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Abstract

Random Matrix Theory (RMT) is applied to analyze the weight matrices of Deep Neural
Networks (DNNs), including both production quality, pre-trained models such as AlexNet
and Inception, and smaller models trained from scratch, such as LeNet5 and a miniature-
AlexNet. Empirical and theoretical results clearly indicate that the DNN training process
itself implicitly implements a form of Self-Regularization, implicitly sculpting a more regu-
larized energy or penalty landscape. In particular, the empirical spectral density (ESD) of
DNN layer matrices displays signatures of traditionally-regularized statistical models, even
in the absence of exogenously specifying traditional forms of explicit regularization, such
as Dropout or Weight Norm constraints. Building on relatively recent results in RMT,
most notably its extension to Universality classes of Heavy-Tailed matrices, and applying
them to these empirical results, we develop a theory to identify 5+1 Phases of Training,
corresponding to increasing amounts of Implicit Self-Regularization. These phases can be
observed during the training process as well as in the final learned DNNs. For smaller
and/or older DNNs, this Implicit Self-Regularization is like traditional Tikhonov regular-
ization, in that there is a “size scale” separating signal from noise. For state-of-the-art
DNNs, however, we identify a novel form of Heavy-Tailed Self-Regularization, similar to
the self-organization seen in the statistical physics of disordered systems (such as clas-
sical models of actual neural activity). This results from correlations arising at all size
scales, which for DNNs arises implicitly due to the training process itself. This implicit
Self-Regularization can depend strongly on the many knobs of the training process. In
particular, we demonstrate that we can cause a small model to exhibit all 5+1 phases of
training simply by changing the batch size. Our results suggest that large, well-trained
DNN architectures should exhibit Heavy-Tailed Self-Regularization, and we discuss the
theoretical and practical implications of this.
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1. Introduction

Very large very deep neural networks (DNNs) have received attention as a general pur-
pose tool for solving problems in machine learning (ML) and artificial intelligence (AI),
and they perform remarkably well on a wide range of traditionally hard if not impossible
problems, such as speech recognition, computer vision, and natural language processing.
The conventional wisdom seems to be “the bigger the better,” “the deeper the better,” and
“the more hyper-parameters the better.” Unfortunately, this usual modus operandi leads
to large, complicated models that are extremely hard to train, that are extremely sensitive
to the parameters settings, and that are extremely difficult to understand, reason about,
and interpret. Relatedly, these models seem to violate what one would expect from the
large body of theoretical work that is currently popular in ML, optimization, statistics, and
related areas. This leads to theoretical results that fail to provide guidance to practice as
well as to confusing and conflicting interpretations of empirical results. As an example of
this, current optimization theory fails to explain phenomena like the so-called Large-Batch
Generalization Gap—the curious observation that DNNs generalize better when trained
with smaller batch sizes—and it often does not provide even qualitative guidance as to how
stochastic algorithms perform on non-convex landscapes of interest. In addition, current
statistical learning theory fails to provide even qualitative guidance as to the behavior of
this class of learning methods, which seems to have next to unlimited capacity and yet
generalize without overtraining.

1.1 A historical perspective

The inability of optimization and learning theory to explain and predict the properties of
NNs is not a new phenomenon. From the earliest days of DNNs, it was suspected that
VC theory did not apply to these systems. For example, in 1994, Vapnik, Levin, and
LeCun (Vapnik et al., 1994) said:

[T]he [VC] theory is derived for methods that minimize the empirical risk. How-
ever, existing learning algorithms for multilayer nets cannot be viewed as min-
imizing the empirical risk over [the] entire set of functions implementable by
the network.

It was originally assumed that local minima in the energy/loss surface were responsible for
the inability of VC theory to describe NNs (Vapnik et al., 1994), and that the mechanism
for this was that getting trapped in local minima during training limited the number of
possible functions realizable by the network. However, it was very soon realized that the
presence of local minima in the energy function was not a problem in practice (LeCun et al.,
1998; Duda et al., 2001). (More recently, this fact seems to have been rediscovered (Pascanu
et al., 2014; Dauphin et al., 2014; Goodfellow et al., 2014; Soudry and Hoffer, 2017).) Thus,
another reason for the inapplicability of VC theory was needed. At the time, there did exist
other theories of generalization based on statistical mechanics (Seung et al., 1992; Watkin
et al., 1993; Haussler et al., 1996; Engel and den Broeck, 2001), but for various technical and
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nontechnical reasons these fell out of favor in the ML/NN communities. Instead, VC theory
and related techniques continued to remain popular, in spite of their obvious problems.

See Appendix A.1 for additional motivating historical discussion.

Motivated by this situation, we are interested here in two related questions.

• Theoretical Question. Why is regularization in deep learning seemingly quite dif-
ferent than regularization in other areas of ML; and what is the right theoretical
framework with which to investigate regularization for DNNs?

• Practical Question. How can one control and adjust, in a theoretically-principled
way, the many knobs and switches that exist in modern DNN systems, e.g., to train
these models efficiently and effectively, to monitor their effects on the global Energy
Landscape, etc.?

That is, we seek a Practical Theory of Deep Learning, one that is prescriptive and not just
descriptive. This theory would provide useful tools for practitioners wanting to know How
to characterize and control the Energy Landscape to engineer larger and betters DNNs; and
it would also provide theoretical answers to broad open questions as to why Deep Learning
even works. For example, it would provide metrics to characterize qualitatively different
classes of learning behaviors, as predicted in recent work (Martin and Mahoney, 2017).
Importantly, VC theory and related methods do not provide a theory of this form.

1.2 Overview of our approach

Let us write the Energy Landscape (or optimization function) for a typical DNN with L
layers, with activation functions hl(·), and with weight matrices and biases Wl and bl,
as follows:

EDNN = hL(WL × hL−1(WL−1 × hL−2(· · · ) + bL−1) + bL). (1)

By this, we mean the part of the optimization problem parameterized by the heretofore
unknown elements of the weight matrices and bias vectors, and as defined by the data
{di, yi} ∈ D.1 For simplicity, we do not indicate the structural details of the layers (e.g.,
Dense or not, Convolutions or not, Residual/Skip Connections, etc.). We imagine training
this model on some labeled data {di, yi} ∈ D, using Backprop, by minimizing the loss L
(e.g., the cross-entropy), between EDNN (di) and the labels yi, as follows:

min
Wl,bl

(∑
i

L (EDNN (di), yi)

)
. (2)

We can initialize the DNN using random initial weight matrices W0
l , or we can use other

methods such as transfer learning (which we will not consider here). There are various
knobs and switches to tune such as the choice of solver, batch size, learning rate, etc.

1In particular, when used this way, the Energy Landscape is more like the loss function than the numerical
value of the loss function, and it depends on the data only via Wl and bl. We have found that the use of
the terminology “energy” and “energy landscape” to describe EDNN clarifies things for some people and
confuses things for other people—if you are in the latter group, simple “read through” this terminology.
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Most importantly, to avoid overtraining, we must usually regularize our DNN. Per-
haps the most familiar approach from ML for implementing this regularization explicitly
constrains the norm of the weight matrices, e.g., modifying Objective (2) to give:

min
Wl,bl

(∑
i

L (EDNN (di), yi)

)
+ α

∑
l

‖Wl‖, (3)

where ‖·‖ is some matrix norm, and where α is an explicit regularization control parameter.

The point of Objective (3) is that explicit regularization shrinks the norm(s) of the Wl

matrices. We may expect similar results to hold for implicit regularization. We will use
advanced methods from Random Matrix Theory (RMT), developed in the theory of self
organizing systems, to characterize DNN layer weight matrices, Wl,

2 during and after the
training process.

Here is an important (but often under-appreciated) point. We call EDNN the Energy
Landscape. By this, we mean that part of the optimization problem parameterized by the
heretofore unknown elements of the weight matrices and bias vectors, for a fixed α (in (3)),
and as defined by the data {di, yi} ∈ D. Because we run Backprop training, we pass the
data through the Energy function EDNN multiple times. Each time, we adjust the values
of the weight matrices and bias vectors. In this sense, we may think of the total Energy
Landscape (i.e., the optimization function that is nominally being optimized) as changing
at each epoch.

1.3 Summary of our results

We analyze the distribution of eigenvalues, i.e., the Empirical Spectral Density (ESD),
ρN (λ), of the correlation matrix X = WTW associated with the layer weight matrix W.
We do this for a wide range of large, pre-trained, readily-available state-of-the-art models,
including the original LetNet5 convolutional net (which, due to its age, we retrain) and
pre-trained models available in Keras and PyTorch such as AlexNet and Inception. In some
cases, the ESDs are very well-described by the Marchenko-Pastur (MP) distribution. In
other cases, the ESDs are well-described by the MP distribution, with the exception of one or
more large eigenvalues that can be modeled by a Spiked-Covariance model (Malevergne and
Sornette, 2002; Johnstone, 2001). In still other cases—including nearly every current state-
of-the-art model we have examined—the ESDs are poorly-described by traditional RMT,
and instead they are more consistent with Heavy-Tailed behavior seen in the statistical
physics of disordered systems (Sornette, 2006; Bun et al., 2017). Based on our observations,
we develop a develop a practical theory of Implicit Self-Regularization in DNNs. This
theory takes the form of an operational theory characterizing 5+1 phases of DNN training.
To test and validate our theory, we consider two smaller models, a 3-layer MLP (MLP3)

2We consider weight matrices Wl computed for individual dense layers l and other layers that can be
easily-represented as matrices, i.e., 2-index tensors. Nothing in our RMT-based theory, however, requires
matrices to be constructed from dense layers—they could easily be applied to matrices constructed from
convolutional (or other) layers. For example, we can stack/reshape weight matrices in various ways, e.g., to
study multi-dimensional tensors like Convolutional Layers or how different layers interact, or we can compute
the spectrum of the linear operator induced by the Convolutional Layer. We have unpublished results that
indicate this is a promising direction, but we don’t consider these variants here.
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and a miniature version of AlexNet (MiniAlexNet), trained on CIFAR10, that we can train
ourselves repeatedly, adjusting various knobs and switches along the way.

Main Empirical Results. Our main empirical results consist in evaluating empirically
the ESDs (and related RMT-based statistics) for weight matrices for a suite of DNN models,
thereby probing the Energy Landscapes of these DNNs. For older and/or smaller models,
these results are consistent with implicit Self-Regularization that is Tikhonov-like; and
for modern state-of-the-art models, these results suggest novel forms of Heavy-Tailed Self-
Regularization.

• Capacity Control Metrics. We study simple capacity control metrics, the Matrix
Entropy, the linear algebraic or Hard Rank, and the Stable Rank. We also use RMT
to define a new metric, the MP Soft Rank. These metrics track the amount of Self-
Regularization that arises in a weight matrix W, either during training or in a pre-
trained DNN.

• Self-Regularization in old/small models. The ESDs of older/smaller DNN
models (like LeNet5 and a toy MLP3 model) exhibit weak Self-Regularization, well-
modeled by a perturbative variant of MP theory, the Spiked-Covariance model. Here,
a small number of eigenvalues pull out from the random bulk, and thus the MP Soft
Rank and Stable Rank both decrease. This weak form of Self-Regularization is like
Tikhonov regularization, in that there is a “size scale” that cleanly separates “signal”
from “noise,” but it is different than explicit Tikhonov regularization in that it arises
implicitly due to the DNN training process itself.

• Heavy-Tailed Self-Regularization. The ESDs of larger, modern DNN models
(including AlexNet and Inception and nearly every other large-scale model we have
examined) deviate strongly from the common Gaussian-based MP model. Instead,
they appear to lie in one of the very different Universality classes of Heavy-Tailed
random matrix models. We call this Heavy-Tailed Self-Regularization. Here, the MP
Soft Rank vanishes, and the Stable Rank decreases, but the full Hard Rank is still
retained. The ESD appears fully (or partially) Heavy-Tailed, but with finite support.
In this case, there is not a “size scale” (even in the theory) that cleanly separates
“signal” from “noise.”

Main Theoretical Results. Our main theoretical results consist in an operational the-
ory for DNN Self-Regularization. Our theory uses ideas from RMT—both vanilla MP-
based RMT as well as extensions to other Universality classes based on Heavy-Tailed
distributions—to provide a visual taxonomy for 5 + 1 Phases of Training, corresponding to
increasing amounts of Self-Regularization.

• Modeling Noise and Signal. We assume that a weight matrix W can be modeled
as W 'Wrand+∆sig, where Wrand is “noise” and where ∆sig is “signal.” For small to
medium sized signal, W is well-approximated by an MP distribution—with elements
drawn from the Gaussian Universality class—perhaps after removing a few eigenvec-
tors. For large and strongly-correlated signal, Wrand gets progressively smaller, but
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we can model the non-random strongly-correlated signal ∆sig by a Heavy-Tailed ran-
dom matrix, i.e., a random matrix with elements drawn from a Heavy-Tailed (rather
than Gaussian) Universality class.

• 5+1 Phases of Regularization. Based on this approach to modeling noise and sig-
nal, we construct a practical, visual taxonomy for 5+1 Phases of Training. Each phase
is characterized by stronger, visually distinct signatures in the ESD of DNN weight
matrices, and successive phases correspond to decreasing MP Soft Rank and increasing
amounts of Self-Regularization. The 5+1 phases are: Random-like, Bleeding-out,
Bulk+Spikes, Bulk-decay, Heavy-Tailed, and Rank-collapse.

• Rank-collapse. One of the predictions of our RMT-based theory is the existence of
a pathological phase of training, the Rank-collapse or “+1” Phase, corresponding
to a state of over-regularization. Here, one or a few very large eigenvalues dominate
the ESD, and the rest of the weight matrix loses nearly all Hard Rank.

Based on these results, we speculate that all well optimized, large DNNs will display Heavy-
Tailed Self-Regularization in their weight matrices.

Evaluating the Theory. We provide a detailed evaluation of our theory using a smaller
MiniAlexNew model that we can train and retrain.

• Effect of Explicit Regularization. We analyze ESDs of MiniAlexNet by removing
all explicit regularization (Dropout, Weight Norm constraints, Batch Normalization,
etc.) and characterizing how the ESD of weight matrices behave during and at the end
of Backprop training, as we systematically add back in different forms of explicit reg-
ularization.

• Implementation Details. Since the details of the methods that underlies our the-
ory (e.g., fitting Heavy-Tailed distributions, finite-size effects, etc.) are likely not
familiar to ML and NN researchers, and since the details matter, we describe in detail
these issues.

• Exhibiting the 5+1 Phases. We demonstrate that we can exhibit all 5+1 phases by
appropriate modification of the various knobs of the training process. In particular, by
decreasing the batch size from 500 to 2, we can make the ESDs of the fully-connected
layers of MiniAlexNet vary continuously from Random-like to Heavy-Tailed, while
increasing generalization accuracy along the way. These results illustrate the Large-
Batch Generalization Gap phenomena (Hoffer et al., 2017; Keskar et al., 2016; Goyal
et al., 2017); and they suggest an explanation of that phenomena as being caused
by the implicit Self-Regularization associated with models trained with smaller and
smaller batch sizes. By adding extreme Weight Norm regularization, we can also
induce the Rank-collapse phase.

Main Methodological Contribution. Our main methodological contribution consists
in using empirical observations as well as recent developments in RMT to motivate a prac-
tical predictive DNN theory, rather than developing a descriptive DNN theory based on
general theoretical considerations. Essentially, we treat the training of different DNNs as
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if we are running novel laboratory experiments, and we follow the traditional scientific
method:

Make Observations → Form Hypotheses → Build a Theory → Test the theory,
literally.

In particular, this means that we can observe and analyze many large, production-quality,
pre-trained models directly, without needing to retrain them, and we can also observe
and analyze smaller models during the training process. In adopting this approach, we
are interested in both “scientific questions” (e.g., “Why is regularization in deep learning
seemingly quite different . . . ?”) as well as “engineering questions” (e.g., “How can one
control and adjust . . . ?).

To accomplish this, recall that, given an architecture, the Energy Landscape is com-
pletely defined by the DNN weight matrices. Since its domain is exponentially large, the
Energy Landscape is challenging to study directly. We can, however, analyze the weight
matrices, as well as their correlations. (This is analogous to analyzing the expected mo-
ments of a complicated distribution.) In principle, this permits us to analyze both local and
global properties of the Energy Landscape, as well as something about the class of functions
(e.g., VC class, Universality class, etc.) being learned by the DNN. Since the weight ma-
trices of many DNNs exhibit strong correlations and can be modeled by random matrices
with elements drawn from the Universality class of Heavy-Tailed distributions, this severely
restricts the class of functions learned. It also connects back to the Energy Landscape since
it is known that the Energy Landscape of Heavy-Tailed random matrices is very different
than that of Gaussian-like random matrices.

Remark. Lest the reader think that by “theory” we mean “theorems,” we don’t. DNNs
are a practical business, and we aim for a practical theory. We aim for an operational theory
that can be used to guide practice for state-of-the-art DNNs, not for idealized models for
which one proves theorems. Subsequent to the dissemination of the initial technical report
version of this paper, work motivated by our results has proved theorems (Dereziński et al.,
2019; Liao et al., 2020; Theisen et al., 2020; Hodgkinson and Mahoney, 2020; Lim et al.,
2021). Subsequent to the dissemination of the initial technical report version of this paper,
work motivated by our results has also solved much more practical problems on state-of-the-
art DNNs, including: “predicting trends in the quality of state-of-the-art neural networks
without access to training or testing data” (Martin et al., 2020, 2021); and performing a
post-mortem on a deep learning contest (Jiang et al., 2020a,b), identifying a Simpson’s
paradox, and interpreting the results in terms of the complementary roles of implicit scale
metrics versus shape metrics (Martin and Mahoney, 2021).

1.4 Outline of the paper

In Section 2, we provide a warm-up, including simple capacity metrics and their transitions
during Backprop. Then, in Sections 3 and 4, we review background on RMT necessary to un-
derstand our experimental methods, and we present our initial experimental results. Based
on this, in Section 5, we present our main theory of 5+1 Phases of Training. Then, in Sec-
tions 6 and 7, we evaluate our main theory, illustrating the effect of explicit regularization,
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and demonstrating implications for the generalization gap phenomenon. Finally, in Sec-
tion 8, we provide a discussion of our results in a broader context. The accompanying code
is available at https://github.com/CalculatedContent/ImplicitSelfRegularization.
See Appendix A.2 for a summary of acronyms and notation used in the following.

2. Simple Capacity Metrics and Transitions during Backprop

In this section, we describe simple spectral metrics to characterize DNN weight matrices as
well as initial empirical observations on the capacity properties of training DNNs.

