,
for example, means or empirical moment functions), [fl, fu] is a measurable function of S,
and Π(· | S) denotes posterior distribution of parameter f0 (viewed as a random element in
the Bayesian approach), induced by S and a prior distribution over potential values f0 can
take. We give empirical and numerical examples in Section 5.

To enforce the shape restriction, we apply a suitable shape-enforcing operator to the
original point estimator and end-point functions of the confidence band. The resulting
estimator, Of , and confidence band, [Ofl,Ofu], improve over f and [fl, fu] in the sense
that f lies weakly closer to f0 and the width of the band [Ofl,Ofu] is weakly smaller than
that of [fl, fu], while the coverage is weakly greater. These properties of Of and [Ofl,Ofu]
are a corollary of Definition 1:

Corollary 32 (Improved Point and Interval Estimators) Suppose we have a target
function f0 ∈ `∞1 (X ), an estimator f ∈ `∞0 (X ) a.s., and a confidence band [fl, fu] such that
fl, fu ∈ `∞0 (X ) a.s. If the operator O is `∞1 -enforcing with respect to `∞0 (X ), then a.s.

(1) the `∞1 -enforced confidence band [Ofl,Ofu] has weakly greater coverage than [fl, fu]:

1{f0 ∈ [Ofl,Ofu]} ≥ 1{(f0 ∈ [fl, fu]}.
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If in addition O is a ρ-distance contraction, then a.s.
(2) the `∞1 -enforced estimator Of is weakly closer to f0 than f with respect to the

distance ρ,
ρ(Of, f0) ≤ ρ(f, f0);

(3) and the `∞1 -enforced confidence band [Ofl,Ofu] is weakly shorter than [fl, fu] with
respect to the distance ρ,

ρ(Ofl,Ofu) ≤ ρ(fl, fu).

Part (1) shows that [Ofl,Ofu] provides a coverage improvement over [fl, fu] in that
[Ofl,Ofu] contains f0 whenever [fl, fu] does. Part (2) shows that the shape-enforced point
estimator improves over the original estimator in terms of estimation error measured by
the ρ-distance between the estimator and the target function. Parts (1) and (3) show that
the shape-enforced confidence band not only has greater coverage but also is shorter with
respect to the ρ-distance than the original band. These improvements apply to any sample
size. In particular, they imply that enforcing the shape restriction preserves the statistical
properties of the point and interval estimators. Thus, the shape-enforced estimator inherits
the rate of consistency of the original estimator, and the shape-enforced confidence band
has coverage at least p in large samples if the original band has coverage p in large samples.
Corollary 32 can therefore be coupled with Theorems 5–30 to yield improved inference on
a function that satisfies any of the shape restrictions considered in the previous section. It
is also worthwhile noting that further quantifying the exact size of improvement depends
on f0 and properties of the obtained estimators f and [fl, fu].

Remark 33 (Model Misspecification) Let f∞ denote the probability limit of the esti-
mator f , provided that the limit exists. Model misspecification occurs when f∞ is different
from the target function f0. In this case the results of Corollary 32 still apply. Moreover, if
f∞ does not satisfy the shape restriction, f∞ 6∈ `∞1 (X ), then enforcing this restriction also
improves estimation and inference on Of∞. Thus, the probability limit of the shape-enforced
estimator, Of∞, is closer to f0 in ρ-distance than f∞, and the shape-enforced confidence
band, [Ofl,Ofu], covers Of∞ with at least the same probability as [fl, fu] covers f∞ and
[Ofl,Ofu] is shorter than [fl, fu] in ρ-distance.

4. Implementation Algorithms

We provide implementation algorithms for the different shape-enforcing operators based on
a sample or grid of n points Xn = {x1, . . . , xn} with corresponding values of f given by the
array Yn = {y1, . . . , yn} with yi = f(xi). Computation of the R-operator is trivial, as it
amounts to thresholding the elements of Yn to be between f and f , i.e.,

Rf(xi) = (f ∨ yi) ∧ f.

When k = 1, Chernozhukov et al. (2009) showed that the M-operator sorts the elements
of Yn. Thus, assume that x1 ≤ x2 ≤ . . . ≤ xn and let y(1) ≤ y(2) ≤ . . . ≤ y(n) denote the
sorted array of Yn. Then,

Mf(xi) = y(i).
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When k > 1, each Mj-operator in Definition 10 can be computed by applying the same
sorting procedure to the dimension j sequentially for each possible value of the other di-
mensions. We refer to Chernozhukov et al. (2009) for more details on computation. We
next develop new algorithms for the C and Q operators.

4.1 Computation of C-Operator

When k = 1, we can obtain the greatest convex minorant using the standard method based
on the pool adjacent violators algorithm described in Barlow et al. (1972). We provide an
algorithm for the case where k > 1. By Definitions 6 and 7, the DFL transform of f is the
solution to

Cf(x) = sup
ξ∈f∗(X )

inf
x̃∈X
{ξ′(x− x̃) + f(x̃)}.

This is a saddle point problem that might be difficult to tackle directly. However, when
X is replaced by the finite grid Xn, the problem has a convenient linear programming
representation:

Cf(x) = maxv∈R,ξ∈Rk v (4.9)

s.t. v + ξ′(xi − x) ≤ f(xi), i = 1, 2, . . . , n.

This program can be solved using standard linear programming methods. In particular,
the computational complexity of the standard interior point method for solving (4.9) is
O((k + 1)(n + (k + 1))1.5), where k + 1 is the number of decision variables and n is the
number of constraints.

The following algorithm summarizes the computation of the C-Operator.

Algorithm 1 (C-Operator) (1) Pick a dense enough grid of size n in X , denoted as Xn.
One natural choice is the set of values of x observed in the data. (2) For each x ∈ Xn, solve
the linear programming problem stated in (4.9) to obtain Cf(x).

An alternative to step (2) would be to solve for all points on the grid in a single stacked
linear program at the cost of increased memory due to a large constraint matrix.

4.2 Computation of Q-Operator

We propose a method to compute the Q operator based on solving problem (2.7) on a finite
grid, namely

Qf(x) = min {y ∈ Yn : x ∈ conv[If,n(y)]} ,

where If,n(y) = {xi : yi = f(xi) ≤ y, i = 1, 2, . . . , n}. We find the solution to the program
using the following bisection search algorithm:

Algorithm 2 (Q-Operator) For a given x ∈ Xn: (1) Initialize yL = y(1) and yU = y(n).
(2) Find the median of {y ∈ Yn : yL ≤ y ≤ yU} and assign it to y∗. (3) Compute the lower
contour set If,n(y∗). (4) If x ∈ conv[If,n(y∗)] (which indicates y∗ ≥ Qf(x)), set yU = y∗;
otherwise, set yL = y∗. (5) Repeat (2)–(4) until yU = yL and report Qf(x) = yU .
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The binary search algorithm for the Q-Operator runs in O(log(n)) iterations. The
major computational cost within each iteration is the check of whether x is in the convex
hull in step (4). This check does not require construction of the actual convex hull, which
is computationally expensive especially in high dimensions. Instead, it is sufficient to check
the existence of a feasible solution of a linear program.

We further note that each of the above two algorithms can be run in parallel across the
grid points, because the output of the algorithm for one grid point does not depend on the
output for any other grid point. This parallelizability allows for efficient computation on
nontrivial grids.

5. Numerical Examples

5.1 Univariate Case

We consider an empirical application to growth charts and a calibrated simulation where
the target function f0 is univariate.

5.1.1 Height Growth Charts for Indian Children

Since their introduction by Quetelet in the 19th century, reference growth charts have
become common tools to assess an individual’s health status. These charts describe the
evolution of individual anthropometric measures, such as height, weight, and body mass
index, across different ages. See Cole (1988) for a classical work on the subject, and Wei et al.
(2006) for a detailed analysis and additional references. Here we consider the estimation of
height growth charts imposing monotonicity and concavity restrictions. These restrictions
are plausible, since an individual’s height is nondecreasing in age at a nonincreasing growth
rate during early childhood; see, e.g., Tanner et al. (1966) and the growth child standards
of the World Health Organization at https://www.who.int/childgrowth/en/.

