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Abstract

Spectral clustering has become one of the most popular algorithms in data clustering and
community detection. We study the performance of classical two-step spectral clustering
via the graph Laplacian to learn the stochastic block model. Our aim is to answer the
following question: when is spectral clustering via the graph Laplacian able to achieve
strong consistency, i.e., the exact recovery of the underlying hidden communities? Our work
provides an entrywise analysis (an `∞-norm perturbation bound) of the Fiedler eigenvector
of both the unnormalized and the normalized Laplacian associated with the adjacency
matrix sampled from the stochastic block model. We prove that spectral clustering is able
to achieve exact recovery of the planted community structure under conditions that match
the information-theoretic limits.

Keywords: Spectral clustering, community detection, graph Laplacian, eigenvector per-
turbation, stochastic block model.

1. Introduction

Data with network structure are ubiquitous, ranging from biological network to social and
web networks (Girvan and Newman, 2002; Newman, 2003). Among many networks, one of
the most significant features is community structure or clustering, i.e., a subset of vertices in
a huge network are strongly connected while the inter-community connectivity is relatively
weak. Detecting community structure in networks is one central problem across several
scientific fields: how to infer the hidden community structure from the linkage among
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vertices? A vast amount of research has been done to solve the challenging community
detection problem (Fortunato, 2010; Lancichinetti et al., 2008; Girvan and Newman, 2002;
Newman, 2003). In particular, community detection with random block structure is an
intriguing topic for researchers in mathematics, computer science, physics, and statistics.
One prominent example is the stochastic block model (SBM), which is originally proposed
in Holland et al. (1983) to study social networks. Now it has become a benchmark model
for comparing different community detection methods. A recent surge of research activities
is devoted to designing a variety of algorithms and methods to either detect or recover the
hidden community with emphasis on understanding the fundamental limits for community
detection in connection with the SBM (Abbe, 2017).

On the other hand, spectral clustering is one of most widely used techniques in data
clustering. The classical spectral clustering follows the well-known two-step procedure:
Laplacian eigenmap and rounding (Von Luxburg, 2007; Ng et al., 2002; Shi and Malik,
2000; Belkin and Niyogi, 2002). Despite its popularity and empirical success in numerous
applications, its theoretical understanding is still relatively limited. The main difficulty lies
in obtaining an entrywise analysis of the Fiedler eigenvector of the graph Laplacian.

In this work, we will study the performance of spectral clustering in community detection
for the stochastic block model. We denote by G(n, pn, qn) the stochastic block model with
a total of n vertices and n/2 vertices for each community; the adjacency matrix A =
(Aij)1≤i,j≤n of this network is a symmetric matrix which has its (i, j)-entry an independent
Bernoulli random variable:

P(aij = 1) =

{
pn, if (i, j) are in the same community,

qn, if (i, j) are in different communities,

where pn > qn for all n. Note that the parameters p and q usually depend on n; for
simplicity, we replace pn and qn by p and q if there is no confusion.

We focus on answering the following fundamental questions: under what conditions on
(n, p, q) is the classical two-step spectral clustering method able to recover the underlying
hidden communities exactly? Moreover, we are interested in the optimality of spectral
clustering: does spectral clustering work even if the triple (n, p, q) is close to the information-
theoretic limits?

1.1 Related work and our contributions

As all three topics, community detection, spectral clustering, and stochastic block models,
have received extensive attention, it is not surprising that there exists a large amount of
literature on each of them. While an exhaustive literature review is beyond the scope of
this paper, we will briefly review each of these topics, and highlight those contributions that
have inspired our research.

Community detection for general networks is well studied and has found many applica-
tions. We refer interested readers to Fortunato (2010); Girvan and Newman (2002); Newman
(2003) for more details on this topic. Spectral clustering (Ng et al., 2002; Shi and Malik,
2000; Belkin and Niyogi, 2002; Von Luxburg, 2007), which is based on the graph Lapla-
cian (Chung, 1997), plays an important role in data- and network-clustering. It is closely
related to finding the globally optimal ratio cut and normalized cut of a given graph. In
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fact, spectral clustering is a natural spectral relaxation of the NP-hard ratio/normalized
cut minimization problem. Much excellent research has been done to address how well the
solutions to these NP-hard problems are approximated by solutions derived from the spec-
tra of graph Laplacians, which includes (higher-order) Cheeger-type inequalities (Chung,
1997; Lee et al., 2014). However, one theoretical challenge still remains: for what types
of graphs is spectral clustering able to recover the globally optimal graph partitioning and
the underlying communities? This is pointed out in Lei and Rinaldo (2015), where the
authors state “An important future work would be to extend some of the results and tech-
niques [...] to spectral clustering using the graph Laplacian”. The main bottleneck is the
highly challenging problem of providing an entrywise analysis of the Fiedler eigenvector,
the eigenvector associated with the second smallest eigenvalue of the graph Laplacian. In
fact, this major problem regarding the entrywise analysis of Laplacian eigenvectors is also
mentioned in Abbe et al. (2019) as one future research direction.

The analysis of the stochastic block model originated from Holland et al. (1983) in the
study of social networks. Since then, a vast amount of follow-up research has been conducted
to understand how to recover the hidden planted partition with efficient polynomial-time
algorithms. In particular, we are interested in the fundamental limits of detection and com-
munity recovery in the stochastic block model (Abbe, 2017). Here, detection is defined as
providing a network clustering which is correlated with the underlying true partition (Mos-
sel et al., 2018). Generally speaking, the sparser the graph is, the more difficult it is to
detect or recover the underlying communities. For the model G(n, p, q) we call the rate at
which p and q tend to 0 their sparsity regimes. The detection threshold is usually studied for
sparser graphs, in particular in the regime p = an−1 and q = bn−1 with a > b. The work De-
celle et al. (2011) applied the cavity method, a heuristic from statistical physics, to predict
that a detection threshold exists for the community detection problem under stochastic
block models. Later on, this detection threshold is confirmed by Mossel et al. (2015, 2018);
Massoulié (2014): the detection of community is possible if and only if (a− b)2 > 2(a+ b).

Another line of work on the stochastic block model focuses on correctly recovering
from the adjacency matrix the true label of each vertex (Abbe, 2017; Abbe et al., 2016;
Guédon and Vershynin, 2016; Hajek et al., 2016; Vu, 2018; Bandeira, 2018; Amini and
Levina, 2018; Bickel and Chen, 2009), which is only possible in denser regimes. We say an
algorithm achieves weak consistency (or almost exact recovery) if with probability 1− o(1),
the proportion of misclassified nodes goes to 0 as n goes to infinity. The weak consistency of
spectral method in learning stochastic block model is discussed in Rohe et al. (2011); Lei and
Rinaldo (2015); Yun and Proutière (2014); Mossel et al. (2016). Strong consistency (or exact
recovery) on the other hand requires no misclassified node with probability 1 − o(1). The
concept of strong consistency was introduced and investigated in Bickel and Chen (2009),
which is followed by a series of work including a sharp theoretical threshold (Abbe et al.,
2016; Mossel et al., 2016) in the critical regime p = αn−1 log n and q = βn−1 log n. This
fundamental threshold states that maximal likelihood estimation (MLE) achieves strong
consistency if

√
α−
√
β >
√

2 and no algorithm can achieve strong consistency if
√
α−
√
β <√

2. Among all the existing approaches, semidefinite programming relaxation has proven
to be a powerful tool for exact recovery (Guédon and Vershynin, 2016; Abbe et al., 2016;
Hajek et al., 2016; Bandeira, 2018; Montanari and Sen, 2016). In particular, in Hajek et al.
(2016); Bandeira (2018) it has been shown that SDP relaxation will find the underlying
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hidden partition exactly if
√
α−
√
β >
√

2 with high probability, which is optimal in terms
of the information-theoretic limit (Abbe et al., 2016; Mossel et al., 2016).

The success of SDP relaxation always comes with a high price: its expensive com-
putational costs are the main roadblock towards practical application. Instead, spectral
methods (Boppana, 1987; McSherry, 2001; Coja-Oghlan, 2010; Rohe et al., 2011; Zhou and
Amini, 2019; Lei and Rinaldo, 2015; Mossel et al., 2016; Vu, 2018; Yun and Proutière,
2014) are sometimes preferred when tackling large-scale community detection problems.
Some spectral methods perform the clustering tasks via the eigenvector of the adjacency
matrix or the Laplacian: if the adjacency matrix (Laplacian) is close to its expectation
whose eigenvector reveals the hidden partition (Feige and Ofek, 2005), then the eigenvector
of the adjacency matrix (Laplacian) contains important information which can be used to
infer the hidden partition. With the help of classical `2-norm eigenvector perturbation,
mainly based on the Davis-Kahan theorem (Davis and Kahan, 1970), one can prove the
correct recovery of the majority of the labels by simply taking the sign of the eigenvectors.
However, matrix perturbation under `2-norm, in spite of its convenience, becomes rather
limited in studying the exact recovery of hidden community structure. The Davis-Kahan
theorem does not give a satisfactory bound of how many labels are correctly classified be-
cause `2-norm perturbation analysis does not yield a sufficiently tight bound on each entry
of the eigenvector.

As a result, we prefer an `∞-norm perturbation bound of eigenvectors when we are
concerned with exact recovery. However, it is much more challenging to get an `∞-norm
perturbation bound for eigenvectors of general matrices. Fortunately, recent years have
witnessed a series of excellent contributions on the entrywise analysis of eigenvectors for a
family of random matrices (Fan et al., 2018; Eldridge et al., 2018; Abbe et al., 2019; Su
et al., 2019). Our approach is mainly inspired by the work of Abbe and his co-authors (see
Abbe et al., 2019), which gives an entrywise analysis of eigenvectors with interesting appli-
cations in Z2-synchronization, community detection, and matrix completion. In particular,
one application of their work shows that the second eigenvector of the adjacency matrix
is strongly consistent down to theoretical limit. The major technical breakthrough is the
so-called leave-one-out trick. One can also find applications of this trick in other exam-
ples including synchronization (Zhong and Boumal, 2018) and the analysis of nonconvex
optimization algorithms in signal processing (Ma et al., 2018).

It is well worth noting that the result in Abbe et al. (2019) mainly focuses on study-
ing the eigenvectors of the adjacency matrix which enjoys row/column-wise independence.
However, in our case, the graph Laplacian no longer has this independence. Thus, new
techniques need to be developed to overcome this challenge. In Su et al. (2019), the au-
thors study a graph Laplacian based method and prove its strong consistency in the critical
regime p = αn−1 log n and q = βn−1 log n. But they do not show strong consistency for all
constants down to theoretical limit

√
α−
√
β >
√

2.

In this work, we establish an `∞-norm perturbation bound for the Fiedler eigenvec-
tor of both the unnormalized Laplacian and the normalized Laplacian associated with the
stochastic block model. We prove that spectral clustering is able to achieve strong con-
sistency when the triple (n, p, q) satisfies the information-theoretic limits

√
α −
√
β >

√
2

in Abbe et al. (2016); Mossel et al. (2016) where p = αn−1 log n and q = βn−1 log n. In
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particular, our analysis of the normalized Laplacian is new and should be of independent
interest.

1.2 Organization of our paper

Our paper is organized as follows. Section 2 reviews the basics of graph Laplacians, spectral
clustering, as well as perturbation theory. We will present the main results, including the
strong consistency of spectral clustering, in Section 3. Numerical experiments are given in
Section 4 which complement our theoretical analysis. The proofs are delegated to Section 5.