2.1 Simple capacity control metrics

A DNN is defined by its detailed architecture and the values of the weights and biases at
each layer. We seek a simple capacity control metric for a learned DNN model that: is
easy to compute both during training and for already-trained models; can describe changes
in the gross behavior of weight matrices during the Backprop training process; and can
identify the onset of subtle structural changes in the weight matrices.

One possibility is to use the Euclidean distance between the initial weight matrix, W0
l ,

and the weight matrix at epoch e of training, We
l , i.e., ∆(We

l ) = ‖W0
l −We

l ‖2. This
distance, however, is not scale invariant. In particular, during training, and with regular-
ization turned off, the weight matrices may shift in scale, gaining or losing Frobenius mass
or variance,3 and this distance metric is sensitive to that change. Indeed, the whole point
of a BatchNorm layer is to try to prevent this. To start, then, we will consider two scale-
invariant measures of capacity control: the Matrix Entropy (S), and the Stable Rank (Rs).
For an arbitrary matrix W, both of these metrics are defined in terms of its spectrum.

Consider N×M (real valued) layer weight matrices Wl, where N ≥M . Let the Singular
Value Decomposition of W be

W = UΣVT ,

where νi = Σii is the ith singular value4 of W, and let pi = ν2
i /
∑

i ν
2
i . We also define the

associated M ×M (uncentered) correlation matrix

X = Xl =
1

N
WT

l Wl, (4)

where we sometimes drop the (l) subscript for X, and where X is normalized by 1/N . We
compute the eigenvalues of X,

Xvi = λivi,

where {λi , i = 1, . . . ,M} are the squares of the singular values: λi = ν2
i . Given the singu-

lar values of W and/or eigenvalues of X, there are several well-known matrix complexity
metrics.

• The Hard Rank (or linear algebraic rank),

Hard Rank : R(W) =
∑
i

χ(νi), (5)

3We use these terms interchangably, i.e., even if the matrices are not mean-centered.
4We use νi rather than σi to denote singular values since σ2 denote variance elsewhere.
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(where χ(·) is 1 or 0, depending on whether the original argument is greater than or
equal to zero, up to some numerical precision, respectively) is the number of singular
values greater than zero, νi > 0, to within a numerical cutoff.

• The Matrix Entropy,

Matrix Entropy : S(W) =
−1

log(R(W))

∑
i

pi log pi, (6)

is also known as the Generalized von-Neumann Matrix Entropy.5

• The Stable Rank,

Stable Rank : Rs(W) =
‖W‖2F
‖W‖22

=

∑
i ν

2
i

ν2
max

=

∑
i λi

λmax
, (7)

the ratio of the Frobenius norm to Spectral norm, is a robust variant of the Hard Rank.

We also refer to the Matrix Entropy S(X) and Stable Rank Rs(X) of X. By this, we
mean the metrics computed with the associated eigenvalues. Note S(X) = S(W) and
Rs(X) = Rs(W).

It is known that a random matrix has maximum Entropy, and that lower values for the
Entropy correspond to more structure/regularity. If W is a random matrix, then S(W) is
maximized. For example, we initialize our weight matrices with a truncated random matrix
W0, then S(W0) . 1. When W has significant and observable non-random structure, we
expect S(W) < 1. We will see, however, that in practice these differences are quite small,
and we would prefer a more discriminative metric. In nearly every case, for well-trained
DNNs, all the weight matrices retain full Hard RankR; but the weight matrices do “shrink,”
in a sense captured by the Stable Rank. Both S and Rs measure matrix capacity, and, up
to a scale factor, we will see that they exhibit qualitatively similar behavior.

2.2 Empirical results: Capacity transitions while training

We start by illustrating the behavior of two simple complexity metrics during Backprop
training on MLP3, a simple 3-layer Multi-Layer Perceptron (MLP), described in Table 2.
MLP3 consists of 3 fully connected (FC) / dense layers with 512 nodes and ReLU activation,
with a final FC layer with 10 nodes and softmax activation. This gives 4 layer weight
matrices of shape (N ×M) and with Q = N/M :

W1 = (· × 512)

W2 = (512× 512) (Layer FC1) (Q = 1)

W3 = (512× 512) (Layer FC2) (Q = 1)

W4 = (512× 10).

5This resembles the entanglement Entropy, suggested for the analysis of convolutional nets (Levine et al.,
2017).
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For the training, each Wl matrix is initialized with a Glorot normalization (Glorot and
Bengio, 2010). The model is trained on CIFAR10, up to 100 epochs, with SGD (learning
rate=0.01, momentum=0.9) and with a stopping criteria of 0.0001 on the MSE loss.6

Figure 1 presents the layer entropy (in Figure 1(a)) and the stable rank (in Figure 1(b)),
plotted as a function of training epoch, for FC1 and FC2. Both metrics decrease during
training (note the scales of the Y axes): the stable rank decreases by approximately a factor
of two, and the matrix entropy decreases by a small amount, from roughly 0.92 to just below
0.91 (this is for FC2, and there is an even more modest change for FC1). They both track
nearly the same changes; and the stable rank is more informative for our purposes; but we
will see that the changes to the matrix entropy, while subtle, are significant.

(a) MLP3 Entropies. (b) MLP3 Stable Ranks.

Figure 1: The behavior of two complexity measures, the Matrix Entropy S(W) and the
Stable Rank Rs(W), for Layers FC1 and FC2, during Backprop training, for
MLP3. Both measures display a transition during Backprop training.

Figure 2 presents scree plots for the initial W0
l and final Wl weight matrices for the FC1

and FC2 layers of our MLP3. A scree plot plots the decreasing variability in the matrix as a
function of the increasing index of the corresponding eigenvector (Hastie et al., 2003). Thus,
such scree plots present similar information to the stable rank—e.g., observe the Y-axis of
Figure 2(b), which shows that there is a slight increase in the largest eigenvalue for FC1
(again, note the scales of the Y axes) and a larger increase in the largest eigenvalue for FC2,
which is consistent with the changes in the stable rank in Figure 1(b))—but they too give a
coarse picture of the matrix. In particular, they lack the detailed insight into subtle changes
in the entropy and rank associated with the Self-Regularization process, e.g., changes that
reside in just a few singular values and vectors, that we will need in our analysis.

Limitations of these metrics. We can gain more detailed insight into changes in Wl

during training by creating histograms of the singular values and/or eigenvalues (λi = ν2
i ).

Figure 3(a) displays the density of singular values of W0
FC2 and WFC2 for the FC2 layer

of the MLP3 model. Figure 3(b) displays the associated eigenvalue densities, ρN (λ), which

6Code will be available at https://github.com/CalculatedContent/DLGeneralization.
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(a) MLP3 Initial Scree Plot. (b) MLP3 Final Scree Plot.

Figure 2: Scree plots for initial and final configurations for Layers FC1 and FC2, during
Backprop training, for MLP3.

(a) Initial/final singular value density for
Layer FC2.

(b) Initial/final eigenvalue density (ESD,
ρN (λ)) for Layer FC2.

Figure 3: Histograms of the Singular Values νi and associated Eigenvalues λi = ν2
i , com-

paring initial W0
l and final Wl weight matrices (which are N ×M , with N = M)

for Layer FC2 of a MLP3 trained on CIFAR10.

we call the Empirical Spectral Density (ESD) (defined in detail below) plots. Observe that
the initial density of singular values (shown in red/purple), resembles a quarter circle,7 and
the final density of singular values (blue) consists of a bulk quarter circle, of about the same
width, with several spikes of singular value density beyond the bulk’s edge. Observe that
the similar heights and widths and shapes of the bulks imply the variance, or Frobenius
norm, does not change much: ‖WFC2‖F ≈ ‖W0

FC2‖F . Observe also that the initial ESD,
ρN (λ) (red/purple), is crisply bounded between λ− = 0 and λ+ ∼ 3.2 (and similarly for the

7The initial weight matrix W0
FC2 is just a random (Glorot Normal) matrix.
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density of singular values at the square root of this value), whereas the final ESD (blue) has
less density at λ− = 0 and several spikes λ� λ+. The largest eigenvalue is λmax ∼ 7.2, i.e.,
‖WFC2‖22 ≈ 2 × ‖W0

FC2‖22. We see now why the stable rank for FC2 decreases by ∼ 2X;
the Frobenius norm does not change much, but the squared Spectral norm is ∼ 2X larger.

The fine-scale structure that is largely hidden from Figures 1 and 2 but that is easily-
revealed by singular/eigen value density plots of Figure 3 suggests that a RMT analysis
might be fruitful.

3. Basic Random Matrix Theory (RMT)

In this section, we summarize results from RMT that we use. RMT provides a kind-of
Central Limit Theorem for matrices, with unique results for both square and rectangular
matrices. Perhaps the most well-known results from RMT are the Wigner Semicircle Law,
which describes the eigenvalues of random square symmetric matrices, and the Tracy Widom
(TW) Law, which states how the maximum eigenvalue of a (more general) random matrix is
distributed. Two issues arise with applying these well-known results from RMT to DNNs.
First, very rarely do we encounter symmetric weight matrices. Second, in training DNNs,
we only have one instantiation of each weight matrix, and so it is not generally possible
to apply the TW Law.8 Several overviews of RMT are available (Tulino and Verdú, 2004;
Edelman and Rao, 2005; Karoui, 2005; Tracy and Widom, 2009; Bouchaud and Potters,
2011b; Edelman and Wang, 2013; Paul and Aue, 2014; Bun et al., 2017). Here, we will
describe a variant of RMT, the Marchenko-Pastur (MP) theory,9 applicable to rectangular
matrices, including (but not limited to) DNN weight matrices W.

3.1 Marchenko-Pastur (MP) theory for rectangular matrices

MP theory considers the density of singular values ρ(νi) of random rectangular matrices W.
This is equivalent to considering the density of eigenvalues ρ(λi), i.e., the ESD, of matrices
of the form X = WTW. MP theory then makes strong statements about such quantities
as the shape of the distribution in the infinite limit, its bounds, expected finite-size effects,
such as fluctuations near the edge, and rates of convergence. When applied to DNN weight
matrices, MP theory assumes that W, while trained on very specific datasets, exhibits
statistical properties that do not depend on the specific details of the elements Wi,j , and
holds even at finite size. This Universality concept is “borrowed” from Statistical Physics,
where it is used to model, among other things, strongly-correlated systems and so-called
critical phenomena in nature (Sornette, 2006).

To apply RMT, we need only specify the number of rows and columns of W and assume
that the elements Wi,j are drawn from a specific distribution that is a member of a certain
Universality class (there are different results for different Universality classes). RMT then
describes properties of the ESD, even at finite size; and one can compare predictions of
RMT with empirical results. Most well-known and well-studied is the Universality class of

8This is for “production” use, where one performs only a single training run; below, we will generate
such distributions of weight matrices for our smaller models to denoise and illustrate better their properties.

9We use the term MP theory somewhat informally to mean results that would be expected from matrices
whose limiting spectral distribution obeys the MP law. Empirically observing other behavior suggests that
the empirical matrices are not well-described by this class of random matrices.
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Gaussian distributions. This leads to the basic or vanilla MP theory, which we describe in
this section. More esoteric—but ultimately more useful for us—are Universality classes of
Heavy-Tailed distributions. In Section 3.2, we describe this important variant.

Gaussian Universality class. We start by modeling W as an N ×M random matrix,
with elements drawn from a Gaussian distribution, such that:

Wij ∼ N(0, σ2
mp).

Then, MP theory states that the ESD of the correlation matrix, X = WTW, has the
limiting density given by the MP distribution ρ(λ):

ρN (λ) :=
1

N

M∑
i=1

δ (λ− λi)

N→∞−−−−→
Q fixed


Q

2πσ2
mp

√
(λ+ − λ)(λ− λ−)

λ
if λ ∈ [λ−, λ+]

0 otherwise.

(8)

Here, σ2
mp is the element-wise variance of the original matrix, Q = N/M ≥ 1 is the aspect

ratio of the matrix, and the minimum and maximum eigenvalues, λ±, are given by

λ± = σ2
mp

(
1± 1√

Q

)2

. (9)

(a) Different aspect ratios (b) Different variance parameters

Figure 4: Marchenko-Pastur (MP) distributions, see Eqns. (8) and (9), as the aspect ratio
Q and variance parameter σ are modified. (Note that, in this and other figures,
we present MP curves as a random baseline to compare the real data against, and
thus we do not necessarily show precisely their full range.)

The MP distribution for different aspect ratios Q and variance parameters σmp.
The shape of the MP distribution only depends on two parameters, the variance σ2

mp and
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the aspect ratio Q. See Figure 4 for an illustration. In particular, see Figure 4(a) for a plot
of the MP distribution of Eqns. (8) and (9), for several values of Q; and see Figure 4(b) for
a plot of the MP distribution for several values of σmp.

As a point of reference, when Q = 4 and σmp = 1 (blue in both subfigures), the mass of
ρN skews slightly to the left, and is bounded in [0.3− 2.3]. For fixed σmp, as Q increases,
the support (i.e., [λ−, λ+]) narrows, and ρN becomes less skewed. As Q → 1, the support
widens and ρN skews more leftward. Also, ρN is concave for larger Q, and it is partially
convex for smaller Q = 1.

Although MP distribution depends on Q and σ2
mp, in practice Q is fixed, and thus we

are interested how σ2
mp varies—distributionally for random matrices, and empirically for

weight matrices. Due to Eqn. (9), if σ2
mp is fixed, then λ+ (i.e., the largest eigenvalue of the

bulk, as well as λ−) is determined, and vice versa.10

The Quarter Circle Law for Q = 1. A special case of Eqn. (8) arises when Q = 1, i.e.,
when W is a square non-symmetric matrix. In this case, the eigenvalue density ρ(λ) is very
peaked with a bounded tail, and it is sometimes more convenient to consider the density of
singular values of Wl, ρ(ν), which takes the form of a Quarter-Circle:

ρ(ν) =
1

πσ2
mp

√
4− ν2.

We will not pursue this further, but we saw this earlier, in Figure 3(b), with our toy
MLP3 model.

Finite-size Fluctuations at the MP Edge. Here, we provide an informal description
of how we use precise results from RMT regarding finite-size effects and fluctuations at
the MP edge to guide our analysis, in practice. (Importantly, the edge statistics can be
characterized, and they are less universal than the bulk statistics.) In the infinite limit, all
fluctuations in ρN (λ) concentrate very sharply at the MP edge, λ±, and the distribution of
the maximum eigenvalues ρ∞(λmax) is governed by the TW Law. Even for a single finite-
sized matrix, however, MP theory states the upper edge of ρ(λ) is very sharp; and even
when the MP Law is violated, the TW Law, with finite-size corrections, works very well at
describing the edge statistics. When these laws are violated, this is very strong evidence
for the onset of more regular non-random structure in the DNN weight matrices, which we
will interpret as evidence of Self-Regularization.

In more detail, in many cases, one or more of the empirical eigenvalues will extend
beyond the sharp edge predicted by the MP fit, i.e., such that λmax > λ+ (where λmax is
the largest eigenvalue of X). It will be important to distinguish the case that λmax > λ+

simply due the finite size of W from the case that λmax is “truly” outside the MP bulk.
According to MP theory (Bouchaud and Potters, 2011b), for finite (N,M), and with 1

N

normalization, the fluctuations at the bulk edge scale as O(M−
2
3 ):

∆λM := ‖λmax − λ+‖2 =
1√
Q

(λ+)2/3M−2/3,

10In practice, relating λ+ and σ2
mp raises some subtle technical issues, and we discuss these in Section 6.3.
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Generative Model
w/ elements from
Universality class

Finite-N
Global shape

ρN (λ)

Limiting
Global shape
ρ(λ), N →∞

Bulk edge
Local stats
λ ≈ λ+

(far) Tail
Local stats
λ ≈ λmax

Basic MP Gaussian
MP, i.e.,
Eqn. (8)

MP TW No tail.

Spiked-
Covariance

Gaussian,
+ low-rank

perturbations

MP +
Gaussian

spikes
MP TW Gaussian

Heavy tail,
4 < µ

(Weakly)
Heavy-Tailed

MP +
PL tail

MP Heavy-Tailed∗ Heavy-Tailed∗

Heavy tail,
2 < µ < 4

(Moderately)
Heavy-Tailed

(or “fat tailed”)

PL∗∗

∼ λ−(aµ+b)

PL

∼ λ−( 1
2µ+1) No edge. Frechet

Heavy tail,
0 < µ < 2

(Very)
Heavy-Tailed

PL∗∗

∼ λ−( 1
2µ+1)

PL

∼ λ−( 1
2µ+1) No edge. Frechet

Table 1: Basic MP theory, and the spiked and Heavy-Tailed extensions we use, includ-
ing known, empirically-observed, and conjectured relations between them. Boxes
marked “∗” are best described as following “TW with large finite size correc-
tions” that are likely Heavy-Tailed (Biroli et al., 2007b), leading to bulk edge
statistics and far tail statistics that are indistinguishable. Boxes marked “∗∗”
are phenomenological fits, describing large (2 < µ < 4) or small (0 < µ < 2)
finite-size corrections on N → ∞ behavior. See Davis et al. (2014); Biroli et al.
(2007b,a); Péché; Auffinger et al. (2009); Edelman et al. (2016); Auffinger and Tang
(2016); Burda and Jurkiewicz (2009); Bouchaud and Potters (2011b); Bouchaud
and Mézard (1997) for additional details.

where λ+ is given by Eqn (9). Since Q = N/M , we can also express this in terms of N−2/3,
but with different prefactors (Johnstone, 2001). Most importantly, within MP theory (and
even more generally), the λmax fluctuations, centered and rescaled, will follow TW statistics.

In the DNNs we consider, M & 400, and so the maximum deviation is only ∆λM . 0.02.
In many cases, it will be obvious whether a given λmax is an outlier. When it is not, one
could generate an ensemble of NR runs and study the information content of the eigenvalues
(shown below) and/or apply TW theory (not discussed here).

Fitting MP Distributions. Several technical challenges with fitting MP distributions,
i.e., selecting the bulk edge λ+, are discussed in Section 6.3.

3.2 Heavy-Tailed extensions of MP theory

MP-based RMT is applicable to a wide range of matrices (even those with large low-rank
perturbations ∆large to i.i.d. normal behavior); but it is not in general applicable when
matrix elements are strongly-correlated. Strong correlations appear to be the case for
many well-trained, production-quality DNNs. In statistical physics, it is common to model
strongly-correlated systems by Heavy-Tailed distributions (Sornette, 2006). The reason is
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that these models exhibit, more or less, the same large-scale statistical behavior as natu-
ral phenomena in which strong correlations exist (Sornette, 2006; Bouchaud and Potters,
2011b). Moreover, recent results from RMT have shown that new Universality classes exist
for matrices with elements drawn from certain Heavy-Tailed distributions (Bouchaud and
Potters, 2011b).

