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Abstract

We propose a novel reinforcement learning methodology where the system performance is
evaluated by a Markov coherent dynamic risk measure with the use of linear value function
approximations. We construct projected risk-averse dynamic programming equations and
study their properties. We propose new risk-averse counterparts of the basic and multi-step
methods of temporal differences and we prove their convergence with probability one. We
also perform an empirical study on a complex transportation problem.
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1. Introduction

The objective of this paper is to propose and analyze new risk-averse reinforcement learning
methods for Markov Decision Processes (MDPs). Our goal is to combine the efficacy of the
methods of temporal differences with the robustness of Markov dynamic risk measures, and
to provide a rigorous mathematical analysis of the methods.

MDPs are well-known models of stochastic sequential decision problems, covered in
multiple monographs (Bellman, 1957; Howard, 1960; Puterman, 1994; Bertsekas, 2017),
and having countless applications. In the classical setting, the goal of an MDP is to find
a control policy in a controlled Markov chain that minimizes the expected sum or the
expected average of stage-wise costs over a finite or infinite horizon. Traditional MDP
models, although effective for small to medium size problems, suffer from the curse of
dimensionality in problems with large state spaces. Approximate dynamic programming
approaches try to tackle the curse of dimensionality and provide an approximate solution of
an MDP (see Powell (2011) for an overview). Many such methods, originating in (Bellman
et al., 1963), involve value function approximations, where the value of a state of the Markov
process is approximated by a simple, usually linear, function of some selected features of
the state.
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Reinforcement learning methods (Sutton and Barto, 1998; Powell, 2011) involve simu-
lation or observation of a Markov process to approximate the value function and learn the
corresponding policies. The first studies attempted to emulate neural networks and biolog-
ical learning processes, learning by trial and error (Minsky, 1954; Farley and Clark, 1954).
Some learning algorithms, such as Q-Learning (Watkins, 1989; Watkins and Dayan, 1992)
and SARSA (Rummery and Niranjan, 1994), follow this idea. One of core approaches in re-
inforcement learning is the method of temporal differences (Sutton, 1988), known as TD(\).
It uses differences between the values of the approximate value function at successive states
to improve the approximation, concurrently with the evolution of the system. TD(\) is a
continuum of algorithms depending on a parameter A € [0, 1] which is used to exponentially
weight past observations. Consequently, related methods such as Q(A) (Watkins, 1989;
Peng, 1993; Peng and Williams, 1994; Rummery, 1995) and SARSA()\) were developed
(Rummery and Niranjan, 1994; Rummery, 1995). The methods of temporal differences
have been proven to converge in the mean (to some limit) in (Dayan, 1992) and almost
surely by several studies, with different degrees of generality and precision (Peng, 1993;
Dayan and Sejnowski, 1994; Tsitsiklis, 1994; Jaakkola et al., 1994). Almost sure conver-
gence of the stochastic TD(\) method with linear function approximation to a solution of
a projected dynamic programming equation was proved by Tsitsiklis and Van Roy (1997).
One of our objectives is to generalize this result to a risk-averse setting.

In the extant literature, three basic approaches to risk aversion in MDPs have been
employed: utility models (Jaquette, 1973; Chung and Sobel, 1987; Fleming and Sheu, 1999;
Bauerle and Rieder, 2013; Jaskiewicz et al., 2013), mean—variance models (White, 1988;
Filar et al., 1989; Mannor and Tsitsiklis, 2013; Arlotto et al., 2014; Chen et al., 2014), and
entropic (exponential) models (Howard and Matheson, 1971; Marcus et al., 1997; Bielecki
et al., 1999; Coraluppi and Marcus, 1999; Di Masi and Stettner, 1999; Levitt and Ben-Israel,
2001; Béauerle and Rieder, 2013).

Our research is rooted in the theory of dynamic measures of risk, which has been in-
tensively developed in the last 15 years; see (Scandolo, 2003; Riedel, 2004; Roorda et al.,
2005; Cheridito et al., 2006; Ruszczynski and Shapiro, 2006b; Artzner et al., 2007; Pflug
and Romisch, 2007; Cheridito and Kupper, 2011) and the references therein. The main
difference of this line of research from the earlier approaches is its axiomatic foundation,
which, although originating from finance, has a general appeal. Ruszczynski (2010) in-
troduced Markov dynamic risk measures, specially tailored for the MDPs. It allowed for
the development of dynamic programming equations and corresponding solution methods,
generalizing the well-known results for the expected value problems. Our ideas were suc-
cessfully extended to undiscounted problems (Cavus and Ruszczynski, 2014a,b), partially
observable and history-dependent systems (Fan and Ruszczyriski, 2018b.a), average cost
problems (Shen et al., 2013), and to mixed risk aversion and seeking (Lin and Marcus,
2013). The Markov risk measures are related to robust dynamic programming introduced
by Nilim and El Ghaoui (2005) and analyzed by Iyengar (2005), but they do not require
explicit description of the uncertainty sets for all state-control pairs. However, all these
approaches require the storage and processing of the policy value functions and the optimal
value function for all possible states of the system, thus limiting their applicability.

A number of works introduce models of risk into reinforcement learning: exponential
utility functions (Borkar, 2001, 2002; Basu et al., 2008) and mean-variance models (Tamar
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et al., 2012; Prashanth and Ghavamzadeh, 2014). A few later studies propose heuristic
approaches involving specific coherent risk measures, such as CVaR in the objective or
constraints (Chow and Ghavamzadeh, 2014; Chow et al., 2017; Ma et al., 2018). Simulation-
based value iteration with coherent measures was analyzed by Yu et al. (2018). Risk-aware
Q-learning with Markov risk measures is considered by Huang and Haskell (2017). Again,
all these methods are applicable to problems with a small number od state-action pairs
allowing exhaustive experimentation.

Value function approximations in the context of distributionally robust MDPs were
considered by Tamar et al. (2014), who introduced the corresponding projected dynamic
equation and proposed a sampling approach to value iteration and policy iteration, together
with a robust version of the Least-Squares Temporal Differences method in a vector-matrix
form. We advance this direction of research in the context of Markov risk measures, by
establishing stronger properties of the projected equation, introducing basic and multi-step
risk-averse methods of temporal differences in a stochastic approximation setting, and by
providing mathematically precise convergence results. Tamar et al. (2017) study the policy
gradient approach for Markov risk measures and use it in an actor-critic type algorithm.
They propose projected risk-sensitive value iteration with linear function approximations
and derive a formula for the gradient with respect to policy parameters, involving extensive
simulation of state-control pairs and dual representation of risk. Di-Castro Shashua and
Mannor (2017) augment this approach with a heuristic blend of robust dynamic program-
ming, extended Kalman filter, and deep Q-learning, in a Bayesian setting, albeit without
convergence proof. Distributed policy gradient methods with risk measures were proposed
by Ma et al. (2017). Distributional reinforcement learning (Bellemare et al., 2017) avoids
dealing with scalar value functions, formulates dynamic programming equations in the space
of distributions, and parameterizes all possible distributions of the value functions to ob-
tain a more tractable model. Parametrization of state-dependent probability measures is a
challenge in this approach.

