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Abstract

This paper focuses on spectral graph convolutional neural networks (ConvNets), where
filters are defined as elementwise multiplication in the frequency domain of a graph. In
machine learning settings where the data set consists of signals defined on many different
graphs, the trained ConvNet should generalize to signals on graphs unseen in the training
set. It is thus important to transfer ConvNets between graphs. Transferability, which is
a certain type of generalization capability, can be loosely defined as follows: if two graphs
describe the same phenomenon, then a single filter or ConvNet should have similar reper-
cussions on both graphs. This paper aims at debunking the common misconception that
spectral filters are not transferable. We show that if two graphs discretize the same “con-
tinuous” space, then a spectral filter or ConvNet has approximately the same repercussion
on both graphs. Our analysis is more permissive than the standard analysis. Transferabil-
ity is typically described as the robustness of the filter to small graph perturbations and
re-indexing of the vertices. Our analysis accounts also for large graph perturbations. We
prove transferability between graphs that can have completely different dimensions and
topologies, only requiring that both graphs discretize the same underlying space in some
generic sense.
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1. Introduction

The success of convolutional neural networks (ConvNets) on Euclidean domains ignited an
interest in recent years in extending these methods to graph structured data. In a standard
ConvNet, the network receives as input a signal defined over a Euclidean rectangle, and
at each layer applies a set of convolutions/filters on the outputs of the previous layer, a
non linear activation function, and, optionally, pooling. A graph ConvNet has the same
architecture, with the only difference that now signals are defined over the vertices of graph
domains, and not Euclidean rectangles. Graph structured data is ubiquitous in a range of
applications, and can represent 3D shapes, molecules, social networks, point clouds, and
citation networks to name a few.

In a machine learning setting, the general architecture of the ConvNet is fixed, but the
specific filters to use in each layer are free parameters. In training, the filter coefficients are
optimized to minimize some loss function. In some situations, both the graph and the signal
defined on the graph are variables in the input space of the ConvNet. Namely, the data
set consists of many different graphs, and many different signals on these graphs. We call
such a scenario a multi-graph setting. In multi-graph settings, if two graphs represent
the same underlying phenomenon, and the two signals given on the two graphs are similar
in some sense, the output of the ConvNet on both signals should be similar as well. This
property is typically termed transferability, and is an essential requirement if we wish the
ConvNet to generalize well on the test set, which in general consists of graphs unseen in the
training set. In fact, transferability can be seen as a special type of generalization capability.
Analyzing and proving transferability is the focus of this paper.

1.1 Convolutional Neural Networks

A classical 1D convolution neural network, as described above, can be written explicitly as
follows. We call each application of filters, followed by the activation function and pooling a
layer. We consider discrete input signals f ∈ Rd1 , seen as the samples of a continuous signal
f : R→ R at d1 sample points. In each Layer l = 1, . . . , L there are Kl ∈ N signal channels.
The convolution-operators/filters of the ConvNet map the signal channels of each Layer
l− 1 to the signal channels of Layer l. Moreover, as the layers increase, we consider coarser
discrete signals. Namely, signals of Layer l consist of dl samples, where d1 ≥ d2 ≥ . . . ≥ dL.
Consider the affine-linear filters

{glk′k | k=1...Kl−1, k
′=1...Kl}

of Layer l−1, and the matrix Al = {alk′k}k′k ∈ RKl×Kl−1 that mixes the Kl−1×Kl resulting
output signals to the Kl channels of Layer l. Note that each glk′k denotes a convolution

operator plus constant. Denote the signals at Layer l by {f lk′}
Kl
k′=1. The ConvNet maps

Layer l − 1 to Layer l by

{f lk′}
Kl
k′=1 = Ql

(
ρ
{Kl−1∑

k=1

alk′k g
l
k′k(f

l−1
k )

}Kl
k′=1

)
,
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where ρ : R → R, called the activation function, operates pointwise on vectors, and the
pooling operator Ql : Rdl−1 → Rdl sub-samples signals from Rdl−1 to Rdl . A typical
choice for ρ is the ReLU function ρ(x) = max{0, x}. The output of the ConvNet are the
signals {fLk′}

KL
k′=1 at Layer L.

When generalizing this architecture to graphs, there is a need to extend the convolution,
activation function, and pooling to graph structured data. Here, graph signals are mappings
that assign to each vertex of a graph a value. The activation function operates pointwise
on signals, and generalizes trivially to graph signals. For pooling, graph signals are sub-
sampled to signals over coarsened graphs, typically via the Graclus algorithm (Dhillon et al.,
2004) (see also (Defferrard et al., 2016, Subsection 2.2)). Next, we explain how filters are
generalized to graphs.

1.2 Convolution Operators on Graphs

There are generally two approaches to defining convolution operators on graphs, both gen-
eralizing the standard convolution on Euclidean domains (Bronstein et al., 2017; Wu et al.,
2020). Spatial approaches generalize the idea of a sliding window to graphs. Here, the main
challenge is to define a way to translate a filter kernel along the vertices of the graph, or to
aggregate feature information from the neighbors of each node. Some popular examples of
spatial methods are (Gori et al., 2005; Scarselli et al., 2009; Monti et al., 2017). Spectral
methods are inspired by the convolution theorem in Euclidean domains, that states that
convolution in the spatial domain is equivalent to pointwise multiplication in the frequency
domain. The challenge here is to define the frequency domain and the Fourier transform of
graphs. The basic idea is to define the graph Laplacian, or some other graph operator that
we interpreted as a shift operator, and to use its eigenvalues as frequencies and its eigen-
vectors as the corresponding pure harmonics (Ortega et al., 2018). Decomposing a graph
signal to its pure harmonic coefficients is by definition the graph Fourier transform, and
filters are defined by multiplying the different frequency components by different values, see
Subsection 2.1 for more details. For some examples of spectral methods we refer to (Bruna
et al., 2013; Defferrard et al., 2016; Levie et al., 2019b; Gama et al., 2018). Additional
references for both methods can be found in (Wu et al., 2020).

One typical motivation for favoring spatial methods is the claim that spectral methods
are not transferable, and thus do not generalize well on graphs unseen in the training set.
The goal in this paper is to debunk this misconception, and to show that state-of-the-art
spectral graph filtering methods are transferable. This paper does not argue against spatial
methods, but shows the potential of spectral approaches to cope with data sets having
varying graphs. We would like to encourage researches to reconsider spectral methods in
such situations. Interestingly, Bianchi et al. (2021) obtained state-of-the-art results using
spectral graph filters on variable graphs, without any modification to compensate for the
“non-transferability”.

1.3 Stability of Spectral Methods

A necessary condition of any reasonable definition of transferability is stability. Namely,
given a filter, if the topology of a graph is perturbed, then the filter on the perturbed
graph is close to the filter on the un-perturbed graph. Without stability it is not even
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possible to transfer a filter from a graph to another very close graph, and thus stability
is necessary for transferability. Previous work studied the behavior of graph filters with
respect to variations in the graph. Segarra et al. (2017) provided numerical results on the
robustness of polynomial graph filters to additive Gaussian perturbations of the eigenvectors
of the graph Laplacian. Since the eigendecomposition is not stable to perturbations in
the topology of the graph, this result does not prove robustness to such perturbations.
Isufi et al. (2017b) showed that the expected graph filter under random edge losses is
equal to the accurate output. However, Isufi et al. (2017b) did not bound the error in
the output in terms of the error in the graph topology. Gama et al. (2019b) studied the
stability with respect to diffusion distance of diffusion scattering transforms on graphs, a
graph version of the popular scattering transforms, which are pre-defined Euclidean domain
ConvNets (Bruna and Mallat, 2013). Zou and Lerman (2020) also studied stability of graph
scattering transforms, in terms of perturbations in the Laplacian eigenvectors and vertex
permutations. Recently, Gama et al. (2020) studied stability properties of spectral graph
filters of a fixed number of vertices. However, in (Gama et al., 2020, Theorems 2 and 3)
the assumption that the relative error matrix is normal and is close to a scaled identity
matrix is restrictive, and not satisfied in the generic case. In particular, only perturbations
which are approximately a multiplication of all of the edge weights by the same scalar are
considered in these theorems. A similar restriction is implicit in the analysis of Gama et al.
(2019a), which studied stability of graph scattering transforms. Kostrikov et al. (2018)
analyzed the stability of a special type of ConvNet on triangle meshes, where filtering is
pre-defined via propagating information from vertices to faces and back using the Dirac
operator. The error of the ConvNet between two polygon meshes discretizing the same
surface was bounded, assuming the two meshes consist of the same number of vertices.
This approach to stability is reminiscent of our approach, but in our analysis we do not
assume that the two graphs consist of the same number of vertices. Moreover, we consider
general spectral graph ConvNets.

1.4 Our Contribution

In the following we summarize our contribution.

1.4.1 Theoretical Settings of Transferability

We prove in this paper the stability of graph spectral filters to general perturbations in
the topology. In fact, we present a more permissive framework of transferability, allowing
to compare graphs of incompatible sizes and topologies. We consider spectral filters as
they are, and do not enhance them with any computational machinery for transferring fil-
ters. Thus, one of the main conceptual challenges is to find a way to compare two different
graphs, with incompatible graph structures, from a theoretical stance. To accommodate the
comparison of incompatible graphs, our approach resorts to non-graph theoretical consider-
ations, assuming that graphs are observed from some underlying non-graph spaces. In our
approach, graphs are regarded as discretizations of underlying corresponding “continuous”
metric spaces. This makes sense, since a weighted graph can be interpreted as a set of points
(vertices) and a decreasing function of their distances (edge weights). We can actually relax
the assumption that the “continuous space” is metric, and consider more general topological

4



Transferability of Spectral Graph Convolutional Neural Networks

Figure 1: Diagram of the approximation procedure, illustrating how a fixed filter/ConvNet
operates on a “continuous” topological space and two graphs discretizing it. Top
left: a continuous signal on the topological space. Top right: the sampling of the
continuous signal to the two graphs that discretize the topological space. Bottom
right: the filter applied on both graph signals. Bottom left: the filter applied on
the continuous topological space signal is approximated by the interpolation of
either of the two filtered graph signals. As a result, the interpolations of the two
filtered graph signals are approximately identical.

spaces1. Two graphs are comparable, or represent the same phenomenon, if both discretize
the same space. This approach allows us to prove transferability under small perturbations
of the adjacency matrix, but more generally, allows us to prove transferability between
graphs with incompatible sizes.

More generally, we consider graph sampled from general measure spaces2, where the
sampling operator is a linear mapping that takes a signal on the measure space and
returns a signal on the graph. We consider a corresponding interpolation operator,
a linear mapping that takes a signal on the graph and returns a signal on the measure
space. This setting is general, and can be used to describe graphs sampled from topological
spaces at sample points, graphs coarsened to smaller graphs via, e.g., the Graclus algorithm
(Dhillon et al., 2004), and graph perturbations, as discussed in Subsection 3.2.

1. A topological space is a generalization of a metric space, where distances are no longer defined, but
continuity is defined. In metric spaces M, continuity of functions f : M→ R is defined via an “ε—δ”
formulation: f is continuous at x ∈ M, if for every open interval Bε,f(x) =

(
f(x) − ε, f(x) + ε

)
about

f(x), the inverse set {y ∈ M | f(y) ∈ Bε,f(x)} contains some open ball Bδ,x = {y ∈ M | dist(y, x) < δ}
about x. Topological spaces generalize the “ε—δ” notion of continuity by directly specifying which sets
are open, without defining a notion of distance.

2. A measure space is informally a space in which it is possible to compute the volume of a rich collection
of subsets. Using the notion of volume, it is then possible to define integration of functions defined on
the measure space, and thus the root mean square error between functions is well defined.
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The way to compare two graphs is to consider their embeddings to the “continuous”
space they both discretize. For intuition, consider the special case where the “continuous”
space is a manifold. Any manifold can be discretized to a graph/polygon-mesh in many
different ways, resulting in different graph topologies. A filter designed/learned on one
polygon-mesh should have approximately the same repercussion on a different polygon-mesh
discretizing the same manifold. The informal term “repercussion” means “the effect that a
network/filter has on data.” Choosing a rigorous definition for this term is a mathematical
modeling challenge that we address as follows. To compare the filter on the two graphs,
we consider a generic signal defined on the continuous space, and sampled to both graphs.
After applying the graph filter on the sampled signal on both graphs, we interpolate the
results back to two continuous signals. In our analysis we show that these two interpolated
continuous signals are approximately equal (see Figure 1 for illustration of this procedure).

For the case of graphs sampled from topological spaces, we develop a digital signal
processing (DSP) framework akin to the classical Nyquist—Shannon approach, where now
analog domains are topological spaces, and digital domains are graphs.

1.4.2 The Basic Assumption of Graphs Discretizing Topological Spaces

In the DSP setting of transferability, the assumption that graphs are discretizations of
topological spaces is an ansatz, and it is important to clarify the philosophy behind this
choice. One of the fundamental challenges in studying transferability is to determine to
which graph changes a network should be sensitive/discriminative and to which changes
the network should generalize, or be transferable. The later changes are sometimes termed
nuisances in the machine learning jargon, since the network should be designed/trained to
ignore them. A network should not be transferable to all graph changes, since then the
network cannot be used to discriminate between different types of graphs. On the other
hand, the network should be transferable between different graphs that represent the same
underlying phenomenon, even if these two graphs are not close to each other in standard
measures of graph distance. The ansatz that two graphs represent the same phenomenon if
both discretize the same topological space, gives us a theoretical starting point: we know to
which graph changes the network should be transferable, so the problem of transferability
can be formulated mathematically. What we show is that spectral graph ConvNets always
generalize between graphs discretizing the same topological space, regardless of the spe-
cific form of their filters. Namely, this type of generalization is built-in to spectral graph
ConvNets, and requires no training.

The validity of this ansatz from a modeling stance is justifiable to different extents,
depending on the situation. As noted above, it is natural to think of graphs as discretizations
of metric spaces. Certainly, this is the case for geometric data sets like meshes, or 3D solids
like molecules. There is also evidence that real life networks, like World Wide Web, social
networks, protein interaction networks, and biological cellular networks, have underlying
geometric structures. For example, in (Song et al., 2005) it was shown that such networks are
self similar, in the sense that the coarsened version of the network has the same probability
distribution of links as the fine network. Hence, a network and its coarsened version both
represent the same underlying phenomenon. It is thus desirable for graph ConvNets to
have the same effect on both the original and the coarsened graph in some sense. Follow
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up works showed that networks can be seen as sampled from a latent underlying geometric
space, e.g., a hyperbolic space (Krioukov et al., 2010), or a circle (Serrano et al., 2008).
For a comprehensive survey on the underlying geometry of networks we refer the reader to
(Boguñá et al., 2021).

One might even stretch the interpretation further, and consider examples like citation
networks3, which seem non-geometric. The idea is to view citation networks as discretiza-
tions of some hypothetical underlying metric space. This metric space is the continuous
limit of citation networks, where the number of papers tends to infinity. Intuitively, in the
limit there is a continuum of papers, and the distance between papers models the proba-
bility for the two papers to be linked by a citation. Namely, the distance decreases to zero
as the probability increases to one. We do not attempt to study or characterize this hypo-
thetical continuous citation network, but only postulate its existence as a metric space. In
practice, the computations in training and applying filters do not use any knowledge of the
underlying continuous metric space. Its existence is used only for approximation theoretic
analysis.

Other notions of graphs approximating continuous latent spaces are possible. For ex-
ample, in graphon analysis, simple graphs approximate graphons if the homomorphism
densities of the graph and of the graphon are close (Borgs et al., 2008). In this paper we
focus however on the sampling approach, leaving the graphon approach for future research.

1.4.3 Concept-based and Principle Transferability

Graph ConvNets can manage transferability in different ways. First, when a graph ConvNet
is shown a multi-graph training set, it can learn “concepts” that promote transferability.
Let us call this approach concept-based transferability. Second, it may be the case
that transferability is a mathematical law: a built-in capability of certain types of graph
ConvNets, independent of their specific filters, which requires no training. This approach,
that we call principle transferability, is the focus of this paper.

We believe that the success of spectral graph ConvNets in multi-graph settings relies on
both types of transferability. We call the accumulative effect of concept-based transferability
and principle transferability total transferability. In this paper we prove theoretically
that spectral graph ConvNets have principle transferability. We moreover demonstrate
principle transferability by concocting experiments that isolate principle transferability from
concept-based transferability. This is done by zero shot learning: training the network
on one single graph, which prevents it from learning concepts for dealing with varying
graphs, and testing the resulting network on other graphs. The performance of such a
network on the new graphs only partially degrades, illustrating the effect size of principle
transferability in total transferability. Moreover, in our isolated principle transferability
experiment, spectral methods outperform spatial methods, which indicates that spectral
methods have competitive transferability capabilities.

3. A citation network is a graph, where each node represents a paper. Two nodes are connected by an edge
if there is a citation between the papers. A graph signal is constructed by mapping the content of each
paper to a vector representing this content.
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1.4.4 Overview of Our Transferability Results

In the following we give a high-level overview of our results.

The transferability inequality. In the transferability theory there is always an original
space with an original Laplacian, from which we sample a graph and a graph Laplacian.
As explained in Subsection 1.4.1, the original space may be a “continuous” measure space
or a discrete graph. Let us call the original space the continuous space, and the original
Laplacian the continuous Laplacian. A transferability error is the error between the
continuous object and the discretized object. In Section 3 we introduce the transferabil-
ity inequality (Theorem 4), a generic inequality that bounds the transferability error
of filters in terms of the transferability error of Laplacians and the error entailed
by sampling-interpolating, called the consistency error. Informally, the transferability
inequality reads

transferability of filter ≤ transferability of Laplacian + consistency error.

The transferability inequality asserts that if sampling and interpolation is chosen well, in
the sense that sampling a continuous signal and then interpolating it results in a small
error, and if the graph Laplacian approximates the continuous Laplacian, then also any
graph spectral filter approximates the corresponding filter on the continuous space.