We use these Heavy-Tailed extensions of basic MP/RMT to build an operational and
phenomenological theory of Regularization in Deep Learning; and we use these extensions
to justify our analysis of both Self-Regularization and Heavy-Tailed Self-Regularization.11

Briefly, our theory for simple Self-Regularization is insipred by the Spiked-Covariance model
of Johnstone (Johnstone, 2001) and its interpretation as a form of Self-Organization by
Sornette (Malevergne and Sornette, 2002); and our theory for more sophisticated Heavy-
Tailed Self-Regularization is inspired by the application of MP/RMT tools in quantitative
finance by Bouchuad, Potters, and coworkers (Galluccio et al., 1998; Laloux et al., 1999,
2005; Biroli et al., 2007b,a; Bouchaud and Potters, 2011b; Bun et al., 2017), as well as
the relation of Heavy-Tailed phenomena more generally to Self-Organized Criticality in
Nature (Sornette, 2006). Here, we highlight basic results for this generalized MP theory;
see Davis et al. (2014); Biroli et al. (2007b,a); Péché; Auffinger et al. (2009); Edelman
et al. (2016); Auffinger and Tang (2016); Burda and Jurkiewicz (2009); Bouchaud and
Potters (2011b); Bouchaud and Mézard (1997) in the physics and mathematics literature
for additional details.

Universality classes for modeling strongly correlated matrices. Consider model-
ing W as an N ×M random matrix, with elements drawn from a Heavy-Tailed—e.g., a
Pareto or Power Law (PL)—distribution:

Wij ∼ P (x) ∼ 1

x1+µ
, µ > 0. (10)

In these cases, if W is element-wise Heavy-Tailed,12 then the ESD ρN (λ) likewise exhibits
Heavy-Tailed properties, either globally for the entire ESD and/or locally at the bulk edge.

Table 1 summarizes these (relatively) recent results, comparing basic MP theory, the
Spiked-Covariance model,13 and Heavy-Tailed extensions of MP theory, including associated
Universality classes. To apply the MP theory, at finite sizes, to matrices with elements
drawn from a Heavy-Tailed distribution of the form given in Eqn. (10), then, depending on
the value of µ, we have one of the following three14 Universality classes:

• (Weakly) Heavy-Tailed, 4 < µ: Here, the ESD ρN (λ) exhibits “vanilla” MP behav-
ior in the infinite limit, and the expected mean value of the bulk edge is λ+ ∼M−2/3.
Unlike standard MP theory, which exhibits TW statistics at the bulk edge, here the

11The Universality of RMT is a concept broad enough to apply to classes of problems that appear
well beyond its apparent range of validity. It is in this sense that we apply RMT to understand DNN
Regularization.

12Heavy-Tailed phenomena have many subtle properties (Resnick, 2007); we consider here only the most
simple cases.

13We discuss Heavy-Tailed extensions to MP theory in this section. Extensions to large low-rank pertur-
bations are more straightforward and are described in Section 5.3.

14Both µ = 2 and µ = 4 are “corner cases” that we don’t expect to be able to resolve at finite N .
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edge exhibits PL / Heavy-Tailed fluctuations at finite N . These finite-size effects ap-
pear in the edge / tail of the ESD, and they make it hard or impossible to distinguish
the edge versus the tail at finite N .

• (Moderately) Heavy-Tailed, 2 < µ < 4: Here, the ESD ρN (λ) is Heavy-Tailed
/ PL in the infinite limit, approaching the form ρ(λ) ∼ λ−1−µ/2. In this regime of
µ, there is no bulk edge. At finite size, the global ESD can be modeled by the form
ρN (λ) ∼ λ−(aµ+b), for all λ > λmin, but the slope a and intercept b must be fit, as
they display very large finite-size effects. The maximum eigenvalues follow Frechet
(not TW) statistics, with λmax ∼ M4/µ−1(1/Q)1−2/µ, and they have large finite-size
effects. Even if the ESD tends to zero, the raw number of eigenvalues can still grow—
just not as quickly as N (i.e., we may expect some λmax > λ+, in the infinite limit,
but the eigenvalue density ρ(λ) → 0). Thus, at any finite N , ρN (λ) is Heavy-Tailed,
but the tail decays moderately quickly.

• (Very) Heavy-Tailed, 0 < µ < 2: Here, the ESD ρN (λ) is Heavy-Tailed / PL for
all finite N , and as N →∞ it converges more quickly to a PL distribution with tails
ρ(λ) ∼ λ−1−µ/2. In this regime, there is no bulk edge, and the maximum eigenvalues
follow Frechet (not TW) statistics. Finite-size effects exist here, but they are are
much smaller here than in the 2 < µ < 4 regime of µ.

(a) Three log-log histograms. (b) Zoomed-in histogram for µ = 3.

Figure 5: The log-log histogram plots of the ESD for three Heavy-Tailed random matrices
M with same aspect ratio Q = 3, with µ = 1.0, 3.0, 5.0, corresponding to the
three Heavy-Tailed Universality classes (0 < µ < 2 vs 2 < µ < 4 and 4 < µ)
described in Table 1.

Visualizing Heavy-Tailed distributions. It is often fruitful to perform visual explo-
ration and classification of ESDs by plotting them on linear-linear coordinates, log-linear
coordinates (linear horizontal/X axis and logarithmic vertical/Y axis), and/or log-log coor-
dinates (logarithmic horizontal/X axis and logarithmic vertical/Y axis). It is known that
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data from a PL distribution will appear as a convex curve in a linear-linear plot and a
log-linear plot and as a straight line in a log-log plot; and that data from a Gaussian distri-
bution will appear as a bell-shaped curve in a linear-linear plot, as an inverted parabola in
a log-linear plot, and as a strongly concave curve in a log-log plot. Examining data from an
unknown ESD on different axes suggests a classification for them. (See Figures 5 and 14.)
More quantitative analysis may lead to more definite conclusions, but that too comes with
technical challenges.

To illustrate this, we provide a visual and operational approach to understand the
limiting forms for different µ. See Figure 5. Figure 5(a) displays the log-log histograms
for the ESD ρN (λ) for three Heavy-Tailed random matrices MN (µ), with µ = 1.0, 3.0, 5.0
For µ = 1.0 (blue), the log-log histogram is linear over 5 log scales, from 103 − 108. If N
increases (not shown), λmax will grow, but this plot will remain linear, and the tail will not
decay. In the infinite limit, the ESD will still be Heavy-Tailed. Contrast this with the ESD
drawn from the same distribution, except with µ = 3.0 (green). Here, due to larger finite-
size effects, most of the mass is confined to one or two log scales, and it starts to vanish
when λ > 103. This effect is amplified for µ = 5.0 (red), which shows almost no mass for
eigenvalues beyond the MP bulk (i.e. λ > λ+). Zooming in, in Figure 5(b), we see that
the log-log plot is linear—in the central region only—and the tail vanishes very quickly. If
N increases (not shown), the ESD will remain Heavy-Tailed, but the mass will grow much
more slowly than when µ < 2. This illustrates that, while ESDs can be Heavy-Tailed at
finite size, the tails decay at different rates for different Heavy-Tailed Universality classes
(0 < µ < 2 or 2 < µ < 4 or 4 < µ).

Fitting PL distributions to ESD plots. Once we have identified PL distributions
visually (using a log-log histogram of the ESD, and looking for visual characteristics of
Figure 5), we can fit the ESD to a PL in order to obtain the exponent α. For this, we use
the Clauset-Shalizi-Newman (CSN) approach (Clauset et al., 2009), as implemented in the
python PowerLaw package (Alstott et al., 2014),15 which computes an α such that

ρemp(λ) ∼ λ−α.

Generally speaking, fitting a PL has many subtleties, most beyond the scope of this pa-
per (Clauset et al., 2009; Goldstein et al., 2004; Malevergne et al., 2005; Newman, 2005;
Bauke, 2007; Klaus et al., 2011; Corral and Deluca, 2013; Alstott et al., 2014; Virkar and
Clauset, 2014; Hanel et al., 2017). For example, care must be taken to ensure the distribu-
tion is actually linear (in some regime) on a log-log scale before applying the PL estimator,
lest it give spurious results; and the PL estimator only works reasonably well for exponents
in the range 1.5 < α . 3.5.

To illustrate this, consider Figure 6. In particular, Figure 6(a) shows that the CSN
estimator performs well for the regime 0 < µ < 2, while for 2 < µ < 4 there are substantial
deviations due to finite-size effects, and for 4 < µ no reliable results are obtained; and
Figures 6(b) and 6(c) show that the finite-size effects can be quite complex (for fixed M ,
increasing Q leads to larger finite-size effects, while for fixed N , decreasing Q leads to larger
finite-size effects).

15See https://github.com/jeffalstott/powerlaw.
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(a) α vs µ, for Q = 2,M = 1000. (b) α vs µ, for fixed M . (c) α vs µ, for fixed N .

Figure 6: Dependence of α (the fitted PL parameter) on µ (the hypothesized limiting PL
parameter). In (6(a)), the PL exponent α is fit, using the CSN estimator, for
the ESD ρemp(λ) for a random, rectangular Heavy-Tailed matrix W(µ) (Q =
2,M = 1000), with elements drawn from a Pareto distribution p(x) ∼ x−1−µ.
For 0 < µ < 2, finite-size effects are modest, and the ESD follows the theoretical
prediction ρemp(λ) ∼ λ−1−µ/2. For 2 < µ < 4, the ESD still shows roughly
linear behavior, but with significant finite-size effects, giving the more general
phenomenological relation ρemp(λ) ∼ λ−aµ+b. For 4 < µ, the CSN method is
known to fail to perform well. In (6(b)) and (6(c)), plots are shown for varying
Q, with M and N fixed, respectively.

Identifying the Universality class. Given α, we identify the corresponding µ (as illus-
trated in Figure 6) and thus which of the three Heavy-Tailed Universality classes (0 < µ < 2
or 2 < µ < 4 or 4 < µ, as described in Table 5) is appropriate to describe the system. For
our theory, the following are particularly important points. First, observing a Heavy-Tailed
ESD may indicate the presence of a scale-free DNN. This suggests that the underlying DNN
is strongly-correlated, and that we need more than just a few separated spikes, plus some
random-like bulk structure, to model the DNN and to understand DNN regularization. Sec-
ond, this does not necessarily imply that the matrix elements of Wl form a Heavy-Tailed
distribution. Rather, the Heavy-Tailed distribution arises since we posit it as a model of the
strongly correlated, highly non-random matrix Wl. Third, we conjecture that this is more
general, and that very well-trained DNNs will exhibit Heavy-Tailed behavior in their ESD
for many the weight matrices (as we have observed so far with many pre-trained models).

3.3 Eigenvector localization

When entries of a random matrix are drawn from distributions in the Gaussian Universality
class, and under typical assumptions, eigenvectors tend to be delocalized, i.e., the mass of
the eigenvector tends to be spread out on most or all the components of that vector. For
other models, eigenvectors can be localized. For example, spike eigenvectors in Spiked-
Covariance models as well as extremal eigenvectors in Heavy-Tailed random matrix models
tend to be more localized (Paul and Aue, 2014; Bun et al., 2017). Eigenvector delocalization,
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in traditional RMT, is modeled using the Thomas Porter Distribution (Porter and Thomas,
1956). Since a typical bulk eigenvector v should have maximum entropy, therefore it’s
components vi should be Gaussian distributed, according to:

Thomas Porter Distribution: Ptp(vi) =
1

2π
exp

(
−v

2
i

2

)
.

Here, we normalize v such that the empirical variance of the elements is unity, σ2
vi = 1.

Based on this, we can define several related eigenvector localization metrics.

• The Generalized Vector Entropy, S(v) :=
∑

i P (vi) ln P (vi), is computed using a
histogram estimator.

• The Localization Ratio, L(v) :=
‖v‖1
‖v‖∞

, measures the sum of the absolute values of

the elements of v, relative to the largest absolute value of an element of v.

• The Participation Ratio, P(v) :=
‖v‖2
‖v‖4

, is a robust variant of the Localization Ratio.

For all three metrics, the lower the value, the more localized the eigenvector v tends to be.
We use deviations from delocalization as a diagnostic that the corresponding eigenvector is
more structured/regularized.

4. Empirical Results: ESDs for Existing, Pretrained DNNs

In this section, we describe our main empirical results for existing, pretrained DNNs.16

Early on, we observed that small DNNs and large DNNs have very different ESDs. For
smaller models, ESDs tend to fit the MP theory well, with well-understood deviations, e.g.,
low-rank perturbations. For larger models, the ESDs ρN (λ) almost never fit the theoretical
ρmp(λ), and they frequently have a completely different functional form. We use RMT to
compare and contrast the ESDs of a smaller, older NN and many larger, modern DNNs.
For the small model, we retrain a modern variant of one of the very early and well-known
Convolutional Nets—LeNet5. We use Keras (2), and we train LeNet5 on MNIST. For the
larger, modern models, we examine selected layers from AlexNet, InceptionV3, and many
other models (as distributed with pyTorch).17 Table 2 provides a summary of models we
analyzed in detail.

4.1 Example: LeNet5 (1998)

LeNet5 predates both the current Deep Learning revolution and the so-called AI Winter,
dating back to the late 1990s (LeCun et al., 1998). It is the prototype early model for
DNNs; it is the most widely-known example of a Convolutional Neural Network (CNN);
and it was used in production systems for recognizing hand written digits (LeCun et al.,

16A practical theory for DNNs should be applicable to very large—production-quality, and even pre-
trained—models, as well as to models during training.

17For pretrained models, we did not perform training. For our analysis, we used our publicly-avaiable
WeightWatcher tool (wei, 2018).
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Used for: Section Layer Key observation in ESD(s)

MLP3
Initial illustration

of entropy and
spectral properties

2
FC1
FC2

MP Bulk+Spikes

LeNet5 Old state-of-the-art model 4.1 FC1
MP Bulk+Spikes,

with edge Bleeding-out

AlexNet
More recent pre-trained
state-of-the-art model 4.2

FC1
ESD Bulk-decay

into a Heavy-Tailed

Typical properties
from Heavy-Tailed
Universality classes

5.5 FC2 µ ≈ 2

FC3 µ ≈ 2.5

InceptionV3
More recent pre-trained
state-of-the-art model

with unusual properties
4.3 L226

Bimodel ESD w/
Heavy-Tailed envelope

4.3 L302
Bimodal and “fat” or
Heavy-Tailed ESD

MiniAlexNet
Detailed analysis

illustrating properties
as training knobs change

6
FC1
FC2

Exhibits all 5+1
Phases of Training

by changing batch size

Table 2: Description of main DNNs used in our analysis and the key observations about
the ESDs of the specific layer weight matrices using RMT. Names in the “Key
observation” column are defined in Section 5 and described in Table 3.

1998). The basic design consists of 2 Convolutional (Conv2D) and MaxPooling layers,
followed by 2 Dense, or Fully Connected (FC), layers, FC1 and FC2. This design inspired
modern DNNs for image classification, e.g., AlexNet, VGG16 and VGG19. All of these
latter models consist of a few Conv2D and MaxPooling layers, followed by a few FC layers.
Since LeNet5 is older, we actually recoded and retrained it. We used Keras 2.0, using 20
epochs of the AdaDelta optimizer, on the MNIST data set, starting with i.i.d. random
initialization. This model has 100.00% training accuracy, and 99.25% test accuracy on the
default MNIST split. We analyze the ESD of the FC1 Layer (but not the FC2 Layer since
it has only 10 eigenvalues). The FC1 matrix WFC1 is a 2450× 500 matrix, with Q = 4.9,
and thus it yields 500 eigenvalues.

FC1: MP Bulk+Spikes, with edge Bleeding-out. Figure 7 presents the ESD for FC1
of LeNet5, with Figure 7(a) showing the full ESD and Figure 7(b) showing the same ESD,
zoomed-in along the X-axis to highlight smaller peaks outside the main bulk of our MP fit.
In both cases, we show (red curve) our fit to the MP distribution ρemp(λ). Several things
are striking. First, the bulk of the density ρemp(λ) has a large, MP-like shape for eigenvalues
λ < λ+ ≈ 3.5, and the MP distribution fits this part of the ESD very well, including the
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fact that the ESD just below the best fit λ+ is concave. Second, some eigenvalue mass is
bleeding out from the MP bulk for λ ∈ [3.5, 5], although it is quite small. Third, beyond
the MP bulk and this bleeding out region, are several clear outliers, or spikes, ranging from
≈ 5 to λmax . 25.

Summary. The shape of ρemp(λ), the quality of the global bulk fit, and the statistics and
crisp shape of the local bulk edge all agree well with standard MP theory, or at least the
variant of MP theory augmented with a low-rank perturbation. In this sense, this model
can be viewed as a real-world example of the Spiked-Covariance model (Johnstone, 2001).

(a) Full ESD (b) ESD, zoomed-in (with original his-
togram bins)

Figure 7: Full and zoomed-in ESD for LeNet5, Layer FC1. Overlaid (in red) are gross fits
of the MP distribution (which fit the bulk of the ESD very well).

4.2 Example: AlexNet (2012)

AlexNet was the first modern DNN, and its spectacular performance opened the door for
today’s revolution in Deep Learning. Specifically, it was top-5 on the ImageNet ILSVRC2012
classification task (Krizhevsky et al., 2012), achieving an error of 16.4%, over 11% ahead
of the first runner up. AlexNet resembles a scaled-up version of the LeNet5 architecture;
it consists of 5 layers, 2 convolutional, followed by 3 FC layers (the last being a softmax
classifier).18 We will analyze the version of AlexNet currently distributed with pyTorch
(version 0.4.1). In this version, FC1 has a 9216 × 4096 matrix, with Q = 2.25; FC2 has a
4096×4096 matrix, with Q = 1.0; and FC3 has a 4096×1000 matrix, with Q = 4.096 ≈ 4.1.
Notice that FC3 is the final layer and connects AlexNet to the labels.

Figures 8, 9, and 10 present the ESDs for weight matrices of AlexNet for Layers FC1,
FC2, and FC3, with Figures 8(a), 9(a), and 10(a) showing the full ESD, and Figures 8(b),

18It was the first CNN Net to win this competition, and it was also the first DNN to use ReLUs in a wide
scale competition. It also used a novel Local Contrast Normalization layer, which is no longer in widespread
use, having been mostly replaced with Batch Normalization or similar methods.
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9(b), and 10(b) showing the results “zoomed-in” along the X-axis. In each cases, we present
best MP fits, as determined by holding Q fixed, adjusting the σ parameter, and selecting
the best bulk fit by visual inspection. Fitting σ fixes λ+, and the λ+ estimates differ for
different layers because the matrices have different aspect ratios Q. In each case, the ESDs
exhibit moderate to strong deviations from the best standard MP fit.