1.3 Notation

We introduce some notation which will be used throughout this paper. For any vector

x ∈ Cn, we define ‖x‖∞ = maxi |xi| and ‖x‖ =
√∑n

i=1 x
2
i . For any matrix M ∈ Cn×m, we

denote its conjugate transpose by MH and its Moore-Penrose inverse by M+. Let Mi· be the
ith row of M , which is a row vector. Let ‖M‖ = max||x||=1 ||Mx|| denote the spectral norm,

‖M‖F :=
√∑

i,j |Mij |2 denote the Frobenius norm and ||M ||2,∞ = max||x||=1 ||Mx||∞ =

maxi ||Mi·|| denote the two-to-infinity norm. We denote by 1n the n × 1 vector with all
entries being 1 and let Jn = 1n1

>
n be the n× n matrix of all ones. Furthermore, the vector

sgn (x) denotes the entrywise sign of the vector x and diag(x) denotes a diagonal matrix
whose diagonal entries are the same as the vector x. Let f(n) and g(n) be two functions.
We say f(n) = O(g(n)) if |f(n)| ≤ C|g(n)| for some positive constant C and f(n) = o(g(n))
if limn→∞ |f(n)|/|g(n)| = 0. Moreover, f(n) = Ω(g(n)) if g(n) = O(f(n)), f(n) = ω(g(n))
if g(n) = o(f(n)), f(n) = Θ(g(n)) if g(n) = O(f(n)) and f(n) = O(g(n)).

2. Preliminaries

2.1 The Laplacian and spectral clustering

In this section, we briefly review the basics of spectral clustering which will be frequently
used in the discussion later. Let A ∈ Rn×n be the adjacency matrix where Aij = 1 if
node i and node j are connected and Aij = 0 if node i and node j are not connected.
Let D = diag(A1n) be the diagonal matrix where Dii is the degree di of node i, i.e.,
di =

∑n
j=1Aij . The unnormalized and normalized Laplacians are defined as

L := D −A, L := D−
1
2LD−

1
2

respectively. It is a well-known result (Chung, 1997) that both L and L are positive semidef-
inite. Moreover, their smallest eigenvalue is 0 and the corresponding eigenvectors are 1n
and D

1
21n, respectively.

We say (λ, u) is an eigenpair of the generalized eigenvalue problem (M,N) if

Mu = λNu.

If N = I is the identity then we say (λ, u) is an eigenpair of M . All eigenvectors are normal-
ized to have unit length if not specifically specified. The unnormalized spectral clustering
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involves solving the eigenvalue problem (L, I) and the normalized spectral clustering takes
many forms due to the following fact.

(λ,D
1
2u) is an eigenpair of (L, I) ⇐⇒ (λ, u) is an eigenpair of (L,D)

⇐⇒ (λ, u) is an eigenpair of (D−1L, I)

⇐⇒ (1− λ, u) is an eigenpair of (A,D)

⇐⇒ (1− λ, u) is an eigenpair of (D−1A, I).

We order the eigenvalues of (L, I), (L, I), (L,D), (D−1L, I) in increasing order and
those of (A,D), (D−1A, I) in decreasing order to keep them in correspondence.

Spectral clustering consists of two steps: (i) compute the Fiedler eigenvector u (here,
with a slight abuse of terminology, we call both the eigenvectors with respect to the second
smallest eigenvalue of the unnormalized Laplacian L = D − A and of the random walk
normalized Laplacian I − D−1A the Fiedler eigenvector); (ii) apply rounding techniques
to u to obtain the clusters. In particular, in this paper we simply assign the membership
of node i by taking the sign of ui. The spectral clustering algorithm is illustrated for the
unnormalized Laplacian and the normalized Laplacian in Algorithm 1 and Algorithm 2,
respectively (see also Von Luxburg, 2007; Shi and Malik, 2000).

Algorithm 1 Unnormalized spectral clustering

1: Input: Adjacency matrix A.
2: Compute the unnormalized graph Laplacian L = D −A.
3: Find the eigenvector u of (L, I) that corresponds to the second smallest eigenvalue.
4: Obtain the partitioning based on sgn(u).

Algorithm 2 Normalized spectral clustering

1: Input: Adjacency matrix A.
2: Compute the unnormalized graph Laplacian L = D −A.
3: Find the eigenvector u of (L,D) that corresponds to the second smallest eigenvalue.
4: Obtain the partitioning based on sgn(u).

2.2 Perturbation theory

Suppose A is an adjacency matrix sampled from two-community symmetric stochastic block
model G(n, p, q). Without loss of generality, we assume the first n/2 nodes form one com-
munity and the second half nodes form the other one. Let A∗ = EA be the expectation of
A, and then we have

A∗ =

(
pJn/2 qJn/2
qJn/2 pJn/2

)
where p > q. Let

D∗ :=
n(p+ q)

2
In, L∗ := D∗ −A∗, L∗ := In −

2

n(p+ q)
A∗,
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which correspond to the degree matrix, unnormalized Laplacian, and normalized Laplacian
associated with A∗. Then

u∗2 =
1√
n

(
1n/2

−1n/2

)
is the eigenvector that corresponds to the second smallest eigenvalue of both L∗ and
(L∗, D∗). Now one can easily see that running spectral clustering based on A∗ gives the
perfect result since sgn(u∗2) exactly recovers the underlying partition. Seeing A as perturbed
A∗, we study how the eigenvalues and eigenvectors of L (or L) differ from those of L∗ (or
L∗). For eigenvalue perturbation, we resort to the well-known min-max principle, which
gives rise to the famous Weyl’s inequality.

Theorem 1 (Courant-Fischer-Weyl min-max/max-min principles) Let A be an n×
n Hermitian matrix with eigenvalues λ1 ≤ · · · ≤ λt ≤ · · · ≤ λn. For any d ∈ {1, 2, · · · , n},
write Vd for the d-dimensional subspace of Cn. Then

λt = min
V ∈Vt

max
x∈V \{0}

〈x,Ax〉
〈x, x〉

= max
V ∈Vn−t+1

min
x∈V \{0}

〈x,Ax〉
〈x, x〉

.

Theorem 2 (Weyl) Let A be an n× n Hermitian matrix with eigenvalues λ1 ≤ · · · ≤ λn.
Let B be an n×n Hermitian matrix with eigenvalues µ1 ≤ · · · ≤ µn. Suppose the eigenvalues
of A+B are ρ1 ≤ · · · ≤ ρn. Then for i ∈ {1, 2, · · · , n},

λi + µ1 ≤ ρi ≤ λi + µn.

For eigenvector perturbation, the Davis-Kahan theorem plays a powerful role in our analysis.
Here we state a version of it that allows us to deal with generalized eigenvalue problems,
which is particularly useful in the case of normalized spectral clustering. The following
theorem essentially follows from the results in Eisenstat and Ipsen (1998), but we will give
a self-contained proof in Section 5.

Theorem 3 (Generalized Davis-Kahan theorem) Consider the generalized eigenvalue
problem Mu = λNu where M is Hermitian and N is Hermitian positive definite. It has the
same eigenpairs as the problem N−1Mu = λu. Let X be the matrix that has the eigenvectors
of N−1M as columns. Then N−1M is diagonalizable and can be written as

N−1M = XΛX−1 = X1Λ1Y
H
1 +X2Λ2Y

H
2

where

X−1 =
(
X1 X2

)−1
=

(
Y H
1

Y H
2

)
, Λ =

(
Λ1

Λ2

)
.

Suppose δ = mini | (Λ2)i,i − λ̂| is the absolute separation of λ̂ from Λ2, then for any
vector û we have

||Pû|| ≤
√
κ(N)||(N−1M − λ̂I)û||

δ

where P = (Y +
2 )HY H

2 = I− (X+
1 )HXH

1 is the orthogonal projection matrix onto the orthog-
onal complement of the column space of X1, κ(N) = ||N || · ||N−1|| is the condition number
of N and Y +

2 is the Moore-Penrose inverse of Y2.
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When N = I and (λ̂, û) is the eigenpair of a matrix M̂ , we have

sin θ ≤

∣∣∣∣∣∣(M − M̂)û
∣∣∣∣∣∣

δ
,

where θ is the canonical angle between û and the column space of X1. In this case Theorem 3
reduces to Davis and Kahan’s sin θ theorem (Davis and Kahan, 1970).

3. Main results

The main goal of this paper is to show that both the unnormalized and normalized spectral
clustering achieve strong consistency for the model G(n, p, q) when p = α log n/n, q =
β log n/n and

√
α−
√
β >
√

2. To this end, we develop an entrywise analysis of the Fiedler
eigenvector of the unnormalized and normalized Laplacian. But before we talk about the
eigenvectors, it is important to ensure that the eigenvalues are properly “separated”. Here
the separation of eigenvalues means the perturbations of the eigenvalues of L (or L) away
from those of L∗ (or L∗) are smaller than the eigengap of L∗ (or L∗). This is to ensure
the second eigenvector “comes from” u∗2 and it is essential when applying the Davis-Kahan
theorem. Since the first eigenvalue of L or L is not perturbed at all, we want the second
and the third eigenvalue to be separated. Specifically, we want

(λ∗3 − λ3) + (λ2 − λ∗2) < λ∗3 − λ∗2.

This is where the behaviors of the unnormalized and normalized Laplacian differ greatly.
For the normalized Laplacian, we first present a concentration bound for ||L − L∗|| in Sec-
tion 3.1 that is tighter than the ones in existing literature. This bound gives ||L − L∗|| =
O
(
1/
√

log n
)

while the eigengap λ3(L∗)− λ2(L∗) = Θ(1). Therefore Weyl’s theorem auto-
matically ensures the separation of λ2(L) and λ3(L). For the unnormalized Laplacian L,
we have L−L∗ = (D−D∗)− (A−A∗). By Lemma 5 we can bound ||A−A∗|| = O(

√
log n).

Moreover one can use the Chernoff bound to show that ||D −D∗|| = O(log n). Thus
||L− L∗|| = O(log n). Noting that the eigengap λ3(L

∗) − λ2(L∗) = Θ(log n), one can not
draw an immediate conclusion that λ2(L) and λ3(L) are separated. We will discuss how
to resolve this difficulty in Section 3.2, where we bound the eigenvalues of L and L in a
more general setting. In short, we are able to find λ2(L) ≤ β log n + O (log n/

√
n) and

λ3(L) ≥ (β+ε) log n for some ε > 0, which shows that the eigenvalues are indeed separated.

Finally we give entrywise bounds for the second eigenvector of L and (L,D). Our
analysis is mostly inspired by the work of Abbe et al. (2019) as well as the leave-one-
out technique in Zhong and Boumal (2018); Ma et al. (2018). The core is to find an
appropriate approximation to the second eigenvector of L or (L,D). Denote by ũ2 the
choice of approximation and u2 the output eigenvector of the algorithm. An admissible
candidate of ũ2 should satisfy the following two properties:

(i) The entrywise error between u2 and ũ2 is negligible.

(ii) The entries of ũ2 exactly recover the planted communities and are sufficiently bounded
away from zero.
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Figure 1: Boxplots showing the two properties of the approximation ũ2. For unnormalized
spectral clustering ũ2 = (D − λ2(L)I)−1Au∗2 and for the normalized spectral clustering
ũ2 = (1 − λ2(L))−1D−1Au∗2. We fix n = 5000, α = 10, β = 2 and the number of trails to
be 100. Two quantities (up to sign of u2) are shown in the boxplots: (1)

√
n ||u2 − ũ2||∞;

(2)
√
nmin {zi(ũ2)i}ni=1 where zi = 1 for i ≤ n/2 and zi = −1 for i ≥ n/2 + 1.

We choose the following particular choices of ũ2 for the unnormalized and the normalized
spectral clustering.

• For the unnormalized spectral clustering, we let

ũ2 = (D − λ2(L)I)−1Au∗2.

• For the normalized spectral clustering, we let

ũ2 = (1− λ2(L))−1D−1Au∗2.

While more detailed discussion will be provided in Section 3.3 on how to prove the two
properties of ũ2, we first present a numerical illustration in Figure 1, which implies that
these two choices are indeed satisfactory.

3.1 Concentration of the normalized Laplacian

In this section we assume A is an instance of the inhomogeneous Erdős-Rényi graph on n
nodes where node i and j are linked with probability pij . We have the following concentra-
tion result for the normalized Laplacian.

Theorem 4 Let A be the adjacency matrix of a random graph on n nodes whose edges are
sampled independently. Let A∗ = EA = (pij)i,j=1,2,··· ,n. Let L and L∗ be the normalized
Laplacian of A and A∗ respectively. Assume that nmaxij pij ≥ c0 log n for some c0 ≥ 1.
Then for any r > 0, there exists C = C(c0, r) such that

||L − L∗|| ≤ C (nmaxij pij)
5/2

min{dmin, d∗min}3

9
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with probability at least 1 − n−r. Here dmin is the minimum degree of A and d∗min is the
minimum degree of A∗.