Sufficient conditions for transferability. The transferability inequality states that the
transferability of a filter is small if the transferability of the Laplacian and the consistency
error are small. In Section 4 we introduce general conditions under which the transferability
of the Laplacian and the consistency error are small.

Transferability of graph spectral ConvNets. In Subsection 4.2 we extend the transferabil-
ity results of filters to transferability of spectral ConvNets. We prove the transferability of
graph spectral ConvNets under the assumption of small transferability error of the Lapla-
cian and small consistency error in each coarsened version of the graph in the network
(Theorem 16 and Corollary 17). This implies that graph spectral ConvNets are appropriate
in multi-graph settings. We support this claim both with basic experiments and by recalling
other papers that demonstrate transferability of spectral methods in practice.

Transferability of graphs sampled from topological spaces. In Section 5 we prove that the
sufficient conditions for transferability are satisfied for graphs discretizing topological spaces
via sampling. To this end, we develop a digital signal processing (DSP) framework akin to
the classical Nyquist—Shannon approach, where now analog domains are topological spaces,
and digital domains are graphs. Graphs are sampled from topological spaces by evaluation
at sample points. We prove that graph Laplacians approximate topological space Laplacians
in case the sample points satisfy some quadrature assumptions, namely, if certain integrals
over the topological space can be approximated by sums over the sample points.

Transferability of graphs randomly sampled from topological spaces. An important ques-
tion that arises from the transferability inequality is if it is reasonable to assume that the
right hand side of the transferability inequality is small. Another question is if the assump-
tions of the DSP setting of transferability are reasonable. The answer to these questions
depends on the situation. A universal mathematical analysis is not possible, since the answer
depends on how the graph data set was constructed, how graphs were sampled and from
what model, and how the graph Laplacians were chosen. To give a mathematical solution
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to this question, in Subsection 5.4 we consider a controlled setting of the data acquisition
step. We prove that the quadrature assumptions of our DSP framework are satisfied in
high probability in case the sample points of the discrete graphs are drawn randomly from
the corresponding topological space (Theorem 32). In this scenario, spectral ConvNets are
transferable in high probability.

Main message. The concept that spectral graph ConvNets are not appropriate in situ-
ations where the data consists of many different graphs and many different signals on these
graphs is a misconception. Graph spectral ConvNets are transferable both in practice and
theory. If your data consists of many graphs, among other methods, you should consider
spectral graph ConvNets.

All proofs are given in the appendix. We wish to remark that some preliminary results
on stability of spectral convolutions of graphs of a fixed size were reported in (Levie et al.,
2019a).

2. Theoretical Framework of Graph Spectral Methods

In this section we recall the theory of graph spectral methods. We show that state-of-the-art
graph spectral methods are based on a functional calculus implementation of convolution
operators, and explain the misconception of non-transferability of spectral graph filters. We
last show how to use graph spectral methods for directed graphs.

2.1 Spectral Convolution Operators

Consider an undirected weighted graph G = {E ,V,W}, with vertices V = {1, . . . , N}, edges
E ⊂ V2, and adjacency matrix W. The adjacency matrix W = (wn,m)Nn,m=1 is symmetric
and represents the weights of the edges, where wn,m is nonzero only if vertex n is connected
to vertex m by an edge. Consider the degree matrix D, defined as the diagonal matrix with
entries dn,n =

∑N
m=1wn,m.

The frequency domain of a graph is determined by choosing a shift operator, namely
a self-adjoint operator ∆ that respects the connectivity of the graph. As a prototypical
example, we consider the unnormalized Laplacian ∆ = D −W, which depends linearly
on W. Other examples of common shift operators are the normalized Laplacian ∆n =
I − D−1/2WD−1/2, and the adjacency matrix itself. In this paper we call a generic self-
adjoint shift operator Laplacian, and denote it by ∆. Denote the eigenvalues of ∆ by
{λn}Nn=1, and the eigenvectors by {φn : V → C}Nn=1. The Fourier transform of a graph
signal f : V → C is given by the vector of frequency intensities

Ff = (〈f, φn〉)Nn=1,

where 〈u, v〉 is an inner product in CN , e.g., the standard dot product. The inverse Fourier
transform of the vector (vn)Nn=1 is given by

F∗(vn)Nn=1 =

N∑
n=1

vnφn.
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Since {φn}Nn=1 is an orthonormal basis, F∗ is the inverse of F . A spectral graph filter G
based on the coefficients (gn)Nn=1 is defined by

Gf =
N∑
n=1

gn 〈f, φn〉φn. (1)

Any spectral filter defined by (1) is permutation equivariant, namely, does not depend
on the indexing of the vertices. Re-indexing the vertices in the input results in the same
re-indexing of vertices in the output.

Spectral filters implemented by (1) have two disadvantages. First, as shown in Sub-
section 2.3, they are not transferable. Second, they entail high computational complexity.
Formula (1) requires the computation of the eigendecomposition of the Laplacian ∆, which
is computationally demanding and can be unstable when the number of vertices N is large.
Moreover, there is no general “graph FFT” algorithm for computing the Fourier transform
of a signal f ∈ L2(V ), and (1) requires computing the frequency components 〈f, φn〉 and
their summation directly.

2.2 Functional Calculus Implementation of Spectral Convolution Operators

To overcome the above two limitations, state-of-the-art methods, like (Defferrard et al.,
2016; Isufi et al., 2017a; Levie et al., 2019b; Gama et al., 2018), are implemented via
functional calculus. Functional calculus is the theory of applying functions g : C → C
on normal operators in Hilbert spaces H. In the special case of a self-adjoint or unitary
operator T in the space H, with a discrete spectrum, g(T) is defined by

g(T)f =
∑
n

g(λn) 〈f, φn〉φn, (2)

for any vector f in the Hilbert space, where {λn, φn} is the eigendecomposition of the
operator T. The operator g(T) is normal for general g : C→ C, self-adjoint for g : C→ R,
and unitary for g : C→ eiR (where eiR is the unit complex circle).

Definition (2) is canonical in the following sense. In the special case where

g(λ) =

∑L
l=0 clλ

l∑L
l=0 dlλ

l

is a rational function, g(T) can be defined in two ways. First, by (2), and second by
compositions, linear combinations, and inversions, as

g(T) =
( L∑
l=0

clT
l
)( L∑

l=0

dlT
l
)−1

(3)

It can be shown that (2) and (3) are equivalent.

Moreover, definition (2) is also canonical in regard to non-rational functions. Loosely
speaking, if a polynomial p approximates the function g, then the operator p(T) approx-
imates the operator g(T). This is formulated as follows. Consider the space PW (λM ) of

10



Transferability of Spectral Graph Convolutional Neural Networks

vectors f comprising finite eigenbasis expansions

f =

M∑
n=0

bnφn,

for a fixed M . If a sequence of polynomials {gk}k converges to a continuous function g in
the sense

lim
k→∞

sup
λ≤|λM |

|g(λ)− gk(λ)| = 0,

then also

lim
k→∞

‖g(T)− gk(T)‖ = 0, (4)

where the operator norm in (4) is defined by

‖g(T)− gk(T)‖ := sup
06=f∈PW (λM )

‖g(T)f − gk(T)f‖
‖f‖

.

When filters are defined via (2) with polynomial or rational function g, implementing
spectral filters via (3) overcomes the limitation of definition (1). By relying on the spatial
operations of compositions, linear combinations, and inversions, the computation of a spec-
tral filter is carried out entirely in the spatial domain, without ever resorting to spectral
computations. Thus, no eigendecomposition and Fourier transforms are ever computed.
The inversions in g(T)f involve solving systems of linear equations, which can be computed
directly if N is small, or by some iterative approximation method for large N . Methods
like (Defferrard et al., 2016; Kipf and Welling, 2017; Ortega et al., 2018; Gama et al., 2018)
use polynomial filters, and (Isufi et al., 2017a; Levie et al., 2019b; Bianchi et al., 2021) use
rational function filters. We term spectral methods based on functional calculus functional
calculus filters.

2.3 The Misconception of Non-transferability of Spectral Graph Filters

The non-transferability claim is formulated based on the sensitivity of the Laplacian eigen-
decomposition to small perturbations in W, or equivalently in ∆. Namely, a small pertur-
bation of ∆ can result in a large perturbation of the eigendecomposition {λn, φn}Nn=1, which
results in a large change in the filter defined via (1). This claim was stated in (Bronstein
et al., 2017) only for spectral filters implemented via (1), for which it is true. However,
later papers misinterpreted this claim and applied it to functional calculus filters. This
misconception can be found in prominent surveys (Wu et al., 2020), as well as research
papers, e.g., (Fey et al., 2018; Maron et al., 2018; Te et al., 2018; Cai et al., 2019; Chen
et al., 2019; Bi et al., 2019) (the list if far from exhaustive). The instability argument does
not prove non-transferability, since state-of-the-art spectral methods do not explicitly use
the eigenvectors, and do not parametrize the filter coefficients gn via the index n of the
eigenvalues. Instead, state-of-the-art methods are based on functional calculus, and define
the filter coefficients using a function g : R→ C, as g(λn). The parametrization of the filter
coefficients by g is indifferent to the specifics of how the spectrum is indexed, and instead
represents an overall response in the frequency domain, where the value of each frequency
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determines its response, and not its index. When functional calculus filters are defined by
(2), a small perturbation of ∆ that results in a perturbation of λn, also results in a per-
turbation of the coefficients g(λn). It turns out that the perturbation in g(λn) implicitly
compensates for the instability of the eigendecomposition, and functional calculus spectral
filters are stable. This is seen by using the transferability inequality in a graph perturbation
setting (see Subsection 3.2).

As a toy example, consider the graph Laplacian on a graph with three nodes, defined
via its eigendecomposition, where λ1 = 1 has a 2D eigenspace, spanned by the eigenvectors
φ1, φ2, and λ2 = 2 has a 1D eigenspace spanned by φ3. Implementation (1) with g1 6= g2

is not even uniquely defined by ∆, as the basis {φ1, φ2} of the eigenspace of λ1 is not
uniquely defined by ∆. On the other hand, the functional calculus implementation (2)
imposes that the frequency response is one constant for the whole eigenspace of λ1, and the
non-uniqueness problem is avoided. More generally, in (Levie et al., 2019a) the stability of
functional calculus filters was proved.

2.4 Spectral Graph Filters on Directed Graphs

In Appendix A we explain how functional calculus applies as-is to non-normal matrices,
even though the theory is defined only for normal operators. As a result, spectral filters
can be defined on directed graphs represented by non-symmetric adjacency matrices.

There is an inner product structure in CN under which general diagonalizable matrices
can be seen as normal operators. Given an N×N diagonalizable matrix A with eigenvectors
{γk}Nk=1, consider the matrix Γ comprising the eigenvectors as columns. Define the inner
product

〈u,v〉 = vHBu, (5)

where B = Γ−HΓ−1 is symmetric, u and v are given as column vectors, and for a matrix
C = (cm,k)n,m ∈ CN×N , the Hermitian transpose CH is the matrix consisting of entries
cH
m,k = ck,m. Under the inner product (5), A is normal. Consider an operator A represented

by the matrix A. The adjoint A∗ of an operator A is defined to be the unique operator
such that

∀u,v ∈ Cd, 〈Au,v〉 = 〈u, A∗v〉 .

The matrix representation of the adjoint A∗ is given by

A∗ = B−1AHB. (6)

Thus, an operator is self-adjoint if B−1AHB = A, and unitary if B−1AHB = A−1.

The above results are proved in Appendix A.

3. The Transferability Inequality

In this section we derive the transferability inequality, a generic inequality that bounds
the transferability error of filters by the transferability error of Laplacians plus
the error entailed by sampling-interpolating, called the consistency error.

12
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3.1 The General Setting of Transferability

For a graph discretizing a “continuous” topological space, as described in Subsections 1.4.1
and 1.4.2, the transferability error between the graph and the topological space is defined
as follows. Given a generic signal in the topological space, on the one hand, the signal is
sampled to the graph, the discrete filter is applied on the sampled signal, and the filtered
signal is interpolated back to the topological space. On the other hand, the filter is applied
on the signal directly in the topological space. The error between these two output signals
is called the transferability error of the filter. For two graphs with small transferability
error between each of the graphs and the topological space, the transferability error of the
filter between the two graphs is also small by the triangle inequality. We thus focus on
transferability between graphs and topological spaces.

Topological space signals are functions that assign to every point in the topological
space a value. The error between pairs of signals is defined as the root mean square error
(RMSE). To define RMSE in this abstract setting we must be able to integrate over the
topological space, and thus we always assume that the topological space comes with some
notions of volume, namely a Borel measure4.

Instead of focusing on graphs discretizing topological spaces via sampling, we consider a
more general setting. In the general setting we study transferability between two domains,
M and the finite domain G. The domains M and G are assumed to be measure spaces,
and we consider the two spaces of signals5 L2(M) and L2(G). We assume that the spaces
L2(M) and L2(G) are separable, namely, there exist orthonormal bases of L2(M) and
L2(G). Since filtering is seen as a procedure of increasing certain frequencies, and decreasing
others, we need a notion of oscillation of signals in the spaces L2(M) and L2(G). For that,
we endow the signal spaces with additional structure. In each of the signal spaces L2(M)
and L2(G) we consider a special normal linear operators (typically self-adjoint) that we call
the Laplacian of the space. For L2(M) we denote the Laplacian by L, and for L2(G) we
denote the Laplacian by ∆. We suppose that L and ∆ have discrete spectra in the following
sense.

Definition 1 Consider the normal operator T with spectrum consisting only of eigenvalues,
and denote the eigendecomposition of T by {λj , Pj}∞j=1, with eigenvalues λj and projections
Pj upon the corresponding eigenspaces Wj. We say that T has discrete spectrum if in
each bounded disc in C there are finitely many eigenvalues of T , and the eigenspace of each
eigenvalue is finite-dimensional. We consider the eigenvalues in increasing order of |λj |,
and denote Λ(T ) = {λj}∞j=1.

For example, Laplace-Beltrami operators on compact Riemannian manifolds satisfy Defini-
tion 1 by Weyl’s law (Strauss, 2007, Chapter 11).

As discussed in Subsection A, the Laplacian ∆ need not be a normal matrix. If ∆ is
not a normal matrix, we consider an inner product structure on each L2(Vn) for which ∆
is a normal operator.

4. A measure is a generalization of the notion of volume. A Borel measure in a topological space is a notion
of volume that respects in some sense the topological structure. For example, open sets must have well
defined volumes.

5. Using the notion of volume of a measure spaceM it is possible to define integration, and thus define the
Lebesgue space of square integrable functions L2(M).
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The Laplacians L and ∆ define the notion of oscillation on L2(M) and L2(G). Namely,
the eigenvectors of the Laplacians are seen as the pure harmonics, or Fourier modes. The
eigenvalues are seen as an ordering of the pure harmonics, where the larger the eigenvalue
corresponding to an eigenvector, the more oscillatory the eigenvector is. Filters are defined
as measurable functions f : C → C. Each filter can be manifested in both spaces via
functional calculus, where the filter in L2(M) is defined as f(L), and the filter in L2(G) is
defined as f(∆).

We suppose that the space G is finite, and thus L2(G) is finite-dimensional. When
M is infinite, the signal space L2(M) is infinite-dimensional in general. We consider the
finite-dimensional subspace of signal of L2(M) spanning all of the eigenvectors of L up to
some eigenvalue, as defined next.

Definition 2 Let L be a normal operator in L2(M) with discrete spectrum. Denote the
eigenvalues, eigenspaces, and projections upon the eigenspaces of L by {λj ,Wj , Pj}j∈N. For
each λ > 0, we define the λ’th Paley-Wiener space of M as

PW (λ) = ⊕j∈N{Wj | |λj | ≤ λ}.

We denote by P (λ) the spectral projection upon PW (λ), given by

P (λ) =
∑

λj∈Λ(∆), |λj |≤λ

Pj .

A Paley-Wiener space is interpreted as the space of band-limited signals in the band
λ. When L2(M) is infinite-dimensional we restrict the analysis to a generic Paley-Wiener
space PW (λ) ⊂ L2(M). Namely, transferability is analyzed on signals which are not too
oscillatory.

To accommodate a transferability analysis, we consider two mappings that transfer
signals from L2(M) to signals in L2(G) and back. For each fixed band λ, consider the
linear operators

Sλ : PW (λ)→ L2(G), Rλ : L2(G)→ PW (λ).

We typically think of Sλ as down-sampling or discretization, and Rλ as up-sampling. We
thus call Sλ sampling and Rλ interpolation.

Definition 3 The transferability error of the filter f (at the band λ), on the signal
s ∈ PW (λ), is defined by ∥∥∥f(L)s−Rλf(∆)Sλs

∥∥∥ ,
the transferability error of the Laplacian (at the band λ) is defined by∥∥∥Ls−Rλ∆Sλs

∥∥∥ ,
and the consistency error (at the band λ) is defined by∥∥∥s−RλSλs∥∥∥ .
What we prove in this section is the following inequality∥∥∥f(L)s−Rλf(∆)Sλs

∥∥∥ ≤ C1

∥∥∥Ls−Rλ∆Sλs
∥∥∥+ C2

∥∥∥s−RλSλs∥∥∥
up to some constants C1 and C2.
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3.2 Examples of Transferability Settings

Before we formulate the transferability inequality theorem, let us give three concrete set-
tings of the above transferability analysis. In the first example, which was introduced in
Subsections 1.4.1 and 1.4.2, M is a topological space with a Borel measure. The space G
is a graph, where the nodes of G are seen as sample points inM. Sampling general signals
in the Lebesgue space L2(M) is not well defined (unless M is discrete), since signals in
L2(M) are defined up to a subset of M of measure zero. To be able to define sampling
properly we consider the Paley-Wiener spaces, an approach that generalizes the standard
Nyquist—Shannon theory in signal processing in L2(R). For that we further assume that
the Paley-Wiener spaces associated with L consist of continuous functions (see Definition 18
for more details). Sampling is the operator Sλ that evaluates signals s ∈ PW (λ) ⊂ L2(M)
at the sample points to obtain a signal on the graph. Similarly to classical digital signal
processing, we define the interpolation Rλ as the adjoint of the sampling operator, namely
Rλ = Sλ∗ (see Subsection for more information). Transferability betweenM and G is thus
seen as the error entailed by operating in the digital domain G instead of the analog domain
M.