FC1: Bulk-decay into Heavy-Tailed. Consider first AlexNet FC1 (in Figures 8(a)
and 8(b)). The eigenvalues range from near 0 up to ∼ 30, just as with LeNet5. The full
ESD, however, is shaped very differently than any theoretical ρmp(λ), for any value of λ.
The best MP fit (in red in Figure 8) does capture a good part of the eigenvalue mass, but
there are important differences: the peak is not filled in, there is substantial eigenvalue
mass bleeding out from the bulk, and the shape of the ESD is convex in the region near
to and just above the best fit for λ+ of the bulk edge. Contrast this with the excellent
MP fit for the ESD for FC1 of LeNet5 (Figure 7(b)), where the red curve captures all of
the bulk mass, and only a few outlying spikes appear. Moreover, and very importantly, in
AlexNet FC1, the bulk edge is not crisp. In fact, it is not visible at all; and λ+ is solely
defined operationally by selecting the σ parameter. As such, the edge fluctuations, ∆λ, do
not resemble a TW distribution, and the bulk itself appears to just decay into the heavy
tail. Finally, a PL fit gives good fit α ≈ 2.29, suggesting (due to finite size effects) µ . 2.5.

FC2: (nearly very) Heavy-Tailed ESD. Consider next AlexNet FC2 (in Figures 9(a)
and 9(b)). This ESD differs even more profoundly from standard MP theory. Here, we could
find no good MP fit, even by adjusting σ andQ simultaneously. The best MP fit (in red) does
not fit the Bulk part of ρemp(λ) at all. The fit suggests there should be significantly more
bulk eigenvalue mass (i.e., larger empirical variance) than actually observed. In addition,
as with FC1, the bulk edge is indeterminate by inspection. It is only defined by the crude
fit we present, and any edge statistics obviously do not exhibit TW behavior. In contrast
with MP curves, which are convex near the bulk edge, the entire ESD is concave (nearly)
everywhere. Here, a PL fit gives good fit α ≈ 2.25, smaller than FC1 and FC3, indicating
a µ . 2.5.

FC3: Heavy-Tailed ESD. Consider finally AlexNet FC3 (in Figures 10(a) and 10(b)).
Here, too, the ESDs deviate strongly from predictions of MP theory, both for the global
bulk properties and for the local edge properties. A PL fit gives good fit α ≈ 3.02, which
is larger than FC1 and FC2. This suggests a µ . 2.5 (which is also shown with a log-log
histogram plot in Figure 14 in Section 5 below).

Summary. For all three layers, the shape of ρemp(λ), the quality of the global bulk fit,
and the statistics and shape of the local bulk edge are poorly-described by standard MP
theory. Even when we may think we have a moderately good MP fit because the bulk shape
is qualitatively captured with MP theory (at least visual inspection), we may see a complete
breakdown of the assumptions underlying RMT at the bulk edge, where we expect crisp
TW statistics (or at least a concave envelope of support). In other cases, the MP theory
may even be a poor estimator for even the bulk.
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(a) Full ESD for FC1 (b) Zoomed-in ESD for FC1

Figure 8: ESD for Layer FC1 of AlexNet. Overlaid (in red) are gross fits of the MP distri-
bution.

(a) Full ESD for FC2 (b) Zoomed-in ESD for FC2

Figure 9: ESD for Layer FC2 of AlexNet. Overlaid (in red) are gross fits of the MP distri-
bution.

4.3 Example: InceptionV3 (2014)

In the few years after AlexNet, several new, deeper DNNs started to win the ILSVRC
ImageNet completions, including ZFNet(2013) (Zeiler and Fergus, 2013), VGG(2014) (Si-
monyan and Zisserman, 2014), GoogLeNet/Inception (2014) (Szegedy et al., 2015), and
ResNet (2015) (He et al., 2015). We have observed that nearly all of these DNNs have

25



Martin and Mahoney

(a) Full ESD for FC3 (b) Zoomed-in ESD for FC3

Figure 10: ESD for Layer FC3 of AlexNet. Overlaid (in red) are gross fits of the MP
distribution.

properties that are similar to AlexNet. Rather than describe them all in detail, in Sec-
tion 4.4, we perform power law fits on the Linear/FC layers in many of these models.
Here, we want to look more deeply at the Inception model, since it displays some unique
properties.19

In 2014, the VGG (Simonyan and Zisserman, 2014) and GoogLeNet (Szegedy et al.,
2015) models were close competitors in the ILSVRC2014 challenges. For example, GoogLeNet
won the classification challenge, but VGG performed better on the localization challenge.
These models were quite deep, with GoogLeNet having 22 layers, and VGG having 19 lay-
ers. The VGG model is ∼2X as deep as AlexNet, but it replaces each larger AlexNet filter
with more, smaller filters. Presumably this deeper architecture, with more non-linearities,
can capture the correlations in the network better. The VGG features of the second to last
FC layer generalize well to other tasks. A downside of the VGG models is that they have
a lot of parameters and that they use a lot of memory.

The GoogleLeNet/Inception design resembles the VGG architecture, but it is even more
computationally efficient, which (practically) means smaller matrices, fewer parameters
(12X fewer than AlexNet), and a very different architecture, including no internal FC lay-
ers, except those connected to the labels. In particular, it was noted that most of the
activations in these DNNs are redundant because they are so strongly correlated. So, a
sparse architecture should perform just as well, but with much less computational cost—if
implemented properly to take advantage of low level BLAS calculations on the GPU. So, an
Inception module was designed. This module approximates a sparse Convolutional Net, but
using many smaller, dense matrices, leading to many small filters of different sizes, concate-
nated together. The Inception modules are then stacked on top of each other to give the full

19Indeed, these results suggest that Inception models do not truly account for all the correlations in
the data.
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DNN. GoogLeNet also replaces the later FC layers (i.e., in AlexNet-like architectures) with
global average pooling, leaving only a single FC / Dense layer, which connects the DNN to
the labels. Being so deep, it is necessary to include an Auxiliary block that also connects
to the labels, similar to the final FC layer. From this, we can extract a single rectangular
768× 1000 tensor. This gives 2 FC layers to analyze.

For our analysis of InceptionV3 (Szegedy et al., 2015), we select a layer (L226) from
in the Auxiliary block, as well as the final (L302) FC layer. Figure 11 presents the ESDs
for InceptionV3 for Layer L226 and Layer L302, two large, fully-connected weight matrices
with aspect ratios Q ≈ 1.3 and Q = 2.048, respectively. We also show typical MP fits for
matrices with the same aspect ratios Q. As with AlexNet, the ESDs for both the L226 and
L302 layers display distinct and strong deviations from the MP theory.

L226: Bimodal ESDs. Consider first L226 of InceptionV3. Figure 11(a) displays the
L226 ESD. (Recall this is not a true Dense layer, but it is part of the Inception Auxiliary
module, and it looks very different from the other FC layers, both in AlexNet and below.)
At first glance, we might hope to select the bulk edge at λ+ ≈ 5 and treat the remaining
eigenvalue mass as an extended spike; but this visually gives a terrible MP fit (not shown).
Selecting λ+ ≈ 10 produces an MP fit with a reasonable shape to the envelope of support
of the bulk; but this fit strongly over-estimates the bulk variance / Frobenius mass (in
particular near λ ≈ 5), and it strongly under-estimates the spike near 0. We expect this fit
would fail any reasonable statistical confidence test for an MP distribution. As in all cases,
numerous Spikes extend all the way out to λmax ≈ 30, showing a longer, heavier tail than
any MP fit. It is unclear whether or not the edge statistics are TW. There is no good MP
fit for the ESD of L226, but it is unclear whether this distribution is “truly” Heavy-Tailed
or simply appears Heavy-Tailed as a result of the bimodality. Visually, at least the envelope
of the L226 ESD to resembles a Heavy-Tailed MP distribution. It is also possible that the
DNN itself is also not fully optimized, and we hypothesize that further refinements could
lead to a true Heavy-Tailed ESD.

L302: Bimodal fat or Heavy-Tailed ESDs. Consider next L302 of InceptionV3 (in
Figure 11(b)). The ESD for L302 is slightly bimodal (on a log-log plot), but nowhere near
as strongly as L226, and we can not visually select any bulk edge λ+. The bulk barely fits
any MP density; our best attempt is shown. Also, the global ESD the wrong shape; and
the MP fit is concave near the edge, where the ESD is convex, illustrating that the edge
decays into the tail. For any MP fit, significant eigenvalue mass extends out continuously,
forming a long tail extending al the way to λmax ≈ 23. The ESD of L302 resembles
that of the Heavy-Tailed FC2 layer of AlexNet, except for the small bimodal structure.
These initial observations illustrate that we need a more rigorous approach to make strong
statements about the specific kind of distribution (i.e., Pareto vs other Heavy-Tailed) and
what Universality class it may lay in. We present an approach to resolve these technical
details this in Section 5.5.

4.4 Empirical results for other pre-trained DNNs

In addition to the models from Table 2 that we analyzed in detail, we have also examined
the properties of a wide range of other pre-trained models, including models from both
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(a) ESD for L226 (b) ESD for L302

Figure 11: ESD for Layers L226 and L302 in InceptionV3, as distributed with pyTorch.
Overlaid (in red) are gross fits of the MP distribution (neither of which which
fit the ESD well).

Computer Vision as well as Natural Language Processing (NLP). This includes models
trained on ImageNet, distributed with the pyTorch package, including VGG16, VGG19,
ResNet50, InceptionV3, etc. This also includes different NLP models, distributed in Al-
lenNLP (Gardner et al., 2018), including models for Machine Comprehension, Constituency
Parsing, Semantic Role Labeling, Coreference Resolution, and Named Entity Recognition,
giving a total of 84 linear layers. Rather remarkably, we have observed similar Heavy-Tailed
properties, visually and in terms of Power Law fits, in all of these larger, state-of-the-art
DNNs, leading to results that are nearly universal across these widely different architectures
and domains. See Appendix A.3 for a brief summary of those results.

4.5 Towards a theory of Self-Regularization

In a few cases (e.g., LetNet5 in Section 4.1), MP theory appears to apply to the bulk
of the ESD, with only a few outlying eigenvalues larger than the bulk edge. In other
more realistic cases (e.g., AlexNet and InceptionV3 in Sections 4.2 and 4.3, respectively,
and every other large-scale DNN we have examined, as summarized in Section 4.4), the
ESDs do not resemble anything predicted by standard RMT/MP theory. This should not
be unexpected—a well-trained DNN should have highly non-random, strongly-correlated
weight matrices W, in which case MP theory would not seem to apply. Moreover, except
for InceptionV3, which was chosen to illustrate several unusual properties, nearly every
DNN displays Heavy-Tailed properties such as those seen in AlexNet.

These empirical results suggest the following: first, that we can construct an operational
and phenomenological theory (both to obtain fundamental insights into DNN regularization
and to help guide the training of very large DNNs); and second, that we can build this
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theory by applying the full machinery of modern RMT to characterize the state of the
DNN weight matrices.

For older and/or smaller models, like LeNet5, the bulk of their ESDs (ρN (λ); λ� λ+)
can be well-fit to theoretical MP density ρmp(λ), potentially with several distinct, outlying
spikes (λ > λ+). This is consistent with the Spiked-Covariance model of Johnstone (John-
stone, 2001), a simple perturbative extension of the standard MP theory.20 This is also rem-
iniscent of traditional Tikhonov regularization, in that there is a “size scale” (λ+) separating
signal (spikes) from noise (bulk). In this sense, the small NNs of yesteryear—and smallish
models used in many research studies—may in fact behave more like traditional ML mod-
els. In the context of disordered systems theory, as developed by Sornette (Malevergne and
Sornette, 2002), this model is a form of Self-Organizaton. Putting this all together demon-
strates that the DNN training process itself engineers a form of implicit Self-Regularization
into the trained model.

For large, deep, state-of-the-art DNNs, our observations suggest that there are profound
deviations from traditional RMT. These networks are reminiscent of strongly-correlated
disordered-systems that exhibit Heavy-Tailed behavior. What is this regularization, and
how is it related to our observations of implicit Tikhonov-like regularization on LeNet5?

To answer this, recall that similar behavior arises in strongly-correlated physical systems,
where it is known that strongly-correlated systems can be modeled by random matrices—
with entries drawn from non-Gaussian Universality classes (Sornette, 2006), e.g., PL or
other Heavy-Tailed distributions. Thus, when we observe that ρN (λ) has Heavy-Tailed
properties, we can hypothesize that W is strongly-correlated,21 and we can model it with
a Heavy-Tailed distribution. Then, upon closer inspection, we find that the ESDs of large,
modern DNNs behave as expected—when using the lens of Heavy-Tailed variants of RMT.
Importantly, unlike the Spiked-Covariance case, which has a scale cut-off (λ+), in these very
strongly Heavy-Tailed cases, correlations appear on every size scale, and we can not find a
clean separation between the MP bulk and the spikes. These observations demonstrate that
modern, state-of-the-art DNNs exhibit a new form of Heavy-Tailed Self-Regularization.

In the next few sections, we construct and test (on miniature AlexNet) our new theory.

5. 5+1 Phases of Regularized Training

In this section, we develop an operational and phenomenological theory for DNN Self-
Regularization that is designed to address questions such as the following. How does DNN
Self-Regularization differ between older models like LetNet5 and newer models like AlexNet
or Inception? What happens to the Self-Regularization when we adjust the numerous knobs
and switches of the solver itself during SGD/Backprop training? How are knobs, e.g., early
stopping, batch size, and learning rate, related to more familiar regularizers like Weight
Norm constraints and Tikhonov regularization? Our theory builds on empirical results
from Section 4; and our theory has consequences and makes predictions that we test in
Section 6.

20It is also consistent with Heavy-Tailed extensions of MP theory, for larger values of the PL exponent.
21For DNNs, these correlations arise in the weight matrices during Backprop training (at least when

training on data of reasonable-quality). That is, the weight matrices “learn” the correlations in the data.
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MP Soft Rank. We first define a metric, the MP Soft Rank (Rmp), that is designed to
capture the “size scale” of the noise part of the layer weight matrix Wl, relative to the
largest eigenvalue of WT

l Wl. Going beyond spectral methods, this metric exploits MP
theory in an essential way.

Let’s first assume that MP theory fits at least a bulk of ρN (λ). Then, we can identify
a bulk edge λ+ and a bulk variance σ2

bulk, and define the MP Soft Rank as the ratio of λ+

and λmax:

MP Soft Rank : Rmp(W) :=
λ+

λmax
. (11)

Clearly, Rmp ∈ [0, 1]; Rmp = 1 for a purely random matrix (as in Section 5.1); and for a
matrix with an ESD with outlying spikes (as in Section 5.3), λmax > λ+, and Rmp < 1.
If there is no good MP fit because the entire ESD is well-approximated by a Heavy-Tailed
distribution (as described in Section 5.5, e.g., for a strongly correlated weight matrix), then
we can define λ+ = 0 and still use Eqn. (11), in which case Rmp = 0.

The MP Soft Rank is interpreted differently than the Stable Rank (Rs), which is pro-
portional to the bulk MP variance σ2

mp divided by λmax:

Rs(W) ∝
σ2
mp

λmax
. (12)

As opposed to the Stable Rank, the MP Soft Rank is defined in terms of the MP distribution,
and it depends on how the bulk of the ESD is fit. While the Stable Rank Rs(M) indicates
how many eigencomponents are necessary for a relatively-good low-rank approximation of
an arbitrary matrix, the MP Soft Rank Rmp(W) describes how well MP theory fits part of
the matrix ESD ρN (λ). Empirically, Rs and Rmp often correlate and track similar changes.
Importantly, though, there may be no good low-rank approximation of the layer weight
matrices Wl of a DNN—especially a well trained one.

Visual Taxonomy. We characterize implicit Self-Regularization, both for DNNs during
SGD training as well as for pre-trained DNNs, as a visual taxonomy of 5+1 Phases of
Training (Random-like, Bleeding-out, Bulk+Spikes, Bulk-decay, Heavy-Tailed,
and Rank-collapse). See Table 3 for a summary. The 5+1 phases can be ordered,
with each successive phase corresponding to a smaller Stable Rank / MP Soft Rank and
to progressively more Self-Regularization than previous phases. Figure 12 depicts typical
ESDs for each phase, with the MP fits (in red). Earlier phases of training correspond to the
final state of older and/or smaller models like LeNet5 and MLP3. Later phases correspond
to the final state of more modern models like AlexNet, Inception, etc. Thus, while we can
describe this in terms of SGD training, this taxonomy does not just apply to the temporal
ordering given by the training process. It also allows us to compare different architectures
and/or amounts of regularization in a trained—or even pre-trained—DNN.

Each phase is visually distinct, and each has a natural interpretation in terms of RMT.
One consideration is the global properties of the ESD : how well all or part of the ESD is
fit by an MP distribution, for some value of λ+, or how well all or part of the ESD is
fit by a Heavy-Tailed or PL distribution, for some value of a PL parameter. A second
consideration is local properties of the ESD : the form of fluctuations, in particular around
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Operational
Definition

Informal
Description

via Eqn. (13)

Edge/tail
Fluctuation
Comments

Illustration
and

Description

Random-like
ESD well-fit by MP
with appropriate λ+

Wrand random;
‖∆sig‖ zero or small

λmax ≈ λ+ is
sharp, with

TW statistics

Fig. 12(a)
and

Sec. 5.1

Bleeding-out
ESD Random-like,
excluding eigenmass

just above λ+

W has eigenmass at
bulk edge as

spikes “pull out”;
‖∆sig‖ medium

BPP transition,
λmax and
λ+ separate

Fig. 12(b)
and

Sec. 5.2

Bulk+Spikes
ESD Random-like

plus ≥ 1 spikes
well above λ+

Wrand well-separated
from low-rank ∆sig;
‖∆sig‖ larger

λ+ is TW,
λmax is

Gaussian

Fig. 12(c)
and

Sec. 5.3

Bulk-decay
ESD less Random-like;
Heavy-Tailed eigenmass
above λ+; some spikes

Complex ∆sig with
correlations that

don’t fully enter spike

Edge above λ+

is not concave

Fig. 12(d)
and

Sec. 5.4

Heavy-Tailed
ESD better-described
by Heavy-Tailed RMT
than Gaussian RMT

Wrand is small;
∆sig is large and

strongly-correlated

No good λ+;
λmax � λ+

Fig. 12(e)
and

Sec. 5.5

Rank-
collapse

ESD has large-mass
spike at λ = 0

W very rank-deficient;
over-regularization

—
Fig. 12(f)

and
Sec. 5.6

Table 3: The 5+1 phases of learning we identified in DNN training. We observed
Bulk+Spikes and Heavy-Tailed in existing trained models (LeNet5 and
AlexNet/InceptionV3, respectively; see Section 4); and we exhibited all 5+1 phases
in a simple model (MiniAlexNet; see Section 7).

the edge λ+ or around the largest eigenvalue λmax. For example, the shape of the ESD
near to and immediately above λ+ is very different in Figure 12(a) and Figure 12(c) (where
there is a crisp edge) versus Figure 12(b) (where the ESD is concave) versus Figure 12(d)
(where the ESD is convex). Gaussian-based RMT (when elements are drawn from the
Gaussian Universality class) versus Heavy-Tailed RMT (when elements are drawn from a
Heavy-Tailed Universality class) provides guidance, as we describe below.

