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Abstract

It is becoming increasingly important to understand the vulnerability of machine learning
models to adversarial attacks. In this paper we study the feasibility of adversarially robust
learning from the perspective of computational learning theory, considering both sample
and computational complexity. In particular, our definition of robust learnability requires
polynomial sample complexity. We start with two negative results. We show that no
non-trivial concept class can be robustly learned in the distribution-free setting against an
adversary who can perturb just a single input bit. We show, moreover, that the class of
monotone conjunctions cannot be robustly learned under the uniform distribution against
an adversary who can perturb ω(log n) input bits. However, we also show that if the
adversary is restricted to perturbing O(log n) bits, then one can robustly learn the class of
1-decision lists (which subsumes monotone conjunctions) with respect to the class of log-
Lipschitz distributions. We then extend this result to show learnability of 2-decision lists
and monotone k-decision lists in the same distributional and adversarial setting. Finally,
we provide a simple proof of the computational hardness of robust learning on the boolean
hypercube. Unlike previous results of this nature, our result does not rely on a more
restricted model of learning, such as the statistical query model, nor on any hardness
assumption other than the existence of an (average-case) hard learning problem in the
PAC framework; this allows us to have a clean proof of the reduction, and the assumption
is no stronger than assumptions that are used to build cryptographic primitives.

Keywords: learning theory, hardness of learning, decision lists, robustness.

1. Introduction

There has been considerable interest in adversarial machine learning since the seminal work
of Szegedy et al. (2013), who coined the term adversarial example to denote the result of
applying a carefully chosen perturbation that causes a classification error to a previously
correctly classified datum. Biggio et al. (2013) independently observed this phenomenon.
However, as pointed out by Biggio and Roli (2018), adversarial machine learning has been
considered much earlier in the context of spam filtering (Dalvi et al. (2004); Lowd and
Meek (2005a,b)). Their survey also distinguished two settings: evasion attacks, where an
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adversary modifies data at test time, and poisoning attacks, where the adversary modifies
the training data.1

Several different definitions of adversarial learning exist in the literature and, unfortu-
nately, in some instances the same terminology has been used to refer to different notions
(for some discussion see e.g., (Dreossi et al. (2019); Diochnos et al. (2018))). Our goal in
this paper is to take the most widely-used definitions and consider their implications for
robust learning from a statistical and computational viewpoint. For simplicity, we will focus
on the setting where the input space is the boolean hypercube X = {0, 1}n and consider
the realizable setting, i.e., the labels are consistent with a target concept in some concept
class.

An adversarial example is constructed from a natural example by adding a perturbation.
Typically, the power of the adversary is curtailed by specifying an upper bound on the
perturbation under some norm; in our case, the only meaningful norm is the Hamming
distance. Then, for us, the perturbation budget of an adversary is the number of bits the
adversary is allowed to flip. For a point x ∈ X , let Bρ(x) denote the Hamming ball of radius
ρ around x. Given a distribution D on X , we consider the adversarial risk of a hypothesis h
with respect to a target concept c and perturbation budget ρ. We focus on two definitions of
risk. The exact in the ball risk REρ (h, c) is the probability Pr

x∼D
(∃y ∈ Bρ(x), ·h(y) 6= c(y)) that

the adversary can perturb a point x drawn from distribution D to a point y such that h(y) 6=
c(y). The constant-in-the-ball risk RCρ (h, c) is the probability Pr

x∼D
(∃y ∈ Bρ(x) · h(y) 6= c(x))

that the adversary can perturb a point x drawn from distribution D to a point y such that
h(y) 6= c(x). These definitions encode two different interpretations of robustness. In the
first view, robustness speaks about the fidelity of the hypothesis to the target concept,
whereas in the latter view robustness is concerned with the sensitivity of the output of the
hypothesis to corruptions of the input. In fact, the latter view of robustness can in some
circumstances be in conflict with accuracy in the traditional sense (Tsipras et al. (2019)).

1.1 Overview of Our Contributions

We view our conceptual contributions to be at least as important as the technical results
and believe that the issues highlighted in our work will result in more concrete theoretical
frameworks being developed to study adversarial learning.

Impossibility of Robust Learning in Distribution-Free PAC Setting: We first
consider the question of whether achieving zero (or low) robust risk is possible under either
of the two definitions. If the balls of radius ρ around the data points intersect so that the
total region is connected, then unless the target function is constant, it is impossible to
achieve RCρ (h, c) = 0 (see Figure 1). In particular, in most cases RCρ (c, c) 6= 0, i.e., even the
target concept does not have zero risk with respect to itself. We show that this is the case
for extremely simple concept classes such as dictators or parities. When considering the
exact-in-the-ball notion of robust learning, we at least have REρ (c, c) = 0; in particular, any
concept class that can be exactly learned can be robustly learned in this sense. However,
even in this case we show that no “non-trivial” class of functions can be robustly learned
under arbitrary distributions. We highlight that these results show that a polynomial-size

1. For an in-depth review and definitions of different types of attacks, the reader may refer to Biggio and
Roli (2018); Dreossi et al. (2019).
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(a) (b) (c)

Figure 1: (a) The support of the distribution is such that RCρ (h, c) = 0 can only be achieved
if c is constant. (b) The ρ-expansion of the support of the distribution (i.e., the
points that differ by at most ρ bits from points in the support of the distribution)
and target c admit hypotheses h such that RCρ (h, c) = 0. (c) An example where RCρ
and REρ differ. The red concept is the target, while the blue one is the hypothesis.
The dots are the support of the distribution and the shaded regions represent their
ρ-expansion. The diamonds represent perturbed inputs which cause REρ > 0.

sample from the unknown distribution is not sufficient, even if the learning algorithm has
arbitrary computational power (in the sense of Turing computability).2

Robust Learning of Parities and Decision Lists: Given the impossibility of
distribution-free robust learning, we consider robust learning under specific distributions.
In Section 2, we discuss the assumptions underlying different notions of robustness and note
that, while the constant-in-the-ball risk has been extensively studied in the literature, the
exact-in-the-ball risk is less well understood. For this reason, we decide to focus on the
latter for the rest of the paper. We first remark that, under the class of log-Lipschitz distri-
butions (which includes the uniform distribution), parity functions are efficiently robustly
learnable over X = {0, 1}n. A distribution is said to be α-log-Lipschitz if the logarithm
of the probability mass function is log(α)-Lipschitz with respect to the Hamming distance.
This means that by changing one bit of the input, the probability mass function can be
changed at most by a multiplicative factor α.

We then consider decision lists under log-Lipschitz distributions, and show that the class
of 1-decision lists is efficiently robustly learnable provided that ρ = O(log n). We extend
this result, with a more elaborate argument, to encompass also the classes of 2-decision
lists and monotone k-decision lists, for every fixed k. On the other hand, against a stronger
adversary, with budget ρ = ω(log n), we show that even the class of monotone conjuctions
(a special case of 1-decision lists, and one of the simplest concept classes studied in PAC
learning) is not efficiently robustly learnable with polynomial sample complexity.

Our results apply in the setting where the learning algorithm only receives random
labeled examples. On the other hand, a more powerful learning algorithm that has access

2. We do require that any operation performed by the learning algorithm is computable; the results of
Bubeck et al. (2018b) imply that an algorithm that can potentially evaluate uncomputable functions
can always robustly learn using a polynomial-size sample. See the discussion on computational hardness
below.
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to membership queries can exactly learn monotone conjunctions and as a result can also
robustly learn with respect to the exact-in-the-ball loss. We also note that our positive
results use PAC learning algorithms as black boxes, as we implicitly derive bounds for
the robust risk in terms of the standard risk. Section 5.4, which expands our decision
list result to decision trees, makes the relationship between the standard and robust risks
explicit. While we use known PAC learning algorithms as robust learning algorithms, we
remark that analyzing their sample complexity greatly differs from standard PAC-learning
arguments, as we cannot rely on the VC dimension of a concept class to show its robustness
in our setting.

Computational Hardness of Robust PAC Learning: Finally, we consider com-
putational aspects of robust learning. Our focus is on two questions: computability and
computational complexity. Recent work by Bubeck et al. (2018b) provides a result that
states that minimizing the robust loss on a polynomial-size sample suffices for robust learn-
ing. However, because of the existential quantifier over the ball implicit in the definition of
the exact-in-the-ball loss, the empirical risk cannot be computed as this requires enumeration
over the reals. Even if one restricted attention to concepts defined over Qn, computing the
loss would be recursively enumerable, but not recursive. In the case of functions defined over
finite instance spaces, such as the boolean hypercube, the loss can be evaluated provided the
learning algorithm has access to a membership query oracle; for the constant-in-the-ball loss
membership queries are not required. For functions defined on Rn it is unclear how either
loss function can be evaluated even if the learner has access to membership queries, since
in principle it requires enumerating over the reals. Under strong assumptions of inductive
bias on the target and hypothesis class, it may be possible to evaluate the loss functions;
however, this would have to be handled on a case by case basis. For e.g., properties of the
target and hypothesis, such as being Lipschitz or having a large margin, could be used to
compute the exact-in-the-ball loss in finite time.