As a second example, we consider transferability under graph coarsening. Here, M is
a graph, and G is a coarse version of M . In the Graclus algorithm for coarsening (Dhillon
et al., 2004), pairs of neighboring nodes in M with strong weights are collapsed to single
nodes in G. Since both M and G are finite, we consider the whole space L2(M) as the
Paley-Wiener space, and omit the superscript λ in R and S. Given a signal s, coarsening,
S, is the operator that assigns the value

[Ss](q1,2) = (s(q1) + s(q2))/
√

2 (7)

to the node q1,2 of G with parent nodes from M, q1 and q2, that have the signal values
s(q1) and s(q2) respectively. Piecewise constant interpolation is defined to be R = S∗.

The last example is graph perturbation. Here, M is a graph, and G is a perturbation
of M, that is obtain by adding or deleting random edges from M or perturbing the edge
weights. Here we take S = R = I. Transferability in this case is called stability.

3.3 Theorem of Transferability Inequality

For the transferability inequality we need the following notations. For a continuous g : C→
C and M ∈ N denote

‖g‖L,M := max
0≤m≤M

{|g(λm)|}. (8)

For each λm ∈ Λ(L) denote

Vg(λm) := max
κ∈Λ(∆)

∣∣∣∣g(κ)− g(λm)

κ− λm

∣∣∣∣ . (9)

Note that for a Lipschitz continuous g with Lipschitz constantD, it follows from
∣∣∣g(x)−g(y)

x−y

∣∣∣ ≤
D that Vg(λm) ≤ D. Denote by #{λj ≤ λ}j the number of eigenvalues of L less or equal
to λ, and note that

#{λj ≤ λ}j ≤ dimPW (λ),

where dimPW (λ) is the dimension of PW (λ).
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Example 1 For the Laplacian on the d-dimensional torus, we have #{λj ≤ λ}j = O(λ1/2).
For compact Riemannian manifolds and the Laplace-Beltrami operator, by Weyl’s law,
#{λj ≤ λ}j ≤ dimPW (λ) = O((2π)−dλd/2) where d is the dimension of the manifold
(Strauss, 2007, Chapter 11).

We are now ready to formulate five versions of the transferability inequality.

Theorem 4 Consider the above setting, and let λM > 0 be a band with
∥∥RλM∥∥ < C.

Let g : R → C be a Lipschitz continuous function with Lipschitz constant D. Let q =∑M
m=0 cmφm ∈ PW (λM ) ⊂ L2(M) have normalized eigenspace components φm ∈ Wm,

m = 0, . . . ,M . Then the following bounds are satisfied.

1. Transferability of L-Fourier modes evaluated in G:∥∥∥SλM g(L)φm − g(∆)SλMφm

∥∥∥ ≤ Vg(λm)
∥∥∥∆SλMφm − SλMλmφm

∥∥∥ .
2. Pointwise transferability evaluated in G:

∥∥∥SλM g(L)q − g(∆)SλM q
∥∥∥ ≤ M∑

m=0

Vg(λm) |cm|
∥∥∥SλMLφm −∆SλMφm

∥∥∥ .
3. Worst-case transferability evaluated in G:∥∥∥SλM g(L)P (λM )− g(∆)SλMP (λM )

∥∥∥
≤ D

√
#{λj ≤ λM}j

∥∥∥SλMLP (λM )−∆SλMP (λM )
∥∥∥ .

4. Pointwise transferability evaluated in M:

∥∥∥g(L)q −RλM g(∆)SλM q
∥∥∥ ≤C M∑

m=0

Vf (λm) |cm|
∥∥∥SλMLφm −∆SλMφm

∥∥∥
+ ‖g‖L,M

∥∥∥q −RλMSλM q∥∥∥ ,
5. Worst-case transferability evaluated in M:∥∥∥g(L)P (λM )−RλM g(∆)SλMP (λM )

∥∥∥
≤ DC

√
#{λj ≤ λM}j

∥∥∥SλMLP (λM )−∆SλMP (λM )
∥∥∥

+ ‖g‖L,M
∥∥∥P (λM )−RλMSλMP (λM )

∥∥∥ ,
Theorem 4 can be seen as a family of bounds, for different choices of Paley-Wiener

spaces. Typically, if we choose a small cut-off frequency λM , the Laplacian has a lower
transferability error (see, e.g., Lemma 36), so we can prove a low approximation error.
However, the bounds are true only for the low frequency content of the signal, namely, for

16



Transferability of Spectral Graph Convolutional Neural Networks

the “smooth content.” If we choose high λM , we can also model “non-smooth” signals, but,
on account of a typically higher transferability error of the Laplacian. This principle in
choosing the Paley-Wiener space is true for all results presented in this paper which depend
on a choice of the cut-off frequency.

We note that at the time of writing this paper, it is still not clear whether the dependency
on
√

#{λj ≤ λ}j in the operator norm bounds 3 and 5 is tight, or just an artifact of the
proof.

Let us now study the transferability between two graphs. Consider two graphs G1 and
G2, with corresponding graph Laplacians ∆1 and ∆2, that represent the same phenomenon.
Adopting our basic assumption, we thus suppose that both graphs approximate the space
M in the sense that the transferability errors of the Laplacians and the consistency errors
are small.

Corollary 5 Consider a fixed Paley-Wiener space PW (λM ), and for each n = 1, 2, suppose∥∥LP (λM )−RλMn ∆nS
λM
n P (λM )

∥∥ ≤ δ and
∥∥P (λM )−RλMn SλMn P (λM )

∥∥ ≤ δ for some small
δ > 0. Then ∥∥∥RλM1 f(∆1)SλM1 P (λM )−RλM2 f(∆2)SλM2 P (λM )

∥∥∥ = O(δ). (10)

Proof By the triangle inequality we have∥∥∥RλM1 f(∆1)SλM1 P (λM )−RλM2 f(∆2)SλM2 P (λM )
∥∥∥

≤
∥∥∥f(L)P (λM )−RλM1 f(∆1)SλM1 P (λM )

∥∥∥+
∥∥∥f(L)P (λM )−RλM2 f(∆2)SλM2 P (λM )

∥∥∥ .
(11)

Thus, (10) follows fromThm.4(5) .

A similar result can be obtained in the pointwise analysis.

4. Transferability of Spectral Graph Filters and ConvNets

In this section we study the transferability of spectral graph filters and ConvNets. We
formulate general conditions guaranteeing transferability of filters, and then extend the
analysis to full convolutional networks. We also give some numerical experiments that
showcases transferability.

4.1 Sufficient Conditions for Transferability

In this subsection we consider sufficient conditions for the right-hand-side of the transfer-
ability inequality to be small (Theorem 4). The idea is to formulate general conditions,
and to later on prove that they are satisfied in the specific setting of graphs discretizing
topological spaces. We denote by R+ the set of non-negative real numbers.

Consider a measure spaceM for which L2(M) is a separable Hilbert space, and let the
Laplacian L be a normal operator in L2(M) with discrete spectrum. Denote the eigenvalues
of L by λj , the eigenprojections by Pj , and the Paley-Wiener spaces PW (λ). To accommo-
date the approximation analysis, we consider a sequence of graphs Gn with dn vertices and
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graph Laplacians ∆n, such that “∆n −−−→
n→∞

L” in a sense that will be clarified in Definition

9.

By abuse of notation, we denote the set of vertices of Gn also by Gn. We consider
an inner product structure on each L2(Gn) for which ∆n is a normal operator. Denote
the eigendecomposition of ∆n by {κnj , Qnj }j , and denote Λ(∆n) := {κnj }j . For any κ > 0,
denote by Qn(κ) the spectral projection of ∆n defined by

Qn(κ) :=
∑

κnj ∈Λ(∆n), |κnj |≤κ
Qnj .

Generic sampling and interpolation operators are only required to satisfy mild conditions,
as defined next.

Definition 6 Under the above construction, the two mappings

{Sλn}n,λ : (n, λ) 7→ Sλn , {Rλn}n,λ : (n, λ) 7→ Rλn

from N × R+ to the space of linear operators L2(M) → L2(Gn) and L2(Gn) → L2(M)
respectively, satisfying for each λ ≥ 0

Sλn : PW (λ)→ L2(Gn), Rλn : L2(Gn)→ PW (λ),

are called sampling sequence and interpolation sequence respectively, if the following
condition is held.: for every λ′ > λ ≥ 0

Sλ
′

n P (λ) = Sλn , P (λ)Rλ
′
n = Rλn. (12)

Operators Sλn from a sampling sequence are called sampling operators, and similarly,
Rλn are called interpolation operators.

For λ′ > λ, (12) means that sampling a signal from PW (λ) using Sλ
′

n is exactly the same
as sampling it using Sλn , and in this sense the different sampling operators of a sampling
sequence are related to each other. Interpolation operators of an interpolation sequence
have a similar interpretation. Given sampling and interpolation operator sequences, by the
fact that PW (λ) is finite dimensional, Sλn and Rλn must be bounded for each n ∈ N and
λ ≥ 0.

In the following, we fix a sampling and interpolation sequence. Next, we define general
conditions on ∆n, Sλn and Rλn, and show that these conditions guarantee transferability of
spectral graph filters. In Section 5 we give an explicit construction of the sampling and
interpolation operators in the DSP setting, where Sλnf evaluates the signal f ∈ PW (λ) at
a set of sample points, viewed as the vertices of Gn. Under that construction, we show in
Subsection 5 that the conditions underlying Definitions 7—9 are satisfied.

Definition 7 The sequence {{Rλn, Sλn}n | λ ∈ R} is called asymptotically reconstructive
if for any fixed band λ,

lim
n→∞

RλnS
λ
nP (λ) = P (λ). (13)
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Note that since PW (λ) is a finite-dimensional space, the operator norm topology and
the strong topology are equivalent, namely

lim
n→∞

max
f∈PW (λ)

∥∥f −RλnSλnf∥∥
‖f‖

= 0 ⇐⇒ ∀f ∈ PW (λ), lim
n→∞

∥∥∥f −RλnSλnf∥∥∥ = 0, (14)

and the limit in (13) can be defined in either way.

Definition 8 The sequence {{Rλn, Sλn}n | λ ∈ R} is called bounded if there exists a global
constant C ≥ 1 such that for any fixed band λ,

lim sup
n∈N

∥∥∥Sλn∥∥∥ ≤ C, lim sup
n∈N

∥∥∥Rλn∥∥∥ ≤ C. (15)

where the induced operator norms are with respect to the vector norms in PW (λ) and in
L2(Vn).

Boundedness (Definition 8) is a necessary condition for sampling and interpolation to ap-
proximate isometries as the resolution of sampling dn becomes finer, and we typically con-
sider C = 1.

Definition 9 The set of sequences {{∆n, S
λ
n}n | λ ∈ R} are called convergent to L if for

every fixed band λ,

lim
n→∞

∥∥∥SλnLP (λ)−∆nS
λ
nP (λ)

∥∥∥ = 0. (16)

where the norm in (16) is with respect to L2(Vn).

In the DSP setting of transferability, for Sλn that evaluates the signal at sample points
and corresponding Rλn and ∆n, boundedness and asymptotic reconstruction (Definitions
7,8) are proved in Proposition 23. Convergence (Definition 9) is proved in Proposition
28 in the DSP setting. We can also treat sampling and interpolation abstractly, allowing
other constructions for transforming signals in L2(M) to graph signals in L2(Vn). In the
abstract setting, sampling and interpolation are assumed to be bounded, asymptotically
reconstructive, and graph Laplacians are assumed to be convergent to L. Assuming bound-
edness, asymptotic reconstruction, and convergence of Laplacians, is permissive in a sense,
since we only demand asymptotic properties on the finite-dimensional Paley-Wiener spaces.
However, under these assumptions, we are able to prove convergence of spectral filters on
band-unlimited signals.

The following proposition proves asymptotic perfect transferability, and is a direct result
of the transferability inequality.

Proposition 10 consider the above setting, and a fixed band λ > 0. Let Sλn , R
λ
n and ∆n,

n = 1, . . . ,∞, be bounded, asymptotically reconstructive, and convergent (Definitions 7-9).
Let g : R→ C be a Lipschitz continuous function. Then∥∥∥g(L)P (λ)−Rλng(∆n)SλnP (λ)

∥∥∥ =O
(∥∥∥SλnLP (λ)−∆nS

λ
nP (λ)

∥∥∥+
∥∥∥P (λ)−RλnSλnP (λ)

∥∥∥)
−−−→
n→∞

0.
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Proof Denote by Mλ the largest index M ∈ N such that λM ≤ λ. Then by Thr4.(5), by
(12) and by the fact that P (λm) = P (λ)∥∥∥g(L)P (λ)−Rλng(∆n)SλnP (λ)

∥∥∥ =
∥∥∥P (λM )g(L)P (λM )− P (λM )Rλng(∆n)SλnP (λM )

∥∥∥
+ ‖g‖L,M

∥∥∥P (λM )−RλMn SλMn P (λM )
∥∥∥

≤DC
√

#{λj ≤ λ}j
∥∥∥SλMn LP (λM )−∆SλMn P (λM )

∥∥∥
+ ‖g‖L,M

∥∥∥P (λM )−RλMn SλMn P (λM )
∥∥∥

Next, we show how to treat band-unlimited signals. Under the conditions of Theorem
10, for each band λ ∈ N, there exists Nλ ∈ N such that for any n > Nλ we have∥∥∥g(L)P (λ)−Rλng(∆n)SλnP (λ)

∥∥∥ < 1

λ

We may choose the sequence {Nλ}λ∈N increasing. We construct a sequence of bands {ψn},
starting from some index n0 > 0, as follows. For each λ ∈ N, consider Nλ and Nλ+1. For
each Nλ < n ≤ Nλ+1 we define ψn = λ. This gives the following corollary.

Corollary 11 Under the conditions of Proposition 10, there exists a sequence of bands
0 < ψn −−−→

n→∞
∞ such that

lim
n→∞

∥∥∥g(L)−Rψnn g(∆n)Sψnn P (ψn)
∥∥∥ = 0. (17)

A direct result of Corollary 11 is that

lim
n>m→∞

∥∥∥Rψmn g(∆n)Sψmn P (ψm)−Rψmm g(∆m)Sψmm P (ψm)
∥∥∥ = 0. (18)

Loosely speaking, the better both ∆m and ∆j approximate L, the larger the band where
g(∆m) and g(∆j) have approximately the same repercussion.

Last, for the transferability analysis of convolution networks, we also need to assume
that sampling approximately commutes with the activation function ρ, in the following
sense.

Definition 12 Consider a measure spaceM with a Laplacian L having a discrete spectrum.
Let P (λ) be the Paley-Wiener projections corresponding to L. Consider a sequence of
graphs Gn, sampling operators Sλn from a sampling sequence, and an activation function
ρ. Sampling asymptotically commutes with ρ if

lim
λ→∞

lim
λ′→∞

lim
n→∞

sup
f 6=0

∥∥∥ρ(SλnP (λ)f)− Sλ′n P (λ′)ρ(P (λ)f)
∥∥∥

‖f‖
= 0. (19)

In Proposition 26 we prove that in the DSP setting, under natural conditions, sampling
asymptotically commutes with ρ for a class of activation functions that include ReLU and
the absolute value.
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4.2 Transferability of Graph ConvNets

In this subsection we extend the transferability results of the previous subsection from filters
to complete ConvNets. Consider two graphs Gj , j = 1, 2 and two graph Laplacians ∆1,∆2

approximating the same Laplacian L in a measure space. Consider a ConvNet with L layers,
with or without pooling. In each layer where pooling is performed, the signal is mapped to
a signal over a coarsened graph. If pooling is not performed, we define the coarsened graph
Gj,l at Layer l as the graph of the previous layer. Suppose that each coarsened version of
each of the two graphs Gj,l, where l is the layer, approximates the continuous space in the
sense ∥∥∥P (ψl)−Rψlj,lS

ψl
j,lP (ψl)

∥∥∥ < δ (20)∥∥∥Sψlj,lLP (ψl)−∆j,lS
ψl
j,lP (ψl)

∥∥∥ < δ (21)

for some δ < 1. Here, ∆j,l is the Laplacian of graph j at Layer l, Sψlj,l , R
ψl
j,l are the sam-

pling and interpolation operators of Layer l, and we consider the band ψl at each Layer l.
Equations (20) and (21) are non-asymptotic versions of Definition 7 and 9.

In each Layer l consider Kl channels. Let

{glk′k | k=1...Kl−1, k
′=1...Kl}

denote the filters of Layer l, and consider the matrix Al = {alk′k}k′k ∈ RKl×Kl−1 . We denote
the bias at channel k′ and Layer l by blk′ . Here, blk′ is a scalar signal, namely the signal that
assigns the constant value blk′ to each node. Note that, by abuse of notation, blk′ denotes
both a scalar and a signal. In most common graph ConvNet methods there are no biases,
so we typically assume blk′ = 0.