In this paper, we use Markov risk measures in conjunction with linear approximations of
the risk-averse policy evaluation and temporal difference learning in the basic and multi-step
settings. Our contributions can be summarized as follows:

e A projected risk-averse dynamic programming equation and its analysis (section 2). In
particular, we prove the existence of solutions to the equation under weaker assump-
tions than conditions used before for a related problem in a distributionally robust
setting.

e A stochastic risk-averse method of temporal differences with linear function approx-
imation (section 3) and proof of its convergence with probability one in a simulation
setting (section 4). This appears to be the first rigorous convergence proof of a tem-
poral difference learning method with dynamic risk measures.

e A novel stochastic multistep risk-averse method of temporal differences with linear
function approximation, the new projected multistep dynamic programming equation,
and the analysis of its properties (section 5).

e The proof of convergence of the multistep methods in a simulation setting (section 6),
involving novel techniques for analyzing the accumulation of risk.
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e An empirical study illustrating the operation of the methods on an example with state
space size of order 10%27 (section 7).

The proposed methodology allows for flexible modeling of risk aversion, easy implementa-
tion, scalability to large state spaces, and enjoys mathematical convergence guarantees. We
are not aware of other reinforcement learning methods involving dynamic risk measures and
linear value function approximations, and having rigorous convergence proofs.

2. The Projected Risk-Averse Dynamic Programming Equation

We consider a Markov Decision Process with a finite state space X = {1,...,n}, finite
action sets U(7) for all i € X, controlled transition probabilities P;;(u) where i,j € X and
u € U(i), and one-step cost function c(i,u), where i € X and u € U(i). For a discount
factor a € (0,1) and any non-anticipative policy 7 for determining controls u; € U (i),
t=20,1,2,..., the expected discounted cost

o
V(i) = E[Zatc(it, ut) ’io = z},
t=0
is finite. It is well known that the optimal value function, v(i) = inf, v™ (i), satisfies the
dynamic programming (Bellman) equation:

(i) = min {c(i,u)—l—ozZPij(u)v(j)}, icX.

uweU (i) jcx

Moreover, the Markovian policy composed of the minimizers in the Bellman equation is
optimal. For every Markovian policy m, the value function associated with this policy
satisfies the policy evaluation equation

V(i) = (i, m(i)) + a Y Py(w(i) v (j), i€ X.

jeX

Viewing v™ as a vector, and defining the vector ¢™ with coordinates ¢ = ¢(i,7(4)), i € X,
and the matrix P™ with entries Pj;(7 (7)), 4,7 € X, we can compactly write the policy
evaluation equation as
v =" 4+ aP™". (1)
Our plan is to use a dynamic risk measure to evaluate the discounted sequence of costs
Zy = alelig,ug), t = 0,1,2,. ... Because of the need to evaluate the risk of the future costs at
any time period, a dynamic risk measure (for a finite horizon 7T') is a sequence of conditional
risk measures p;7(Zy, ..., Z7r), t =0,...,T. The fundamental property of such a nonlinear
dynamic risk evaluation is time consistency, discussed in various forms in (Cheridito et al.,
2006; Artzner et al., 2007; Cheridito and Kupper, 2011). We adopt the definition and the
following discussion from (Ruszczynski, 2010): A dynamic measure of risk is time consistent
Zf fOT' cevery t = O, ey T — 1, Zf Zt = V;g and Pt+1,T(Zt+1, ey ZT) < pt+17T(%+17 ey VT)
a.s., then per(Ze,...,Z71) < pro(Vs,..., V). Such risk measures, under normalization
and translation assumptions, must have a specific recursive form: py7(Zy,...,2Z7) = Z; +

Pt (Zt+1 + pri1 (Zt+2 + -+ pr—1(Zp) - )), where each p.(-) is a one-step conditional
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risk measure. This result, generalizing the tower property of conditional expectations, is
germane for of our approach.

Markov risk measures evaluate the risk of future costs in an MDP under a Markov policy
in such a way that the risk is a function of the current state. This, combined with time
consistency, translation, monotonicity, and normalization, implies a very specific recursive
structure. Denoting by pzT(z’) the risk of the system starting from state ¢ at time ¢, we have

pzT(Z) :C?+aai(Piﬂﬂpzr+l,T('))7 (&S X? t:Oala"'vT_ 17 (2)

with p7. p(i) = ¢f, i € X. In equation (2), the operator o : X x P(X) xV — R, where P(X)
is the space of probability measures on X and V is the space of bounded functions on X, is
a transition risk mapping (a Markovian version of the one-step conditional risk measure).
Its first argument is the state ¢ (which we write as a subscript). The second argument, the
vector P, is the ith row of the matrix P”: the probability distribution of the state following
i under the policy 7. The last argument, the function pJ Jrl7T(-), is the next state’s value:
the risk of running the system from the next state in the time interval from t 4+ 1 to T. A
special case is the bilinear form o; (Pf, pf_s_LT()) = (PF, pf+17T(-)> which is the conditional
expectation of the next state’s value, given the current state is ¢. It should be stressed
that the risk evaluation procedure (2) is not an arbitrary construct, but rather the result of
assumptions of normalization, monotonicity, translation, time-consistency, and the Markov
property (Fan and Ruszczynski, 2018a). For recent applications of Markov risk measures
in control of dynamical systems, see (Majumdar and Pavone, 2020; Sopasakis et al., 2019).

As in (Ruszczynski, 2010), we assume that for each ¢ € X and each P" € P(X), the
transition risk mapping o;(P[, ), understood as a function of its last argument, satisfies
the axioms of a coherent measure of risk (Artzner et al., 1999):

Convexity: o;(P[,ov+ (1 —a)w) < aci(P[,v)+(1—a)oi(Pl,w), Va € [0,1], Vo, w € V;
Monotonicity: If v < w (componentwise) then o;(P[,v) < 0;( P, w);

Translation equivariance: o;(P],v + 1) = 0;(P[,v) + 3, for all 8 € R;

Positive homogeneity: o;(P[, fv) = fo;(P[,v), for all g > 0.

Under these conditions, one can pass to the limit with 7" — oo in (2) and prove the existence
of an infinite-horizon discounted risk measure:

Pooli) = lim pip(i), i€ X,
’ T—o0 ’

We still denote its value at state ¢ by v™(7); it will never lead to misunderstanding. The
policy value v™(-) satisfies the risk-averse policy evaluation equation:

0™ (i) = (i) + a0y (P07 (1), i€ X.

We introduce the space Q of transition kernels on X, define a vector-valued transition risk
operator o : Q@ x V — V, with components o;(P[,-), i € X, and rewrite the last equation
in a way that generalizes (1):

o™ =" + ao(P™,07). (3)

The only difference between (1) and (3) is that the matrix P™ has been replaced by a convex
operator o (which still depends on PT™).
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Coherent risk measures admit a dual representation (Ruszczynski and Shapiro, 2006a),
which in our case can be stated as follows. For every i € X' a convex, closed and bounded
set A;(PF) C P(X) (a subset of the set of probability measures on &) exists, such that

(P v) = LU, c V. 4
oi(P,v) ueri%;)w v), W (4)

The scalar product above is the expected value with respect to p, that is, (u, v) = ZJEX ;.
In the risk-neutral case, the set A;(P[") = 0o;(PF,0) contains only one element, P,
but in general it is larger and has P[ as one of its elements, provided we always have
oi(Pr,v) > (PF,v). The multifunction A : X — P(X) =2 P(X) is called the risk multi-
kernel. Every p € A;(P]) is absolutely continuous with respect to P[; in the finite-state
case considered here, it means that the transitions which are impossible under P are also

impossible under .

Example 1 The mean—semideviation risk measure (Ogryczak and Ruszczyriski, 1999) cor-
responds to the following transition risk mapping:

oi(PF,v) =Y Plvj+ 8 Plmax (o,vj -> B’,;vk) B e 0,1].

