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Abstract

In this article, we investigate the problem of simultaneous change point inference and
structure recovery in the context of high dimensional Gaussian graphical models with pos-
sible abrupt changes. In particular, motivated by neighborhood selection, we incorporate a
threshold variable and an unknown threshold parameter into a joint sparse regression model
which combines p `1-regularized node-wise regression problems together. The change point
estimator and the corresponding estimated coefficients of precision matrices are obtained
together. Based on that, a classifier is introduced to distinguish whether a change point
exists. To recover the graphical structure correctly, a data-driven thresholding procedure
is proposed. In theory, under some sparsity conditions and regularity assumptions, our
method can correctly choose a homogeneous or heterogeneous model with high accuracy.
Furthermore, in the latter case with a change point, we establish estimation consistency of
the change point estimator, by allowing the number of nodes being much larger than the
sample size. Moreover, it is shown that, in terms of structure recovery of Gaussian graphi-
cal models, the proposed thresholding procedure achieves model selection consistency and
controls the number of false positives. The validity of our proposed method is justified
via extensive numerical studies. Finally, we apply our proposed method to the S&P 500
dataset to show its empirical usefulness.
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1. Introduction

Networks are fundamental in representing dependence relationships among the nodes
and have various real applications such as biology, finance, and social science. It is of great
importance to explore the networks and uncover the underlying data generating models
associated with networks. A network can be described by a graph G = (V,E), where
V = {1, . . . , p} is a vertex set and E ⊆ V × V is an edge set. Each node in V corresponds
to an element of a p-dimensional random vector X = (X1, . . . , Xp)

>. In a typical network,
the edge set E captures the conditional dependence among the nodes in V . The Gaussian
graphical model (GGM) is a popular method to describe the networks, where we assume
X = (X1, . . . , Xp)

> ∼ N(µ,Σ). Specifically, the node pair (a, b) ∈ E if Xa and Xb are
conditionally dependent given the remaining variables X\{a,b} := {Xk : 1 ≤ k ≤ p, k 6= a, b}.
In other words, (a, b) /∈ E if and only if Xa ⊥ Xb|X\{a,b}. Under the GGM, it is well
known (Lauritzen 1996) that there is a deterministic relationship between the conditional
independence and the p × p precision matrix Ω = (ωab)1≤a,b≤p, where Ω := Σ−1. In
particular, Xa ⊥ Xb|X\{a,b} ⇔ ωab = 0.

In the past few years, motivated by the high throughput data analysis, a number of pa-
pers on time-invariant networks have appeared, especially in high dimensional settings. In
those cases, the samples are assumed independently and identically distributed (i.i.d) draws
from p-dimensional Gaussian distributions with the dimension being much larger than the
sample size. Specifically, Meinshausen and Bühlmann (2006) proposed a neighborhood se-
lection approach for the structure recovery, in a row-by-row fashion. Peng et al. (2009)
extended Meinshausen and Bühlmann (2006) by estimating all neighborhoods jointly, and
their procedure has an improvement on several networks such as those with hubs. Another
popular approach to estimate the graphical structure is based on the `1 penalized likelihood
(Yuan and Lin (2007); Banerjee et al. (2008); Friedman et al. (2008)). Instead of likelihood-
based methods, Liu (2013) considered to estimate the Gaussian graphical model based on
a multiple testing procedure, and Cai et al. (2011) proposed a constrained `1 minimiza-
tion method for estimating the precision matrix under a broader distributional assumption.
In addition, there are some other extensions for estimating GGMs including score match-
ing for non-negative data (Yu et al. (2019)), random forests for discrete, continuous, and
mixed variables (Fellinghauer et al. (2013)), as well as semiparametric methods for graph
estimation with joint additive models (Voorman et al. (2014)).

In many real applications, however, the corresponding networks are typically non-
stationary over time, known as time-varying networks. For example, in a gene regulatory
network, a particular drug treatment can result in significant changes of the dependence
structure among the associated genes; in political science, it is likely that the relationships
among the campaigners undergo great changes before and after the election; in neuroscience,
a stimulus can change the associations among different parts of the brain. Therefore, the
aforementioned methods designed for i.i.d cases are no longer applicable in those examples,
and it is desirable to construct a method for time-varying networks.

In this article, we consider the problem of high dimensional Gaussian graphical models
with one possible abrupt change, where the number of nodes can be much larger than the
sample size. Specifically, let Ω(1) and Ω(2) be two well-defined precision matrices. Let
Xt = (Xt

1, . . . , X
t
p)
> be the t-th observation of a p-dimensional time-ordered data sequence,
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where we assume Xt ∼ N(0,Ω−1t ) for 1 ≤ t ≤ T . Suppose there exists a possible but
unknown change point location τ∗ ∈ (0, 1) such that

Ωt = Ω(1)1
{

1 ≤ t ≤ bTτ∗c
}

+ Ω(2)1
{
bTτ∗c+ 1 ≤ t ≤ T

}
. (1)

In other words, by (1), if Ω(1) = Ω(2), the data are homogeneous and τ∗ is not identifiable;
if Ω(1) 6= Ω(2), the data are heterogeneous and a change point exists. The objective of this
paper is to: (1) distinguish whether Ω(1) equals to Ω(2) (or whether τ∗ exists); (2) once
a heterogeneous model is selected, identify the location of τ∗ as well as recover the two
underlying networks, i.e., the non-zero elements of Ω(1) and Ω(2), simultaneously.

In contrast to the large literature on time-invariant networks, much less attention has
been paid on the analysis of time-varying networks. By assuming Ω(1) 6= Ω(2), a few pa-
pers exist in the literature on this topic. For example, by assuming that the covariances
change smoothly over time, Zhou et al. (2010) proposed a nonparametric method for esti-
mating time-varying Gaussian graphical structure using the `1 regularization method. In a
different setting that the graphical structure is piece-wise constant, Kolar and Xing (2012)
considered the Gaussian graphical structure recovery node-by-node, based on a time-coupled
neighborhood selection procedure using the fused-type penalty (Harchaoui and Lévy-Leduc
(2010)). These methods are designed for low dimensional problems in the sense that the
dimension p is smaller than the sample size T . Recently, driven by modern statistical appli-
cations, there is a great need for the high dimensional time-varying network analysis with
both discrete and continuous observations. For example, in the discrete case, Kolar et al.
(2010) considered the structure recovery of time-varying Ising graphical models with smooth
changes, using a pseudo-likelihood approach. As an extension, Roy et al. (2017) investi-
gated the change point estimation in the context of high dimensional Markov random-field
models with abrupt changes. In the continuous case, using penalized likelihood, Bybee and
Atchadé (2018) proposed a majorize-minimize algorithm for estimating the change point
in Gaussian graphical models. Gibberd and Nelson (2017) estimated piece-wise constant
Gaussian graphical models using the group-fused graphical lasso, and Gibberd and Roy
(2017) provided some theoretical results. Different from the settings in Bybee and Atchadé
(2018); Gibberd and Nelson (2017), Yang and Peng (2020) proposed local group graphical
lasso estimation under the assumption that the graph topology changes gradually over time.

In this paper, we consider simultaneous change point inference and structure recovery
for Gaussian graphical models with a possible abrupt change, in a high dimensional setting
with p � T . To identify the change point τ∗, motivated by the neighborhood selection pro-
cedure (Meinshausen and Bühlmann (2006)), we incorporate a threshold variable Qt := t/T
with 1 ≤ t ≤ T and an unknown threshold parameter τ ∈ (0, 1) into a joint sparse regression
model, by considering the p nodes simultaneously. The change point estimator τ̂ and the
corresponding estimated coefficients of precision matrices are obtained via minimizing the
joint `2 loss function with an `1 penalty. Based on that, a classifier is proposed to distin-
guish a homogeneous model from a heterogeneous one. Under some sparsity conditions and
regularity assumptions, our proposed method can select a true model with high accuracy.
Furthermore, once a heterogeneous model is selected, we establish that, with a high proba-
bility, |τ̂ − τ∗| = Op(s log(p)/T ) as p, T → ∞, where s denotes the overall sparsity of Ω(1)

and Ω(2). Hence, we allow the dimension p and the sparsity s to grow with T as long as
s log(p) = o(T ) holds. Note that our proposed method does not require prior knowledge of
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τ∗. In other words, our technique applies to data with or without a change point, which is
fundamentally different from the existing works where the i.i.d assumption or the existence
of τ∗ is typically imposed.

For the structure recovery of the two graphs, a data-driven hard thresholding procedure
is constructed, built on the initial coefficient estimation. In particular, we tend to specify
a relatively small regularization parameter for obtaining the change point estimator τ̂ as
well as two estimated dense graphs. Then, a hard threshold variable is introduced to filter
the “noisy edges” (false positives) of initially estimated graphs and yield relatively sparse
graphs. To choose the “best” parameter in the threshold variable, a data-driven method
is proposed. Theoretically, in terms of the structure recovery of the two graphs, we prove
that, with a high probability, the proposed thresholding procedure achieves model selection
consistency, which is crucial for controlling the type II error (number of false negatives).
Furthermore, our theoretical results guarantee that the number of false positives (type I
error) can be bounded by some universal constants. Empirically, we justify the validity of
our method via extensive simulation studies. It is shown that the proposed method can
efficiently recover various graphical structures. It is worth mentioning that for the structural
recovery of GGM, false discovery proportion (FDP) or false discovery rate (FDR) control
may be of interest in practice. If there is no change point or the change point location τ∗
is known, we can use the multiple testing procedures (Liu (2013)) directly for estimating
the graphs with FDR control. For GGM with a possible change point, however, recovering
the graphs is a challenging problem due to the unknown change point. Hence, we propose
a hard thresholding procedure that utilizes the estimators of the change point as well as
the coefficients of precision matrices to recover the graphs. As a by-product of our theory,
we can show that FDP = op(1) as (p, T ) → ∞. To our limited knowledge, it is an open
question for the FDR control of GGM with change points.

Note that in this paper, we consider abrupt changes in the context of high dimensional
Gaussian graphical models. This is different from the settings of Zhou et al. (2010); Yang
and Peng (2020), designed for smooth changes; or Kolar et al. (2010); Roy et al. (2017),
designed for discrete observations. Other related papers include Guo et al. (2011); Danaher
et al. (2014); Lee and Liu (2015); Cai et al. (2016), where they considered the problem
of simultaneously estimating multiple graphs belonging to distinct classes separated at a
pre-known location τ∗, which is very different from our setting with unknown τ∗. The
closest settings in the literature to the current paper are considered in Kolar and Xing
(2012), Bybee and Atchadé (2018), and Gibberd and Nelson (2017). In Kolar and Xing
(2012), the number of nodes is assumed fixed and smaller than the sample size. In contrast,
we consider a high dimensional problem. Furthermore, it is unclear how to combine the
estimated change points obtained from each node as proposed by Kolar and Xing (2012) for
consistent estimation. Bybee and Atchadé (2018) focused on proposing a fast algorithm for
change point estimation based on the Gaussian penalized likelihood. They did not study
any theoretical guarantees of parameter estimation or structure recovery of the graphs.
Gibberd and Nelson (2017) considered estimating T graphs simultaneously, which can be
computationally intensive especially when p is very large. As compared to Gibberd and
Nelson (2017), our method is able to deal with large-scale graphs.

As pointed out by one reviewer, this paper mainly adopts a brute search method for
localizing a change point. Hence, as an alternative method, it is possible to use the Fused
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Graphical Lasso (FGL) in Danaher et al. (2014) to construct a corresponding loss function
and find a change point that minimizes the losses. However, there are essential differences
between FGL and our proposed method. First, FGL mainly uses the log-likelihood of GGM
and focuses on settings where the change occurring is global in the sense that it affects the
joint distribution of all nodes. In contrast, we propose our method in a node-wise way which
focuses on settings where the conditional distribution of a single node or a few nodes may see
a change. Second, under the framework of our methodology, we can estimate the difference
between the two graphs (e.g. ‖Ω(1) −Ω(2)‖1) and obtain the same estimation error bound
no matter the change point exists or not. This result motivates us to construct a classifier
that can determine whether Ω(1) = Ω(2) or Ω(1) 6= Ω(2). Moreover, once a change point
is detected, using our algorithms, we can obtain consistent estimation in terms of change
point identification and structural recovery. It is unclear whether the above results apply
to FGL. Third, from the computational point of view, the overall computational costs for
FGL and our method are O(Tp3) and O(T 2p2), respectively. Hence, for large graphs with
p � T , it is more computationally efficient to use our algorithms than FGL for change
point detection. More importantly, for our proposed method, the computational cost can
be further reduced via parallel computing. In the numerical studies, we provide a thorough
empirical comparison between our method and the existing techniques.

The rest of this paper is organized as follows. In Section 2, we introduce our methodology
for identifying τ∗ as well as recovering the underlying networks of Ω(1) and Ω(2). In Section
3, we derive some theoretical results in terms of the change point identification and structure
recovery. In Section 4, we justify the validity of our proposed method via extensive numerical
studies. In Section 5, we apply our proposed method to the S&P 500 dataset for analyzing
the networks during the financial crisis. Conclusions are provided in Section 6. The proofs
of the main results are given in the appendix.

2. Methodology

In this section, we introduce our methodology for identifying the unknown change point
location τ∗ as well as recovering the graphical structures of Ω(1) and Ω(2) simultaneously. In
Section 2.1, we introduce some definitions and notations. In Section 2.2, we first introduce
a threshold variable and an unknown threshold parameter which capture the time-varying
networks. Based on that, we propose a joint `2-loss function by considering the p nodes
simultaneously. The change point estimator and the corresponding coefficients are then
obtained via minimizing the joint loss function with an `1 penalty. Furthermore, we also
introduce a classifier to detect whether a change point exists. In terms of the structure
recovery of graphs, we find that the initial coefficient estimation tends to select “too many”
components with non-zero estimated coefficients, resulting in a large type I error (number
of false positives). To avoid this problem, a thresholding procedure is proposed.

2.1 Notations

We set Xt
a as the t-th observation for coordinate a with 1 ≤ t ≤ T and 1 ≤ a ≤ p.

Denote X as the T × p observation matrix. We set Xt = (Xt
1, . . . , X

t
p)
> as the t-th row

of X with 1 ≤ t ≤ T and Xa = (X1
a , . . . , X

T
a )> as the a-th column of X with 1 ≤ a ≤ p.
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For a set S, denote |S| as the cardinality of S. By letting [p] = {1, . . . , p}, we define
[p] \ S = {a : 1 ≤ a ≤ p and a /∈ S}. To simplify notations, we write [p] \ {a} as \a.
For a T -dimensional vector w = (w1, . . . , wT )>, its empirical norm is defined as ‖w‖T =
(T−1

∑T
t=1w

2
i )

1/2. For a vector v ∈ Rp, denote |v|p as its `p-norm with 1 ≤ p ≤ ∞.
We denote J(v) = {1 ≤ j ≤ p : vj 6= 0} as the set of non-zero elements of v. We set
M(v) = |J(v)| as the number of non-zero elements of v. For a set J and v ∈ Rp, denote
vJ as the vector in Rp that has the same coordinates as v on J and zero coordinates on the
complement Jc of J . For a matrix A = (aij), denote maxi,j |aij | by ‖A‖∞. For two real
numbers a and b, we set a ∨ b = max{a, b} and a ∧ b = min{a, b}. For any x > 0, denote
bxc as the largest integer smaller than or equal to x.

2.2 Change point inference

We introduce our methodology to estimate the unknown change point location τ∗. To
this end, we first introduce the neighborhood selection procedure. Consider a p-dimensional
random vector X = (X1, . . . , Xp)

> ∼ N(0,Σ). For each node a ∈ {1, . . . , p}, con-
sider the optimal prediction problem for Xa given the remaining variables X\a. Let

θ̃a = (θ̃a1 , . . . , θ̃
a
p)> ∈ Rp be the vector of coefficients for the optimal prediction, which

is defined as:
θ̃a = argmin

θ∈Rp,θa=0
E
(
Xa −

∑
k 6=a

θkXk

)2
. (2)

Let Ω = (ωab)
p
a,b=1 ∈ Rp×p be the inverse matrix of Σ. It is well known (Meinshausen and

Bühlmann (2006)) that θ̃ab = −ωab/ωaa for b ∈ V \ {a}. In other words, the set of non-zero
coordinates in θ̃a corresponds to the set {b ∈ V \ {a} : ωab 6= 0}. Furthermore, it is also
well known (Lauritzen, 1996) that for Gaussian distributions, Xa ⊥ Xb|X\{a,b} ⇔ ωab = 0.

Therefore, the b-th coordinate in θ̃a corresponds to the conditional independence of Xa and
Xb. We call NEa = {b ∈ V \ {a} : θ̃ab 6= 0} the neighborhood of node a.

For Gaussian distributions, using θ̃a as defined in (2), for each node a, we can rewrite
Xa as the following regression model:

Xa =

p∑
k=1

θ̃akXk + εa, (3)

where εa is independent of X\a and εa ∼ N(0, 1/ωaa).
Motivated by the above neighborhood selection procedure, we suppose that the graph

G has a change point at the location τ∗. Then there exists at least one node whose op-
timal prediction coefficients as in (2) also have a change at τ∗. To be specific, define
δ̃a = (δ̃a1 , . . . , δ̃

a
p) ∈ Rp with δ̃aa = 0 as the corresponding change of the optimal prediction

coefficients for node a. By definition, δ̃a = 0 if there is no change point for node a. Let
Qt = t/T be a threshold variable. Then, similar to (3), we can assume that each node a
follows the following regression model:

Xt
a = (Xt)>θ̃a + (Xt)>δ̃a1{Qt ≤ τ∗}+ εta, for t = 1, . . . , T, and a = 1, . . . , p, (4)

where θ̃a = (θ̃a1 , . . . , θ̃
a
p) ∈ Rp with θ̃aa = 0, and (εta)1≤t≤T ∼ N(0, 1/ωtaa) with εta being

independent of Xt
\a and εt1a being independent of εt2a for t1 6= t2.
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By Model (4), for each node a ∈ V , the vector θ̃a + δ̃a corresponds to the vector
of the optimal prediction coefficients before τ∗, and θ̃a corresponds to the vector after
τ∗, respectively. Consequently, for each node a, during the T observations, we define its
neighborhood as:

NE
(1)
a =

{
b ∈ V \ {a} : θ̃ab + δ̃ab 6= 0

}
, for 1 ≤ t ≤ bTτ∗c,

NE
(2)
a =

{
b ∈ V \ {a} : θ̃ab 6= 0

}
, for bTτ∗c+ 1 ≤ t ≤ T.

With NE
(1)
a and NE

(2)
a for 1 ≤ a ≤ p, we define the edge sets before and after τ∗ as:

E(1) =
{

(a, b) : a ∈ NE
(1)
b ∪ b ∈ NE

(1)
a

}
, for 1 ≤ t ≤ bTτ∗c,

E(2) =
{

(a, b) : a ∈ NE
(2)
b ∪ b ∈ NE

(2)
a

}
, for bTτ∗c+ 1 ≤ t ≤ T.

Note that E(1) and E(2) are the supports of Ω(1) and Ω(2), respectively. Our goal of this
article is to identify the existence of τ∗ as well as recover E(1) and E(2) simultaneously.

After introducing the oracle Model (4), we now present our methodology for identifying
τ∗. To this end, some additional notations are needed. Let Xt(τ) = ((Xt)>, (Xt)>1{Qt ≤
τ})> be a 2p × 1 vector for 1 ≤ t ≤ T . Let X(τ) be a T × 2p matrix whose t-th row is
Xt(τ). We also define the 2p× 2p diagonal matrix D(τ) = diag{‖Xj(τ)‖T : j = 1, . . . , 2p}.
With these notations, we then introduce our methodology.

Define βa = ((θa)>, (δa)>)> ∈ R2p. For a fixed τ , define the loss function for node a as:

La(θa, δa, τ) =
1

T

T∑
t=1

(
Xt
a − (Xt)>θa − (Xt)>δa1{Qt ≤ τ}

)2
,

=
∥∥Xa −X(τ)βa

∥∥2
T
.

Then, for a fixed τ , we define the lasso solution β̂a(τ) = ((θ̂a(τ))>, (δ̂a(τ))>)> as:

β̂a(τ) = argmin
θa,δa∈Rp;θaa=0,δaa=0

‖Xa −X(τ)βa‖2T + λT |D(τ)βa|1, for 1 ≤ a ≤ p, (5)

where the non-negative λT is the regularization parameter to be specified.
Based on (β̂a(τ))pa=1, we define

H(τ) =

p∑
a=1

{∥∥Xa −X(τ)β̂a(τ)
∥∥2
T

+ λT
∣∣D(τ)β̂a(τ)

∣∣
1

}
. (6)

Finally, our estimator for τ∗ is defined as follows:

τ̂ = argmin
τ∈T

H(τ), (7)

where T = [t0, t1] is a prespecified search domain for the change point location τ∗.
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Note that if δ̃a = 0 for 1 ≤ a ≤ p, the change point location τ∗ is not identifiable.
Hence, we need to identify its existence. To this end, we first put τ̂ into (5) and obtain

β̂a(τ̂) =
(
(θ̂a(τ̂))>, (δ̂a(τ̂))>

)>
with 1 ≤ a ≤ p. Then we define the following classifier:

Φ(τ̂ , {β̂a(τ̂), 1 ≤ a ≤ p}) = 1
{ p∑
a=1

|δ̂a(τ̂)|1 ≥ K0s1λT

}
, (8)

where K0 is some constant, s1 is the overall sparsity of the graphs (see Assumption 2), and
λT is defined in (5).