Denote the signals/feature-map at Layer l of the graph ConvNet of graph Gj , by

{f̃ j,lk′ }
Kl
k′=1. The ConvNet maps Layer l − 1 to Layer l by

{f̃ j,lk′ }
Kl
k′=1 = Y j,l

(
ρ
{
blk′ +

Kl−1∑
k=1

alk′k g
l
k′k(∆j,l−1)f̃ j,l−1

k

}Kl
k′=1

)
, (22)

where ρ is an activation function, and Y j,l : L2(Gj,l−1)→ L2(Gj,l) is pooling. For the graph

ConvNets, the inputs of Layer 1 are Sψ0
j,1P (ψ0)f for j = 1, 2, where f ∈ L2(M) is a measure

space signal. In the continuous case, we define the measure space ConvNet by

{f lk′}
Kl
k′=1 = P (ψl)

(
ρ
{
P (ψl−1)blk′ +

Kl−1∑
k=1

alk′k g
l
k′k(L)f l−1

k

}Kl
k′=1

)
, (23)

where {f lk′}
Kl
k′=1 is the signal at Layer l. Here, the input P (ψ0)f of Layer 1 is in PW (ψ0).

To understand the role of the projection P (ψl) in (23), note that spaces PW (ψl) are not
invariant under the activation function ρ in general. Thus, as part of the definition of the
ConvNet on L2(M), after each application of ρ we project the result to PW (ψl). Moreover,
for typical choices of L, like Laplace-Beltrami operator, the constant signal blk′ is in P (0),
and thus P (ψl−1)blk′ = blk′ . More generally, we project blk′ to the Paley-Wiener space by
P (ψl−1)blk′ .
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The graph and measure space ConvNets are defined by iterating formulas (22) and (23)
respectively along the layers. We denote the mapping from the input of Layer 1 to Channel
k of Layer l of the ConvNet by N l

k for the measure space ConvNet, and by N j,l
k for the

graphs ConvNets j = 1, 2. Namely

f lk = N l
kP (ψ0)f, f̃ j,lk = N j,l

k Sλj,1P (ψ0)f. (24)

We restrict ourselves to contractive activation functions, as defined next.

Definition 13 The activation function ρ is called contractive if for every y, z ∈ C
|ρ(y)− ρ(z)| ≤ |y − z|.

The contraction property also carries to Lp(M) spaces. Namely, if ρ is contractive, then for
every two signals p, g, ‖ρ(p)− ρ(g)‖p ≤ ‖p− g‖p. For example, the ReLU and the absolute
value activation functions are contractive.

We consider a generic pooling operator Y j,l : L2(Gj , l − 1) → L2(Gj , l). Typically, Y j,l

is the max pooling or l2 average pooling.

Definition 14 Suppose that coarsening is done by collapsing sequences of nodes of G to
single nodes in G′. Max-pooling is the non-linear operator that assigns the value

[Y s](y) = max{s(q1), . . . , s(qK)}/
√
K (25)

to the node y of G′ with parent nodes q1, . . . , qK from G, that have the signal values
s(q1), . . . , s(qK) respectively, where s ∈ L2(G) is the R+ valued signal. Average pool-
ing is defined similarly by

[Y s](y) =

√√√√ K∑
k=1

s2(qk)/K (26)

Note that in standard ConvNets of 2D images, pooling is defined via (25) without division
by
√
K. We divide max pooling by

√
K since in the transferability setting it makes sense

to normalize the L2 norm in the coarse graph Gj,l (see for example the DSP setting of
Subsection 5.1), while in standard ConvNets of 2D images the grid is not normalized. Max
pooling is norm-reducing, as defined next.

Definition 15 Pooling, Y : L2(G) → L2(G′), is said to reduce norm if ‖Y (h)‖ ≤ ‖h‖
for every h ∈ L2(G).

In Theorem 16 we assume that pooling is consistent with sampling in the sense
that for every layer l = 1, . . . , L and j = 1, 2,

∀f ∈ PW (ψl),
∥∥∥Y j,lSψlj,l−1f − S

ψl
j,lf
∥∥∥ ≤ δ ‖f‖ (27)

Equation (27) means that sampling to the graph Gj,l−1 and then pooling to the graph Gj,l

is approximately the same as sampling to graph Gj,l directly.
In the following, we consider normalizations of the components of the ConvNet. In

particular, assuming that sampling and interpolation are approximately isometries, we may
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normalize them with asymptotically small error to
∥∥∥Sψlj,l∥∥∥ = 1,

∥∥∥Rψlj,l∥∥∥ = 1. We also assume

that pooling reduces norm,
Suppose that sampling asymptotically commutes with ρ (Definition 12), and let 0 <

δ < 1 be some tolerance. By (19), it is possible to choose a sequence of bands ψl, and fine
enough discretizations, guaranteeing

∀f ∈ L2(M), j = 1, 2, l = 1, . . . , L,∥∥∥ρ(S
ψl−1

j,l−1P (ψl−1)f)− Sψlj,l−1P (ψl)ρ(P (ψl−1)f)
∥∥∥ < δ ‖f‖ .

Note that the band ψl increases in l, since the activation function ρ gradually increases the
complexity of the signal. This leads us to the non-asymptotic setting of Theorem 16. Note
as well that the ConvNet is invariant to multiplying all filters glk′,k by a constant α ∈ R and

multiplying Al by 1/α. Thus, in Theorem 16 we suppose that all filters are normalized to∥∥∥glk′,k∥∥∥∞ = 1, and the norm of the convolution layers is controlled by Al.

Theorem 16 Consider a ConvNet with Lipschitz filters {glk′k | k=1...Kl−1, k
′=1...Kl} with

Lipschitz constant D at each layer l, normalized to
∥∥∥glk′,k∥∥∥∞ = 1, and with Al satisfying∥∥Al∥∥∞ ≤ A, for some constant A > 0. Suppose that the biases satisfy

∥∥blk′∥∥2
≤ B for some

constant B > 0, for
∥∥blk′∥∥2

denoting the norm of the constant signal blk′ both in L2(Gj,l)
and in L2(M). Consider a contractive activation function ρ (Definition 13). Suppose that

Sψlj,l and Rψlj,l are normalized to
∥∥∥Sψlj,l∥∥∥ = 1,

∥∥∥Rψlj,l∥∥∥ = 1. Let 0 < δ < 1 and suppose that for

every j = 1, 2

∀l = 0, . . . , L− 1,
∥∥∥Sψlj,lLP (ψl)−∆j,lS

ψl
j,lP (ψl)

∥∥∥ ≤ δ∥∥∥P (ψL)−RψLj,LS
ψL
j,LP (ψL)

∥∥∥ ≤ δ
∀f ∈ PW (ψl−1), ∀l = 1, . . . , L,

∥∥∥ρ(S
ψl−1

j,l−1P (ψl−1)f)− Sψlj,l−1P (ψl)ρ(P (ψl−1)f)
∥∥∥ < δ ‖f‖

∀f ∈ PW (ψl), ∀l = 1, . . . , L,
∥∥∥Y j,lSψlj,l−1f − S

ψl
j,lf
∥∥∥ ≤ δ ‖f‖

(28)

Suppose that pooling reduces norm (Definition 15).
Then, if A > 1,∥∥∥RψL1,LN

1,L
k Sψ0

1,0P (ψ0)f −RψL2,LN
2,L
k Sψ0

2,LP (ψ0)f
∥∥∥

≤
(
LD
√

#{λm ≤ ψL}m + 2L+ 2
)(
AL ‖f‖+B

AL − 1

A− 1

)
δ

(29)

and, if A = 1, ∥∥∥RψL1,LN
1,L
k Sψ0

1,0P (ψ0)f −RψL2,LN
2,L
k Sψ0

2,0P (ψ0)f
∥∥∥

≤
(
LD
√

#{λm ≤ ψL}m + 2L+ 2
)

(‖f‖+ LB)δ.
(30)
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The proof of this theorem is in the appendix. Theorem 16 may hint to the importance
of regularizing the convolution operators in the infinity norm. The next corollary shows
that adding bias increases instability with respect to the depth L, from linear to quadratic.

Corollary 17 Consider the setting of Theorem 16, with Al normalized to
∥∥Al∥∥∞ = 1,

without biases, namely, blk′ = 0. Then∥∥∥RψL1,LN
1,L
k Sψ0

1,0P (ψ0)−RψL2,LN
2,L
k Sψ0

2,0P (ψ0)
∥∥∥ ≤ (LD√#{λm ≤ ψL}m + 2L+ 2

)
δ. (31)

The assumptions of Corollary 17 imply that the ConvNet is contractive. For non-
contractive ConvNets, we can simply consider a contractive ConvNet and multiply it by a
constant C > 1. For such a ConvNet, the bound in (29) is simply multiplied by C.

4.3 Transferability Experiments

In this subsection we showcase transferability of spectral graph methods in practice. We
first mention two papers that showcase the transferability of spectral graph ConvNets.
In (Bianchi et al., 2021) graph spectral ConvNets are based on rational function filters.
The task is graph classification on data sets consisting of many graphs and graph signals.
Each graph represents a molecule and its signal represents some node features. The results
reported in that paper show that the proposed spectral method obtains state of the art
results on these multi-graph settings.

In (Knyazev et al., 2019) different types of graph ConvNets are tested on a machine
learning tasks in imaging. Inputs are represented by superpixel images, namely some graphs
representing the images. Here, the setting is multi-graph, where different images are rep-
resented by different graphs. The reported results suggest that spectral methods are more
transferable, dealing better with the multi-graph setting than spatial methods.

Next we present simple experiments that demonstrate transferability. In figure 2 we
showcase transferability under coarsening on the Bunny mesh. Here, the graph M consist
of all mesh edges with weight 1, and we consider the normalized Laplacian L. The coarsened
version G of M is computed by the Graclus algorithm (Dhillon et al., 2004). We consider
the coarsening operator S : L2(M)→ L2(G) defined as follows. Given a signal f ∈ L2(M),
for each pair of nodes x, y ∈M which collapse to the node z ∈ G, we define

[Sf ](z) =
(
f(x) + f(z)

)
/
√

2.

We define the piecewise constant interpolation operator R : L2(G) → L2(M) by R = S∗.
The coarsened Laplacian ∆ in L2(G) is defined by ∆ = SLR. This definition of ∆
is natural when the goal is to promote transferability. We consider a signal f ∈ L2(M)
and a filter g. The figure compares f , Lf , and g(L)f with RSf , R∆Sf , and Rg(∆)Sf
respectively.

In Figure 3 we showcase the transferability formula Thm.4(1) on the Bunny graph of
Figure 2. We consider a filter g with Lipschitz bound D. On the left we plot the Laplacian
transferability

∥∥∆SλMφm − SλMLφm
∥∥ as a function of the eigenvalue of the eigenvector

φm of L. In the middle we plot the filter transferability
∥∥SλM g(L)φm − g(∆)SλMφm

∥∥ as a
function of the Laplacian transferability, with the theoretical bound y = Dx in red. On the
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Figure 2: Transferability under coarsening on the Bunny mesh

Laplacian transferability of coarsened graph Low pass filter transferability of coarsened graph Filter to Laplacian transferability ratio

Figure 3: Transferability of L-Fourier modes evaluated in G
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Transferability of CNN: spectral vs spatial methods Low pass transferability on coarsened Citeseer High pass transferability on coarsened Citeseer

Filter stability on Cora—randomly removing edges Filter stability on Cora—randomly adding edges Filter stability on Cora—randomly removing verteces

Figure 4: Trasferability experiments

right we plot the filter transferability divided by the Laplacian transferability of eigenvectors
φm as a function of the eigenvalues λm. The theoretical bound Vg(λm) is given in red.

In top-left of Figure 4 we isolate principle transferability form concept-based transfer-
ability in MNIST, and compare a spectral graph ConvNet method with a spatial graph
ConvNet method. We consider a simple ConvNet architecture based on three convolution
layers with max pooling, where the max pooling in the third layer collapses each graph to
one node, and two fully connected layers. In CayleyNet, the Cayley polynomial order of all
three convolutional layers is 9, and they produce 32, 32, and 64 output features, respectively.
In MoNet, all three convolutional layers contain 18 Gaussian kernels, and produce 32, 32
and 64 output features, respectively. Both two models contain 10K parameters. We train
the network on MNIST images of one fixed fine resolution (56X56) and test on images
of various coarse resolutions. The graph Laplacian is given by the central difference ap-
proximating second derivative. In this setting, the spectral method, CayleyNet, has higher
principle transferability than the spatial method, MoNet. Indeed, its performance degrades
slower as we coarsen the grid.

In top-middle and right of Figure 4 we test transferability between the Citeseer graph
M and its coarsened version G. We take the coarsening and interpolation operators S
and R = S∗ as before. We consider the normalized Laplacian L on M, and the coarse
Laplacian ∆ = SLR on G. We use low-pass (top-middle) and high-pass (top-right) filters
with Lipschitz constant 1. To show transferability, we plot ‖Sf(L)φm − f(∆)Sφm‖ as a
function of ‖SLφm −∆Sφm‖ for various eigenvectors φm of L (some corresponding eigen-
values are displayed). All values lie below y = Dx, where D is the Lipschitz constant of the
corresponding filter. This accords with the transferability inequality Thm.4(1).

In Figure 4 bottom, we test the stability of spectral graph filters in the Cora graph with
the normalized Laplacian, for different models of graph perturbations and sub-sampling.
We consider three filters: low, mid and high pass. In bottom-left we randomly remove
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edges, in bottom-middle we randomly add edges, and in bottom-right randomly delete
vertices, and compare the filters on the sub-sampled graph. The markers indicate the
percentage of edges/vertices that were removed/added. The x axis is the relative error in
the Laplacian, and the y axis is the relative error in the filter. The experimental results
support the theoretical results on linear stability. All errors are given in Frobenius norm.
The Frobenius norm can be seen as the average pointwise error, where the Laplacians and
filters are applied on the signals of the standard basis.

5. Transferability of Graph Discretizing Topological Spaces

In this section we develop the DSP setting of transferability, in which graphs are sam-
pled from continuous spaces, as described in Subsections 1.4.1 and 1.4.2. In the classical
Nyquist—Shannon approach to digital signal processing, band-limited signals in L2(R) are
discretized to L2(Z) by sampling them on a grid of appropriate spacing. The original
continuous signal can be reconstructed from the discrete signal via interpolation, which is
explicitly given as the convolution of the delta train corresponding to the discrete signal
with a sinc function. Our goal is to formulate an analogous framework for graphs, where
graphs are seen as discretizations of continuous entities, namely topological spaces with
Borel measure.

Previous work studied sampling and interpolation in the context of graph signal pro-
cessing, where the space that is sampled is a discrete graph itself. In (Anis et al., 2014;
Chen et al., 2015; Tsitsvero et al., 2016; Puy et al., 2018) sampling is defined by evaluat-
ing the graph signal on a subset of vertices, and in (Segarra et al., 2015; Marques et al.,
2016) sampling is defined by evaluating the signal on a single vertex, and using repeated
applications of the shift operator to aggregate the signal information on this node. In the
context of discretizing continuous spaces to graphs, considering graph Laplacians of meshes
as discretizations of Laplace-Beltrami operators on Riemannian manifolds is standard. How-
ever, manifolds are too restrictive to model the continuous counterparts of general graphs.
A more flexible model are more general topological spaces with Borel measure. Treating
graph Laplacians as discretizations of metric space Laplacians was considered from a pure
mathematics point of view in (Burago et al., 2019). In that work, the convergence of the
spectrum of the graph Laplacian to that of the metric space Laplacian was shown under
some conditions. However, for our needs, the explicit notion of convergence of Definition
9 is required, and the convergence of the spectrum alone is not sufficient. In (Lovász and
Szegedy, 2006), a continuous limit object of graphs was proposed. More accurately, graph
vertices are sampled from the continuous space [0, 1], and graph weights are sampled from
a measurable weight function W : [0, 1]2 → [0, 1]. In contract to this, in our analysis there
is a special emphasis on Laplacians, which implicitly model the “geometry” of graphs and
topological spaces. We thus bypass the analysis via edge weights, and study directly the
discretization of topological Laplacians to graph Laplacians, from an operator theory point
of view.

In this section we introduce a discrete signal processing setting, where analog domains
are topological spaces, and digital domains are graphs. We present natural conditions, from
a signal processing point of view, sufficient for the convergence of the graph Laplacian to
the topological space Laplacian in the sense of Definition 9. We also prove asymptotic
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reconstruction, boundedness, convergence, and asymptotic commutativity of sampling with
activation function (Definitions 7, 8, 9 and 12), under these conditions. All proofs are
based on quadrature assumptions, stating that certain sums approximate certain integrals.
In Subsection 5.4 we prove that the quadrature assumptions are satisfied in high probability,
in case graphs are sampled randomly from topological spaces.

5.1 Sampling and Interpolation

We now proceed to give an explicit construction of the sampling and interpolation opera-
tors, under which they are asymptotically reconstructive and bounded (Definitions 7 and
8). The approach is similar to the classical Nyquist—Shannon approach to sampling and
interpolation.

We start with basic notations and definitions. Let M be a topological space with a
Borel measure µ, such that the volume µ(M) is finite. We call such a space a topological-
measure space. Let the Laplacian L be a normal operator in L2(M), having discrete
spectrum, with eigenvalues {λn}∞n=1 and corresponding eigenvectors {λn, φn}∞n=1. Here, the
eigenvectors λn are in increasing order of |λn| and have repetitions if the corresponding
eigenspace is more than one dimensional. Denote the Paley-Wiener spaces by PW (λ), with
projections P (λ). Denote by Mλ the index such that λMλ

is the largest eigenvalue in its
absolute value satisfying λMλ

≤ |λ|.
Let

Gn = {xnk}
Nn
k=1 ⊂M , n ∈ N

be a sequence of sample sets, where Nn ∈ N for every n ∈ N. For the following analysis
let us fix n ∈ N. We see Gn as the nodes of a graph. Instead of analyzing the graph
Laplacian through the graph adjacency matrix, we directly analyze the graph Laplacian.
Consider a diagonalizable operator ∆n in each L2(Gn), that we call graph Laplacian. The
graph Laplacian represents the diffusion or shift kernel in L2(Gn), and hence encapsulates
some notion of geometry in L2(Gn). A non symmetric Laplacian indicates that the space
L2(Gn) samples L2(M) non-uniformly, as described in Subsection 5.3. Denote the eigen-
decomposition of ∆n with eigenvalues κnj and eigenvector γnj . Let Γn be the eigenvector

matrix with columns γnj . Consider the inner product 〈u,v〉L2(Gn) = vHBnu as defined in

(5), with Bn = Γ−H
n Γ−1

n . When writing L2(Gn) we mean the space with the inner product
〈u,v〉L2(Gn). Here, for normal ∆n, Bn = I, and 〈u,v〉L2(Gn) is the standard dot product.