We use the data from Fenske et al. (2011) and Koenker (2011) on childhood malnutrition
in India. These data include a measure of height in centimeters, Y , age in months, X, and
22 covariates, Z, for 37,623 Indian children. All of the children have ages between 0 and 5
years, i.e., X ∈ X = {0, 1, . . . , 59}. The covariates Z include the mother’s body mass index,
the number of months the child was breastfed, and the mother’s age (as well as the square
of the previous three covariates); the mother’s years of education and the father’s years of
education; indicator variables for the child’s sex, whether the child was a single birth or part
of a multiple birth, whether the mother was unemployed, whether the mother’s residence
is urban or rural, and whether the mother has each of: electricity, a radio, a television, a
refrigerator, a bicycle, a motorcycle, and a car; and factor variables for birth order of the
child, the mother’s religion and quintiles of wealth.

We assume a partially linear model for the conditional expectation of Y given X and
Z, namely

E[Y | X = x, Z = z] = f0(x) + z′γ.

The target function is the conditional average growth chart x 7→ f0(x), which we assume
to be nondecreasing and concave. Since X is discrete, we can express f0(x) = P (x)′β,
where P (x) is a vector of indicators for each value in X , i.e., P (X) = [1(X = 0), 1(X =
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Figure 3: Entire Sample: Estimates and 95% confidence bands. Left: f and [fl, fu]. Right:

C−Mf and [C−Mfl,C
−Mfu]

1), . . . , 1(X = 59)]′. We estimate β and γ by least squares of Y on P (X) and Z, and
construct a confidence band for f0 on X using weighted bootstrap with standard exponential
weights and 200 repetitions Præstgaard and Wellner (1993); Hahn (1995). Standard errors
are estimated using bootstrap rescaled interquartile ranges Chernozhukov et al. (2013),
and the critical value is the bootstrap 0.95-quantile of the maximal t-statistic. Weighted
bootstrap is computationally convenient in this application because it is less sensitive than
empirical bootstrap to singular designs, which are likely to arise in the bootstrap resampling
because Z and P (X) contain many indicators.

Figures 3 and 4 report the point estimates and 95% confidence bands of f0 for the entire
sample and a random extract with 1,000 observations, respectively. We use the subsample
to illustrate the deviations from the shape restrictions that are more apparent when the
sample size is small. The original estimates are displayed in the left panels, and the estimates
imposing monotonicity and concavity in the right panels. The original estimates in the entire
sample are nondecreasing in age except at 45 months, and deviate from concavity in some
areas. The M and C− operators correct these deviations. The estimates in the random
extract of the data clearly show deviations from both monotonicity and concavity. The M
and C− operators fix these deviations and produce point estimates that are closer to the
estimates in the entire sample.

5.1.2 Calibrated Monte Carlo Simulation

We quantify the finite-sample improvement in the point and interval estimates of enforcing
shape restrictions using simulations calibrated to the growth chart application. The child’s
height, Y , is generated by

Yi = C−M[P (Xi)
′β̂] + Z ′iγ̂ + σ̂εi, i = 1, . . . , n,
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Figure 4: Subsample with 1,000 observations: Estimates and 95% confidence bands. Left:

f and [fl, fu]. Right: C−Mf and [C−Mfl,C
−Mfu]

where P (Xi) is the vector of indicators for all the values of X ; β̂, γ̂ and σ̂ are the least
squares estimates of β, γ and the residual standard deviation in the growth chart data; and
εi are independent draws from the standard normal distribution. The application of the
C−M-operator guarantees that the target function f0(x) = C−M[P (x)′β̂] is monotone and
concave. We consider six sample sizes, n ∈ {500, 1,000, 2,000, 4,000, 8,000, 37,623}, where
n = 37,623 is the same sample size as in the empirical application. The values of Xi and
Zi are randomly drawn from the data without replacement. The results are based on 500
simulations. In each simulation we construct point and band estimates of f0 using the same
methods as in the empirical application.

Table 1 reports simulation averages of the d∞-distance between the estimates and target
function, coverage of the target function by the confidence band and d∞-length of the
confidence band for the original and shape-enforced estimators. We consider enforcing
concavity with the C−-operator, monotonicity with the M-operator, and both concavity
and monotonicity with the C−M-operator. The improvements from imposing the shape
restrictions are decreasing in the sample size, but there are substantial benefits in estimation
error even with the largest sample size. Enforcing monotonicity has generally stronger
effects than enforcing concavity, but both help improve the estimates. Thus, the C−M-
operator produces the best point and interval estimators for every sample size. For the
smallest sample size, the reduction in estimation error is almost 37% and the improvement
in length of the confidence band is more than 20%. The gains in coverage probability are
also substantial, especially for the smaller sample sizes. Overall, the simulation results
clearly showcase the benefits of enforcing shape restrictions, even with large sample sizes.

We compare the d∞-error of several estimators in the simplified design

Yi = C−M[P (Xi)
′β̂] + σ̂εi, i = 1, . . . , n,
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Table 1: Finite-Sample Properties

‖f − f0‖∞ ‖fu − fl‖∞ P(f0 ∈ [fl, fu]) ‖f − f0‖∞ ‖fu − fl‖∞ P(f0 ∈ [fl, fu])

n = 500 n = 1,000

Original 7.45 26.31 0.69 4.83 18.45 0.84
C− 6.28 21.77 0.79 4.16 16.95 0.89
M 5.23 21.24 0.92 3.72 16.58 0.95
C−M 4.73 20.15 0.93 3.30 15.97 0.95

n = 2,000 n = 4,000

Original 3.35 13.55 0.90 2.29 9.61 0.93
C− 2.93 13.21 0.94 1.98 9.53 0.96
M 2.79 12.89 0.96 2.00 9.43 0.97
C−M 2.48 12.64 0.97 1.76 9.34 0.98

n = 8,000 n = 37,623

Original 1.61 6.92 0.93 0.72 3.22 0.95
C− 1.40 6.90 0.97 0.64 3.21 0.97
M 1.47 6.89 0.96 0.71 3.22 0.96
C−M 1.30 6.87 0.98 0.63 3.21 0.98

Notes: Based on 1,000 simulations. Nominal level of the confidence bands is 95%.

Confidence bands constructed by weighted bootstrap with standard exponential weights and 200 repetitions.

where P (Xi), β̂, σ̂, εi and n are the same as for Table 1. We consider unconstrained, shape-
constrained, shape-enforced, and combinations of shape-enforced and shape-constrained
estimators. The unconstrained estimators include the same estimator as in Table 1 (Piece-
wise Constant) and a locally linear estimator with data-driven choice of bandwidth (Locally
Linear).7 We consider two classical shape-constrained estimators: the isotonic regression
estimator (Isoreg) that imposes monotonicity and the concave regression estimator (Con-
reg) that imposes concavity.8 We illustrate how to combine shape-enforced operators with
shape-constrained estimators by applying the C−-operator to the isotonic regression esti-
mator to enforce monotonicity and concavity. Finally, we compare the C−-operator with
the SC−-operator defined in Remark 9.

Table 2 shows the results based on 5,000 simulations. The comparison between shape-
constrained and shape-enforced estimators produces mixed results, which vary with the

7. The piecewise constant estimator can be viewed as a locally constant estimator with bandwidth equal
to zero. The locally linear estimator is computed using the package KernSmooth Wand (2019) with the
bandwidth chosen by the plug-in method of Ruppert et al. (1995).