The main idea for constructing Φ(·) is that if there exists no change point in Model (1),
we can prove that

∑p
a=1 |δ̂a(τ̂)|1 < K0s1λT with high probability. Hence, once we observe

that
∑p

a=1 |δ̂a(τ̂)|1 ≥ K0s1λT , it is more likely that a change point exists. Based on (8),
we detect the existence of the change point τ∗ if Φ(·) = 1. In other words, we regard the
graphs are homogeneous if Φ(·) = 0. As shown in our theory (Theorem 5 and Proposition
10), with probability tending to one, the above classifier can correctly detect whether the
graph undergoes a change point. Furthermore, once we detect a change point, the estimator
τ̂ in (7) is proven to be consistent (Theorem 7). Hence, our method can detect and identify
the change point simultaneously. This is different from the existing works in Bybee and
Atchadé (2018); Gibberd and Nelson (2017), where they assumed the change point exists
and only focused on the estimation. Note that in practice, s1 is unknown and we need to
specify it to implement (8). In what follows, we will use a hard thresholding method to
obtain ŝ1 which is shown to enjoy good performance in our numerical studies.

Remark 1 We note that Lee et al. (2016) considered the lasso for high dimensional regres-
sion with a (possible) change point, where a threshold variable is adopted in the regression
model. A naive idea for the Gaussian graphical change point model is to apply the procedure
in Lee et al. (2016) directly to each node and identify τ∗. However, this naive procedure
has two main drawbacks: Firstly, the change point location τ∗ is not identifiable for nodes
whose neighborhood does not change during the observations; Secondly, it is also difficult to
combine the corresponding estimators obtained from the p nodes. Therefore, to identify the
change point location τ∗ for the Gaussian graphical model, we need to consider the p nodes
simultaneously. Note that a similar idea was previously adopted by Peng et al. (2009) to
estimate the partial correlation coefficients using a joint sparse regression model. Moreover,
thanks to the availability of parallel computations, we can calculate β̂a(τ) with 1 ≤ a ≤ p
separately. This makes our method apply to very large scale networks in real applicability.

Remark 2 The penalty function in (5) is a weighted `1 penalty for βa := ((θa)>, (δa)>)>.
To see this, by letting

Xj = (X1
j , . . . , X

T
j )>, Xj(τ) =

(
X1
j 1{Q1 ≤ τ}, . . . , XT

j 1{QT ≤ τ}
)>
,

we have diag(D(τ)) = (D1(τ), . . . , Dp(τ), Dp+1(τ), . . . , D2p(τ))> with Dj(τ) = ‖Xj‖T and
Dj+p(τ) = ‖Xj(τ)‖T for 1 ≤ j ≤ p. Then, we can rewrite the penalty as

λT
∣∣D(τ)βa(τ)

∣∣
1

= λT

p∑
j=1

(
‖Xj‖T |θaj |+ ‖Xj(τ)‖T |δaj |

)
. (9)
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Note that the weight Dj(τ) regarding θa does not depend on τ , while the weight Dj(τ)
with respect to δa does. As pointed out by one reviewer, one may consider the following
optimization problem without weights:

β̂a(τ) = argmin
θa,δa∈Rp;θaa=0,δaa=0

‖Xa −X(τ)βa‖2T + λT |βa|1, for 1 ≤ a ≤ p. (10)

The motivation of our weighted penalty in (9) mainly comes from the consideration that, in
practice, the p-dimensional random vector X = (X1, . . . , Xp)

> may have different scales.
Hence, the weight D(τ) helps to balance the regressors as well as the effect of threshold τ
on δa. In other words, one can see that using weights in the penalty (9) for solving the
optimization problem (5) is equivalent to the normalization of Xj and Xj(τ) for solving
(10). Moreover, from the theoretical perspective, under our following assumptions, we can
show that there exist positive constants c1 and C1 such that with high probability,

0 < c1 ≤ min
τ∈T

min
1≤j≤p

Dj(τ) ≤ max
τ∈T

max
1≤j≤p

Dj(τ) ≤ C1 <∞

holds. Hence, if we solve the unweighted problem (10), our theoretical results in Section 3
still hold without changing the orders.

Algorithm 1 describes our procedure for obtaining τ̂ as well as the coefficients (β̂a(τ̂))pa=1.

Algorithm 1 The neighborhood selection procedure for the change point inference.

Input: Given the dataset X = {X1, . . . ,XT }, set the search domain T = [t0, t1], the
non-negative regularization parameter λT , an estimate ŝ for s, and the constant K0.

Step 1: For a fixed τ ∈ [t0, t1], calculate
(
β̂a(τ)

)p
a=1

as defined in (5).

Step 2: Based on
(
β̂a(τ)

)p
a=1

obtained in Step 1, calculate H(τ) as in (6).

Step 3: Return τ̂ = argmin
τ∈T

H(τ) and β̂a(τ̂) =
(
(θ̂a(τ̂))>, (δ̂a(τ̂))>

)>
for a ∈ {1, . . . , p}.

Step 4: Calculate Φ(τ̂ , {β̂a(τ̂), 1 ≤ a ≤ p}) in (8).

Output: This algorithm provides τ̂ and
{
β̂a(τ̂) =

(
(θ̂a(τ̂))>, (δ̂a(τ̂))>

)>
, for 1 ≤ a ≤ p

}
.

2.3 Structure recovery

After identifying τ∗, we next consider the recovery of the graphs. In particular, we aim
to recover the support of Ω(1) and Ω(2), respectively. Note that in Section 2.2, we have
obtained the change point estimator τ̂ . For each node a, we also get the corresponding lasso

estimator β̂a(τ̂) =
(
(θ̂a(τ̂))>, (δ̂a(τ̂))>

)>
with

θ̂a(τ̂) =
(
θ̂a1(τ̂), . . . , θ̂ap(τ̂)

)>
, and δ̂a(τ̂) =

(
δ̂a1(τ̂), . . . , δ̂ap(τ̂)

)>
, for 1 ≤ a ≤ p.

9
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Based on β̂a(τ̂) and Model (4), for each node a, we then set N̂E
(1)
a and N̂E

(2)
a as its neigh-

borhood’s estimation before τ∗ and after τ∗, respectively, which are defined as:

N̂E
(1)
a =

{
b ∈ V \ {a} : θ̂ab (τ̂) + δ̂ab (τ̂) 6= 0

}
, N̂E

(2)
a =

{
b ∈ V \ {a} : θ̂ab (τ̂) 6= 0

}
.

After introducing N̂E
(1)
a and N̂E

(2)
a with 1 ≤ a ≤ p, by adopting the method in Meinshausen

and Bühlmann (2006), the naive estimators for E(1) and E(2) can be defined as:

Ê(1) =
{

(a, b) : a ∈ N̂E
(1)
b ∪ b ∈ N̂E

(1)
a

}
, Ê(2) =

{
(a, b) : a ∈ N̂E

(2)
b ∪ b ∈ N̂E

(2)
a

}
. (11)

Note that we can also use “∩” instead of “∪” in (11) for the structure recovery. The
discrepancy between “∪” and “∩” vanishes with a high probability. More importantly, we
tend to include spurious edges instead of omitting the relevant ones. Hence, we adopt “∪”
throughout this paper.

In the literature, some studies (Zhou (2010)) show that lasso may select “too many”
variables with non-zero estimated coefficients. Consequently, the naive estimators Ê(1) and
Ê(2) as in (11) include too many “noisy” edges, resulting in a large type I error (false
positives) in terms of the recovery of E(1) and E(2). To avoid this problem, we introduce
the following two-step thresholding procedure:
Step 1: Get initial estimators for E(1) and E(2). In particular, set

Ê
(1)
init =

{
(a, b) : |θ̂ab (τ̂) + δ̂ab (τ̂)| ≥ r0λT ∪ |θ̂ba(τ̂) + δ̂ba(τ̂)| ≥ r0λT

}
,

Ê
(2)
init =

{
(a, b) : |θ̂ab (τ̂)| ≥ r0λT ∪ |θ̂ba(τ̂)| ≥ r0λT

}
,

(12)

where λT is the non-negative regularization parameter in (5) and r0 > 0 is a user prespecified
parameter.

In Step 1, we use r0λT to obtain the initial estimation of graphical structures. The

main purpose of Step 1 is to obtain Ê
(1)
init and Ê

(1)
init which have the same order of the overall

sparsity of the true graphs E(1) and E(2). In other words, we have |Ê(1)
init| = O(|E(1)|) and

|Ê(2)
init| = O(|E(2)|). Hence, |Ê(1)

init| (or |Ê(2)
init|) can be an estimator of s1 for the classifier in

(8). Moreover, according to our numerical studies, our method is not very sensitive to the
choice of r0. In practice, setting r0 ∈ [1, 4] works well. Using the initial estimators, we next
introduce the final structural estimation as in Step 2.

Step 2: Let t
(1)
thr = r∗1λT |Ê

(1)
init| and t

(2)
thr = r∗2λT |Ê

(2)
init| for some positive constants r∗1 and r∗2,

where |Ê(1)
init| and |Ê(2)

init| denote the cardinality of Ê
(1)
init and Ê

(2)
init, respectively.

The final estimators are defined as:

Ĕ(1) =
{

(a, b) ∈ Ê(1)
init : |θ̂ab (τ̂) + δ̂ab (τ̂)| ≥ t(1)thr ∪ |θ̂

b
a(τ̂) + δ̂ba(τ̂)| ≥ t(1)thr

}
,

Ĕ(2) =
{

(a, b) ∈ Ê(2)
init : |θ̂ab (τ̂)| ≥ t(2)thr ∪ |θ̂

b
a(τ̂)| ≥ t(2)thr

}
.

(13)

Note that Zhou (2010) also investigated the thresholding technique for high dimensional
variable selection in regression models. As shown in Theorem 11, under some regular

10
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conditions, the above thresholding procedure as in (12) – (13) can achieve model selection
consistency in the sense that E(1) ⊂ Ĕ(1) (or E(2) ⊂ Ĕ(2)), and also control the number of
false positives in the sense that |Ĕ(1) ∩ (E(1))c| = O(1) (or |Ĕ(2) ∩ (E(2))c| = O(1)). Our
numerical studies also show that the thresholding procedure is very efficient to recover E(1)

and E(2). See Section 4 for more details.

2.3.1 A data-driven thresholding procedure

Note that we need to specify r∗1 (or r∗2) for the threshold parameter t
(1)
thr (or t

(2)
thr). By

definition of Ĕ(1) (or Ĕ(2)) as in (13), the recovery of the underlying networks depends on
the choice of r∗1 (or r∗2). In particular, large values of r∗1 (or r∗2) yield sparse graphs and
small values of r∗1 (or r∗2) yield dense graphs. In practice, we choose the “best” r∗1 (or r∗2)
from a given candidate subset R = {r1, . . . , rM}. The goal is to find r∗1 (or r∗2) from R in
a data-driven way. The main idea is based on the observation that the initial estimator

Ê
(1)
init (or Ê

(2)
init) includes “noisy” edges (false positives) and “true” edges (true positives), and

there is a “gap” between the “noisy” and “true” edges.
Next, we introduce our method to find the “gap” between “noisy” and “true” edges.

Given rj ∈ R, let Ĕ(1)(rj) (or Ĕ(2)(rj)) be the thresholded estimator associated with rj .
Define the ratio of the total number of edges to the total number of non-edges in Ĕ(k)(rj):

Ratio(k)(rj) =
|Ĕ(k)(rj)|

(p2 − p)/2− |Ĕ(k)(rj)|
, for k = 1, 2 and 1 ≤ j ≤M. (14)

We also define

DIF(k)(rj) =
Ratio(k)(rj)− Ratio(k)(rj−1)

rj − rj−1
, for k = 1, 2 and 2 ≤ j ≤M (15)

as the approximation for the first-order derivative of Ratio(k)(rj). For k = 1, 2, define the
cumulative sum (CUSUM) statistic (see Csörgö and Horváth (1997)) for DIF(k)(rj) as:

CUS(k)(rj) =
√
M

j

M

(
1− j

M

)(1

j

j∑
`=1

DIF(k)(r`)−
1

M − j

M∑
`=j+1

DIF(k)(r`)
)
. (16)

Finally, for k = 1, 2, we set r∗k as:

r∗k = rj∗ , with j∗ := argmax
2≤j≤M−1

∣∣CUS(k)(rj)
∣∣. (17)

For a simple interpretation of the above process, we randomly generate a 100 × 100
symmetric matrix A = (aij) with 30% non-zero off-diagonal elements. We set the diagonal

entry aii = 1. For the non-zero off-diagonal entry aij , we set aij
i.i.d∼ U(0.05, 0.1) with

probability 0.4, and aij
i.i.d∼ U(0.1, 0.5) with probability 0.6. In other words, A can be

regarded as the coefficient matrix with estimated values. The non-zero entry aij corresponds
to an estimated edge between i and j. Among the 30% edges in A, 40% edges are “noisy”
edges and 60% are “true” edges. The “gap” between the magnitude of “noisy” and “true”
edges is 0.1. To find the “gap”, we generate a series of threshold variables ranging from
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Figure 1: A simple illustrating example of the data-driven thresholding
procedure

0.05 to 0.5, and calculate the corresponding Ratio, DIF, and CUSUM as defined in (14) –
(16). The results are shown in Figure 1.

Figure 1 (left) shows that as the value of the threshold variable increases from 0.05 to
0.5, the Ratio decreases with different rates. In particular, from 0.05 to 0.1, the “noisy”
edges are first “filtered”. From 0.1 to 0.5, the “true” edges are then “filtered”. Note that
the Ratio decreases faster before 0.1 than that after 0.1. Hence, we can regard the “gap” as
a “change-point” for the derivative of the Ratio as shown in Figure 1 (middle). To identify
the “change-point” or “gap”, we construct the well-known CUSUM statistic for DIF. Figure
1 (right) shows that CUSUM is maximized at the “gap”. Algorithm 2 shows our method
for the structure recovery using the data-driven thresholding procedure.

Algorithm 2 A data-driven thresholding procedure for the structure recovery.

Input: Given the estimated coefficients
{
β̂a(τ̂) =

(
(θ̂a(τ̂))>, (δ̂a(τ̂))>

)>
, for 1 ≤ a ≤ p

}
obtained in Algorithm 1, set the candidate subset R = {r1, . . . , rM}.

Step 1: Obtain the initial estimator Ê
(1)
init (or Ê

(2)
init) as defined in (12).

Step 2: Given R, obtain the “best” r∗1 (or r∗2) using the procedures as in (14) – (17).

Step 3: Based on r∗1 (or r∗2) obtained in Step 2, get Ĕ(1)(r∗1) (or Ĕ(2)(r∗2)) as in (13).

Output: This algorithm provides the estimator Ĕ(1) for E(1) (or Ĕ(2) for E(2)).

3. Theoretical results

In this section, we present the theoretical results for our proposed method. In Section
3.1, some basic assumptions are introduced. Based on that, in Section 3.2, we derive some
theoretical results in terms of the change point identification and structure recovery.

12
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3.1 Basic assumptions

We introduce some basic assumptions needed for our theoretical results. In particular,
Assumption 1 is the non-degenerate condition on the two covariance matrices Σ(1) and Σ(2),
where Σ(1) := (Ω(1))−1 and Σ(2) := (Ω(2))−1. Assumption 2 requires some sparsity condi-
tions on the parameter space. Assumptions 3 and 4 impose conditions on the signal strength
and the search domain T = [t0, t1], respectively, for identifying the change point location.
Assumption 5 is a technical condition on the regularization parameter λT . Specifically, the
assumptions are summarized as follows:

• Assumption 1 (Non-degenerate condition): (a) We require, without loss of general-
ity, Var(Xt

a) = 1 for 1 ≤ a ≤ p and 1 ≤ t ≤ T . (b) Var(Xt
a|Xt

\a) = 1/ωtaa > 0 for

1 ≤ t ≤ T and 1 ≤ a ≤ p. Furthermore, we require 1/ωtaa ≤ ω2 for some constant

ω2 with 1 ≤ a ≤ p and 1 ≤ t ≤ T . (c) Let φ
(1)
min = λmin(Σ(1)), φ

(2)
min = λmin(Σ(2)),

φ
(1)
max = λmax(Σ(1)), and φ

(2)
max = λmax(Σ(2)), where λmin(·) and λmax(·) denote the

smallest and largest eigenvalues of a matrix. We require there exist some positive con-

stants k1 and K1 such that 0 < k1 ≤ min(φ
(1)
min, φ

(2)
min) ≤ max(φ

(1)
max, φ

(2)
max) ≤ K1 < ∞

holds.

• Assumption 2 (Parameter space condition): Let

B(s1,M0) =
{

(βa)pa=1 : βa = ((θa)>, (δa)>)> with θa ∈ Rp, δa ∈ Rp satisfying :

|βa|∞ ≤M0 for 1 ≤ a ≤ p, and
∑p

a=1M(βa) ≤ s1 ≤ p2
}
.

We require that (β̃a)pa=1 ∈ B(s1,M0).

• Assumption 3 (Signal strength): Suppose there exists a positive constant δ∗ such
that

min
( p∑
a=1

(δ̃a)>Σ(1)δ̃a,

p∑
a=1

(δ̃a)>Σ(2)δ̃a
)
> δ∗ (18)

holds.

• Assumption 4 (Search domain): Define κ = min(φ
(1)
min, φ

(2)
min) and κ := max(φ

(1)
max, φ

(2)
max).

For the search domain T = [t0, t1], we require

min
(
bTτc, bT (1− τ)c

)
≥ C0 log(pT ), for τ ∈ T , (19)

and some large enough constant C0 > 0. Furthermore, we also require

bTτ∗c − bTτc <
κ

2κ

(
T − bTτc

)
, for τ ∈ [t0, τ∗], (20)

and
bTτc − bTτ∗c <

κ

2κ
bTτc, for τ ∈ [τ∗, t1] (21)

hold, where τ∗ ∈ (0, 1) is the true change point location.
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• Assumption 5 (Regularization parameter): We require the regularization parameter
λT in (5) satisfies

λT = Aω
( log(p)

T

)1/2
for some constant A > max(A∗1/µ,A

∗
2/µ) , where µ ∈ (0, 1) is a fixed constant and A∗1

and A∗2 are some universal positive constants not depending on p or T . More details
about A∗1 and A∗2 can be found in the appendix.

Assumption 1 requires that Σ(1) and Σ(2) are non-degenerate in the sense that the
eigenvalues of Σ(1) and Σ(2) are strictly bounded away from 0 and ∞. It is also crucial for
proving the uniform restricted eigenvalue condition (URE) as shown in Proposition 4 below.
Assumption 2 requires that the magnitude of parameters is bounded by the constant M0.
Assumption 2 also requires that both the networks Ω(1) and Ω(2) are at most s1-sparse,
which is a common assumption in the literature (Peng et al. (2009)). Assumptions 3 and
4 are important for the change point identification. In particular, Assumption 3 requires
that the minimum signal strength satisfies (18). Assumption 4 provides basic requirements
for the sample size T as well as the search domain T . Lastly, Assumption 5 requires the
regularization parameter λT = O(

√
log(p)/T ).

Remark 3 Assumption 4 is commonly imposed for change point detection in high dimen-
sional settings. In particular, Assumption (19) requires that we have the search domain T
such that min

(
bTτc, bT (1 − τ)c

)
≥ C0 log(pT ) holds for all τ ∈ T . This implies that the

minimum sample size T for change point detection of GGM is at least O(log p). Moreover,
Assumptions (20) and (21) require that the search domain T̃ := {bTt0c, bTt0c+1, . . . , bTt1c}
is not far away from the true change point location bTτ∗c with an order of O(T ). More
specifically, by Assumptions (20), (21), and Assumption 1 with 0 < k1 < κ < κ < K1 <∞,
we have

min(bTτ∗c − bTt0c, bTt1c − bTτ∗c) = O(T ).

The motivation of Assumptions (20) and (21) comes from the fact that for change point
estimation with a desired theoretical result, the following identifiability condition is needed:

p∑
a=1

‖X(τ)βa −X(τ∗)β̃
a‖2T > c∗|τ − τ∗|, for any βa ∈ B(s1,M0) and τ ∈ [t0, t1], (22)

where c∗ > 0 is some constant. Hence, to guarantee (22) holds, we need a search domain T
not far away from τ∗, which requires Assumptions (20) and (21) hold. Moreover, compared
with the existing literature with similar assumptions, we find that our requirement for T̃ is
much weaker. For example, Roy et al. (2017) and Bybee and Atchadé (2018) required

min(bTτ∗c − bTt0c, bTt1c − bTτ∗c) = O(
√
T log(pT )),

which imposes a much stronger condition for the search domain.
As pointed out by one reviewer, the search domain T in Assumptions (20) and (21)

rely on κ/κ and τ∗. For moderately large graphs, the ratio between the smallest and largest
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eigenvalues, κ/κ, can be very small. In this extreme case, in theory, we need a search interval
that is narrowly centered around the true change point, making our method difficult to use.
In practice, however, we find that our method is not very sensitive to those parameters. For
example, in our numerical studies with banded precision matrices Ω(1) and Ω(2), κ/κ can
be a small constant with an order of 10−3. In this case, taking T = [0.15, 0.85] works quite
well even though it is much wider than what is required by our theory.

3.2 Main results

3.2.1 Change point detection

After introducing basic assumptions, we now derive the theoretical results. We first
consider the case of no change point. To this end, we introduce the following Proposition 4,
which shows that the uniform restricted eigenvalue condition holds with a high probability.
It is crucial to derive the desired bounds of estimation errors in (β̃a)pa=1 as well as τ∗.