The following construction is defined for a fixed Paley-Wiener space PW (λ). We start
by defining the evaluation operator, that evaluates signals in PW (λ) at the sample set
Gn. Since general signals in L2(M) are only defined up to a set of finite measure, to define
the evaluation of signals at points, we restrict ourselves to continuous signals. Let C(M) be
the Banach space of continuous functions with the infinity norm. The space C(M) is dense
in L2(M). Note that delta functionals that evaluate at a point are well defined on C(M),
as elements of the continuous dual C(M)∗. Thus, the sampling operator Sn that evaluates
at the sample points {xnk}k is a well defined bounded operator from C(M) to L2(Gn). Since
in our analysis we work in Paley-Wiener spaces, we consider the natural assumption that
the Laplacian respects continuity.

Definition 18 The Laplacian L is said to respect continuity if PW (λ) is a subspace of
C(M) for every λ > 0.
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Note that Laplace-Beltrami operators on compact manifolds respect continuity, since their
domain (L2 functions with distributional Laplacian in L2) is a subspace of C(M).

We define the evaluation operator.

Definition 19 Under the above construction, the evaluation operator Φλ
n : PW (λ) →

L2(Gn) is defined by

Φλ
nf =

( 1√
hn
f(xnk)

)Nn
k=1

, (32)

where

hn =
Nn

µ(M)
(33)

is the density of Gn in M.

Consider the Fourier basis {φm}Mλ
m=1 of PW (λ). Note that (32) can be written in this basis

in the matrix form Φλ
n, with entries

φk,m =
1√
hn
φm(xnk). (34)

For a column vector c = (cm)Mλ
m=1 and f =

∑Mλ
m=1 cmφm, observe that

Φλ
nf = Φλ

nc.

When defining sampling and interpolation, one should address the non-uniform den-
sity of the sample set entailed by the inner product (5). We thus consider the following
definitions of sampling and interpolation.

Definition 20 Under the above construction, sampling Sλn : PW (λ)→ L2(Gn) is defined
to be the evaluation operator, with the matrix representation, where the input is in the
Fourier basis {φm}Mλ

m=1 and the output in the standard basis of L2(Gn),

Sλn = Φn, (35)

where Φn is a matrix with entries (34). Interpolation Rλn : L2(Gn)→ PW (λ) is defined as
the operator with matrix representation, where the input is in the standard basis of L2(Gn)
and the output is in the Fourier basis of PW (λ),

Rλ
n = ΦH

nBn. (36)

Claim 21 The interpolation operator satisfies

Rλn = (Sλn)∗. (37)

Proof Let us derive a general formula for the adjoint of a linear mapping PW (λ)→ L2(Gn),
represented as a matrix operator A, where PW (λ) is represented in the Fourier basis, and
L2(Gn) in the standard basis. Note that the inner product in PW (λ), represented in the
Fourier basis, is the standard dot product. Thus, for any c ∈ CMλ and q ∈ L2(Gn) ∼= CNn ,

〈Ac,q〉L2(Gn) = qHBnAc = (AHBnq)Hc =
〈
c,AHBnq

〉
CMλ .
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Therefore
A∗ = AHBn.

From this, (37) follows as a special case.

Next, we would like to find a condition, for f =
∑Mλ

m=1 cmφm, that guarantees

Rλ
nS

λ
nc −−−→n→∞

c. (38)

By requiring (38) for all elements of the Fourier basis, writing (38) using entry-wise limits,
and arranging all limits as the entries of a matrix, we obtain the condition(µ(M)

Nn

〈(
φm(xnk)

)
k
,
(
φm′(x

n
k)
)
k

〉
L2(Gn)

)
m,m′

−−−→
n→∞

I. (39)

The left hand side of (39) is interpreted as a quadrature approximation of the inner product
〈φm, φm′〉L2(M), based on the sample points {xnk}

Nn
k=1 and their density. We summarize this

in a definition.

Definition 22 Consider the above construction and notations. Denote by 〈Φn,Φn〉 ∈
CMλ×Mλ the matrix with entries

〈
Φλ
nφm,Φ

λ
nφm′

〉
L2(Gn)

. The pair {Gn,∆n}∞n=1 is called

a quadrature sequence with respect to reconstruction, if

〈Φn,Φn〉 −−−→
n→∞

I. (40)

Next, we prove that quadrature sequences are asymptotically reconstructive and bounded.

Proposition 23 Consider the above construction and notations, with {Gn,∆n}∞n=1 a quadra-
ture sequence and L that respects continuity. Then sampling and interpolation are asymp-
totically reconstructive and bounded (Definitions 7 and 8), with bound C = 1 in Definition
8.

Proof The proof of Definition 7 is given by the above analysis. For Definition 8, Definition
22 asserts that Sλn approximates an isometric embedding. More accurately, for two vectors
c1, c2 of Fourier coefficients, by (40)〈

Sλnc1,S
λ
nc2

〉
= cH

2 (Sλn)HBnS
λ
nc1

= cH
2 〈Φn,Φn〉 c1.

For c1 = c2 = c we have ∥∥∥Sλn∥∥∥ =
∥∥∥〈Φn,Φn〉1/2

∥∥∥ .
Thus, since PW (λ) has a fixed finite dimension with-respect-to n, and since convergence in
matrix norm is equivalent to entry-wise convergence, by Definition 22 we have∥∥∥Sλn∥∥∥ =

∥∥∥〈Φn,Φn〉1/2
∥∥∥ −−−→

n→∞
1.

Finally, by Claim 21, Rλ
n = (Sλn)∗, and thus

∥∥Rλ
n

∥∥ =
∥∥Sλn∥∥.
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5.2 Asymptotic Commutativity of Sampling and Activation Functions

In this section we prove that Sampling asymptotically commutes with the activation function
(Definition 12) under some quadrature conditions. Definition 12 involves a term of the form∥∥∥ρ(SλnP (λ)f)− Sλ′n P (λ′)ρ(P (λ)f)

∥∥∥ . (41)

Let us first show how to swap the order between sampling and ρ in ρ(SλnP (λ)f). For every
continuous ρ : C → C and f ∈ C(M), we also have ρ(f) ∈ C(M). Moreover, Snρ(f) =
ρ(Snf) for every continuous f . Thus, assuming that L respects continuity, sampling Sλn = Sn
does not depend on λ, and ρ(SλnP (λ)f) = ρ(SnP (λ)f) = Snρ(P (λ)f) for any continuous
activation function ρ. As a result, for continuous ρ, (41) takes the form∥∥∥ρ(SλnP (λ)f)− Sλ′n P (λ′)ρ(P (λ)f)

∥∥∥ =
∥∥Snρ(P (λ)f)− SnP (λ′)ρ(P (λ)f)

∥∥ . (42)

The right hand side of (42) can be seen as a quadrature approximation of
‖ρ(P (λ)f)− P (λ′)ρ(P (λ)f)‖, which leads us to the following assumption.

Definition 24 The sampling operators {Sλn}λ>0 are said to be quadrature with respect
to the continuous activation function ρ, if L respects continuity, and for every f ∈
L2(M) and λ′ > λ > 0,

lim
n→∞

∥∥Snρ(P (λ)f)− SnP (λ′)ρ(P (λ)f)
∥∥ =

∥∥ρ(P (λ)f)− P (λ′)ρ(P (λ)f)
∥∥ .

Next, we focus on a common class of activation functions, that include ReLU, absolute
value, and absolute value or ReLU of the real or imaginary part of a complex number.

Definition 25 Consider the field R or C, and denote it by F. The continuous activation
function ρ : F → F is called positively homogeneous of degree 1, if for every z ∈ F and
every real c ≥ 0,

ρ(cz) = cρ(z).

Proposition 26 Consider a DSP framework, quadrature with respect to reconstruction.
Consider a contractive positively homogeneous activation function ρ of degree 1. Suppose
that L respects continuity and that the sampling operators are quadrature with respect to the
continuous activation function ρ. Then sampling asymptotically commutes with ρ (Defini-
tion 12).

The proof is in Appendix B.3.

5.3 Convergence of Sampled Laplacians to Topological Space Laplacians

In this subsection we discuss different definitions of topological Laplacians and their dis-
cretizations to graph Laplacians via sampling. We show convergence of the graph Laplacians
to the topological-measure Laplacians, in the sense of Definition 9, under a quadrature as-
sumption.

Assume that M is a compact metric space with finite Borel measure µ(M) < ∞.
Since such a measure space is a probability space up to normalization, we assume that
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µ(M) = 1. Let Sr(x0), Br(x0) denote the sphere and ball or radius r about x0 respectively.
One definition of the Laplacian in the Euclidean space of dimension d is

Lf(x0) := lim
r→0

2d

r2

(
A
(
Sr(x0)

)−1
∫
Sr(x0)

f(x)dx− f(x0)
)
.

By integrating on the radius r′, from 0 to r, with weights V
(
Sr′(x0)

)−1
A
(
Sr′(x0)

)
, and

using the mean value theorem for integrals, we obtain the equivalent definition

Lf(x0) = lim
r→0

V
(
Br(x0)

)−1
∫
Br(x0)

2d

|x− x0|2
(
f(x)− f(x0)

)
dx.

Another equivalent definition for the Laplace-Beltrami operator on manifolds of dimension
d is

Lf(x0) = lim
r→0

(2d+ 2)V
(
Br(x0)

)−1
r−2

∫
Br(x0)

(
f(x)− f(x0)

)
dx.

This motivates two classes of Laplacians in general metric-measure spaces. First, an in-
finitesimal definition

Lf(x0) = lim
r→0

V
(
Br(x0)

)−1
r−2

∫
Br(x0)

H(x0, x)
(
f(x)− f(x0)

)
dx, (43)

where a prototypical example is H(x0, x) = 1, for which (43) are termed Korevaar-Schoen
type energies (Korevaar and Schoen, 1993). Second, a non-infinitesimal definition

Lf(x0) =

∫
M
H(x0, x)

(
f(x)− f(x0)

)
dx, (44)

where a prototypical example is H(x0, x) = V
(
Br(x0)

)−1
r−2χBr(x0) for some fixed radius r.

Here, χBr(x0) is the characteristic function of the ball Br(x0). Formulas (43) and (44) define
symmetric operators in case H(x, x0) = H(x0, x). Indeed, (44) is a sum of an integral and
a multiplicative operator, both symmetric. Moreover, the symmetric property is preserved
under limits in (43), since the limit commutes with the inner product.

In (Burago et al., 2019) it was shown, under some mild conditions, that (44) with
H(x, x0) = r−2χBr(x0) is a self-adjoint operator with spectrum supported in [0, 2r]. More-
over, the part of the spectrum in [0, r) is discrete, and the eigenvalues of the sampled
Laplacian in [0, r) converge to the eigenvalues of the continuous Laplacian, assuming that
sampling becomes denser in n in some sense.

The advantage of Laplacians of the form (44) is that they are readily discretizable on
sample sets, by approximating the integral in (44) by a sum over the sample set. Suppose
that H is symmetric (H(x, x0) = H(x0, x)), and consider a continuous weight function
w :M→ R+. For a detailed explanation of the role of w we refer to Subsection 5.4. Given
a sample set Gn = {xnk}

Nn
k−1, define the discrete Laplacian ∆n acting on a vector q by

[∆nq]k =
1√
Nn

Nm∑
k′=1

1

w(xnk′)
H(xnk , x

n
k′)qk′ . (45)
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For qk′ = f(xnk′), (45) is interpreted as a quadrature approximation of (44). It is easy to
show that the inner product (5) under which ∆n is self-adjoint is based on

Bn = diag{ 1

Nnw(xnk)
}Nnk=1, (46)

where A = diag{vj}Nj=1 is the diagonal matrix with diagonal entries aj,j = vj .

For our analysis, we relax the assumption thatM is a compact metric space to a compact
topological space. We further assume that the Laplacian L has discrete spectrum in the
sense of Definition 1. However, for continuous H on a compact topological space M, any
Laplacian (44) is bounded, and thus has a discrete spectrum in the sense of Definition 1 only
if the range of L is finite-dimensional. We thus approximate Laplacians L having discrete
spectrum in two steps. First, by a finite-dimensional Laplacian of the form (44), and then,
by the discretization (45).

The approximation of L by a finite-dimensional Laplacian works as follows.
Let {λm, φm}∞m=1 be the eigendecomposition of L, and λ be some large band. Denote
M = Mλ. We define the integral operator

Lλf(x0) =

∫
x
H(x0, x)f(x)dx (47)

based on the kernel

Hλ(x0, x) =
M∑
m=1

φm(x0)λmφm(x). (48)

It is easy to see that

Lλ = LP (λ). (49)

Therefore, for every f ∈ L2(M), we have limλ→∞ L
λf = Lf. Moreover, by (49) for every

f ∈ PW (λ) with λ < λ, we have Lλf = Lf .

We then treat the total approximation of L by a graph Laplacian using some sort of a
diagonal extraction method. This is explained in Theorem 32 of Section 5.4. For now, let
us focus on the non-asymptotic Laplacian Lλ of (47) with discrete spectrum, denoted by
abuse of notation by L where λ is fixed. To guarantee that the sequence of graph Laplacians
as sampling operators are convergent (Definition 9) we consider the following quadrature
assumption.

Definition 27 Under the above construction, Gn = {xnk}
Nn
k−1 is a quadrature sequence

with respect to L, if for every P (λ)f ∈ PW (λ)

lim
n→∞

∥∥∥SλnLP (λ)f −∆nS
λ
nP (λ)f

∥∥∥
L2(Gn)

= 0.

Proposition 28 Consider the above construction, with radon space M, Laplacian L with
discrete spectrum, and Paley-Wiener projections P (λ). Consider a sampling sequence {Sλn}n,λ
based on the sample points Gn, n = 1, . . . ,∞, where Gn is quadrature sequence with respect
to L. Then ∆n converges to L in the sense of Definition 9.
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Proof
The operator An = SλnL −∆nS

λ
n maps the Mλ dimensional space PW (λ) to an Mλ

dimensional space Wn ⊂ L2(Gn) containing the space AnPW (λ). Consider an isometric
isomorphism Qn : Wn → PW (λ). The operators QnAn : PW (λ) → PW (λ) converge
to zero as n → ∞ in the strong topology, and since PW (λ) is finite-dimensional, QnAn
converge to zero also in the operator norm topology. Thus, since Qn preserves norm, An
converges to zero in the operator norm topology, which proves convergence as defined in
Definition 9.

5.4 Transferability of Random Graph Laplacians

In this section we show that under some setting of random sampling of Laplacians L that
respect continuity, graph Laplacian, sampling operators, and interpolation operators are
asymptotically reconstructive, bounded, convergent, and sampling asymptotically com-
mutes with the activation function (Definitions 7,8,9 and 12). To model the arbitrariness in
which graphs can be sampled from topological-measure spaces, we suppose that the sample
points {xnk}

Nn
k−1 are chosen at random. This allows us to treat the graph Laplacians as

Monte-Carlo approximations of the topological-measure Laplacian.
Let f = P (λ)f ∈ PW (λ). Consider a weighted µ measure, µw, defined for measurable

sets X ⊂M by

µw(X) :=

∫
X
w(x)dµ(x). (50)

Here, the weight function w :M→ R is positive, continuous, and satisfies∫
M
w(x)dµ(x) = 1.

We take {xnk}
Nn
k−1 as random points in the probability space {M, µw}.

Definition 29 Let {M, µ} be a compact topological-measure space with µ(M) = 1. Let
the weighted measure µw satisfy (50). Let L be a symmetric Laplacian of the form (44),
such that H ∈ L2(M2). Suppose that L respects continuity and has discrete spectrum. Let
{xnk}

Nn
k−1 be Nn random points from the probability space {M, µw}. The random sampled

Laplacian ∆n is a random variable {MNn ;µNnw } → CNn×Nn, defined by (45) for the ran-
dom samples {xnk}

Nn
k−1. The random sampling and interpolation operators Sλn , R

λ
n are

defined as in Definition 20 on the random points {xnk}
Nn
k−1, with the inner product structure

(46) of L2(Gn).

For Theorem 32 below, we need one more assumption on ρ and L. Let us consider for
motivation the standard Laplacian L on the unit circle, and the ReLU activation function.
Consider the classical Fourier basis {φn}∞n=−∞. Any f ∈ PW (λ) is smooth, and ρ(f) is
piecewise smooth and continuous. Thus ρ(f) can be differentiated term-by-term, and

‖∂xρ(f)‖22 = 4π2
∞∑

n=−∞
n2 |〈ρ(f), φn〉|2 .
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On the other hand, observe that for ReLU

‖ρ(f)‖2 ≤ ‖f‖2 , ‖∂xρ(f)‖2 ≤ ‖∂xf‖2 . (51)

Thus
∞∑

n=−∞
n2 |〈ρ(f), φn〉|2 ≤

Mλ∑
n=−Mλ

n2 |〈f, φn〉|2 ≤M2
λ ‖f‖

2
2 . (52)

We can now show the following claim

Claim 30 The ReLU function ρ is a continuous mapping of signals from PW (λ) to signals
in the norm

‖h‖1+κ,2 =

√√√√|〈h, φ0〉|2 +
∞∑

n=−∞
|n|1+κ |〈h, φn〉|2 (53)

for any 0 < κ < 1.