Theorem 4 relies heavily on the following concentration result of the adjacency matrix A,
which we take directly from Theorem 5.2 of Lei and Rinaldo (2015).

Lemma 5 Let A be the adjacency matrix of a random graph on n nodes whose edges are
sampled independently. Let A∗ = EA = (pij)i,j=1,2,··· ,n and assume that nmaxij pij ≤ d for
d ≥ c0 log n and c0 > 0. Then, for any r > 0 there exists a constant C = C(r, c0) such that

||A−A∗|| ≤ C
√
d

with probability at least 1− n−r.

The requirement nmaxij pij ≥ log n in Theorem 4 is necessary for concentration. To see this,
consider a homogeneous Erdős-Rényi graph G(n, p) on n nodes with edges occurring with
probability p. It is well known that if np < log n then the graph is asymptotically almost
surely disconnected (van der Hofstad, 2016), causing L to have multiple 0 eigenvalues, which
leads to ||L − L∗|| ≥ 1.

The key to applying Theorem 4 is to control the minimum degree. If p = ω(log n/n) in
the model G(n, p), then one can use Chernoff bound to show dmin = Ω(np) and thus the
concentration reads ||L − L∗|| = O

(
1/
√
np
)
. This shows that the concentration of L is as

good as the concentration of A considering that ||L − L∗|| / ||L∗|| and ||A−A∗|| / ||A∗|| are
of the same order. The unnormalized Laplacian matrix L = D − A likely lacks such good
concentration because of the diagonal degree matrix D.

3.2 Eigenvalue perturbation

In this section we assume A is an instance of the block model G(n, p, q). But we do not
assume the sparsity regime of p or q.

Unnormalized Laplacian

We have λ1(L
∗) = 0, λ2(L

∗) = nq, and λi(L
∗) = n(p + q)/2 for i = 3, 4, · · · , n. To keep

the second and third eigenvalues of L separated, we want ||L− L∗|| to be relatively small
compared to λ3(L

∗)− λ2(L∗), i.e. compared to the associated eigengap. Unfortunately this
is not always satisfied in the critical regime where p = α log n/n and q = β log n/n due
to the bad concentration of L that we discussed earlier. As we will see, in this regime we
have λ2(L) ≤ β log n+O

(
n−1/2 log n

)
, which means the second eigenvalue is well bounded

from above. The challenge is to find a relatively tight lower bound for λ3(L). According to
Weyl’s theorem and Lemma 5,

λ3(L) ≥ λ3(L∗) + λmin(L− L∗)
≥ λ3(L∗) + λmin(D −D∗)− ||A−A∗||

= dmin −O
(√

log n
)
.

Therefore whether the second and the third eigenvalue are separated depends on how well
we can bound dmin from below. Through a Poisson approximation to binomial variables we
are able to bound dmin in the lemma below.

10
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Lemma 6 Let A be an instance of G(n, p, q) where p = α log n/n and β log n/n. Then for
any 0 < ξ < α+β

2 , we have

P

(
dmin ≥

α+ β

2
log n− ξ log n

)
≥ 1− 2n−f(ξ;α,β)

for n larger than a constant N = N(α, β). Here

f(ξ;α, β) =
α+ β − 2ξ

2
log

(
α+ β − 2ξ

α+ β

)
+ ξ − 1.

The function f characterizes a trade-off between the perturbation of dmin and its probability.
Note that when ξ is sufficiently close to 0, f will eventually be negative, then Lemma 6 loses
its usefulness. To ensure that dmin is well controlled from below, we introduce the following
conditions on the constants α and β.

(A1) There exists 0 < ξ < α−β
2 such that f(ξ;α, β) > 0,

(A2)
√
α−
√
β >
√

2.

From Lemma 6 one can see that condition (A1) is enough to ensure dmin ≥ (β + ε) log n,
which implies the separation of eigenvalues. The condition (A2), which characterizes strong
consistency, implies (A1).

Lemma 7 (A2) implies (A1).

We define dout ∈ Rn to be the vector with the ith entry being the number of edges between
the ith node and the community that does not contain the ith node. Define d∗out = Edout.
The concentration of dout around its expectation plays an important role in the perturbation
of λ2(L). The eigenvalue perturbation theorem for the unnormalized Laplacian is formally
stated below.

Theorem 8 Let A be an instance of G(n, p, q).

(i) (Lower bound for the third eigenvalue in the critical regime.) Suppose p = α log n/n
and q = β log n/n. Then for any ξ > 0 and ε > 0 there exists C = C(ξ, α, β, ε) > 0
such that

λ3(L) ≥ α+ β

2
log n− (ξ + ε) log n

with probability at least 1− Cn−f(ξ;α,β).

(ii) (Upper bound for the second eigenvalue.) There holds

λ2(L) ≤ nq +
2

n
〈dout − d∗out,1n〉 .

(iii) (Lower bound for the second eigenvalue.) For any p ≥ p0 log n/n and r > 0, there
exists M = M(p0, r) > 0 such that for q satisfying

p− q
√
p
≥M

√
log n

n
,

11
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it holds that

λ2(L) ≥ nq +
2

n
〈dout − d∗out,1n〉+

32||dout − d∗out||||dout||
n2(p− q)

with probability at least 1− 3n−r.

Moreover, suppose p = α log n/n and q = β log n/n. If α and β satisfy (A1) so that
there is some constant 0 < ξ = ξ(α, β) < (α − β)/2 satisfying f(ξ;α, β) > 0, then
there exists C1, C2 > 0 depending on α, β and ξ such that

λ2(L) ≥ β log n− C1

√
log n

with probability at least 1− C2n
−f(ξ;α,β).

We leave the terms regarding dout in the statement on account of the fact that their behaviors
change as the sparsity regime of q changes. Although these terms get smaller as q gets
smaller, it is hard to put these relations in a unified form. We provide the following lemma
to discuss how to control ||dout − d∗out|| and 〈dout − d∗out,1n〉. The term ||dout|| is then
controlled by ||dout − d∗out||+ ||d∗out||.

Lemma 9 (i) If q ≥ q0 log n/n2 for some q0 > 0, then for any r > 0 there exists C =
C(q0, r) > 0 such that

P

(
|〈dout − d∗out,1n〉| ≥ C

√
n2q log n

)
≤ 2n−r.

(ii) If q ≥ q0 log n/n for some q0 > 0, then for any r > 0 there exists C = C(q0, r) > 0
such that

P

(
||dout − d∗out|| ≥ C

√
n2q
)
≤ n−r.

(iii) If q ≥ q0/n2 for some q0 > 0, then there exists C = C(q0) > 0 such that

P

(
||dout − d∗out|| ≥ C

√
n2q
)
≤ 1

n
+

0.01q0
n2q

.

For p = α log n/n and q = β log n/n where
√
α −
√
β >
√

2, the eigenvalue perturbation is
simply

β log n−O(
√

log n) ≤ λ2(L) ≤ β log n+O(log n/
√
n)

and

λ3(L) ≥ (β + ε) log n

for some constant ε > 0 with probability 1−O
(
n−f(ξ,α,β)

)
.

12
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Normalized Laplacian

For L∗, we have λ1(L∗) = 0, λ2(L∗) = 2q/(p + q), and λi(L∗) = 1 for i = 3, 4, · · · , n. We
provide a perturbation bound for λ2(L).

Theorem 10 Let A be an instance of G(n, p, q).

(i) (Upper bound for the second eigenvalue) Suppose p ≥ p0/n and q ≥ q0 log n/n2 for
some p0, q0 > 0. Then for any r > 0 there exists C1 = C1(r, p0) > 0 and C2 =
C2(r, p0, q0) > 0 such that

P

(
λ2(L) ≤ 2q

p+ q
+ C2

√
q log n

np

)
≥ 1− C1n

−r.

(ii) (Lower bound for the second eigenvalue) For any r > 0 there exists p0 = p0(r) > 1
and M = M(p0, r) > 0 such that for all p ≥ p0 log n/n and q ≥ q0 log n/n2 satisfying

p− q
√
p
≥ M√

n

we have

P

(
λ2(L) ≥ 2q

p+ q
− C1

(√
q log n

np
+
nq + 1√

n
||dout||

n(p− q)√np

))
≥ 1− C2n

−r

for C1, C2 > 0 depending on p0 ,q0 and r.

Moreover, if p = α log n/n and q = β log n/n with α > 2 then there exists 0 < ξ =
ξ(α, β) < α+β

2 such that f(ξ;α, β) > 0 and

P

(
λ2(L) ≥ 2β

α+ β
− C3

1√
log n

)
≥ 1− C4n

−f(ξ;α,β).

for C3, C4 > 0 depending on α ,β and ξ.

As for λ3(L), one can use Weyl’s theorem and the concentration of L (Theorem 4) to give
a good bound. For p = α log n/n and q = β log n/n where

√
α −
√
β >

√
2, the eigenvalue

perturbation is simply

2β

α+ β
−O

(
1√

log n

)
≤ λ2(L) ≤ 2β

α+ β
+O

(
1√
n

)
and

λ3(L) ≥ 1−O
(

1√
log n

)
.

3.3 Strong consistency

In this section we assume A is an instance of G(n, p, q), p = α log n/n, q = β log n/n and√
α−
√
β >
√

2. The section only aims to give a proof sketch for each of the main theorems.
Details can be found in section 5.
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Unnormalized spectral clustering

The goal of the following discussion is to give a proof sketch of Theorem 11.

Theorem 11 Let p = α log n/n, q = β log n/n and
√
α −
√
β >

√
2. Then there exists

η = η(α, β) > 0 and s ∈ {±1} such that with probability 1− o(1),

√
n(su2)i ≥ η for i ≤ n

2

and √
n(su2)i ≤ −η for i ≥ n

2
+ 1.

One can see Theorem 11 implies that the unnormalized spectral clustering achieves strong
consistency down to the information theoretical limits. Let the vector (D − λ2(L)I)−1Au∗2
be the approximation to u2, the second eigenvector of L. Theorem 11 follows after the
following two claims. With probability 1− o(1),

(i)
∣∣∣∣u2 − (D − λ2I)−1Au∗2

∣∣∣∣
∞ = o(1/

√
n);

(ii) sgn
(
(D − λ2(L)I)−1Au∗2

)
exactly recovers the planted communities and∣∣((D − λ2(L)I)−1Au∗2

)
i

∣∣ ≥ η√
n

for all i and some η > 0.

The two claims are up to sign of u2, meaning we write su2 (s ∈ {1,−1}) simply as u2. We
first look at claim (ii). Note that dmax − λ2(L) = O (log n), it boils down to showing that
the entries of Au∗2 are well bounded away from zero by an order of log n/

√
n. Since each

entry of Au∗2 can be expressed as the difference of two independent binomial variables, an
inequality that was introduced in Abbe (2017); Abbe et al. (2016) gives the desired tail
bound.

Lemma 12 Suppose α ≥ β, {Wi}n/2i=1 are i.i.d Bernoulli(α log n/n), and {Zi}n/2i=1 are i.i.d

Bernoulli(β log n/n), independent of {Wi}n/2i=1. For any ε ∈ R, we have

P

n/2∑
i=1

Wi −
n/2∑
i=1

Zi ≤ ε log n

 ≤ n−(√α−√β)2/2+ε log(α/β)/2.
To prove claim (i), note (D − λ2I)u2 = Au2 and expand

u2 − (D − λ2I)−1Au∗2 = (D − λ2I)−1A(u2 − u∗2).

We have established that dmin ≥ (β + ε) log n and λ2 ≤ β log n + O (log n/
√
n), therefore∣∣∣∣(D − λ2I)−1

∣∣∣∣
∞ = O (1/ log n). It remains to show that

||A(u2 − u∗2)||∞ = o

(
log n√
n

)
.