Proposition 4 (Uniform restricted eigenvalue (URE)(s, c0,S)): For some integer 1 ≤ s ≤
2p, a positive number c0, and some set S ⊂ [0, 1] ⊂ R, we define

κ(s, c0,S) := min
τ∈S

min
J0⊂{1,··· ,2p}
|J0|≤s

min
γ 6=0

|γJc
0
|1≤c0|γJ0 |1

|X(τ)γ|2√
T |γJ0 |2

. (23)

Then under Assumptions 1, by letting s = o(
√
T/ log(pT )), the constant κ(s, c0,S) > 0

holds with probability at least 1− (pT )−C for some constant C > 0.

Note that for S = {τ∗}, κ(s, c0,S) as defined in (23) reduces to the restricted eigenvalue
(RE) condition initially proposed b Bickel et al. (2009) for analyzing theoretical properties of
both the lasso (Tibshirani (1996)) and Dantzig selector (Candes and Tao (2007)). It is well
known that the RE condition is among the weakest assumptions on the design matrix (fixed
or random) for deriving desired bounds of estimation errors in coefficients. Furthermore, as
τ∗ is unknown, it is necessary to impose the RE condition over τ ∈ S, which is called the
uniform restricted eigenvalue condition proposed by Lee et al. (2016). It is worth mentioning
that there are some differences between Lee et al. (2016) and this article with respect to
URE. In particular, Lee et al. (2016) considered settings with a fixed design matrix while
we consider a random design. Furthermore, since there is a possible change point during
the observations, the design matrix X(τ) is constructed using data with heteroscedasticity.
More details can be found in the supplementary materials.

Using Proposition 4, the following Theorem 5 shows that the classifier Φ(·) defined in
(8) can correctly identify a homogeneous model with a high probability.

Theorem 5 Suppose the data come from a homogeneous model with δ̃a = 0 for all 1 ≤
a ≤ p. Then under Assumptions 1, 2, and 5, we have

P
(

Φ(τ̂ , {β̂a(τ̂), 1 ≤ a ≤ p}) = 0
)
≥ 1− o(1).

Theorem 5 is built on the result of the estimation error in (β̃a)pa=1. More specifically,

we can prove that our estimators obtained in Algorithm 1 satisfy
∑p

a=1

∣∣β̂a(τ̂) − β̃a
∣∣
1

=
Op(λT s1) even if τ∗ is not identifiable. This result directly implies Theorem 5. More details
can be found in the appendix.

15



Liu, Zhang and Liu

3.2.2 Change point estimation

We now consider the case where τ∗ is identifiable. In other words, we assume that δ̃a 6= 0
for some a ∈ {1, . . . , p}. We mainly focus on the estimation of τ∗. To this end, we first
introduce the following Proposition 6, which plays a key role in identifying τ∗ as well as
deriving the desired bound of its estimation error.

Proposition 6 (Identifiability condition) Suppose (βa)pa=1 ∈ B(s1,M0) and (β̃a)pa=1 ∈
B(s1,M0). Moreover, suppose Assumptions 1, 3, and 4 hold. Then for any η and τ such
that |τ − τ∗| > η > 0,

p∑
a=1

‖X(τ)βa −X(τ∗)β̃
a‖2T > c∗η (24)

holds with probability at least 1 − (pT )−C for some universal constant C > 0, where c∗ is
also a universal positive constant not depending on p or T .

Note that Proposition 6 can be regarded as the identifiability condition for change point
detection in Gaussian graphical models. Essentially, (24) characterizes the distance be-
tween the misspecified model {(βa)pa=1, τ} and the true underlying model {(β̃a)pa=1, τ∗}
with τ 6= τ∗. It is shown by our proof that (24) relies on the difference between the two
graphs (Assumption 3), the change point location (Assumption 4), and other technical con-
ditions such as Assumptions 1 and 2. More details about Proposition 6 are provided in the
supplementary materials.

With basic assumptions as well as Propositions 4 and 6, Theorem 7 below justifies the
validity of Algorithm 1 for the change point identification.

Theorem 7 Let τ̂ and (β̂a(τ̂))pa=1 be the lasso solutions obtained via Algorithm 1. Suppose

that Assumptions 1 – 5 hold with λT s1
p∑
a=1
|δ̃a|1 → 0 (as (p, T ) → ∞) and

p∑
a=1
|δ̃a|21 =

o(
√
T/ log(pT )) (as (p, T )→∞). Suppose the change point τ∗ exists, then with probability

at least 1− C1p
2−2A2µ2/(A∗1)

2 − C2p
1−A2µ2/(A∗2)

2 − C3(pT )−C4, we have

|τ̂ − τ∗| ≤M1Aω
( log(p)

T

)
s1, (25)

where M1 and C1, . . . , C4 are universal positive constants not depending on p or T .

Theorem 7 provides a non-asymptotic bound of |τ̂ − τ∗|. As shown in (25), |τ̂ − τ∗| → 0
as long as the scaling relationships among p, T , and s1 satisfy s1 log(p)/T → 0. Therefore,
our paper allows the dimension p being much larger than the sample size T .

Remark 8 According to the proof of Theorem 7, with very mild modifications, we can show
that the change point estimation result in (25) is adaptive to the degree of changes between
the two graphs. More specifically, we allow the minimum signal strength δ∗ in Assumption
3 depends on n and p, say δ∗(n, p). In this case, if we require δ∗(n, p) ≥ C∗s

−1
1 for some

large enough universal positive constant C∗ > 0, our change point result can be modified to

|τ̂ − τ∗| = Op

( log(p)

Tδ∗(n, p)
s1

)
. (26)
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Note that Result (26) is a generalization of (7) and it reduces to (7) by taking δ∗(n, p) = δ∗.
Our change point estimator is still consistent as long as log(p)s1/(Tδ∗(n, p)) = o(1) holds.

It is worth mentioning that Enikeeva and Harchaoui (2019) considered change point
detection for high dimensional mean vectors of Gaussian distributions. From the hypothesis
testing point of view, they derived the minimax bounds for detecting sparse changes between
two mean vectors with an order of ‖δ‖2 = s1 log(p)/T , where δ = µ1 − µ2 is the signal
jump and s1 is the overall sparsity of µ1 − µ2. According to Enikeeva and Harchaoui
(2019), no α-level test can detect a change point with probability tending to one if ‖δ‖2 <
cs1 log(p)/T for some very small constant c. Note that our paper mainly focuses on change
point estimation, which is essentially different from the problem of Enikeeva and Harchaoui
(2019). Specifically, for change point estimation, we claim that the signal jump δ obtains
the minimax bound if no method can consistently estimate the true change point when a
signal jump is smaller than that bound. In our paper, we require δ∗(n, p) ≥ C∗s

−1
1 for

consistent change point estimation, which is typically a bigger order than that of Enikeeva
and Harchaoui (2019) in the sense that s−11 � s1 log(p)/T . To our limited knowledge,
whether s1 log(p)/T is minimax optimal for change point estimation of high dimensional
GGM is still an open question.

Proposition 9 is a by-product of Theorem 7, showing that we can control the prediction
loss as well as estimation errors in coefficients. It is also crucial for verifying the two-step
thresholding procedure.

Proposition 9 Under the conditions of Theorem 7, with probability at least 1−C1p
2−2A2µ2/(A∗1)

2−
C2p

1−A2µ2/(A∗2)
2 − C3(pT )−C4, we have

p∑
a=1

∥∥X(τ̂)β̂a(τ̂)−X(τ∗)β̃
a
∥∥2
T
≤M2Aω

( log(p)

T

)
s1,

and
p∑
a=1

∣∣β̂a(τ̂)− β̃a
∣∣
1
≤M3Aω

( log(p)

T

)1/2
s1,

where M2, M3, and C1, . . . , C4 are universal positive constants not depending on p or T .

The following Proposition 10 shows that with high probability, our classifier Φ(τ̂ , {β̂a(τ̂), 1 ≤
a ≤ p} defined in (8) can identify a heterogeneous model.

Proposition 10 Suppose the assumptions in Theorem 7 hold. Furthermore, suppose addi-
tionally

∑p
a=1 |δ̃a|1 ≥ (M0+M3)λT s1 holds. Then, for a heterogeneous model with a change

point, we have

P
(

Φ(τ̂ , {β̂a(τ̂), 1 ≤ a ≤ p}) = 1
)
≥ 1− o(1). (27)

Combining the results in Theorem 5 and Proposition 10, we have established the validity
of the classifier Φ(·). This result is novel in the context of high dimensional dynamic
Gaussian graphical models, since our method can automatically identify a homogeneous or
heterogeneous model. This is very different from the existing works, where they assumed a
change point exists and proposed to estimate its location.
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3.2.3 Structure recovery

After presenting the results for the change point detection and estimation, we now
consider the structure recovery of the two graphs. To this end, some additional conditions
are needed.

• Assumption 6: We require the following conditions hold:

min
1≤a≤p

min
1≤b≤p,b 6=a

|θ̃ab + δ̃ab | ≥ r∗1(1 + 2
M3

r0
)λT s1 +M3λT s1,

and

min
1≤a≤p

min
1≤b≤p,b 6=a

|θ̃ab | ≥ r∗2(1 + 2
M3

r0
)λT s1 +M3λT s1,

where r0 > 0 is the same constant as in (12).
Note that Assumption 6 is a requirement on the minimum signal strength of Ω(1) and

Ω(2). It is important for proving model selection consistency as shown in (28) and (29)
below. Using Assumptions 1 – 6, Theorem 11 below justifies the validity of the two-step
thresholding procedure as in (12) – (13) for recovering E(1) and E(2).

Theorem 11 Let Ĕ(1) and Ĕ(2) be the thresholded estimators for E(1) and E(2), respec-

tively. Suppose that Assumptions 1 – 6 hold with λT s1
p∑
a=1
|δ̃a|1 → 0 and

p∑
a=1
|δ̃a|21 =

o(
√
T/ log(pT )). Suppose the change point τ∗ exists, then with probability at least 1 −

C1p
2−2A2µ2/(A∗1)

2 − C2p
1−A2µ2/(A∗2)

2 − C3(pT )−C4, we have

E(1) ⊂ Ĕ(1), and |Ĕ(1) ∩ (E(1))c| ≤ 2M3/r
∗
1, (28)

and

E(2) ⊂ Ĕ(2), and |Ĕ(2) ∩ (E(2))c| ≤ 2M3/r
∗
2, (29)

where M3 is defined in (9) and C1, . . . , C4 are universal positive constants.

Theorem 11 is built on the results of Proposition 9. In particular, to implement the thresh-
olding procedure, “good” initial estimators for (β̃a)pa=1 are needed. Theorem 11 shows that
the proposed thresholding procedure achieves model selection consistency in the sense that
E(1) ⊂ Ĕ(1) or E(2) ⊂ Ĕ(2). In other words, the type II errors (false negatives) can be
controlled with high probabilities. Furthermore, Theorem 11 also demonstrates that the
number of false positives can be bounded by a finite number. The numerical studies in
Section 4 provide a strong support for Theorem 11.

4. Simulation studies

In this section, we examine the empirical performance of our proposed method in terms
of the change point identification and structure recovery, and compare its performance with
existing techniques.

The data are generated as follows: let Ω(1) ∈ Rp×p and Ω(2) ∈ Rp×p be two different
precision matrices. Let τ∗ ∈ (0, 1) be the true change point location. Then we generate
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T independent observations X1, . . . ,XT , where Xt i.i.d∼ N(0, (Ω(1))−1) for 1 ≤ t ≤ bTτ∗c,
and Xt i.i.d∼ N(0, (Ω(2))−1) for bTτ∗c+ 1 ≤ t ≤ T . To justify the broad applicability of our
method, we generate Ω(1) and Ω(2) from the following two models:

• Model 1 (Banded Ω): We generate banded precision matrices Ω(1) and Ω(2). This
type of precision matrices corresponds to the chain networks (Fan et al. (2009)). The
procedure is as follows: We first set π1 = {1, . . . , p} and π2 = {π1, . . . , πp}, where
π2 is a random permutation of π1. Then for j ∈ {1, 2}, we generate the covariance

matrix Σ(j) = (σ
(j)
ab ), where σ

(1)
ab = exp(−|ta − tb|/5), σ

(2)
ab = exp(−|tπa − tπb |/5), and

ti− ti−1
i.i.d∼ U(0.5, 1)∪U(−1,−0.5) with t1 < t2 · · · < tp. Finally, we set the precision

matrix as Ω(j) = (Σ(j))−1 for j ∈ {1, 2}. We further standardize Ω(j) to have unit
diagonals. We repeat the above process for each replication. Note that Kolar and
Xing (2012) previously used this model.

• Model 2 (Block diagonal Ω): We generate block diagonal precision matrices Ω(1)

and Ω(2). We first set π1 = {1, . . . , p} and π2 = {π1, . . . , πp}, where π2 is a random

permutation of π1. Then we generate Ω(1) = (ω
(1)
ab ), where ω

(1)
ab = 0.8 for 5(k−1)+1 ≤

a 6= b ≤ 5k (k = 1, . . . , bp/5c), and ω
(1)
ab = 0 otherwise. We generate Ω(2) = (ω

(2)
πaπb),

where ω
(2)
πaπb = 0.8 for 5(k − 1) + 1 ≤ πa 6= πb ≤ 5k (k = 1, . . . , bp/5c), and ω

(2)
πaπb = 0

otherwise. Finally, we standardize Ω(j) to have unit diagonals. We repeat the above
process for each replication.

Note that for controlling the difference between Ω(1) and Ω(2), for the above two models, we
set π2 = (1, . . . , p−α, πp−α+1, πp−α+2, . . . , πp), where (πp−α+1, πp−α+2, . . . , πp) is a random
permutation of (p− α+ 1, p− α+ 2, . . . , p). In other words, the last α nodes in Ω(1) have
a change point. A direct illustration is provided in Figure 2.

For Models 1 and 2, we set T = 200 with the dimension p ∈ {100, 200, 300}. Under
these two models, we also consider different similarities, e.g. α ∈ {10, 15, 20, 25}, between
Ω(1) and Ω(2). For all models, we consider different change point locations by setting
τ∗ ∈ {0.3, 0.4, 0.5}.

To identify τ∗ in Algorithm 1, we set the search domain T = [0.15, 0.85]. We set the
regularization parameter λT = C0

√
2 log(p/T ) with C0 = 0.3 for both Models 1 and 2.

With a specified λT , we use the R package “glmnet” to obtain β̂a(τ) as defined in (5) for
each τ and a. To use the classifier Φ(τ̂ , {β̂a(τ̂), 1 ≤ a ≤ p}) in (8), we choose the constant

K0 via cross-validation (see Section 4.1) and set s1 = ŝ := |Ê(1)
init| ∨ |Ê

(2)
init|, where Ê

(1)
init

and Ê
(2)
init are defined in (12). For the structure recovery in Algorithm 2, we choose the

candidate search domain R such that t
(1)
thr ∈ [β̂

(1)
min, β̂

(1)
max] (or t

(2)
thr ∈ [β̂

(2)
min, β̂

(2)
max], where β̂

(1)
min

(or β̂
(2)
min) denotes the corresponding minimum value in {|θ̂ab (τ̂) + δ̂ab (τ̂)|, 1 ≤ a, b ≤ p} (or

{|θ̂ab (τ̂)|, 1 ≤ a, b ≤ p}), and β̂
(1)
max and β̂

(2)
max denote the corresponding maximum values. All

numerical results (without special instructions) are based on 200 replications.

4.1 Change point detection

With the above settings, we first consider the change point detection. To this end,

for each replication, we randomly generate a data sequence X1, . . . ,XT such that Xt i.i.d∼
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Figure 2: Heatmaps for networks in Models 1 and 2 with p = 100: (a)
Banded Ω(1); (b) Banded Ω(2) with α = 10; (c) Banded Ω(2) with α = 25;
(d) Block diagonal Ω(1); (e) Block diagonal Ω(2) with α = 10; (f) Block
diagonal Ω(2) with α = 25.

N(0, (Ω
(1)
∗ )−1) for 1 ≤ t ≤ bTτ∗c, and Xt i.i.d∼ N(0, (Ω

(2)
∗ )−1) for bTτ∗c+ 1 ≤ t ≤ T . Let Z

be a random variable following Bernoulli distribution B(1, 0.5). Then we set Ω
(1)
∗ = Ω(1)

and Ω
(2)
∗ = Ω(1) ∗Z+Ω(2) ∗ (1−Z). In other words, with a probability 0.5, the data have a

change point at τ∗ ∈ {0.5, 0.4, 0.3}. Within each replication, we use Φ(τ̂ , {β̂a(τ̂), 1 ≤ a ≤ p})
defined in (8) to detect whether there exists a change point.

Note that the classifier Φ(τ̂ , {β̂a(τ̂), 1 ≤ a ≤ p}) involves selection of K0, which may
affect the accuracy of change point detection. In other words, a large value of K0 tends to
identify the model as homogeneous and a small one tends to detect a change point. To select
K0 in a data-driven way, we use cross-validation. Specifically, in this numerical experiment,
we set T = 300 and use the dataset {X1,X2,X4,X5,. . . ,X298,X299} as the training set
with a sample size 200 and use the remaining 100 samples, {X3,X6,X9,. . . ,X297,X300},
as the testing set. The cross-validation procedure is summarized as following three steps:
Step 1: We use the training data to obtain the estimation of τ̂ , {β̂a(τ̂), 1 ≤ a ≤ p}, as well

as ŝ = |Ê(1)
init| ∨ |Ê

(2)
init|.

Step 2: For a given candidate value of K0, say k0, we can use (8) to decide the existence
of a change point. If a change point is detected, we calculate the validation loss as :

CV
(
k0, τ̂ , {β̂a(τ̂), 1 ≤ a ≤ p}

)
=
∑p

a=1

∑
t: t mode 3==0

[
Xt
a − (Xt)>θ̂a(τ̂)− (Xt)>δ̂a(τ̂)1{Qt ≤ τ̂}

]2
.
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If a change point is not detected, we calculate the validation loss as :

CV
(
k0, τ̂ , {β̂a(τ̂), 1 ≤ a ≤ p}

)
=
∑p

a=1

∑
t: t mode 3==0

[
Xt
a − (Xt)>θ̂a(τ̂)

]2
.

Step 3: We repeat Step 2 for all candidate values of K0 from a given candidate subset. In
our numerical study, we set the candidate subset from a sequence ranging from 2−1 to 25.
Lastly, we choose the best K0 which has the minimum cross-validation loss.

It is worth mentioning that the above cross-validation procedure is computationally
efficient since there is no need to do an additional brute search and calculate node-wise
lasso. Table 1 records the type I and II errors for Models 1 and 2 using cross-validation
with different dimensions and change point locations, where

Type I error =
number of false rejections

number of replications
, Type II error =

number of false acceptions

number of replications
.

As shown in Table 1, our proposed method can detect a change point with high accuracy.
Furthermore, we note that as τ∗ gets closer to the boundary of data observations, it becomes
more difficult to identify its existence. Since we fix the number of nodes having a change
point at 100, the type II error increases as the dimension increases (especially for Model 2).
One reasonable explanation is that, in this case, we can regard the 100 nodes as “signal”
and the remaining nodes as “noise”. The increasing dimension results in a decrease of the
signal-noise ratio.

Table 1: Type I and II errors of change point detection for Models 1-
2 with different dimensions and change point locations. The number of
nodes having a change point is fixed at 100 (α = 100). The reported
results are based on 200 replications.

τ∗ = 0.5 τ∗ = 0.4 τ∗ = 0.3
Model p Type I Type II Type I Type II Type I Type II

Model 1 100 0 0 0 0 0 0
200 0 0 0 0 0 0
300 0 0 0 0 0 0

Model 2 100 0 0 0 0 0 0
200 0 0 0 0. 0 0
300 0 0 0 0 0 0.04

4.2 Change point estimation and structure recovery

We next consider the change point estimation and structure recovery. As pointed out
by one reviewer, as an alternative method, it is possible to use the fused graphical lasso
method (denoted by FGL) (Danaher et al. (2014)) for estimating a single change point and
recovering the graphical structures. More specifically, suppose there are K known number
of classes or graphical structures, the fused graphical lasso solves the following optimization
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problem:

min
Ω(k)>0,k=1,2,...,K

{ K∑
k=1

nk
[
Tr(S(k)Ω(k))−log |Ω(k)|

]
+λ1

K∑
k=1

∑
i 6=j
|ω(k)
ij |+λ2

∑
k<k′

∑
i,j

|ω(k)
ij −ω

(k′)
ij |

}
,

(30)
where K is the number of graphs, S(k) and nk are the sample covariance matrix estimation
and the sample size for the k-the graph, λ1 and λ2 are two non-negative tuning parameters
which control the overall sparsity of the K precision matrices and differences between cor-
responding elements of each pair of precision matrices, respectively. Note that for a change
point model, there are at most two different graphs. Hence, to use FGL for identifying a
change point, similar to Steps 1-3 in Algorithm 1, we can proceed as follows:
Step 1: For each fixed search point τ ∈ T = [t0, t1], obtain Ω̂(τ) and Ω̂(1−τ) by solving{

Ω̂(τ), Ω̂(1−τ)
}

= argmin
Ω(τ)>0,Ω(1−τ)>0

{
[Tτ ]

(
Tr(S(τ)Ω(τ))− log |Ω(τ)|

)
+ (T − [Tτ ])

(
Tr(S(1−τ)Ω(1−τ))− log |Ω(1−τ)|

)
+λ1

∑
i 6=j

(
|ω(τ)
ij |+ |ω

(1−τ)
ij |

)
+ λ2

∑
i,j
|ω(τ)
ij − ω

(1−τ)
ij |

}
,

where S(τ) and S(1−τ) are the sample covariance matrix estimation using first [Tτ ] and last

T − [Tτ ] observations, Ω̂(τ) = (ω̂
(τ)
ij ) and Ω̂(1−τ) = (ω̂

(1−τ)
ij ) are the precision matrix estima-

tors before τ and after τ , respectively, and λ1 and λ2 are non-negative tuning parameters.
Step 2: Based on Ω̂(τ) and Ω̂(1−τ), define

FGL(τ) =
{

[Tτ ]
(
Tr(S(τ)Ω̂(τ))− log |Ω̂(τ)|

)
+ (T − [Tτ ])

(
Tr(S(1−τ)Ω̂(1−τ))− log |Ω̂(1−τ)|

)
+λ1

∑
i 6=j

(
|ω̂(τ)
ij |+ |ω̂

(1−τ)
ij |

)
+ λ2

∑
i,j
|ω̂(τ)
ij − ω̂

(1−τ)
ij |

}
.