The proof of this claim in in Appendix B.6.

This analysis motivates the following definition in the general case.

Definition 31 The activation function ρ is said to preserve spectral decay if there exists
κ > 0 such that for every λ, the activation function ρ applied on signals from PW (λ) is
continuous in the norm

‖h‖κ,2 =

√√√√ ∞∑
n=1

|n|1+κ ‖φn‖2∞ |〈h, φn〉|
2. (54)

Note that in the finite-dimensional domain PW (λ), all norms are equivalent. Thus, for
ρ that preserves spectral decay,

lim
‖f−g‖2→0

√√√√ ∞∑
n=1

|n|1+κ ‖φn‖2∞ |〈ρ(f)− ρ(g), φn〉|2 = 0, (55)

where the limit is over f, g ∈ PW (λ).

Preservation of spectral decay is interpreted as follows. Applying ρ on a band-limited
signal f ∈ PW (λ) results in a continuous signal which is not band-limited and in general
has frequency coefficients in all frequencies. Namely, after applying ρ on f , which decays
rapidly in the frequency domain, ρ(f) is not guaranteed to decay rapidly. However, under
Definition 31, ρ(f) is guaranteed to have some decay rate in the frequency domain, since
the weighted sum (54), with weights increasing to ∞ in frequency, is finite.

The following notation is used in the asymptotic analysis in Theorem 32. For any M ∈ N
denote ∥∥λM∥∥

1
=

M∑
m=1

|λm| . (56)
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Theorem 32 Let {M, µ} be a probability topological-measure space, and µw another mea-
sure satisfying (50) with positive and continuous w. Let L be a topological-measure Laplacian
with discrete spectrum that respects continuity. Let ρ be a contractive positively homoge-
neous of degree 1 activation function that preserves spectral decay. Consider a sequence of
random µw sample sets {xnk}

Nn
n=1, n ∈ N, with Nn −−−→

n→∞
∞. Then, for every series of bands

λn −−−→
n→∞

∞, such that
∥∥∥λMλn

∥∥∥
1

= o(N
1/2
n ), and random sampled Laplacians ∆n = ∆λn

n

with Lλn defined by (47) and (48), and for every δ > 0, in probability 1 there exists a
subsequence nm ⊂ N such that the following holds:

i for every n ∈ N we have n ∈ {nm}m∈N in probability more than (1− δ), and

ii the sampled Laplacians {∆nm}m satisfy Definitions 7,8,9 and 12.

Remark 33 The sequence of random sample sets is treated formally in the following fash-
ion. The basis of the topology of a sequence of topological spaces is defined as follows. A
generic set in the basis of the topology is constructed by choosing finitely many indexes and
picking an open set for each of the corresponding spaces. For each of the rest of the indexes
we pick the whole corresponding probability space. The measure of such sets is the product
of the measures of the sets of the finite subsequence.

By Theorems 4 and 17, Theorem 32 is interpreted as follows. If ∆n are sampled from
L by drawing Nn random sample points and sampling band-limited approximations of
L, where the bands do not increase too fast with respect to Nn, then graph filters and
ConvNets approximate topological-measure filters and ConvNets. Therefore, graph filters
and ConvNets are transferable. The explicit bounds on different transferability terms in
(28) of Theorem 16 are given in Appendix B.4.

Last, let us use the results in Theorem 32 and Appendix B.4 to derive non-asymptotic
bounds for the transferability error of filters.

Proposition 34 Consider the setting of Theorem 32, where we choose λn such that∥∥∥λMλn

∥∥∥
1
≤ BN1/2−α

n ,

where B > 0 is some constant, and α ∈ (0, 1/2]. Let g be a Lipschitz continuous filter, with
Lipschitz constant D, and let ‖g‖L,M be as defined in (8). Denote wmin = minx∈Mw(x).
Then, for each n, with probability more than 1− 2δ,∥∥∥g(L)P (λ)−Rλng(∆n)SλnP (λ)

∥∥∥
≤Mλ

(
2DBw−1

min max
m≤Mλ

‖φm‖∞N
−α
n + ‖g‖L,M w

−1/2
min max

m≤Mλ

‖φm‖2∞N
−1/2
n

)
δ−1/2.

(57)

In Proposition 34, different choices of α ∈ (0, 1/2] correspond to different choices of the
Laplacian discretization. The choice α = 1/2 means that we discretize a fixed Paley-Wiener
projection of L, and the closer α is to 0, the faster the band of L that we approximate goes
to infinity in n.
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6. Conclusion

In this paper, we proved that spectral graph filters and ConvNets are transferable. We took
the philosophical point of view in which a ConvNet is called transferable, if, whenever two
graphs represent the same phenomenon, the ConvNet has approximately the same reper-
cussion on both graphs. We modeled mathematically “graph representing a phenomenon”
as a graph which is sampled from an underlying “continuous” Borel space. Here, sampling
is treated very broadly, and two examples are sampling by evaluating at sample points,
and graph coarsening. We modeled mathematically “ConvNet having approximately the
same repercussion” via the sampling-interpolation approach. Using this model, we were
able to prove that spectral ConvNets are transferable. It is interesting to note that, af-
ter the publication of the current paper, Nilsson and Bresson (2020) tested ChebNet, a
spectral ConvNet, on a set of multi-graph benchmark problems, with the goal of testing
our results experimentally. The results showed that ChebNet outperforms vanilla spatial
methods, especially in settings where the graphs are synthetically generated from an un-
derlying continuous model. This validates that spectral methods indeed have competitive
transferability capabilities in practice.

We believe that our paradigm of treating transferability by modeling “graphs represent-
ing the same phenomenon” and “ConvNet having the same repercussion” is a good starting
point for any future research on graph ConvNet transferability. Such research should focus
on modeling these concepts mathematically, justifying the model experimentally or heuris-
tically, and proving corresponding transferability error bounds.
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Appendix A. Laplacians of Directed Graphs as Normal Operators

Next we explain how functional calculus applies as-is to non-normal matrices, even though
the theory is defined only for normal operators. As a result, spectral filters can be defined
on directed graphs represented by non-symmetric adjacency matrices.

Every finite-dimensional normal operator has an eigendecomposition with complex eigen-
values and orthonormal eigenvectors. Functional calculus applies to finite-dimensional nor-
mal operators by (2), and is canonical in the sense that it is equivalent to compute a rational
function of a normal operator by (2), or by compositions, linear combinations, and inversions
by (3). On the other hand, any diagonalizable matrix can be seen as a normal operator,
considering an appropriate inner product. Moreover, almost any matrix is diagonalizable.
Eigendecomposition and functional calculus are theories of self-adjoint/unitary/normal op-
erators, which need not be represented by symmetric/orthonormal/normal matrices. Thus,
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spectral graph theory applies also to directed graphs. Note that no eigendecomposition
is ever calculated in practice, and all computations in applying filters (compositions, lin-
ear combinations, and inversions) are algebraic and do not depend on the inner product
structure. Thus, the theory applies as-is on directed graphs, with no extra considerations.
We thus focus on finite-dimensional normal Laplacian operators, which can represent non-
symmetric Laplacian matrices on directed graphs.

Given an N×N diagonalizable matrix A with eigenvectors {γk}Nk=1, consider the matrix
Γ comprising the eigenvectors as columns. Define the inner product

〈u,v〉 = vHBu, (58)

where B = Γ−HΓ−1 is symmetric, u and v are given as column vectors, and for a matrix
C = (cm,k)n,m ∈ CN×N , the Hermitian transpose CH is the matrix consisting of entries
cH
m,k = ck,m. It is easy to see that (58) defines an inner product for which A is normal.

Consider an operator A represented by the matrix A. The adjoint A∗ of an operator A is
defined to be the unique operator such that

∀u,v ∈ Cd, 〈Au,v〉 = 〈u, A∗v〉 .

By the equality

vHBAu = vHBAB−1Bu =
(
B−1AHBv

)H
Bu,

the matrix representation of the adjoint A∗ is given by

A∗ = B−1AHB. (59)

Thus, an operator is self-adjoint if B−1AHB = A, unitary if B−1AHB = A−1, and normal
if

AB−1AHB = B−1AHBA.

Note the difference between transpose and adjoint, and between symmetric/orthonormal
matrices and self-adjoint/unitary operators: a non-symmetric matrix may represent a self-
adjoint operator. To emphasize this difference, we opt in this paper for a Hilbert space
formulation of inner products and basis expansions, over the more commonly used formu-
lation in the graph signal processing community of matrix products and dot products.

The eigenvalues and eigenspaces of a diagonalizable matrix, and the eigenvalues and
eigenspaces of the corresponding normal operator, are identical. Indeed, eigenvalues and
eigenspaces are defined algebraically, independently of the inner product structure. If the
eigenvalues of the matrix are real or in eiR, then the corresponding operator is self-adjoint
or unitary respectively.

Appendix B. Proofs

B.1 Proof of Theorem 4

By linearity and finite dimension of PW (λ), we start with a signal φm ∈ PW (λM ) which
is an eigenvector of L corresponding to the eigenvalue λj , and then generalize to linear
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combinations. Let Qk be the projection upon the eigenspace of ∆ corresponding to the
eigenvalue κk. Then, by Lφm = λmφm,

∆SλMφm − SλMLφm =
∑
k

κkQkS
λMφm − λmSλM

∑
k

Qkφm =
∑
k

(κk − λm)QkS
λMφm.

By orthogonality of the projections {Qk}k,∥∥∥∥∥∑
k

κkQkS
λMφm − λmSλMφm

∥∥∥∥∥
2

=
∑
k

|κk − λm|2
∥∥∥QkSλMφm∥∥∥2

(60)

Now, similarly to the derivation of (60), by functional calculus and by (9),∥∥∥f(∆)SλMφm − SλM f(L)φm

∥∥∥2
=
∑
k

|f(κk)− f(λm)|2
∥∥∥QkSλMφm∥∥∥2

=
∑
k

∣∣∣∣f(κk)− f(λm)

κk − λm

∣∣∣∣2 |κk − λm|2 ∥∥∥QkSλMφm∥∥∥2

≤Vf (λm)2
∑
k

|κk − λm|2
∥∥∥QkSλMφm∥∥∥2

=Vf (λm)2

∥∥∥∥∥∑
k

κkQkS
λMφm − λmSλMφm

∥∥∥∥∥
2

=Vf (λm)2
∥∥∥∆SλMφm − SλMLφm

∥∥∥2
,

(61)

which proves Thm.4(1).

Now, for q =
∑

m cmφm, we have

∥∥∥f(∆)SλMP (λM )q − SλM f(L)P (λM )q
∥∥∥ =

∥∥∥∥∥
M∑
m=1

cm

(
f(∆)SλM − SλM f(L)

)
φm

∥∥∥∥∥ .
By the triangle inequality and Thm.4(1),

∥∥∥f(∆)SλMP (λM )q − SλM f(L)P (λM )q
∥∥∥ ≤ M∑

m=1

|cm|
∥∥∥(f(∆)SλMφm − SλM f(L)φm

)∥∥∥
≤

M∑
m=1

|cm|Vf (λm)
∥∥∥∆SλMφm − SλMLφm

∥∥∥
(62)

which proves Thm.4(2). Moreover, by (62), by Vf (λm) ≤ D by ‖φm‖ = 1 and by Hölder’s
inequality,∥∥∥f(∆)SλMP (λM )q − SλM f(L)P (λM )q

∥∥∥ ≤ ‖q‖1D ∥∥∥∆SλMP (λM )− SλMLP (λM )
∥∥∥ . (63)
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Here, ‖q‖1 :=
∑M

m=1 |cm|. By Cauchy–Schwarz inequality we have

‖q‖1 ≤ ‖q‖2
√
M,

which proves Thm.4(3).
By the triangle inequality∥∥∥f(L)P (λM )−RλM f(∆)SλMP (λM )

∥∥∥
≤
∥∥∥f(L)P (λM )−RλMSλM f(L)P (λM )

∥∥∥
+
∥∥∥RλMSλM f(L)P (λM )−RλM f(∆)SλMP (λM )

∥∥∥
≤
∥∥∥P (λM )−RλMSλMP (λM )

∥∥∥ ‖f(L)P (λM )‖

+
∥∥∥RλM∥∥∥∥∥∥SλM f(L)P (λM )− f(∆n)SλMP (λM )

∥∥∥ .
Note that by assumption ∥∥∥RλM∥∥∥ ≤ C
and, by the diagonal form of f(L)P (λM ),

‖f(L)P (λM )‖ ≤ ‖f‖L,M ,

which gives Thm.4(5). A similar use of the triangle inequality gives Thm.4(4).

B.2 Proof of Theorem 16

First we show that, if A 6= 1, then∥∥∥N l
kP (ψ0)f

∥∥∥ ≤ Al ∥∥P (ψ0)f
∥∥+

Al − 1

A− 1
B for all f ∈ L2(M)∥∥∥N j,l

k f̃
∥∥∥ ≤ Al ∥∥∥f̃∥∥∥+

Al − 1

A− 1
B for all f̃ ∈ L2(Gj,0)

and if A = 1 ∥∥∥N l
kP (ψ0)f

∥∥∥ ≤ ‖P (ψ0)f‖+ (l − 1)B for all f ∈ L2(M)∥∥∥N j,l
k f̃
∥∥∥ ≤ ∥∥∥f̃∥∥∥+ (l − 1)B for all f̃ ∈ L2(Gj,0)

for every l, k and j = 1, 2. We next focus on N l
k, and remark that we can use similar

arguments for N j,l
k . Note that

∥∥∥glk′,k(L)
∥∥∥ ≤ ∥∥∥glk′,k∥∥∥∞ ≤ 1 for every l, k, k′. Moreover,∥∥∥∥∥∥

Kl−1∑
k=1

alk′k g
l
k′k(L)f l−1

k + blk′

∥∥∥∥∥∥ ≤
Kl−1∑
k=1

∣∣∣alk′k∣∣∣ ∥∥∥glk′k(L)f l−1
k

∥∥∥+
∥∥∥blk′∥∥∥

≤
Kl−1∑
k=1

∣∣∣alk′k∣∣∣ ∥∥∥f l−1
k

∥∥∥+B

≤ Amax
k

∥∥∥f l−1
k

∥∥∥+B.
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Moreover,

∥∥∥∥∥∥ρ
(Kl−1∑
k=1

alk′k g
l
k′k(L)f l−1

k + blk′
)∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
Kl−1∑
k=1

alk′k g
l
k′k(L)f l−1

k + blk′

∥∥∥∥∥∥ ≤ Amax
k

∥∥∥f l−1
k

∥∥∥+B.

Fianlly, using the fact that pooling and projection decreases norm by assumption implies
This shows that

max
k

∥∥∥f lk∥∥∥ ≤ Amax
k

∥∥∥f l−1
k

∥∥∥+B.

Thus, by solving this recursive sequence for A 6= 1 we get

max
k

∥∥∥f lk∥∥∥ ≤ Al ‖P (ψ0)f‖+
Al − 1

A− 1
B. (64)

or for A = 1

max
k

∥∥∥f lk∥∥∥ ≤ ‖P (ψ0)f‖+ (l − 1)B.

Let us now prove (29) and (30), starting with f ∈ L2(M) at the input of Layer 0.
The error in one convolution glk′k, between the continuous and the discrete signals j = 1, 2,
satisfies

∥∥∥Sψl−1

j,l−1g
l
k′k(L)P (ψl−1)f l−1

k − glk′k(∆j,l−1)f̃ j,l−1
k

∥∥∥
≤
∥∥∥Sψl−1

j,l−1g
l
k′k(L)P (ψl−1)f l−1

k − glk′k(∆j,l−1)S
ψl−1

j,l−1P (ψl−1)f l−1
k

∥∥∥
+
∥∥∥glk′k(∆j,l−1)S

ψl−1

j,l−1P (ψl−1)f l−1
k − glk′k(∆j,l−1)f̃ j,l−1

k

∥∥∥
≤
∥∥∥Sψl−1

j,l−1g
l
k′k(L)P (ψl−1)− glk′k(∆j,l−1)S

ψl−1

j,l−1P (ψl−1)
∥∥∥∥∥∥f l−1

k

∥∥∥
+
∥∥∥glk′k(∆j,l−1)

∥∥∥∥∥∥Sψl−1

j,l−1P (ψl−1)f l−1
k − f̃ j,l−1

k

∥∥∥ .
Thus, by Thm.3.(4), and by

∥∥glk′k(∆j,l−1)
∥∥ ≤ ∥∥glk′k∥∥∞ = 1,

∥∥∥Sψl−1

j,l−1g
l
k′k(L)P (ψl−1)f l−1

k − glk′k(∆j,l−1)f̃ j,l−1
k

∥∥∥
≤ D(ψL)δ

∥∥∥f l−1
k

∥∥∥+
∥∥∥Sψl−1

j,l−1P (ψl−1)f l−1
k − f̃ j,l−1

k

∥∥∥ , (65)

where D(ψL) = D
√

#{λm ≤ ψL}m.
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Now, the error in the output of the network, before pooling, is