8. We compute the isotonic regression using the R command isoreg R Core Team (2019), and the concave
regression using the package cobs Ng and Maechler (2020).
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Table 2: Comparison of Estimators

500 1,000 2,000 4,000 8,000 37,623

Piecewise Constant 5.85 3.93 2.66 1.82 1.27 0.58
C− PC 5.32 3.65 2.49 1.71 1.19 0.54
SC− PC 4.89 3.41 2.34 1.59 1.10 0.52
M PC 3.73 2.83 2.13 1.55 1.15 0.57
C−M PC 3.54 2.67 2.01 1.46 1.08 0.53
SC−M PC 3.29 2.45 1.84 1.33 0.97 0.50

Conreg 3.04 2.27 1.64 1.16 0.83 0.42
Isoreg 3.82 2.95 2.21 1.60 1.17 0.57

C− Isoreg 3.52 2.75 2.08 1.50 1.10 0.53
SC− Isoreg 3.28 2.53 1.90 1.37 1.00 0.50

Locally Linear 2.66 2.03 1.53 1.15 0.87 0.52
C− LL 2.64 2.02 1.52 1.14 0.87 0.52
SC− LL 2.61 1.99 1.51 1.13 0.87 0.53
M LL 2.60 1.99 1.50 1.13 0.87 0.52
C−M-LL 2.58 1.98 1.50 1.13 0.87 0.52
SC−M LL 2.54 1.94 1.48 1.12 0.86 0.52

Notes: Based on 5,000 simulations. Entries are ‖f − f0‖∞.

estimator, shape restriction and sample size. Thus, the M-operator outperforms Isoreg
for both unconstrained estimators, whereas Conreg outperforms the C-operator applied to
Piecewise Constant. The unconstrained locally linear estimator outperforms Isoreg, Conreg
and the shape-enforced estimators applied to Piecewise Constant for most sample sizes,
despite the target function not being smooth. This finding highlights the benefit of using
estimators that exploit smoothness when the sample size is not large. On the other hand,
the shape-enforcing operators are more effective when applied to estimators such as Piece
Constant and Isoreg that do not rely on smoothness. Shifting the C−-operator to deal with
potential bias generally reduces estimation error for all the estimators considered.

5.2 Multivariate Case

We consider an empirical application to production functions and a calibrated simulation
where the target function f0 is bivariate.

5.2.1 Production Functions of Chinese Firms

The production function is a fundamental relationship in economics that maps the quantity
of inputs, such as capital, labor and intermediate goods, to the quantity of output of a
firm. When there are only two inputs, the law of diminishing marginal rate of technical
substitution dictates that the production function of a firm is nondecreasing and quasi-
concave in the inputs Hicks and Allen (1934). If in addition the industry exhibits diminishing
returns to scale, then the production function is concave in the inputs. We use the data
from Jacho-Chávez et al. (2010), and Horowitz and Lee (2017) to estimate the production
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function of Chinese firms in the chemical industry. These data contain information on
real value added (output), real fixed assets (capital) and number of employees (labor) for
1,638 firms in 2001.9 We estimate a production function using these data and enforce the
monotonicity and quasi-concavity restrictions. We provide results from enforcing concavity
only for illustrative purposes because the chemical industry might exhibit increasing returns
to scale at some levels of the inputs.

Figure 5 shows 3-dimensional estimates and 95% confidence bands for the average pro-
duction function, together with upper contour sets for the point estimates. The estimates
and bands are displayed in a region defined by the tensor product of two grids for labor
and capital. Each grid includes 20 equidistant points from the 10% to the 90% sample
percentiles of the corresponding variable. We obtain the unconstrained estimates from least
squares with the tensor product of third-degree global polynomials as the two marginal
bases for capital and labor. The confidence bands are constructed using weighted bootstrap
with standard exponential weights and 500 repetitions. Standard errors are estimated using
bootstrap rescaled interquartile ranges and the critical value is the bootstrap 0.95-quantile
of the maximal t-statistic. Many of the upper contour sets of the unconstrained point es-
timates are far from being convex, and thus imply a violation of quasi-concavity. In fact,
violations of monotonicity occur over a considerable area—most notably, see the positive
slopes of the contour curves at low levels of labor and high levels of capital (the upper-left
region of the contour plot).

The second row of Figure 5 shows the results after the Q−M-operator is applied to
the point estimates and to each end-point function of the confidence band to ensure mono-
tonicity and quasi-concavity. The contour curves are convex by construction, and thus
satisfy the quasi-concavity restrictions. Finally, the third row of Figure 5 shows the results
after the C−M-operator is applied to enforce monotonicity and concavity. Although quasi-
concavification of a production function estimate is always reasonable, whether restriction
to concavity is appropriate depends on prior knowledge of the industry.

5.2.2 Calibrated Monte Carlo Simulation

Similar to the univariate case, we now explore the finite-sample improvements from enforcing
shape restrictions via simulations calibrated to the production function application. The
output, Y , of each firm is generated by

Yi = γ̂ + β̂1Li + β̂2Ki + σ̂εi, i = 1, . . . , n,

where γ̂, β̂1, β̂2 and σ̂ are calibrated to the least squares estimates and the residual standard
deviation of this linear regression model in the production function data; εi are independent
draws from the standard normal distribution; and n is the sample size of the simulated data.
The vector (L,K) of labor and capital is drawn without replacement from the original data.
The target function is

f0(l, k) := E[Y | L = l,K = k] = γ̂ + β̂1l + β̂2k,

which is increasing and concave in the capital and labor inputs because β̂1 > 0 and β̂2 > 0.
We consider five sample sizes, n ∈ {100, 200, 500, 1,000, 1,638}, where n = 1,638 is the same

9. Following Jacho-Chávez et al. (2010) and Horowitz and Lee (2017), we drop observations with a capital-
to-labor ratio below the 0.025 sample quantile or above the 0.975 sample quantile.
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Figure 5: Confidence Bands and Countour Maps of Shape-Constrained and Unconstrained
Estimates of the Production Function. Output and capital are measured in millions of

2000 yuan, and labor is measured in thousands of workers.
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Table 3: Finite-Sample Properties

n
100 200 500 1,000 1,638

P(f0 ∈ [fl, fu]) Original 0.83 0.89 0.93 0.94 0.95
Q−M 0.93 0.97 0.98 0.97 0.96
C−M 0.93 0.97 0.99 0.98 0.97

‖f − f0‖∞ Original 297 88.9 36.5 20.4 13.2
Q−M 271 67.1 26.6 17.6 12.7
SQ−M 270 66.7 26.2 17.4 12.6
C−M 270 66.3 25.7 17.3 12.6
SC−M 250 63.0 25.2 17.3 12.6

‖fu − fl‖∞ Original 2297 484 190 109 72.0
Q−M 1441 332 135 82.8 62.0
C−M 1440 331 135 82.8 62.0

Notes: Based on 5,000 simulations. Nominal level of the confidence

bands is 95%. Confidence bands constructed by weighted bootstrap

with standard exponential weights and 500 repetitions.

sample size as in the empirical application. The results are based on 5,000 simulations. In
each simulation we construct point and band estimates of f0 using the same methods as in
the empirical application.

Table 3 reports the same diagnostics as Table 1. The operators Q−M and C−M perform
similarly in this case. Both bring substantial gains in estimation and inference, and the
shifted variants bring additional gains. Shifting the C−M operator in particular has a
notable effect on estimation error for small sample sizes. The operators reduce estimation
error between 5% and 31% and the width of the confidence band between 14% and 37% in
the sup-norm, depending on the sample size. The operators also improve the coverage of the
confidence bands, especially for the smaller sample sizes. Indeed, enforcing the constraints
compensates for the undercoverage of the unconstrained estimates for most of the sample
sizes considered.

6. Conclusion

In this paper, we investigate a pool of shape-enforcing operators, including range, rear-
rangement, double Legendre-Fenchel, quasi-convexification, composition of rearrangement
and double Legendre-Fenchel, and composition of rearrangement and quasi-convexification
operators. We show that enforcing the shape restrictions through these operators improves
point and interval estimators, and provide computational algorithms to implement these
shape-enforcing operators. It would be useful to develop operators to enforce other shape
restrictions, such as supermodularity or the Slutsky conditions for demand functions. We
leave this extension to future research.
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Appendix A. Proofs

Proof of Theorem 5

We first show that R satisfies the three properties of Definition 1.
(1) Reshaping: it holds because for any f ∈ `∞(X ), Rf ∈ `R(X ) by construction.
(2) Invariance: it holds trivially because Rf = f for any f ∈ `R(X ) by definition of R.
(3) Order preservation: assume that f, g ∈ `∞(X ) are such that f ≥ g. For any

x ∈ X there are three possible cases. (a) If f(x) ≥ f , then Rf(x) = f ≥ Rg(x). (b)
If f(x) ≤ f , then g(x) ≤ f , and Rf(x) = f = Rg(x). (c) if f < f(x) < f , then

Rf(x) = f(x) ≥ max(g(x), f) = Rg(x) because g(x) < f . Thus, Rf(x) ≥ Rg(x) for any
x ∈ X .