JEX JEX keX

It is coherent (Ruszczyriski and Shapiro, 2006a), with the following dual set:

Ai(PT) = {MGP(X>:Nj:Pi§(1+§j_ Zpﬁgfk), 0<¢ <5, jzl,---vn}-

keXx

The use of f = 0 leads to the standard expected value MDP and 5 € (0,1] allows for
flexibility in modeling risk aversion.

By the dual representation, Markov coherent risk measures are related to robust dynamic
programming introduced by Nilim and El Ghaoui (2005), but they do not require explicit
description of the uncertainty sets for all state-control pairs; the sets are implied. Moreover,
the inherent absolute continuity of the hypothetical transition probabilities with respect to
the model transition probabilities P]" preserves the structure of the problem (the impossible
transitions remain impossible).

While equation (3) can be solved by a nonsmooth Newton’s method and the result-
ing evaluation used in a policy iteration method (Ruszczynski, 2010), all these techniques
require solving linear equations with the full transition probability matrix and become im-
practical, when the size of the state space is very large.

An established approach to such a situation in expected value models is to assume that
each state i € X’ has a number of relevant features ¢;(i) € R, j =1,...,m, where m < n,
and that the value v™ (i) of a state can be approximated by a linear combination of its

features:
m

> ripi(i), ieX. (5)

J=1

<
3
—~
~
SN—
Q
<
4
—
-~
~
I
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From now on, we suppress the superscript =, because most of our considerations focus on
evaluating a fixed policy. We define the matrix of the features of all states, namely

901(1)
©'(2)
b —

(n)

Now we can write our approximation as v &~ ¥ = @r. Similar to the expected value case, if we
attempt to emulate (3) with the approximate value function, we may observe that the right
hand side of the equation, ¢ + ao(P,®r), may not be represented as a linear combination
of the features. Therefore, we need to project this vector on the subspace spanned by the
features, range(®). Accordingly, we define a projection operator, L : ¥V — range(®), and
formulate the projected risk-averse approximate dynamic programming equation:

r = L(c+ ao(P,Pr)). (6)

It is analogous to the equation considered in the distributionally robust case in (Tamar
et al., 2014, sec. 3.1).

Still following the expected value case, we assume that the Markov system under policy
7w is ergodic, and we denote its vector of stationary probabilities by q. We specify the
projection operator using the following scalar product and the associated weighted norm:
(v,w)g = Do qiviw;, ||w|]2 = (w,w)q. Then the orthogonal projection based on this norm
is:

L(w) = argmin ||z —w||y, we€ V. (7)
z€range(P)

The fundamental question is the existence and uniqueness of a solution of equation (6).
This can be answered by establishing the contraction mapping property of the right hand
side of (6):

D(v) = L(c+ ao(P,v)), ve, (8)

which would imply the existence and uniqueness of a solution of the equation
v = Dw. 9)

Crucial in this context is the distortion coefficient of the risk multikernel A:

» = max{|mijp_pij| cmy € Ai(P]), pij >0, 1,5 € X}.
i

By definition, s > 0, with the value 0 corresponding to the risk-neutral model. We also
recall that for p;; = 0 we always have m;; = 0, for all m; € A;(P]").

The coefficient s is related to the risk premium in the transition risk mapping. For
illustration, in the mean—semideviation mapping of Example 1, we always have s < .

We first prove a technical lemma allowing us to deal with the nonlinearity and nondif-
ferentiability of the transition risk operator o.
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Lemma 1 The transition risk operator satisfies for all w,v € V the inequalities:
lo(P,w) = o(P,v)llg < V143w =l (10)
and
lo(P,w) = o(P,v) = Pw—v)llq < 5 [w—vllg- (11)

Proof For brevity, we omit the argument P of o(P,-), because it is fixed. For every
i=1,...,n, by the mean value theorem for convex functions (Wegge, 1974; Hiriart-Urruty,
1980), a point 7)) = (1 —6;)v + b;w exists, with 6; € [0, 1], and a subgradient m; € do; (7))
exists, such that

oi(w) — oi(v) = (mj, w — v).

Since the subdifferential do;(-) C A;, we have m; € A;. Therefore, for a matrix M having
mi, 1 =1,...,n, as its rows,

o(w) —o(v) = M(w —v). (12)

As each m; is a probability vector, Jensen’s inequality with A = w — v, and the equation
q"P=q' yield

IMR)G = Zqz‘(zmz‘jhj)Q <D @) mih;

iceX  jex i€EX  jEX
S+ @Yy pighi =042 qihi =1+ 3)|h]2. (13)
IEX  jEX jex

The last two relations imply (10). In a similar way, it follows from (12) that

lo(P.w) — () — Pl — )| = (M — Pl < 3 as( 3 lmig —pigliyl)

1EX JeEX
2
< %22%(2%\@\) <Y gy pilhl’ = lw =3,
ieX JEX iceX  jJEX
which is (11). |

We will apply the estimate (10) right away to prove the existence and uniqueness of the
solution of the risk-averse equation (9), and the estimate (11) in Theorem 8 on the multistep
method.

Theorem 2 If av/1+ s < 1 then the equation (9) has a unique solution v*.

Proof We verify that the operator (8) is a contraction mapping in the norm || - ||,. The
orthogonal projection L is nonexpansive. The operator P is nonexpansive in the norm || - ||,
as well (this is a special case of (13) with M = P and s = 0). The transition risk operator
o(+) multiplied by « is a contraction by Lemma 1 and our assumption on «a and ». The
assertion follows now from Banach’s contraction mapping theorem. |
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If @ has full column rank, equation (6) has a unique fixed point as well, because only one
r satisfies v* = &r.

We may remark here that the requirement that s should be smaller, when « is larger,
is related to the accumulation of risk over time. For a close to 1, many future periods
contribute to the risk evaluation. As 3¢ is related to the risk premium at each period,
its large values might lead to overpricing of the total risk. In any case, the condition
of Theorem 2 is weaker than that of (Tamar et al., 2014, Ass. 2) which requires that
a(l + 32) < 1 to establish a similar result in the distributionally robust formulation.

3. The Risk-Averse Method of Temporal Differences

We propose to solve (6) by a risk-averse analog of the classical method of temporal differ-
ences (Sutton, 1988). We define v* to be the solution of equation (9) (which exists and is
unique, if ay/1 4 2 < 1).

Consider the evolution of the system under policy m, resulting in a random trajectory
of states i;, t =0,1,2.... At each time ¢, we have an approximation 7, of a solution of the
equation (6).

The difference between the left and the right hand sides of equation (6) with coefficient
values 1, and state i; defines the risk-averse temporal difference:

dt = goT(z't)rt — C(it) — Q0 (Pit,@rt), t= 0, 1, 2, e (14)

Evidently, it cannot be easily computed or observed; this would require the evaluation of
the risk oy, (P;,,v) and thus consideration of all possible transitions from state i;. Instead,
we assume that we can observe a random estimate oy, (F;,, ), such that

Eit(Pim@rt) :O—it(Pim@rt)—i_gta t=0,1,2,..., (15)

with some random errors & (assumptions about {&} will be specified in section 4). This
allows us to define the observed risk-averse temporal differences,

dy = ¢ (i)re — cliy) — oG, (P, Pry), t=0,1,2,..., (16)
and to construct the risk-averse temporal difference method as follows:
Ti41 = Tt —'ytgo(it) C‘lvt, t= 0,1,2,..., (17)

with stepsizes v, > 0 (assumptions on the sequence {v;} will be specified in section 4).