∥∥∥∥∥∥Sψlj,l−1P (ψl)ρ
(Kl−1∑
k=1

alk′k g
l
k′k(L)P (ψl−1)f l−1

k

)
− ρ
(Kl−1∑
k=1

alk′kg
l
k′k(∆j,l−1)f̃ j,l−1

k

)∥∥∥∥∥∥
≤

∥∥∥∥∥∥ρ
(
S
ψl−1

j,l−1

Kl−1∑
k=1

alk′k g
l
k′k(L)P (ψl−1)f l−1

k

)
− Sψlj,l−1P (ψl)ρ

(Kl−1∑
k=1

alk′k g
l
k′k(L)P (ψl−1)f l−1

k

)∥∥∥∥∥∥
+

∥∥∥∥∥∥ρ
(
S
ψl−1

j,l−1

Kl−1∑
k=1

alk′k g
l
k′k(L)P (ψl−1)f l−1

k

)
− ρ
(Kl−1∑
k=1

alk′kg
l
k′k(∆j,l−1)f̃ j,l−1

k

)∥∥∥∥∥∥
≤ δ

∥∥∥∥∥∥
Kl−1∑
k=1

alk′k g
l
k′k(L)P (ψl−1)f l−1

k

∥∥∥∥∥∥
+

∥∥∥∥∥∥Sψl−1

j,l−1

Kl−1∑
k=1

alk′k g
l
k′k(L)P (ψl−1)f l−1

k −
Kl−1∑
k=1

alk′k g
l
k′k(∆j,l−1)f̃ j,l−1

k

∥∥∥∥∥∥
≤ δAl ‖P (ψ0)f‖+ δ

Al − 1

A− 1
B +

Kl−1∑
k=1

∣∣∣alk′k∣∣∣ ∥∥∥Sψl−1

j,l−1g
l
k′k(L)P (ψl−1)f l−1

k − glk′k(∆j,l−1)f̃ j,l−1
k

∥∥∥

or for A = 1

∥∥∥∥∥∥Sψlj,l−1P (ψl)ρ
(Kl−1∑
k=1

alk′k g
l
k′k(L)P (ψl−1)f l−1

k

)
− ρ
(Kl−1∑
k=1

alk′kg
l
k′k(∆j,l−1)f̃ j,l−1

k

)∥∥∥∥∥∥
≤ δ ‖P (ψ0)f‖+ δ(l − 1)B +

Kl−1∑
k=1

∣∣∣alk′k∣∣∣ ∥∥∥Sψl−1

j,l−1g
l
k′k(L)P (ψl−1)f l−1

k − glk′k(∆j,l−1)f̃ j,l−1
k

∥∥∥

Therefore, by (65)

∥∥∥∥∥∥Sψlj,l−1P (ψl)ρ
(Kl−1∑
k=1

alk′k g
l
k′k(L)P (ψl−1)f l−1

k

)
− ρ
(Kl−1∑
k=1

alk′kg
l
k′k(∆j,l−1)f̃ j,l−1

k

)∥∥∥∥∥∥
≤ δAl ‖P (ψ0)f‖+ δ

Al − 1

A− 1
B +Amax

k

{
D(ψL)δ

∥∥∥f l−1
k

∥∥∥+
∥∥∥Sψl−1

j,l−1P (ψl−1)f l−1
k − f̃ j,l−1

k

∥∥∥}.
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The error after pooling takes the form∥∥∥∥∥∥Sψlj,lP (ψl)ρ
(Kl−1∑
k=1

alk′k g
l
k′k(L)P (ψl−1)f l−1

k

)
− Y j,lρ

(Kl−1∑
k=1

alk′kg
l
k′k(∆j,l−1)f̃ j,l−1

k

)∥∥∥∥∥∥
≤

∥∥∥∥∥∥Sψlj,lP (ψl)ρ
(Kl−1∑
k=1

alk′k g
l
k′k(L)P (ψl−1)f l−1

k

)

−Y j,lSψlj,l−1P (ψl)ρ
(Kl−1∑
k=1

alk′k g
l
k′k(L)P (ψl−1)f l−1

k

)∥∥∥∥∥∥
+

∥∥∥∥∥∥Y j,lSψlj,l−1P (ψl)ρ
(Kl−1∑
k=1

alk′k g
l
k′k(L)P (ψl−1)f l−1

k

)
− Y j,lρ

(Kl−1∑
k=1

alk′kg
l
k′k(∆j,l−1)f̃ j,l−1

k

)∥∥∥∥∥∥
≤ δ

∥∥∥∥∥∥ρ
(Kl−1∑
k=1

alk′k g
l
k′k(L)P (ψl−1)f l−1

k

)∥∥∥∥∥∥
+

∥∥∥∥∥∥Sψlj,l−1P (ψl)ρ
(Kl−1∑
k=1

alk′k g
l
k′k(L)P (ψl−1)f l−1

k

)
− ρ
(Kl−1∑
k=1

alk′kg
l
k′k(∆j,l−1)f̃ j,l−1

k

)∥∥∥∥∥∥
≤ 2δAl ‖P (ψ0)f‖+ 2δ

Al − 1

A− 1
B +Amax

k

{
D(ψL)δ

∥∥∥f l−1
k

∥∥∥+
∥∥∥Sψl−1

j,l−1P (ψl−1)f l−1
k − f̃ j,l−1

k

∥∥∥}.
Thus,∥∥∥Sψlj,lP (ψl)f

l
k′ − f̃

j,l
k′

∥∥∥
≤ (D(ψL) + 2)δ

(
Al ‖P (ψ0)f‖+

Al − 1

A− 1
B
)

+Amax
k

∥∥∥Sψl−1

j,l−1P (ψl−1)f l−1
k − f̃ j,l−1

k

∥∥∥ .
By solving this recurrent sequence, we obtain for A > 1∥∥∥SψLj,LNL

k P (ψ0)f −N j,L
k Sψ0

j,LP (ψ0)f
∥∥∥ ≤ L(D(ψL) + 2)δ

(
AL ‖f‖+B

AL − 1

A− 1

)
.

For A = 1 we get∥∥∥SψLj,LNL
k P (ψ0)f −N j,L

k Sψ0
j,0P (ψ0)f

∥∥∥ ≤ L(D(ψL) + 2)δ
(
‖f‖+ LB

)
Finally,∥∥∥NL
k P (ψ0)f −RψLj,LN

j,L
k Sψ0

j,1P (ψ0)f
∥∥∥

≤
∥∥∥NL

k P (ψ0)f −RψLj,LS
ψL
j,LN

L
k P (ψ0)f

∥∥∥+
∥∥∥RψLj,LSψLj,LNL

k P (ψ0)f −RψLj,LN
j,L
k Sψ0

j,LP (ψ0)f
∥∥∥

≤
∥∥∥P (ψL)−RψLj,LS

ψL
j,LP (ψL)

∥∥∥∥∥NL
k P (ψ0)f

∥∥+
∥∥∥RψLj,L∥∥∥∥∥∥SψLj,l NL

k P (ψ0)f −N j,L
k Sψ1

j,LP (ψ0)f
∥∥∥

≤ L
(
D
√

#{λm ≤ ψL}m + 2
)
δ
(
AL ‖f‖+B

AL − 1

A− 1

)
+
(
AL ‖f‖+

AL − 1

A− 1
B
)
δ.
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This shows that∥∥∥RψL1,LN
1,L
k Sψ0

1,0P (ψ0)f −RψL2,LN
2,L
k Sψ0

2,LP (ψ0)f
∥∥∥

≤
(
LD
√

#{λm ≤ ψL}m + 2L+ 2
)(
AL ‖f‖+B

AL − 1

A− 1

)
δ,

and similarly for A = 1.

B.3 Proof of Proposition 26

Lemma 35 Consider the setting of Proposition 26. Then

lim
n→∞

sup
f 6=0

‖Snρ(P (λ)f)− SnP (λ′)ρ(P (λ)f)‖ − ‖ρ(P (λ)f)− P (λ′)ρ(P (λ)f)‖
‖P (λ)f‖

= 0 (66)

lim
λ′→∞

sup
f 6=0

‖ρ(P (λ)f)− P (λ′)ρ(P (λ)f)‖
‖P (λ)f‖

= 0 (67)

Proof We first prove (66). Observe that any nonzero vector in PW (λ) can be written
as cf , where c > 0 is a real scalar, and f ∈ PW (λ) has norm 1. Now, by the positive
homogeneity of ρ,

‖Snρ(cP (λ)f)− SnP (λ′)ρ(cP (λ)f)‖ − ‖ρ(cP (λ)f)− P (λ′)ρ(cP (λ)f)‖
‖cP (λ)f‖

=
∥∥Snρ(P (λ)f)− SnP (λ′)ρ(P (λ)f)

∥∥− ∥∥ρ(P (λ)f)− P (λ′)ρ(P (λ)f)
∥∥ .

Thus, (66) is equivalent to

lim
n→∞

sup
P (λ)f∈S(λ)

∥∥Snρ(P (λ)f)− SnP (λ′)ρ(P (λ)f)
∥∥− ∥∥ρ(P (λ)f)− P (λ′)ρ(P (λ)f)

∥∥ = 0

where S(λ) is the unit sphere in PW (λ). Note that the mapping Fn : S(λ)→ R defined by

Fn
(
P (λ)f

)
=
∥∥Snρ(P (λ)f)− SnP (λ′)ρ(P (λ)f)

∥∥− ∥∥ρ(P (λ)f)− P (λ′)ρ(P (λ)f)
∥∥

=
∥∥Sn(I − P (λ′)

)
ρ(P (λ)f)

∥∥− ∥∥(I − P (λ′)
)
ρ(P (λ)f)

∥∥
is Lipschitz continuous in P (λ)f for large enough n. Indeed, by ‖I − P (λ′)‖ = 1 and
contraction of ρ,∣∣Fn(P (λ)f1

)
− Fn

(
P (λ)f2

)∣∣ ≤ ∥∥Sn(I − P (λ′)
)
ρ(P (λ)f1)− Sn

(
I − P (λ′)

)
ρ(P (λ)f2)

∥∥
+
∥∥(I − P (λ′)

)
ρ(P (λ)f1)−

(
I − P (λ′)

)
ρ(P (λ)f2)

∥∥
≤ (C + 1) ‖P (λ)f1 − P (λ)f2‖ ,

where C is the bound of
∥∥Sλn∥∥, guaranteed by Proposition 23, and can be chosen C = 2 for

large enough n. Note that the Lipschitz constants of Fn are uniformly bounded by D = 3.
Observe that by Definition 24, Fn converges to 0 pointwise as n → ∞. Our goal is to

show uniform convergence. Since the domain S(λ) of Fn is compact, Fn obtains a maximum
for each n. Denote

P (λ)fn = argmax
P (λ)f∈S(λ)

Fn(P (λ)f).
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Suppose that limn→∞ Fn(P (λ)fn) does not exist, or converges to a nonzero limit. Since S(λ)
is compact, and Fn uniformly bounded by 2D, there is a subsequence P (λ)fnm converging
to some P (λ)f∞ ∈ S(λ), such that

lim
m→∞

Fnm(P (λ)fnm) = A > 0.

Now, for every ε > 0 there is a large enough M , such that, for every m > M ,

|Fnm(P (λ)f∞)−A| ≤ |Fnm(P (λ)f∞)− Fnm(P (λ)fnm)|+ ε/2

≤ D ‖P (λ)f∞ − P (λ)fnm‖+ ε/2 < ε.

By picking ε = A/3, this contradicts the fact that limn→∞ Fn(P (λ)f∞) = 0, guaranteed by
Definition 24.

Similarly, for (67),

sup
f 6=0

‖ρ(P (λ)f)− P (λ′)ρ(P (λ)f)‖
‖P (λ)f‖

= sup
P (λ)f∈S(λ)

∥∥(I − P (λ′)
)
ρ(P (λ)f)

∥∥ .
For a fixed f , the fact that

(
I −P (λ′)

)
ρ(P (λ)f) is the tail in the expansion of ρ(P (λ)f) in

the eigenbasis of L, we have

lim
λ′→∞

∥∥(I − P (λ′)
)
ρ(P (λ)f)

∥∥ = 0 for all P (λ)f ∈ S(λ). (68)

The uniform convergence of (67) is derived from the pointwise convergence of (68) in the
same procedure as above.

Proof [Proof of Proposition 26] By Lemma 35

lim
λ′→∞

lim
n→∞

sup
f 6=0

‖Snρ(P (λ)f)− SnP (λ′)ρ(P (λ)f)‖
‖P (λ)f‖

≤ lim
λ′→∞

lim
n→∞

sup
f 6=0

‖Snρ(P (λ)f)− SnP (λ′)ρ(P (λ)f)‖ − ‖ρ(P (λ)f)− P (λ′)ρ(P (λ)f)‖
‖P (λ)f‖

+ lim
λ′→∞

sup
f 6=0

‖ρ(P (λ)f)− P (λ′)ρ(P (λ)f)‖
‖P (λ)f‖

= 0.

Now, the limit as λ→∞ follows trivially.

B.4 Proof of Theorem 32

We prove Theorem 32 using three lemmas.

Lemma 36 Let f ∈ PW (λ). Let {M, µ} be a compact topological-measure space with
µ(M) = 1. Consider the weighted measure µw satisfying (50). Let L be a Laplacian of the
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form (44), such that H ∈ L2(M2;µ× µ). Suppose that L respects continuity. Let ∆n be a
random sampled Laplacian. Let

C =
1

wmin
‖H‖L2(M2;µ×µ)Cλ (69)

for wmin = minx∈Mw(x), and Cλ is the constant such that

∀g ∈ PW (λ). ‖g‖∞ ≤ Cλ ‖g‖2 , (70)

guaranteed by the fact that PW (λ) is finite-dimensional.

Then for every δ > 0, in probability more than (1− δ),∥∥∥SλnLP (λ)−∆nS
λ
nP (λ)

∥∥∥
L2(Gn)

≤ Cδ−1/2N−1/2
n . (71)

where the induced norm is for operators L2(M;µ)→ L2(Gn).

Proof Let f ∈ PW (λ), and note that f is continuous since L respects continuity. For a
fixed x0 ∈M, consider the random variable Fx0 : {M;µw} → C defined by

Fx0(x) =
1

w(x)
H(x0, x)f(x). (72)

By (44) and (50), the expected value of Fx0 is

E(Fx0) = Lf(x0). (73)

Consider Nn i.i.d random variables (72), denoted by

Fx0;k′ =
1

w(xnk′)
H(x0, x

n
k′)f(xnk′), k′ = 1, . . . , Nn.

Let

FNnx0 =
1

Nn

Nn∑
k′=1

Fx0;k′ . (74)

By (73) we have

E
(
FNnx0

)
= Lf(x0)

On the other hand, the realization of the sum in (74) can be written for x0 = xnk as

FNnxnk
=

Nm∑
k′=1

1

w(xnk′)
H(xnk , x

n
k′)f(xnk′)dx = [∆nS

λ
nf ]k. (75)

This shows that the graph Laplacians coincide on average with the topological-measure
Laplacian.
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Next let us analyze the average mean square error over x0 ∈ M. In the following,
Fubini’s theorem follows the fact that M is compact and all integrands are continuous.
Hence,

E
∥∥∥FNn(·) − Lf

∥∥∥2

L2(M)

=

∫∫
x1,...,xn

∫
x0

∣∣FNnx0 (xn1 , . . . , x
n
Nn)− [Lf ](x0)

∣∣2 dx0 w(xn1 )dxn1 · w(xnNn)dxnNn

=

∫
x0

∫∫
x1,...,xn

∣∣FNnx0 (xn1 , . . . , x
n
Nn)− [Lf ](x0)

∣∣2w(xn1 )dxn1 · w(xnNn)dxnNn dx0

=

∫
x0

VarFNnx0 dx0 =

∫
x0

VarFx0
Nn

dx0 =

∥∥VarF(·)
∥∥

1

Nn

Next, we prove that prove VarF(·) ∈ L1(M), and bound
∥∥VarF(·)

∥∥
1
. We have

VarFx0 ≤
∫
x
|Fx0(x)|2w(x)dx.

This yields ∥∥VarF(·)
∥∥

1
≤
∫
x0

∫
x
|Fx0(x)|2w(x)dxdx0

=

∫
x0

∫
x

1

w(x)
|H(x0, x)|2 |f(x)|2 dxdx0.

Thus

∥∥VarF(·)
∥∥

1
≤

∥∥∥∥∥ 1√
w(·)

H(·, ··)

∥∥∥∥∥
2

L2(M2)

‖f‖2∞

≤ 1

wmin
‖H‖2L2(M2) ‖f‖

2
∞

This proves that the expected mean square error satisfies

E
∥∥∥FNn(·) − Lf

∥∥∥2

L2(M)
≤ 1

wmin
‖H‖2L2(M2) ‖f‖

2
∞

1

Nn
. (76)

To obtain a convergence result in high probability, we can use theorems on concentration
of measure, like Markov’s, Chebyshev’s or Bernstein’s inequalities. For Lemma 36, we
consider Markov’s inequality, that states that for a random variable X with finite non-zero
expected value

Pr
(
X ≥ E(X)

δ

)
≤ δ

for any 0 < δ < 1. In our case, by (76), Markov’s inequality states that in probability more
than (1− δ) ∥∥∥FNn(·) − Lf

∥∥∥
L2(M)

≤ 1
√
wmin

‖H‖L2(M2) ‖f‖L∞(M)

1√
Nn

1√
δ
. (77)
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This means that for every k,∣∣∣FNnxnk
− Lf(xnk)

∣∣∣ ≤ Cλ 1
√
wmin

‖H‖L2(M2) ‖f‖L∞(M)

1√
Nn

1√
δ
. (78)

We finally conclude that, by the inner product structure (46) of L2(Gn), and by (75)

∥∥∥∆nS
λ
nf − SλnLf

∥∥∥
L2(Gn)

=

√√√√ 1

Nn

Nn∑
k=1

1

w(xnk)

∣∣∣FNnxnk
− Lf(xnk)

∣∣∣2 ≤ CN−1/2
n δ−1/2 ‖f‖L2(M)

where C is given in (69).

Denote by ‖A‖F (CM×M ) the Frobenius norm of the matrix A ∈ CM×M .

Lemma 37 Let {M, µ} be a compact topological-measure space with µ(M) = 1. Let µw
be a weighted measure satisfying (50). Let L be a Laplacian of the form (44), such that
H ∈ L2(M2). Suppose that L respects continuity. Let Sλn and Rλ

n be random sampling
and interpolation operators. Consider the corresponding random variable 〈Φn,Φn〉 given in
Definition 22 on the random sample points. Then for every δ > 0, in probability more than
(1− δ)

‖〈Φn,Φn〉 − I‖F (CMλ×Mλ ) ≤ Cδ
−1/2N−1/2

n . (79)

Here,

C =
Mλ√
wmin

max
m≤Mλ

‖φm‖2∞ ,

and Mλ = dim(PW (λ)) as before.