Step 3: Find τ̂ that minimizes FGL(τ):

τ̂ = argmin
τ∈T

FGL(τ).

Step 4: Once τ̂ is estimated, use Ω̂(τ̂) = (ω̂
(τ̂)
ij ) and Ω̂(1−τ̂) = (ω̂

(1−τ̂)
ij ) as the precision

matrix estimation before and after the change point, respectively.
To implement FGL, we use the R package“JGL” for obtaining Ω̂(τ) and Ω̂(1−τ). Note

that the implementation of FGL involves two tuning parameters λ1 and λ2. According to our
numerical experiments, we find that setting (λ1, λ2) as (0.25, 0.1) enjoys good performance
across various model settings.

To illustrate the performance in estimating τ∗, we record the mean (Mean), root mean
squared errors (Rmse) for each simulation. We also adopt three indices (Precision, Recall,
and F-score) for measuring the performance in recovering E(1) and E(2). The three indices
are defined as follows:

• Precision =

∑p
a=1

∑p
b=a+1 1{(a, b) ∈ E} ∧ 1{(a, b) ∈ Ê}∑p
a=1

∑p
b=a+1 1{(a, b) ∈ Ê}

,
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Table 2: Empirical results of Models 1 and 2 for various degrees of changes
(α) between Ω(1) and Ω(2) with p = 100 and τ∗ = 0.5. The reported results
are based on 200 replications.

τ∗ E(1) E(2)

Model α Method Mean Rmse Precision Recall F-score Precision Recall F-score

Model 1 10 Oracle 1 - - 0.98 0.98 0.98 0.98 0.98 0.98
Oracle 2 - - 0.82 1.00 0.90 0.94 1.00 0.97

FGL 0.461 0.133 0.18 1.00 0.30 0.20 1.00 0.33
Node-wise 0.486 0.047 0.82 0.99 0.90 0.94 1.00 0.97

15 Oracle 1 - - 0.98 0.98 0.98 0.98 0.98 0.98
Oracle 2 - - 0.80 0.99 0.88 0.93 1.00 0.97

FGL 0.500 0.002 0.19 1.00 0.32 0.19 1.00 0.32
Node-wise 0.503 0.007 0.80 1.00 0.89 0.94 1.00 0.97

20 Oracle 1 - - 0.98 0.98 0.98 0.98 0.98 0.98
Oracle 2 - - 0.78 0.99 0.87 0.93 1.00 0.96

FGL 0.500 0.005 0.19 1.00 0.32 0.19 1.00 0.32
Node-wise 0.504 0.007 0.78 1.00 0.88 0.93 1.00 0.97

25 Oracle 1 - - 0.98 0.98 0.98 0.98 0.98 0.98
Oracle 2 - - 0.78 1.00 0.87 0.92 1.00 0.96

FGL 0.500 0.001 0.19 1.00 0.32 0.19 1.00 0.32
Node-wise 0.505 0.007 0.77 0.99 0.86 0.93 1.00 0.96

Model 2 10 Oracle 1 - - 1.00 1.00 1.00 1.00 1.00 1.00
Oracle 2 - - 0.77 1.00 0.87 0.95 1.00 0.97

FGL 0.471 0.123 0.20 1.00 0.33 0.21 1.00 0.34
Node-wise 0.504 0.008 0.78 1.00 0.87 0.95 1.00 0.98

15 Oracle 1 - - 1.00 1.00 1.00 1.00 1.00 1.00
Oracle 2 - - 0.75 1.00 0.86 0.94 1.00 0.97

FGL 0.496 0.051 0.20 1.00 0.34 0.20 1.00 0.34
Node-wise 0.504 0.007 0.75 1.00 0.86 0.94 1.00 0.97

20 Oracle 1 - - 1.00 1.00 1.00 1.00 1.00 1.00
Oracle 2 - - 0.74 1.00 0.85 0.93 1.00 0.96

FGL 0.499 0.029 0.20 1.00 0.34 0.20 1.00 0.34
Node-wise 0.504 0.007 0.73 1.00 0.85 0.93 1.00 0.96

25 Oracle 1 - - 1.00 1.00 1.00 1.00 1.00 1.00
Oracle 2 - - 0.72 1.00 0.84 0.91 1.00 0.95

FGL 0.500 0.008 0.20 1.00 0.34 0.20 1.00 0.34
Node-wise 0.503 0.006 0.72 1.00 0.84 0.92 1.00 0.96

• Recall =

∑p
a=1

∑p
b=a+1 1{(a, b) ∈ E} ∧ 1{(a, b) ∈ Ê}∑p
a=1

∑p
b=a+1 1{(a, b) ∈ E}

,
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• F-score =
2× Precision× Recall

Precision + Recall
.

By definitions, Precision is the number of correctly estimated edges divided by the total
number of estimated edges, Recall is the number of correctly estimated edges divided by
the total number of true edges, and F-score is a combination of Precision and Recall. Note
that FGL estimates Ω(1) and Ω(2) instead of E(1) and E(2). Hence, according to FGL, we

can identify that Node i and Node j has an edge if |ω̂(τ̂)
ij | > 10−2 or |ω̂(1−τ̂)

ij | > 10−2.
Table 2 demonstrates the results of Models 1 and 2 with p = 100 and τ∗ = 0.5, under

various degrees of changes between Ω(1) and Ω(2). In addition to FGL, we consider three
cases in the current setting:

Case 1: Assuming τ∗ is known, we apply the neighborhood selection method in Mein-
shausen and Bühlmann (2006) to {X1, . . . ,XbTτ∗c} and {XbTτ∗c+1, . . . ,XT }, respec-
tively, and recover the corresponding networks E(1) and E(2). We adopt a tuning
parameter λ =

√
log(p)/bTτ∗c .

Case 2: Assuming τ∗ is known, for each node a, we obtain β̂a(τ∗) by (5). Then based on
{β̂a(τ∗), 1 ≤ a ≤ p}, we use the thresholding procedure in Algorithm 2 to recover the
corresponding two networks E(1) and E(2).

Case 3: Suppose the change point location is unknown. We use both Algorithms 1 and 2
to simultaneously estimate τ∗ and recover the two networks E(1) and E(2).

The above three cases are denoted as Oracle 1, Oracle 2, and Node-wise, respectively. We
can regard Case 2 as a special case of Case 3 by setting the search domain as T = {τ∗}. Note
that since both Oracles 1 and 2 assume τ∗ is known, the Mean and Rmse are not reported
for these two cases. As can be seen from Table 2, by assuming τ∗ is known, both Oracles 1
and 2 have better performance than other methods in terms of the recovery of E(1) and E(2).
Interestingly, Oracle 1 performs better than Oracle 2. This is due to the known information
of τ∗. Given τ∗, separate estimation performs better. When τ∗ is not known, we can see
that our node-wise approach (Node-wise) generally performs better than FGL in terms of
structural recovery, which is demonstrated by higher precision. This result provides a strong
support for our proposed two step thresholding based procedure in Algorithm 2. As for the
change point identification, some interesting observations can be made. First, Node-wise
has much higher accuracy than FGL, especially for Model 2 and cases when the degree of
changes between Ω(1) and Ω(2) is small (e.g. α = 10 or 15). A reasonable explanation is
that FGL finds a change point by minimizing the overall likelihood function with a fused

penalty λ2
∑

i,j |ω
(τ)
ij − ω

(1−τ)
ij |. When the number of nodes having a change point is small,

FGL tends to identify the two graphs Ω(1) and Ω(2) as the same. As a result, its objective
function FGL(τ) is not sensitive to such small changes, which fails to correctly identify the
true change point. On the contrary, Node-wise is more sensitive to small changes since we
construct the objective function in a node-wise way. Hence, even when the number of nodes
with a change point is very small, it can still capture such information. Second, as the
similarity between Ω(1) and Ω(2) increases, Rmses for both FGL and Node-wise increase,
indicating that it is more difficult to identify the change point. Lastly, as the two graphs
become more different with a larger α, we see that both FGL and Node-wise have similar
and satisfactory results.
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Table 3: Empirical results of Models 1 – 2 for various p with τ∗ = 0.5. For
both Models 1 and 2, the degree of changes (α) between Ω(1) and Ω(2) is
20. The reported results are based on 200 replications

τ∗ E(1) E(2)

Model p Method Mean Rmse Precision Recall F-score Precision Recall F-score

Model 1 100 FGL 0.500 0.001 0.19 1.00 0.32 0.19 1.00 0.32
Node-wise 0.504 0.007 0.79 0.99 0.88 0.93 1.00 0.96

200 FGL 0.497 0.045 0.12 1.00 0.21 0.12 1.00 0.21
Node-wise 0.503 0.006 0.84 0.98 0.89 0.95 1.00 0.97

300 FGL 0.480 0.074 0.08 1.00 0.15 0.09 1.00 0.16
Node-wise 0.502 0.007 0.88 0.85 0.80 0.96 1.00 0.98

Model 2 100 FGL 0.498 0.015 0.20 1.00 0.34 0.20 1.00 0.34
Node-wise 0.504 0.006 0.74 1.00 0.85 0.93 1.00 0.96

200 FGL 0.493 0.031 0.12 1.00 0.22 0.12 1.00 0.22
Node-wise 0.506 0.008 0.73 1.00 0.84 0.90 1.00 0.95

300 FGL 0.495 0.022 0.09 1.00 0.17 0.09 1.00 0.17
Node-wise 0.517 0.025 0.75 1.00 0.86 0.89 1.00 0.94

Table 3 shows the empirical results of Models 1 – 2 for p ∈ {100, 200, 300} with a
change point at τ∗ = 0.5, where the number of nodes having a change point is 20 for both
models. We see that when p is small (e.g. p = 100), FGL and Node-wise have very similar
performance in change point identification. As p increases from 100 to 300, Node-wise
becomes better than FGL. The reason is that as p becomes larger, the changes between the
two graphs become smaller. In such cases, FGL fails to detect such small changes. As for our
method, it has good performance in estimating τ∗ under different dimensions. This suggests
that our method is applicable to relatively large-scale graphs with small changes. In terms
of structural recovery, for both methods, the F-score decreases (especially for Model 1) as
the dimension p increases, indicating that it is more difficult to recover the two underlying
true graphs E(1) and E(2) with a larger p.

Table 4 shows the empirical results of Models 1 – 2 for various p and τ∗. In most cases
with different change point locations, Node-wise performs better than FGL (see Figure 3).
For all models with a fixed p, as the change point location gets closer to the boundary of
the observations, e.g. τ∗ = 0.3, it is more difficult to identify the true change point location,
which is illustrated by the increasing Rmse. For both methods, we note that, as τ∗ decreases
from 0.5 to 0.3, the sample size for estimating Ω(1) decreases while that for estimating Ω(2)

increases, resulting in a worse recovery of E(1) and a better recovery of E(2).
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Figure 3: Boxplots of change point estimation for Model 2 with p = 200
and τ∗ ∈ {0.5, 0.4, 0.3}. The degree of changes (α) between Ω(1) and Ω(2)

is 20. The reported results are based on 200 replications.
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Figure 4: Computational time (seconds) for one replication with p ∈
{100, 200, 300, 400, 500} and T = 200.
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Table 4: Empirical results of Models 1 – 2 for various p and τ∗. For both
Models 1 and 2, the degree of changes (α) between Ω(1) and Ω(2) is 20.
The reported results are based on 200 replications.

τ∗ E(1) E(2)

Model p τ∗ Method Mean Rmse Precision Recall F-score Precision Recall F-score

Model 1 100 0.5 FGL 0.500 0.001 0.19 1.00 0.32 0.19 1.00 0.32
Node-wise 0.505 0.007 0.78 1.00 0.88 0.93 1.00 0.96

0.4 FGL 0.400 0.001 0.16 1.00 0.28 0.21 1.00 0.35
Node-wise 0.403 0.006 0.76 0.99 0.86 0.94 1.00 0.97

0.3 FGL 0.300 0.002 0.14 1.00 0.24 0.23 1.00 0.37
Node-wise 0.306 0.008 0.74 0.99 0.85 0.95 1.00 0.97

200 0.5 FGL 0.498 0.048 0.12 1.00 0.21 0.12 1.00 0.21
Node-wise 0.503 0.007 0.83 0.99 0.90 0.95 1.00 0.97

0.4 FGL 0.396 0.026 0.10 1.00 0.18 0.13 1.00 0.24
Node-wise 0.403 0.006 0.82 0.99 0.89 0.95 1.00 0.98

0.3 FGL 0.296 0.012 0.08 1.00 0.15 0.15 1.00 0.26
Node-wise 0.308 0.010 0.80 0.98 0.87 0.95 1.00 0.98

Model 2 100 0.5 FGL 0.500 0.016 0.20 1.00 0.34 0.20 1.00 0.34
Node-wise 0.503 0.005 0.73 1.00 0.85 0.93 1.00 0.96

0.4 FGL 0.396 0.020 0.18 1.00 0.30 0.23 1.00 0.37
Node-wise 0.401 0.004 0.70 1.00 0.82 0.94 1.00 0.97

0.3 FGL 0.297 0.016 0.15 0.99 0.26 0.25 1.00 0.40
Node-wise 0.306 0.008 0.65 1.00 0.79 0.95 1.00 0.98

200 0.5 FGL 0.494 0.033 0.12 1.00 0.22 0.12 1.00 0.22
Node-wise 0.504 0.007 0.73 1.00 0.85 0.90 1.00 0.95

0.4 FGL 0.409 0.035 0.11 1.00 0.20 0.13 1.00 0.24
Node-wise 0.406 0.008 0.71 1.00 0.83 0.91 1.00 0.95

0.3 FGL 0.375 0.100 0.10 0.98 0.19 0.14 1.00 0.24
Node-wise 0.321 0.030 0.67 0.99 0.80 0.92 1.00 0.96

4.3 Computational cost

Lastly, we report the computational time for FGL and Node-wise for one replication. We
implement the corresponding program independently on a CPU (Linux) with 2.50GHz, 6
cores, and 4GB of RAM. Note that for FGL, the computational cost isO(T×FGLasso(T, p)),
where FGLasso(T, p) denotes the computational cost for solving fused graphical lasso with
a sample size T and a data dimensionality p. As shown in Danaher et al. (2014), it typically
requires a cost of O(p3) for each iteration for the algorithm in FGL. As for Node-wise, its
computational cost is O(Tp × Lasso(T, p), where Lasso(T, p) is the computational cost for
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solving lasso with a sample size T and a data dimensionality p. For example, Lasso(T, p)
is O(pT ) for the coordinate descent algorithm used in the R package “glmnet” for one
iteration. Hence, the overall computational costs for FGL and Node-wise are O(Tp3) and
O(T 2p2), respectively. For change point detection, it is more computationally expensive
for using FGL than Node-wise when p > T . This is demonstrated in Figure 4. When p
is relatively small (e.g. p = 100), FGL and Node-wise have similar computational costs.
As p becomes larger, it requires a bigger computational burden for FGL than Node-wise.
This suggests that Node-wise is more computationally efficient than FGL for change point
detection. Furthermore, Figure 4 also provides the computational cost for Node-wise with
parallel computing, where for each fixed τ ∈ [t0, t1], we calculate {β̂a(τ), 1 ≤ a ≤ p} in (5)
by dividing the p regression problems into six ndependent cores. We see from Figure 4 that
the computational cost can be reduced significantly via parallel computing.

Note that the computational cost of our method in Algorithm 1 increases linearly in
terms of numbers of grid points {Qt := t/T, t = 1, . . . , T} ∩ T , which can be expensive
when T is very large. To solve this problem, in practice, we may use a two-stage-based
method. Specifically, in the first stage, we use coarser grid points {Qt := t/T, t = 1, 1 +
k0, 1 + 2k0, . . . , 1 + Mk0} ∩ T , where k0 ≥ 1 is the user prespecified interval between two
search points and M is the largest integer such that 1 +Mk0 ≤ T . Using these coarser grid
points and Algorithm 1, we obtain an initial change point estimator τ̂ . Then, in the second
stage, we use new fine-resolution grid points {Qt := t/T, t = bT τ̂c − 100, bT τ̂c − 100 +
1, . . . , bT τ̂c + 100} ∩ T , which are constructed around the initial change point τ̂ . Lastly,
the final change point estimator ˆ̂τ is obtained using the above grid points and Algorithm 1.
This leads to a more efficient algorithm when T is extremely large.

5. Real data analysis

In this section, we apply our proposed method to the S&P 500 index for analyzing the
networks among the stocks. We consider a three-year period from January 4th, 2007 to
December 31st, 2009, covering the recent financial crisis beginning in 2008. During this
period, 372 stocks are considered, resulting in a dataset with T = 755 and p = 372. We
obtain the final dataset from Yahoo Finance! (https://finance.yahoo.com/). Let pt,i be the
closing price of the company i at the date t with i = 1, . . . , 372 and t = 1, . . . , 755. Then
the log return for the company i at the date t is defined as: rt,i = log(pt,i) − log(pt−1,i).
Our analysis is based on the variables rt,i. The 372 stocks are categorized into 10 Global
Industry Classification Standard (GICS) sectors, including Consumer Discretionary (62
stocks), Consumer Staples (34 stocks), Energy (24 stocks), Financials (61 stocks), Health
Care (40 stocks), Industrials (42 stocks), Information Technology (55 stocks), Materials (23
stocks), Telecommunications (6 stocks), and Utilities (25 stocks). Our goal is to investigate
how the networks among the stocks evolve during the financial crisis.

We first identify the change point location. To this end, we apply Algorithm 1 to log
return variables rt,i with the search domain T = [0.15, 0.85] and regularization parameter
λT = 10−3

√
2 log(p/T ). As can be seen from Figure 5 (left), the corresponding plot of H(τ)

as defined in (6) is minimized at the location July 2, 2008, suggesting that the graphical
structure among the stocks may undergo an abrupt change after that day. To interpret this
result, we refer to the time series plot of the S&P 500 index as shown in Figure 5 (middle).
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Figure 5: Plots of H(τ) (left), S&P 500 index (middle), and TED spread
(right), during the period from January 4th, 2007 to December 31st, 2009.

We see that from the beginning of 2007 to the beginning of 2009, the S&P 500 index
experiences a big slump. Furthermore, we note that the index declines with a relatively fast
speed after the change point, as compared to that before the change point. To investigate
the results further, we study the T-bills and “ED” (TED) spread, as shown in Figure 5
(right), where TED spread is short for the difference between the 3-month of London Inter-
Bank Offer Rate (LIBOR), and the 3-month short-term U.S. government debt (“T-bills”).
It is known that the TED spread is an indicator of credit risk in the general economy and
an increase of the TED spread suggests an increased risk. The TED spread experiences a
big fluctuation during the considered period, indicating that the entire economy is unstable
during the financial crisis. We also note that the biggest fluctuation begins around July
2, 2008, which is consistent with our identified change point location. The above analysis
provides some strong supports that there is an abrupt change of the graphical structure
among the stocks after July 2, 2008, during the financial crisis.

Next we analyze the graphical structure among the stocks. We use Algorithm 2 to
recover the two graphs, before and after the change point, respectively. To measure the
change in graphical structure, we record the estimated number of edges for each sector.
We divide the edges into two cases: edges from connected stocks which belong to the same
sector (within-sector) and those from stocks belonging to different sectors (cross-sector).
Figure 6 shows the number of edges for each sector for both cases.

We first consider the graphical structure within each sector. Figure 6 (top left) shows
that there are more connections among stocks in the same sector after the change point.
Furthermore, Figure 6 (top left) indicates that, compared to other sectors, the stocks in
Health Care, Information Technology, and Consumer Staples are more connected to each
other. Moreover, Figure 6 (bottom left) illustrates that, there are more increased edges
of stocks belonging to Consumer Discretionary, Financials, and Information Technology,
indicating that those three sectors are more affected by the financial crisis.

We next consider the graphical structure among sectors. It is shown in Figure 6 (top
right) that stocks from different sectors are more related to each other during the financial
crisis. Figure 6 (top right) shows that stocks belonging to Financials have more connections
to other sectors during the financial crisis. To further investigate the financial crisis’s
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Figure 6: The number of edges before and after the change point for each
sector. Top left: number of edges (within-sector); Top right: number
of edges (cross-sector); Bottom left: number of increased edges (within-
sector); Bottom right: number of increased edges (cross-sector).

Table 5: The first three sectors accounting for the largest, second and third
largest proportions in increased (cross-sector) edges for the ten sectors.