A related algorithm has been heuristically proposed by Di-Castro Shashua and Mannor
(2017) in the context of Q-learning with robust dynamic programming. It uses the set of
all possible next states that may follow 7;, in order to estimate the worst distribution from
the uncertainty set.

Before proceeding to the detailed proof of convergence of the method (17) in the stochas-
tic case, we analyze its deterministic model, in which the errors & are ignored and the
updates of the sequence {r;} are averaged over all states (with the distribution ¢). Using
the matrix @ = diag(q), we define the operator:

U(r) = Ejq [go(z) (goT(z')r —c(1) — aoi(P;, @r))] = @TQ[@“ —c—ao(P, @r)]. (18)
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The deterministic analog of (16)—(17) reads:
FtJrl :'Ft_’yU(Tt)a t:071>27"'7 ’7>O (19)
By the definition of the projection operator L, a point r* is a solution of (6) if and only if
N .1 2
r* = argmin EHQST — (c+ ao(P,or")) Hq.
This occurs if and only if 7* is a zero of U(-) and thus supports our idea of using the method
(16)—(17).

Theorem 3 If ay/1+ » < 1, then vy > 0 exists, such that for all v € (0,70) the algorithm
(19) generates a sequence {r;} convergent to a point r* such that U(r*) = 0.

Proof We shall show that for sufficiently small v > 0 the operator I —~«U is nonexpansive
(a contraction, if @ has full column rank). For arbitrary »’ and r”, we have

0 =T ") = (7 =T = 1 ="
—29(r’ =", 0T QB(r — ")) + 27’ — ", BT Q[0 (P, &) — (P, Dr")])
+ ’)’2H¢TQ¢(T/ — ") = ad" Qo (P, &) — o (P, &r")] H2

The last term (with v%) can be bounded by y*C||®(r’ — r")||2 where C is some constant.
Then

|07 =AU — (7 =AU < 0~ 12 = 22’ — o)
+ 2fya<¢(r' — "), o(Pr') — U(@r")>q + ’yQCH@(r' — 7“")\\(21.
The scalar product can be bounded by (10), and thus
|67 =2U ") = (" =AU
<" =P = 29|00 — ")[F + 2vav T+ |0 — )7+ POl P — )5
— ' =1 =20 (1= avIH e+ I ) oo’ —

Since a/1 + » < 1, then using 0 < v < 2(1 — ay/1 + »)/C, we have
|07 UG~ (7 =AU DI < I =12 = ABle — )2 (20)

with some § > 0. In particular, setting v = 7; and r” = r* for a solution 7* of (6), we
obtain the following relation between the successive iterates of the method (19):

s = (2 < [l7e = |2 = 3Bl P(7e — )7 (21)

This immediately proves that the sequence {7;} is bounded and &7y — ®r*. Every accumu-
lation point 7 of {7} must be then a solution of equation (6). Substituting this accumulation
point for r* in the last inequality, we conclude that 7, — 7. |

If @ has full column rank, the solution r* is unique, because substituting another solution
for 7 in (19) we obtain 741 = 74, which leads to a contradiction in (21).

10
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4. Convergence of the Risk-Averse Method of Temporal Differences

We shall use the following result on convergence of deterministic nonmonotonic algorithms
(Nurminski, 1972).

Theorem 4 Let Y* C R™. Suppose {ri} C R™ is a bounded sequence which satisfies the
following assumptions:
A) If a subsequence {ri}iexc converges tor' € Y*, then ||rip1 —1el| = 0, ast — oo, t € K;
B) If a subsequence {ri}icic converged to v’ ¢ Y*, then g9 > 0 would exist such that for
all € € (0,e0] and for all k € K, the index s(t,e) =min { >k : ||rg — r¢|| > e} would
be finite;
C) A continuous function W : R™ — R exists such that if {ri}texc converged to ' ¢ Y*
then €1 > 0 would exist such that for all € € (0,e1] we would have

lim sup W (rgq)) < W(r'),
tekC
where s(t,€) is defined in B;
D) The set {W(r) :r € Y*} does not contain any segment of nonzero length.

Then the sequence {W (r¢)} is convergent and all limit points of the sequence {ri} belong
to Y*.

The set of solutions of equation (6) is defined as
Y*={reR™: or=0v"},

where v* is the unique solution of (9), provided ay/1 + > < 1. We shall show that sequence
generated by the method (17) converges to Y*, under the above-mentioned condition and
some additional conditions on the stepsizes {7} and errors {&}.

We define F; to be the o-algebra generated by {ig, 7o, ... 4,7}, t =0,1,..., and make
the following assumptions about the stepsize and error sequences. The stepsizes may be
random.

Assumption 1 The sequence {v} is adapted to the filtration {F;} and such that
(i) %+>0,t=0,1,..., a.s;

(i) Yoo =00 a.s.;

(iii) EY ;2077 < oo

T
(iv) For anye >0, lim sup Z |7t —1+1] =0 a.s..
to—oo {T:300L, m<e} t=to

Assumption 2 The sequence of errors {&}i>1 satisfies for t =0,1,2... the conditions
(1) E[&| A =0 as.;
(i) E[&]1? | F) < CA+ ||re?)  a.s., with some constant C > 0.

First, we establish an important implication of the ergodicity of the chain. We write
as e; the ¢th unit vector in R™. The following technical result, using the Poisson equation
method invented by Métivier and Priouret (1987), will help us to deal with the Markovian
dependence of the temporal differences.

11
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Lemma 5 If the chain {i;} is ergodic with stationary distribution q and Assumption 1 is
satisfied, then

T
Zt:o Yi(ei, — q)

lim =0, a.s. (22)
T ) b
T—o00 EtZO fyt
and for any € > 0,
T
" er —
lim sup 2oi=ty (¢ — 0) =0, a.s. (23)
to—ooT>to max (57 Zthto 'Yt)
Proof Due to the ergodicity of the chain, the vectors
oo
E|> (e, - ‘ z] , Qe A,
t=0
are finite and satisfy the Poisson equation
v(i)=ei—q+ Y Pyv(j), i€X. (24)

JEX
Consider the sums ZtT:o ve(ei, — q). By the Poisson equation,

= a =) = 3 Pogv(j) = [v(i) — vlin)] + [vli) = X Pur()]. - (25)

JjeEX JjEX

We consider the two components of the right hand side of (25), marked with brackets,
separately. Due to Assumption 1, (i)—(iii), the series

Z%[ it+1) me'v } Z’Yt V(irs1) — Blv (i) | F])
JEX
is a convergent martingale. Therefore,

S0 (Vi) — Bl (i)

lim T =0, a.s.
T—o0 tho Yt
We now focus on the sums
T
Z% — v(irr1)] = vov(io) + Y (v — ye-1)v(ir) = yoviri1).
t=1
Assumption 1(iv) and (Ruszczyniski and Syski, 1983, Lem. A.3) imply (22)—(23). [ |

We can now prove the convergence of the stochastic method.

Theorem 6 Suppose the random estimates c;,(P;,, Pry) satisfy (15), Assumptions 1 and
2 are satisfied, and an/1+ s < 1. If the sequence {r;} is bounded with probability 1, then
every accumulation point of the sequence {ri} is an element of Y* with probability 1.