As an illustration, Figure 13 depicts the 5+1 phases for a typical (hypothetical) run of
Backprop training for a modern DNN. Figure 13(a) illustrates that we can track the decrease
in MP Soft Rank, as We

l changes from an initial random (Gaussian-like) matrix to its final

Wl = Wf
l form; and Figure 13(b) illustrates that (at least for the early phases) we can fit

its ESD (or the bulk of its ESD) using MP theory, with ∆ corresponding to non-random
signal eigendirections. Observe that there are eigendirections (below λ+) that fit very well
the MP bulk, there are eigendirections (well above λ+) that correspond to a spike, and there
are eigendirections (just slightly above λ+) with (convex) curvature more like Figure 12(d)
than (the concave curvature of) Figure 12(b). Thus, Figure 13(b) is Bulk+Spikes, with
early indications of Bulk-decay.
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(a) Random-like. (b) Bleeding-out. (c) Bulk+Spikes.

(d) Bulk-decay. (e) Heavy-Tailed. (f) Rank-collapse.

Figure 12: Taxonomy of trained models. Starting off with an initial random or Random-
like model (12(a)), training can lead to a Bulk+Spikes model (12(c)), with
data-dependent spikes on top of a random-like bulk. Depending on the network
size and architecture, properties of training data, etc., additional training can
lead to a Heavy-Tailed model (12(e)), a high-quality model with long-range
correlations. An intermediate Bleeding-out model (12(b)), where spikes start
to pull out from the bulk, and an intermediate Bulk-decay model (12(d)),
where correlations start to degrade the separation between the bulk and spikes,
leading to a decay of the bulk, are also possible. In extreme cases, a severely
over-regularized model (12(f)) is possible.

Theory of Each Phase. RMT provides more than simple visual insights, and we can
use RMT to differentiate between the 5+1 Phases of Training using simple models that
qualitatively describe the shape of each ESD. In each phase, we model the weight matri-
ces W as “noise plus signal,” where the “noise” is modeled by a random matrix Wrand,
with entries drawn from the Gaussian Universality class (well-described by traditional MP
theory) and the “signal” is a (small or very large) correction ∆sig:

W 'Wrand + ∆sig. (13)
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(a) Depiction of how decreasing MP Soft Rank
corresponds to different phases of training.

(b) Depiction of each how each phase is related to
the MP Soft Rank.

Figure 13: Pictorial illustration of the 5 Phases of Training and the MP Soft Rank

Table 3 summarizes the theoretical model for each phase. Each model uses RMT to describe
the global shape of ρN (λ), the local shape of the fluctuations at the bulk edge, and the
statistics and information in the outlying spikes, including possible Heavy-Tailed behaviors.

In the first phase (Random-like), the ESD is well-described by traditional MP theory,
in which a random matrix has entries drawn from the Gaussian Universality class. This
does not mean that the weight matrix W is random, but it does mean that the signal in W
is too weak to be seen when viewed via the lens of the ESD. In the next phases (Bleeding-
out, Bulk+Spikes), and/or for small networks such as LetNet5, ∆ is a relatively-small
perturbative correction to Wrand, and vanilla MP theory (as reviewed in Section 3.1) can
be applied, as least to the bulk of the ESD. In these phases, we will model the Wrand

matrix by a vanilla Wmp matrix (for appropriate parameters), and the MP Soft Rank
is relatively large (Rmp(W) � 0). In the Bulk+Spikes phase, the model resembles a
Spiked-Covariance model, and the Self-Regularization resembles Tikhonov regularization.

In later phases (Bulk-decay, Heavy-Tailed), and/or for modern DNNs such as
AlexNet and InceptionV3, ∆ becomes more complex and increasingly dominates over Wrand.
For these more strongly-correlated phases, Wrand is relatively much weaker, and the MP
Soft Rank collapses (Rmp(W) → 0). Consequently, vanilla MP theory is not appropriate,
and instead the Self-Regularization becomes Heavy-Tailed. In these phases, we will treat
the noise term Wrand as small, and we will model the properties of ∆ with Heavy-Tailed
extensions of vanilla MP theory (as reviewed in Section 3.2) to Heavy-Tailed non-Gaussian
universality classes that are more appropriate to model strongly-correlated systems. In
these phases, the strongly-correlated model is still regularized, but in a very non-traditional
way. The final phase, the Rank-collapse phase, is a degenerate case that is a prediction
of the theory.

We now describe in more detail each phase in turn.
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5.1 Random-like

In the first phase, the Random-like phase, shown in Figure 12(a), the DNN weight matrices
W resemble a Gaussian random matrix. The ESDs are easily-fit to an MP distribution,
with the same aspect ratio Q, by fitting the empirical variance σ2

emp. Here, σ2
emp is the

element-wise variance (which depends on the normalization of W).
Of course, an initial random weight matrix W0

l will show a near perfect MP fit. Even
in well trained DNNs, however, the empirical ESDs may be Random-like, even when the
model has a non-zero, and even somewhat large, generalization accuracy.22 That is, being
fit well by an MP distribution does not imply that the weight matrix W is random. It
simply implies that W, while having structure, can be modeled as the sum of a random
“noise” matrix Wrand, with the same Q and σ2

emp, and some small-sized matrix ∆small, as:

W 'Wrand + ∆small,

where ∆small represents “signal” learned during the training process. In this case, λmax is
sharply bounded, to within M−

2
3 , to the edge of the MP distribution.

5.2 Bleeding-out

In the second phase, the Bleeding-out phase, shown in Figure 12(b), the bulk of the
ESD still looks reasonably random, except for one or a small number K � min{N,M} of
eigenvalues that extend at or just beyond the MP edge λ+. That is, for the given value of
Q, we can choose a σemp (or λ+) parameter so that: (1) most of the ESD is well-fit; and
(2) the part of the ESD that is not well-fit consists of a “shelf” of mass, much more than
expected by chance, just above λ+:

[λ1, λ2 · · ·λK ] ≈ λ+ +O(M−
2
3 ) & λ+, λk ∈ Bleeding-out.

This corresponds to modeling W as the sum of a random “noise” matrix Wrand and some
medium-sized matrix ∆medium, as:

W 'Wrand + ∆medium,

where ∆medium represents “signal” learned during the training process.
As the spikes just begin to pull out from the bulk, i.e., when ‖λmax − λ+‖ is small, it

may be difficult to determine unambiguously whether any particular eigenvalue is spike or
bulk. The reason is that, since the matrix is of finite size, we expect the spike locations to
be Gaussian-distributed, with fluctuations of order N−

1
2 . One option is to try to estimate

σbulk precisely from a single run. Another option is to perform an ensemble of runs and
plot ρNR

(λ) for the ensemble. Then, if the model is in the Bleeding-out phase, there will
be a small bump of eigenvalue mass, shaped like a Gaussian,23 which is very close to but
bleeding-out from the bulk edge.

When modeling DNN training in terms of RMT and MP theory, the transition from
Random-like to Bleeding-out corresponds to the so-called BPP phase transition (Baik

22In particular, as described below, we observe this with toy models when trained with very large
batch sizes.

23We are being pedantic here since, in later phases, bleeding-out mass will be Heavy-Tailed, not Gaussian.
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et al., 2005; Bouchaud and Potters, 2011a; Féral and Péché, 2007; Biroli et al., 2007b).
This transition represents a “condensation” of the eigenvector corresponding to the largest
eigenvalue λmax onto the eigenvalue of the rank-one (or, more generally, rank-k, if the
perturbation is higher rank) perturbation ∆ (Bouchaud and Potters, 2011a).

5.3 Bulk+Spikes

In the third phase, the Bulk+Spikes phase, shown in Figure 12(c), the bulk of the ESD still
looks reasonably random, except for one or a small number K � min{N,M} of eigenvalues
that extend well beyond the MP edge λ+. That is, for the given value of Q, we can choose
a σemp (or λ+) parameter so that: (1) most of the ESD is well-fit; and (2) the part of the
ESD that is not well-fit consists of several (K) eigenvalues, or Spikes, that are much larger
than λ+:

[λ1, λ2 · · ·λK ]� λ+, λk ∈ Spikes.

This corresponds to modeling W as the sum of a random “noise” matrix Wrand and some
moderately large-sized matrix ∆large, as:

W 'Wrand + ∆large,

where ∆large represents “signal” learned during the training process.
For a single run, it may be challenging to identify the spike locations unambiguously. If

we perform an ensemble of runs, however, then the Spike density is clearly visible, distinct,
and separated from bulk, although it is much smaller in total mass. We can try to estimate
σbulk precisely, but in many cases we can select the edge of the bulk, λ+, by visual inspection.
As in the Bleeding-out phase, the empirical bulk variance σ2

bulk is smaller than both
the full element-wise variance, σ2

bulk < σ2
full, and the shuffled variance (fit to the MP

bulk), σ2
bulk < σ2

shuf , because we remove several large eigendirections from the bulk. (See
Section 6.3 for more on this.)

When modeling DNN training in terms of RMT and MP theory, the Bulk+Spikes
phase corresponds to vanilla MP theory plus a large low-rank perturbation, and it is what
we observe in the LeNet5 model. In statistics, this corresponds to the Spiked Covari-
ance model (Johnstone, 2001; Paul, 2007; Johnstone and Lu, 2009). Relatedly, in the
Bulk+Spikes phase, we see clear evidence of Tikhonov-like Self-Regularization.

MP theory with large low-rank perturbations. To understand, from the perspective
of MP theory, the properties of the ESD as eigenvalues bleed out and start to form spikes,
consider modeling W as W ' Wrand + ∆large. If ∆ is a rank-1 perturbation24, but now
larger, then one can show that the maximum eigenvalue λmax that bleeds out will extend
beyond theoretical MP bulk edge λ+ and is given by

λmax = σ2

(
1

Q
+
|∆|2

N

)(
1 +

N

|∆|2

)
,

where

|∆| > (NM)
1
4 .

24More generally, ∆ may be a rank-k perturbation, for k �M , and similar results should hold.
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Here, by σ2, we mean the theoretical variance of the un-perturbed Wrand.25 Moreover,
in an ensemble of runs, each of these Spikes will have Gaussian fluctuations on the order
N−1/2.

Eigenvector localization. Eigenvector localization on extreme eigenvalues can be a di-
agnostic for Spike eigenvectors (as well as for extreme eigenvectors in the Heavy-Tailed
phase). The interpretation is that when the perturbation ∆ is large, “information” in W
will concentrate on a small number of components of the eigenvectors associated with the
outlier eigenvalues.

5.4 Bulk-decay

The fourth phase, the Bulk-decay phase, is illustrated in Figure 12(d), and is characterized
by the onset of Heavy-Tailed behavior, both in the very long tail, and at the Bulk edge.26

The Bulk-decay phase is intermediate between having a large, low-rank perturbation ∆
to an MP Bulk (as in the Bulk+Spikes phase) and having strong correlations at all scales
(as in the Heavy-Tailed phase). Viewed näıvely, the ESDs in Bulk-decay resemble a
combination of the Bleeding-out and Bulk+Spikes phases: there is a large amount of
mass above λ+ (from any reasonable MP fit); and there are a large number of eigenvectors
much larger than this value of λ+. However, quantitatively, the ESDs are quite different
than either Bleeding-out or Bulk+Spikes: there is much more mass bleeding-out; there
is much greater deterioration of the Bulk; and the Spikes lie much farther out.

In Bulk-decay, the Bulk region is both hard to identify and difficult to fit with MP
theory. Indeed, the properties of the Bulk start to look less and less consistent with an
MP distribution (with elements drawn from the Universality class of Gaussian matrices),
for any parameter values. This implies that λmax can be quite large, in which case the MP
Soft Rank is much smaller. The best MP fit neglects a large part of the eigenvalue mass,
and so we usually have to select λ+ numerically. Most importantly, the mass at the bulk
edge now starts to exhibit Heavy-Tailed, not Gaussian, properties; and the overall shape of
the ESD is itself taking on a Heavy-Tailed form. Indeed, the ESDs are may be consistent
with (weakly) Heavy-Tailed (4 < µ) Universality class, in which the local edge statistics
exhibit Heavy-Tailed behavior due to finite-size effects.27

5.5 Heavy-Tailed

The final of the 5 main phases, the Heavy-Tailed phase, is illustrated in Figure 12(e).
This phase is formally, and operationally, characterized by an ESD that resembles the ESD
of a random matrix in which the entries are drawn i.i.d. from a Heavy-Tailed distribution.
This phase corresponds to modeling W as the sum of a small “noise” matrix Wrand and a

25In typical theory, this is scaled to unity (i.e., σ2 = 1). In typical practice, we do not a priori know
σ2, and it may be non-trivial to estimate because the scale ‖W‖ may shift during Backprop training. As a
rule-of-thumb, one can select the bulk edge λ+ well to provide a good fit for the bulk variance σ2

bulk.
26We observe Bulk-decay in InceptionV3 (Figure 11(b)). This may indicate that this model, while

extremely good, might actually lend itself to more fine tuning and might not be fully optimized.
27Making this connection more precise—e.g., measuring α in this regime, relating α to µ in this regime,

having precise theory for finite-size effects in this regime, etc.—is nontrivial and left for future work.
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large “strongly-correlated” matrix ∆str.corr., as:

W 'Wrand + ∆str.corr..

where ∆str.corr. represents strongly-correlated “signal” learned during the training process.28

As usual, Wrand can be modeled as a random matrix, with entries drawn i.i.d. from a distri-
bution in the Gaussian Universality class. Importantly, the strongly-correlated signal matrix
∆str.corr. can also be modeled as a random matrix, but (as described in Section 3.2) one
with entries drawn i.i.d. from a distribution in a different, Heavy-Tailed, Universality class.

In this phase, the ESD visually appears Heavy-Tailed, and it is very difficult if not
impossible to get a reasonable MP fit of the layer weight matrices W (using standard
Gaussian-based MP/RMT). Thus, the matrix W has zero (Rmp(W) = 0) or near-zero
(Rmp(W) & 0) MP Soft Rank; and it has intermediate Stable Rank (1 � Rs(W) �
min{N,M}).29

When modeling DNN training in terms of RMT and MP theory, the Heavy-Tailed
phase corresponds to the variant of MP theory in which elements are chosen from a non-
Gaussian Universality class (Davis et al., 2014; Biroli et al., 2007b,a; Péché; Auffinger
et al., 2009; Edelman et al., 2016; Auffinger and Tang, 2016; Burda and Jurkiewicz, 2009;
Bouchaud and Potters, 2011b; Bouchaud and Mézard, 1997). In physics, this corresponds to
modeling strongly-correlated systems with Heavy-Tailed random matrices (Sornette, 2006;
Bouchaud and Potters, 2011a). Relatedly, in the Heavy-Tailed phase, the implicit Self-
Regularization is strongest. It is, however, very different than the Tikhonov-like regulariza-
tion seen in the Bulk+Spikes phases. Although there is a decrease in the Stable Rank (for
similar reasons to why it decreases in the Bulk+Spikes phases, i.e., Frobenius mass moves
out of the bulk and into the spikes), Heavy-Tailed Self-Regularization does not exhibit a
“size scale” in the eigenvalues that separates the signal from the noise.30

Heavy-Tailed ESDs. Although Figure 12(e) is presented on the same linear-linear plot
as the other subfigures in Figure 12, the easiest way to compare Heavy-Tailed ESDs is with
a log-log histogram and/or with PL fits. Consider Figure 14(a), which displays the ESD for
FC3 of pre-trained AlexNet, as a log-log histogram; and consider also Figure 14(b), which
displays an overlay (in red) of a log-log histogram of the ESD of a random matrix M. This
matrix M has the same aspect ratio as WFC3, but the elements Mi,j are drawn from a
Heavy-Tailed Pareto distribution, Eqn. (10), with µ = 2.5. We call ESDs such as WFC3

of AlexNet Heavy-Tailed because they resemble the ESD of a random matrix with entries
drawn from a Heavy-Tailed distribution, as observed with a log-log histogram.31 We can
also do a PL fit to estimate α and then try to estimate the Universality class we are in. Our
PL estimator works well for µ ∈ [1.5, 3.5]; but, due to large finite-size effects, it is difficult
to determine µ from α precisely. This is discussed in more detail in Section 3.2. As a rule
of thumb, if α < 2, then we can say α ≈ 1 + µ/2, and we are in the (very) Heavy-Tailed
Universality class; and if 2 < α < 4, but not too large, then α is well-modeled by α ≈ b+aµ,
and we are mostly likely in the (moderately, or “fat”) Heavy-Tailed Universality class.

28This Bulk+Spikes phase is what we observe in nearly all pre-trained, production-quality models.
29In this phase, the matrix W mostly retains full hard rank (R(W) > 0); but, in some cases, some small

deterioration of hard rank is observed, depending on the numerical threshold used.
30Indeed, this is the point of systems that exhibit Heavy-Tailed or scale-free properties.
31Recall the discussion around Figure 5.
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(a) AlexNet (b) AlexNet and Heavy-Tailed ESD.

Figure 14: log-log histogram plots of the ESD for WFC3 of pre-trained AlexNet (blue) and
a Heavy-Tailed random matrix M with same aspect ratio and µ = 2.5 (red)

5.6 Rank-collapse

In addition to the 5 main phases, based on MP theory we also expect the existence of an
additional “+1” phase, which we call the Rank-collapse Phase, and which is illustrated
in Figure 12(f). For many parameter settings, the minimum singular value (i.e., λ− in
Eqn. (9) for vanilla MP theory) is strictly positive. For certain parameter settings, the
MP distribution has a spike at the origin, meaning that there is a non-negligible mass of
eigenvalues equal to 0, i.e., the matrix is rank-deficient, i.e., Hard Rank is lost.32 For vanilla
Gaussian-based MP theory, this happens when Q > 1, and this phenomenon exists more
generally for Heavy-Tailed MP theory.

6. Empirical Results: Detailed Analysis on Smaller Models

In this section, we validate and illustrate how to use our theory from Section 5. This
involved extensive training and re-training, and thus we used the smaller MiniAlexNet
model. Section 6.1 describes the basic setup; Section 6.2 presents several baseline results;
Section 6.3 provides some important technical details; and Section 6.4 describes the effect
of adding explicit regularization. We postpone discussing the effect of changing batch size
until Section 7.