This quantity is at the center of both unnormalized and normalized spectral clustering. The
technique that we use to control ||A(u2 − u∗2)||∞ is originated from Abbe et al. (2019), in
which a row-concentration property of A is the key. We cite the row-concentration in the
following lemma.
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Lemma 13 (Row-concentration property of the adjacency matrix) Let w ∈ Rn be
a fixed vector, {Xi}ni=1 be independent random variable where Xi ∼ Bernoulli(pi). Suppose
p ≥ maxi pi and a > 0. Then

P

∣∣∣∣∣
n∑
i=1

wi(Xi −EXi)

∣∣∣∣∣ ≥ (2 + a)pn

1 ∨ log
(√

n||w||∞
||w||

) ||w||∞
 ≤ 2e−anp.

The row-concentration property of A is probabilistic, meaning w and A must be indepen-
dent. But (u2 − u∗2) and A are not independent. To overcome this, we use the recently
developed and popularized leave-one-out technique. Specifically we consider an auxiliary

vector u
(m)
2 defined as the second eigenvector of L(m), the unnormalized Laplacian matrix

of A(m), where A(m) is constructed in a way that A(m) = A everywhere except for the m-th
row and m-th column which are replaced by those of A∗. The purpose of this auxiliary

vector is that the m-th row of A, denoted by Am·, is now independent of (u
(m)
2 − u∗). Thus

the m-th entry of A(u2 − u∗2) is bounded by (see Lemma 17)

|Am· (u2 − u∗2)| ≤
∣∣∣Am· (u2 − u(m)

2

)∣∣∣+
∣∣∣Am· (u(m)

2 − u∗2
)∣∣∣ .

The first term in the right hand side is well bounded by the small `2-norm of
(
u2 − u(m)

2

)
.

In fact, by exploiting the structural difference of L and L(m), the Davis-Kahan theorem
eventually gives the bound (see Lemma 17)∣∣∣∣∣∣u2 − u(m)

2

∣∣∣∣∣∣ = O (||u2||∞) .

Using this in conjunction with the fact that

||A||2,∞ ≤ ||EA||2,∞ + ||A−EA|| = O
(√

log n
)
,

we are able to bound the first term∣∣∣Am· (u2 − u(m)
2

)∣∣∣ ≤ ||A||2,∞ ∣∣∣∣∣∣u2 − u(m)
2

∣∣∣∣∣∣ = O
(√

log n ||u2||∞
)
.

For the second term, we can now use the row-concentration property which yields (see
Lemma 18) ∣∣∣Am· (u(m)

2 − u∗2
)∣∣∣ = O

(
log n ||u2||∞

log logn

)
.

Thus
||A(u2 − u∗2)||∞ = o (log n ||u2||∞) .

Finally we prove ||u2||∞ = O (1/
√
n). Indeed,

||u2||∞ =
∣∣∣∣(D − λ2I)−1Au2

∣∣∣∣
∞ ≤

∣∣∣∣(D − λ2I)−1Au∗2
∣∣∣∣
∞ +

∣∣∣∣(D − λ2I)−1A(u2 − u∗2)
∣∣∣∣
∞ .

Noting that
∣∣∣∣(D − λ2I)−1A(u2 − u∗2)

∣∣∣∣
∞ = o(||u2||∞), the second term on the right hand

side is thus absorbed into the left hand side. Therefore

||u2||∞ = O
(∣∣∣∣(D − λ2I)−1Au∗2

∣∣∣∣
∞
)

= O

(
1√
n

)
.

Claim (i) then follows.
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Normalized spectral clustering

The proof for the normalized spectral clustering is similar to its unnormalized counterpart,
albeit more technically involved. Let u2 be the eigenvector of (L,D) that corresponds
to the second smallest eigenvalue λ2(L). We use the vector (1 − λ2(L))−1D−1Au∗2 as an
approximation to u2. Then we prove with probability 1− o(1),

(i)
∣∣∣∣u2 − (1− λ2(L))−1D−1Au∗2

∣∣∣∣
∞ = o(1/

√
n);

(ii) sgn
(
(1− λ2(L))−1D−1Au∗2

)
exactly recovers the planted communities and∣∣((1− λ2(L))−1D−1Au∗2

)
i

∣∣ ≥ η√
n

for all i and some η > 0.

Theorem 14 Let p = α log n/n, q = β log n/n and
√
α −
√
β >

√
2. Then there exists

η = η(α, β) > 0 and s ∈ {±1} such that with probability 1− o(1),

√
n(su2)i ≥ η for i ≤ n

2

and √
n(su2)i ≤ −η for i ≥ n

2
+ 1.

4. Numerical explorations

We illustrate the strong consistency of both spectral clustering methods in Figure 2. It
can be clearly seen that both methods achieve strong consistency down to the theoretical
threshold

√
α−
√
β >
√

2. The major behavioral difference between the two methods is when
we are below this threshold, namely when α > β but

√
α−
√
β <
√

2. In this region, strong
consistency is impossible but weak consistency is possible. In Figure 3 we plot the empirical
average agreement for each method. Here the agreement is defined as the proportion of the
correctly classified nodes. We see that the normalized spectral clustering performs much
better in the region between the red line and the green line. The unnormalized spectral
clustering does not work as well as the normalized counterpart does since the unnormalized
Laplacian is unable to preserve the “order” of the eigenvalues (in the sense discussed at the
beginning of Section 3). This shows that the bad concentration of L indeed causes trouble
in this sparsity regime. In fact we are able to find an eigenvector of L that has a high
agreement, but often this eigenvector is not the Fiedler eigenvector.

We further explore other possible choices of approximation ũ2 to the second eigenvector
of L or (L,D). Figure 4 shows

√
n ||u2 − ũ2||∞ for different choices of ũ2. These ap-

proximations can be interpreted from an iterative perspective. For example, our choice of
ũ2 = (D−λ2(L)I)−1Au∗2 for the unnormalized spectral clustering can be seen as the output
of one-step fixed point iteration for solving the system (D − λ2(L)I)u = Au with initial
guess u∗2. The vector ũ2 = (1− λ2(L))−1D−1Au∗2 = D−1Au∗2/λ2(D

−1A) for the normalized
spectral clustering can be seen as the output of an one-step power iteration on the matrix
D−1A with initial guess u∗2, which is similar to the original idea in the paper of Abbe et al.
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(a) Unnormalized spectral clustering (b) Normalized spectral clustering

Figure 2: Empirical success rate of exact recovery for both spectral clustering methods.
We fix n = 600 and the number of trials to be 20. For each pair of α and β, we run both
methods and count how many times each method succeeds. Dividing by the number of
trials, we obtain the empirical probability of success. The red line indicates the theoretical
threshold

√
α−
√
β =
√

2 for strong consistency.

(a) Unnormalized spectral clustering (b) Normalized spectral clustering

Figure 3: Empirical expectation of agreement for both spectral clustering methods. We
fix n = 600 and the number of trials to be 20. For each pair of α and β and each trial,
we run both methods and calculate their agreements. Averaging over all trials, we obtain
the empirical expectation of agreement. The red line indicates the theoretical threshold√
α −

√
β =

√
2 for strong consistency. The green line is α = β, which serves as the

theoretical boundary for weak consistency in this sparsity regime.

(2019). We attempt to adopt the power iteration idea on the shifted Laplacian n(p+q)
2 P −L,

where P = I− 1
nJn×n is the projection onto the orthogonal complement space of span{1n}.

The purpose of introducing this shift is to make the Fiedler eigenvector correspond to the
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leading eigenvalue, and thus we can apply the idea of power iteration. However this idea
does not seem to produce a satisfactory result. We also point out that the λ2(L) and λ2(L)
in our approximations can be replaced with λ2(L

∗) and λ2(L∗) respectively. Doing so will
only introduce a higher order error in our analysis, which is confirmed by the results in
Figure 4.
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(a) Unnormalized spectral clustering
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(b) Normalized spectral clustering

Figure 4: Boxplots showing
√
n ||u2 − ũ2||∞ (up to sign of u2) for different choices of ũ2.

We fix n = 5000, α = 10, β = 2 and the number of trials as 100. Left: (1) ũ2 = u∗2, (2)

ũ2 = (n(p+q)2 P −L)u∗2/(
n(p+q)

2 −λ2(L)) where P = I− 1
nJn×n, (3) ũ2 = (D−λ2(L)I)−1Au∗2,

(4) ũ2 = (D − λ2(L∗)I)−1Au∗2. Right: (1) ũ2 = u∗2, (2) ũ2 = (1 − λ2(L))−1D−1Au∗2, (3)
ũ2 = (1− λ2(L∗))−1D−1Au∗2.

5. Proofs

5.1 Proofs for Section 2.2

Proof of Theorem 3 Let N = V ΣV H be the spectral decomposition of N . Define

N
1
2 = Σ

1
2V H and N−

1
2 = V Σ−

1
2 . Then

(
N−

1
2

)H
MN−

1
2 is Hermitian and admits the

spectral decomposition (
N−

1
2

)H
MN−

1
2 = UΛUH (1)

where U is a unitary matrix and Λ is a real diagonal matrix consisting of the eigenvalues.
Left multiplying by N−

1
2 and right multiplying by N

1
2 on both sides in equation (1) gives

N−1M = XΛX−1,

where X = N−
1
2U . We write

r = (N−1M − λ̂I)û = X

[
Λ1 − λ̂I

Λ2 − λ̂I

]
X−1û = X

[
Λ1 − λ̂I

Λ2 − λ̂I

] [
ĉ
ŝ

]
,
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where ĉ = Y H
1 û and ŝ = Y H

2 û. Multiplying both sides from the left by
(

Λ2 − λ̂I
)−1

Y H
2

gives

ŝ =
(

Λ2 − λ̂I
)−1

Y H
2 r.

Then

Pû = (Y +
2 )HY H

2 û = (Y +
2 )H ŝ = (Y +

2 )H
(

Λ2 − λ̂I
)−1

Y H
2 r.

Finally, note that

[
X1 X1

]−1
= UHN

1
2 =

[
UH1
UH2

]
N

1
2 =

[
Y H
1

Y H
2

]
,

hence we have Y H
2 = UH2 N

1
2 . So

||Pû|| ≤
∣∣∣∣∣∣N− 1

2

∣∣∣∣∣∣ ∣∣∣∣∣∣(UH2 )+∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣(Λ2 − λ̂I
)−1∣∣∣∣∣∣∣∣ ∣∣∣∣UH2 ∣∣∣∣ ∣∣∣∣∣∣N 1

2

∣∣∣∣∣∣ ||r||
≤

√
κ(N)

∣∣∣∣∣∣(N−1M − λ̂I)û
∣∣∣∣∣∣

δ
.

5.2 Proofs for Section 3.1

Proof of Theorem 4 We have

||L − L∗|| =
∣∣∣∣∣∣D− 1

2AD−
1
2 − (D∗)−

1
2A∗(D∗)−

1
2

∣∣∣∣∣∣
≤
∣∣∣∣∣∣D− 1

2 (A−A∗)D−
1
2

∣∣∣∣∣∣+
∣∣∣∣∣∣D− 1

2A∗D−
1
2 − (D∗)−

1
2A∗(D∗)−

1
2

∣∣∣∣∣∣ .
The first term on the right hand side is easily bounded by using Lemma 5

∣∣∣∣∣∣D− 1
2 (A−A∗)D−

1
2

∣∣∣∣∣∣ ≤ ||A−A∗||
dmin

≤ C1(c0, r)

√
nmaxij pij

dmin
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with probability at least 1−n−r. Denote d = A1n and d∗ = A∗1n, then the second term is
bounded by

∣∣∣∣∣∣D− 1
2A∗D−

1
2 − (D∗)−

1
2A∗(D∗)−

1
2

∣∣∣∣∣∣
≤
∣∣∣∣∣∣D− 1

2A∗D−
1
2 − (D∗)−

1
2A∗(D∗)−

1
2

∣∣∣∣∣∣
F

=

√√√√√ n∑
i,j=1

p2ij

 1√
didj

− 1√
d∗i d
∗
j

2

≤max
ij

pij

√√√√√√ n∑
i,j=1

√didj −
√
d∗i d
∗
j√

didjd∗i d
∗
j

2

≤maxij pij
dmind∗min

√√√√√ n∑
i,j=1

 didj − d∗i d∗j√
didj +

√
d∗i d
∗
j

2

≤ maxij pij
2 min{dmin, d∗min}3

√√√√ n∑
i,j=1

(
didj − d∗i d∗j

)2
=

maxij pij
2 min{dmin, d∗min}3

∣∣∣∣∣∣ddT − d∗ (d∗)T
∣∣∣∣∣∣
F

≤ maxij pij
2 min{dmin, d∗min}3

(∣∣∣∣d(d− d∗)T
∣∣∣∣
F

+
∣∣∣∣∣∣(d− d∗) (d∗)T

∣∣∣∣∣∣
F

)
=

maxij pij
2 min{dmin, d∗min}3

(||d|| ||d− d∗||+ ||d− d∗|| ||d∗||)