We next show Definition 2 for ρ = dp for any p ≥ 1. For any f, g ∈ `∞(X ) assume
without loss of generality that f(x) ≥ g(x) for some x ∈ X . We need to show that
|Rf(x) − Rg(x)| ≤ f(x) − g(x). There are five possible cases. (a) If f(x) ≥ g(x) ≥ f ,
then |Rf(x) − Rg(x)| = |f − f | = 0 ≤ f(x) − g(x). (b) If f(x) ≥ f ≥ g(x), then
Rf(x) = f ≤ f(x), and Rg(x) ≥ g(x). By the order preservation property proved in (3),
0 ≤ |Rf(x) − Rg(x)| ≤ f(x) − g(x). (c) If f > f(x) ≥ g(x) ≥ f , then Rf(x) = f(x)

and Rg(x) = g(x), and |Rf(x) − Rg(x)| = f(x) − g(x). (d) If f > f(x) > f ≥ g(x),
then 0 ≤ |Rf(x) − Rg(x)| = f(x) − f ≤ f(x) − g(x). (e) If f ≥ f(x) ≥ g(x), then
|Rf(x)−Rg(x)| = |f − f | = 0 ≤ f(x)− g(x).

Proof of Theorem 8

Before we prove Theorem 8, we recall some useful geometric properties of the Legendre-
Fenchel transform.

Lemma 34 (Properties of Legendre-Fenchel transformation) Given a convex set X ⊂
Rk, suppose that f, g ∈ `∞S (X ). Then:

(1) Lower semi-continuity: LX f ∈ `∞S (Rk).
(2) Convexity: LX f is closed convex on Rk.
(3) Order reversing: If f ≥ g, then LX f ≤ LX g.
(4) d∞-Distance reducing: ‖LX f − LX g‖∞ ≤ ‖f − g‖∞.

Proof [Proof of Lemma 34] (1) For any ξ ∈ f∗(X ) and ε > 0, there must exist x0 ∈ X such
that ξ′x0−f(x0) ≥ LX f(ξ)−ε/2. Then, for any ξ1 such that ||ξ−ξ1||2 ≤ min[1, ε/(2||x0||)],
we have:

LX f(ξ1) ≥ ξ′1x0 − f(x0) = (ξ1 − ξ)′x0 + ξ′x0 − f(x0) ≥ −||ξ − ξ1||2||x0||+ LX f(ξ)− ε

2

≥ − ε
2

+ LX f(ξ)− ε

2
≥ LX f(ξ)− ε.

Hence, LX f(ξ) is lower semi-continuous at ξ. Since ξ can be arbitrary, we conclude that
LX f is a lower semi-continuous function.

Properties (2) and (3) are shown in Theorem 1.1.2 and Proposition 1.3.1 in Chapter E
of Hiriart-Urruty and Lemaréchal (2001). For (4), it is easy to check that ‖LX f−LX g‖∞ =
supξ∈Rk |LX f(ξ)− LX g(ξ)| ≤ supξ∈Rk supx∈X |{ξ′x− f(x)} − {ξ′x− g(x)}| ≤ ‖f − g‖∞.
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Remark 35 The Legendre-Fenchel transform ξ 7→ LX f(ξ) is locally Lipshitz, because any
convex function is locally Lipshitz. Statement (4) of Lemma 34 is known as Marshall’s
Lemma Marshall (1970).

Next, we derive some properties for the Double Legendre-Fenchel transformation.

Lemma 36 (Properties of C-Operator) Given a convex set X ⊂ Rk, suppose that f ∈
`∞S (X ). Then:

(1) Cf is the greatest convex minorant of f , i.e., the largest function g ∈ `∞C (X ) such
that g ≤ f .

(2) If X is compact, for any x ∈ X there exist d ≤ k+2 points x1, x2, . . . , xd and scalars
(α1, α2, . . . , αd) ∈ ∆d−1, where ∆d−1 is the (d− 1)-simplex

∆d−1 :=

α ∈ Rd : αj ≥ 0, j = 1, 2, . . . , d,
d∑
j=1

αj = 1

 ,

such that

Cf(x) =
d∑
i=1

αif(xi), (A.10)

where x =
∑d

i=1 αixi and f(xi) = Cf(xi), 1 ≤ i ≤ d.

(3) We say that f is convex at x ∈ X if there exists a supporting hyperplane with
direction ξ such that f(x̃) ≥ f(x) + ξ′(x̃ − x) for all x̃ ∈ X . Then, f(x) = Cf(x) if and
only if f is convex at x. Furthermore, if f is convex at every x ∈ X , then f is a convex
function.

Proof [Proof of Lemma 36] Statement (1): Recall that Cf := Lf∗(X ) ◦ LX f . We first
show that Cf ∈ `∞C (X ) and Cf ≤ f . For any g ∈ f∗(X ), Lf∗(X )g is a closed convex
function by Lemma 34(2), so that Cf ∈ `∞C (X ). Let f∗ := LX f . For any x ∈ X , Cf(x) =
Lf∗(X )f

∗(x) = supξ∈f∗(X ){ξ′x − f∗(ξ)} ≤ supξ∈f∗(X )(ξ
′x − (ξ′x − f(x))) = f(x) because

f∗(ξ) ≥ ξ′x− f(x) for any ξ ∈ f∗(X ) by definition of f∗.

Next, we show that Cf is the convex minorant of f , i.e. Cf ≥ h for any h ∈ `∞C (X )
such that h ≤ f . If h ∈ `∞C (X ), for any x ∈ X , there exists ξ ∈ f∗(X ) such that h(x̃) ≥
h(x) + ξ′(x̃− x) for all x̃ ∈ X . Since h(x̃) ≤ f(x̃),

ξ′x− h(x) ≥ ξ′x̃− h(x̃) ≥ ξ′x̃− f(x̃). (A.11)

By definition, f∗(ξ) = supx̃∈X {ξ′x̃ − f(x̃)}, so that for any ε > 0, there must exist x̃ ∈ X
such that ξ′x̃− f(x̃) ≥ f∗(ξ)− ε, which combined with (A.11) gives ξ′x− h(x) ≥ f∗(ξ)− ε,
or rearranging terms, ξ′x − f∗(ξ) ≥ h(x) − ε. Then, Cf(x) = supξ̃∈f∗(X ){ξ̃

′x − f∗(ξ̃)} ≥
ξ′x− f∗(ξ) ≥ h(x)− ε. Since ε can be arbitrarily small, we conclude that Cf(x) ≥ h(x).
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Statement (2): by Proposition 2.5.1. in Chapter B of Hiriart-Urruty and Lemaréchal
(2001),

Cf(x) = inf


k+2∑
j=1

αjf(xj) :
k+2∑
j=1

αjxj = x, α = (α1, . . . , αk+2) ∈ ∆k+1

 , (A.12)

where ∆k+1 is the (k + 1)-simplex.
By (A.12), there exists a sequence (xt, αt) ∈ X × ∆k such that

∑k+2
j=1 α

t
jx
t
j = x and

Cf(x) ≤
∑k+2

j=1 α
t
jf(xtj) + 1

t . Since X × ∆k+1 is compact, there must exist a limit point

(x0, α0) ∈ X×∆k+1 of the sequence (xt, αt) such that
∑k+2

j=1 α
0
jx

0
j = limt→∞

∑k+2
j=1 α

t
jx
t
j = x,

and by lower semi-continuity of f ,
∑k+2

j=1 α
0
jf(x0

j ) ≤ limt→∞
∑k+2

j=1 α
t
jf(xtj) = Cf(x). Then,

it follows from (A.12) that
∑k+2

j=1 α
0
jf(x0

j ) = Cf(x). Equivalently,
∑k+2

j=1 α
0
jx

0
j = x, and

k+2∑
j=1

α0
jf(x0

j ) = Cf(x). (A.13)

Let (α1, . . . , αd) and (x1, . . . , xd) denote the subsets of (α0
1, . . . , α

0
k+2) and (x0

1, . . . , x
0
k+2)

corresponding to the components with α0
j > 0, where j = 1, 2, . . . , k + 2 and d ≤ k + 2.