Sector First Second Third

Consumer Discretionary Utilities Consumer Staples Financials
Consumer Staples Financials Consumer Discretionary Industrials

Energy Financials Utilities Consumer Discretionary
Financials Consumer Discretionary Utilities Consumer Staples

Health Care Financials Consumer DiscretionaryInformation Technology
Industrials Financials Consumer Discretionary Utilities

Information Technology Health Care Consumer Discretionary Utilities
Materials Financials Consumer Staples Health Care

Telecommunications Financials Consumer Discretionary Consumer Staples
Utilities Financials Consumer Discretionary Industrials

influence, for each sector, among its increased edges connected to other sectors, we record
three corresponding sectors accounting for the largest, second and third largest proportions,
respectively. The results are provided in Table 5. We see from Table 5 that, during the
financial crisis, the sectors of Financials, Consumer Discretionary, and Utilities tend to have
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Figure 7: Estimated connections for the sectors of Information Technol-
ogy (top), Energy (middle), and Financials (bottom), during the financial
crisis. Left and right columns correspond to before and after the change
point, respectively. Bigger proportions present more connections.

more connections to other sectors. This is consistent with that of Figure 6 (bottom right),
where the above three sectors have more increased (cross-sector) edges than other sectors.
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Finally, we illustrate the relationship between the sector of Information Technology
(Energy, or Financials) with other sectors, before and after the change point, respectively.
Figure 7 provides the corresponding results. Figure 7 (top) shows that for Information
Technology, there is no big change of its connections to other sectors during the financial
crisis, and it is mainly related to the sectors of Financials, Industrials, Consumer Staples,
and Utilities. In contrast, Figure 7 (middle) indicates that there exist some changes in the
neighborhood of Energy. For example, before the change point, Energy is mainly connected
to Information Technology; after the change point, there are increasing connections to
Financials and Utilities. Some other changes can also be found in Financials.

6. Conclusions

In this article, we present new methods for simultaneous change point inference and
structure recovery in the context of high dimensional Gaussian graphical models with (pos-
sible) abrupt changes. For the change point identification, motivated by the neighborhood
selection, we introduce a joint sparse regression model by considering the p nodes simulta-
neously, and incorporate a threshold variable and an unknown threshold parameter into the
regression model to characterize the time-varying networks. The change point estimator
and the estimated coefficients are obtained via minimizing the joint `2 loss function with
an `1 penalty. Based on the above estimators, we also introduce a method for detecting
whether the data are homogeneous. For the structure recovery, a data-driven hard thresh-
olding procedure is proposed. Theoretically, under some regular conditions, we prove that
the proposed method can select a true model (homogeneous or heterogeneous) with high
accuracy. Once a heterogeneous model is identified, the change point estimator is proven
to be consistent, by allowing the number of nodes being much larger than the sample size.
Furthermore, in terms of the structure recovery, we prove that the thresholding proce-
dure achieves model selection consistency and controls the number of false positives. The
proposed method is relatively efficient to implement, and its validity is justified via both
extensive numerical studies and a real data application.

Note that this paper focuses on the single-change-point setting. One possible extension is
to consider multiple change points. For example, we may combine our node-wise-based loss
function with the dynamic programming or binary segmentation techniques as in Leonardi
and Bühlmann (2016) for localizing multiple change points. The main difficulty for extend-
ing to the case of multiple change points is that, in the multiple case, the candidate search
interval [s, e] may contain no change point, one change point, or more. Hence, to derive
the desired theoretical results, we need detailed discussions about the lasso properties for
each case and provide an oracle inequality in the general case. We leave this extension as a
future research direction.
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Appendix

The appendix provides additional results for the main paper. In Section A, some nota-
tions are introduced. In Section B, we provide several useful lemmas needed for the main
theorems. In Section C, we give detailed proofs of the main results. Proofs of the useful
lemmas are given in Section D.

Appendix A. Notations

We present some additional notations. Recall that X(τ) is the T × 2p matrix whose
t-th row is Xt(τ) ∈ R2p with Xt(τ) = ((Xt)>, (Xt)>1{Qt ≤ τ})>, and whose a-th column
is Xa(τ) ∈ RT , where Qt := t/T is the threshold variable and

Xa(τ) = Xa = (X1
a , . . . , X

T
a )>, for 1 ≤ a ≤ p,

Xa(τ) = Xa(τ) :=
(
X1
a1{Q1 ≤ τ}, . . . , XT

a 1{QT ≤ τ}
)>
, for p+ 1 ≤ a ≤ 2p.

(31)

Define

Xmax = max
τ∈T

max
1≤a≤2p

{
‖Xa(τ)‖T , a = 1, . . . , 2p, τ ∈ T

}
, (32)

and

Xmin = min
1≤a≤2p

{
‖Xa(t0)‖T , a = 1, . . . , 2p

}
, (33)

where t0 comes from T = [t0, t1]. Let rT = min
1≤a≤p

‖Xa(t0)‖2T
‖Xa‖2T

. Recall D(τ) := diag{‖Xa(τ)‖T :

a = 1, . . . , 2p}. We set D̂ = D(τ̂) and D = D(τ∗). For two matrices V1 and V2, define their
maximum distance as ‖V1 −V2‖∞ = maxi,j |(V1)ij − (V2)ij |. Denote ⊗ as the Kronecker
product for two matrices. We use C1, C2, . . . to denote constants that may vary from line
to line.

Appendix B. Useful lemmas

The following Lemma 12 shows that there exist some constants K1 and K2 such that the
two events {Xmax ≤ K1} and {Xmin ≥ K2} hold with a high probability. In other words,
rT is strictly bounded away from zero with a high probability. The proof of Lemma 12 is
provided in Section D.1.

Lemma 12 Let {Xt}Tt=1 be independent p-dimensional Gaussian random vectors with Xt =
(Xt

1, . . . , X
t
p)
> for 1 ≤ t ≤ T . Suppose EXt

a = 0 and Var(Xt
a) = 1 for 1 ≤ t ≤ T and

1 ≤ a ≤ p. Then for Xmax as defined in (32), there exists a constant K1 > 1 such that

P
(
Xmax ≤ K1

)
≥ 1− p exp(−C1T ) (34)

holds, where C1 > 0 is a constant only depending on K1.
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For Xmin as defined in (33), there is a constant K2 > 0 such that

P
(
Xmin ≥ K2

)
≥ 1− p exp(−C2T ), (35)

where C2 > 0 is a constant only depending on K2.

The following Lemma 13 shows that the design matrix is smooth with respect to the thresh-
old variable Qt. The proof of Lemma 13 is provided in Section D.2.

Lemma 13 Suppose Xt i.i.d∼ N(0,Σ(1)) for 1 ≤ t ≤ bTτ∗c, and Xt i.i.d∼ N(0,Σ(2)) for
bTτ∗c+ 1 ≤ t ≤ T with Xt = (Xt

1, . . . , X
t
p)
>, where Σ(1) = (Ω(1))−1 and Σ(2) = (Ω(2))−1.

Then there is a universal constant C∗ > 0 such that for any η > 0

sup
1≤a≤p

sup
|τ−τ∗|≤η

1

T

T∑
t=1

|Xt
a|2
∣∣1{Qt ≤ τ∗} − 1{Qt ≤ τ}

∣∣ ≤ C∗η (36)

holds with probability at least 1− (pT )−C for some constant C > 0.

The following Lemma 14 is the basic inequality for proving the main results. Before
presenting Lemma 14, we introduce some definitions and notations.

For each node a ∈ V := {1, . . . , p} and τ ∈ T := [t0, t1], we define

V a
1b :=

1

T

T∑
t=1

εta
σta

Xt
b

‖Xb‖T
,

V a
2b(τ) :=

1

T

T∑
t=1

εta
σta

Xt
b1{Qt ≤ τ}
‖Xb(τ)‖T

, for 1 ≤ b ≤ p, and b 6= a,

(37)

where εta is defined in (4) with Var(εta) = 1/ωtaa := (σta)
2, and Xb(τ) := (X1

b 1{Q1 ≤
τ}, . . . , XT

b 1{QT ≤ τ})>. Note that by Assumption 1, we have (σta)
2 ≤ ω2 for some

constant ω > 0. For a constant µ ∈ (0, 1), we also define the following two node-wise
events:

Aa =
p⋂
b=1
b 6=a

{
2|V a

1b| ≤ µλT /ω
}
,

Ba =
p⋂
b=1
b 6=a

{
sup
τ∈T

2|V a
2b(τ)| ≤ µλT /ω

}
, for 1 ≤ a ≤ p.

(38)

Recall βa = ((θa)>, (δa)>)> and β̃a = ((θ̃a)>, (δ̃a)>)>, we then define

R =
2

T

p∑
a=1

T∑
t=1

εta(X
t)>δ̃a

(
1{Qt ≤ τ̂} − 1{Qt ≤ τ∗}

)
. (39)

After introducing basic notations, we now present Lemma 14. Lemma 14 is the basic
inequality for proving our main results. The proof of Lemma 14 is provided in Section D.3.
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Lemma 14 Let τ̂ and (β̂a(τ̂))pa=1 be the solutions obtained from (5) – (7). Then conditional
on the event

⋂
1≤a≤p{Aa ∩ Ba}, we have

p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T

+ λT (1− µ)
p∑
a=1

∣∣D̂(β̂a − β̃a)
∣∣
1

≤ 2λT
p∑
a=1

∣∣D̂(β̂a − β̃a)Ja0
∣∣
1

+ λT
p∑
a=1

∣∣|D̂β̃a‖1 − |Dβ̃a|1∣∣+R,
(40)

and
p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T

+ λT (1− µ)
p∑
a=1

∣∣D̂(β̂a − β̃a)
∣∣
1

≤ 2λT
p∑
a=1

∣∣D̂(β̂a − β̃a)Ja0
∣∣
1

+
p∑
a=1

∥∥X(τ̂)β̃a −X(τ∗)β̃
a
∥∥2
T
,

(41)

where Ja0 := J(β̃a), β̂a := β̂a(τ̂), D := D(τ∗), and D̂ := D(τ̂).

The following Lemma 15 shows that the event
⋂

1≤a≤p{Aa ∩ Ba} occurs with a high prob-
ability. The proof of Lemma 15 is provided in Section D.4.

Lemma 15 Let Φ(x) be the cumulative distribution function (CDF) of the standard normal
random variable. Recall Aa and Ba as defined in (38). Then conditional on the event

E(1) = {Xmax ≤ K1, and Xmin ≥ K2}, (42)

we have

P
( ⋂

1≤a≤p
{Aa ∩ Ba}

)
≥ 1− 6p2Φ

(−µK2

√
T

2ωK1
λT

)
,

where the constants K1 and K2 come from Lemma 12.

Before presenting Lemma 17, we need to introduce the following event: for some constant
η > 0, we define

C(η) =
{

sup
|τ−τ∗|≤η

∣∣∣ 2

T

p∑
a=1

T∑
t=1

εta(X
t)>δ̃a

(
1{Qt ≤ τ} − 1{Qt ≤ τ∗}

)∣∣∣ ≤ λT√η}. (43)

The following Lemma 16 shows that the event ∩mj=1C(ηj) occurs with a high probability.
The proof of Lemma 16 is provided in Section D.5.

Lemma 16 For a given integer m, let η1, . . . , ηm be some positive constants. Suppose
p∑
a=1
|δ̃a|21 = o(

√
T/ log(pT )) holds. Then conditional on the events

E(2) =
{∥∥ 1(
bTτ∗c − bT (τ∗ − ηj)c

) bTτ∗c∑
t=bT (τ∗−ηj)c

(
Σ(1) −Xt(Xt)>

)∥∥
∞

≤ C1

√
log(pT )

T
, for j = 1, . . . ,m

}
,

(44)
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and

E(3) =
{∥∥ 1(

[T (τ∗ + ηj)]− bTτ∗c
) [T (τ∗+ηj)]∑

t=bTτ∗c

(
Σ(2) −Xt(Xt)>

)∥∥
∞

≤ C2

√
log(pT )

T
, for j = 1, . . . ,m

}
,

(45)

we have

P
(⋂m

j=1 C(ηj)
)

≥ 1− 4
m∑
j=1

Φ

 −λTK2µ
√
T

2K1ω2

√
C

(j)
1 κ−1δ∗

− 4
m∑
j=1

Φ

 −λTK2µ
√
T

2K1ω2

√
C

(j)
2 κ−1δ∗

 ,

where K1 and K2 come from Lemma 12, ω2 comes from Assumption 1 (b), κ comes from

Assumption 4, C
(j)
1 and C

(j)
2 are positive constants only depending on ηj for 1 ≤ j ≤ m,

and δ∗ := max
( p∑
a=1

(δ̃a)>Σ(1)δ̃a,
p∑
a=1

(δ̃a)>Σ(2)δ̃a
)
.

The following Lemmas 17 and 18 show that, if we have prior estimation error bounds
in τ∗ as well as (β̃a)pa=1, we can further tighten the corresponding estimation error bounds
using the prior bounds. These two lemmas are crucial for proving our main results. Their
proofs are provided in Sections D.6 and D.7, respectively.

Lemma 17 Let τ̂ and (β̂a(τ̂))pa=1 be the solutions obtained from (5) – (7). Suppose that

|τ̂ − τ∗| ≤ cτ and
∑p

a=1 |β̂a − β̃a|1 ≤ cβ hold, for some cτ and cβ. Suppose further that
Assumptions 1 – 2 hold. Then conditional on

⋂
1≤a≤p

{
Aa ∩ Ba

}⋂
C(cτ ), we have

p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T
≤ 3λT

{6X2
max

κ′2
λT s1

∨ 2Xmax

κ′

(
s1cβcτC

∗
p∑
a=1
|δ̃a|1

)1/2
∨(√

cτ + (2Xmin)−1cτC
∗

p∑
a=1
|δ̃a|1

)}
,

(46)

and
p∑
a=1

∣∣β̂a − β̃a∣∣
1
≤ 3

(1− µ)Xmin

{6X2
max

κ′2
λT s1

∨ 2Xmax

κ′

(
s1cβcτC

∗
p∑
a=1
|δ̃a|1

)1/2
∨(√

cτ + (2Xmin)−1cτC
∗

p∑
a=1
|δ̃a|1

)}
,

(47)

where κ′ is a constant related to the URE condition, the constant C∗ is defined in (36), and
s1 comes from Assumption 2.

Lemma 18 Let τ̂ and (β̂a(τ̂))pa=1 be the solutions obtained from (5) – (7). Suppose that

|τ̂ − τ∗| ≤ cτ and
∑p

a=1 |β̂a − β̃a|1 ≤ cβ hold, for some cτ and cβ. Define

c̃τ = c−1∗ λT

(
(1 + µ)cβXmax +

√
cτ + (2Xmin)−1cτC

∗
p∑
a=1

|δ̃a|1
)
.

If Assumptions 1 – 4 hold, then conditional on
⋂

1≤a≤p
{
Aa ∩ Ba

}⋂
C(cτ ), we have

|τ̂ − τ∗| ≤ c̃τ , (48)

where the constant c∗ is defined in (24), and the constant C∗ is defined in (36).
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Appendix C. Proof of main results

C.1 Proof of Proposition 4

Proof Since the proof for a homogeneous model is easier than that of a heterogenous one,
for simplicity, we only consider the latter case. Recall X(τ) is a T × 2p random design
matrix whose t-th row is defined as

Xt(τ) =
(
(Xt)>, (Xt)>1{Qt ≤ τ}

)
with Qt := t/T . Then we have

1

T
X(τ)>X(τ) =

1

T

T∑
t=1

Xt(τ)(Xt(τ))>. Define

V̂(τ) =
1

T

T∑
t=1

Xt(τ)(Xt(τ))>, V(τ) = lim
T→∞

1

T

T∑
t=1

EXt(τ)(Xt(τ))>, for τ ∈ T .

With these notations, the proof of Proposition 4 proceeds in three steps. In Step 1, we
prove V(τ) satisfies the URE condition uniformly over τ ∈ T . In Step 2, we prove that the
maximum distance between V(τ) and V̂(τ) can be bounded by C

√
log(pT )/T . In Step 3,

we combine the previous two steps and finish the proof. Now, we consider the three steps
in detail.
Step 1 : Note that Xt i.i.d∼ N(0,Σ(1)) for 1 ≤ t ≤ bTτ∗c, and Xt i.i.d∼ N(0,Σ(2)) for bTτ∗c+
1 ≤ t ≤ T , where Σ(1) := (Ω(1))−1 and Σ(2) := (Ω(2))−1. Straightforward calculations show
that

V(τ) =



Σ(1) ⊗
( τ∗, τ
τ, τ

)
︸ ︷︷ ︸

A1(τ)

+Σ(2) ⊗
( 1− τ∗, 0

0, 0

)
︸ ︷︷ ︸

A2(τ)

, if τ ≤ τ∗,

Σ(1) ⊗
( τ∗, τ∗
τ∗, τ∗

)
︸ ︷︷ ︸

A3(τ)

+Σ(2) ⊗
( 1− τ∗, τ − τ∗
τ − τ∗, τ − τ∗

)
︸ ︷︷ ︸

A4(τ)

, if τ > τ∗.

Note that λmin(A1(τ)) > 0, λmin(A2(τ)) = 0 for τ ≤ τ∗, and λmin(A3(τ)) = 0, λmin(A4(τ)) >
0 for τ > τ∗. Furthermore, by Assumption 1 (c), we also have λmin(Σ(1)) > 0 and
λmin(Σ(2)) > 0. Using the fact that all eigenvalues of the Kronecker product of two matrices
can be written as the product between their eigenvalues and by Weyl’s Theorem, we have
λmin(V(τ)) > 0 over τ ∈ [t0, t1]. Therefore, V(τ) satisfies the URE condition uniformly
over τ ∈ T = [t0, t1].
Step 2 : We prove supτ∈T ‖V̂(τ)−V(τ)‖∞ = Op(

√
log(pT )/T ). To this end, we define

Ṽ(τ) =
1

T

T∑
t=1

EXt(τ)(Xt(τ))>, for τ ∈ T . (49)

Hence, by introducing Ṽ(τ) as in (49), to bound supτ∈T ‖V̂(τ)−V(τ)‖∞, we need to con-
sider supτ∈T ‖Ṽ(τ)−V(τ)‖∞ and supτ∈T ‖V̂(τ)− Ṽ(τ)‖∞, respectively. We first consider
supτ∈T ‖Ṽ(τ)−V(τ)‖∞. By definition, we can write Ṽ(τ) as:
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Ṽ(τ) =



Σ(1) ⊗


bTτ∗c
T

,
bTτc
T

bTτc
T

,
bTτc
T

+ Σ(2) ⊗

 T − bTτ∗c
T

, 0

0, 0

 , if τ ≤ τ∗,

Σ(1) ⊗


bTτ∗c
T

,
bTτ∗c
T

bTτ∗c
T

,
bTτ∗c
T

+ Σ(2) ⊗


T − bTτ∗c

T
,

bTτc − bTτ∗c
T

bTτc − bTτ∗c
T

,
bTτc − bTτ∗c

T

 , if τ > τ∗.

Hence, by Assumption 1 (a) and using the fact that |bTτc/T − τ | ≤ C/T over τ ∈ T , we
have

sup
τ∈T
‖Ṽ(τ)−V(τ)‖∞ = O(1/T ). (50)

Next, we bound supτ∈T ‖V̂(τ)− Ṽ(τ)‖∞. To this end, for 1 ≤ j, k ≤ p, we define

V̂jk =
1

T

T∑
t=1

(
Xt
jX

t
k − E(Xt

jX
t
k)
)
,

=
1

T

bTτ∗c∑
t=1

(
Xt
jX

t
k − E(Xt

jX
t
k)
)

︸ ︷︷ ︸
V̂

(1)
jk

+
1

T

T∑
t=bTτ∗c+1

(
Xt
jX

t
k − E(Xt

jX
t
k)
)

︸ ︷︷ ︸
V̂

(2)
jk

, (51)

and

V̂jk(τ) =
1

T

T∑
t=1

(
Xt
jX

t
k1{Qt ≤ τ} − E(Xt

jX
t
k1{Qt ≤ τ})

)
,

=
1

T

bTτc∑
t=1

(
Xt
jX

t
k − E(Xt

jX
t
k)
)
.

(52)

By defining V̂jk and V̂jk(τ) as in (51) and (52), to bound supτ∈T ‖V̂(τ) − Ṽ(τ)‖∞, it is

sufficient to consider max1≤j,k≤p |V̂jk| and supτ∈[t0,t1] max1≤j,k≤p |V̂jk(τ)|, respectively.

Firstly, we consider maxj,k |V̂jk|. For any x > 0, using the triangle inequality, we have

P
(

max
1≤j,k≤p

|V̂jk| > x
)
≤ p2 max

1≤j,k≤p

(
P
(
|V̂ (1)
jk | > x/2

)
+ P

(
|V̂ (2)
jk | > x/2

))
.

Note that Xt
j and Xt

k follow Gaussian distributions, which implies Xt
jX

t
k follows sub-

exponential distributions. Using Bernstein’s inequality for sub-exponential distributions,
for each j and k we have

p2P
(
|V̂ (1)
jk | > x/2

)
≤ p2P

(∣∣∣ 1

bTτ∗c

bTτ∗c∑
t=1

(
Xt
jX

t
k − E(Xt

jX
t
k)
)∣∣∣ > x/2

)
,

≤ C1p
2 exp(−C2bTτ∗cx2).

(53)
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For p2P
(
|V̂ (2)
jk | > x/2

)
, using Bernstein’s inequality again, we have

p2P
(
|V̂ (2)
jk | > x/2

)
≤ C1p

2 exp(−C2bT (1− τ∗)cx2). (54)

After bounding maxj,k |V̂jk| as in (53) and (54), we now consider supτ∈[t0,t1] maxj,k |V̂jk(τ)|.
Note that there is a change point at τ∗ ∈ [t0, t1]. Hence, it is sufficient to consider

D1 := sup
τ∈[t0,τ∗]

max
1≤j,k≤p

|V̂jk(τ)|, D2 := sup
τ∈[τ∗,t1]

max
1≤j,k≤p

|V̂jk(τ)|

respectively. Firstly, we consider D1. For any x > 0, using Bernstein’s inequality, we have

P
(

sup
τ∈[t0,τ∗]

max
1≤j,k≤p

|V̂jk(τ)| > x
)

≤ bT (τ∗ − t0)cp2 sup
τ∈[t0,τ∗]

max
1≤j,k≤p

P
(
|V̂jk(τ)| > x

)
,

≤ C1Tp
2 exp(−C2bTt0cx2),

(55)

where the second inequality comes from the fact that τ ∈ [t0, τ∗]. Next, we consider D2.
Note that for τ ∈ [τ∗, t1], we can write V̂jk(τ) as in (52) as:

V̂jk(τ) =
1

T

bTτ∗c∑
t=1

(
Xt
jX

t
k − E(Xt

jX
t
k)
)

︸ ︷︷ ︸
V̂

(1)
jk (τ)

+
1

T

bTτc∑
t=bTτ∗c+1

(
Xt
jX

t
k − E(Xt

jX
t
k)︸ ︷︷ ︸

V̂
(2)
jk (τ)

)
.