≤ maxij pij
2 min{dmin, d∗min}3

(
||A|| ||A−A∗|| ||1n||2 + ||A∗|| ||A−A∗|| ||1n||2

)
≤ maxij pij

2 min{dmin, d∗min}3
(||A−A∗||+ 2 ||A∗||) ||A−A∗|| ||1n||2 ,

where we have used the fact that
∣∣∣∣uvT ∣∣∣∣

F
=
∣∣∣∣uvT ∣∣∣∣ = ||u|| ||v|| for any u and v. Again by

using the bound for (A−A∗), we get

∣∣∣∣∣∣D− 1
2A∗D−

1
2 − (D∗)−

1
2A∗(D∗)−

1
2

∣∣∣∣∣∣
≤C2(c0, r)

maxij pij
min{dmin, d∗min}3

(√
nmaxij pij + nmaxij pij

)√
nmaxij pij · n

≤C3(c0, r)
(nmaxij pij)

5/2

min{dmin, d∗min}3

20



Strong Consistency of Spectral Clustering

with probability at least 1− n−r. Therefore combining the two terms we get

||L − L∗|| ≤ C1(c0, r)

√
nmaxij pij

dmin
+ C3(c0, r)

(nmaxij pij)
5/2

min{dmin, d∗min}3

= C1(c0, r)
(d∗min)2

√
nmaxij pij

dmin(d∗min)2
+ C3(c0, r)

(nmaxij pij)
5/2

min{dmin, d∗min}3

≤ C4(c0, r)
(nmaxij pij)

5/2

min{dmin, d∗min}3

with probability at least 1− n−r.

5.3 Proofs for Section 3.2

We start with some basic concentration inequalities.

Lemma 15 (i) (Chernoff) Let {Xi}ni=1 be independent variables. Assume 0 ≤ Xi ≤ 1
for each i. Let X = X1 + · · ·+Xn and µ = EX. Then for any t > 0,

P (|X − µ| ≥ t) ≤ 2 exp

(
− t2

2µ+ t

)
.

As a result, for any r > 0, there exists C = C(r) > 0 such that

P
(
|X − µ| ≥ C

(
log n+

√
µ log n

))
≤ 2n−r.

(ii) (Bennett) Let X ∼ Poisson(λ). Then for any 0 < x < λ,

P (X ≤ λ− x) ≤ exp

(
−x

2

2λ
h
(
−x
λ

))
,

where h(u) = 2u−2((1 + u) log(1 + u)− u).

(iii) (Chebyshev) Let X be a random variable with finite expected value µ and finite non-
zero variance σ2. Then for any real number t > 0,

P (|X − µ| ≥ t) ≤ σ2

t2
.

Proof of Lemma 15
(i) We omit the proof of the first inequality as it is a common form of the Chernoff

bound. To prove the second inequality, we set

t2

2µ+ t
= r log n,

which is t = 1
2

(
r log n+

√
r2 log2 n+ 8rµ log n

)
≤ C(r)

(
log n+

√
µ log n

)
.
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(ii) The moment generating function of X is

EeθX = eλ(e
θ−1)

for θ ∈ R. Fix 0 < x < λ, then for any θ > 0,

P (X ≤ λ− x) = P

(
eθX ≤ eθ(λ−x)

)
= P

(
eθ(λ−x−X) ≥ 1

)
≤ eθ(λ−x)Ee−θX = e(λ(e

−θ−1)+θ(λ−x)).

The penultimate step is due to Markov’s inequality. Finally, by setting θ = − log
(
1− x

λ

)
>

0 we get

P (X ≤ λ− x) ≤ exp

(
−x

2

2λ
h
(
−x
λ

))
as claimed.

Unnormalized Laplacian

Proof of Lemma 7
∂f

∂ξ
= − log

(
1− 2ξ

α+ β

)
> 0

for 0 < ξ < α+β
2 . So it suffices to prove f(α−β2 ;α, β) > 0 when

√
α −
√
β >

√
2. Since

α+ β > 2
√
αβ + 2, we have

f

(
α− β

2
;α, β

)
=β log

(
2β

α+ β

)
+
α− β

2
− 1

>β log

(
2β

α+ β

)
+
√
αβ − β

=β

[√
α

β
− log

(
1

2
+

α

2β

)
− 1

]
.

It is then straightforward to show by differentiation that
√
x − log

(
1
2 + x

2

)
− 1 > 0 when

x > 1.

The crucial step in controlling the minimum degree in the critical regime is the following
Poisson approximation to binomials.

Lemma 16 Let X ∼ Binomial(n/2, p) and Y ∼ Binomial(n/2, q) for n even. Suppose
p = α log n/n and q = β log n/n for constants α and β. Let γ = (α+β)/2, then there exists
cn → 0 depending on γ such that for every k ≤ γ log n,

P (X + Y = k) ≤ (1 + cn)n−γ
(γ log n)k

k!
.
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Proof For k ≤ γ log n,

P (X = k) =

[
n/2
k

](
α log n

n

)k (
1− α log n

n

)n
2
−k

=
n
2

(
n
2 − 1

)
· · ·
(
n
2 − k + 1

)
k!

· 1

(n/2)k

(α
2

log n
)k (

1− α log n

n

)n
2
−k

≤ 1

k!

(α
2

log n
)k (

1− α log n

n

) n
α logn(α2 logn)(1− 2k

n )

≤ (1 + an)n−
α
2

(
α
2 log n

)k
k!

,

where an → 0 and is independent of k. The last inequality is due to

lim
n→∞

(
α
2 log n

) (
1− 2γ logn

n

)
log
(

1− α logn
n

) n
α logn

−α
2 log n

= 1.

Similarly there exists bn → 0 independent of k such that

P (Y = k) ≤ (1 + bn)n−
β
2

(
β
2 log n

)k
k!

.

Finally note that

P (X + Y = k) =
k∑
l=0

P (X = l)P (Y = k − l)

≤ (1 + an)(1 + bn)n−γ
(γ log n)k

k!

:= (1 + cn)n−γ
(γ log n)k

k!
.

With the help of the Poisson approximation we can now prove Lemma 6.
Proof of Lemma 6 Let di be the degree of the ith node. Let X be a Poisson variable with
mean α+β

2 log n. Then by Lemma 15 and Lemma 16, for n large enough

P

(
di ≤

α+ β

2
log n− ξ log n

)
≤ 2P

(
X ≤ α+ β

2
log n− ξ log n

)
≤ 2n−f(ξ;α,β)−1.

Taking union bound yields

P

(
dmin ≥

α+ β

2
log n− ξ log n

)
≥ 1− 2n−f(ξ;α,β).
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We prove Lemma 9 before we prove Theorem 8.
Proof of Lemma 9

(i) Note that

〈dout − d∗out,1n〉 = 2

n
2∑
i=1

n∑
j=n

2
+1

(Aij − q).

The result follows from the Chernoff bound.
(ii) Let Aout denote the matrix after removing all edges within the same community in A.
By Lemma 5,

P

(
||dout − d∗out|| ≥ C(q0, r)

√
n2q
)

= P

(
||(Aout −A∗out)1n|| ≥ C(q0, r)

√
n2q
)

≤ P (||Aout −A∗out|| ≥ C(q0, r)
√
nq)

≤ n−r.

(iii) One can calculate the following two central moments of X ∼ binomial(n/2, q) by using
the formula provided in Knoblauch (2008):

E

[(
X − nq

2

)2]
=

1

2
nq(1− q) ≤ 1

2
nq

var

[(
X − nq

2

)2]
=

1

2
nq(1− q)(nq − 6q − nq2 + 6q2 + 1) ≤ 1

2
nq(nq + 7).

Let Xi
i.i.d∼ binomial(n/2, q) and Yi

i.i.d∼ binomial(n/2, q). Then by letting t = C1(q0)n
2q in

Chebyshev’s inequality,

P

n/2∑
i=1

(
Xi −

nq

2

)2
≤
(

1

2
+ C1(q0)

)
n2q

 ≥ 1−
1
2n

2q(nq + 7)

C1(q0)2n4q2
≥ 1− 1

2

(
1

n
+

0.01q0
n2q

)
.

Same inequality holds for Yi. By the union bound

P

(
||dout − d∗out|| ≤ C2(q0)

√
n2q
)

=P


√√√√√n/2∑

i=1

(
Xi −

nq

2

)2
+

n∑
i=n/2+1

(
Yi −

nq

2

)2
≤ C2(q0)

√
n2q


≥1−

(
1

n
+

0.01q0
n2q

)
.

Proof of Theorem 8 (i) Weyl’s theorem shows

λ3(L) ≥ λ3(L∗) + λmin(D −D∗)− ||A−A∗||

=
α+ β

2
log n+

(
dmin −

α+ β

2
log n

)
− ||A−A∗||

= dmin − ||A−A∗||
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By Lemma 6, for n large enough

P

(
dmin ≥

α+ β

2
log n− ξ log n

)
≥ 1− 2n−f(ξ;α,β).

Then by Lemma 5,

P

(
||A−A∗|| ≤ C1(ξ, α, β)

√
log n

)
≥ 1− n−f(ξ;α,β).

Therefore for n ≥ N = N(ξ, α, β, ε),

P

(
λ3(L) ≥ α+ β

2
log n− (ξ + ε) log n

)
≥ 1− 3n−f(ξ;α,β).

Or equivalently for all n,

P

(
λ3(L) ≥ α+ β

2
log n− (ξ + ε) log n

)
≥ 1− C2(ξ, α, β, ε)n

−f(ξ;α,β).

(ii) By the min-max principle

λ2(L) = min
V ∈Vt

max
x∈V \{0}

〈x, Lx〉
〈x, x〉

≤ max
x∈span{1n,u∗2},||x||=1

〈x, Lx〉

= 〈u∗2, Lu∗2〉

=
2

n
〈dout,1n〉 = nq +

2

n
〈dout − d∗out,1n〉 .

The third step is due to L1n = 0 and 1n ⊥ u∗2.
(iii) Let u2 be the eigenvector of L that corresponds to λ2(L), We have

λ2(L) = 〈u2, Lu2〉 = 〈(u2 − u∗2) + u∗2, L((u2 − u∗2) + u∗2)〉
= 〈u∗2, Lu∗2〉+ 2 〈u2 − u∗2, Lu∗2〉+ 〈u2 − u∗2, L(u2 − u∗2)〉
≥ 〈u∗2, Lu∗2〉+ 2 〈u2 − u∗2, Lu∗2〉

≥ nq +
2

n
〈dout − d∗out,1n〉 − 2 ||u2 − u∗2|| ||Lu∗2||

= nq +
2

n
〈dout − d∗out,1n〉 −

4√
n
||u2 − u∗2|| ||dout|| .

Let θ be the angle between u2 and u∗2. Assume θ ∈ [0, π/2], because otherwise just let

u2 := −u2. Then by letting N = I, M = L, û = u∗2, λ̂ = λ2(L
∗), X1 =

[
1√
n
1n u2

]
and P

be the projection matrix onto the orthogonal complement of X1 in Theorem 3 we get

||Pu∗2|| = sin(θ) ≤ ||(L− L
∗)u∗2||

δ
=

2 ||dout − d∗out||
δ
√
n

,

where δ = λ3(L)− λ2(L∗) which we for now assume to be positive. Therefore

||u2 − u∗2|| =
√

2− 2 cos(θ) ≤
√

2 sin(θ) ≤ 2
√

2 ||dout − d∗out||
δ
√
n

. (2)
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Thus

λ2(L) ≥ nq +
2

n
〈dout − d∗out,1n〉 −

8
√

2

δn
||dout − d∗out|| ||dout|| . (3)

It remains to find a lower bound for δ. If p ≥ p0 log n/n then for any r > 0, the Chernoff
bound and Lemma 5 give

P

(
||D −D∗|| ≥ C1(p0, r)

√
np log n

)
≤ 2n−r

and

P (||A−A∗|| ≥ C2(p0, r)
√
np) ≤ n−r.