Next, we show that f(xj) = Cf(xj), for 1 ≤ j ≤ d. By statement (1), since Cf is the
convex minorant of f , it follows that x 7→ Cf(x) is convex and Cf(x) ≤ f(x) for all x ∈ X .
In particular,

Cf(x) ≤
d∑
j=1

αjCf(xj) ≤
d∑
j=1

αjf(xj).

By (A.13), the two inequalities imply that

d∑
j=1

αjCf(xj) =
d∑
j=1

αjf(xj).

Since Cf(xj) ≤ f(xj) for all j = 1, 2, . . . , d, it follows that f(xj) = Cf(xj) for all j =
1, 2, . . . , d.

This completes the proof of statement (2).
Statement (3): Cf(x) ≤ f(x) for all x ∈ X by (1). If there exists a ξ ∈ Rk such that

f(x̃) ≥ f(x)+ξ′(x̃−x) for any x̃ ∈ X , then g(x̃) = f(x)+ξ′(x̃−x) is a convex function that
lies below f . By (1), Cf(x) ≥ g(x) = f(x). Therefore, Cf(x) = f(x). On the other hand,
suppose that Cf(x) = f(x). Since x 7→ Cf(x) is convex on X , there must exist ξ ∈ Rk such
that Cf(x̃) ≥ Cf(x) + ξ′(x̃− x) for any x̃ ∈ X . By definition of greatest convex minorant,
f(x̃) ≥ Cf(x̃) ≥ Cf(x) + ξ′(x̃ − x) = f(x) + ξ′(x̃ − x) for any x̃ ∈ X . So Cf(x) = f(x)
implies that f is convex at x.

If f is convex at every x ∈ X , then by the results above, f(x) = Cf(x) for every x ∈ X .
That is, f = Cf , which implies that f is convex on X because Cf is convex on X .

Theorem 8 follows from the properties in Lemmas 34 and 36. The properties (1) and
(3) in Definition 1 are implied by properties (2) and (3) of Lemma 34 applied to LX f and
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using that LX f ∈ `∞S (Rk) by property (1) of Lemma 34. The property (2) in Definition 1 is
implied by property (3) of Lemma 36. Moreover, the d∞-contraction property is given by
property (4) in Lemma 34 again applied to LX f and using that LX f ∈ `∞S (Rk) by property
(1) of Lemma 34.

Proof of Theorem 16

We start by demonstrating that the C-operator on a rectangle can be computed separately
at each face of the rectangle.

Definition 37 (C-Operator Restricted to a Face of a Rectangle) For any regular rect-
angular set X := [a1, b1] × . . . × [ak, bk], a set Fm is an m-dimensional face of X if there
exists a set of indexes i(F) ⊂ {1, 2, . . . , k} with m elements such that Fm = {x ∈ X :
xj ∈ [aj , bj ], for any j ∈ i(F), xj ∈ {aj , bj}, for any j /∈ i(F)}. For every x ∈ Fm, we can
define the C-operator restricted to the face Fm by applying the Legendre-Fenchel transform
only to each of the coordinates of x that are in i(Fm). Thus, let

LX|Fm
f(ξ) := sup

x∈Fm

{ξ′xi(Fm) − f(xi(Fm), xic(Fm))},

where we partition x into the coordinates with indexes in i(Fm), xi(Fm), and the rest of the
coordinates, ic(Fm). Then, the C-operator restricted to the face Fm of f ∈ `∞S (X ) is

CX|Fm
f(x) := Lf∗(X|Fm) ◦ LX|Ff(x),

where f∗(X | Fm) := {ξ ∈ Rm : LX|Fm
f(ξ) < ∞}. Moreover, by Proposition 2.5.1 of

Hiriart-Urruty and Lemaréchal (2001), CX|Ff(x) is a linear combination of the f -images
of m+ 2 elements of Fm, that is

CX|Ff(x) = inf


m+2∑
j=1

αjf(xj) : xj ∈ Fm, (α1, . . . , αm+2) ∈ ∆m+1

 , for any x ∈ Fm,

where ∆m+1 is the (m+ 1)-simplex.

Lemma 38 (C-Operator on a Regular Rectangular Set) For any regular rectangu-
lar set X and f ∈ `∞S (X ), if x ∈ Fm with m > 0, then

Cf(x) = CX|Fm
f(x).

Proof [Proof of Lemma 38] Suppose that X is a regular rectangle in Rk. Let Fm be a face
of X with dimension m such that x ∈ Fm. The result follows from the following facts:

First, x 7→ Cf(x) is a convex function and lies below x 7→ f(x) on X , so that x 7→ Cf(x)
is a convex function and lies below x 7→ f(x) on Fm ⊂ X . By definition, CX|Fm

f is the
convex minorant of f restricted on Fm, i.e., the largest possible convex function lying below
f restricted on Fm. Therefore, it must be that CX|Fm

f ≥ Cf(x) for all x ∈ Fm.
Second, by statement (2) of Lemma 36, for any x ∈ Fm, there exist d ≤ k + 2 points

x1, . . . , xd and αi > 0, 1 ≤ i ≤ d,
∑d

i=1 αi = 1, such that Cf(xi) = f(xi),
∑d

i=1 αixi = x,

and
∑d

i=1 αif(xi) = f(x). It must be that xi ∈ Fm, 1 ≤ i ≤ d, since x ∈ Fm.
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Third, by definition of greatest convex minorant, on the face Fm, f(x) ≥ CX|Fm
f(x) for

any x ∈ Fm. Since CX|Fm
f(x) is the convex minorant of f(x) restricted on Fm, and Cf is

a convex function on Fm, it follows that CX|Fm
f(x) ≥ Cf(x) for any x ∈ Fm. Therefore,

f(x) ≥ CX|Fm
f(x) ≥ Cf(x) (A.14)

for all x ∈ Fm.
Fourth, for each xi, i = 1, 2, . . . , d, we know that f(xi) = Cf(xi). Applying equation

(A.14), it must be that f(xi) = CX|Fm
f(xi) = Cf(xi). Therefore,

Cf(x) =
d∑
i=1

αif(xi) =
d∑
i=1

αiCX|Fm
f(xi) ≥ CX|Fm

f(x), (A.15)

where the inequality follows from convexity of x 7→ CX|Fm
f(x).

Combining inequalities (A.14) and (A.15), we conclude that CX|Fm
f(x) = Cf(x).

Before stating the main proof of Theorem 16, we require a lemma to show that M maps
a function in `∞S (X ) to `∞S (X ).

Lemma 39 Suppose X = [0, 1]k. The rearrangement operator maps any function f ∈
`∞S (X ) to `∞S (X ).

Proof First, it is easy to see that for any f1, f2 ∈ `∞S (X ) and a, b ≥ 0, af1 + bf2 ∈ `∞S (X ).
Therefore, to show that M maps a function f ∈ `∞S (X ) to `∞S (X ), it suffices to show
that Mπ maps a function f ∈ `∞S (X ) to `∞S (X ), since Mf =

∑
π∈Π Mπf/|Π|. Denote

π = (π1, . . . , πk), so Mπ = Mπ1 ◦ · · ·◦Mπk . For any function f ∈ `∞S (X ) and j = 1, 2, . . . , k,
we would like to prove that Mjf ∈ `∞S (X ). If the statement above is true, then it follows
that Mπf = Mπ1 ◦ · · · ◦Mπkf ∈ `∞S (X ). Consequently, the conclusion of the lemma is true.

Second, we prove that for any function f ∈ `∞S (X ) and j = 1, 2, . . . , k, Mjf ∈ `∞(X ).
Without loss of generality, we can assume j = 1. By definition,

M1f(x(1), x(−1)) = inf

{
y ∈ R :

∫
X (1)

1{f(t, x(−1)) ≤ y}dt ≥ x(1)

}
.