Second, we consider the computational complexity of robust learning. Bubeck et al.
(2018a) and Degwekar et al. (2019) have shown that there are concept classes that are
hard to robustly learn under cryptographic assumptions, even when robust learning is
information-theoretically feasible. Bubeck et al. (2018b) establish super-polynomial lower
bounds for robust learning in the statistical query framework. We give an alternative sim-
pler proof of hardness, based simply on the assumption that there exist concept classes that
are hard to PAC learn in the average case. The reduction transforms a hard PAC-learning
problem into a problem that is easy to PAC learn, but that is hard to robustly learn. In
particular, our reduction also implies that robust learning is hard even if the learning al-
gorithm is allowed membership queries, provided the concept class that we reduce from is
hard to learn using membership queries. Some of the ideas we use parallel those used in
the construction by Bubeck et al. (2018a, 2019); however, starting from the average-case
hardness of PAC learning allows for a simpler proof. This assumption is no stronger than
the cryptographic assumptions used by Bubeck et al. (2018a), as the existence of one-way
functions suffices to construct average-case hard to learn concept classes (Goldreich et al.,
1986); on the other hand, Blum et al. (1993) have also shown how to construct cryptographic
primitives using average-case hardness of PAC learning.3

3. It is believed that the existence of worst-case hard to PAC learn concept classes is not sufficient to
construct one-way functions (Applebaum et al., 2008).
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1.2 Related Work on the Existence of Adversarial Examples

There is a considerable body of work that studies the inevitability of adversarial examples,
e.g., Fawzi et al. (2016, 2018b,a); Gilmer et al. (2018); Shafahi et al. (2018). These papers
characterize robustness in the sense that a classifier’s output on a point should not change
if a perturbation of a certain magnitude is applied to it. Among other things, these works
study geometrical characteristics of classifiers and statistical characteristics of classification
data that lead to adversarial vulnerability. Another line of work considers the robust learn-
ability of certain concept classes. Montasser et al. (2019) show that VC classes are robustly
learnable with sample complexity polynomial in the VC dimension and dual VC dimension,4

and that improper learning is necessary for robust learnability in some cases, in the sense
that there does not exist a proper robust learning algorithm for these tasks. Ashtiani et al.
(2020) expand on these results by showing that VC classes are properly robustly learnable if
their margin class also has finite VC dimension. We note that these results and techniques
do not translate to the exact-in-the-ball notion of robust risk, as they rely on inflating a
sample S with points in the balls around points in S and giving them the same label as
their original instance.

Closer to the present paper are Diochnos et al. (2018); Mahloujifar and Mahmoody
(2019); Mahloujifar et al. (2019), which work with the exact-in-the-ball notion of robust
risk. In particular, Diochnos et al. (2018) considers the robustness of monotone conjunctions
under the uniform distribution on the boolean hypercube for this notion of risk (therein
called the error region risk5). However, Diochnos et al. (2018) does not address the sample
and computational complexity of learning: their results rather concern the ability of an
adversary to magnify the missclassification error of any hypothesis with respect to any
target function by perturbing the input. For example, they show that an adversary who
can perturb O(

√
n) bits can increase the missclassification probability from 0.01 to 1/2.

The main tool used in Diochnos et al. (2018) is the isoperimetric inequality for the boolean
hypercube, which gives lower bounds on the volume of the expansions of arbitrary subsets.
On the other hand, we use the probabilistic method to establish the existence of a single
hard-to-learn target concept for any given algorithm with polynomial sample complexity.

Finally, Diochnos et al. (2019) show an exponential lower bound on the sample com-
plexity of robust PAC learning of a wide family of concept classes6 under Normal Lévy
distributions (which include product distributions under the Hamming distance in {0, 1}n)
against all adversaries that can perturb up to o(n) bits. Closer to our results of Section 5,
they also show a superpolynomial lower bound in sample complexity against all adversaries
that can perturb Õ(

√
n) bits. Our paper improves this result in the special case of the

uniform distribution: we show that a weaker adversary, who can perturb only ω(log n) bits,
renders it impossible to robustly learn monotone conjunctions (and any superclass) with
polynomial sample complexity. In fact, we show that Θ(log n) is indeed the threshold for
efficient robust PAC learning in this setting.

4. This gives a general upper bound that is exponential in the VC dimension.
5. They also refer to the constant-in-the-ball risk as corrupted instance risk, which refers back to the work

of Feige et al. (2015) that introduced the wording corrupted instance.
6. The classes must be α-close, meaning that there must exist two concepts in the class that have (standard)

error α.
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This paper is the extended version of Gourdeau et al. (2019), which appeared in NeurIPS
2019.

2. Definition of Robust Learning

The notion of robustness can be accommodated within the basic set-up of PAC learning by
adapting the definition of risk function. In this section we review two of the main definitions
of robust risk that have been used in the literature. For concreteness we consider an input
space X = {0, 1}n with metric d : X × X → N, where d(x, y) is the Hamming distance of
x, y ∈ X . Given x ∈ X , we write Bρ(x) for the ball {y ∈ X : d(x, y) ≤ ρ} with center x and
radius ρ ≥ 0.

The first definition of robust risk asks that the hypothesis be exactly equal to the target
concept in the ball Bρ(x) of radius ρ around a “test point” x ∈ X :

Definition 1 Given respective hypothesis and target functions h, c : X → {0, 1}, distribu-
tion D on X , and robustness parameter ρ ≥ 0, we define the “exact-in-the-ball” robust risk
of h with respect to c to be

REρ (h, c) = Pr
x∼D

(∃z ∈ Bρ(x) : h(z) 6= c(z)) .

While this definition captures a natural notion of robustness, an obvious disadvantage
is that evaluating the risk function requires the learner to have knowledge of the target
function outside of the training set, e.g., through membership queries. Nonetheless, by
considering a learner who has oracle access to the predicate ∃z ∈ Bρ(x) : h(z) 6= c(z), we
can use the exact-in-the-ball framework to analyze sample complexity and to prove strong
lower bounds on the computational complexity of robust learning.

A popular alternative to the exact-in-the-ball risk function in Definition 1 is the following
constant-in-the-ball risk function:

Definition 2 Given respective hypothesis and target functions h, c : X → {0, 1}, distribu-
tion D on X , and robustness parameter ρ ≥ 0, we define the “constant-in-the-ball” robust
risk of h with respect to c as

RCρ (h, c) = Pr
x∼D

(∃z ∈ Bρ(x) : h(z) 6= c(x)) .

An obvious advantage of the constant-in-the-ball risk over the exact-in-the-ball version is
that, in the former, evaluating the loss at point x ∈ X requires only knowledge of the correct
label of x and the hypothesis h. In particular, this definition can also be carried over to the
non-realizable setting, in which there is no target. However, from a foundational point of
view the constant-in-the-ball risk has some drawbacks: recall from the previous section that
under this definition it is possible to have strictly positive, and even sometimes constant,7

robust risk in the case that h = c. (Let us note in passing that the risk functions RCρ and

7. For example, under the uniform distribution, for c ∈ MON-CONJ of constant length k, RC1 (c, c) =
k+1
2k

, and in the case of decision lists, any list c of the form ((xi, 0), (xj , 1), . . . ) satisfies RC1 (c, c) ≥
Pr
x∼D

(xj = 1) = 1/2. In the case of parity functions, it suffices to flip one bit of the index set to switch

the label, so under any distribution RCρ (c, c) = 1 for any ρ ≥ 1.

6
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REρ are in general incomparable. Figure 1c gives an example in which RCρ = 0 and REρ > 0.)
Additionally, when we work in the hypercube, or a bounded input space, as ρ becomes
larger, we eventually require the function to be constant in the whole space. Essentially,
to ρ-robustly learn in the realizable setting, we require concept and distribution pairs to
be represented as two sets D+ and D− whose ρ-expansions don’t intersect, as illustrated in
Figures 1a and 1b. We finish by pointing out that, in some cases in the realizable setting,
the target c is not the robust risk minimizer for ρ = 1: the constant concept is! This is easy
to see for parity functions, as RC1 (c, 0) = RC1 (c, 1) = 1/2 under the uniform distribution and
RC1 (c, c) = 1. A similar result holds for monotone conjunctions (see Appendix B).

The discussion above, which pertains to the boolean hypercube, makes apparent the
fact that the exact-in-the-ball and constant-in-the-ball definitions of robust risk both rely
on different distributional and concept class assumptions. The constant-in-the-ball notion
of robust risk relies on a strong distributional assumption (for e.g., a margin condition) or
on the stability of functions in the concept class. The exact-in-the-ball is more relevant in
cases where we cannot assume that the probability mass near the boundary is small, and
wish to be correct with respect to the target function. The behavior of the constant-in-ball
risk is much better understood than for the exact-in-the-ball risk: most papers we have
cited in Section 1.2 have used the former. For this reason, we will work with the latter.

Having settled on a risk function, we now formulate the definition of robust learning.
For our purposes a concept class is a family C = {Cn}n∈N, with Cn a class of functions from
{0, 1}n to {0, 1}. Likewise, a distribution class is a family D = {Dn}n∈N, with Dn a set of
distributions on {0, 1}n. Finally, a robustness function is a function ρ : N→ N.

Definition 3 Fix a function ρ : N→ N. We say that an algorithm A efficiently ρ-robustly
learns a concept class C with respect to distribution class D if there exists a polynomial
poly(·, ·, ·, ·) such that for all n ∈ N, all target concepts c ∈ Cn, all distributions D ∈ Dn, and
all accuracy and confidence parameters ε, δ > 0, if m ≥ poly(n, 1/ε, 1/δ, size(c)), whenever
A is given access to a sample S ∼ Dm labelled according to c, it outputs a polynomially

evaluatable function h : {0, 1}n → {0, 1} such that Pr
S∼Dm

(
REρ(n)(h, c) < ε

)
> 1− δ.