12
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Proof We use the global Lyapunov function:

W(r) = min ||r —r*||% (26)
r*ey’*

The direction used in (17) at step ¢ can be represented as
p(ir)dr = U(re) + Ay, (27)
with the operator U(-) defined in (18), and
Ay = —a&p(iy) + @' diag (e;, — q) [Pry — ¢ — ao (P, ry)]. (28)

Our intention is to verify the conditions of Theorem 4 for almost all paths of the sequence
{r}. For this purpose, we estimate the decrease of the function (26) in iteration ¢. For any
r* € Y* we have:

Ireva =112 = llre = U (re) = v I = 29 (Ae, re = U (re) = 17) + 22 | A

The term involving U(r;) was estimated in the derivation of (21). We obtain the inequality

reer =12 < flre =12 = 23 (1 = av/ T+ 30) | @(re =) |17 = 23D, 7o = U () = 17) + O

(29)

Now we can verify the conditions of Theorem 4 for almost all paths of the sequence {r;}.

Condition A. Due to the boundedness of {r;} the sequence {U(r;)} is bounded as well. In
view of (27), it is sufficient to verify that v.£ — 0. By Assumption 2(i), the sequence

Sr=Y w& T=12..., (30)

is a martingale. Consider its quadratic variation process {(S >T} recursively given by
(S)rs1 = (S)r + B[Sy — SF| Fr] = (S)r +E[&l” | 7], T=12....

Due to Assumption 2(ii), (S)711 < C 3 f_gV2(1 + [|7]|?). By virtue of Assumption 1(ii)
and the martingale convergence theorem, the series » 2, ,ytz is convergent a.s.. By the
boundedness of {r{}, limp_, {(S)T} < oo with probability 1. This implies that the mar-
tingale {S7} is convergent a.s. (see, e. g., Neveu (1975)), which yields lim; o, 1:& = 0 a.s..
Condition B. Suppose 1, — 1’ ¢ Y* for k € K (on a certain path w). If B were false, then
for all £9 > 0 we could find € € (0,e0] and k € K such that ||r; —rg|| < e for all ¢t > k.
Then for all ky € K, kg > k, we have ||y — ry,|| < 2¢ for all t > ko. Since 7’ is not optimal,
we can choose g > 0 small enough, ky € K large enough, and d > 0 small enough, so that
|D(ry — r*)||2 > 6 for all t > ko. Then (29) for T > ko yields

b = 7% < iy — 7|12

Yk %<At,7“t—%U(7") L T D W
—0(1 —av1 0 C 0 ¢ (31
+< ( TR Zt ko’Vt " Zt ko%> zk:o7 3!

13
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We fix r* = Projy«(rg,) and estimate the growth of the sums involving A;. We write
A = Agl) + A?), where, in view of (28),

Agl) = —a&p(iy), A§2) = ¢ diag (eit — q) [@rt —c—ao(P, G’P”rt)}.

Since (30) is a convergent martingale and the terms (p(i;),rs — v U(r¢) — r*) are bounded
and F;-measurable, we have

Zt ko %< i ;e — U (re) — %)
lim
T—o00 Zt koryt

(2)

To deal with the sum involving A;™, observe that ||r; — 74| < 2¢0 and that we can choose
ko large enough so that v, < O(ep). Then

=0.

<A1(f2)a re — v U(ry) —r*) =
<diag (eit — q) [@rko —c—ao(P, @rko)] L, D(rgy — r*)> + hy = (e, — q,w) + he, (32)

where |ht| < Cep and w is a fixed vector (depending on kg only). It follows that

T-1 T-1 T-1
> WA = U () —1%)| < C > vl — )|+ Ceo Y e (33)
t=ko t=ko t=ko

Dividing both sides of (33) by Z?:_kt v and using (22), we see that we can choose € > 0
small enough and kg € K large enough, so that the entire expression in parentheses in (31)
is smaller than —d0(1 — av/1 + »)/2, if T' is large enough. But this yields ||r — r*|| — —oo,
as T — oo, a contradiction. Therefore, Condition B is satisfied.

Condition C. The inequality (31) remains valid for T" = s(ko, £). By the definition of s(ko, ),

T-1
H Z Ye(ie) (dr + ft)” >

t=ko

By the convergence of (30), and the boundedness of {d;}, a constant C' > 0 exists such that
for all sufficiently large kg and sufficiently small e, we have

T-1

Z v >¢e/C.

t=ko

Using (23), by a similar argument as in the analysis of Condition B, we can choose €1 > 0
small enough so that for all kg € IC large enough, the entire expression in parentheses in
(31) is smaller than —d(1 — ay/1 + )/2. Therefore, for all ¢ € (0,e1] and all sufficiently

large kg € K
(1 —avl+ x)e
2C ’

Istio. ) = 717 < iy — 7117 =

14
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We fix r* = Projy«(rg,) on the right hand side, and obtain for the merit function (26) the

inequality
§(1 — a1+ »)e
2C ’
Now, the limit with respect to kg — oo, kg € K, proves Condition C.
Condition D is satisfied trivially, because W (r*) = 0 for r* € Y*. [ |

W(Ts(kg,s)) < HTs(ko,s) - r*||2 < W(Tko) -

The only question remaining is the boundedness of the sequence {r;}. It is a common
issue in the analysis of stochastic approximation algorithms (Kushner and Yin, 2003, §5.1).
In our case, no additional conditions and analysis are needed, because our Lyapunov function
(26) is the squared distance to the optimal set. Therefore, a simple algorithmic modification:
the projection on a bounded set Y intersecting with {r € R™ : &r = v*}, is sufficient to
guarantee boundedness. The modified method (17) reads:

rev1 = Projy (re — vep(in) di), t=0,1,2,.... (34)

Now, Y* = {r € Y : &r = v*} and we require that this set is nonempty. This modification
does not affect our analysis in any meaningful way, because the projection is nonexpansive.
In the proof of Theorem 3, we use the inequality

. . 2 2
[Projy (' =AU (")) = Projy (" =AU ("))||” < || =2U (")) = (" =2U("))]|
and proceed as before. In the proof of Theorem 6, we start from

Ireer =771 = [[Projy (re = 3(U (re) + A0)) = || < || = 3e(U re) + &) =[],

and then continue in the same way as before. We did not include projection into the method
originally, because it obscures the presentation. In practice, we have not yet encountered
any need for it.

If the stepsizes {7} are deterministic, we can guarantee the boudedness without using
projections, by employing the ODE method and the scaling technique developed by Borkar
and Meyn (2000).

Theorem 7 Suppose the stepsizes {v:} are deterministic and satisfy the deterministic ver-
sion of Assumption 1, the random estimates a;,(P;,, Pry) satisfy (15) and Assumption 2,
the matriz @ has full column rank, and an/1+ 3 < 1. Then the sequence {ri} is bounded
with probability 1.