Then, similar to the previous procedure, for V̂
(1)
jk (τ) and V̂

(2)
jk (τ), we have

P
(

sup
τ∈[τ∗,t1]

max
1≤j,k≤p

|V̂ (1)
jk (τ)| > x

)
≤ C1Tp

2 exp(−C2bTτ∗cx2), (56)

and
P
(

sup
τ∈[τ∗,t1]

max
1≤j,k≤p

|V̂ (2)
jk (τ)| > x

)
≤ C1Tp

2 exp(−C2Tx
2). (57)

Combining the results in (50), (53), (54), (55), (56), and (57), with probability at least
1− (pT )−C1 , we have

sup
τ∈T
‖V̂(τ)−V(τ)‖∞ ≤ C2

√
log(pT )

T
. (58)

Step 3 : For any τ ∈ T , J0 ⊂ {1, . . . , 2p} with |J0| ≤ s, and γ ∈ R2p satisfying |γJc0 |1 ≤
c0|γJ0 |1, we have

γ>V̂(τ)γ

|γJ0 |22
=
γ>V(τ)γ

|γJ0 |22
+
γ>(V(τ)− V̂(τ))γ

|γJ0 |22
,

≥ γ
>V(τ)γ

|γJ0 |22
− supτ∈T ‖V̂(τ)−V(τ)‖∞

|γJ0 |22
|γ|21,

≥ γ
>V(τ)γ

|γJ0 |22
− supτ∈T ‖V̂(τ)−V(τ)‖∞

|γJ0 |22
(1 + c0)

2|γJ0 |21,

≥ γ
>V(τ)γ

|γJ0 |22
− sup
τ∈T
‖V̂(τ)−V(τ)‖∞(1 + c0)

2s.

(59)
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Note that V(τ) satisfies the URE condition uniformly over τ ∈ T . Hence, by (58) and the
last inequality as in (59), choosing s = o(

√
T/ log(pT )), we complete the proof.

C.2 Proof of Theorem 5

Proof In this section, we aim to prove

P
(

Φ(τ̂ , {β̂a(τ̂), 1 ≤ a ≤ p}) = 0
)
≥ 1 + o(1), (60)

where Φ(τ̂ , {β̂a(τ̂), 1 ≤ a ≤ p}) := 1
{∑p

a=1 |δ̂a(τ̂)|1 ≥ K0s1λT

}
. To prove (60), we need

to establish the estimation error bound of β̃a with 1 ≤ a ≤ p. In particular, we will prove

p∑
a=1

∣∣β̂a(τ̂)− β̃a
∣∣
1
≤ K0λT s1.

Note that for a homogeneous model with δ̃a = 0 for 1 ≤ a ≤ p, we have
p∑
a=1

∥∥X(τ̂)β̃a −

X(τ∗)β̃
a
∥∥2
T

= 0. Combining this result with (41) in Lemma 14, conditional on the event⋂
1≤a≤p{Aa ∩ Ba}, we have

p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T

+ λT (1− µ)
p∑
a=1

∣∣D̂(β̂a − β̃a)
∣∣
1

≤ 2λT
p∑
a=1

∣∣D̂(β̂a − β̃a)Ja0
∣∣
1
,

(61)

where Ja0 := J(β̃a), β̂a := β̂a(τ̂), and D̂ := D(τ̂). To deal with (61), we define the following
2p2-dimensional vectors:

β̃pp =
(
(β̃1)>, . . . , (β̃p)>

)>
, β̂pp =

(
(β̂1)>, . . . , (β̂p)>

)>
. (62)

We also define the following 2p2 × 2p2 block diagonal matrix D̆ and the Tp × 2p2 design
matrix X̃(τ) as follows:

D̆ = diag
{

D̂, . . . , D̂︸ ︷︷ ︸
p

}
, X̃(τ) = diag

{
X(τ), . . . ,X(τ)︸ ︷︷ ︸

p

}
. (63)

Let J0 = J(β̃pp) be the set of non-zero elements of β̃pp. By Assumption 2, we have
|J0| =

∑p
a=1 |Ja0 | ≤ s1. Furthermore, combining (61), (62), and (63), we have∣∣D̆(β̂pp − β̃pp)Jc0

∣∣
1
≤ 1 + µ

1− µ
∣∣D̆(β̂pp − β̃pp)J0

∣∣
1
. (64)

Define

κ′(s1, c0,S) = min
τ∈S

min
J0⊂{1,...,2p2}
|J0|≤s1

min
γ 6=0

|γJc
0
|1≤c0|γJ0 |1

|X̃(τ)γ|2√
T |γJ0 |2

. (65)
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With a proof procedure similar to Proposition 3, we can show that X̃(τ) satisfies the URE
condition uniformly over τ ∈ T by setting s1 = o(

√
T/ log(pT )), i.e. κ′(s1, c0,S) > 0 holds.

Set κ′ := κ′(s1, c0,S) with c0 := (1 + µ)/(1− µ) and S := T = [t0, t1]. We then have

κ′2
∣∣D̆(β̂pp − β̃pp)J0

∣∣2
2
≤ 1

T

∣∣X̃(τ̂)D̆(β̂pp − β̃pp)
∣∣2
2

≤ max(D̆)2

T
(β̂pp − β̃pp)>X̃(τ̂)>X̃(τ̂)(β̂pp − β̃pp)

= max(D̆)2
p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T
,

(66)

where the last equality comes from the assumption that δ̃a = 0 for 1 ≤ a ≤ p. Combining
(61) and (66), we have

p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T
≤ 2λT

∣∣D̆(β̂pp − β̃pp)J0
∣∣
1

≤ 2λT
√
s1
∣∣D̆(β̂pp − β̃pp)J0

∣∣
2

≤ 2λT
√
s1

max(D̆)

κ′

p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥
T
.

(67)

The above inequality implies

p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥
T
≤ 2λT

√
s1

max(D̆)

κ′
. (68)

On the other hand, using (64), we have

p∑
a=1

∣∣D̂(β̂a − β̃a)
∣∣
1

=
∣∣D̆(β̂pp − β̃pp)Jc0

∣∣
1

+
∣∣D̆(β̂pp − β̃pp)J0

∣∣
1

≤ 2

1− µ
∣∣D̆(β̂pp − β̃pp)J0

∣∣
1

≤ 2

1− µ
√
s1
∣∣D̆(β̂pp − β̃pp)J0

∣∣
2

≤ 2

1− µ
√
s1

max(D̆)

κ′

p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥
T
.

Combining (67) and (68), we have

p∑
a=1

∣∣D̂(β̂a − β̃a)
∣∣
1
≤ 4 max(D̆)2

(1− µ)κ′2
λT s1 ≤

4Xmax

(1− µ)κ′2
λT s1.

Using the fact that
p∑
a=1

∣∣D̂(β̂a − β̃a)
∣∣
1
≥ min(D̂)

p∑
a=1

∣∣β̂a − β̃a∣∣
1
, we have

p∑
a=1

∣∣β̂a − β̃a∣∣
1

=

p∑
a=1

∣∣θ̂a − θ̃a∣∣
1

+

p∑
a=1

∣∣δ̂a∣∣
1
≤ 4Xmax

(1− µ)Xminκ′2
λT s1. (69)

The last inequality is due to δ̃a = 0 with 1 ≤ a ≤ p. Hence, choosing K0 =
4Xmax

(1− µ)Xminκ′2

in (60), we complete the proof.
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C.3 Proof of Proposition 6

Proof In this section, we prove (24) in Proposition 6. By the triangle inequality, we have

p∑
a=1

∥∥X(τ)βa −X(τ∗)β̃
a
∥∥2
T
≥ E

( p∑
a=1

∥∥X(τ)βa −X(τ∗)β̃
a
∥∥2
T

)
−∆, (70)

where ∆ :=
∣∣ p∑
a=1
‖X(τ)βa − X(τ∗)β̃

a‖2T − E
( p∑
a=1
‖X(τ)βa − X(τ∗)β̃

a‖2T
)∣∣. Therefore, by

(70), to prove (24), we need two steps. In Step 1, we prove that there exists c∗ > 0 such
that

E
( p∑
a=1

∥∥X(τ)βa −X(τ∗)β̃
a
∥∥2
T

)
> c∗η (71)

holds for sufficiently large T and p. In Step 2, we prove ∆ = op(1) holds uniformly over
τ ∈ T . Next, we consider the two steps in detail.
Step 1 : For |τ − τ∗| > η, we consider two cases: τ ∈ [t0, τ∗] with τ∗− τ > η, and τ ∈ [τ∗, t1]
with τ − τ∗ > η. We first consider τ ∈ [t0, τ∗] with τ∗ − τ > η. Recall Qt = t/T , and

βa = ((θa)>, (δa)>)>. We can write E
( p∑
a=1

∥∥X(τ)βa −X(τ∗)β̃
a
∥∥2
T

)
into three parts:

E
( p∑
a=1

∥∥X(τ)βa −X(τ∗)β̃
a
∥∥2
T

)
= L1 + L2 + L3, (72)

where L1, L2, and L3 are defined as:

L1 =
bTτc
T

p∑
a=1

(θa + δa − θ̃a − δ̃a)>Σ(1)(θa + δa − θ̃a − δ̃a),

L2 =
bTτ∗c − bTτc

T

p∑
a=1

(θa − θ̃a − δ̃a)>Σ(1)(θa − θ̃a − δ̃a),

L3 =
bT (1− τ∗)c

T

p∑
a=1

(θa − θ̃a)>Σ(2)(θa − θ̃a).

Therefore, by (72) and considering L1 ≥ 0, we have

E
( p∑
a=1

∥∥X(τ)βa −X(τ∗)β̃
a
∥∥2
T

)
≥ L2 + L3. (73)

By Assumptions 1 and 2, we have max(λmax(Σ(1)), λmax(Σ(2)) ≤ K1 , |θa|∞ ≤M0, |δa|∞ ≤
M0, |θ̃a|∞ ≤ M0, and |δ̃a|∞ ≤ M0 for 1 ≤ a ≤ p. Straightforward calculations show that
there exists a positive constant C0 such that

p∑
a=1

(θa − θ̃a − δ̃a)>Σ(1)(θa − θ̃a − δ̃a) ≤ C0s1,

p∑
a=1

(θa − θ̃a)>Σ(2)(θa − θ̃a) ≤ C0s1, (74)
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where s1 comes from Assumption 2, and C0 only depends on K1 and M0. Note that for any
τ ∈ [t0, τ∗], we have∣∣∣bTτ∗c − bTτc

T
− (τ∗ − τ)

∣∣∣ = O(1/T ), and
∣∣∣bT (1− τ∗)c

T
− (1− τ∗)

∣∣∣ = O(1/T ).

Hence, by (72) – (74), for sufficiently large T and p, we have

E
( p∑
a=1

∥∥X(τ)βa −X(τ∗)β̃
a
∥∥2
T

)
≥ (τ∗ − τ)

p∑
a=1

(θa − θ̃a − δ̃a)>Σ(1)(θa − θ̃a − δ̃a) + (1− τ∗)
p∑
a=1

(θa − θ̃a)>Σ(2)(θa − θ̃a) +O(s1/T ),

= (τ∗ − τ)
p∑
a=1

(δ̃a)>Σ(1)δ̃a + (τ∗ − τ)
p∑
a=1

(θa − θ̃a)>Σ(1)(θa − θ̃a)− 2(τ∗ − τ)
p∑
a=1

(θa − θ̃a)>Σ(1)δ̃a

+ (1− τ∗)
p∑
a=1

(θa − θ̃a)>Σ(2)(θa − θ̃a) +O(s1/T ).

(75)
By the definitions of κ := min(λmin(Σ(1)), λmin(Σ(2))), and κ := max(λmax(Σ(1)), λmax(Σ(2))),
we have

(τ∗ − τ)
p∑
a=1

(θa − θ̃a)>Σ(1)(θa − θ̃a) + (1− τ∗)
p∑
a=1

(θa − θ̃a)>Σ(2)(θa − θ̃a),

≥ (1− τ)κ
p∑
a=1

(θa − θ̃a)>(θa − θ̃a),

≥ (1− τ)κ

κ

p∑
a=1

(θa − θ̃a)>Σ(1)(θa − θ̃a).

(76)

Hence, by (75) and (76), to prove (71), we consider two cases:

Case 1:
(1− τ)κ

κ

p∑
a=1

(θa − θ̃a)>Σ(1)(θa − θ̃a)− 2(τ∗ − τ)
p∑
a=1

(θa − θ̃a)>Σ(1)δ̃a ≥ 0. In

this case, considering (75), for sufficiently large T and p, we have

E
( p∑
a=1

∥∥X(τ)βa −X(τ∗)β̃
a
∥∥2
T

)
≥ (τ∗ − τ)

p∑
a=1

(δ̃a)>Σ(1)δ̃a.

Case 2:
(1− τ)κ

κ

p∑
a=1

(θa − θ̃a)>Σ(1)(θa − θ̃a) < 2(τ∗ − τ)
p∑
a=1

(θa − θ̃a)>Σ(1)δ̃a. In this

case, we first define the following p2-dimensional vectors as:

θpp :=
(((

Σ(1)
)1/2

θ1
)>
, . . . ,

((
Σ(1)

)1/2
θp
)>)>

,

θ̃pp :=
(((

Σ(1)
)1/2

θ̃1
)>
, . . . ,

((
Σ(1)

)1/2
θ̃p
)>)>

,

δ̃pp :=
(((

Σ(1)
)1/2

δ̃1
)>
, . . . ,

((
Σ(1)

)1/2
δ̃p
)>)>

.

(77)

By (77), we have
p∑
a=1

(θa − θ̃a)>Σ(1)(θa − θ̃a) = |θpp − θ̃pp|22. Hence, in Case 2, we have

(1− τ)κ

κ
|θpp − θ̃pp|22 < 2(τ∗ − τ)(θpp − θ̃pp)>δ̃pp. (78)
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Let J0 be the set of non-zero elements of the p2-dimensional vector δ̃pp as defined in (77).
Considering (78), and by the Cauchy-Swartz inequality, we have

(1− τ)κ

κ
|θpp − θ̃pp|22 < 2(τ∗ − τ)(θpp − θ̃pp)>J0 δ̃

pp
J0
< 2(τ∗ − τ)|(θpp − θ̃pp)J0 |2|δ̃

pp
J0
|2. (79)

For |(θpp − θ̃pp)J0 |2, by (79), we have

|(θpp − θ̃pp)J0 |2 ≤
|θpp − θ̃pp|22
|(θpp − θ̃pp)J0 |2

<
2(τ∗ − τ)

(1− τ)κ/κ
|δ̃ppJ0 |2 <

2(τ∗ − t0)
(1− t0)κ/κ

|δ̃ppJ0 |2, (80)

where the last inequality as in (80) comes from the fact that τ ∈ [t0, τ∗].
Based on (75), (76), (77), and (80), in Case 2, we further have

E
( p∑
a=1

∥∥X(τ)βa −X(τ∗)β̃
a
∥∥2
T

)
≥ (τ∗ − τ)|δ̃ppJ0 |

2
2 +

(1− τ)κ

κ
|θpp − θ̃pp|22 − 2(τ∗ − τ)(θpp − θ̃pp)>J0 δ̃

pp
J0
,

= (τ∗ − τ)|δ̃ppJ0 − (θpp − θ̃pp)J0 |22 +
(1− τ)κ

κ
|θpp − θ̃pp|22,

− (τ∗ − τ)|(θpp − θ̃pp)J0 |22.

(81)

By Assumption 4, we have
(1− τ)κ

κ
≥ (τ∗−τ) for τ ∈ [t0, τ∗]. Considering that |θpp−θ̃pp|22 ≥

|(θpp − θ̃pp)J0 |22, we have

(1− τ)κ

κ
|θpp − θ̃pp|22 − (τ∗ − τ)|(θpp − θ̃pp)J0 |22 ≥ 0. (82)

Define c0 =
2(τ∗ − t0)

(1− t0)κ/κ
. Note that under Assumption 4, we have 0 < c0 < 1. Then, by

(80) and (81), and (82), for sufficiently large T and p, we have

E
( p∑
a=1

∥∥X(τ)βa −X(τ∗)β̃
a
∥∥2
T

)
≥ (τ∗ − τ)(1− c0)2|δ̃ppJ0 |

2
2

= (τ∗ − τ)(1− c0)2
p∑
a=1

(δ̃a)>Σ(1)δ̃a.
(83)

After getting the lower bound of E
( p∑
a=1

∥∥X(τ)βa−X(τ∗)β̃
a
∥∥2
T

)
as in (83) for τ ∈ [t0, τ∗]

with τ∗ − τ > η, we next consider the case for τ ∈ [τ∗, t1] with τ − τ∗ > η. Define c1 =
2(t1 − τ∗)
t1κ/κ

. Under Assumption 4, we have 0 < c1 < 1. Furthermore, under Assumptions 1

– 4, using a proof procedure similar to the case of τ ∈ [τ∗, t1], we can prove

E
( p∑
a=1

∥∥X(τ)βa −X(τ∗)β̃
a
∥∥2
T

)
≥ (τ − τ∗)(1− c1)2

p∑
a=1

(δ̃a)>Σ(2)δ̃a (84)

holds for sufficiently large T and p.
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Note that under Assumption 3, we have min
( p∑
a=1

(δ̃a)>Σ(1)δ̃a,
p∑
a=1

(δ̃a)>Σ(2)δ̃a
)
> δ∗

for some δ∗ > 0. Finally, combining (83) and (84), for any τ and η with |τ − τ∗| > η, there
exists c∗ > 0 such that

E
( p∑
a=1

∥∥X(τ)βa −X(τ∗)β̃
a
∥∥2
T

)
> c∗η (85)

holds for sufficiently large T and p, where c∗ := min
(
δ∗(1− c0)2, δ∗(1− c1)2

)
.

Step 2: Next, we prove ∆ = op(1) uniformly over τ ∈ [t0, t1], where

∆ :=
∣∣∣ p∑
a=1

‖X(τ)βa −X(τ∗)β̃
a‖2T − E

( p∑
a=1

‖X(τ)βa −X(τ∗)β̃
a‖2T
)∣∣∣. (86)

We first consider τ ∈ [t0, τ∗]. By definition, we can decompose ∆ as in (86) into three parts:

∆ = ∆1 + ∆2 + ∆3, (87)

where

∆1 :=
p∑
a=1

(βa − β̃a)>
{ 1

T

bTτc∑
t=1

(
Xt(Xt)> −Σ(1)

)}
(βa − β̃a),

∆2 :=
p∑
a=1

(θa − θ̃a − δ̃a)>
{ 1

T

bTτ∗c∑
t=bTτc+1

(
Xt(Xt)> −Σ(1)

)}
(θa − θ̃a − δ̃a),

∆3 :=
p∑
a=1

(θa − θ̃a)>
{ 1

T

T∑
t=bTτ∗c+1

(
Xt(Xt)> −Σ(2)

)}
(θa − θ̃a).

By (87), to prove ∆ = op(1), it is sufficient to consider ∆1, ∆2, and ∆3, respectively. We

first consider ∆1. Recall V̂jk(τ) =
1

T

bTτc∑
t=1

(
Xt
jX

t
k − E(Xt

jX
t
k)
)

as defined in (52). Following

the proof technique as in Section C.1, we have

sup
τ∈[t0,τ∗]

∥∥∥ 1

T

bTτc∑
t=1

(
Xt(Xt)> −Σ(1)

)∥∥∥
∞

= sup
τ∈[t0,τ∗]

max
1≤j,k≤p

|V̂jk(τ)| = Op
(√

log(pT )/T
)
. (88)

Therefore, by (88), using (a+ b)2 ≤ 2a2 + 2b2, we have

∆1 ≤
p∑
a=1
|(βa − β̃a)|21 sup

τ∈[t0,τ∗]
max

1≤j,k≤p
|V̂jk(τ)|,

≤
p∑
a=1

2(|βa|21 + |β̃a|21) sup
τ∈[t0,τ∗]

max
1≤j,k≤p

|V̂jk(τ)|,

≤ 4s1M
2
0Op(

√
T/ log(pT )),

(89)

where the last inequality in (89) comes from Assumption 2, i.e.
∑p

a=1M(βa) ≤ s1,∑p
a=1M(β̃a) ≤ s1, |βa|∞ ≤ M0, and |β̃a|∞ ≤ M0 for 1 ≤ a ≤ p. Considering s1 =

o(
√
T/ log(pT )), we have ∆1 = op(1) uniformly over τ ∈ [t0, τ∗]. Similarly, for ∆2 and ∆3,
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we can also prove ∆2 = op(1) and ∆3 = op(1) for τ ∈ [t0, τ∗]. Then, by (87), we have
∆ = op(1) over τ ∈ [t0, τ∗]. Using a similar proof procedure, we can prove ∆ = op(1)
uniformly for τ ∈ [τ∗, t1]. Finally, we have proved that

∆ = op(1), uniformly over τ ∈ [t0, t1]. (90)

Combining (70), (85), and (90), for sufficiently large T and p,

p∑
a=1

‖X(τ)βa −X(τ∗)β̃
a‖2T > c∗η

holds with probability at least 1 − (pT )−C for some constant C > 0, which finishes the
proof.