Note that the definition of robust learning requires polynomial sample complexity and
allows improper learning (the hypothesis h need not belong to the concept class Cn).

In the standard PAC framework, a hypothesis h is considered to have zero risk with
respect to a target concept c when Pr

x∼D
(h(x) 6= c(x)) = 0. We have remarked that exact

learnability implies robust learnability; next we give an example of a concept class C and
distribution D such that C is PAC learnable under D with zero risk and yet cannot be
robustly learned under D (regardless of the sample complexity).

Lemma 4 The class of dictators is not 1-robustly learnable (and thus not robustly learnable
for any ρ ≥ 1) with respect to the robust risk of Definition 1 in the distribution-free setting.

Proof Let c1 and c2 be the dictators on variables x1 and x2, respectively. Let D be such
that Pr

x∼D
(x1 = x2) = 1 and Pr

x∼D
(xk = 1) = 1

2 for k ≥ 3. Draw a sample S ∼ Dm and label

it according to c ∼ U(c1, c2). By the choice of D, the elements of S will have the same label
regardless of whether c1 or c2 was picked. However, for x ∼ D, it suffices to flip any of the

7
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first two bits to cause c1 and c2 to disagree on the perturbed input. We can easily show
that, for any h ∈ {0, 1}X , RE1 (h, c1) + RE1 (h, c2) ≥ RE1 (c1, c2) = 1. Then

E
c∼U(c1,c2)

E
S∼Dm

[
RE1 (h, c)

]
≥ 1/2 .

We conclude that one of c1 or c2 has robust risk at least 1/2.

Note that a PAC learning algorithm with error probability threshold ε = 1/3 will either
output c1 or c2 and will hence have standard risk zero.

3. No Distribution-Free Robust Learning in {0, 1}n

In this section, we show that no non-trivial concept class is efficiently 1-robustly learnable
in the boolean hypercube. Such a class is thus not efficiently ρ-robustly learnable for any
ρ ≥ 1. Efficient robust learnability then requires access to a more powerful learning model
or distributional assumptions.

Let Cn be a concept class on {0, 1}n, and define C =
⋃
n≥1 Cn. We say that a class of

functions is trivial if Cn has at most two functions, which moreover differ on every point.

Theorem 5 For any concept class C, C is efficiently distribution-free robustly learnable iff
it is trivial.

The proof of the theorem relies on the following lemma:

Lemma 6 Let c1, c2 ∈ {0, 1}X and fix a distribution on X . Then for all h : {0, 1}n → {0, 1}

REρ (c1, c2) ≤ REρ (h, c1) + REρ (h, c2) .

Proof Let x ∈ {0, 1}n be arbitrary, and suppose that c1 and c2 differ on some z ∈ Bρ(x).
Then either h(z) 6= c1(z) or h(z) 6= c2(z). The result follows.

The idea of the proof of Theorem 5 (which can be found in Appendix C) is a general-
ization of the proof of Lemma 4 that dictators are not robustly learnable. However, note
that we construct a distribution whose support is all of X . It is possible to find two hy-
potheses c1 and c2 and create a distribution such that c1 and c2 will with high probability
look identical on samples of size polynomial in n but have robust risk Ω(1) with respect to
one another. Since any hypothesis h in {0, 1}X will disagree either with c1 or c2 on a given
point x if c1(x) 6= c2(x), by choosing the target hypothesis c at random from c1 and c2, we
can guarantee that h won’t be robust against c with positive probability. Finally, note that
an analogous argument can be made for a more general setting (e.g., for the input space
Rn).

4. Parity Functions

In light of Theorem 5, we turn our attention to settings where distributional assumptions
allow us to efficiently robustly learn certain concept classes. In this section, we show that
parity functions are efficiently exactly learnable under log-Lipschitz distributions. As these

8
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distributions have support on the whole input space, it follows that this implies efficient
robust learning of parities. Recall that parity functions are of the form f(x) =

∑
i aixi + b

(in modulo 2), where ai, b ∈ {0, 1}. The idea to show robust learnability of parity functions
is to show that, for a class of α-log-Lipschitz distributions, a proper PAC-learning algorithm
can be used as a black box for exact learning.

Theorem 7 PARITY is exactly learnable under α-log-Lipschitz distributions.

Proof Consider a proper PAC-learning algorithm A with sample complexity poly(·) for
PARITY (see e.g., Goldberg (2006)). Let D be a family of α-log-Lipschitz distributions
and let D ∈ D be arbitrary. Let ε, δ > 0 be the accuracy and confidence parameters,
n be the input dimension, and c = (

∑
i aixi + b) mod 2 be the target concept. For any

h(x) =
∑

i a
′
ixi + b′, letting I = {i ∈ [n] | ai 6= a′i}, we have that if I is non-empty,

Pr
x∼D

(h(x) 6= c(x)) = Pr
x∼D

(∑
i∈I

aixi + b 6=
∑
i∈I

a′ixi + b′

)
≥ 1

1 + α
.

This follows from Lemma 32(ii): for some i ∈ I, the marginal of xi conditioned on the
points {xj | j ∈ I \ {i}} is also α-log-Lipschitz. Then no matter what value the points
in {xj | j ∈ I \ i} take, we know that the probability that xi causes a mismatch in par-
ity is bounded below by 1/(1 + α) by Lemma 32(i). In the case I is empty, but b 6= b′,
Pr
x∼D

(h(x) 6= c(x)) = 1. Then, any proper PAC-learning algorithm 8 with accuracy parame-

ter ε < 1/(1 + α) will return c with probability at least 1− δ.

Corollary 8 PARITY is ρ-robustly learnable under α-log-Lipschitz distributions for any ρ.

5. Decision Lists

From the robust learnability point of view, the previous section’s concept classes are not
very interesting, since we simply learn them exactly, and thus robustly for any robustness
parameter. In this section, we show that certain subclasses of decision lists are robustly
(but not necessarily exactly) efficiently learnable for robustness parameter ρ = O(log n)
under log-Lipschitz distributions. Moreover, in Section 5.4, we extend our results to the
class of decision trees by characterizing the relationship between the standard and robust
risks for concepts in this class.

Decision lists were introduced in Rivest (1987), where they were shown to be efficiently
PAC learnable. We denote by k-DL the class of decision lists with conjunctive clauses of size
at most k at each decision node. Decision lists generalize formulas in disjunctive normal
form (DNF) and conjunctive normal form (CNF): k-DNF ∪k-CNF ⊂ k-DL, where k refers
to the number of literals in each clause. Formally, a decision list is a list L of pairs

(f1, v1), . . . , (fr, vr) ,

8. E.g., performing Gaussian elimination on the matrix X of examples and label vector y and returning a
possible solution vector z ∈ {0, 1}n (i.e., Xz = y), where ai = 1 if and only if zi = 1, would be a proper
learning algorithm.

9
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where fj is a term in Cnk , the set of all conjunctions of size at most k with literals drawn
from {x1, x̄1, . . . , xn, x̄n}, vj is a value in {0, 1}, and fr is true. The output L(x) of L on
x is vj , where j is the least index such that fj(x) = 1. Decision lists can be seen as the
logical formulation of special cases of if− then− elif− · · · − else statements.

We will start with 1-DL, as we will generalize our result to 2-DL and monotone k-DL
in Section 5.3 by using some results from the 1-DL case. The next two sections will be
dedicated to proving the following theorem.

Theorem 9 The class 1-DL is efficiently ρ-robustly learnable, i.e. with polynomial sample
complexity, under the class of α-log-Lipschitz distributions with robustness threshold ρ =
Θ(log n).

In particular, Section 5.1 will show that an adversary with a perturbation budget
ω(log n) renders efficient robust learning impossible under the uniform distribution and
Section 5.2 will show that efficient robust learning of 1-DL is possible against adversaries
with perturbation budget O(log n).

Remark 10 The robustness threshold ρ = Θ(log n) is an artefact of requiring a sample
complexity that is polynomial in the input dimension and learning parameters. In general,
for a family of α-log-Lipschitz distributions and a requirement r(n) on the robust sample
complexity function (that is also satisfied by the standard sample complexity function), we

can guarantee “efficient” robust learning as long as ρ(n) ≤ log(r(n))
4(1+α) log(1+α) .

5.1 Non-Robust Learnability Through Monotone Conjunctions

In contrast to Theorem 5, it turns out that we do not need recourse to “bad” distribu-
tions to show that very simple classes of functions are not efficiently robustly learnable
for a sufficiently powerful adversary. As we demonstrate in this section, MON-CONJ, the
class of monotone conjunctions, is not efficiently robustly learnable even under the uniform
distribution for robustness parameters that are superlogarithmic in the input dimension.
Since monotone conjunctions are a subclass 1-DL, if we can show that they are not robustly
learnable for a certain robustness parameter ρ, then we have that 1-DL is not efficiently
ρ-robustly learnable as well.

The idea to show that MON-CONJ is not efficiently robustly learnable is in the same
vein as the proof of Theorem 5. We first start by proving the following lemma, which gives
a lower bound on the robust risk of two disjoint monotone conjunctions.