Therefore there exists M(p0, r) large enough, such that for q satisfying

n(p− q) ≥M
√
np log n,

we have

δ = λ3(L)− λ2(L∗) = (λ3(L
∗)− λ2(L∗)) + (λ3(L)− λ3(L∗))

≥ n(p− q)
2

− ||D −D∗|| − ||A−A∗||

≥ n(p− q)
2
√

2

with probability at least 1 − 3n−r. Combining this and (3) concludes the first half of the
statement.

If p = α log n/n, q = β log n/n and α and β satisfy (A1) so that there is some constant
0 < ξ < (α− β)/2 satisfying f(ξ;α, β) > 0, then by part (i),

P (λ3(L) ≥ β log n+ ε(α, β) log n) ≥ 1− C3(ξ, α, β)n−f(ξ,α,β). (4)

Therefore

P (δ ≥ ε(α, β) log n) ≥ 1− C3(ξ, α, β)n−f(ξ,α,β). (5)

and

P

(
||u2 − u∗2|| ≤ C4(α, β, ξ)

1√
log n

)
≥ 1− C5(α, β, ξ)n

−f(ξ;α,β). (6)

Finally combining (3), (5) and Lemma 9 gives

P

(
λ2(L) ≥ β log n− C6(α, β, ξ)

√
log n

)
≥ 1− C7(α, β, ξ)n

−f(ξ;α,β).
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Normalized Laplacian

Proof of Theorem 10 (i) Let u2 be the eigenvector of (L,D) that corresponds to λ2(L).
Using the min-max principle we get

λ2(L) = min
V ∈Vt

max
x∈V \{0}

〈x,Lx〉
〈x, x〉

≤ max
x∈span

{
D

1
2 1n,D

1
2 u∗2

} 〈x,Lx〉〈x, x〉

=

〈
D

1
2u∗2 − x,L(D

1
2u∗2 − x)

〉
||D

1
2u∗2 − x||2

≤ 〈u∗2, Lu∗2〉
〈u∗2, Du∗2〉 − 2||x||

√
〈u∗2, Du∗2〉+ ||x||2

≤ 〈u∗2, Lu∗2〉
〈u∗2, Du∗2〉 − 2||x||

√
〈u∗2, Du∗2〉

,

where

x =
〈u∗2, D1n〉
〈1n, D1n〉

D
1
21n

is the part of D
1
2u∗2 that is parallel to D

1
21n. The third equality is because D

1
21n is in the

null space of L. Therefore the Rayleigh quotient takes maximum in the direction orthogonal
to D

1
21n. The last inequality is valid because later we will see ||x|| ≤ 1

2

√
〈u∗2, Du∗2〉. Next

we aim to give an upper and lower bound for 〈u∗2, Lu∗2〉, an upper bound for |〈u∗2, D1n〉| and
a lower bound for 〈u∗2, Du∗2〉 = 1

n 〈1n, D1n〉. First by Lemma 9,

〈u∗2, Lu∗2〉 = nq +
2

n
〈dout − d∗out,1n〉 ≤ nq + C1(q0, r)

√
q log n (7)

with probability at least 1− n−r. By Chernoff,∣∣∣∣〈u∗2, Du∗2〉 − n(p+ q)

2

∣∣∣∣ =

∣∣∣∣ 1n 〈1n, D1n〉 − n(p+ q)

2

∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

di −
n(p+ q)

2

∣∣∣∣∣
=

∣∣∣∣∣∣ 1n
∑
i=j

Aij + 2
∑
i>j

Aij

− n(p+ q)

2

∣∣∣∣∣∣
≤ C2(r)

(√
p log n

n
+

log n

n
+
√
p log n+

√
q log n

)
≤ C3(r, p0)

√
p log n (8)
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with probability at least 1− n−r. Finally by Chernoff,

|〈u∗2, D1n〉| =
1√
n

∣∣∣∣∣∣
n/2∑
i=1

di −
n∑

i=n/2+1

di

∣∣∣∣∣∣
=

1√
n

∣∣∣∣∣∣
n/2∑
i=1

n/2∑
j=1

Aij −
n∑

i=n/2+1

n∑
j=n/2+1

Aij

∣∣∣∣∣∣
≤ 1√

n

∣∣∣∣∣∣
n/2∑
i=1

n/2∑
j=1

Aij −
n2p

4

∣∣∣∣∣∣+

∣∣∣∣∣∣
n∑

i=n/2+1

n∑
j=n/2+1

Aij −
n2p

4

∣∣∣∣∣∣


≤ C4(r, p0)
√
np log n (9)

with probability at least 1− n−r. Therefore by combining (8) and (9),

||x|| = |〈u∗2, D1n〉|√
〈1n, D1n〉

≤ C4(r, p0)
√
p log n√

n(p+q)
2 − C3(r, p0)

√
p log n

≤ C5(r, p0)

√
log n

n

for N ≥ N(r, p0). This justifies the claim that ||x|| ≤ 1
2

√
〈u∗2, Du∗2〉. Combining (7), (8)

and (9) yields

λ2(L) ≤ 〈u∗2, Lu∗2〉
〈u∗2, Du∗2〉 − 2||x||

√
〈u∗2, Du∗2〉

≤ nq + C1(q0, r)
√
q log n

n(p+q)
2 − C3(r, p0)

√
p log n− C6(r, p0)

√
logn
n ·
√
np

≤ 2q

(p+ q)
+ C7(r, p0, q0)

√
q log n

np

with probability at least 1− 3n−r for n > N(r, p0). Or equivalently

P

(
λ2(L) ≤ 2q

p+ q
+ C7(r, p0, q0)

√
q log n

np

)
≥ 1− C8(r, p0)n

−r

for all n.

(ii) By the Chernoff bound and the union bound, for any r > 0, there exists p0 = p0(r)
large enough such that for p ≥ p0 log n/n,

P (dmax ≤ C1(p0, r)np) ≥ 1− n−r. (10)

and

P (dmin ≥ C2(p0, r)np) ≥ 1− n−r. (11)
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We have

λ2 =
〈u2, Lu2〉
〈u2, Du2〉

=
〈u∗2, Lu∗2〉+ 2 〈u2 − u∗2, Lu∗2〉+ 〈u2 − u∗2, L(u2 − u∗2)〉
〈u∗2, Du∗2〉+ 2 〈u2 − u∗2, Du∗2〉+ 〈u2 − u∗2, D(u2 − u∗2)〉

≥ 〈u∗2, Lu∗2〉 − 2||u2 − u∗2||||Lu∗2||
〈u∗2, Du∗2〉+ 2||u2 − u∗2||||Du∗2||+ ||u2 − u∗2||2||D||

=
〈u∗2, Lu∗2〉 − 4√

n
||u2 − u∗2|| ||dout||

〈u∗2, Du∗2〉+
2||u2−u∗2||dmax√

n
+ ||u2 − u∗2||2dmax

.

Combining (7), (8) and (10) gives

λ2(L) ≥
nq + C3(q0, r)

√
q log n− 4√

n
||u2 − u∗2|| ||dout||

n(p+q)
2 + C4(r, p0)

√
p log n+ C1(p0, r)np

(
||u2−u∗2||√

n
+ ||u2 − u∗2||2

)
with probability at least 1−3n−r. It remains to find an upper bound for ||u2 − u∗2|| through

Davis-Kahan. In Theorem 3, we let M = L, N = D, λ̂ = 2q
p+q , û = u∗2, X1 =

[
1√
n
1n u2

]
and P be the projection matrix onto the orthogonal complement of X1. Since u∗2 is orthog-
onal to 1n, we have ||Pu∗2|| = sin(θ) where θ ∈ [0, π/2] is the angle between u2 and u∗2.
Therefore

||u2 − u∗2|| =
√

2− 2 cos(θ) ≤
√

2 sin(θ) ≤

√
2
∣∣∣∣∣∣(D−1L− λ̂I)u∗2∣∣∣∣∣∣

δ
, (12)

where δ = λ3(L)−λ2(L∗) ≥ λ3(L∗)−λ2(L∗)−||L − L∗|| = p−q
p+q−||L − L

∗|| . Using Theorem 4
in conjunction with (11) we get

P

(
||L − L∗|| ≤ C4(p0, r)√

np

)
≥ 1− n−r.

Therefore there exists M(p0, r) > 0 such that

p− q
√
p
≥ M√

n

implies

P

(
δ ≥ p− q

4p

)
≥ 1− C5(p0, r)n

−r.
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To control the numerator in (12), note that

||(D−1L− λ̂)u∗2|| = 2

√√√√ 1

n

n∑
i=1

(
d
(i)
out

di
− nq

n(p+ q)

)2

≤ 2

n(p+ q)dmin
√
n

√√√√ n∑
i=1

(
npd

(i)
out − nqd

(i)
in

)2

≤ 2

npdmin
√
n

√√√√ n∑
i=1

(
np
(
d
(i)
out −

nq

2

)
− nq

(
d
(i)
in −

np

2

))2
=

2

npdmin
√
n
||np (dout − d∗out)− nq (din − d∗in)||

≤ 2

dmin
√
n

(||dout − d∗out||+ ||din − d∗in||)

=
2

dmin
√
n

(||(Aout −A∗out)1n||+ ||(Ain −A∗in)1n||)

≤ 2

dmin
(||Aout −A∗out||+ ||Ain −A∗in||) ,

where the second line follows from Ain = A− Aout and din = Ain1n. Combining Lemma 5
and (11) we get

P

(
||(D−1L− λ̂)u∗2|| ≤ C6(p0, r)

1
√
np

)
≥ 1− 2n−r.

Therefore

P

(
||u2 − u∗2|| ≤ C7(p0, r)

√
np

n(p− q)

)
≥ 1− C8(p0, r)n

−r.

Finally,

λ2(L) ≥
nq + C3(q0, r)

√
q log n− 4√

n
||u2 − u∗2|| ||dout||

n(p+q)
2 + C4(r, p0)

√
p log n+ C1(p0, r)np

(
||u2−u∗2||√

n
+ ||u2 − u∗2||2

)
≥

nq + C3(q0, r)
√
q log n− 4C7(p0, r)

√
p

n(p−q) ||dout||
n(p+q)

2 + C4(r, p0)
√
p log n+ C1(p0, r)np

(
C7(p0, r)

√
p

n(p−q) + C7(p0, r)2
np

n2(p−q)2

)
≥ 2q

p+ q
− C8(p0, q0, r)

 q
p

√
p log n+

q
√
np

p−q +
√
q log n+

√
p||dout||
n(p−q)

np


≥ 2q

p+ q
− C9(p0, q0, r)

(√
q log n

np
+
nq + 1√

n
||dout||

n(p− q)√np

)

with probability at least 1− C10(p0, r)n
−r.
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Now suppose p = α log n/n and q = β log n/n with α > 2. It is easy to see that there
exists ξ(α, β) ≤ α+β

2 such that f(ξ;α, β) > 0. Then by Lemma 6,

P (dmin ≥ C11(α, ξ)np) ≥ 1− n−f(ξ;α,β). (13)

In this case the proof above still holds but with r = f(ξ;α, β). Therefore

P

(
||u2 − u∗2|| ≤ C12(α, β, ξ)

1√
log n

)
≥ 1− C13(α, β, ξ)n

−f(ξ;α,β) (14)

and

P

(
λ2(L) ≥ 2β

α+ β
− C14(α, β, ξ)

1√
log n

)
≥ 1− C15(α, β, ξ)n

−f(ξ;α,β),

where we have used Lemma 9 to bound ||dout||.

5.4 Proofs for Section 3.3

Any statement involving eigenvectors are up to sign, meaning that for any eigenvector u,
either u or −u will suit the statement. For example, the expression ‖u − v‖ should be
understood as mins∈{±1} ‖su− v‖.