Proof We apply (Borkar and Meyn, 2000, Thm. 2.1) (a closely related result in (Kushner
and Yin, 2003, Thm. 5.4.1) could also be used). The ODE corresponding to (17) has the
form 7(t) = —U(r(t)). Due to the positive homogeneity of o(P,-), the asymptotic “fluid”
operator has the form

Uso(r) = A}l_r)noo — = D' Q|Pr — ac(P,dr)].
It is Lipschitz continuous, by Lemma 1. The rescaled ODE is 7(t) = —Ux(r(t)). The

origin is its only equilibrium, and it is globally stable. This can be established by using
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the Lyapunov function Loo(r) = 3|r[|>. Indeed, applying (10) with w = &r and v = 0, we
obtain

Loo(r) = = (1, Uso(r)) = — (&1, Br — a0 (P, @1)),
= —|r|: + aller]| o (P.er)], < (=1 +avi+s)]||er]? <o,

unless r = 0. The convergence of interpolated trajectories to the solutions of the corre-
sponding ODE can be established as in (Borkar and Meyn, 2000, Thm. 2.1), with the
additional use of our Lemma 5. This part of the analysis repeats much of the proof of
Theorem 6, where we deal with the errors A;. |

5. The Multistep Risk-Averse Method of Temporal Differences

In the method discussed so far, the approximation coefficients {r;} are corrected by moving
in the direction of the last observed feature vector ¢(i;). Alternatively, we may use the
weighted averages of all previous feature observations, where the highest weight is given to
the most recent observation and the weights decrease exponentially as we look into the past.
This is the core idea of the well-known TD(A) algorithm (Sutton, 1988). We generalize it
to the risk-averse case.

For a fixed policy 7w, we refer to v™ as v, and to P™ as P, for simplicity. The multistep
risk-averse method of temporal differences carries out the following iterations:

2t = Az + p(iy), t=0,1,2,..., (35)
Tl = T¢ — ’Ytztjta t=20,1,2,... (36)

where A € [0, 1], and c?t is given by (16). For simplicity, z_; is assumed to be the zero vector.
In the risk-neutral case, when oy, (P;,,®r;) = P;,®ry, the method reduces to the classical
TD(A).

Our convergence analysis will use some ideas from the analysis in the previous two
sections, albeit in a form adapted to the version with exponentially averaged features.
However, contrary to the expected value setting, the method (35)—(36) will converge to a
solution of an equation different from (9), but still relevant for our problem.

We start from a heuristic analysis of a deterministic counterpart of the method, to
extract its drift. In the next section, we make all approximations precise, but we believe
that this introduction is useful to decipher our detailed approach to follow. By direct

calculation,
¢

a =0 0a) (i), (37)

k=0
and thus

t
zdp =P Z(Aa)tikeik, eiTt (Pri — c — ao(P,dry)).
k=0

Heuristically assuming that 7, ~ r’/, we focus on the operator acting on the expected tem-
poral differences. As each of the observed feature vectors ¢(iy) affects all succeeding steps

16
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of the method, via the filter (35), we need to study the cumulative effect of many steps. We
look, therefore, at the sums

t

%—{Z%Z Q@]

k=0

Changing the order of summation and using the fact that {(Aa)*~*};>; diminishes very
fast, as compared to {v;}i>k, we get

%_[Zzwm %JNQZ%Z @@}

k=0 t=k k=0  t=k
Therefore
T T T T
Gr~E [Z*yk Z()\oz)t_keikE[eZ ’fk]} = E[Z Z()\oz) €i € Zth k]
k=0 t=k k=0 t=k
T T T o0
= Z E[diag(e;,)] Z()\a)t*thfk R~ Z E[diag(e;, )] Z Aotk pt=Fk
k=0 t=k k=0 t=k
T o)
Z Z )\a t— th k
k=0 t=

The last approximations are possible because Aa € [0,1) and E[diag(eik)] — ¢ at an
exponential rate.
We now define the multistep transition matrix,
oo
P=(1-2a)) ()P (38)

=0

By construction, P € conv{l, P, P?,...}. With these approximations, we can simply write

Define the operator

U(r) =®'QP[®r — c — ao(P,or)], (39)
and consider the following deterministic counterpart of (35)—(36), with 7 ~ /(1 — Aa):
Tr41 :rt—ﬁﬁ(rt), t=0,1,2,..., 7 >0. (40)

Our intention is to show that for sufficiently small 7 the method (40) converges to a point
r* such that U(r*) = 0. Such a point is also a solution of the following projected multistep
risk-averse dynamic programming equation:

LP®r = LP(c+ ao(P,®r)), (41)

where L is the projection operator defined in (7). The solutions of (41) differ from the
solutions of (6), unlike in the risk-neutral case (> = 0). If we replace P with I, (41) reduces
to (6).

17
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Theorem 8 If ¢ has full column rank and o(1 + ») < 1, then Fo > 0 ewists, such that for
all 5 € (0,70) the algorithm (40) generates a sequence {r;} convergent to a unique solution
r* of the equation U(r*) = 0.

Proof We show that for sufficiently small % > 0 the operator I — FU is a contraction
mapping. For two arbitrary points 7’ and r” we have

H (r' =~U@E") = (" =5UE") H2
= =+"|* +2¥ <7"’ — 1" &TQP[ - &(r' — ") + ac(P,or') — ao(P, 9157“”)]>
+ 7 H@TQP@(T’ — ") — ad" QP[o(P, &) — (P, &1")] HQ (42)
We focus on the scalar product in the middle of the right hand side of (42):

<d5(r' — "), P[—o(r' — ") + ac(P,or') — ac (P, or")) >q

_ <@(T’ . T//)7p[ . @(T’l . T‘”) + OzP@(T‘/ _ T‘”)] >q

n a<@(r’ — "), Plo(P, &) — (P, &r") — PB(r' — r”)]> . (43)
q
Setting h = @(r' —r""), we can estimate the first (quadratic) term on the right hand side of
(43) by a calculation borrowed from (Tsitsiklis and Van Roy, 1997, Lem. 8):

Pl — « =(1—-« ,OO a\)' P — «
(h,P[~h+aPh]) =(1 )\)<h;%( NP~ h+aPh])

q q

o k
= (1= a1 =Nk S WY P~ h+aPh])

q

k=0 £=0
=(1—aN) (1= (h, Y N[aFTIPEIp — p]
(3 ),

—(1- a)\)<h, (1- ) i Neakttphtip h>
k=0 1

a(l-X) = 9
=(1- < ,———PPh — > <(a—1 .
(I —aX)(h T o h—h q_(a MRl
The last inequality is due to the fact that both P and P are nonexpansive in || - ||,

The second (nonsmooth) term on the right hand side of (43) can be estimated by (11),
again with the use of the nonexpansiveness of P:
<§l5(r' — r"), P[O’(P, 457“’) —o(P, @7‘//) — P@(T’ — 7“")]> < x H@(r' — r")”j.
q
The last term on the right hand side of (42) (with 4?) can be bounded by v*C||®(r' —1")]||2,
where C is some constant. Integrating all these estimates into (42), we obtain the inequality

[ =FD)6) — (1= 3T < I =21 = 27 (1= alt 459 = ) o’ )2
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If a1+ 5) < 1, then using 0 <7 < 2(1 — a(1 + »))/C, we obtain:
(T =5T)") = (@ =7D) )| < I = "I = 7Bl - +")|I2, (44)

with some 3 > 0. Since the columns of @ are linearly independent, the operator I — 5U
is a contraction mapping. This implies the assertion of the theorem. In particular, setting
r" = 7 and v = r* for a solution r* of (41), we obtain the following relation between
successive iterates of the method (40):

reps = (12 < flre = r* |2 =3B D(re — r)I7- (45)

6. Convergence of the Risk-Averse Multistep Method

We now carry out a detailed analysis of the stochastic method (35)—(36).

Lemma 9 For any array of uniformly bounded random variables {Ak,t}k>0 0

lim Zg:o S ik (M) T Ay Zg:o T doep(Na)' R A,

Proof Changing the order of summation twice, we obtain

T T T T
SN = wl ) TF YT Y e vl Q)

k=0 t=k+1 k=0 t=k+1 (=k+1
-1
o~k
Ye-1] Z(AO‘)
k=0

=0 a.s..