Lemma 11 Under the uniform distribution, for any n ∈ N, disjoint c1, c2 ∈ MON-CONJ of
length 3 ≤ l ≤ n/2 on {0, 1}n and robustness parameter ρ ≥ dl/2e, we have that REρ (c1, c2)

is bounded below by a constant that can be made arbitrarily close to 1
2 as l increases.

Proof For a hypothesis c ∈ MON-CONJ, let Ic be the set of variables in c. Let c1, c2 ∈ C
be as in the theorem statement. Then the robust risk REρ (c1, c2) is bounded below by

Pr
x∼D

(c1(x) = 0 ∧ x has at least bl/2c 1’s in Ic2) ≥ (1− 2−l)/2 .

10
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Now, the following lemma shows that if we choose the length of the conjunctions c1 and
c2 to be super-logarithmic in n, then, for a sample of size polynomial in n, c1 and c2 will
agree on S with probability at least 1/2. The proof can be found in Appendix D.1.

Lemma 12 For any functions l(n) = ω(log(n)) and m(n) = poly(n), for any disjoint
monotone conjunctions c1, c2 such that |Ic1 | = |Ic2 | = l(n), there exists n0 such that for all
n ≥ n0, a sample S of size m(n) sampled i.i.d. from D will have that c1(x) = c2(x) = 0 for
all x ∈ S with probability at least 1/2.

We are now ready to prove our main result of the section.

Theorem 13 MON-CONJ is not efficiently ρ-robustly learnable for ρ(n) = ω(log(n)) under
the uniform distribution.

Proof Fix any algorithm A for learning MON-CONJ. We will show that the expected
robust risk between a randomly chosen target function and any hypothesis returned by A is
bounded below by a constant. Fix a function poly(·, ·, ·, ·, ·), and note that, since size(c) and
ρ are both at most n, we can simply consider a function poly(·, ·, ·) in the variables 1/ε, and
1/δ, n instead. Let δ = 1/2, and fix a function l(n) = ω(log(n)) that satisfies l(n) ≤ n/2,
and let ρ(n) = l(n)/2 (n is not yet fixed). Let n0 be as in Lemma 12, where m(n) is the
fixed sample complexity function. Then Equation 7 in the proof of Lemma 12, which can
be found in Appendix D.1, holds for all n ≥ n0.

Now, let D be the uniform distribution on {0, 1}n for n ≥ max(n0, 3), and choose
c1, c2 as in Lemma 11. Note that REρ (c1, c2) > 5

12 by the choice of n. Pick the target
function c uniformly at random between c1 and c2, and label S ∼ Dm with c, where
m = poly(1/ε, 1/δ, n). By Lemma 12, c1 and c2 agree with the labeling of S (which implies
that all the points have label 0) with probability at least 1

2 over the choice of S.
Define the following three events for S ∼ Dm:

E : c1|S = c2|S , Ec1 : c = c1 , Ec2 : c = c2 .

Then, by Lemmas 12 and 6,

E
c,S

[
REρ (A(S), c)

]
≥ Pr

c,S
(E) E

c,S

[
REρ (A(S), c) | E

]
>

1

2

(
Pr
c,S

(Ec1)E
S

[
REρ (A(S), c) | E ∩ Ec1

]
+ Pr
c,S

(Ec2)E
S

[
REρ (A(S), c) | E ∩ Ec2

])
=

1

4
E
S

[
REρ (A(S), c1) + REρ (A(S), c2) | E

]
≥ 1

4
E
S

[
REρ (c2, c1)

]
=

5

48
.

11
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5.2 Robust Learnability Against a Logarithmically-Bounded Adversary

We show that it is possible to efficiently robustly learn 1-DL if the class of distributions
is α-log-Lipschitz, i.e., there exists a universal constant α ≥ 1 such that for all n ∈ N, all
distributions D on {0, 1}n and for all input points x, x′ ∈ {0, 1}n, if dH(x, x′) = 1, then
| log(D(x))− log(D(x′))| ≤ log(α) (see Appendix A.3 for further details and useful facts).

Theorem 14 Let D = {Dn}n∈N, where Dn is a set of α-log-Lipschitz distributions on
{0, 1}n for all n ∈ N. Then the class of 1-decision lists is ρ-robustly learnable with respect
to D for robustness function ρ(n) = O(log n).

This combined with Theorem 13 shows that ρ(n) = Θ(log(n)) is essentially the threshold
for efficient robust learnability of the class 1-DL. To prove this result, we first need the
following definitions and lemmas, whose proofs can be found in Appendix D.

Definition 15 Given a 1-decision list c = ((l1, v1), . . . , (lr, vr)) and x ∈ X , we say that x
activates node i ∈ {1, . . . , r} in c if x |= li and x 6|= lj for all j such that 1 ≤ j < i.

The following definition will play a role in our analysis of 1-decision lists.

Definition 16 Let c and h be decision lists. Given d ∈ N, we say that h is consistent with
c up to depth d, denoted c =d h, if c(x) = h(x) for all x ∈ X such that the nodes in c and
h respectively activated by x have level at most d.

Note that, given a 1-decision list f = ((l1, v1), . . . , (lr, vr)), we can assume without loss
of generality that f is in a minimal representation, namely that

(i) A literal l only appears once in the list (otherwise we can remove all occurrences of l
except the first one without changing the output of the list),

(ii) There does not exist 1 ≤ i < j ≤ d such that li = l̄j , as otherwise it is impossible
to go past lj in the list (note that if there exists 1 ≤ i < d such that ld = l̄i, we can
simply set ld to true).

We will henceforth assume that all decision lists are in their minimal representation.
Now, under log-Lipschitz distributions, if two 1-decision lists have an error below a

certain threshold, they must be consistent up to a certain depth.

Lemma 17 Let h, c ∈ 1-DL and let D be an α-log-Lipschitz distribution. If Pr
x∼D

(h(x) 6= c(x)) <

(1 + α)−2d, then c =d h.

Proof We will show the contrapositive. Let c = ((l1, v1), . . . , (lr, vr)) and h = ((l′1, v
′
1), . . . , (l′s, v

′
s))

be 1-decision lists. Let c 6=d h, meaning that there exists x ∈ X such that x activates node
i0 in c and node i1 in h such that vi0 6= v′i1 . In particular, the following must hold

x |= ¬li 1 ≤ i < i0 ,

x |= ¬l′i 1 ≤ i < i1 ,

x |= li0 ∧ li1 .

12
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By Lemma 32, the probability of drawing such an x is at least (1 + α)−ic−ih ≥ (1 + α)−2d.

The next step in the argument is to derive an upper bound on the robust loss REρ (c, h)
under the condition that c =d h. To this end, the key technical lemma is as follows:

Lemma 18 Let D be an α-log-Lipschitz distribution on the n-dimensional boolean hyper-
cube and let ϕ be a conjunction of d literals. Set η = 1

1+α . Then for all 0 < ε < 1/2, if

d ≥ max
{

4
η2

log
(

1
ε

)
, 2ρ
η

}
, then Pr

x∼D
((∃y ∈ Bρ(x) · y |= ϕ)) ≤ ε.

Proof Write ϕ = `1 ∧ · · · ∧ `d. Draw a point x ∼ D from distribution D. Let X1, . . . , Xd ∈
{0, 1} be indicator random variables, respectively denoting whether x satisfies the literals
`1, . . . , `d. Note that we do not assume the Xi’s to be independent from each other. Writing
Y :=

∑d
i=1Xi, our goal is to show that Pr

x∼D
(Y + ρ ≥ d) ≤ ε.

Let Di be the marginal distribution of Xi conditioned on X1, . . . , Xi−1. This distribution
is also α-log-Lipschitz by Lemma 32, and hence,

Pr
Xi∼Di

(Xi = 1) ≤ 1− η . (1)

Since we are interested in the random variable Y representing the number of 1’s in
X1, . . . , Xd, we define the random variables Z1, . . . , Zd as follows:

Zk =

(
k∑
i=1

Xi

)
− k(1− η) ,

with the convention that Z0 = 0. The sequence Z1, . . . , Zd is a supermartingale with respect
to X1, . . . , Xd:

E [Zk+1 | X1, . . . , Xk] = E [Zk +Xk+1 − (1− η) | X1, . . . , Xk]

= Zk + Pr
(
X ′k+1 = 1 | X1, . . . , Xk

)
− (1− η)

≤ Zk . (by Equation 1)

Now, note that all Zk’s satisfy |Zk+1 − Zk| ≤ 1, and that Zd = Y − d(1− η). We can thus
apply the Azuma-Hoeffding (A.H.) Inequality to get

Pr (Y ≥ d− ρ) ≤ Pr
(
Y ≥ d(1− η) +

√
2 log(2/ε)d

)
= Pr

(
Zd − Z0 ≥

√
2 log(2/ε)d

)
≤ exp

(
−
√

2 log(1/ε)d
2

2d

)
(A.H.)

= ε ,

13
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where the first inequality holds from the given bounds on d and ρ:

d− ρ = (1− η)d+
ηd

2
+
ηd

2
− ρ

≥ (1− η)d+
ηd

2
(since ρ ≤ ηd

2 )

≥ (1− η)d+
√

2 log(1/ε)d . (since d ≥ 8
η2

log(1
ε ))

We are now ready to prove that 1-DL is efficiently ρ-robustly learnable for ρ = O(log n).