C.4 Proof of Theorem 7 and Proposition 9

Proof The proof of Theorem 7 mainly relies on Lemmas 17 and 18. By Lemma 17, if we
have prior upper bounds of |τ̂ − τ∗| and

∑p
a=1 |β̂a − β̃a|1, respectively, say cτ and cβ, then

using (47), we can tighten the upper bound of
∑p

a=1 |β̂a− β̃a|1. Furthermore, by (48) as in
Lemma 18, with the tightened upper bound for estimation error in (β̃)pa=1, we can further
tighten the bound of |τ̂−τ∗|. The above analysis motivates us to adopt a chaining technique
by iteratively applying Lemmas 17 and 18 to tighten the upper bound for estimation errors
in τ∗ and (β̃)pa=1, respectively. Note that the same idea is also adopted by Lee et al. (2016).

In particular, let c
(m)
τ and c

(m)
β denote the bounds of |τ̂ − τ∗| and

∑p
a=1 |β̂a − β̃a|1,

respectively, in the m-th iteration. Our iterative procedure can be described briefly as
follows: (

c(m)
τ , c

(m)
β

) Lemma 17−−−−−−−→
(47)

(
c(m)
τ , c

(m+1)
β

) Lemma 18−−−−−−−→
(48)

(
c(m+1)
τ , c

(m+1)
β

)
. (91)

Note that by (47), there are three terms in the upper bound of
∑p

a=1 |β̂a − β̃a|1. In this
section, we aim to show that, after a finite number of iterations, the term 6X2

maxκ
′−2λT s1

dominates the other two terms. In other words, we aim to show that

{6X2
max

κ′2
λT s1

∨ 2Xmax

κ′

(
s1c

(m)
β c

(m)
τ C∗

p∑
a=1
|δ̃a|1

)1/2∨(√
c
(m)
τ + (2Xmin)−1c

(m)
τ C∗

p∑
a=1
|δ̃a|1

)}
,

=
6X2

max

κ′2
λT s1.

(92)

holds for some m = m∗ with m∗ < ∞. Then, if (92) holds, by (91), (46), and (47), we

can obtain the final upper bounds of
p∑
a=1

∥∥X(τ̂)β̂a(τ̂) −X(τ∗)β̃
a
∥∥2
T

and
p∑
a=1

∣∣β̂a − β̃a∣∣
1

as

follows:
p∑
a=1

∥∥X(τ̂)β̂a(τ̂)−X(τ∗)β̃
a
∥∥2
T
≤ 18X2

max

κ′2︸ ︷︷ ︸
M2

λ2T s1, (93)
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and
p∑
a=1

∣∣β̂a − β̃a∣∣
1
≤ 3

(1− µ)Xmin

6X2
max

κ′2︸ ︷︷ ︸
M3

λT s1 := c∗β. (94)

Considering (93) and (94), we finish the proof of Proposition 9 . Furthermore, by (91), (92),
(94), and (48), we can obtain the final upper bound of |τ̂ − τ∗| as follows:

|τ̂ − τ∗| ≤ c−1∗ λT

(
(1 + µ)c∗βXmax +

√
c
(m∗)
τ + (2Xmin)−1c

(m∗)
τ C∗

p∑
a=1
|δ̃a|1

)
,

≤
(3(1 + µ)

1− µ
Xmax

Xmin
+ 1
)6X2

max

κ′2c∗︸ ︷︷ ︸
M1

λ2T s1 := c∗τ .
(95)

Considering (95), we complete the proof of Theorem 7.
In what follows, we will prove that, after a finite number of iterations, say m∗, (92)

holds. To this end, we need some notations and conditions. Define

H1 =
3(1 + µ)

1− µ
Xmax

Xmin
+ 1, H2 =

C∗

2Xminc∗
, H3 =

6X2
maxc∗
κ′2

, H4 =
36(1 + µ)X3

max

(1− µ)2Xmin
.

With the above notations, we require the following conditions (96) – (100) hold:

H1H2λT

p∑
a=1

|δ̃a|1 < 1, (96)

H1(
1−H1H2λT

p∑
a=1
|δ̃a|1

)2 < H3s1, (97)

(2κ′−2H4 + 1)H2λT

p∑
a=1

|δ̃a|1 < 1, (98)

1(
1− (2κ′−2H4s1 + 1)H2λT

p∑
a=1
|δ̃a|1

)2 < H1H3s1, (99)

H2λT
p∑
a=1
|δ̃a|1(

1− (2κ′−2H4s1 + 1)H2λT
p∑
a=1
|δ̃a|1

)2 < (1− µ)c∗
4

. (100)

Note that if λT s1
∑p

a=1 |δ̃a|1 → 0 as p, T → ∞, the above conditions (96) – (100) hold.
Furthermore, with a similar proof procedure using in Lee et al. (2016), under conditions
(96) – (100), we can prove that, after a finite number of iterations, (92) holds, which yields
the desired upper bounds as in (93), (94), and (95), respectively. To save space, we omit
the details here.

Finally, we show that Lemmas 17 and 18 hold with a high probability through the m∗

iterations. In particular, we show that the event
⋂

1≤a≤p{Aa ∩ Ba}
⋂
{
⋂m∗

j=1 C(ηj)} occurs
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with a high probability. Let Φ(x) be the CDF of the standard normal distribution. We
have 2Φ(−x) ≤ exp(−x2/2) for x ≥

√
2/π . Hence, by Lemmas 15 and 16, conditional on

the events E(1), E(2), and E(3) as defined in (42), (44), and (45), we have

P
(⋂

1≤a≤p{Aa ∩ Ba}
⋂{⋂m∗

j=1 C(ηj)
})

≥ 1− 3p2 exp

(
−µ2T
8ω2

K2
2

K2
1

λ2T

)
− 2

m∗∑
j=1

exp

(
−µ2T

8ω4C
(j)
1 κ−1δ∗

K2
2

K2
1

λ2T

)

− 2
m∗∑
j=1

exp

(
−µ2

8ω4C
(j)
2 κ−1δ∗

K2
2

K2
1

λ2T

)
,

≥ 1− 3p2 exp

(
−µ2T
8ω2

K2
2

K2
1

λ2T

)
− 4m∗ exp

(
−µ2T
8ω2A∗

K2
2

K2
1

λ2T

)
,

(101)

whereA∗ := max1≤j≤m∗,1≤k≤2(ω
2C

(j)
k κ−1δ∗). TakingA∗1 = 4K1/K2 andA∗2 = 2

√
2A∗K1/K2

as in Assumption 5, and combining (101), conditional on the events E(1), E(2) and E(3), we
have

P
( ⋂

1≤a≤p
{Aa ∩ Ba}

⋂{ m∗⋂
j=1

C(ηj)
})
≥ 1− 3(p2)1−A

2µ2/(A∗1)
2 − 4m∗p1−A

2µ2/(A∗2)
2
.

Note that, the events E(1), E(2) and E(3) occur with a probability at least 1 − Q1(pT )−Q2

for some universal constants Q1 > 0 and Q2 > 0

Finally, taking C1 ≡ 3, C2 ≡ 4m∗, C3 ≡ Q1, and C4 ≡ Q2 in Theorem 7 and Proposition
9, we complete the proof.

C.5 Proof of Theorem 11

Proof The proofs of (28) and (29) are quite similar. To save space, we only consider (28)
here. The proof of (28) proceeds in two steps. In Step 1, we prove E(1) ⊂ Ĕ(1). In Step 2,
we prove |Ĕ(1) ∩ (E(1))c| ≤ 2M3/r

∗
1. Now, we consider the two steps in details.

Step 1 : Recall Ê
(1)
init as defined in (12). By definitions, we have

|Ê(1)
init ∩ (E(1))c|

=
∑

(a,b)∈(E(1))c
1
{
|θ̂ab (τ̂) + δ̂ab (τ̂)| ≥ r0λT ∪ |θ̂ba(τ̂) + δ̂ba(τ̂)| ≥ r0λT

}
,

≤
∑

(a,b)∈(E(1))c
1
{
|θ̂ab (τ̂) + δ̂ab (τ̂)| ≥ r0λT

}
+

∑
(a,b)∈(E(1))c

1
{
|θ̂ba(τ̂) + δ̂ba(τ̂)| ≥ r0λT

}
,

(102)
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where the last inequality comes from 1{A ∪ B} ≤ 1{A} + 1{B} for two events A and B.
Note that for (a, b) ∈ (E(1))c, we have θ̃ab + δ̃ab = 0. Hence, combining (102), we have

|Ê(1)
init ∩ (E(1))c| ≤

∑
(a,b)∈(E(1))c

1
{
|θ̂ab (τ̂)− θ̃ab + δ̂ab (τ̂)− δ̃ab | ≥ r0λT

}
+

∑
(a,b)∈(E(1))c

1
{
|θ̂ba(τ̂)− θ̃ba + δ̂ba(τ̂)− δ̃ba| ≥ r0λT

}
,

≤ 2

r0λT

p∑
a=1

∑
b6=a
|θ̂ab (τ̂)− θ̃ab |+ |δ̂ab (τ̂)− δ̃ab |,

≤ 2
M3

r0
s1,

(103)

where the last inequality of (103) comes from
∑p

a=1

∣∣β̂a(τ̂) − β̃a
∣∣
1
≤ M3λT s1 obtained in

Proposition 9. By (103), we have

|Ê(1)
init| ≤ |Ê

(1)
init ∩ (E(1))c|+ |E(1)| ≤ (1 + 2

M3

r0
)s1. (104)

Define the following p2-dimensional vectors:

α̃pp =
(
(α̃1)>, (α̃2)>, . . . , (α̃p)>

)>
, α̂pp =

(
(α̂1)>, (α̂2)>, . . . , (α̂p)>

)>
,

with α̃a and α̂a being defined as

α̃a = θ̃a + δ̃a =
(
θ̃a1 + δ̃a1 , . . . , θ̃

a
p + δ̃ap

)>
,

α̂a = θ̂a(τ̂) + δ̂a(τ̂) =
(
θ̂a1(τ̂) + δ̂a1(τ̂), . . . , θ̂ap(τ̂) + δ̂ap(τ̂)

)>
, for 1 ≤ a ≤ p.

Moreover, let vinit := α̂pp − α̃pp and α̃ppmin := min1≤a≤p min1≤b≤p,b 6=a |θ̃ab + δ̃ab |. Recall

t
(1)
thr = r∗1λT |Ê

(1)
init|. By (104), we have t

(1)
thr ≤ r∗1(1 + 2

M3

r0
)λT s1. For (a, b) ∈ E(1), we then

have

max
(
|θ̂ab (τ̂) + δ̂ab (τ̂)|, |θ̂ba(τ̂) + δ̂ba(τ̂)|

)
≥ α̃ppmin − |vinit|1,

≥ α̃ppmin −
p∑
a=1
|β̂a(τ̂)− β̃a|1,

≥ α̃ppmin −M3λT s1 (Proposition 7),

≥ t(1)thr (Assumption 6),

(105)

which implies (a, b) ∈ Ĕ(1). Hence, by (105) and the construction of Ê
(1)
init as in (2.9), we

have E(1) ⊂ Ĕ(1) ⊂ Ê(1)
init.

Step 2 : In this step, we prove |Ĕ(1) ∩ (E(1))c| ≤ 2M3/r
∗
1. By definitions, we have

|Ĕ(1) ∩ (E(1))c|
=

∑
(a,b)∈(E(1))c

1
{
|θ̂ab (τ̂) + δ̂ab (τ̂)| ≥ t(1)thr ∪ |θ̂

b
a(τ̂) + δ̂ba(τ̂)| ≥ t(1)thr

}
,

≤
∑

(a,b)∈(E(1))c
1
{
|θ̂ab (τ̂) + δ̂ab (τ̂)| ≥ t(1)thr

}
+

∑
(a,b)∈(E(1))c

1
{
|θ̂ba(τ̂) + δ̂ba(τ̂)| ≥ t(1)thr

}
.

(106)
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Note that for (a, b) ∈ (E(1))c, we have θ̃ab + δ̃ab = 0. By (106), we have

|Ĕ(1) ∩ (E(1))c| ≤
∑

(a,b)∈(E(1))c
1
{
|θ̂ab (τ̂)− θ̃ab + δ̂ab (τ̂)− δ̃ab | ≥ t

(1)
thr

}
+

∑
(a,b)∈(E(1))c

1
{
|θ̂ba(τ̂)− θ̃ba + δ̂ba(τ̂)− δ̃ba| ≥ t

(1)
thr

}
,

≤ 2

t
(1)
thr

p∑
a=1

∑
b6=a
|θ̂ab (τ̂)− θ̃ab |+ |δ̂ab (τ̂)− δ̃ab |,

≤ 2M3λT s1/t
(1)
thr ≤ 2M3/r

∗
1,

(107)

where the last inequality of (107) comes from t
(1)
thr = r∗1λT |Ê

(1)
init| ≥ r∗1λT s1.

Finally, combining Steps 1 and 2, we complete the proof of (28). With a similar proof
procedure, we can also prove (29), which finishes the proof of Theorem 11.

Appendix D. Proof of useful lemmas

D.1 Proof of Lemma 12

Proof We first prove (34). By the definition of ‖Xa(τ)‖T as in (31), for any τ ∈ T , we
have ‖Xa(τ)‖T ≥ ‖Xa+p(τ)‖T with 1 ≤ a ≤ p. Hence, to prove (34), it is sufficient to
consider max1≤a≤p ‖Xa‖T . Note that T‖Xa‖2T ∼ χ2(T ) for 1 ≤ a ≤ p. For any z > 1, using
the tail probability for χ2(T ), we have

P
(

max
1≤a≤p

‖Xa‖2T > z
)
≤ p max

1≤a≤p
P
( T∑
t=1

(Xt
a)

2 > Tz
)
≤ p
(
z exp(1− z)

)T/2
.

Therefore, choosing z = K2
1 with some K1 > 1, we finish the proof of (34).

Next, we prove (35). Note that ‖Xa(t0)‖T ≥ ‖Xa+p(t0)‖T for 1 ≤ a ≤ p. To prove
(35), it is sufficient to consider minp+1≤a≤2p ‖Xa(t0)‖T . Recall Qt = t/T . We then have
T‖Xa(t0)‖2T ∼ χ2(bTt0c) for p + 1 ≤ a ≤ 2p. Using the tail probability for χ2(bTt0c)
distribution again, for any 0 < z < t0, we have

P
(

min
p+1≤a≤2p

‖Xa(t0)‖2T < z
)
≤ pP

(
χ2(bTt0c) < zT

)
≤ p
(
z′ exp(1− z′)

)bTt0c/2
where z′ := z/t0. Choosing z = K2

2 with some 0 < K2 < t0, we finish the proof of (35).

D.2 Proof of Lemma 13

Proof We aim to prove (36). By the triangle inequality, we have

sup
1≤a≤p

sup
|τ−τ∗|≤η

1

T

T∑
t=1

|Xt
a|2
∣∣1{Qt ≤ τ∗} − 1{Qt ≤ τ}

∣∣ ≤ D1 +D2, (108)
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where

D1 := sup
1≤a≤p

sup
|τ−τ∗|≤η

1

T

T∑
t=1

E
(
|Xt

a|2
∣∣1{Qt ≤ τ∗} − 1{Qt ≤ τ}

∣∣),
D2 := sup

1≤a≤p
sup

|τ−τ∗|≤η

∣∣∣ 1

T

T∑
t=1

((
|Xt

a|2 − E(Xt
a)

2
)∣∣1{Qt ≤ τ∗} − 1{Qt ≤ τ}

∣∣)∣∣∣.
Therefore, by (108), to prove Lemma 13, it is sufficient to bound D1 and D2, respectively.

We first considerD1. Note that under Assumption 1 (a), Xt
a followsN(0, 1) for 1 ≤ t ≤ T

and 1 ≤ a ≤ p. We have E(Xt
a)

2 = 1 for 1 ≤ a ≤ p and 1 ≤ t ≤ T . Recall Qt = t/T . Note
that

|1
{
Qt ≤ τ∗} − 1{Qt ≤ τ}| = 1

{
{τ ≤ Qt ≤ τ∗} ∪ {τ∗ ≤ Qt ≤ τ}

}
, (109)

Then, by (109), for sufficiently large T , there exists a positive constant C1 such that

D1 ≤ sup
|τ−τ∗|≤η

|bTτc − bTτ∗c|
T

≤ C1η. (110)

Next, we bound D2. Note that (Xt
a)

2 follows the sub-exponential distribution. For any
z > 0, by (109), we have

P(D2 > z) ≤ D21 +D22,

where

D21 := pT sup
1≤a≤p

sup
τ∗≤τ≤η+τ∗

P
(∣∣∣ 1

T

bTτc∑
t=bTτ∗c

(Xt
a)

2 − E(Xt
a)

2
∣∣∣ > z/2

)
,

D22 := pT sup
1≤a≤p

sup
τ∗−η≤τ≤τ∗

P
(∣∣∣ 1

T

bTτ∗c∑
t=bTτc

(Xt
a)

2 − E(Xt
a)

2
∣∣∣ > z/2

)
.

For D21, using Bernstein’s inequality for sub-exponential distributions and considering τ∗ ≤
τ ≤ η + τ∗ there exists C1 and C2 such that

D21 ≤ C1pT exp
(
− C2

z2T 2

bT (τ∗ + η)c − bTτ∗c

)
(111)

holds. Similarly, for D22, using Bernstein’s inequality again and considering τ∗−η ≤ τ ≤ τ∗,
we have

D22 ≤ C1pT exp
(
− C2

z2T 2

bTτ∗c − bT (τ∗ − η)c

)
. (112)

Therefore, by (111) and (112), choosing z = C
√

log(pT )/T , we have D2 ≤ C
√

log(pT )/T
with probability at least 1− (pT )−C2 for sufficiently large T and p.

Finally, combining (108), (110), and the result that D2 ≤ C
√

log(pT )/T , we finish the
proof of Lemma 13.
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D.3 Proof of Lemma 14

Proof By the definitions of τ̂ and (β̂a)pa=1 as obtained from (5) – (7), we have

p∑
a=1

(∥∥Xa −X(τ̂)β̂a
∥∥2
T

+ λT |D̂β̂a|1
)
≤

p∑
a=1

(∥∥Xa −X(τ∗)β̃
a
∥∥2
T

+ λT |Dβ̃a|1
)
. (113)

Recall Xt
a as defined in (4). For

∥∥Xa−X(τ̂)β̂a
∥∥2
T

and
∥∥Xa−X(τ∗)β̃

a
∥∥2
T

in (113), we have∥∥Xa −X(τ̂)β̂a
∥∥2
T
−
∥∥Xa −X(τ∗)β̃

a
∥∥2
T

= T−1
T∑
t=1

(
Xt
a −Xt(τ̂)>β̂a

)2 − T−1 T∑
t=1

(
Xt
a −Xt(τ∗)

>β̃a
)2
,

= T−1
T∑
t=1

(
εta −

(
Xt(τ̂)>β̂a −Xt(τ∗)

>β̃a
))2
− T−1

T∑
t=1

(
εta −

(
Xt(τ∗)

>β̃a −Xt(τ∗)
>β̃a

))2
,

=
∥∥X(τ̂)β̂a −X(τ∗)β̃

a
∥∥2
T
− 2T−1

T∑
t=1

εta
(
Xt(τ̂)>β̂a −Xt(τ∗)

>β̃a
)
.

(114)

Recall β̂a := ((θ̂a)>, (δ̂a)>)> and β̃a := ((θ̃a)>, (δ̃a)>)>. Then, for 2T−1
T∑
t=1

εta
(
Xt(τ̂)>β̂a−

Xt(τ∗)
>β̃a

)
as in (114), we have

2

T

T∑
t=1

εta
(
Xt(τ̂)>β̂a −Xt(τ∗)

>β̃a
)

=
2

T

T∑
t=1

εta(X
t)>(θ̂a − θ̃a)

+
2

T

T∑
t=1

εta(X
t)>1{Qt ≤ τ̂}(δ̂a − δ̃a) +

2

T

T∑
t=1

εta(X
t)>δ̃a

(
1{Qt ≤ τ̂} − 1{Qt ≤ τ∗}

)
.

Recall Aa and Ba as defined in (38). For each node a, under the events Aa and Ba, we have

∣∣∣ 2

T

T∑
t=1

εta(X
t)>(θ̂a− θ̃a) +

2

T

T∑
t=1

εta(X
t)>1{Qt ≤ τ̂}(δ̂a− δ̃a)

∣∣∣ ≤ λTµ∣∣D̂(β̂a− β̃a)
∣∣
1
. (115)

Combining (113), (114), and (115), under the event
⋂

1≤a≤p{Aa ∩ Ba}, we have

p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T
≤ λTµ

p∑
a=1

∣∣D̂(β̂a − β̃a)
∣∣
1

+ λT
p∑
a=1

(
|Dβ̃a|1 − |D̂β̂a|1

)
,

+
2

T

p∑
a=1

T∑
t=1

εta(X
t)>δ̃a

(
1{Qt ≤ τ̂} − 1{Qt ≤ τ∗}

)
.

(116)

By adding λT
p∑
a=1

∣∣D̂(β̂a − β̃a)
∣∣
1

on the two sides of (116), we have

p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T

+ λT (1− µ)
p∑
a=1

∣∣D̂(β̂a − β̃a)
∣∣
1

≤ λT
p∑
a=1

∣∣D̂(β̂a − β̃a)
∣∣
1

+ λT
p∑
a=1

(
|Dβ̃a|1 − |D̂β̂a|1

)
+R.