For any x(1) ∈ [0, 1] and x(−1) ∈ [0, 1]k−1,
∫
X (1) 1{f(t, x(−1)) ≤ ymax}dt = 1 ≥ x(1),

and
∫
X (1) 1{f(t, x(−1)) ≤ (ymin − ε)}dt = 0 < x(1), where ymax = supx∈X f(x), ymin =

infx∈X f(x) and ε > 0 can be any arbitrarily small constant. Since f ∈ `∞S (X ), ymin

and ymax exist. Therefore, inf
{
y ∈ R :

∫
X (1) 1{f(t, x(−1)) ≤ y}dt ≥ x(1)

}
must be well

defined and bounded by ymax from above and by ymin − ε from below. We conclude that
M1f ∈ `∞(X ).

Third, we show that M1f ∈ `∞S (X ) if f ∈ `∞S (X ). We prove this by contradiction:
suppose that M1f is not lower semi-continuous at a point x0 ∈ X . There must exist a
sequence x1, . . . , xn, . . . in X and a constant ε > 0 such that ‖xn − x0‖ → 0 as n→∞ and
M1f(xn) ≤M1f(x0)− ε for all n ≥ 1. Let y0 := M1f(x0). By definition of M1f , it must
be that

∫
X (1) 1{f(t, x0(−1)) ≤ y0 − ε

2}dt < x0(1), and
∫
X (1) 1{f(t, xn(−1)) ≤ y0 − ε}dt ≥
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xn(1) for all n ≥ 1. For any t ∈ [0, 1], since f ∈ `∞S (X ) and (t, xn(−1)) → (t, x0(−1)),
limn→∞ f(t, xn(−1)) ≥ f(t, x0(−1)). Therefore, there exists N large enough such that
f(t, xn(−1)) ≥ f(t, x0(−1)) − ε

2 for all n ≥ N . Consequently, 1{f(t, xn(−1)) ≤ y0 − ε} ≤
1{f(t, x0(−1)) ≤ y0 − ε

2} for all n ≥ N . Then,

lim sup
n→∞

1{f(t, xn(−1)) ≤ y0 − ε} ≤ 1{f(t, x0(−1)) ≤ y0 − ε

2
}

holds for all t. By reverse Fatou’s Lemma,

lim sup
n→∞

∫
X (1)

1{f(t, xn(−1)) ≤ y0 − ε}dt ≤
∫
X (1)

lim sup
n→∞

1{f(t, xn(−1)) ≤ y0 − ε}dt

≤
∫
X (1)

1{f(t, x0(−1)) ≤ y0 − ε

2
}dt. (A.16)

However,
∫
X (1) 1{f(t, x0(−1)) ≤ y0− ε

2}dt < x(1)0, while lim supn→∞
∫
X (1) 1{f(t, xn(−1)) ≤

y0 − ε}dt ≥ lim supn→∞ x
n(1) = x0

1. Hence,

lim sup
n→∞

∫
X (1)

1{f(t, xn(−1)) ≤ y0 − ε}dt ≥ x0
1 >

∫
X (1)

1{f(t, x0(−1)) ≤ y0 − ε

2
}dt,

which contradicts (A.16). Therefore, we conclude that M1f ∈ `∞S (X ) if f ∈ `∞S (X ).

We now start the proof of Theorem 16.
(1) We first show that CM satisfies the reshaping property (1) of Definition 1.
We know that CMf = C(Mf). By Lemma 39, for any f ∈ `∞S (X ), Mf ∈ `∞S (X ).

Consequently, Mf ∈ `∞S (X ) ∩ `∞M (X ).
We use induction to prove that Cf ∈ `∞CM (X ) for any f ∈ `∞S (X ) ∩ `∞M (X ), where

X ⊂ Rk is a regular rectangular set. Without loss of generality, assume that X = [0, 1]k.
Since Cf ∈ `∞C (X ) by Theorem 8, we only need to show that Cf ∈ `∞M (X ).

For dimension k = 1, X is a closed interval. We prove that Cf is nondecreasing.
Assume, by contradiction, that there exists a pair of points x, x′ ∈ X such that x <
x′ and Cf(x) > Cf(x′). Let x be the left end point of the interval X . By convexity,
Cf(x) ≥ Cf(x) > Cf(x′). By Lemma 38, Cf(x) = CX|F0

f(x) = f(x). By statement

(2) of Lemma 36, there exist x1, . . . , xd ∈ X and α1, . . . , αd > 0,
∑d

j=1 αj = 1 such that

Cf(x′) = Cf(x′) =
∑d

j=1 αjf(xj). Since f is nondecreasing, we have
∑d

j=1 αjf(xj) ≥∑d
j=1 αjf(x) = f(x), which contradicts that Cf(x) > Cf(x′). Hence, for any x < x′, it

must be that Cf(x) ≤ Cf(x′). We conclude that x 7→ Cf(x) is nondecreasing.
Suppose that x 7→ Cf(x) is nondecreasing for (k − 1)-dimensional regular rectangles,

k ≥ 2. Let X be a k-dimensional rectangle. Assume, by contradiction, that there exists
x ≤ x′ (x 6= x′) such that Cf(x) > Cf(x′). Consider the radial originated from x′ that
passes through x, denoted as L. L can be written as {z ∈ Rk : z = γx′ + (1− γ)x, γ ≤ 1}.
Therefore, there exists a γ0 ≤ 0 such that γx′ + (1− γ)x ∈ X ∩L if and only if 1 ≥ γ ≥ γ0.
Denote l = γ0x

′ + (1− γ0)x. By convexity of x 7→ Cf(x), it must be that

Cf(l) ≥ Cf(x) > Cf(x′). (A.17)
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By statement (2) of Lemma 36, there are d points x1, . . . , xd ∈ X and α1, . . . , αd > 0,∑d
i=1 αi = 1, such that

∑d
j=1 αjxi = x′ and

∑d
j=1 αjf(xj) = Cf(x′). The point l must

be on a k − 1 dimensional face of X , denoted by Fk−1. Since X = [0, 1]k, Fk−1 can be
expressed as A1 × A2 × . . .× Ak, where Ai = [0, 1] for i ∈ i(Fk−1), i(Fk−1) ⊂ {1, 2, . . . , k},
|i(Fk−1)| = k − 1, and Ai = {0} or {1} if i /∈ i(Fk−1). Without loss of generality, we can
assume that i(Fk−1) = {1, 2, . . . , k − 1}. Denote Ak = {w}, so w = 0 or 1.

Let s be the projection mapping from X = [0, 1]k to Fk−1, so s : (x(1), . . . , x(k)) 7→
(x(1), . . . , x(k − 1), w) for any x(1), . . . , x(k) ∈ [0, 1]. Since l ∈ Fk−1, it must be that
s(l) = l. If w = 0, s(x) ≤ x for any x ∈ X . Therefore, s(x1) ≤ x1, . . . , s(xd) ≤ xd. Then,
since x 7→ f(x) is nondecreasing, f(xi) ≥ f(s(xi)) for all i = 1, 2, . . . , d. If w = 1, then any
point x ∈ Fk−1 satisfies x(k) = 1, including l. Since x′ ≥ l, the kth entry of x′ must equal
to 1. By

∑d
j=1 αjxj = x′, xj ∈ [0, 1]k, it must be that the kth entry of xj equals to 1 for

all i = 1, 2, . . . , d. Therefore, s(xj) = xj , and s(x′) = x′. Therefore, regardless of the value

of w, xj ≥ s(xj), x
′ ≥ s(x′). Since x′ ≥ l, it must be that l ≤ s(x′) =

∑d
j=1 αjs(xj). By

Lemma 9, CX|Ff(l) = Cf(l) and by (A.17),

CX|Ff(l) = Cf(l) > Cf(x′) =
d∑
i=1

αif(xi) ≥
d∑
i=1

αif(s(xi))

≥
d∑
i=1

αiCX|Ff(s(xi)) ≥ CX|Ff(s(x′)),

where the second inequality holds by monotonicity of x 7→ f(x), the third inequality by
CX|F being the convex minorant of f , and the fourth by convexity of x 7→ CX|Ff(x).
Therefore,

CX|Ff(l) > CX|Ff(s(x′)). (A.18)

By induction, CX|Ff restricted on the k − 1 dimensional regular rectangle F is non-
decreasing. Since s(x′) ≥ l, it must be that CX|Ff(s(x′)) ≥ CX|Ff(l), which contradicts
(A.18). Hence, the induction is complete. x 7→ Cf(x) is nondecreasing if x 7→ f(x) is
nondecreasing. Therefore, for any f ∈ `∞S (X ), CMf is monotonically increasing.