Proof [of Theorem 14] Let A be the (proper) PAC-learning algorithm for 1-DL as in Rivest
(1987), with sample complexity poly(·). Fix the input dimension n, target concept c and
distribution D ∈ Dn, and let ρ = log n. Fix the accuracy parameter 0 < ε < 1/2 and

confidence parameter 0 < δ < 1/2 and let η = 1/(1 + α). Let d0 = max
{

2
η log n, 4

η2
log 2

ε

}
and let m = dpoly(n, 1/δ, η−2d0)e, and note that this is polynomial in n, 1/δ and 1/ε.

Let S ∼ Dm and h = A(S). Then Pr
x∼D

(h(x) 6= c(x)) < η2d0 with probability at least

1 − δ. But, by Lemma 17, Pr
x∼D

(h(x) 6= c(x)) < η2d0 implies that then c =d0 h. Hence

c =d0 h with probability at least 1− δ. Then, to cause an error, an adversary must activate
a node at depth greater than d0 in either h or c.

We now apply Lemma 18 to show that the probability to activate a node at depth
greater than d0 in c is at most ε/2 (and symmetrically for h), which suffices to conclude
that REρ (c, h) < ε with probability at least 1 − δ. Indeed, writing c = ((l1, v1), . . . , (lr, vr))
and ϕ := ¬l1 ∧ · · · ∧ ¬ld0 , observe that

Pr
x∼D

((∃y ∈ Bρ(x) · x |= ϕ)) (2)

is precisely the probability for the adversary to be able to activate a node at depth > d0

in c. Now to apply Lemma 18 we note that by definition of d0 we have d0 ≥ 4
η2

log 2
ε , and,

since ρ = log n, we furthermore have d0 ≥ 2ρ
η ; thus the lemma implies that Equation 2 is at

most ε/2, as we require.

5.3 Generalizing from 1-DL to k-DL

This section is concerned with robust learning for k-DL. In the non-adversarial setting,
learnability of k-DL can be reduced to learnability of 1-DL. We start by observing that it
is apparently not straightforward to apply this reduction in the presence of an adversary.

The classical reduction of learning k-DL to 1-DL involves an embedding Φ : Xn → Xn′ , for
n′ := O(nk), that maps valuations of a collection of n propositional variables to valuations
of the collection of k-clauses over these variables. Then, for any function c : Xn → {0, 1}
computed by a k-decision list, there is a function c′ : Xn′ → {0, 1} computed by a 1-decision
list such that c′ ◦ Φ = c. On a positive note, the image under Φ of an α-log-Lipschitz

14
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distribution D on Xn remains log-Lipschitz on Xn′ , albeit with a slightly larger constant.
The problem is that the map Φ is not Lipschitz with respect to the Hamming metric—indeed
the image under Φ of two points with Hamming distance log n in Xn can have distance Ω(n)
in Xn′ , which is not logarithmic in the dimension n′ = O(nk).

We therefore take a direct approach to establishing robust learnability of k-DL in this
section. The argument follows a similar pattern to the previous section, in particular in-
volving a suitable generalization of Lemma 18. There are new ingredients relating to the
hypergraph structure of propositional formulas in conjunctive normal form. These ad-
ditional factors entail that we can only establish robust learnability (again relative to a
O(log n)-bounded adversary) in the case of 2-DL and monotone k-DL.

We start with some background on propositional logic. We regard a formula ϕ in
conjunctive normal form (CNF) as being a set of clauses, with each clause being a set of
literals. A k-CNF is a CNF formula where all clauses contain at most k literals. We say that
ϕ is closed under resolution if, for any two clauses in ϕ, their resolvent also belongs to ϕ.
The resolution closure of CNF formula ϕ, denoted Res∗(ϕ), is the smallest resolution-closed
set of clauses that contains ϕ.

We can consider a CNF formula as a hypergraph whose vertices are literals and whose
hyperedges are clauses. With this identification in mind, define a cover of a CNF formula
ϕ is a set of literals C such that every clause in ϕ contains a literal from C. Define also a
matching of ϕ to be a set M of clauses such that no two clauses in M contain the same literal.
By a well known result for hypergraphs, for a minimal cover C and maximal matching M
we have that |C| ≤ k|M |, where k is the maximum number of literals in any clause of ϕ
Füredi (1988). Assume now that ϕ is closed under resolution. We claim that a minimal
cover is satisfiable as a set of literals. Suppose for a contradiction that C is a minimal cover
that is not satisfiable, i.e., such that p,¬p ∈ C for some variable p. By minimality of C, ϕ
contains clauses {p} ∪ f and {¬p} ∪ f ′ such that C meets neither f nor f ′. But then the
resolvent f ∪ f ′ is also a clause of ϕ, and since C is a cover we must have that C meets
f ∪ f ′—a contradiction. The claim is established.

Definition 19 Fix decision lists c, h ∈ k-DL, where c = ((K1, v1), . . . , (Kr, vr)) and h =
((K ′1, v

′
1), . . . , (K ′s, v

′
s)) and the clauses Ki are conjunctions of k literals. Given i ∈ {1, . . . , r}

and j ∈ {1, . . . , s}, define a CNF formula ϕ
(c,h)
i,j by writing

ϕ
(c,h)
i,j := Res∗((¬K1 ∧ · · · ∧ ¬Ki−1 ∧Ki) ∧ (¬K ′1 ∧ · · · ∧ ¬K ′j−1 ∧K ′j)) .

Notice that the formula ϕ
(c,h)
i,j represents the set of inputs x ∈ X that respectively activate

vertex i in c and vertex j in h.

Our reliance on the following proposition is the reason that the results in this section
apply only to the classes 2-DL and monotone k-DL. 9

Proposition 20 Let c, h ∈ k-DL. Then ϕ
(c,h)
i,j is a k-CNF formula for all i and j in case

either k = 2 or c and h are both monotone.

9. It is easy to construct an example of a non-monotone k-CNF where ϕ
(c,h)
i,j is not a k-CNF: the 3-CNF

ϕ := (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x4 ∨ x5) has resolvent (x2 ∨ x3 ∨ x4 ∨ x5), so Res∗(ϕ) is a 4-CNF.
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Proof If k = 2 then ϕ
(c,h)
i,j is the resolution closure of a 2-CNF formula, which remains a

2-CNF formula. Similarly, if c and h are monotone then ϕ
(c,h)
i,j is the resolution closure of a

k-CNF in which positive literals only appear in singleton clauses. It is clear that the latter
is again a k-CNF formula.

We now have the following definition, in the spirit of Definition 16.

Definition 21 Given s ∈ N, we say that c, h ∈ k-DL are equivalent to cover-size s, denoted

c ≡s h, if c(x) = h(x) for all x ∈ X and for all nodes i, j such that ϕ
(c,h)
i,j has a cover of size

at most s and x |= ϕ
(c,h)
i,j .

Next we argue that if the error between c and h is sufficiently small then they are
equivalent to a suitably large cover depth.

Lemma 22 Let D be an α-log-Lipschitz distribution and let c and h be decision lists. If
Pr
x∼D

(h(x) 6= c(x)) < (1 + α)−s then c ≡s h.

Proof We prove the contrapositive. Suppose c 6≡s h. By definition, there exist i, j such

that ϕ
(c,h)
i,j has a minimum satisfiable cover C of size at most s and vi 6= v′j . In particular,

we have that c(x) 6= h(x) for all x ∈ X that satisfy ϕ
(c,h)
i,j . But the probability that x ∼ D

satisfies ϕ
(c,h)
i,j is at least the probability that x satisfies C. Since C is minimal it does not

contain complementary literals. Hence, the probability that x ∼ D satisfies C is at least
(1 + α)−s by Lemma 32, which can be found in Appendix A.3.

The following is a generalization of Lemma 18.

Lemma 23 Let ϕ be a k-CNF formula that has no cover of size s. Let D be an α-log-

Lipschitz distribution on valuations for ϕ. Let 0 < ε < 1/2 be arbitrary and set η :=
(

1
1+α

)k
.

If s
k(k+1) ≥ max

{
4
η2

log
(

1
ε

)
, 2ρ
η

}
then Pr

x∼D
(∃y ∈ Bρ(x) · y |= ϕ) ≤ ε.

Proof Since ϕ has no cover of size s, it has a matching M such that |M | ≥ s
k . By definition,

each literal appears in at most one clause in M , hence, by removing at most a fraction k
k+1

of the clauses in M , we can assume without loss of generality that each variable occurs in
at most one clause of M and M has cardinality d := s

k(k+1) .

Consider the map Φ : Xn → Xd, where Φ(x) encodes the truth values of the clauses in
M under the assignment x. Since the clauses in M are variable-disjoint, Φ is non-expansive
under the respective Hamming metrics on Xn and Xd, meaning that dH(Φ(x),Φ(y)) ≤
dH(x, y) for all x, y ∈ Xn. Thus for all x ∈ Xn,

∃y ∈ Bρ(x) · y |= ϕ =⇒ 1 ∈ Bρ(Φ(x)) .