6.1 Experimental setup

Here, we describe the basic setup for our empirical evaluation.

32This corresponds more to a Truncated-SVD-like regularization than a softer Tikhonov-like regulariza-
tion.
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Figure 15: Pictorial illustration of MiniAlexNet.

Model Deep Neural Network. We analyzed MiniAlexNet,33 a simpler version of AlexNet,
similar to the smaller models used in Zhang et al. (2016), scaled down to prevent overtrain-
ing, and trained on CIFAR10. The basic architecture follows the same general design as
older NNs such as LeNet5, VGG16, and VGG19. It is illustrated in Figure 15. It consists
of two 2D Convolutional layers, each with Max Pooling and Batch Normalization, giving
6 initial layers; it then has two Fully Connected (FC), or Dense, layers with ReLU activa-
tions; and it then has a final FC layer added, with 10 nodes and softmax activation. For
the FC layers:

WFC1 = (4096× 384) (Layer FC1) (Q ≈ 10.67)

WFC2 = (384× 192) (Layer FC2) (Q = 2)

WFC3 = (192× 10).

The WFC1 and WFC2 matrices are initialized with a Glorot normalization (Glorot and
Bengio, 2010).34 We apply Batch Normalization to the Conv2D layers, but we leave it off
the FC layer; results do not change if remove all Batch Normalization. All models are
trained using Keras 2.x, with TensorFlow as a backend. We use SGD with momentum,
with a learning rate of 0.01, a momentum parameter of 0.9, and a baseline batch size of 32;
and we train up to 100 epochs. To compare different batch sizes and other tunable knobs,
we stopped based on a termination criterion based on the training loss, and we employed
early stopping criteria on the total loss which causes termination at fewer than 100 epochs.
We save the weight matrices at the end of every epoch, and we study the complexity of the
trained model by analyzing the empirical properties of the WFC1 and WFC2 matrices.

33https://github.com/deepmind/sonnet/blob/master/sonnet/python/modules/nets/alexnet.py
34Here and elsewhere, most DNNs are initialized with random weight matrices, e.g., as with the Glorot

Normal initialization (Glorot and Bengio, 2010) (which involves a truncation step). If we näıvely fit the MP
distribution to W0

trunc, then the empirical variance will be larger than one, i.e., σ2
emp > 1. That is because

the Glorot normalization is
√

2/N +M, whereas the MP theory is presented with normalization
√
N−1. To

apply MP theory, we must rescale our empirically-fit σ2
emp (of the bulk, if there is a spike) to match our

normalization, such that the rescaled σ2
emp becomes

√
(M +N)/(2N)σ2

emp. If we do this, then we find that

the Glorot normal matrix has σ2
emp . 1. Even aside from the obvious scale issue of

√
(M +N)/(2N), this

is not perfect—since the variance may shift during SGD/Backprop training, especially if we do not employ
Batch Normalization—but it suffices for our purposes.
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Experimental Runs. It is important to distinguish between several different types of
analysis. First, analysis of ESDs (and related quantities) during Backprop training during
1 training run. In this case, we consider a single training run, and we monitor empirical
properties of weight matrices as they change during the training process. Second, analysis
of the final ESDs from 1 training run. In this case, we consider a single training run,
and we analyze the empirical properties of the single weight matrix that is obtained after
the training process terminates. This is similar to analyzing pre-trained models. Third,
analysis of an ensemble of final ESDs from NR training runs. In this case, we rerun the
model NR ∼ 10–100 times, using different initial random weight matrices W0

l , and we form

an ensemble of NR of final weight matrices [Wfinal
l ]. We do this in order to compensate for

finite-size effects, to provide a better visual interpretation of our claims, and to help clarify
our scientific claims about the learning process. Of course, as an engineering matter, one
wants exploit our results on a single “production” run of the training process. In that case,
we expect to observe (and do observe) a noisy version of what we present.35

Empirically Measured Quantities. We compute several RMT-based quantities of in-
terest for each layer weight matrices Wl, for layers l = FC1, FC2, including the following:
Matrix complexity metrics, such as the Matrix Entropy S(We

l ), Hard Rank R(We
l ), Stable

Rank Res(Wl), and MP Soft Rank Remp(Wl); ESDs, ρ(λ) for a single run, both during
Backprop training and for the final weight matrices, and/or ρNR

(λ) for the final states an
ensemble of NR runs; and Eigenvector localization metrics, including the Generalized Vector
Entropy S(x), Localization Ratio L(x), and Participation Ratio P(x), of the eigenvectors
of X, for an ensemble of runs.

Knobs and Switches of the Learning Process. We vary knobs and switches of the
training process, including the following: number of epochs (typically ≈ 100, well past when
entropies and measured training/test accuracies saturate); Weight Norm regularization (on
the fully connected layers—in Keras, this is done with an L2-Weight Norm kernel regularizer,
with value 0.0001); various values of Dropout; and batch size36 (varied between 2 to 1024).

6.2 Baseline results

Here, we present several baseline results for our RMT-based analysis of MiniAlexNet. For
our baseline, the batch size is 16; and Weight Norm regularization, Dropout, and other
explicit forms of regularization are not employed.

Transition in Matrix Entropy and Stable Rank. Figure 16 shows the Matrix Entropy
(S(W)) and Stable Rank (Rs(W)) for layers FC1 and FC2, as well as of the training and
test accuracies, for MiniAlexNet, as a function of the number of epochs. This is for an
ensemble of NR = 10 runs. Both layers start off with an Entropy close to but slightly less
than 1.0; and both retrain full rank during training. For each layer, the matrix Entropy
gradually lowers; and the Stable Rank shrinks, but more prominently. These decreases
parallel the increase in training and test accuracies, and both complexity metrics level off

35We expect that well-established methods from RMT will be useful here, but we leave this for future work.
36Generally speaking, decreasing batch size is incompatible with Batch Normalization and can decrease

performance because batch statistics are not computed accurately; we have not employed Batch Normaliza-
tion, except on the Convolutional layers in MiniAlexNet.
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as the training/test accuracies do. The Matrix Entropy decreases relatively more for FC2,
and the Stable Rank decreases relatively more for FC1; but they track the same gross
changes. The large difference between training and test accuracy should not be surprising
since—for these baseline results—we have turned off regularization like removing Batch
Norm, Dropout layers, and any Weight Norm constraints.

(a) Layer Entropies. (b) Stable Ranks (c) Training, Test Accuracies

Figure 16: Entropies, Stable Ranks, and Training and Test Accuracies per Epoch for
MiniAlexNet.

(a) Epoch 0 (b) Epoch 4 (c) Epoch 8 (d) Epoch 12

(e) Epoch 16 (f) Epoch 20 (g) Epoch 24 (h) Epoch 28

Figure 17: Baseline ESD for Layer FC1 of MiniAlexNet, during training.

Eigenvalue Spectrum: Comparisons with RMT. Figures 17 and 18 show, for FC1
and FC2, respectively, the layer matrix ESD, ρ(λ), every few epochs during the training
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(a) Epoch 0 (b) Epoch 4 (c) Epoch 8 (d) Epoch 12

(e) Epoch 16 (f) Epoch 20 (g) Epoch 24 (h) Epoch 28

Figure 18: Baseline ESD for Layer FC2 of MiniAlexNet, during training.

process. For layer FC1 (with Q ≈ 10.67), the initial weight matrix W0 looks very much
like an MP distribution (with Q ≈ 10.67), consistent with a Random-like phase. Within
a very few epochs, however, eigenvalue mass shifts to larger values, and the ESD looks like
the Bulk+Spikes phase. Once the Spike(s) appear(s), substantial changes are hard to
see in Figure 17, but minor changes do continue in the ESD. Most notably, λmax increases
from roughly 3.0 to roughly 4.0 during training, indicating further Self-Regularization, even
within the Bulk+Spikes phase. For layer FC2 (with Q = 2), the initial weight matrix
also resembles an MP distribution, also consistent with a Random-like phase, but with a
much smaller value of Q than FC1 (Q = 2 here). Here too, the ESD changes during the
first few epochs, after which there are not substantial changes. The most prominent change
is that eigenvalue mass pulls out slightly from the bulk and λmax increases from roughly
3.0 to slightly less than 4.0.

Eigenvector localization. Figure 19 plots three eigenvector localization metrics, for an
ensemble NR = 10 runs, for eigenvectors in the bulk and spike of layer FC1 of MiniAlexNet,
after training.37 Spike eigenvectors tend to be more localized than bulk eigenvectors. This
effect is less pronounced for FC2 (not shown) since the spike is less well-separated from
the bulk.

6.3 Some important implementational details

There are several technical issues with applying RMT. See Appendix A.4 for details.

37More precisely, bulk here refers to eigenvectors associated with eigenvalues less than λ+, defined below
and illustrated in Figure 31, and spike here refers to those in the main part of the spike.
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(a) Vector Entropies. (b) Localization Ratios. (c) Participation Ratios.

Figure 19: Eigenvector localization metrics for the FC1 layer of MiniAlexNet, for an en-
semble of 10 runs. Batch size 16, and no weight regularization. Comparison of
Bulk and Spike.

6.4 Effect of explicit regularization

We consider here how explicit regularization affects properties of learned DNN models,
in light of baseline results of Section 6.2. We focus on L2 Weight Norm and Dropout
regularization.

(a) Layer Entropy. (b) Stable Rank. (c) Training, Test Accuracies.

Figure 20: Entropy, Stable Rank, and Training and Test Accuracies of last two layers for
MiniAlexNet, as a function of the number of epochs of training, without and
with explicit L2 norm weight regularization.

Transition in Layer Entropy and Stable Rank. See Figure 20 for plots for FC1
and FC2 when L2 norm weight regularization is included; and see Figure 21 for plots
when Dropout regularization is included. In both cases, baseline results are provided, and
compare with Figure 16. In each case, we observe a greater decrease in the complexity
metrics with explicit regularization than without, consistent with expectations; and we see
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(a) Layer Entropy. (b) Stable Rank. (c) Training, Test Accuracies.

Figure 21: Entropy, Stable Rank, and Training and Test Accuracies of last two layers for
MiniAlexNet, as a function of the number of epochs of training, without and
with explicit Dropout.

that explicit regularization affects these metrics dramatically. Here too, the Layer Entropy
decreases relatively more for FC2, and the Stable Rank decreases relatively more for FC1.

Eigenvalue Spectrum: Comparisons with RMT. See Figure 22 for the ESD for
layers FC1 and FC2 of MiniAlexNet, with explicit Dropout, including MP fits to a bulk
when 9 or 10 spikes are removed. Compare with Figure 29 (for FC1) and Figure 30 (for
FC2). Note, in particular, the differences in the scale of the X axis. Figure 22 shows that
when explicit Dropout regularization is added, the eigenvalues in the spike are pulled to
much larger values (consistent with a much more implicitly-regularized model). A subtle
but important consequence of this regularization38 is the following: this leads to a smaller
bulk MP variance parameter σ2

mp, and thus smaller values for λ+, when there is a more
prominent spike. See Figure 23 for similar results for the ESD for layers FC1 and FC2 of
MiniAlexNet, with explicit L2 norm weight regularization.

Eigenvalue localization. We observe that eigenvector localization tends to be more
prominent when the explicit regularization is stronger, presumably since explicit (L2 Weight
Norm or Dropout) regularization can make spikes more well-separated from the bulk.

38This is seen in Figure 31 in the baseline, but it is seen more clearly here, especially for FC2 in Figure 22.
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(a) FC1 Randomly Shuffled
100X.

(b) FC1 Bulk + 9 spikes (c) FC1 Bulk + 10 spikes.

(d) FC2 Randomly Shuffled
100X.

(e) FC2 Bulk + 9 spikes (f) FC2 Bulk + 10 spikes.

Figure 22: ESD for layers FC1 and FC2 of MiniAlexNet, with explicit Dropout. (Compare
with Figure 29 (for FC1) and Figure 30 (for FC2).)

(a) FC1. (b) FC2.

Figure 23: ESD for layers FC1 and FC2 of MiniAlexNet, with explicit L2 norm weight
regularization. (Compare with Figure 29 (for FC1) and Figure 30 (for FC2).)
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7. Exhibiting the Phases by Varying the Batch Size

In this section, we demonstrate that we can exhibit all five of the main phases of learning
by changing a single knob of the learning process.39 We consider the batch size (used in the
construction of mini-batches during SGD training) since it is not traditionally considered a
regularization parameter, and due to its its implications for understanding the generalization
gap phenomenon. To address this question, we consider here using different batch sizes in
the DNN training algorithm. We trained the MiniAlexNet model, just as in Section 6 for
the Baseline model, except with batch sizes ranging from moderately large to very small
(b ∈ {500, 250, 100, 50, 32, 16, 8, 4, 2}).40

These results are of interest for two reasons. First and foremost, we demonstrate the
existence of the 5 main phases of learning that we hypothesized in Section 5. Recall (from
the introduction) our main methodological contribution: we use empirical observations as
well as recent developments in RMT to motivate a practical predictive DNN theory, rather
than developing a descriptive DNN theory based on general theoretical considerations, so
that we can follow the traditional scientific method. Here, we show that we can exhibit
the 5 main phases of learning, and that we can accomplish this by varying a single knob
of the training process. The obvious implications of our results for improved training are
beyond the scope of this work. Second, since the knob we vary is the batch size, our results
suggest an explanation for the generalization gap phenomenon. Work subsequent to the
initial technical report version of this paper (Golmant et al., 2018; Shallue et al., 2018) has
shown some of the many subtleties in practical large-batch training. This is discussed in
more detail at the end of this section; but a full analysis of this issue is beyond the scope
of this work.

(a) Layer FC1. (b) Layer FC2. (c) Training, Test Accuracies.

Figure 24: Varying Batch Size. Stable Rank and MP Softrank for FC1 (24(a)) and
FC2 (24(b)); and Training and Test Accuracies (24(c)) versus Batch Size for
MiniAlexNet.

39We can also exhibit the “+1” phase, but in this section we are interested in changing only the batch size.
40As we describe next, the primary goal here is to demonstrate that we can exhibit all of the main phases

of learning; and that we can do so by tuning a single parameter, in this case the batch size. We could have
varied other parameters such as learning rate and seen the same effect. In particular, we trained until the
training error saturated, but we did not fine-tune other parameters.
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Stable Rank, MP Soft Rank, and Training/Test Performance. Figure 24 shows
the Stable Rank and MP Softrank for FC1 (24(a)) and FC2 (24(b)) as well as the Training
and Test Accuracies (24(c)) as a function of Batch Size for MiniAlexNet. Observe that the
MP Soft Rank (Rmp) and the Stable Rank (Rs) both track each other, and both systemat-
ically decrease with decreasing batch size, as the test accuracy increases. In addition, both
the training and test accuracy decrease for larger values of b: training accuracy is roughly
flat until batch size b ≈ 100, and then it begins to decrease; and test accuracy actually
increases for extremely small b, and then it gradually decreases as b increases.

(a) Batch Size 500. (b) Batch Size 250. (c) Batch Size 100. (d) Batch Size 32.

(e) Batch Size 16. (f) Batch Size 8. (g) Batch Size 4. (h) Batch Size 2.

Figure 25: Varying Batch Size. ESD for Layer FC1 of MiniAlexNet, with MP fit (in red),
for an ensemble of 10 runs, for Batch Size ranging from 500 down to 2. (Compare
with Figure 29 as a reference.) Smaller batch size leads to more implicitly self-
regularized models. For FC1, we exhibit all 5 of the main phases of training by
varying only the batch size.

ESDs: Comparisons with RMT. Figures 25 and 26 show the final ensemble ESD for
each value of b for Layer FC1 and FC2, respectively, of MiniAlexNet. For both layers, we
see systematic changes in the ESD as batch size b decreases. Consider, first, FC1.

• At batch size b = 250 (and larger), the ESD resembles a pure MP distribution with
no outliers/spikes; it is Random-like.

• As b decreases, there starts to appear an outlier region. For b = 100, the outlier region
resembles Bleeding-out.

• Then, for b = 32, these eigenvectors become well-separated from the bulk, and the
ESD resembles Bulk+Spikes.
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(a) Batch Size 500. (b) Batch Size 250. (c) Batch Size 100. (d) Batch Size 32.

(e) Batch Size 16. (f) Batch Size 8. (g) Batch Size 4. (h) Batch Size 2.

Figure 26: Varying Batch Size. ESD for Layer FC2 of MiniAlexNet, with MP fit (in red),
for an ensemble of 10 runs, for Batch Size ranging from 500 down to 2. (Compare
with Figure 30 as a reference.) Smaller batch size leads to more implicitly self-
regularized models. For FC2, we exhibit 4 of the 5 of the main phases of training
by varying only the batch size.

• As batch size continues to decrease, the spikes grow larger and spread out more
(observe the increasing scale of the X-axis), and the ESD exhibits Bulk-decay.

• Finally, at the smallest size, b = 2, extra mass from the main part of the ESD plot
almost touches the spike, and the curvature of the ESD changes, consistent with
Heavy-Tailed.

While the shape of the ESD is different for FC2 (since the aspect ratio of the matrix is
less), very similar properties are observed. In addition, as b decreases, some of the extreme
eigenvectors associated with eigenvalues that are not in the bulk tend to be more localized.

Implications for the large-batch generalization gap. The Large-Batch Generaliza-
tion Gap refers to the peculiar phenomena that DNNs generalize significantly less well
when trained with larger mini-batches (on the order of 103− 104) (LeCun et al., 1988; Hof-
fer et al., 2017; Keskar et al., 2016; Goyal et al., 2017). (We should, however, point out that
there are many subtleties in practical large-batch training (Golmant et al., 2018; Shallue
et al., 2018).) Practically, this is of interest since smaller batch sizes makes training large
DNNs on modern GPUs much less efficient. Theoretically, this is of interest since it con-
tradicts simplistic stochastic optimization theory for convex problems. The latter suggests
that larger batches should allow better gradient estimates with smaller variance and should

48



Implicit Self-Regularization in Deep Neural Networks

therefore improve the SGD optimization process, thereby increasing, not decreasing, the
generalization performance. For these reasons, there is interest in the question: what is the
mechanism responsible for the drop in generalization in models trained with SGD methods
in the large-batch regime?