We next show that CM satisfies the rest of the properties of Definition 1 and distance
reduction.

(2) To show invariance, note that if f ∈ `∞CM (X ), then Mf = f by Theorem 11, and
therefore CMf = C(Mf) = Cf = f by definition of CM and Theorem 8.

(3) Similarly, CM is order preserving because if f ≥ g then Mf ≥Mg by Theorem 11,
and therefore CMf = C(Mf) ≥ C(Mg) = CMg by definition of CM and Theorem 8.

(4) Finally, CM is a d∞−distance contraction because

d∞(CMf,CMg) = d∞(C[Mf ],C[Mg]) ≤ d∞(Mf,Mg) ≤ d∞(f, g),

where the first equality follows from definition of CM, the first inequality by Theorem 8,
and the second inequality by Theorem 11.

Proof of Theorem 21

We start with a lemma establishing that the operator Q is well-defined.
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Lemma 40 (Properties of Operator Q) For any convex and compact set X ⊂ Rk, the
operator Q defined in (2.7) is well-defined in that the minimum of the set {y ∈ R : x ∈ conv[If (y)]}
exists for all x ∈ X and Qf ∈ `∞S (X ) for any f ∈ `∞S (X ).

Proof Define Qf (x) := {y ∈ R : x ∈ conv[If (y)]}. We first show that minQf (x) exists.
Obviously, infQf (x) ≥ f(x) > −∞, because If (y) ⊂ conv[If (y)] and x ∈ If (f(x)). Hence,
Qf (x) is bounded from below. Let y0 := infQf (x). We need to show that minQf (x) = y0,
i.e, there exists a sequence of y1, . . . , yi, . . . such that yi ∈ Qf (x), and yi → y0 as i→∞. For
each yi, x ∈ conv[If (yi)]. Hence, by Carathéodory’s theorem, there exist dx ≤ k+ 1 points
Xi := (xi1, . . . , x

i
dx

) where xij ∈ If (yi), j = 1, 2, . . . , dx, and αi := (αi1, . . . , α
i
dx

) ∈ ∆dx−1

where ∆dx−1 is the (dx−1)-simplex, such that x =
∑dx

j=1 α
i
jx
i
j . Since X and ∆dx−1 are both

compact, there must exist a subsequence of (Xi, αi) that converges to a limit point (X0, α0)
where X0 = (x0

1, . . . , x
0
dx

), x0
j ∈ X , j = 1 . . . , dx, and α0 ∈ ∆dx−1. For simplicity, let us just

assume that (Xi, αi) converges to (X0, α0). Consequently, x =
∑dx

j=1 α
0
jx

0
j . By f ∈ `∞S (X )

and limi→∞ x
i
j = x0

j , f(x0
j ) ≤ lim infi→∞ f(xij) ≤ lim infi→∞ yi = y0, where the second

inequality follows from f(xij) ≤ yi for each xij by definition of If (yi). Hence, x0
j ∈ If (y0),

for all j. Since x =
∑dx

j=1 α
0
jx

0
j , and x0

j ∈ If (y0), it must be that x ∈ conv[If (y0)].

Therefore, y0 ∈ Qf (x). We conclude that min(Qf (x)) = y0 because y0 = infQf (x) by
definition.

We next show that Qf ∈ `∞S (X ) for any f ∈ `∞S (X ). It is easy to see that Qf ∈
`∞(X ) because infx∈X f(x) ≤ Qf(x) ≤ supx∈X f(x). We prove the result by contradiction.
Suppose that Qf 6∈ `∞S (X ), i.e., there exists x0 ∈ X , and a sequence x1, . . . , xn, . . . ∈ X such
that xi → x0 and lim infi→∞Qf(xi) < y0 − ε for some constant ε > 0 and y0 := Qf(x0).
Since X is compact, there must exist a subsequence of {xi}∞i=1, denoted as {xni}∞i=1, such
that for all i,

yi := Qf(xni)→ c < y0 − ε. (A.19)

For simplicity, we can assume that xni = xi for all i = 1, 2, . . .. Similar to the proof above,
each xi can be written as

∑dx
j=1 α

i
jx
i
j , where αi = (αij , . . . , α

i
dx

) ∈ ∆dx−1 and xij ∈ If (yi).

By compactness of X × ∆dx−1, there exist subsequences of Xi := (xi1, . . . , x
i
dx

) and αi,
i = 1, 2, . . ., such that they converge to X0 := (x0

1, . . . , x
0
dx

) and α0 ∈ ∆dx−1. Again,
for simplicity, we can assume that the subsequences are the sequences Xi and αi. Since
xi → x0, it is easy to see that x0 =

∑dx
j=1 α

0
jx

0
j . By f ∈ `∞S (X ), for j = 1, . . . , dx,

f(x0
j ) ≤ lim inf

i→∞
f(xij). (A.20)

Moreover, f(xij) ≤ yi for all i because xij ∈ If (yi). Combining this result with (A.19) and

(A.20) yields that f(x0
i ) ≤ lim infi→∞ f(xij) ≤ lim infi→∞ y

i < y0 − ε for all i = 1, 2, . . . , dx.

Hence, x0 ∈ If (y0 − ε) as x0 =
∑dx

j=1 α
0
jx

0
j . By definition of Qf , it must be that

Qf(x0) ≤ y0 − ε < y0, which leads to a contradiction with y0 = Qf(x0) = minQf (x0).

We now proceed to prove Theorem 21. We first show that Q satisfies the three properties
of Definition 1.
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(1) For any f ∈ `∞S (X ), the lower contour set of Qf at level y is defined as IQf (y) =
{x ∈ X : Qf(x) ≤ y} := conv[If (y)], where If (y) is the lower contour set of f at level y.
Since IQf (y) is convex for any y, Qf ∈ `∞Q (X ).

(2) If f ∈ `∞Q (X), then conv[If (y)] = If (y) for any y ∈ R. Thus, the lower contour set
of f agrees with the lower contour set of Qf at any level y, which implies that f = Qf .

(3) If f ≥ g, then If (y) ⊃ Ig(y) at any level y ∈ R. If follows that conv[If (y)] ⊇
conv[Ig(y)], which means that the level set of Qf contains the level set of Qg at any level
y, i.e., Qf ≥ Qg.

We next show that Q is d∞-distance contraction. For any f, g ∈ `∞S (X ), let ε :=
‖f − g‖∞. Then, g(x) − ε ≤ f(x) ≤ g(x) + ε. It is easy to see that Q(g + c) = Qg + c for
any constant c. By order preserving property of Q, Qg(x) − ε ≤ Qf(x) ≤ Qg(x) + ε. It
follows that

||Qg −Qf ||∞ ≤ ε = ||f − g||∞.

Proof of Theorem 24

Without loss of generality, we can assume that the domain X = [0, 1]k. For a vector w ∈ Rk,
denote w(i) as the ith entry of w.

(1) We first prove that QM is reshaping.
For any f ∈ `∞S (X ), QMf ∈ `∞Q (X ) by Theorem 21. Therefore, we only need to show

that QMf ∈ `∞M (X ). Let g := Mf . By Theorem 11, g ∈ `∞M (X ), so that for any y ∈ R, the
lower contour set Ig(y) satisfies:

For any x ∈ Ig(y) and x′ ∈ X such that x′ ≤ x, x′ ∈ Ig(y). (A.21)

Therefore, we need to prove that for any x, y such that x ∈ conv[Ig(y)], x′ ∈ conv[Ig(y)]
for any x′ ∈ X such that x′ ≤ x.