It will suffice to show that the probability over x ∼ D that the right-hand condition of the
above implication holds true is at most ε.
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Define a distribution D′ on Xd by D′(y) :=
∑

x∈Φ−1(y)D(x). By Lemma 34, which

can be found in Appendix D.2, we have that D′ is α′-log-Lipschitz for α′ := (α + 1)k − 1.
We wish to upper-bound the probability over x′ ∼ D′ that 1 ∈ Bρ(x′). For this, we will
apply Lemma 18 over the space Xd with distribution D′. Indeed, our assumptions on η

and s entail that η = 1
1+α′ and d ≥ max

{
4
η2

log
(

1
ε

)
, 2ρ
η

}
. Thus Lemma 18 gives that

Pr
x′∼D′

(1 ∈ Bρ(Φ(x′))) ≤ ε. This concludes the proof.

We are now ready to prove the main result of the section.

Theorem 24 Let D = {Dn}n∈N, where Dn is a set of α-log-Lipschitz distributions on
{0, 1}n for all n ∈ N. Then the classes of 2-decision lists and monotone k-decision lists
(for every fixed k) are ρ-robustly learnable with respect to D for robustness function ρ(n) =
O(log n).

Proof Let A be the (proper) PAC-learning algorithm for k-DL as in Rivest (1987), with
sample complexity poly(·). Fix the input dimension n, target concept c and distribution
D ∈ Dn, and let ρ = log n. Fix the accuracy parameter 0 < ε < 1/2 and confidence

parameter 0 < δ < 1/2 and let η = 1/(1+α). Let s0 = k(k+1) max
{

4
η2

log
(
e4n2k+2

16ε

)
, 2ρ
η

}
,

write m = dpoly(n, 1/δ, η−s0)e, and note that m is polynomial in n, 1/δ and 1/ε.

Let S ∼ Dm and h = A(S). Then Pr
x∼D

(h(x) 6= c(x)) < η−s0 with probability at least

1−δ. But, by Lemma 22, Pr
x∼D

(h(x) 6= c(x)) < ηs0 implies that then c ≡s0 h. Hence c ≡s0 h
with probability at least 1− δ.

In case c ≡s0 h, an input x ∈ X only leads to a classification error if it activates nodes

i and j in c and h respectively such that the formula ϕ
(c,h)
i,j has no cover of cardinality s0.

Fix i and j such that ϕ
(c,h)
i,j has no cover of cardinality s0. Now ϕ

(c,d)
i,j is a k-CNF formula

by Proposition 20. Hence the probability that a ρ-bounded adversary can make ϕ
(c,d)
i,j true

is at most 16ε
e4n2k+2 by Lemma 23. Taking a union bound over all possible choices of i and

j (there are
∑k

i=1

(
n
k

)
≤ k

(
en
k

)k
possible clauses in k-decision lists, which gives us a crude

estimate of k2
(
en
k

)2k ≤ e4n2k+2

16 choices of i and j) we conclude that REρ (h, c) < ε.

5.4 Decision Trees

In this section, we show that, under α-log-Lipschitz distributions, for any two decision
trees and perturbation budget ρ(n) = O(log n), the ρ-robust risk is bounded above by a
polynomial in the number n of propositional variables, the combined size m of the trees,
and their standard risk. This result makes explicit the relationship between both notions
of risk, while it was implicitly derived for decision lists in the previous section.

Despite the fact that it is not known whether the class of decision trees is PAC-learnable,
relating the standard and robust risks for this class is still of interest if we can show that
a small enough standard risk only incurs a polynomial blowup in the robust risk. This
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could be particularly compelling in the local membership query model of Awasthi et al.
(2013), where an algorithm can request labels for points that are O(log(n)) bits away from
a point in the training sample. The authors showed that, in this framework, the class of
polynomial-sized decision trees is learnable (in polynomial time) under product distributions
using O(log(n))-local membership queries. Moreover, O’Donnell and Servedio (2007) show
that monotone decision trees are PAC learnable under the uniform distribution, so our
result holds in this setting as well.

Terminology. A decision tree c over n propositional variables is a finite binary tree
whose internal nodes are labeled by elements of the set {1, . . . , n} and whose leaves are
labeled either 0 or 1. The depth of a leaf is the number of internal nodes of the tree in
the (unique) path from the root to the given leaf. An input x ∈ X = {0, 1}n determines
a path through such a tree, starting at the root, as follows: at an internal node with label
i descend to the left child if xi = 0 and descend to the right child if xi = 1. We say that
x ∈ X activates a given leaf node if the path determined by x leads to the given leaf. In
this way a decision tree c determines a function c : X → {0, 1}, where c(x) is the label of
the leaf activated by x.

Given two decision trees c, h, both over n propositional variables, and given d ∈ N, we
write c =d h if for all x ∈ X that activates leaves of depth at most d in both c and h, we
have c(x) = h(x). In the same vein as Lemma 17, given d ∈ N we have that c =d h provided
that Pr

x∼D
(h(x) 6= c(x)) is sufficiently small.

Lemma 25 Let D be a α-log-Lipschitz distribution. If Pr
x∼D

(h(x) 6= c(x)) < (1+α)−2d then

c =d h.

We omit the proof of Lemma 25, which follows that of Lemma 17 mutatis mutandis.

We can now bound the robust risk between decision trees as a polynomial in the of the
number of propositional variables, the log-Lipschitz constant, their combined size, and their
standard risk.

Theorem 26 Let c and h be two decision trees on n propositional variables with at most
m nodes in total. Let D be an α-log-Lipschitz distribution on Xn and ρ = log n. There is a
fixed polynomial poly(·, ·, ·) such that for all 0 < ε < 1

2 , if Pr
x∼D

(h(x) 6= c(x)) < poly( 1
m ,

1
n , ε),

then REρ (c, h) < ε.

Proof Write d := max
{

4
η2

log
(
m
ε

)
, 2ρ
η

}
and define poly( 1

m ,
1
n , ε) := (1 + α)−d.

The assumption that Pr
x∼D

(h(x) 6= c(x)) < (1 + α)−d implies that c and h are consis-

tent to depth d. This means that c(x) 6= h(x) only on those inputs x ∈ X that activate
some leaf node of depth strictly greater than d, either in c or h. By Lemma 18, for each
such node the probability that a ρ-bounded adversary can activate the node by perturb-
ing the bits of a randomly generated input x ∼ D is at most ε

m . Taking a union bound
over the nodes of depth > d (there are at most m of them), we conclude that REρ (h, c) ≤ ε.
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6. Computational Hardness of Robust Learning

In this section, we establish that the computational hardness of PAC-learning a concept
class C with respect to a distribution class D implies the computational hardness of robustly
learning a family of concept-distribution pairs from a related class C′ and a restricted class
of distributions D′, which are themselves computationally easy to non-robustly learn. This
is essentially a version of the main result of Bubeck et al. (2018b). Our proof also uses the
Bubeck et al. (2018b) trick of encoding a point’s label in the input for the robust learning
problem. Interestingly, our proof does not rely on any assumption other than the existence
of an average-case hard learning problem in the PAC framework and is valid under both
notions of robust risk (cf. Definitions 1 and 2).

Construction of C′ and D′[c′]. Suppose we are given C = {Cn}n∈N and D = {Dn}n∈N
with Cn and Dn defined on Xn = {0, 1}n. Given k ∈ N, we define the family of concept-
distribution pairs PkC,D = {(c′, D′) | c′ ∈ C′, D′ ∈ D′[c′]},10 where C′ and D′ are defined

in the following. First define C′ = {C′(k,n)}k,n∈N on X ′k,n = {0, 1}(2k+1)n+1 as follows. Let

majk : X ′k,n → Xn be the function that yields x ∈ Xn obtained by taking a majority vote
on each of the n consecutive blocks of 2k + 1 bits and ignoring the last bit. We define
C′(k,n) =

{
c ◦maj2k+1 | c ∈ Cn

}
. Let ϕk,c : Xn → X ′k,n be defined as

ϕk,c(x) := x1 . . . x1x2 . . . xn−1xn . . . xn︸ ︷︷ ︸
2k+1 copies of each xi

c(x) , ϕk,c(S) := {ϕk,c(x) | x ∈ S} ,

for x = x1x2 . . . xn ∈ Xn and S ⊆ Xn. This definition implies that if c′ = c ◦ maj2k+1,
then c(x) = c′(ϕk,c(x)) for every x ∈ Xn. For a concept c ∈ Cn and the associated c′ =
c ◦maj2k+1 ∈ C′(k,n), each D ∈ Dn induces a distribution D′ ∈ D′[c′], where D′(z) = D(x) if

z = ϕk,c(x), and D′(z) = 0 otherwise.

This set up allows us to see that any algorithm (computationally efficient or not) for
learning Cn with respect to Dn yields an algorithm for learning the family of concept-
distribution pairs PkC,D. Furthermore, any such algorithm is also robust to any adversary
that flips at most k bits; this is because flipping k bits cannot change the majority on
any of the n blocks of 2k + 1 bits for any point in the support of D′. As we show below in
Theorem 28, any efficient robust learning algorithm for learning PkC,D also yields an efficient
algorithm for learning Cn with respect to Dn. Thus, choosing Cn to be a class that is hard
to learn computationally, but easy to learn statistically, implies the hardness or robustly
learning the corresponding class, PkC,D, of concept-distribution pairs computationally, but

not statistically. On the other hand, it is easy to learn PkC,D non-robustly, by simply
outputting the last bit of any input which is always equal to the target label. We remark
that the last part of the argument is identical to the construction of Bubeck et al. (2018b).