T

T T
1 -k
< — —
=1 0w E E Ive = ve-1](Aar) 1

k=0 ¢=k+1 =1
T
Ao
< m Z e — Ye-1]-
(=1

Therefore, with C' being the uniform bound on ||A .|| and v,"** = max;>j v, we obtain

T T
ZZ%(AQ Akt—Z’mZ (Aa)t™ kAkt

k=0 t=k

T T

<O D he=wla) ™+ 0 Z > sl
k=0t=k+1 k=0t=T+1

T

Cha CyP A

<

—(1 QZh/é Yeo— 1‘+( /\Oé)

Assumption 1(iv) and (Ruszczyniski and Syski, 1983, Lem. A.3) imply the assertion. [ |

We need another auxiliary result, extending Lemma 5 to our case.
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Lemma 10

Zt O’Yt<2k o(Aa)t~ Fei e Zt 1_1MQP)
=0

lim a.s., (46)
T—o00 ZZ;O ryt
and for any € > 0,
Zt to %(Zk o) Pes e, — 11,\an>
lim sup =0 a.s. (47)
to—o0 T'>tg max (5’ z;‘/‘rzto ’Yt)
Proof Consider the sums appearing in the numerators of (46) and (47):
T t
Z%Z(A “Fe e Zt—ZelkZ (Ao %e;[, T=1,2,....
t=to k=0 k=to
In view of Lemma 9, it is sufficient to consider the sums
T
Sto, T = Z ’Ykeikz o)t~ keZTt, T=1,2,....
k=to t=k
We transform the inner sum and change the order of summation:
00 00 t
Z()\a)tfkel _ Z(}\a)pk{ Z [eiTePth 2; 1Pt 1z+1} T eTPt k}
t=k t=k l=k+1
oo o0 oo
- - - . ¢
=2 Q) Tl P4 L Y () el Pl — e PO,
t=k {=k+1 t=¢
We can thus write Sy, 7 = S’t(Ol)T + Séi)r_p, where, using (38), we have
T 00 1 T
1 —k pt— . 5
St(o,)T = Z Vi eike;; Z(Aa)t kpt=k — T~ a Z v diag(es, ) P,
k=to t=k k=tg
and
2) _ _
S =3 ke 30 SO He P - P
k=to b=k+1 t=(
1 T 0o
k[ T _ T B
=T Z Vi € Z (Aa)""[e;, —e;,_ P|P
k=to l=k+1 (48)

T oo
1 —
=1 w Z ei, Z Yeo1 (M)t F [6;'; - e;_lP]P

k=tg (=k+1
T )

i
I

~

) F (= ve-1) e, — i, [ PJP =S

k=to =k+

20

2,1) (2,2)
0,1’ + Sto,T ’
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Both double sums in (48) will be analyzed separately. Since [ [e& ‘ fg,l] = egilP, the first
one, after changing the order of summation, becomes a martingale adapted to {F}:

2,1 1 > > (—kT7 . T T D
P SR S

k=to {=k+1

-1
1 S —k\[,T_.T p1p
T 1-)a Z Wl(z ei (A) k) [eiz o eie—1P]P‘
l=tp+1 k=0
Due to Assumption 1(iii), the limit is finite a.s. and thus
5(271) (2a1)
lim 3’T =0 as. and lim sup fo.T =0 as. (49)
T—o0 Zt:O Yt to—ooT>to max (8, ZtT:to ’}/t)

We now estimate the second double sum on the right hand side of (48). A constant C
exists, such that uniformly for all 7" and with probability one,

,5(0272)H<CZ Z (M) vk — e

k=to f=k+2
T k+T-1
SCZ Z Aaé k+2|’7k—7£+1|+02’yk Z )\ag k+2
k=tyg (= k=to {=k+T
T k+T-1 )\Oé 742 T
<0 Z M“”Z\% Bl + =0 2
k=to {(=k k=to
T k+T-1 T
C(Aa)T+2
k=to j=k k=to
27—-1 j T+2
C(Aa)™ ™
i— k+2
Sl—)\az > i = vl 1 o Z%
Jj=to k=to k=to

J=to

C(\a)? 2I—1 C(Aa)T+2 T
S( )\042 Zh/] ’YJ+1’+ 1 — \v k;zt:’)/k
=to

In view of Assumption 1(iv), we conclude that the relations (49) are true for Sg’%) as well.

It follows that Stf)T in (48) is negligible as compared to ZtT:tO ~¢. We can thus apply Lemma

5 to Siol’)T - Z;}tho v diag(q) P, and obtain both assertions. [ ]
Now we can follow the arguments of section 4 and establish the convergence of the
stochastic multistep method.

Theorem 11 Assume that a(1 + ) < 1, the sequence {r:} is bounded with probability 1,
and the random estimates o;,(P;,, Pry) satisfy (15). Then, with probability 1, every accu-
mulation point of the sequence {r.} generated by (35)—(36) is a solution of (41).
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Proof We represent the direction used in (36) at step t as

Ui(re) + AP + AP,

d =
it 1 -

with the operator Uy(+) defined in (39), and

Agl) = —aziéy,

AEQ) = tht - Ut(rt).

1 - )

For any r* solving (41), with 7; = v¢/(1 — A«), we have
rers —r[* = [|re =TT o(re) = = 250AL + AP 1y — 5,0, (r) =) + 72| AL + AP |12

Our intention is to verify the conditions of Theorem 4 for almost all paths of the sequence

{re}.
Condition A. The sequence {2} is bounded by construction. Since the series (30) is a
convergent martingale, we conclude that limy_, o, v 2:dy = 0.

_ Conditions B and C': We follow the proof of Theorem 6. The deterministic term involving
Ui(ry) can be estimated as in (45):

HTt — itUt(Tt) — ’I"*HQ S HT‘t — T*H2 — 2715(1 — O[(l + %))HQS(T} — ’I”*)Hz + CW?

Since {z} and {r;} are bounded, Assumptions 1 and 2 imply that ZEZOWMAS),H —
F:U(re) — r*) is a convergent martingale.

To analyze the second error term, Al(f), we observe that for a vector e;, having 1 at
position iy and zero otherwise, the formula (37) yields

t

ady =Y (M) Fo(ir) (@ (i) — cliy) — aoy, (P, ry))
k=0

t
=3 ( Z(Aa)tikeikel—-[) (Pry — ¢ — ao (P, Pry)).
k=0

Subtracting (39), we obtain

t
1 _
A,EQ) — T ( Z()\a)t—keike; -1 )\ant) [®ry — c — ao(P,ry)].
k=0

By virtue of Lemma 10, for any € > 0,

T ) T )
A Y A
h Zt—o Vt 13 0’ h S thto 1=

T T =0 as.
T—o0 Zt:O Yt to—ooT>to max (6, Zt:to ’7t>
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The remaining analysis is the same as in the proof of Theorem 6. We obtain an inequality
corresponding to (31):

lrr = 7*[* < flrgy — 712

— 1 2 I « 1 _ —
L S A+ A 3T ) ) | S, v?) S

+ <—5(1 —a(l+ x))

T—1 — T—1 — Vts
Zt:ko Yt Zt:ko Tt t=ko
with 6 > 0. This allows us to verify the conditions of Theorem 4 and prove our assertion
following the last steps of the proof of Theorem 6 verbatim. |

We remark that the convergence condition for the multistep method: «(1+ 5) <1, is
stronger that the condition for the basic method: a+/1 4+ s < 1. Mathematically, it follows
from the need to estimate (43) with the use of (11). Because of the multistep transition
matrix P, additional accumulation of risk premiums over time is introduced.