Unnormalized spectral clustering

Let A(m) be the matrix that A
(m)
ij = Aij when neither i nor j equals m and A

(m)
ij = A∗ij when

i or j equals m. Let L(m) be the corresponding unnormalized Laplacian matrix of A(m). Let
u2 be the eigenvector of L that corresponds to the second smallest eigenvalue λ2(L). Let

u
(m)
2 be the eigenvector of L(m) that corresponds to the second smallest eigenvalue λ2(L

(m)).

The lemma below bounds
∣∣∣∣∣∣u2 − u(m)

2

∣∣∣∣∣∣.
Lemma 17 There exists ξ = ξ(α, β) > 0, C1, C2 > 0 depending on α, β and ξ, such that
f(ξ;α, β) > 0 and

P

(
max

1≤m≤n

∣∣∣∣∣∣u2 − u(m)
2

∣∣∣∣∣∣ ≤ C1 ||u2||∞
)
≥ 1− C2n

−f(ξ;α,β).

Proof In Theorem 3 we let M = L(m), N = I, û = u2, λ̂ = λ2(L), X1 =
[

1√
n
1n u2

]
.

Then up to sign of eigenvectors,

∣∣∣∣∣∣u2 − u(m)
2

∣∣∣∣∣∣ ≤ √2
∣∣∣∣(L(m) − L)u2

∣∣∣∣
δm

, (15)

where δm = λ3(L
(m))− λ2(L). We first use Weyl’s theorem to bound λ3(L

(m)) from below.
The proof is similar to Theorem 8 (i). We note that by the construction of A(m), the
(m,m)-entry of (D(m) − D∗) is 0 and the (i, i)-entry (i 6= m) only differ from (di − d∗i )

31



Deng, Ling, and Strohmer

by at most 1. Thus by Lemma 6, Lemma 5, Lemma 7 and the union bound, there exists
ξ(α, β) ≤ α−β

2 such that f(ξ;α, β) > 0 and

min
1≤m≤n

λ3(L
(m)) ≥ λ3(L∗) + min

1≤m≤n

{
λmin(D(m) −D∗)−

∣∣∣∣∣∣A(m) −A∗
∣∣∣∣∣∣}

≥ λ3(L∗) + min {λmin(D −D∗)− 1, 0} − max
1≤m≤n

∣∣∣∣∣∣A(m) −A∗
∣∣∣∣∣∣

= min

{
dmin − 1,

(α+ β) log n

2

}
− max

1≤m≤n

∣∣∣∣∣∣A(m) −A∗
∣∣∣∣∣∣

≥ β log n+ ε1(α, β, ξ) log n

with probability at least 1− C1(α, β, ξ)n
−f(ξ;α,β). (A(m) does not strictly fit the setting of

Lemma 5. But note that the mth row and column of A(m) − A∗ cancel to 0. Thus we are
essentially applying Lemma 5 to a submatrix of A(m)−A∗.) Using this in conjunction with
Theorem 8 (ii), we have

P

(
min

1≤m≤n
δm ≥ ε2(α, β, ξ) log n

)
≥ 1− C2(α, β, ξ)n

−f(ξ;α,β).

To bound the numerator in (15), we consider bounding the mth entry of (L(m) −L)u2 and
the other entries separately. Let v = (L(m) − L)u2 then

|vm| = |(L(m) − L)m·u2| = |(L∗ − L)m·u2| ≤ ||L∗ − L||∞ ||u2||∞ . (16)

For i 6= m, ∑
i 6=m

v2i

1/2

=

∑
i 6=m

(A∗im −Aim)2
(
u
(m)
2 − u(i)2

)21/2

≤ 2 ||u2||∞

∑
i 6=m

(A∗im −Aim)2

1/2

≤ 2 ||u2||∞ ||A
∗ −A||2,∞

≤ 2 ||u2||∞ ||A
∗ −A|| . (17)

Therefore by the Chernoff bound and Lemma 5,

max
1≤m≤n

∣∣∣∣∣∣(L(m) − L)u2

∣∣∣∣∣∣ ≤ (||L∗ − L||∞ + 2 ||A−A∗||) ||u2||∞ ≤ C4(α, β, ξ) log n ||u2||∞

with probability at least 1− C3(α, β, ξ)n
−f(ξ;α,β). This concludes the proof.

The next lemma gives an entrywise bound of A(u2− u∗2), which is the at the center of both
unnormalized and normalized spectral clustering.

Lemma 18 There exist C1, C2 > 0 depending on α, β and ξ such that

P

(
||A(u2 − u∗2)||∞ ≤ C1

log n√
n log logn

)
≥ 1− C2n

−f(ξ;α,β).
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Proof All the statements in this proof hold for a probability at least 1 − Cn−f(ξ;α,β) for
some C = C(α, β, ξ) > 0. Asymptotic notation hides constants that depend on α, β and ξ.
We claim

||A(u2 − u∗2)||∞ = O

(
||u2||∞ log n

log logn

)
(18)

||u2||∞ = O

(
1√
n

)
. (19)

We first prove (18). Then we use (18) to prove (19). Finally combining them concludes the
proof. To start, note that

||A(u2 − u∗2)||∞ = max
1≤m≤n

|Am· (u2 − u∗2)|

≤ max
1≤m≤n

∣∣∣Am· (u2 − u(m)
2

)∣∣∣+ max
1≤m≤n

∣∣∣Am· (u(m)
2 − u∗2

)∣∣∣
≤ max

1≤m≤n
||A||2,∞

∣∣∣∣∣∣u2 − u(m)
2

∣∣∣∣∣∣+ max
1≤m≤n

∣∣∣A∗m· (u(m)
2 − u∗2

)∣∣∣
+ max

1≤m≤n

∣∣∣(A−A∗)m· (u(m)
2 − u∗2

)∣∣∣ . (20)

For the first term on the right hand side we have

||A||2,∞ ≤ ||A
∗||2,∞ + ||A−A∗|| = O

(√
log n

)
and

max
1≤m≤n

∣∣∣∣∣∣u2 − u(m)
2

∣∣∣∣∣∣ = O (||u2||∞) .

Therefore, it holds that

max
1≤m≤n

||A||2,∞
∣∣∣∣∣∣u2 − u(m)

2

∣∣∣∣∣∣ = O
(√

log n ||u2||∞
)
. (21)

For the second term we have

max
1≤m≤n

∣∣∣A∗m· (u(m)
2 − u∗2

)∣∣∣ ≤ max
1≤m≤n

||A∗||2,∞
∣∣∣∣∣∣u(m)

2 − u∗2
∣∣∣∣∣∣

≤ ||A∗||2,∞
(

max
1≤m≤n

∣∣∣∣∣∣u2 − u(m)
2

∣∣∣∣∣∣+ ||u2 − u∗2||
)

=
log n√
n
·O
(
||u2||∞ +

1√
log n

)
, (22)

where we have used (6). For the third term we can use the fact that the mth row of A and

u
(m)
2 − u∗2 are independent, therefore by the row concentration property of A (Lemma 13)

and union bound, we have (by letting a = f(ξ;α,β)+1
α and p = α log n/n in Lemma 13)

max
1≤m≤n

∣∣∣(A−A∗)m· (u(m)
2 − u∗2

)∣∣∣ = O

(
max

1≤m≤n
||w||∞ ϕ

(
||w||√
n ||w||∞

)
log n

)
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where w = u
(m)
2 − u∗2 and ϕ(t) = (1 ∨ log(1/t))−1 for t > 0. ϕ(x) is non-decreasing,

ϕ(t)/t is non-increasing and limt→0 ϕ(t) = 0. For brevity we set x =
√
n ||w||∞, y = ||w||,

γ = 1/
√

log n and

(∗) = ||w||∞ ϕ
(

||w||√
n ||w||∞

)
log n.

When y/x ≥ γ we have

(∗) =
log n√
n
· y · x

y
ϕ
(y
x

)
≤ log n√

n
· y
γ
ϕ(γ).

When y/x ≤ γ we have

(∗) =
log n√
n
· xϕ

(y
x

)
≤ log n√

n
· xϕ(γ).

Thus for any x, y > 0 we always have

(∗) ≤ log n√
n
·
(
xϕ(γ) +

y

γ
ϕ(γ)

)
Lemma 17 and (6) give

max
1≤m≤n

x =
√
n max

1≤m≤n

∣∣∣∣∣∣u(m)
2 − u∗2

∣∣∣∣∣∣
∞

≤
√
n

(
max

1≤m≤n

∣∣∣∣∣∣u(m)
2 − u2

∣∣∣∣∣∣+ ||u2||∞ + ||u∗2||∞
)

=
√
n ·O (||u2||∞)

and

max
1≤m≤n

y = max
1≤m≤n

∣∣∣∣∣∣u(m)
2 − u∗2

∣∣∣∣∣∣ ≤ max
1≤m≤n

∣∣∣∣∣∣u(m)
2 − u2

∣∣∣∣∣∣+ ||u2 − u∗2|| = O(||u2||∞ + γ).

Therefore

max
1≤m≤n

∣∣∣(A−A∗)m· (u(m)
2 − u∗2

)∣∣∣ =
log n√
n
O

(
max

1≤m≤n

{
xϕ(γ) +

y

γ
ϕ(γ)

})
=

log n√
n
O

(√
n ||u2||∞ ϕ(γ) +

||u2||∞
γ

ϕ(γ) + ϕ(γ)

)
=

log n√
n
O

( √
n

log log n
||u2||∞ +

√
log n

log logn
||u2||∞ +

1

log logn

)
= O

(
log n

log log n
||u2||∞

)
(23)

Thus (18) follows after (20)-(23). To prove (19), we expand

||u2||∞ =
∣∣∣∣(D − λ2(L)I)−1Au2

∣∣∣∣
∞

≤
∣∣∣∣(D − λ2(L)I)−1Au∗2

∣∣∣∣
∞ +

∣∣∣∣(D − λ2(L)I)−1A(u2 − u∗2)
∣∣∣∣
∞ . (24)
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Note that dmin ≥ β log n+ Ω(log n) and λ2(L) ≤ β log n+O (log n/
√
n). It holds∣∣∣∣(D − λ2(L)I)−1

∣∣∣∣
∞ ≤

1

dmin − λ2(L)
= O

(
1

log n

)
.

Therefore the two terms on the right hand side of (24) are bounded by∣∣∣∣(D − λ2(L)I)−1Au∗2
∣∣∣∣
∞ = O

(
1

log n
||A||∞ ||u

∗
2||∞

)
= O

(
1√
n

)
,

∣∣∣∣(D − λ2(L)I)−1A(u2 − u∗2)
∣∣∣∣
∞ = O

(
1

log n
||A(u2 − u∗2)||∞

)
= O

(
1

log log n
||u2||∞

)
.

Hence the second term of the right hand side of (24) is absorbed into the left hand side
and (19) follows.

Proof of Theorem 11 For i ≤ n/2, the ith entry of Au∗2 can be written as

(Au∗2)i =
1√
n

n/2∑
j=1

Aij −
n∑

j=n/2+1

Aij

 .

Therefore by Lemma 12, there exists ε(α, β) > 0 such that

P

(
(Au∗2)i ≥ ε

log n√
n

)
≥ 1− n−(

√
α−
√
β)2/2+ε log(α/β)/2 = 1− o(n−1).

Similarly for i ≥ n/2 + 1,

P

(
(Au∗2)i ≤ −ε

log n√
n

)
= 1− o(n−1).

Let zi = 1 if i ≤ n/2 and zi = −1 if i ≥ n/2 + 1. By union bound

P

(
zi (Au∗2)i ≥ η1(α, β)

log n√
n

for all i

)
= 1− o(1). (25)

Using the fact that
P (dmax ≤ C1(α) log n) = 1− o(1),

we get

P

(
zi
(
(D − λ2(L)I)−1Au∗2

)
i
≥ η2(α, β)√

n
for all i

)
= 1− o(1). (26)

Finally note that

u2 = (D − λ2(L)I)−1Au∗2 + (D − λ2(L)I)−1A(u2 − u∗2). (27)

The proof is finished by combining (26), (27) and Lemma 18.
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Normalized spectral clustering

Let A(m) be defined in the same way as we did in the unnormalized case. Let u2 be the

eigenvector of (L,D) that corresponds to the second smallest eigenvalue λ2(L). Let u
(m)
2 be

the eigenvector of (L(m), D(m)) that corresponds to the second smallest eigenvalue λ2(L(m)).
Readers should bear in mind the equivalence of the several eigenvalue problems regarding
the normalized Laplacian (see Section 2.1).