Before proving the main result, let us first prove the following proposition. This shows
that the family of concept-distribution pairs, PkC,D, constructed above is statistically effi-
ciently learnable.

10. This is analogous to the family of pairs of distributions (D0, D1) used by Bubeck et al. (2018b).
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Proposition 27 For any concept class C and distribution class D, the class of concept-
distribution pairs PkC,D = {(c′, D′) | c′ ∈ C ′, D′ ∈ D′[c′]} as constructed above can be

k-robustly (under either notion of risk) learned using O
(

1
ε

(
log |Cn|+ log 1

δ

))
examples.

Proof Let (c′, D′) be the target concept-distribution pair. Suppose that c′ ∈ C′(k,n), then

let c ∈ Cn be the (unique) concept that produced c′ and let D ∈ Dn be the (unique)
distribution that generated D′. Given a random example (x′, c′(x′)) where x′ ∈ X ′(k,n),

the corresponding example (x, c(x)) with x ∈ Xn can be easily and efficiently constructed.
Thus, we have an example oracle for learning c under the distribution D.

Then note that, since Cn is finite, we can use PAC-learning sample bounds for the re-
alizable setting (see for example Mohri et al. (2012)) to get that the sample complexity of
learning Cn is O

(
1
ε (log |Cn|+ log 1

δ )
)
. Now, if we have PAC-learned Cn with respect to Dn,

and h is the hypothesis returned on a sample labeled according to a target concept c ∈ Cn,
we can compose it with the function majk to get a hypothesis h′ for which any perturbation
of at most k bits of x′ ∼ D′ (where D′ is the distribution induced by the target concept
c and distribution D) will not change h′(x′). Clearly, this produces a hypothesis that is
k-robust for either notion of robust risk.

We now prove the main result of this section.

Theorem 28 For any concept class Cn, family of distributions Dn over {0, 1}n and k ∈ N,
there exists a family of concept-distribution pairs {(c′, D′) | c′ ∈ C′, D′ ∈ D′[c′]}, such that
(i) this concept-distribution pairs family is efficiently PAC learnable and (ii) efficient k-
robust learnability of this concept-distribution pairs family under either of the robust risk
functions RCk or REk implies efficient PAC-learnability of Cn with respect to Dn.

Proof Given Cn and Dn, let PkC,D = {(c′, D′) | c′ ∈ C′(k,n), D
′ ∈ D′[c′]} be constructed as

above.
For part (i), simply output the last bit of a given input, which is always equal to the

target label.
For part (ii), suppose that we are given an algorithm A′ to computationally efficiently

k-robustly learn P with sample complexity m = m(n, ε, δ).
Let ε, δ > 0 be arbitrary and c ∈ Cn be an arbitrary target concept and let c′ ∈ C′(k,n)

be such that c′ = c ◦maj2k+1. Let D ∈ Dn be a distribution on Xn, and let D′ ∈ D′c′ be its
induced distribution on X ′k,n using the function ϕk,c.

A PAC-learning algorithm for Cn is as follows. Draw a sample S ∼ Dm and let S′ =
ϕk,c(S). Note that this simulates a sample S′ ∼ D′m, and that c′ will give the same label
to all points in the Hamming k-ball centered at x′ for any x′ in the support of D′.

Since A′ k-robustly learns the concept-distribution pairs PkC,D, with probability at least
1−δ over S′, for any x ∼ D, we have that h′ will output a value different of c(x) on the point
ϕk,0(x) with probability at most ε, where 0 represents the function that outputs 0 on every
x ∈ Xn. Thus, we may simply output h = h′ ◦ϕk,0, and we have an algorithm to PAC-learn
Cn with respect to the distribution family Dn. Clearly, all required computations in this con-
struction can be done in polynomial time and hence computational efficiency is preserved.
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Remark 29 One of the parameters of interest is the ratio k/n, i.e., the fraction of adver-
sarial corruption that any algorithm may tolerate. The above construction shows a computa-
tional vs statistical separation for an adversary that can corrupt Θ(1/n) fraction of the bits.
This can easily be boosted to show such a separation when the adversary can corrupt Θ(1)
fraction of the bits. This is achieved by using error correcting codes such as those introduced
by Guruswami and Indyk (2001). Since this use of error correcting codes is identical to that
in the recent work of Degwekar et al. (2019), we omit the detailed description.

7. Conclusion

We have studied robust learnability from a computational learning theory perspective and
have shown that efficient robust learning can be hard—even in very natural and apparently
straightforward settings. Rather straightforwardly, classes that can be exactly learned can
also be robustly learned and we show that the class of parities falls into this category under
the class of log-Lipschitz distributions. We also give a tight characterization of the strength
of an adversary to prevent robust learning of monotone decision lists, again under certain
distributional assumptions. We moreover show that, against a logarithmically-bounded
adversary, the robust risk between two decision trees is polynomial in their size and standard
risk. Lastly, we have provided a simpler proof of the previously established result of the
computational hardness of robust learning.

An interesting avenue for future work is to see whether our positive robust learning
results can be extended to other classes of functions. Another interesting line of inquiry is
to see whether efficient robust learning can still be guaranteed under less stringent distribu-
tional assumptions. Indeed, we have shown that efficient robust learning is impossible in the
distribution-free setting except for trivial concept classes, while it is possible to efficiently
robustly learn certain concept classes against a logarithmically-bounded adversary under
the uniform distribution or log-Lipschitz distributions. The intermediate picture remains
unknown, and positive results could lead to novel algorithms, e.g., ones that rely on (local)
membership queries on specific parts of the input space. Finally, given that the classes we
have studied so far are all efficiently robustly learnable against a logarithmically-bounded
adversary under the uniform distribution, an open problem is to determine whether this
holds for all efficiently PAC-learnable concept classes, or if there exists such a concept class
with robustness threshold o(log n) under the uniform distribution.

In light of our results, it seems to us that more thought needs to be put into what we
want out of robust learning in terms of computational efficiency and sample complexity,
which will inform our choice of risk functions. Indeed, while robust learning definitions
that have appeared in prior work initially seem natural and reasonable, their inadequacies
surface when viewed under the lens of computational learning theory. Given our negative
results in the context of the current robustness models, one may surmise that requiring a
classifier to be correct in an entire ball near a point is asking for too much. Under such
a requirement, we can only solve “easy problems” with strong distributional assumptions.
Nevertheless, it may still be of interest to study these notions of robust learning in different
learning models, e.g., where one has access to membership queries.
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Appendix A. Preliminaries

A.1 The PAC framework

We study the problem of robust classification in the realizable setting and where the input
space is the boolean cube Xn = {0, 1}n. For clarity, we first recall the definition of the PAC
learning framework from Valiant (1984).

Definition 30 (PAC Learning) Let Cn be a concept class over Xn and let C =
⋃
n∈N Cn.

We say that C is PAC learnable using hypothesis class H and sample complexity function
p(·, ·, ·, ·) if there exists an algorithm A that satisfies the following: for all n ∈ N, for every
c ∈ Cn, for every D over Xn, for every 0 < ε < 1/2 and 0 < δ < 1/2, if whenever A is
given access to m ≥ p(n, 1/ε, 1/δ, size(c)) examples drawn i.i.d. from D and labeled with c,
A outputs a polynomially evaluatable h ∈ H such that with probability at least 1− δ,

Pr
x∼D

(c(x) 6= h(x)) ≤ ε .

We say that C is statistically efficiently PAC learnable if p is polynomial in n, 1/ε, 1/δ
and size(c), and computationally efficiently PAC learnable if A runs in polynomial time in
n, 1/ε, 1/δ and size(c).

PAC learning is distribution-free, in the sense that no assumptions are made about the
distribution from which the data comes from. The setting where C = H is called proper
learning, and improper learning otherwise.

A.2 Monotone Conjunctions

A conjunction c over {0, 1}n can be represented a set of literals l1, . . . , lk, where, for x ∈ Xn,
c(x) =

∧k
i=1 li. For example, c(x) = x1 ∧ x̄2 ∧ x5 is a conjunction. Monotone conjunctions

are the subclass of conjunctions where negations are not allowed, i.e., all literals are of the
form li = xj for some j ∈ [n].

The standard PAC learning algorithm to learn monotone conjunctions is as follows. We
start with the hypothesis h(x) =

∧
i∈Ih xi, where Ih = [n]. For each example x in the

training sample, we remove i from Ih if c(x) = 1 and xi = 0.
When one has access to membership queries, one can easily exactly learn monotone

conjunctions over the whole input space: we start with the instance where all bits are 1
(which is always a positive example), and we can test whether each variable is in the target
conjunction by setting the corresponding bit to 0 and requesting the label.
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A.3 Log-Lipschitz Distributions

Definition 31 A distribution D on {0, 1}n is said to be α-log-Lipschitz if for all input
points x, x′ ∈ {0, 1}n, if dH(x, x′) = 1, then | log(D(x))− log(D(x′))| ≤ log(α).

The intuition behind log-Lipschitz distributions is that points that are close to each
other must not have frequencies that greatly differ from each other. Note that, by defini-
tion, D(x) > 0 for all inputs x. Moreover, the uniform distribution is log-Lipschitz with
parameter α = 1. Another example of log-Lipschitz distributions is the class of product
distributions where the probability of drawing a 0 (or equivalently a 1) at index i is in the

interval
[

1
1+α ,

α
1+α

]
. Log-Lipschitz distributions have been studied in Awasthi et al. (2013),

and its variants in Feldman and Schulman (2012); Koltun and Papadimitriou (2007).
Log-Lipschitz distributions have the following useful properties, which we will often refer

to in our proofs.