Our results here (both that training/test accuracies decrease for larger batch sizes and
that smaller batch sizes lead to more well-regularized models) suggest that the large-batch
generalization gap phenomenon arises since, for smaller values of the batch size b, the DNN
training process itself implicitly leads to stronger Self-Regularization. (Depending on the
layer and the batch size, this Self-Regularization is either the more traditional Tikhonov-like
regularization or the Heavy-Tailed Self-Regularization corresponding to strongly-correlated
models.) That is, training with smaller batch sizes implicitly leads to more well-regularized
models, and it is this regularization that leads to improved results. The obvious mechanism
is that, by training with smaller batches, the DNN training process is able to “squeeze out”
more and more finer-scale correlations from the data, leading to more strongly-correlated
models.41 Large batches, involving averages over many more data points, simply fail to see
this very fine-scale structure, and thus they are less able to construct strongly-correlated
models characteristic of the Heavy-Tailed phase. Our results also suggest that, if one
hopes to compensate for this by decreasing the learning rate, then one would have to
decrease the learning rate by an extraordinary amount.

We say above that our results suggest an explanation for the large-batch generalization
gap since providing an appropriate baseline is difficult since there are many subtleties in
practical large-batch training (Golmant et al., 2018; Shallue et al., 2018). Subsequent to
the dissemination of the initial technical report version of this paper, we (Mahoney and
other coauthors) showed that, although it is common practice to increase the batch size
in order to fully exploit available computational resources, there is actually a substantially
more nuanced picture (Golmant et al., 2018). In particular, across a wide range of network
architectures and problem domains, increasing the batch size beyond a certain point yields
no decrease in wall-clock time to convergence, for either train or test loss. This batch size
is usually substantially below the capacity of current systems; popular training strategies
for large batch size optimization begin to fail before one can populate all available compute
resources; and the point at which these methods break down depends more on attributes
like model architecture and data complexity than it does directly on the size of the dataset.
Subsequent to Golmant et al. (2018), a more detailed empirical evaluation (that used sub-
stantially more computational resources than Golmant et al. (2018)) came to broadly similar
conclusions, pointing out explicitly that (if those computational resources are available then)
batch size per se does not lead to out-of-sample performance degradation (Shallue et al.,
2018). From the perspective of our paper, our tools can be used to perform a posteriori
model diagnostics, e.g., to evaluate trained models, if computational resources like those

41Of course, one would like a more precise version of this statement. Subsequent to the initial technical
report version of this paper, work by us (Mahoney and another coauthor) (Hodgkinson and Mahoney, 2020)
and others (Gurbuzbalaban et al., 2020) has begun to provide this. These two papers analyze the effect of
multiplicative (and not just additive) noise in the stochastic optimization process, and how this interacts
with implicit and explicit variance parameters in the model/data/training process. More work needs to be
done here to obtain an improved understanding of this informal statement.
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used in Shallue et al. (2018) are not available. This has been demonstrated in detail in
recent work (Martin et al., 2020, 2021).

Remark. Since the dissemination of the initial technical report version of this paper, these
batch size computations have been met with particular intrigue and incredulity. Our main
point is that we can exhibit all the hypothesized phases of learning by varying a single knob
of the training process. A secondary point is that these results suggest an explanation for
the generalization gap phenomenon. Making strong causal claims in a complex situation is
challenging, and we do not aim to do that. A common concern is that we have not run the
computations to convergence. This leads to the obvious question of what does convergence
even mean in this situation. The problem is not convex, and so traditional convergence
diagnostics don’t obviously apply. We could run more epochs at the same learning rate,
but it is not clear when that is appropriate since one often employs early stopping. We
could run more epochs and vary the learning rate (which is what people often do when
they say that the generalization gap disappears if we run more epochs), but that is not
appropriate since we want to vary one knob of the training process. In more recent work
(Martin et al., 2020, 2021), we have observed that different layers have ESDs that converge
at different rates, and in some cases they do so non-monotonically. Of course, using our
publicly-available WeightWatcher tool (wei, 2018), developed in light of the results of this
paper, we can monitor this. With respect to the results of this section, we have re-run the
computations 10× longer (perhaps under the assumption that those results will be “more
converged” than the results we have presented), and we see substantially the same results
we have reported in this section.

8. Discussion and Conclusion

There is a large body of related work, much of which either informed our approach or
should be informed by our results. This includes: work on large-batch learning and the
generalization gap (Wilson and Martinez, 2003; Keskar et al., 2016; Hoffer et al., 2017;
Goyal et al., 2017; Jastrzebski et al., 2017; Smith et al., 2017; Ioffe, 2017; Wang et al., 2018;
Masters and Luschi, 2018; Xing et al., 2018; Yao et al., 2018); work on Energy Landscape
approaches to NN training (Kanter et al., 1991; Wong, 1997; Erhan et al., 2010; Sagun et al.,
2014; Choromanska et al., 2014; Chaudhari and Soatto, 2015b; Chaudhari et al., 2016; Im
et al., 2016; Freeman and Bruna, 2016; Baldassi et al., 2016; Nguyen and Hein, 2017; Wu
et al., 2017; Gamst and Walker, 2017; Li et al., 2017, 2018; Mei et al., 2018); work on using
weight matrices or properties of weight matrices (Bartlett, 1997; Neyshabur et al., 2014,
2015; Arora et al., 2015; Bartlett et al., 2017; Yoshida and Miyato, 2017; Neyshabur et al.,
2017; Arora et al., 2018; Liao and Couillet, 2018b; Mianjy et al., 2018); work on different
Heavy-Tailed Universality classes (Forrester, 1993; Cizeau and Bouchaud, 1994; Bertin and
Clusel, 2006; Burda et al., 2006; Biroli et al., 2007b; Arous and Guionnet, 2008; Péché;
Auffinger et al., 2009; Davis et al., 2014; Benaych-Georges and Guionnet, 2014; Majumdar
and Pal, 2014; Auffinger and Tang, 2016; Minsker and Wei, 2017); other work on RMT
approaches (Sommers et al., 1988; Rajan and Abbott, 2006; Pennington and Worah, 2017;
Pennington and Bahri, 2017; Louart et al., 2017,?; Süzen et al., 2017; Liao and Couillet,
2018a; Sengupta and Friston, 2018); other work on statistical physics approaches (Sohl-
Dickstein et al., 2015; Giryes et al., 2016; Poole et al., 2016; Schoenholz et al., 2016; Süzen
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et al., 2017; Raghu et al., 2017; Pennington et al., 2017); work on fitting to noisy versus
reliable signal (Sukhbaatar et al., 2014; Zhang et al., 2016; Krueger et al., 2017; Rolnick
et al., 2017; Arpit et al., 2017); and several other related lines of work (Hilhorst, 2009;
Mhaskar and Poggio, 2016; Poggio et al., 2016; Cocco et al., 2017; Advani and Saxe, 2017;
Oprisa and Toth, 2017a,b; Mhaskar and Poggio, 2018; Liao et al., 2018). We conclude by
discussing several aspects of our results in this broader context.

8.1 Some immediate implications

Failures of VC theory. In light of our results, we have a much better understanding of
why VC theory does not apply to NNs. VC theory assumes, at its core, that a learning
algorithm could sample a very large, potentially infinite, space of hypothesis functions;
and it then seeks a uniform bound on this process to get a handle on the generalization
error. It thus provides a very lose, data-independent bound. Our results suggest a very
different reason why VC theory would fail than is sometimes assumed: näıvely, the VC
hypothesis space of a DNN would include all functions described by all possible values of
the layer weight matrices (and biases). Our results suggest, in contrast, that the actual
space is in some sense “smaller” or more restricted than this, in that the FC layers (at
least) cover only one Universality class—the class of Heavy (or Fat) Tailed matrices, with
PL exponent µ ∈ [2, 4]. During the course of training, the space becomes smaller—through
Self-Regularization—since even if the initial matrices are random, the class of possible
final matrices is very strongly correlated. The process of Self-Regularization and Heavy-
Tailed Self-Regularization collapses the space of available functions that can be learned.
Indeed, this also suggests why transfer learning is so effective—the initial weight matrices
are much closer to their final versions, and the space of functions need not shrink so much.
The obvious conjecture is that what we have observed is characteristic of general NN/DNN
learning systems. Since there is nothing like this in VC theory, our results suggest revisiting
more generally the recent suggestions of Martin and Mahoney (2017).

Information bottleneck. Recent empirical work on modern DNNs has shown two phases
of training: an initial “fast” phase and a second “slower” phase. To explain this, Tishby
et al. (Tishby and Zaslavsky, 2015; Shwartz-Ziv and Tishby, 2017) have suggested using
the Information Bottleneck Theory for DNNs. See also Tishby et al. (2000); Shamir et al.
(2010); Saxe et al. (2018); Yu et al. (2018). While this theory may be controversial, the
central concept embodies the old thinking that DNNs implicitly lose some capacity (or infor-
mation/entropy) during training. This is also what we observe. Two important differences
with our approach are the following: we provide a posteriori guarantees; and we provide an
unsupervised theory. An a posteriori unsupervised theory provides a mechanism to mini-
mize the risk of “label leakage,” clearly a practical problem. The obvious hypothesis is that
the initial fast phase corresponds to the initial drop in entropy that we observe (which often
corresponds to a Spike pulling out of the Bulk), and that the second slower phase corre-
sponds to “squeezing out” more and more correlations from the data (which, in particular,
would be easier with smaller batches than larger batches, and which would gradually lead
to a very strongly-correlated model that can then be modeled by Heavy-Tailed RMT).
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Energy landscapes and rugged convexity. Our observations about the onset of Heavy-
Tailed or scale-free behavior in realistic models suggest that (relatively) simple (i.e., Gaus-
sian) Spin-Glass models, used by many researchers, may lead to very misleading results
for realistic systems. Results derived from such models are very specific to the Gaussian
Universality class; and other Spin-Glass models can show very different behaviors. In par-
ticular, if we select the elements of the Spin-Glass Hamiltonian from a Heavy-Tailed Levy
distribution, then the local minima do not concentrate near the global minimum (Cizeau
and Bouchaud, 1993, 1994). See also Wong (1997); Galluccio et al. (1998); Gábora and
Kondor (1999); Chaudhari and Soatto (2015a); Swirszcz et al. (2016). Based on this, as
well as the results we have presented, we expect that well-trained DNNs will exhibit a
ruggedly convex global energy landscape, as opposed to a landscape with a large number of
very different degenerate local minima. This would clearly provide a way to understand
phenomena exhibited by DNN learning that are counterintuitive from the perspective of
traditional ML (Martin and Mahoney, 2017).

Connections with glass theory. It has been suggested that the slow training phase
arises because the DNN optimization landscape has properties that resemble a glassy system
(in the statistical physics sense), meaning that the dynamics of the SGD is characterized
by slow Heavy-Tailed or PL behavior. See Barra et al. (2012); Keskar et al. (2016); Hoffer
et al. (2017); Baity-Jesi et al. (2018)—and recall that, while this connection is sometimes not
explicitly noted, glasses are defined in terms of their slow dynamics. Using the glass analogy,
however, it can also shown that very large batch sizes can, in fact, be used—if one adjusts
the learning rate (potentially by an extraordinary amount). For example, it is argued that,
when training with larger batch sizes, one needs to change the learning rate adaptively in
order to take effectively more times steps to reach a obtain good generalization performance.
Our results are consistent with the suggestion that DNNs operate near something like a finite
size form of a spin-glass phase transition, again consistent with previous work (Martin and
Mahoney, 2017). This is likewise similar in spirit to how certain spin glass models are Bayes
optimal in that their optimal state lies on the Nishimori Line (Nishimori, 2001). Indeed,
these ideas have been a great motivation in looking for our empirical results and formulating
our theory.

Self-Organization in Natural (and Engineered) Phenomena. Typical implementa-
tions of Tikhonov regularization require setting a specific regularization parameter or reg-
ularization size scale, whereas Self-Regularization just arises as part of the DNN training
process. A different mechanism for this has been described by Sornette, who suggests it can
arise more generally in natural Self-Organizing systems, without needing to tune specific ex-
ogenous control parameters (Sornette, 2006). Such Self-Organization can manifest itself as
Bulk+Spikes (Malevergne and Sornette, 2002), as true (infinite order) Power Laws, or as a
finite-sized Heavy-Tailed (or Fat-Tailed) phenomena (Sornette, 2006). This corresponds
to the three Heavy-Tailed Universality classes we described. To the best of our knowledge,
ours is the first observation and suggestion that a Heavy-Tailed ESD could be a signa-
ture/diagnostic for such Self-Organization. That we are able to induce both Bulk+Spikes
and Heavy-Tailed Self-Organization by adjusting a single internal control parameter (the
batch size) suggests similarities between Self-Organized Criticality (SOC) (Bak et al., 1987)
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(a very general phenomena also thought to be “a fundamental property of neural systems”
more generally (Hesse and Gross, 2014; Cowan et al., 2014)) and modern DNN training.

Overparameterization, double descent, and infinitely-wide networks. One might
also be interested in the connections between our work and two loosely-related lines of
work: that on overparameterization and the double descent phenomenon; and that on
infinitely-wide networks. Starting with the work of Belkin et al. (2018, 2019), there has
been interest in overparameterization and the so-called double descent phenomenon, in
particular for idealized models like random features models (Mei and Montanari, 2019;
Liao et al., 2020) as well as other models of data access (Dereziński et al., 2019). There are
connections here with questions of the appropriateness of uniform convergence style analysis
(Nagarajan and Kolter, 2019). From the perspective of Statistical Mechanics (Martin and
Mahoney, 2017), which provides a basis for much of our approach, phases of learning arise
naturally, and these phases can be described by observables—energies and heat capacities, in
physical systems, and training/testing errors and generalization errors for DNN systems—
some of which diverge at phase transition points. These connections have been described
in detail recently by us (Mahoney and other coauthors) (Liao et al., 2020). As for the
work on infinitely-wide networks, including Jacot et al. (2018); Arora et al. (2019a,b);
Shankar et al. (2020), one would expect the ESDs for such models to exhibit Random-like
behavior. Our empirical and theoretical work, as well as subsequent work following our
general approach (Martin et al., 2020, 2021), finds that Random-like behavior is almost
non-existent, at least among state-of-the-art Computer Vision and NLP models. This should
suggest caution in drawing conclusions about state-of-the-art models from these idealized
infinitely-wide models.

8.2 Theoretical niceties, or Why RMT makes good sense here

There are subtle issues that make RMT particularly appropriate for analyzing weight ma-
trices.

Taking the right limit. The matrix X is an empirical correlation matrix of the weight
layer matrix Wl, akin to an estimator of the true covariance of the weights. It is known,
however, that this estimator is not good, unless the aspect ratio is very large (i.e., unless
Q = N/M � 1, in which case Xl is very tall and thin). The limit Q → ∞ (e.g., N → ∞
for fixed M) is the case usually considered in mathematical statistics and traditional VC
theory. For DNNs, however, M ∼ N , and so Q = O(1); and so a more appropriate limit
to consider is (M → ∞, N → ∞) such that Q is a fixed constant (Martin and Mahoney,
2017). This is the regime of MP theory, and this is why deviations from the limiting MP
distribution provides the most significant insights here.

Relation to the SMTOG. In recent work (Martin and Mahoney, 2017), Martin and
Mahoney examined DNNs using the Statistical Mechanics Theory of Generalization (SM-
TOG) (Seung et al., 1992; Watkin et al., 1993; Haussler et al., 1996; Engel and den Broeck,
2001). As with RMT, the STMOG also applies in the limit (M → ∞, N → ∞) such that
Q = 1 or Q = O(1), i.e., in the so-called Thermodynamic Limit. Of course, RMT has a
long history in theoretical physics, and, in particular, the statistical mechanics of the energy
landscape of strongly-correlated disordered systems such as polymers. For this reason, we
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believe RMT will be very useful to study broader questions about the energy landscape of
DNNs. Martin and Mahoney also suggested that overtrained DNNs—such as those trained
on random labelings—may effectively be in a finite size analogue of the (mean field) spin
glass phase of a neural network, as suggested by the SMTOG (Martin and Mahoney, 2017).
We should note that, in this phase, self-averaging may (or may not) break down.

The importance of Self-Averaging. Early RMT made use of replica-style analysis
from statistical physics (Seung et al., 1992; Watkin et al., 1993; Haussler et al., 1996; Engel
and den Broeck, 2001), and this assumes that the statistical ensemble of interest is Self-
Averaging. This property implies that the theoretical ESD ρ(λ) is independent of the specific
realization of the matrix W, provided W is a typical sample from the true ensemble. In
this case, RMT makes statements about the empirical ESD ρN (λ) of a large random matrix
like X, which itself is drawn from this ensemble. To apply RMT, we would like to be able
inspect a single realization of W, from one training run or even one epoch of our DNN.
If our DNNs are indeed self-averaging, then we may confidently interpret the ESDs of the
layer weight matrices of a single training run.

As discussed by Martin and Mahoney, this may not be the case in certain situations,
such as severe overtraining (Martin and Mahoney, 2017). From the SMTOG perspective,
NN overfitting,42 which results in NN overtraining,43 is an example of non-self-averaging.
When a NN generalizes well, it can presumably be trained, using the same architecture and
parameters, on any large random subset of the training data, and it will still perform well on
any test/holdout example. In this sense, the trained NN is a typical random draw from the
implicit model class. In contrast, an overtrained model is when this random draw from this
implicit model class is atypical, in the sense that it describes well the training data, but it
describes poorly test data. A model can enter the spin glass phase when there is not enough
training data and/or the model is too complicated (Seung et al., 1992; Watkin et al., 1993;
Haussler et al., 1996; Engel and den Broeck, 2001). The spin glass phase is (frequently)
non-self-averaging, and this is why overtraining was traditionally explained using spin glass
models from statistical mechanics.44 For this reason, it is not obvious that RMT can be
applied to DNNs that are overtrained; we leave this important subtly for future work.

8.3 Other practical implications

Our practical theory opens the door to address very practical questions, including the
following.

• What are design principles for good models? Our approach might help to incorporate
domain knowledge into DNN structure as well as provide finer metrics (beyond simply
depth, width, etc.) to evaluate network quality.

• What are ways in which adversarial training/learning or training/learning in new en-
vironments affects the weight matrices and thus the loss surface? Our approach might

42Overfitting is due to a small load parameter, e.g., due to insufficient reasonable-quality data for the
model class.

43Overtraining occurs when, once it has been trained with the data, the NN does not generalize well.
44Thus, overfitting leads to non-self-averaging, which results in overtraining (but it is not necessarily the

case that overtraining implies overfitting).
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help characterize robust versus non-robust and interpretable versus non-interpretable
models.

• When should training be discontinued? Our approach might help to identify empiri-
cal properties of the trained models, e.g., of the weight matrices—without explicitly
looking at labels—that will help to determine when to stop training.