(117)
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where R is defined in (39). Let Ja0 = J(β̃a) be the set of non-zero elements of β̃a. Note
that

|β̂aj − β̃aj |+ |β̃aj | − |β̂aj | = 0, if j ∈ (Ja0 )c. (118)

Hence, by (117) and (118), and using the triangle inequality, we have

p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T

+ λT (1− µ)
p∑
a=1

∣∣D̂(β̂a − β̃a)
∣∣
1

≤ 2λT
p∑
a=1

∣∣D̂(β̂a − β̃a)Ja0
∣∣
1

+ λT
p∑
a=1

∣∣|D̂β̃a|1 − |Dβ̃a|1∣∣+R,

which completes the proof of (40) in Lemma 14.

After proving (40), we next consider (41). The proof technique is similar. To save space,
we omit the details.

D.4 Proof of Lemma 15

Proof We first consider Aa. Let Φ(x) be the CDF of the standard normal distribution.
Note that εta ∼ N(0, (σta)

2) for 1 ≤ t ≤ T . By the definition of V a
1b as in (37), conditional

on X , we have
√
TV a

1b ∼ N(0, 1) for 1 ≤ b ≤ p with b 6= a. Therefore, for each node a,

P((Aa)c) ≤
p∑

b=1,b 6=a
P
(
2
√
T |V a

1b| >
√
TµλT
ω

)
= 2(p− 1)Φ

(
−
√
TµλT
2ω

)
≤ 2pΦ

(
−
√
TrTµλT

2ω

)
,

(119)
where the last inequality comes from 0 < rT ≤ 1.

We next consider Ba. Note that Qt := t/T and ‖Xa(τ)‖T ≥ ‖Xa(t0)‖T for τ ∈ [t0, t1].
Hence, we can write V a

2b(τ) in (37) as a partial sum process and have

V a
2b(τ) :=

1

T

bTτc∑
t=1

εta
σta

Xt
b

‖Xb(τ)‖T
≤ 1

T

bTτc∑
t=1

εta
σta

Xt
b

‖Xb(t0)‖T
. (120)

By (120), conditional on X , we have

P
(

sup
τ∈T
|
√
TV a

2b(τ)| >
√
TµλT /2ω

)
≤ P

(√
T sup
τ∈T

∣∣ 1

T

bTτc∑
t=1

εta
σta

Xt
b

‖Xb(t0)‖T
∣∣ > √TµλT /2ω),

≤ P
(√
T sup

1≤s≤T

∣∣ 1

T

s∑
t=1

εta
σta

Xt
b

‖Xb‖T
∣∣ > √TµλT ‖Xb(t0)‖T

2ω‖Xb‖T
)
,

≤ 2P
(√
T
∣∣V a

1b| >
√
TµλT ‖Xb(t0)‖T

2ω‖Xb‖T
)
,

(121)

where the last inequality in (121) comes from the fact that V a
1b follows a Gaussian distribu-

tion and by Levy’s inequality (see Proposition A.1.2 in van der Vaart and Wellner (1996)).
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Therefore, by (121), we have

P((Ba)c) ≤
p∑

b=1,b 6=a
P
(

sup
τ∈T
|
√
TV a

2b(τ)| >
√
TµλT /2ω

)
,

≤
p∑

b=1,b 6=a
2P
(√
T
∣∣V a

1b| >
√
TµλT ‖Xb(t0)‖T

2ω‖Xb‖T
)
,

≤ 4pΦ
(
−
√
TrTµλT

2ω

)
,

(122)

the last inequality in (122) comes from rT := min
1≤a≤p

‖Xa(t0)‖2T
‖Xa‖2T

and Assumption 1 (b).

Note that under the event E(1) as defined in (42), we have rT ≥ K2
2/K

2
1 . Finally, com-

bining (119) and (122), using P(
⋂

1≤a≤pAa ∩ Ba) ≥ 1 −
∑p

a=1

(
P
(
(Aa)c

)
+ P

(
(Ba)c

))
, we

complete the proof of Lemma 15.

D.5 Proof of Lemma 16

Proof Recall Qt := t/T . By the definition of C(ηj) as defined in (43), we have

P
(
(C(ηj))c

)
≤ D1(ηj) +D2(ηj), (123)

where

D1(ηj) := P
(

sup
−ηj≤τ−τ∗≤0

∣∣∣ 2

T

p∑
a=1

bTτ∗c∑
t=bTτc

εta(X
t)>δ̃a

∣∣∣ > λT
√
ηj

)
,

D2(ηj) := P
(

sup
0≤τ−τ∗≤ηj

∣∣∣ 2

T

p∑
a=1

bTτc∑
t=bTτ∗c

εta(X
t)>δ̃a

∣∣∣ > λT
√
ηj

)
.

Hence, by (123), we need to bound D1(ηj) and D2(ηj), respectively.

We first consider D1(ηj). Note that conditional on X ,
p∑
a=1

εta(X
t)>δ̃a follows a Gaussian

distribution. Then, using Levy’s inequality (van der Vaart and Wellner (1996)), we have

D1(ηj) ≤ 2P
(∣∣∣ 2

T

bTτ∗c∑
t=bT (τ∗−ηj)c

p∑
a=1

εta(X
t)>δ̃a

∣∣∣ > λT
√
ηj

)
. (124)

Next, we examine the distribution of
2

T

bTτ∗c∑
t=bT (τ∗−ηj)c

p∑
a=1

εta(X
t)>δ̃a. To this end, define

et = (et1, . . . , e
t
p)
>,Λt =

(
(Xt)>δ̃1, . . . , (Xt)>δ̃p

)>
, for 1 ≤ t ≤ T. (125)

Note that by Assumption 1 (b) and Anderson (2003), we have Cov(et) = ω4Ω(1) for 1 ≤
t ≤ bTτ∗c and Cov(et) = ω4Ω(2) for bTτ∗c+ 1 ≤ t ≤ T . Furthermore, consider that (et)Tt=1
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are independent random vectors. Then conditional on X , we have

2

T

bTτ∗c∑
t=bT (τ∗−ηj)c

p∑
a=1

εta(X
t)>δ̃a

∼ N
(

0,
4ηj
T

ω4

bTτ∗c − bT (τ∗ − ηj)c

bTτ∗c∑
t=bT (τ∗−ηj)c

(Λt)>Ω(1)Λt

︸ ︷︷ ︸
q2

)
.

(126)

By definitions of Λt and q2 as in (125) and (126), conditional on X , we have

q2 ≤ ω4(
bTτ∗c − bT (τ∗ − ηj)c

)
κ

bTτ∗c∑
t=bT (τ∗−ηj)c

(Λt)>Λt,

=
ω4(

bTτ∗c − bT (τ∗ − ηj)c
)
κ

bTτ∗c∑
t=bT (τ∗−ηj)c

p∑
a=1

(δ̃a)>Xt(Xt)>δ̃a,

(127)

where the first inequality in (127) comes from Assumption 1 (c) with κ := min(φ
(1)
min, φ

(2)
min).

Furthermore, by plugging Σ(1) into (127), and using the trianlge inequality, we have

q2 ≤ ω4κ−1
p∑
a=1

(δ̃a)>Σ(1)δ̃a

+ ω4κ−1
∣∣∣ p∑
a=1

(δ̃a)>
{ 1(
bTτ∗c − bT (τ∗ − ηj)c

) bTτ∗c∑
t=bT (τ∗−ηj)c

(
Σ(1) −Xt(Xt)>

)}
δ̃a
∣∣∣.
(128)

Note that, under the event E(2) as defined in (44), we have

∥∥∥ 1(
bTτ∗c − bT (τ∗ − ηj)c

) bTτ∗c∑
t=bT (τ∗−ηj)c

(
Σ(1) −Xt(Xt)>

)∥∥∥
∞
≤ C1

√
log(pT )

T
. (129)

Recall δ∗ := max
( p∑
a=1

(δ̃a)>Σ(1)δ̃a,
p∑
a=1

(δ̃a)>Σ(2)δ̃a
)
. Hence, combining (128) and (129),

there exists a positive constant C
(j)
1 only depending on ηj such that

q2 ≤ ω4κ−1δ∗ + ω4
(
κ−1

p∑
a=1

|δ̃a|21
)
C1

√
log(pT )

T
≤ C(j)

1 ω4κ−1δ∗, (130)

where the last inequality in (130) comes from the assumption that
p∑
a=1
|δ̃a|21 = o(

√
T/ log(pT )).

Combining (124), (126), and (130), conditional on the event E(2), we have

D1(ηj) ≤ 4Φ

 −λT
√
T

2ω2

√
C

(j)
1 κ−1δ∗

 ≤ 4Φ

 −λTµK2

√
T

2K1ω2

√
C

(j)
1 κ−1δ∗

 , (131)

55



Liu, Zhang and Liu

where the last inequality in (131) comes from the fact that µ ∈ (0, 1) and 0 < K2 ≤ K1.

After bounding D1(ηj) as in (131), we next consider D2(ηj). Using a similar proof
procedure, under the event E(3) as defined in (45), we can prove that

D2(ηj) ≤ 4Φ

 −λT
√
T

2ω2

√
C

(j)
2 κ−1δ∗

 ≤ 4Φ

 −λTµK2

√
T

2K1ω2

√
C

(j)
2 κ−1δ∗

 . (132)

where C
(j)
2 is a constant only depending on ηj .

Finally, combining (123), (131), and (132), and using the fact that

P
( m⋂
j=1

C(ηj)
)
≥ 1−

m∑
j=1

P
(
(C(ηj))c

)
,

we complete the proof of Lemma 16.

D.6 Proof of Lemma 17

D.6.1 Proof of (46) in Lemma 17

Proof We first prove (46) in Lemma 17. Note that, by assumptions, |τ̂ − τ∗| ≤ cτ and
p∑
a=1
|β̂a − β̃a|1 ≤ cβ hold. Moreover, by Lemma 14, we have

p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T

+ λT (1− µ)
p∑
a=1

∣∣D̂(β̂a − β̃a)
∣∣
1

≤ 2λT
p∑
a=1

∣∣D̂(β̂a − β̃a)Ja0
∣∣
1

+ λT
p∑
a=1

∣∣|D̂β̃a|1 − |Dβ̃a|1∣∣+R,
(133)

where Ja0 := J(β̃a), and R is defined in (39). To derive the desired results, we need to
bound λT

∑p
a=1

∣∣|D̂β̃a|1 − |Dβ̃a|1∣∣+R. For R, by the assumption |τ̂ − τ∗| ≤ cτ and under

the event C(cτ ), we have |R| ≤ λT
√
cτ . For λT

∑p
a=1

∣∣|D̂β̃a|1 − |Dβ̃a|1∣∣, by the definitions

of D̂ and D as in Section A, using Lemma 13, we have

λT
p∑
a=1

∣∣|D̂β̃a|1 − |Dβ̃a|1∣∣,
≤ λT

p∑
a=1

{ p∑
j=1

∣∣(‖Xj(τ̂)‖T − ‖Xj(τ∗)‖T
)
|δ̃aj |
∣∣},

≤ λT
p∑
a=1

{ p∑
j=1

1

2‖Xj(t0)‖T
|δ̃aj |

1

T

T∑
t=1

(Xt
j)

2
∣∣1{Qt ≤ τ̂} − 1{Qt ≤ τ∗}

∣∣},
≤ λT (2Xmin)−1C∗cτ

p∑
a=1
|δ̃a|1,

(134)

where C∗ comes from Lemma 13. Therefore, by (133), |R| ≤ λT
√
cτ , and (134), we consider

two cases:

56



Simultaneous Change Point Inference and Structure Recovery for High Dimensional GGM

Case 1:
√
cτ + (2Xmin)−1C∗cτ

p∑
a=1
|δ̃a|1 ≤

p∑
a=1

∣∣D̂(β̂a − β̃a)Ja0
∣∣
1
. In this case, considering

(133), we have

λT (1− µ)

p∑
a=1

∣∣D̂(β̂a − β̃a)
∣∣
1
≤ 3λT

p∑
a=1

∣∣D̂(β̂a − β̃a)Ja0
∣∣
1
.

Using |D̂(β̂a − β̃a)
∣∣
1

= |D̂(β̂a − β̃a)Ja0
∣∣
1

+ |D̂(β̂a − β̃a)(Ja0 )c
∣∣
1
, we then have

p∑
a=1

|D̂(β̂a − β̃a)(Ja0 )c
∣∣
1
≤ (2 + µ)

1− µ

p∑
a=1

|D̂(β̂a − β̃a)Ja0
∣∣
1
. (135)

Similar to the proof in Section C.2, we define the following 2p2-dimensional vectors:

β̃pp =
(
(β̃1)>, . . . , (β̃p)>

)>
, β̂pp =

(
(β̂1)>, . . . , (β̂p)>

)>
. (136)

We also define the following 2p2 × 2p2 block diagonal matrix D̆ and the Tp × 2p2 design
matrix X̃(τ) as follows:

D̆ = diag
{

D̂, . . . , D̂︸ ︷︷ ︸
p

}
, X̃(τ) = diag

{
X(τ), . . . ,X(τ)︸ ︷︷ ︸

p

}
, (137)

where D̂ := D(τ̂). Let J0 = J(β̃pp) be the set of non-zero elements of β̃pp. By Assumption
2, we have |J0| =

∑p
a=1 |Ja0 | ≤ s1. Furthermore, by (135), (136), and (137), we then have∣∣∣D̆(β̂pp − β̃pp)(J0)c

∣∣∣
1
≤ (2 + µ)

1− µ

∣∣∣D̆(β̂pp − β̃pp)J0
∣∣∣
1
.

Recall κ′(s1, c0,S) in (65). Similar to Proposition 4, we can show that X̃(τ) satisfies the
URE condition uniformly over τ ∈ T by setting s1 = o(

√
T/ log(pT )). In other words,

κ′(s1, c0,S) > 0 holds. Set κ′ := κ′(s1, c0,S) with c0 := (2 + µ)/(1 − µ) and S := {τ :
|τ − τ∗| ≤ cτ}. We then have

κ′2
∣∣D̆(β̂pp − β̃pp)J0

∣∣2
2

≤ 1

T

∣∣X̃(τ̂)D̆(β̂pp − β̃pp)
∣∣2
2
,

≤ max(D̂)2
1

T

∣∣X̃(τ̂)(β̂pp − β̃pp)
∣∣2
2
,

≤ max(D̂)2
{ p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T

}
+ max(D̂)2

{ p∑
a=1

1

T

T∑
t=1

(
2
(
Xt(τ̂)>β̂a −Xt(τ̂)>β̃a

)(
(Xt)>δ̃a

(
1{Qt ≤ τ∗} − 1{Qt ≤ τ̂}

))}
,

≤ max(D̂)2
{ p∑
a=1

(∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T

+ 2cβ|δ̃a|1 sup
1≤a≤p

1

T

T∑
t=1

(Xt
a)

2
∣∣1{Qt ≤ τ∗} − 1{Qt ≤ τ̂}

∣∣)},
≤ X2

max

( p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T

+ 2cβcτC
∗

p∑
a=1
|δ̃a|1

)
,

(138)
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where the last inequality in (138) comes from Lemma 13.
Combining the results in (133) and (138), we have

p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T
,

≤ 3λT
p∑
a=1

∣∣D̂(β̂a − β̃a)Ja0
∣∣
1
,

≤ 3λT
√
s1
∣∣D̂(β̂a − β̃a)Ja0

∣∣
2
,

≤ 3λT
√
s1

{
κ′−2X2

max

( p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T

+ 2cβcτC
∗

p∑
a=1
|δ̃a|1

)}1/2
,

(139)

where s1 comes from Assumption 2. Note that a+ b ≤ 2a ∨ 2b for a, b ≥ 0. Then by (139),
conditional on

⋂
1≤a≤p

{
Aa ∩ Ba

}⋂
C(cτ ), we have

p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T
≤ 18X2

max

κ′2
λ2T s1

∨ 6Xmax

κ′
λT

(
s1cβcτC

∗
p∑
a=1

|δ̃a|1
)1/2

. (140)

Case 2:
√
cτ + (2Xmin)−1C∗cτ

p∑
a=1
|δ̃a|1 >

p∑
a=1

∣∣D̂(β̂a − β̃a)Ja0
∣∣
1
. In this case, considering

(133), we have

p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T
≤ 3λT

(√
cτ + (2Xmin)−1C∗cτ

p∑
a=1

|δ̃a|1
)
. (141)

Combining (140) and (141), we have proved that

p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T
,

≤ λT
{18X2

max

κ′2
λT s1

∨ 6Xmax

κ′

(
s1cβcτC

∗
p∑
a=1
|δ̃a|1

)1/2∨
3
(√

cτ + (2Xmin)−1cτC
∗

p∑
a=1
|δ̃a|1

)}
which completes the proof of (46) in Lemma 17.

D.6.2 Proof of (47) in Lemma 17

After proving (46), we now prove (47). We also consider two cases:

Case 1:
√
cτ + (2Xmin)−1C∗cτ

p∑
a=1
|δ̃a|1 ≤

p∑
a=1

∣∣D̂(β̂a − β̃a)Ja0
∣∣
1
. In this case, by (133) and

(138), we have

p∑
a=1

∣∣D̂(β̂a − β̃a)
∣∣
1

≤ 3

1− µ
p∑
a=1

∣∣D̂(β̂a − β̃a)Ja0
∣∣
1
,

≤ 3

1− µ
√
s1

p∑
a=1

∣∣D̂(β̂a − β̃a)Ja0
∣∣
2
,

≤
3
√
s1

(1− µ)κ′
Xmax

( p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T

+ 2cβcτC
∗

p∑
a=1
|δ̃a|1

)1/2
.

(142)
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Note that a+ b ≤ 2a ∨ 2b for a, b ≥ 0. Combining the results in (140) and (142), we have

p∑
a=1

∣∣β̂a − β̃a∣∣
1
≤ 1

(1− µ)Xmin

{18X2
max

κ′2
λT s1

∨ 6Xmax

κ′

(
s1cβcτC

∗
p∑
a=1

|δ̃a|1
)1/2}

. (143)

Case 2:
√
cτ + (2Xmin)−1C∗cτ

p∑
a=1
|δ̃a|1 >

p∑
a=1

∣∣D̂(β̂a − β̃a)Ja0
∣∣
1
. In this case, by (133), we

have
p∑
a=1

∣∣β̂a − β̃a∣∣
1
≤ 3

(1− µ)Xmin

(√
cτ + (2Xmin)−1C∗cτ

p∑
a=1

|δ̃a|1
)
. (144)

Finally, combining (143) and (144), we complete the proof of (47) in Lemma 17.

D.7 Proof of Lemma 18

Proof By the definitions of τ̂ and (β̂a)pa=1 as obtained from (5) – (7), we have

p∑
a=1

{
‖Xa −X(τ̂)β̂a‖2T + λT |D̂β̂a|1

}
≤

p∑
a=1

{
‖Xa −X(τ∗)β̃

a‖2T + λT |Dβ̃a|1
}
. (145)

Conditional on
⋂

1≤a≤p
{
Aa ∩ Ba

}⋂
C(cτ ), by the result in (114), we have

p∑
a=1

∥∥Xa −X(τ̂)β̂a
∥∥2
T
−

p∑
a=1

∥∥Xa −X(τ∗)β̃
a
∥∥2
T
,

=
p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T
−

p∑
a=1

2

T

T∑
t=1

εta(X
t)>(θ̂a − θ̃a)

−
p∑
a=1

2

T

T∑
t=1

εta(X
t)>1{Qt ≤ τ̂}(δ̂a − δ̃a)−R

≥
p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T
− µλT

p∑
a=1

∣∣D̂(β̂a − β̃a)
∣∣
1
− λT

√
cτ .

(146)

Note that, by assumptions, |τ̂ − τ∗| ≤ cτ and
p∑
a=1
|β̂a − β̃a|1 ≤ cβ hold. Considering (145)

and (146), under the event
⋂

1≤a≤p
{
Aa ∩ Ba

}⋂
C(cτ ), we have

p∑
a=1

{
‖Xa −X(τ̂)β̂a‖2T + λT |D̂β̂a|1

}
−

p∑
a=1

{
‖Xa −X(τ∗)β̃

a‖2T + λT |Dβ̃a|1
}
,

≥
p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T
−

p∑
a=1

{
µλT

∣∣D̂(β̂a − β̃a)
∣∣
1

+ λT
∣∣D̂(β̂a − β̃a)

∣∣
1

+λT |(D̂−D)β̃a|1
}
− λT

√
cτ ,

≥
p∑
a=1

∥∥X(τ̂)β̂a −X(τ∗)β̃
a
∥∥2
T
− λT (1 + µ)cβXmax − λT (2Xmin)−1cτC

∗
p∑
a=1
|δ̃a|1 − λT

√
cτ ,

(147)
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where the last inequality in (147) comes from
∑p

a=1

∣∣D̂(β̂a−β̃a)
∣∣
1
≤ Xmax

∑p
a=1 |β̂a−β̃a|1 ≤

Xmaxcβ and the result in (134). Recall

c̃τ := c−1∗ λT

(
(1 + µ)cβXmax + (2Xmin)−1cτC

∗
p∑
a=1

|δ̃a|1 +
√
cτ

)
.

Suppose c̃τ < |τ̂ − τ∗| ≤ cτ holds. Then, by Proposition 6 and (147), we have

p∑
a=1

{
‖Xa −X(τ̂)β̂a‖2T + λT |D̂β̂a|1

}
−

p∑
a=1

{
‖Xa −X(τ∗)β̃

a‖2T + λT |Dβ̃a|1
}
,

> c∗c̃τ − λT (1 + µ)cβXmax − λT (2Xmin)−1cτC
∗

p∑
a=1
|δ̃a|1 − λT

√
cτ = 0,

which contradicts with (145). Therefore, we have |τ̂−τ∗| ≤ c̃τ , which completes the proof.
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