Lemma 32 Let D be an α-log-Lipschitz distribution over {0, 1}n. Then the following hold:

i. For b ∈ {0, 1}, 1
1+α ≤ Pr

x∼D
(xi = b) ≤ α

1+α .

ii. For any S ⊆ [n], the marginal distribution DS̄ is α-log-Lipschitz, where DS̄(y) =∑
y′∈{0,1}S D(yy′).

iii. For any S ⊆ [n] and for any property πS that only depends on variables xS, the marginal
with respect to S̄ of the conditional distribution (D|πS)S̄ is α-log-Lipschitz.

iv. For any S ⊆ [n] and bS ∈ {0, 1}S, we have that
(

1
1+α

)|S|
≤ Pr

x∼D
(xi = b) ≤

(
α

1+α

)|S|
.

Proof To prove (i), fix i ∈ [n] and b ∈ {0, 1} and denote by x⊕i the result of flipping the
i-th bit of x. Note that

Pr
x∼D

(xi = b) =
∑

z∈{0,1}n:
zi=b

D(z) =
∑

z∈{0,1}n:
zi=b

D(z)

D(z⊕i)
D(z⊕i) ≤ α

∑
z∈{0,1}n:
zi=b

D(z⊕i) = α Pr
x∼D

(xi 6= b) .

The result follows from solving for Pr
x∼D

(xi = b).

Without loss of generality, let S̄ = {1, . . . , k} for some k ≤ n. Let x, x′ ∈ {0, 1}S̄ with
dH(x, x′) = 1.

To prove (ii), let DS̄ be the marginal distribution. Then,

DS̄(x) =
∑

y∈{0,1}S
D(xy) =

∑
y∈{0,1}S

D(xy)

D(x′y)
D(x′y) ≤ α

∑
y∈{0,1}S

D(x′y) = αDS̄(x′) .

To prove (iii), denote by XπS the set of points in {0, 1}S satisfying property πS , and by
xXπS the set of inputs of the form xy, where y ∈ XπS . By a slight abuse of notation, let
D(XπS ) be the probability of drawing a point in {0, 1}n that satisfies πS . Then,

D(xXπS ) =
∑

y∈XπS

D(xy) =
∑

y∈XπS

D(xy)

D(x′y)
D(x′y) ≤ α

∑
y∈XπS

D(x′y) = αD(x′XπS ) .
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We can use the above and show that

(D|πS)S̄(x) =
D(xXπS )

D(x′XπS )

D(x′XπS )

D(XπS )
≤ α(D|πS)S̄(x′) .

Finally, (iv) is a corollary of (i)—(iii).

Appendix B. Robust Risk Minimizer for RCρ

Proposition 33 Under the uniform distribution, for any non-constant concept c ∈ MON-CONJ,
we have that RC1 (c, c) > RC1 (c, 0).

Proof Let X = {0, 1}n and D be the uniform distribution on X . Let c(x) = x1 ∧ · · · ∧ xk
for some k ∈ [n]. Then,

RC1 (c, c) = Pr
x∼D

(∃z ∈ Bρ(x) . c(z) 6= c(x))

= Pr
x∼D

(c(x) = 1) + Pr
x∼D

(∃!i ∈ [k] . xi = 0)

= RC1 (c, 0) + Pr
x∼D

(∃!i ∈ [k] . xi = 0)

> RC1 (c, 0) .

Appendix C. Proofs from Section 3

Proof [of Theorem 5] First, if C is trivial, we need at most one example to identify the
target function.

For the other direction, suppose that C is non-trivial, and for a given c ∈ C, denote
by Ic ⊆ [n] the index set of relevant variables in the function c.11 We first start by fixing
any learning algorithm and polynomial sample complexity function m. Let η = 1

2ω(logn)
,

0 < δ < 1
2 , and note that for any constant a > 0,

lim
n→∞

na log(1− η)−1 = 0 ,

and so any polynomial in n is o
(

(log(1/(1− η)))−1
)

. Then it is possible to choose n0 such

that for all n ≥ n0,

m ≤ log(1/δ)

2n log(1− η)−1
. (3)

Since C is non-trivial, we can choose concepts c1, c2 ∈ Cn and points x, x′ ∈ {0, 1}n such
that c1 and c2 agree on x but disagree on x′. This implies that there exists a point z ∈ {0, 1}n

11. This means that if i ∈ Ic there exists x ∈ {0, 1}n such that c(x⊕i), the output of c on flipping the i-th
bit of x, differs from c(x).
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such that (i) c1(z) = c2(z) and (ii) it suffices to change only one bit in I := Ic1 ∪ Ic2 to
cause c1 to disagree on z and its perturbation. Let D be a product distribution such that

Pr
x∼D

(xi = zi) =

{
1− η if i ∈ I
1
2 otherwise

.

Draw a sample S ∼ Dm and label it according to c ∼ U(c1, c2). Then,

Pr
S∼Dm

(∀x ∈ S c1(x) = c2(x)) ≥ (1− η)m|I| . (4)

Bounding the RHS below by δ > 0, we get that, as long as

m ≤ log(1/δ)

|I| log(1− η)−1
,

Equation 4 holds with probability at least δ. But this is true as Equation 3 holds as well.
However, if x = z, then it suffices to flip one bit of x to get x′ such that c1(x′) 6= c2(x′).
Then,

REρ (c1, c2) ≥ Pr
x∼D

(xI = zI) = (1− η)|I| . (5)

The constraints on η and the fact that |I| ≤ n are sufficient to guarantee that the RHS is
Ω(1). Let α > 0 be a constant such that REρ (c1, c2) ≥ α.

We can use the same reasoning as in Lemma 6 to argue that, for any h ∈ {0, 1}X ,

RE1 (c1, h) + RE1 (c2, h) ≥ RE1 (c1, c2) .

Finally, we can show that

E
c∼U(c1,c2)

E
S∼Dm

[
RR1 (h, c)

]
≥ αδ/2,

hence there exists a target c with expected robust risk bounded below by a constant.12

Appendix D. Proofs from Section 5

D.1 Proof of Lemma 12

Proof We begin by bounding the probability that c1 and c2 agree on an i.i.d. sample of
size m:

Pr
S∼Dm

(∀x ∈ S · c1(x) = c2(x) = 0) =

(
1− 1

2l

)2m

. (6)

Bounding the RHS below by 1/2, we get that, as long as

m ≤ log(2)

2 log(2l/(2l − 1))
, (7)

12. For a more detailed reasoning, we refer the reader to the proof of Theorem 13, where we bound the
expected value E

c,S

[
REρ (A(S), c)

]
of the robust risk of a target chosen at uniformly random and the

hypothesis outputted by a learning algorithm A on a sample S.
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Equation 6 holds with probability at least 1/2.

Now, if l = ω(log(n)), then for a constant a > 0,

lim
n→∞

na log

(
2l

2l − 1

)
= 0 ,

and so any polynomial in n is o

((
log
(

2l

2l−1

))−1
)

.

D.2 Lemma 34

Lemma 34 Let Φ : Xn → Xd be the embedding encoding the truth values of (disjunctive)
clauses in a variable-disjoint matching M of size d under an assignment x ∈ Xn. Let D be
an α-log-Lipschitz distribution on Xn and define D′ on Xd as follows:

D′(y) :=
∑

x∈Φ−1(y)

D(x) ,

where y ∈ Xd. Then D′ is α′-log-Lipschitz for α′ = (α+ 1)k − 1.

Proof Let y, y′ ∈ Xd be such that dH(y, y′) = 1, i.e. y and y′ disagree on exactly one clause
in M . We want to upper bound the quantity D(y)/D(y′) by α′ = (α+ 1)k−1. To this end,
and WLOG, let y1 6= y′1 and let the clause K1 in M where y and y′ disagree be a function
of the first k bits in Xn. Because M is variable disjoint, and since K1 is a disjunction of
literals, if we fix the bits xk+1, . . . , xn, then there exists a unique assignment of x1, . . . , xk
such that Φ(x)1 = 0 (where x = x1 . . . xn), and thus the remaining 2k − 1 are such that K1

evaluates to 1. Hence, to upper bound D(y)/D(y′), we will assume that y1 = 1 and y′1 = 0.

Now, we can partition the preimage Φ−1(y) into {Px′}x′∈Φ−1(y′), where each x ∈ Px′

disagrees with x′ on at least one of the first k bits and is the same on the remaining n− k
bits. Thus

D′(y)

D′(y′)
=

∑
x′∈Φ−1(y′)

∑
x∈Px′

D(x)∑
x′∈Φ−1(y′)D(x′)

≤
∑

x′∈Φ−1(y′)D(x′)
∑

x∈Px′
αdH(x,x′)∑

x′∈Φ−1(y′)D(x′)
(by log-Lipschitzness of D)

=

(
(α+ 1)k − 1

)∑
x′∈Φ−1(y′)D(x′)∑

x′∈Φ−1(y′)D(x′)

= (α+ 1)k − 1 ,

where we used the fact (α+ 1)k =
∑k

i=0

(
k
i

)
αi for the third step.
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