Finally, one might wonder whether our RMT-based theory is applicable to other types of
layers such as convolutional layers and/or other types of data such as natural language
data. Initial results suggest yes, but the situation is more complex than the relatively
simple picture we have described here. These and related directions are promising avenues
to explore.
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Appendix A. Appendix

A.1 More historical perspective

More recently (than the early work from the 1990s), theoretical results of Choroman-
ska et al. (Choromanska et al., 2014) (which are related to Seung et al. (1992); Watkin
et al. (1993); Haussler et al. (1996); Engel and den Broeck (2001)) suggested that the
Energy/optimization Landscape of modern DNNs resembles the Energy Landscape of a
zero-temperature Gaussian Spin Glass; and empirical results of Zhang et al. (Zhang et al.,
2016) have again pointed out that VC theory does not describe the properties of DNNs.
Motivated by these results, Martin and Mahoney then suggested that the Spin Glass anal-
ogy may be useful to understand severe overtraining versus the inability to overtrain in
modern DNNs (Martin and Mahoney, 2017).

Many puzzling questions about regularization and optimization in DNNs abound. In
fact, it is not even clear how to define DNN regularization. In traditional ML, regularization
can be either explicit or implicit. Let’s say that we are optimizing some loss function L(·),
specified by some parameter vector or weight matrix W . When regularization is explicit, it
involves making the loss function L “nicer” or “smoother” or “more well-defined” by adding
an explicit capacity control term directly to the loss, i.e., by considering a modified objective
of the form L(W ) + α‖W‖. In this case, we tune the regularization parameter α by cross
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validation. When regularization is implicit, we instead have some adjustable operational
procedure like early stopping of an iterative algorithm or truncating small entries of a
solution vector. In many cases, we can still relate this back to the more familiar form
of optimizing an effective function of the form L(W ) + α‖W‖. For a precise statement
in simple settings, see Mahoney and Orecchia (2011); Perry and Mahoney (2011); Gleich
and Mahoney (2014); and for a discussion of implicit regularization in a broader context,
see Mahoney (2012) and references therein.

With DNNs, the situation is far less clear. The challenge in applying these well-known
ideas to DNNs is that DNNs have many adjustable “knobs and switches,” independent of
the Energy Landscape itself, most of which can affect training accuracy, in addition to many
model parameters. Indeed, nearly anything that improves generalization is called regulariza-
tion, and a recent review presents a taxonomy of over 50 different regularization techniques
for Deep Learning (Kukačka et al., 2017). The most common include ML-like Weight Norm
regularization, so-called “tricks of the trade” like early stopping and decreasing the batch
size, and DNN-specific methods like Batch Normalization and Dropout. Evaluating and
comparing these methods is challenging, in part since there are so many, and in part since
they are often constrained by systems or other not-traditionally-ML considerations. More-
over, Deep Learning avoids cross validation (since there are simply too many parameters),
and instead it simply drives training error to zero (followed by subsequent fiddling of knobs
and switches). Of course, it is still the case that test information can leak into the train-
ing process (indeed, perhaps even more severely for DNNs than traditional ML methods).
Among other things, this argues for unsupervised metrics to evaluate model quality.

A.2 Acronyms and notation

For reference, we provide in Table 4 and Table 5 a summary of acronyms and notation used
in the paper.

Acronym Description

DNN Deep Neural Network

ML Machine Learning

SGD Stochastic Gradient Descent

RMT Random Matrix Theory

MP Marchenko Pastur

ESD Empirical Spectral Density

PL Power Law

HT Heavy-Tailed

TW Tracy Widom (Law)

SVD Singular Value Decomposition

FC Fully Connected (Layer)

VC Vapnik Chrevonikis (Theory)

SMTOG Statistical Mechanics Theory of Generalization

Table 4: Definitions of acronyms used in the text.
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Notation Description

W DNN layer weight matrix of size N ×M , with N ≥M
Wl DNN layer weight matrix for lth layer

We
l DNN layer weight matrix for lth layer at eth epoch

Wrand random rectangular matrix, elements from truncated Normal distribution

W(µ) random rectangular matrix, elements from Pareto distribution

X = (1/N)WTW normalized correlation matrix for layer weight matrix W

Q = N/M > 0 apsect ratio of W

ν singular value of W

λ eigenvalue of X

λmax maximum eigenvalue in an ESD

λ+ eigenvalue at edge of MP Bulk

λk eigenvalue lying outside MP Bulk, λ+ < λk ≤ λmax
ρemp(λ) actual ESD, from some W matrix

ρ(λ) theoretical ESD, infinite limit

ρN (λ) theoretical ESD, finite N size

ρ(ν) theoretical empirical density of singular values, infinite limit

σ2
mp elementwise variance of W, used to define MP distribution

σ2
shuf elementwise variance of W, as measured after random shuffling

σ2
bulk elementwise variance of W, after removing/ignoring all spikes λk > λ+

σ2
emp elementwise variance of W, determined empirically

R(W) Hard Rank, number of non-zero singular values, Eqn. (5)

S(W) Matrix Entropy, as defined on W, Eqn. (6)

Rs(W) Stable Rank, measures decay of singular values, Eqn. (7)

Rmp(W) MP Soft Rank, applied after and depends on MP fit, Eqn. (11)

S(v) Vector Entropy, as defined on vector v

L(v) Localization Ratio, as defined on vector v

P(v) Participation Ratio, as defined on vector v

p(x) ∼ x−1−µ Pareto distribution, parameterized by µ

p(x) ∼ x−α Pareto distribution, parameterized by α

ρ(λ) ∼ λ−(µ/2+1) theoretical relation, for ESD of W(µ), between α and µ (for 0 < µ < 4)

ρN (λ) ∼ λ−(aµ+b) empiricial relation, for ESD of W(µ), between α and µ (for 2 < µ < 4)

∆λ = ‖λ− λ+‖ empirical uncertainty, due to finite-size effects,
in theoretical MP bulk edge

∆ model of perturbations and/or strong correlations in W

Table 5: Definitions of notation used in the text.

A.3 Additional empirical results

Here, we provide more details on the results in Section 4.4.

In addition to the models from Table 2 that we analyzed in detail, we have also ex-
amined the properties of a wide range of other pre-trained models, including models from
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both Computer Vision as well as Natural Language Processing (NLP). This includes mod-
els trained on ImageNet, distributed with the pyTorch package, including VGG16, VGG19,
ResNet50, InceptionV3, etc. See Table 6. This also includes different NLP models, dis-
tributed in AllenNLP (Gardner et al., 2018), including models for Machine Comprehension,
Constituency Parsing, Semantic Role Labeling, Coreference Resolution, and Named Entity
Recognition, giving a total of 84 linear layers. See Table 7.45 Rather remarkably, we have
observed similar Heavy-Tailed properties, visually and in terms of Power Law fits, in all
of these larger, state-of-the-art DNNs, leading to results that are nearly universal across
these widely different architectures and domains. We have also seen Hard Rank deficiency
in layers in several of these models. We provide a brief summary of those results here.

Power Law Fits. We have performed Power Law (PL) fits for the ESD of selected (linear)
layers from all of these pre-trained ImageNet and NLP models.46 Table 6 summarizes the
detailed results for the ImageNet models. Several observations can be made. First, all of
our fits, except for certain layers in InceptionV3, appear to be in the range 1.5 < α . 3.5
(where the CSN method is known to perform well). Second, we also check to see whether
PL is the best fit by comparing the distribution to a Truncated Power Law (TPL), as well
as an exponential, stretch-exponential, and log normal distributions. Column “Best Fit”
reports the best distributional fit. In all cases, we find either a PL or TPL fits best (with
a p-value ≤ 0.05), with TPL being more common for smaller values of α. Third, even
when taking into account the large finite-size effects in the range 2 < α < 4, as illustrated
in Figure 6, nearly all of the ESDs appear to fall into the 2 < µ < 4 Universality class.
Figure 27 displays the distribution of PL exponents α for each set of models. Figure 27(a)
shows the fit power law exponents α for all of the linear layers in pre-trained ImageNet
models available in PyTorch (in Table 6), with Q� 1; and Figure 27(b) shows the same for
the pre-trained models available in AllenNLP (in Table 7). Overall, there are 24 ImageNet
layers with Q � 1, and 82 AllenNet FC layers. More than 80% of all the layers have
α ∈ [2, 4], and nearly all of the rest have α < 6. One of these, InceptionV3, was discussed
above, precisely since it was unusual, leading to an anomalously large value of α due to the
dip in its ESD.

Rank Collapse. RMT also predicts that for matrices with Q > 1, the minimum singular
value will be greater than zero, i.e., νmin > 0. We test this by again looking at all of the FC
layers in the pre-trained ImageNet and AllenNLP models. See Figure 28 for a summary of
the results. While the ImageNet models mostly follow this rule, 6 of the 24 of FC layers have
νmin ∼ 0. In fact, for 4 layers, νmin < 0.00001, i.e., it is close to the numerical threshold
for 0. In these few cases, the ESD still exhibits Heavy-Tailed properties, but the rank loss

45This includes model architectures that were publicly-available as of 2018. We used the default variants
(for modeling decisions, including how text is represented as vectors, how vector sequences are modified to
produce new vector sequences, and how vector sequences are merged into a single vector) that came with
their distribution. This includes a re-implementation of a deep BiLSTM model, a reference implementation
of the BiDAF MC model, and a re-implementation of the decomposable attention model, depending on the
task. For readers interested in a more detailed evaluation of a much broader set of NLP models, see the
(more recent than the initial technical report version of this paper) work (Martin et al., 2020, 2021).

46We use the default method (MLE, for continuous distributions), and we set xmax = λmax, i.e., to the
maximum eigenvalue of the ESD.
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Model Layer Q (M ×N) α D
Best
Fit

alexnet 17/FC1 2.25 (4096× 9216) 2.29 0.0527 PL
20/FC2 1 (4096× 4096) 2.25 0.0372 PL
22/FC3 4.1 (1000× 4096) 3.02 0.0186 PL

densenet121 432 1.02 (1000× 1024) 3.32 0.0383 PL

densenet121 432 1.02 (1000× 1024) 3.32 0.0383 PL

densenet161 572 2.21 (1000× 2208) 3.45 0.0322 PL

densenet169 600 1.66 (1000× 1664) 3.38 0.0396 PL

densenet201 712 1.92 (1000× 1920) 3.41 0.0332 PL

inception v3 L226 1.3 (768× 1000) 5.26 0.0421 PL
L302 2.05 (1000× 2048) 4.48 0.0275 PL

resnet101 286 2.05 (1000× 2048) 3.57 0.0278 PL

resnet152 422 2.05 (1000× 2048) 3.52 0.0298 PL

resnet18 67 1.95 (512× 1000) 3.34 0.0342 PL

resnet34 115 1.95 (512× 1000) 3.39 0.0257 PL

resnet50 150 2.05 (1000× 2048) 3.54 0.027 PL

vgg11 24 6.12 (4096× 25088) 2.32 0.0327 PL
27 1 (4096× 4096) 2.17 0.0309 TPL
30 4.1 (1000× 4096) 2.83 0.0398 PL

vgg11 bn 32 6.12 (4096× 25088) 2.07 0.0311 TPL
35 1 (4096× 4096) 1.95 0.0336 TPL
38 4.1 (1000× 4096) 2.99 0.0339 PL

vgg16 34 6.12 (4096× 25088) 2.3 0.0277 PL
37 1 (4096× 4096) 2.18 0.0321 TPL
40 4.1 (1000× 4096) 2.09 0.0403 TPL

vgg16 bn 47 6.12 (4096× 25088) 2.05 0.0285 TPL
50 1 (4096× 4096) 1.97 0.0363 TPL
53 4.1 (1000× 4096) 3.03 0.0358 PL

vgg19 40 6.12 (4096× 25088) 2.27 0.0247 PL
43 1 (4096× 4096) 2.19 0.0313 PL
46 4.1 (1000× 4096) 2.07 0.0368 TPL

vgg19 bn 56 6.12 (4096× 25088) 2.04 0.0295 TPL
59 1 (4096× 4096) 1.98 0.0373 TPL
62 4.1 (1000× 4096) 3.03 0.035 PL

Table 6: Fit of PL exponents for the ESD of selected (2D Linear) layer weight matrices
Wl in pre-trained models distributed with pyTorch. Layer is identified by the
enumerated id of the pyTorch model; Q = N/M ≥ 1 is the aspect ratio; (M ×N)
is the shape of WT

l ; α is the PL exponent, fit using the numerical method described
in the text; D is the Komologrov-Smirnov distance, measuring the goodness-of-fit
of the numerical fitting; and “Best Fit” indicates whether the fit is better described
as a PL (Power Law) or TPL (Truncated Power Law) (no fits were found to be
better described by Exponential or LogNormal).
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Model Problem Domain # Linear Layers

MC Machine Comprehension 16

CP Constituency Parsing 17

SRL Semantic Role Labeling 32

COREF Coreference Resolution 4

NER Named Entity Recognition 16

Table 7: Allen NLP Models and number of Linear Layers per model examined.

ranges from one eigenvalue equal to 0 up to 15% of the eigenvalue mass. For the NLP
models, we see no rank collapse, i.e., all of the 82 AllenNLP layers have νmin > 0.

(a) ImageNet pyTorch models (b) AllenNLP models

Figure 27: Distribution of power law exponents α for linear layers in pre-trained models
trained on ImageNet, available in pyTorch, and for those NLP models, available
in AllenNLP.

A.4 Important implementation details

There are several technical issues with applying RMT that we discuss here.47

• Single run versus an ensemble of runs. Figures 29 shows ESDs for Layer FC1
before and after training, for a single run, as well as after training for an ensemble
of runs. Figure 30 does the same for FC2. There are two distinct effects of doing an
ensemble of runs: first, the histograms get smoother (which is expected); and second,
there are fluctuations in λmax. Typically, these fluctuations in the empirical data are

47While we discuss these in the context of our baseline, the same issues arise in all applications of
our theory.
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(a) ImageNet pyTorch models (b) AllenNLP models

Figure 28: Distribution of minimum singular values νmin for linear layers in pre-trained
models trained on ImageNet, available in pyTorch, and for those NLP models,
available in AllenNLP.

(a) Layer FC1, Epoch 0. (b) Layer FC1, Final epoch. (c) Layer FC1, Final epoch;
Bulk + 9 Spikes

Figure 29: ESD for Layer FC1 of MiniAlexNet, with MP fit (in red): initial (0) epoch, single
run (in 29(a))); final epoch, single run (in 29(b))); final epoch, ensemble of 10
runs (in 29(c))). Batch size 16, and no weight regularization. To get a good MP
fit, final epochs have 9 spikes removed from the bulk (but see Figure 31).

not due to finite-size effects; and they can exhibit TW behavior or other Heavy-Tailed
behavior, depending on the phase of learning. Thus, they can be used as a diagnostic,
e.g., to differentiate between Bulk+Spikes versus Bleeding-out.

• Finite-size effects. Figure 31(a) shows that we can estimate finite-size effects in

RMT by shuffling the elements of a single weight matrix Wl → Wshuf
l and recom-

71



Martin and Mahoney

(a) Layer FC2, Epoch 0. (b) Layer FC2, Final epoch. (c) Layer FC2, Final epoch.

Figure 30: ESD for Layer FC2 of MiniAlexNet, with MP fit (in red): initial (0) epoch,
single run (in 30(a)); final epoch, single run (in 30(b)); final epoch, ensemble of
10 runs (in 30(c)). Batch size 16, and no weight regularization. To get a good
MP fit, final epochs have 9 spikes removed from the bulk.

(a) Shuffled (b) Bulk + 9 Bleeding-out + 9
Spikes

Figure 31: Illustration of fitting λ+. ESD for Layer FC1 of MiniAlexNet, with MP fit
(in red): averaged over 10 runs. Batch size 16, and no weight regularization.
Compare 31(a) with Figure 29(a), which shows the ESD for a single run. Also,
compare 31(b), where λ+ is fit by removing 18 eigenvectors, with Figure 29(c),
which shows “Bulk + 9 Spikes”.

puting the eigenvalue spectrum ρshuf (λ) of Xshuf . We expect ρshuf (λ) to fit an MP
distribution well, even for small sample sizes, and we see that it does. We also expect
and see a very crisp edge in λ+. More generally, we can visually observe the quality
of the fit at this sample size to gauge whether deviations are likely spurious. This
is relatively easy to do for Random-like, and also for Bulk+Spikes (since we can
simply remove the spikes before shuffling). For Bleeding-out and Bulk-decay, it
is somewhat more difficult due to the need to decide which eigenvalues to keep in the
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bulk. For Heavy-Tailed, it is much more complicated since finite-size effects are
larger and more pronounced.

• Fitting the bulk edge λ+, i.e., the bulk variance σ2
bulk. Estimating λ+ (or,

equivalently, σ2
bulk) can be tricky, even when the spike is well-separated from the bulk.

We illustrate this in Figure 31. In particular, compare Figure 31(b) and Figure 29(c).
In Figure 29(c), λ+ is chosen to reproduce very well the bulk edge of the ESD, at
the expense of having some “missing mass” in the ESD just below λ+ (leading to
a “Bulk + 9 Spikes” model). In Figure 31(b), λ+ is chosen to reproduce very well
the ESD just below λ+, at the expense of having a slight bleeding-out region just
above λ+ (leading to a “Bulk + 18 Spikes” or a “Bulk + 9 Bleeding-out + 9 Spikes”
model). If we hypothesize that a MP distribution fits the bulk very well, then the fit
in Figure 31(b) is more appropriate, but Figure 29(b) shows this can be challenging
to identify in a single run.

We recommend choosing the bulk maximum λ+ and (from Eqn. (9)) selecting σ2
bulk

as σ2
bulk = λ+

(
1 + 1/

√
Q
)−2

. In fitting σ2
bulk, we expect to lose some variance due to

the eigenvalue mass that “bleeds out” from the bulk (e.g., due to Bleeding-out or
Bulk-decay), relative to a situation where the MP distribution provides a good fit for
the entire ESD (as in Random-like). Rather than fitting σ2

mp directly on the ESD of
Wl, without removing the outliers (which may thus lead to poor estimates since λmax
is particularly large), we can always define a baseline variance for any weight matrix
W by shuffling it elementwise W→Wshuf , and then finding the MP σ2

shuf from the

ESD of Wshuf . In doing so, the Frobenius norm is preserved ‖Wshuf
l ‖F = ‖Wl‖F ,

thus providing a way to (slightly over-) estimate the unperturbed variance of Wl

for comparison.48 Since at least one eigenvalue bleeds out, σ2
bulk < σ2

shuf , i.e., the

empirical bulk variance σ2
bulk will always be (slightly) less that than shuffled bulk

variance σ2
shuf .

The best way to automate these choices, e.g., with a kernel density estimator, remains open.

48We suggest shuffling Wl at least 100 times then fitting the ESD to obtain an σ2. We can then estimate
σ2
bulk as σ2 minus a contribution for each of the K bleeding-out eigenvalues, giving, as a rule of thumb,

σ2
bulk ∼ σ2 − 1

M
(λ1 + λ2 · · ·λK), λk ∈ Bleeding-out.
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