Lemma 19 There exists ξ = ξ(α, β) > 0, C1, C2 > 0 depending on α, β and ξ, such that
f(ξ;α, β) > 0 and

P

(
max

1≤m≤n

∣∣∣∣∣∣u2 − u(m)
2

∣∣∣∣∣∣ ≤ C1 ||u2||∞
)
≥ 1− C2n

−f(ξ;α,β).

Proof By Lemma 6, we can pick ξ(α, β) ≤ α+β
2 such that f(ξ;α, β) > 0 and

P (dmin ≥ C1(α, β, ξ) log n) ≥ 1− C2(α, β, ξ)n
−f(ξ;α,β). (28)

Similar bound for maximum degree follows after the Chernoff bound.

P (dmax ≤ C3(α, β, ξ) log n) ≥ 1− C4(α, β, ξ)n
−f(ξ;α,β). (29)

All the statements in the following proof hold for a probability at least 1− Cn−f(ξ;α,β) for
some C = C(α, β, ξ) > 0 unless otherwise specified. Asymptotic notation hides constants
that depend on α, β and ξ. We first note that by construction of A(m),

d
(m)
min ≥ min

{
dmin − 1,

α+ β

2
log n

}
,

d(m)
max ≤ max

{
dmax + 1,

α+ β

2
log n

}
for all m. Therefore by (28) and (29) we have

min
1≤m≤n

d
(m)
min = Ω(log n). (30)

and
max

1≤m≤n
d(m)
max = O(log n). (31)

We decompose

u2 = a
1√
n
1n + bu

(m)
2 + cu⊥ (32)

where u⊥ is the unit vector that is orthogonal to span{1n, u(m)
2 }. Then

1 = a2 + b2 + 2ab

〈
1√
n
1, u

(m)
2

〉
+ c2,〈

u2, u
(m)
2

〉
= a

〈
1√
n
1, u

(m)
2

〉
+ b.
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We aim to bound ∣∣∣∣∣∣u2 − u(m)
2

∣∣∣∣∣∣ =

√
2− 2

〈
u2, u

(m)
2

〉
≤
√

2− 2
〈
u2, u

(m)
2

〉2
=

√√√√2a2

(
1−

〈
1√
n
1n, u

(m)
2

〉2
)

+ 2c2

≤
√

2(|a|+ |c|). (33)

We will use the term |c| to bound |a| and Davis-Kahan to bound |c|. Taking inner product
with 1√

n
D(m)

1n on both sides of (32) yields

〈
1√
n
1n, D

(m)u2

〉
= a

〈
1√
n
1n,

1√
n
D(m)

1n

〉
+ c

〈
1√
n
1n, D

(m)u⊥
〉
, (34)

where we have used the fact that
〈
1n, D

(m)u
(m)
2

〉
= 0. Note that 〈1n, Du2〉 = 0, we have

max
1≤m≤n

∣∣∣∣〈 1√
n
1n, D

(m)u2

〉∣∣∣∣ = max
1≤m≤n

∣∣∣∣〈 1√
n
1n, (D

(m) −D)u2

〉∣∣∣∣
≤
||u2||∞√

n
max

1≤m≤n

n∑
i=1

∣∣∣d(m)
i − di

∣∣∣
= O

(
log n√
n
||u2||∞

)
, (35)

where the last step is due to the Chernoff bound. Indeed, when i 6= m, by construction of

A(m), |d(m)
i −di| = |Aim−A∗im| ≤ 1. And it is easy to see that E|Aim−A∗im| ≤ 2p. Therefore

the Chernoff bound gives

P

∑
i 6=m
|d(m)
i − di| = O (log n)

 ≥ 1− n−f(ξ;α,β)−1.

When i = m we use the Chernoff bound again,

P

(
|d(m)
m − dm| = |dm − d∗m| = O (log n)

)
≥ 1− n−f(ξ;α,β)−1.

Thus by the union bound we have

max
1≤m≤n

n∑
i=1

∣∣∣d(m)
i − di

∣∣∣ = O (log n)
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which proves the last step of (35). We proceed to use the almighty Chernoff and the union
bound once again,

min
1≤m≤n

〈
1√
n
1n,

1√
n
D(m)

1n

〉
= min

1≤m≤n

1

n

∣∣∣∣∣∣
∑
i=j

A
(m)
ij + 2

∑
i>j

A
(m)
ij

∣∣∣∣∣∣
≥ (α+ β) log n

2
−O

(
log n√
n

)
= Ω(log n). (36)

Then by (31),

max
1≤m≤n

〈
1√
n
1n, D

(m)u⊥
〉
≤ max

1≤m≤n

∣∣∣∣∣∣D(m)
∣∣∣∣∣∣ = O (log n) . (37)

Combining (34)-(37) we get

max
1≤m≤n

|a| = O

(
1√
n
||u||∞ + max

1≤m≤n
|c|
)
. (38)

It remains to bound |c| through Davis-Kahan. In Theorem 3 we let M = A(m), N = D(m),

λ̂ = λ2(A,D) = 1− λ2(L), û = u2, X1 =
[

1√
n
1n u

(m)
2

]
. Then

|c| = | sin θ| ≤
√
κ(D(m))

∣∣∣∣((D(m))−1A(m) −D−1A
)
u2
∣∣∣∣

δm
(39)

where θ ∈ [0, π/2] is the angle between u2 and u⊥,

δm = λ2(A,D)− λ3(A(m), D(m)) = λ3(L(m))− λ2(L) ≥ λ3(L∗)− λ2(L)−
∣∣∣∣∣∣L(m) − L∗

∣∣∣∣∣∣ .
By applying (30) in Theorem 4 we have

max
1≤m≤n

∣∣∣∣∣∣L(m) − L∗
∣∣∣∣∣∣ = O

(
1√

log n

)
.

(Although L(m) does not strictly fit the setting of Theorem 4, readers can check that the
bound above is true by referring to the proof of Theorem 4. Specifically all we need is
max1≤m≤n

∣∣∣∣A(m) −A∗
∣∣∣∣ = O

(√
log n

)
, which is guaranteed by Lemma 5.) Thus combining

this and Theorem 10 (i) we have

min
1≤m≤n

δm ≥ λ3(L∗)− λ2(L)− max
1≤m≤n

∣∣∣∣∣∣L(m) − L∗
∣∣∣∣∣∣ = Ω(1). (40)

It follows immediately after (30) and (31) that

max
1≤m≤n

κ(D(m)) = O(1). (41)
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Finally we need to bound the numerator in (39). Let v = ((D(m))−1A(m) −D−1A)u2. We
consider bounding the mth entry of v and other entries separately. When i 6= m,

|vi| =

∣∣∣∣∣∣
(
A∗im

d
(m)
i

− Aim
di

)
(u2)m +

∑
j 6=m

(
1

d
(m)
i

− 1

di

)
Aij(u2)j

∣∣∣∣∣∣ .
Using the fact that d

(m)
i − di = A∗im −Aim and (31), (29) we can bound |vi| by

|vi| ≤ ||u2||∞ ·


∣∣∣A∗im (di − d(m)

i

)
+ d

(m)
i (A∗im −Aim)

∣∣∣
d
(m)
i di

+
∑
j 6=m

∣∣∣di − d(m)
i

∣∣∣
d
(m)
i di

Aij


= ||u2||∞ ·


∣∣∣(d(m)

i −A∗im
)

(A∗im −Aim)
∣∣∣

d
(m)
i di

+
∑
j 6=m

|A∗im −Aim|
d
(m)
i di

Aij


≤ ||u2||∞ ·

(
|A∗im −Aim|

di
+
|A∗im −Aim|

d
(m)
i

)

= O

(
||u2||∞ |Aim −A∗im|

log n

)
.

Therefore ∑
i 6=m

v2i

1/2

= O

 ||u2||∞
log n

∑
i 6=m

(Aim −A∗im)2

1/2


= O

(
||u2||∞
log n

||A−A∗||2,∞
)

= O

(
||u2||∞
log n

||A−A∗||
)

= O

(
||u2||∞√

log n

)
.

When i = m,

|vm| =

∣∣∣∣∣∣
n∑
j=1

(
A∗mj
d∗m
− Amj

dm

)
(u2)j

∣∣∣∣∣∣ ≤ ||u2||∞
∣∣∣∣∣∣
n∑
j=1

(
A∗mj
d∗m
− Amj

dm

)∣∣∣∣∣∣
≤ ||u2||∞

 n∑
j=1

A∗mj
d∗m

+

n∑
j=1

Amj
dm


= 2 ||u2||∞ .

Thus ||v|| = O (||u2||∞). Note that what we used to bound ||v|| are (31), (29) and
||A−A∗|| = O

(√
log n

)
, which are independent of m. Hence

max
1≤m≤n

∣∣∣∣∣∣((D(m))−1A(m) −D−1A)u2

∣∣∣∣∣∣ = O (||u2||∞) . (42)

39



Deng, Ling, and Strohmer

It follows after (39), (41), (37) and (42) that

max
1≤m≤n

|c| = O (||u2||∞) . (43)

The proof concludes after combining (33), (38) and (43).

Lemma 20 There exist C1, C2 > 0 depending on α, β and ξ such that

P

(
||A(u2 − u∗2)||∞ ≤ C1

log n√
n log logn

)
≥ 1− C2n

−f(ξ;α,β).

Proof Similar to the proof of Lemma 18, we will prove the following two claims:

||A(u2 − u∗2)||∞ = O

(
||u2||∞ log n

log log n

)
, (44)

||u2||∞ = O

(
1√
n

)
. (45)

For (44), we refer to the proof of (18) in Lemma 18. Although u2 in Lemma 18 is the second
eigenvector of L and here u2 is the the second eigenvector of (L,D), one can observe that
all we need for the proof of (18) to hold are

max
1≤m≤n

∣∣∣∣∣∣u2 − u(m)
2

∣∣∣∣∣∣ = O (||u2||∞)

and

||u2 − u∗2|| = O

(
1√

log n

)
.

The former is guaranteed by Lemma 20 and the latter by (14). Therefore we have proved (44).
To prove (45), we expand

||u2||∞ =

∣∣∣∣∣∣∣∣ 1

1− λ2(L)
D−1Au2

∣∣∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣∣∣ 1

1− λ2(L)
D−1Au∗2

∣∣∣∣∣∣∣∣
∞

+

∣∣∣∣∣∣∣∣ 1

1− λ2(L)
D−1A(u2 − u∗2)

∣∣∣∣∣∣∣∣
∞
. (46)

By Theorem 10 and the bound for dmin we have∣∣∣∣∣∣∣∣ 1

1− λ2(L)
D−1

∣∣∣∣∣∣∣∣
∞

= O

(
1

log n

)
.

Therefore the two terms on the right hand side of (46) are bounded by∣∣∣∣∣∣∣∣ 1

1− λ2(L)
D−1Au∗2

∣∣∣∣∣∣∣∣
∞

= O

(
1

log n
||A||∞ ||u

∗
2||∞

)
= O

(
1√
n

)
,

∣∣∣∣∣∣∣∣ 1

1− λ2(L)
D−1A(u2 − u∗2)

∣∣∣∣∣∣∣∣
∞

= O

(
1

log n
||A(u2 − u∗2)||∞

)
= O

(
1

log log n
||u2||∞

)
.
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Hence the second term on the right hand side of (46) is absorbed into the left hand side
and (45) follows.

Proof of Theorem 14 By (25),

P

(
zi (Au∗2)i ≥ η1(α, β)

log n√
n

for all i

)
= 1− o(1).

Using this in conjunction with Theorem 10 (i), we have

P

(
zi

(
1

1− λ2(L)
D−1Au∗2

)
i

≥ η2(α, β)
1√
n

for all i

)
= 1− o(1). (47)

Finally note that

u2 =
1

1− λ2(L)
D−1Au∗2 +

1

1− λ2(L)
D−1A(u2 − u∗2) (48)

The proof is finished by combining (47), (48) and Lemma 20.
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