First, we show the following:

If x′ = x− tei for some t ≥ 0, then x′ ∈ conv[Ig(y)], (A.22)

where ei is defined as the ith standard unit vector, i = 1, 2, . . . , k. Without loss of generality,
we can simply assume that i = 1, so x′ and x are the same for all entries except for the
first one. By assumption that X = [0, 1]k, we know that the first entry of x′, denoted
as x′(1), must be non-negative. Since x ∈ conv[Ig(y)], by Carathéodory’s theorem, there
exists a finite set of points x1, . . . , xdx such that dx ≤ k + 1, xj ∈ Ig(y), j = 1, 2, . . . , dx,

and (α1, . . . , αdx) ∈ ∆dx−1, such that
∑dx

j=1 αjxj = x. Define x̃j = (0, xj(2), . . . , xj(k))
as a vector which is constructed by replacing the first entry of xj with 0. Therefore,

x̃ :=
∑dx

j=1 αj x̃j = (0, x(2), . . . , x(k)) is a vector such that x̃ ≤ x′ ≤ x. Therefore, there must
exist x∗1, . . . , x

∗
dx

such that x∗j = (x∗j (1), xj(2), . . . , xj(k)) with x∗j (1) ∈ [0, xj(1)] such that∑dx
j=1 αjx

∗
j (1) = x′(1) ∈ [0, x(1)]. By construction, x∗j ∈ X . Since x∗j ≤ xj ∈ Ig(y), (A.21)

implies that x∗j ∈ Ig(y). It follows that
∑dx

j=1 αjx
∗
j = x′, and therefore x′ ∈ conv[Ig(y)].

Now, for any x′ ∈ X such that x′ ≤ x, denote v := x − x′ ≥ 0. Since x ∈ conv[Ig(y)],
it follows that x− v(1)e1 ∈ conv[Ig(y)], and then that (x− v(1)e1)− v(2)e2 ∈ conv[Ig(y)],
. . . . Therefore, after applying (A.22) for k times, x′ = x− v(1)e1 − v(2)e2 − · · · − v(k)ek ∈
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conv[Ig(y)]. By (2.7), Qg(x) := min{y ∈ R : x ∈ conv[Ig(y)]}. Let y′ := Qg(x) so that
x ∈ conv[Ig(y′)]}. Then, for any x′ ∈ X such that x′ ≤ x, x′ ∈ conv[Ig(y′))}. That implies
Qg(x′) ≤ y′ = Qg(x). Therefore, we conclude that Qg = QMf is nondecreasing.

(2) Next, we can show that QM satisfies the rest of the properties of Definition 1 using
the same argument as in the proof of Theorem 16, replacing C with Q. We omit it for
brevity.

(3) Finally, since M and Q are both d∞-distance contractions by Theorems 11 and 21,
the composite map QM is also a d∞-distance contraction.

Proof of Theorem 26

We first show that if f ∈ `∞S (X ), then Rf ∈ `∞S (X ). This result is used in parts (i) and
(iii) to ensure that we apply the C and Q operators to lower semi-continuous functions.
By f ∈ `∞S (X ), for any sequence x1, ..., xn, ... ∈ X such that limi→∞ x

i = x0 ∈ X , f(x0) ≤
lim infi→∞ f(xi). Therefore, for any ε > 0, there exists N large enough such that for any
i > N , f(xi) > f(x0) − ε. It follows that for any i > N , Rf(xi) > Rf(x0) − ε. Hence,
lim infi→∞Rf(xi) ≥ Rf(x0), i.e., Rf ∈ `∞S (X ).

We now proceed to prove each of the parts of the Lemma.

Part (i): CRf ∈ `∞C (X ) by the definition of C applied to Rf and Rf ∈ `∞S (X ).
Moreover, by statement (2) of Lemma 36, there exist d ≤ k + 2 points x1, . . . , xd ∈ X
and α1 > 0, . . . , αd > 0,

∑d
i=1 αi = 1 such that CRf(x) =

∑d
i=1 αiRf(xi), where x =∑d

i=1 αixi. Therefore, CRf ∈ `∞R (X ) because Rf(xi) ∈ [f, f̄ ] for all xi ∈ X . It is easy to
see that CR also satisfies invariance and order preservation because it is a composition of two
operators that satisfy these properties. Indeed, if f ∈ `∞CR(X ) then CRf = C(Rf) = Cf =
f , and if g ≥ f , g, f ∈ `∞S (X ), then Rg ≥ Rf , Rg,Rf ∈ `∞S (X ), and C(Rg) ≥ C(Rf).
Hence, CR is `∞CR-enforcing with respect to `∞S (X ). By Theorems 5 and 8, both C and R
are d∞-distance contractions. Therefore, the composite map CR must be a d∞-distance
contraction.

Part (ii): Rf ∈ `∞R (X ) by the definition of R. The M operator is the average of sorting
operators, where each sorting operator does not change the range of the function. Therefore,
MRf ∈ `∞MR(X ). As in part (i), it is easy to see that MR also satisfies invariance and
order preservation because it is a composition of two operators that satisfy these properties.
Hence, MR is `∞MR-enforcing with respect to `∞(X ). Since M and R are both dp-distance
contractions for any p ≥ 1, it must be that MR is dp-distance contraction for any p ≥ 1.

Part (iii): let f ∈ `∞S (X )∩`∞R (X ). By definition Qf(x) = min{y ∈ R : x ∈ conv[If (y)]},
so that f̄ ∈ Qf (x) := {y ∈ R : x ∈ conv[If (y)]} and Qf(x) ≤ f̄ . Moreover, for any y < f ,
If (y) = ∅, so that y /∈ Qf (x) and Qf(x) ≥ f . Consequently, Qf ∈ `∞R (X ). On the
other hand, if f ∈ `∞S (X ) then Qf ∈ `∞S (X ) by Theorem 21. Combining the previous
results, Qf ∈ `∞S (X ) ∩ `∞R (X ). Since Rf ∈ `∞S (X ) ∩ `∞R (X ) for any f ∈ `∞S (X ), then
QRf ∈ `∞S (X )∩`∞R (X ). As in part (i), it is easy to see that QR also satisfies invariance and
order preservation because it is a composition of two operators that satisfy these properties.
Hence, QR is `∞QR-enforcing with respect to `∞S (X ). By Theorems 5 and 21, both R and
Q are d∞-distance contractions. Therefore, the composite map QR must be a d∞-distance
contraction.
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Proof of Theorem 28

We need to show the 3 properties of Definition 1. (1) By definition, f̃ := O(h◦f) ∈ `∞1 (X ).
Therefore, Oh(f) = h−1 ◦ f ∈ `∞h,1(X ) and reshaping holds. (2) If f ∈ `∞h,1(X ), then h ◦ f ∈
`∞1 (X ) and O(h ◦ f) = h ◦ f by the invariance property of O. Hence, Oh = h−1 ◦ h ◦ f = f .
(3) Since h is a real-valued bijection, it must be that h and h−1 are both strictly increasing
or strictly decreasing. We can assume that they are strictly increasing without loss of
generality. For any f, g ∈ `∞h,0(X ) such that f ≥ g, h ◦ f ≥ h ◦ g, O(h ◦ f) ≥ O(h ◦ g), and

h−1 ◦O(h ◦ f) ≥ h−1O(h ◦ g). Therefore, Oh is order-preserving.

To show contractivity, let f̃ := Oh(f) and g̃ := Oh(g). Then, ρh(f̃ , g̃) = ρ(h◦ f̃ , h◦ g̃) =
ρ(O(h ◦ f),O(h ◦ g)). Since O is a ρ-distance contraction, ρ(O(h ◦ f),O(h ◦ g)) ≤ ρ(h ◦
f, h ◦ g) = ρh(f, g). Hence, Oh is a ρh-distance contraction.

Proof of Corollary 32

(1) We show that the event {fl ≤ f0 ≤ fu} implies the event {Ofl ≤ f0 ≤ Ofu} by the
properties of the O-operator. Indeed, by order preservation, {fl ≤ f0 ≤ fu} implies that
{Ofl ≤ Of0 ≤ Ofu}, which is equivalent to {Ofl ≤ f0 ≤ Ofu} because Of0 = f0 by
invariance.

(2) The result follows from ρ(Of0,Of) ≤ ρ(f0, f) by ρ-distance contraction and Of0 =
f0 by invariance.

(3) The result follows directly by ρ-distance contraction.
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