Proof For fixed m,m′ ∈ M, consider the random variable Fm,m′ : {M;µw} → C defined
by

Fm,m′(x) =
1

w(x)
φm(x)φm′(x). (80)

By (80) and (50), the expected value of Fx0 is

E(Fx0) = 〈φm, φm′〉 = δm,m′ , (81)

where the Kronecker delta δm,m′ is 1 if m = m′ and 0 otherwise.
Consider Nn i.i.d random variables (80), denoted by

Fm,m′;k′ =
1

w(xnk′)
φm(xnk′)φm′(x

n
k′), k′ = 1, . . . , Nn.

Let

FNnm,m′ =
1

Nn

Nn∑
k′=1

Fm,m′;k′ . (82)

By (81) we have

E
(
FNnm,m′

)
= 〈φm, φm′〉 .
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On the other hand, the realization of the sum in (82) can be written as

FNnm,m′ = [〈Φn,Φn〉]m,m′ . (83)

This shows that 〈Φn,Φn〉 coincide on average with I.
Next let us analyze the average mean square error over m,m′ ∈ M. For a matrix

A = (am,m′)m,m′ , denote

‖A‖F =

√∑
m,m′

∣∣am,m′∣∣2 , ‖A‖F,1 =
∑
m,m′

∣∣am,m′∣∣ .
We have

E ‖〈Φn,Φn〉 − I‖2F

=

∫∫
x1,...,xn

∑
m,m′

∣∣∣FNnm,m′(x
n
1 , . . . , x

n
Nn)− δm,m′

∣∣∣2w(xn1 )dxn1 · w(xnNn)dxnNn

=
∑
m,m′

∫∫
x1,...,xn

∣∣∣FNnm,m′(x
n
1 , . . . , x

n
Nn)− δm,m′

∣∣∣2w(xn1 )dxn1 · w(xnNn)dxnNn

=
∑
m,m′

VarFNnm,m′ =
∑
m,m′

VarFm,m′

Nn
=

∥∥VarF(·)
∥∥

F,1

Nn

Next, we bound
∥∥VarF(·)

∥∥
F,1

. We have

VarFm,m′ ≤
∫
x

1

w(x)
|φm(x)φm′(x)|2w(x)dx,

so ∥∥VarF(·)
∥∥

F,1
≤

M2
λ

wmin
max
m
‖φm‖4∞

This proves that the expected mean square error satisfies

E ‖〈Φn,Φn〉 − I‖2F ≤
M2
λ

wmin
max
m≤Mλ

‖φm‖4∞
1

Nn
. (84)

Finally, by Markov’s inequality, in probability more than (1− δ)

‖〈Φn,Φn〉 − I‖F ≤
Mλ√
wmin

max
m≤Mλ

‖φm‖2∞
1√
Nn

1√
δ
. (85)

Before formulating the last Monte-Carlo lemma, we require two more lemmas.

Lemma 38 Let S(λ) be the unit L2(M) sphere in PW (λ), and let ρ be a contractive
positively homogeneous of order 1 activation function that preserves spectral decay. Then

S(λ) 3 f 7→
(
I − P (λ′)

)
ρ(f)

is continuous as a mapping S(λ)→ L∞(M).
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Proof

Let f, g ∈ PW (λ). Consider the following calculation for any M2 > M1 > Mλ′ .∥∥∥∥∥∥
M2∑

m=M1

〈ρ(f)− ρ(g), φm〉φm

∥∥∥∥∥∥
∞

≤
M2∑

m=M1

|〈ρ(f)− ρ(g), φm〉| ‖φm‖∞

=

M2∑
m=M1

‖φm‖∞ |〈ρ(f), φm〉 − 〈ρ(g), φm〉|

=

M2∑
m=M1

m−1/2−κ/2 ‖φm‖∞
∣∣∣m1/2+κ/2 〈ρ(f), φm〉 −m1/2+κ/2 〈ρ(g), φm〉

∣∣∣
≤ R

√√√√ ∞∑
m=M1

‖φm‖2∞m1+κ |〈ρ(f), φm〉 − 〈ρ(g), φm〉|2,

(86)

where

R =

√√√√ ∞∑
m=1

m−1−2κ.

By (55),

lim
M1→∞

√√√√ ∞∑
m=M1

‖φm‖2∞m1+κ |〈ρ(f), φm〉 − 〈ρ(g), φm〉|2 = 0.

Therefore { M∑
m=Mλ′

〈ρ(f)− ρ(g), φm〉φm
}∞
M=Mλ′

(87)

is a Cauchy sequence in L∞(M), and thus converges in L∞(M) to a limit we denote by

∞∑
m=Mλ′

〈ρ(f)− ρ(g), φm〉φm. (88)

The series (87) also converges in L2(M), to (I − P (λ′))(ρ(f)− ρ(g)). Since convergence in
L2(M) implies pointwise convergence of a subsequence almost everywhere, we must have

∞∑
m=Mλ′

〈ρ(f)− ρ(g), φm〉φm = (I − P (λ′))(ρ(f)− ρ(g)),
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with convergence in L∞(M). By conservation of bounds under limits, and by (86), we now
have ∥∥(I − P (λ′))ρ(f)− P (λM )(I − P (λ′))ρ(g)

∥∥
∞

=
∥∥(I − P (λ′))(ρ(f)− ρ(g))

∥∥
∞

≤ R

√√√√ ∞∑
m=Mλ′

m1+κ ‖φm‖2∞ |〈ρ(f)− ρ(g), φm〉|2.
(89)

Last, the continuity of (I−P (λ′))ρ(f) as a mapping S(λ)→ L∞(M) follows from (89) and
(55).

By Lemma 38,
∥∥(I − P (λ′)

)
ρ(f)

∥∥
∞ has a maximal value in the compact domain S(λ)

that we denote by Cλ′ . For the next proposition we also need the following simple observa-
tion.

Lemma 39 Let A,B ≥ 0 such that
∣∣A2 −B2

∣∣ < κ. Then |A−B| <
√
κ.

Proof The equation
∣∣A2 −B2

∣∣ < κ is equivalent to

B2 − κ < A2 < B2 + κ

or √
B2 − κ < A <

√
B2 + κ. (90)

As a result √
B2 −

√
κ < A <

√
B2 +

√
κ

or equivalently
|A−B| <

√
κ.

Lemma 40 Let {M, µ} be a compact topological-measure space with µ(M) = 1. Consider
the weighted measure µw satisfying (50), and a random sample set {xnk}

Nn
n=1 from {M, µw}.

Consider a Laplacian L with eigenbasis {φm} as before. Suppose that the activation function
ρ is contractive, positively homogeneous of order 1, and preserves spectral decay. Suppose
that L respects continuity. Then for every δ > 0, in probability more than (1− δ)

max
f∈PW (λ)

∥∥Snρ(f)− SλnP (λ′)ρ(f)
∥∥
L2(Gn)

− ‖ρ(f)− P (λ′)ρ(f)‖L2(Gn)

‖P (λ)f‖L2(M;µ)

≤ 1

w
1/4
min

Cλ′
1

N
1/4
n

1

δ1/4
,

(91)
where

Cλ′ = max
f∈S(λ)

∥∥(I − P (λ′)
)
ρ(f)

∥∥
∞

and S(λ) is the unit sphere in PW (λ).
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Proof
First, since ρ is positively homogeneous of order 1, the maximum in (91) is equal to

max
f∈S(λ)

∥∥∥Snρ(f)− SλnP (λ′)ρ(f)
∥∥∥
L2(V 2)

−
∥∥ρ(f)− P (λ′)ρ(f)

∥∥
L2(V 2)

. (92)

Consider the random variable F : {M;µw} → C defined by

F (x) =
1

w(x)

∣∣(ρ(f(x))− P (λ′)ρ(f(x))
)∣∣2 . (93)

By (93) and (50), the expected value of F is

E(F ) =
∥∥ρ(f)− P (λ′)ρ(f)

∥∥2

2
. (94)

Consider Nn i.i.d random variables (93), denoted by

Fk′ =
1

w(xnk′)

∣∣(ρ(f(xnk′))− P (λ′)ρ(f(xnk′))
)∣∣2 , k′ = 1, . . . , Nn.

Let

FNn =
1

Nn

Nn∑
k′=1

Fk′ . (95)

By (94) we have

E
(
FNn

)
=
∥∥ρ(f)− P (λ′)ρ(f)

∥∥2

2
.

On the other hand, the realization of the sum in (95) can be written as

FNn =
∥∥Snρ(P (λ)f)− SnP (λ′)ρ(P (λ)f)

∥∥2

L2(V 2)
. (96)

This shows that on average (92) is zero.
Next let us analyze the expected error of (92).

E
∣∣∣FNn − ∥∥ρ(f)− P (λ′)ρ(f)

∥∥2

2

∣∣∣2
=

∫∫
x1,...,xn

∣∣∣FNn(xn1 , . . . , x
n
Nn)−

∥∥ρ(f)− P (λ′)ρ(f)
∥∥2

2

∣∣∣2w(xn1 )dxn1 · w(xnNn)dxnNn

= VarFNn =
VarF

Nn
.

We have

VarF ≤
∫
x
|F (x)|2w(x)dx

=

∫
x

1

w(x)

∣∣(ρ(f(x))− P (λ′)ρ(f(x))
)∣∣4 dx

≤ 1

wmin

∥∥(I − P (λ′)
)
ρ(f(x))

∥∥4

4

≤ 1

wmin

∥∥(I − P (λ′)
)
ρ(f(x))

∥∥4

∞ ≤
1

wmin
C4
λ′ .

(97)
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By (97), Markov’s inequality states that in probability more than (1− δ)∣∣∣FNn − ∥∥ρ(f)− P (λ′)ρ(f)
∥∥2

2

∣∣∣ ≤ 1
√
wmin

C2
λ′

1√
Nn

1√
δ
. (98)

This shows, by Lemma 39 and (96), that

max
f∈PW (λ)

∥∥Snρ(f)− SλnP (λ′)ρ(f)
∥∥
L2(V 2)

− ‖ρ(f)− P (λ′)ρ(f)‖L2(V 2)

‖f‖2
≤ 1

w
1/4
min

Cλ′
1

N
1/4
n

1

δ1/4
.

Proof [Proof of Theorem 32] We apply Lemmas 36,37 and 40 with failure probability
δ/3. Then, with probability more than (1− δ) the bounds (71), (79) and (91) are satisfied
simultaneously. We thus consider the subsequence nm that contains any n independently in
probability more than (1 − δ), for which the bounds (71), (79) and (91) are deterministic.
Note that the sequence nm is infinite in probability 1.

Denote Mn = Mλn
. By assumption

∥∥∥λMλn

∥∥∥
1

= o(N
1/2
n ), where

∥∥∥λMn

∥∥∥
1

is defined in

(56). Let us analyze the dependency of the bounds (71), (79) and (91) on Mn and Nn. Note
that the dependency of (71), (79) and (91) on λ does not affect the validity of Definitions 9
and 12, and 22. The asymptotic analysis in Mn and Nn in these definitions is for fixed λ.

The bound (71) depends on Mn as follows:

‖H‖22 =

∫
x

∫
x0

∣∣∣∣∣∣
Mn∑
m=1

φm(x0)λmφm(x)

∣∣∣∣∣∣
2

dx0dx

≤
( Mn∑
m=1

|λm|

√∫
x

∫
x0

|φm(x0)φm(x)|2 dx0dx
)2

=
( Mn∑
m=1

|λm|

√∫
x0

|φm(x0)|2 dx0

√∫
x
|φm(x)|2 dx

)2

=
( Mn∑
m=1

|λm|
)2

=
∥∥∥λMn

∥∥∥2

1
.

Thus, since the bound (71) also depend multiplicatively on N
−1/2
n , any choice of Mn such

that
∥∥∥λMλn

∥∥∥
1

= o(N
1/2
n ) makes the bound converge to zero as n → ∞, and guarantees

Definition 9.
Note that the bounds (79) and (91) do not depend on Mn. The bound (79) proves that

Definition 22 is satisfied for the subsequence nm, which proves Definitions 7 and 8. For the
relation between the bound (91) and Definition 12, we use Lemma 35, where (66) converges
to zero in the subsequence nm, and (67) converges to zero deterministically. This proves
Definition 12 for the subsequence nm.
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B.5 Proof of Proposition 34

By the proof of Proposition 10,∥∥∥g(L)P (λ)−Rλng(∆n)SλnP (λ)
∥∥∥ ≤DC√#{λj ≤ λ}j

∥∥∥SλMn LP (λM )−∆SλMn P (λM )
∥∥∥

+ ‖g‖L,M
∥∥∥P (λM )−RλMn SλMn P (λM )

∥∥∥ . (99)

By the proof of Theorem 32,

‖Hλn‖2 ≤
∥∥∥λMn

∥∥∥
1
≤ BN1/2−α

n .

By Lemma 36, in probability more than (1− δ),∥∥∥SλnLP (λ)−∆nS
λ
nP (λ)

∥∥∥
L2(Gn)

≤ 1

wmin
‖Hλn‖L2(M2;µ×µ)Cλδ

−1/2N−1/2
n .

where Cλ is defined by (70)

∀g ∈ PW (λ). ‖g‖∞ ≤ Cλ ‖g‖2 .

So ∥∥∥SλnLP (λ)−∆nS
λ
nP (λ)

∥∥∥
L2(Gn)

≤ 1

wmin
BN1/2−α

n Cλδ
−1/2N−1/2

n

=
B

wmin
Cλδ

−1/2N−αn . (100)

We can bound Cλ as follows. Let g =
∑Mλ

n=1 cnφn. For every x in M,

‖g‖2 =

√√√√Mλ∑
n=1

|cn|2 ≥M−1/2
λ

Mλ∑
n=1

|cn|

≥ 1

maxx,n∈{1,...,Mλ} |φn(x)|
M
−1/2
λ

Mλ∑
n=1

|cnφn(x)|

≥ 1

maxm≤Mλ
‖φm‖∞

M
−1/2
λ

∣∣∣∣∣
Mλ∑
n=1

cnφn(x)

∣∣∣∣∣
=

1

maxm≤Mλ
‖φm‖∞

M
−1/2
λ |g(x)| .

Hence,

‖g‖2 ≥
1

maxm≤Mλ
‖φm‖∞

M
−1/2
λ ‖g‖∞ .

Therefore, the optimal bound Cλ satisfies

Cλ ≤ max
m≤Mλ

‖φm‖∞M
1/2
λ . (101)
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Note that for classical Fourier bases we have maxm≤Mλ
‖φm‖∞ = 1.

Next we analyze the second term in the bound of Proposition 10. By (38), we can write
in the basis {φm}Mλ

m=1

Rλ
nS

λ
nc = 〈Φn,Φn〉 c. (102)

By Lemma 37, in probability more than (1− δ),

‖〈Φn,Φn〉 − I‖F (CMλ×Mλ ) ≤ C
′δ−1/2N−1/2

n . (103)

Here,

C ′ =
Mλ√
wmin

max
m≤Mλ

‖φm‖2∞ ,

and Mλ = dim(PW (λ)) as before.
By the fact that the induced l2 norm is bounded by the Frobenius norm,∥∥∥P (λ)−RλnSλnP (λ)

∥∥∥
2
≤ ‖〈Φn,Φn〉 − I‖F (CMλ×Mλ ) . (104)

We now plug (100), (101), (103) and (104) in (99). The bound C on the norm of
interpolation

∥∥Rλn∥∥ is close to 1 by (102), (103), and the fact that
∥∥Rλn∥∥ =

∥∥(Sλn)∗
∥∥ =

∥∥Sλn∥∥.
Therefore, for large enough n, C < 2 (in the same event of (103)). This leads to (57) in
probability more than 1 − 2δ, since, in the worst case, not satisfying the bound (100) and
not satisfying the bound (103) are disjoint events.

B.6 Proof of Claim 30

Let ε > 0 and f ∈ PW (λ). Let g ∈ PW (λ) such that ‖f − g‖2 < 1. For any N ∈ N∑
|n|>N

n1+κ |〈ρ(g), φn〉|2 =
∑
|n|>N

|n|−1+κ n2 |〈ρ(g), φn〉|2

≤ N−1+κ
∞∑

n=−∞
n2 |〈ρ(g), φn〉|2

≤ N−1+κM2
λ ‖g‖

2
2 ≤ N

−1+κM2
λ(‖f‖22 + 1).

Similarly, ∑
|n|>N

|n|1+κ |〈ρ(g), φn〉|2 ≤ N−1+κM2
λ(‖f‖22 + 1).

Now, chooseN = N(ε) such thatN−1+κM2
λ(‖f‖22+1) < ε/8. Moreover, choose δ < ε

2N(ε)1+κ
.

Now, if ‖f − g‖ < min{δ, 1} we have

N∑
n=−N

n1+κ |〈ρ(f)− ρ(g), φn〉|2 ≤ N1+κ
∞∑

n=−∞
|〈ρ(f)− ρ(g), φn〉|2 = N1+κ ‖ρ(f)− ρ(g)‖22

and by the fact that ρ is contractive,

N∑
n=−N

n1+κ |〈ρ(f)− ρ(g), φn〉|2 ≤ N1+κ ‖f − g‖22 < ε/2.
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Altogether,

‖ρ(f)− ρ(g)‖21+κ,2 ≤
N∑

n=−N
|n|1+κ |〈ρ(f)− ρ(g), φn〉|2

+ 4 max

 ∑
|n|>N

|n|1+κ |〈ρ(f), φn〉|2 ,
∑
|n|>N

|n|1+κ |〈ρ(g), φn〉|2
 < ε,

which proves continuity.
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