Again, as in the case of the basic method, discussed in section 4, the boundedness of
the sequence {ry} is not an issue of concern, because it can be guaranteed by projection on
a bounded set Y. The modified method has the following form:

Tt4+1 = PI‘ij(T’t - Ntce (Z‘/)a t=0,1,2,.... (50)

We just need Y to have a nonempty intersection Y* with the set of solutions of (41). Due
to the nonexpansiveness of the projection operator, all our proofs remain unchanged with
this modification, as discussed at the end of section 4.

We can also use (Borkar and Meyn, 2000, Thm. 2.1) to establish the boundedness a.s.
of the sequence {r}.

Theorem 12 Suppose the stepsizes {v;} are deterministic and satisfy the deterministic
version of Assumption 1, the random estimates o;,(P;,, Pre) satisfy (15) and Assumption
2, the matriz @ has full column rank, and o(1+ ) < 1. Then the sequence {r:} is bounded
with probability 1.

The proof mimics the proof of Theorem 7, with the ODE #(¢) = —U(r(t)) and the re-scaled
ODE 7(t) = —Uxo(r(t)), where U (r) = QSTQP[QST —ao(P, @7’)].

7. Empirical Illustration
7.1 Risk estimation

We first discuss the issue of obtaining stochastic estimates o;,(P;,,-) satisfying (15) and
Assumption 2:

E[ci, (P, @re)| Ft] = 04, (P, ®re), t=0,1,2,..., (51)

In the expected value case, where oy, (P;,, Pry) = P;,Pry = E[@T(it+l)rt ‘ .7-}}, we could
just use the approximation value at the next state observed, ¢ ' (i¢;1)r¢, as the stochastic
estimate of the expected value function. However, due to the nonlinearity of a risk measure
with respect to the probability measure P;,, such a straightforward approach is no longer
possible in a risk-averse setting.
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Statistical estimation of measures of risk is a challenging problem, for which, so far,
only solutions in special cases have been found (Dentcheva et al., 2017). To mitigate this
problem, we propose to use a special class of transition risk mappings which are very conve-
nient for statistical estimation. For a given transition risk mapping @;(P;, v), we sample N
conditionally independent transitions from the state 4, resulting in states j',..., . This
sample set defines a random empirical distribution, PZ»N = % Zgzl ek, where ¢; is the jth

unit vector in R™. Since the sample set is finite, we can calculate the plug-in risk measure
estimate,

&ZN(Rv U) = Ei(f)z‘N7 U)v (52)

by a closed-form expression. One can verify directly from the definition that the resulting
sample-based transition risk mapping

o (Pi,v) = E[o;(RY, v)],

satisfies all conditions of a transition risk mapping of section 2, if 7;(-,-) does. The expec-
tation above is over all possible N-samples. Therefore, if we treat oV (-,-) as the “true”
risk measure that we want to estimate, the plug-in formula (52) satisfies (15) and Assump-
tion 2. In fact, for a broad class of measures of risk 7;(P;,v), we have a central limit result:
Gi(PN,v) is convergent to &;(P;,v) at the rate 1/v/N, and the error has an approximately
normal distribution (Dentcheva et al., 2017). However, we do not rely on this result here,
because we work with fixed N. In our experiments, the sample size N = 4 turned out
to be sufficient for generating a random observation of stage-wise risk, and even N = 2
would work well, because these observations are implicitly averaged over many iterations of
a recursive stochastic algorithm.

7.2 Example

We apply the risk-averse methods of temporal differences to a version of a transportation
problem discussed by Powell and Topaloglu (2006). We have K = 200 vehicles at M =
50 locations. At each time period ¢, a stochastic demand Dj; for transportation from
location ¢ to location j occurs, ¢,7 = 1,..., M, t = 1,2,.... The demand arrays D; in
different time periods are independent and drawn from a truncated normal distribution:
Dijr = | max(0,N (0, s;;))|. The vehicles available at location i may be used to satisfy this
demand. They may also be moved empty. The state x; of the system at time ¢ is the
M-dimensional integer vector containing the numbers of vehicles at each location. The size
of the state space is (K;\}]\fl_l) ~ 10%27,

For simplicity, we assume that a vehicle can carry a unit demand, and the total demand
at the location ¢ at time ¢ can be satisfied only if x4(i) > Zj‘il Dyji; otherwise, the demand
may be only partially satisfied and the excess demand is lost. One can relocate the vehicles
empty or loaded, and we denote the cost of moving a vehicle empty from location i to
location j as cj;. Since we stay in a cost minimization setting, we also denote the net
negative profit of moving a vehicle loaded from location ¢ to location j as cfj. Let ug, be
the number of vehicles moved empty from location 7 to location j at time ¢ and u%t be
the number of vehicles that are moved loaded. For notational simplicity, let us refer to the
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combination of u§ and uf as u; and denote:

M
T _ § : e e A4
C Uy = (Cl]u@]t -i-cljum)
i,7=1

In this problem, the control u; is decided after state x; and demand D, have been observed.
The next state is a linear function of x; and wy:

Ti41 = Tt — Aut,

where A can be written in an explicit way by counting the outgoing and incoming vehicles.

We denote by U(z¢, Dy) the set of decisions that can be taken at state x; under demand
D;. Our approach allows us to evaluate a look-ahead policy defined by a simple linear
programming problem:

uj (¢, Dy) = argmin {cTu + Oé7TT<l‘t — Au)} (53)
uweU (zt,Dy)

Here, 7 is the vector of approximate next-state values fully defining the policy. In our case,

the immediate cost ¢'u; depends on Dy, and thus the risk-averse policy evaluation equation

(3) has the following form:

v (z) = g(P, ¢'u™(z,D) + av™ (v — Au"(z, D)))v

with P denoting the distribution of the demand. Our objective is to evaluate the policy
7 and to improve it. As the size of the state space is astronomical, we resort to linear
approximations of form (5), using the state x as the feature vector:

T () = 7"y (54)
The approximate risk-averse dynamic programming equation (6) takes on the form:
r'z=Lo (P, c'um(z,D) +ar’ (z — Au"(z, D))), (55)

where L is the weighted projection on the space of linear functions of z (we never use L
explicitly).

In fact, we can combine the learning and policy improvement in one process, known as
the optimistic approach, in which we always use the current r; as the vector 7 defining the
policy.

7.3 Results

We tested the risk-averse and the risk-neutral TD(A) methods under the same long simulated
sequence of demand vectors. At every time ¢, we sampled N = 4 instances of the demand
vectors, and for each instance, we computed the best decisions by (53), and the resulting
states. Then we computed the empirical risk measure (52) of the approximate value of the
next state, and we used it in the observed temporal difference calculation (16):

dy =]z — aE(PN, e u (2, D) + ar] (z¢ — Au™ (a4, D))) (56)
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We used the mean-semideviation risk measure of Example 1 as & (-, ). It can be calculated in
closed form for an empirical distribution P with observed transition costs w® L wW);

1Y 1 Y
F(PYN,v) =p NZ ) — 1), NZ ), Belo1].

We used 8 = 1 and N = 4. The stepsize was constant and equal to v = 0.0001. In the
expected value model (5 = 0), we also used N = 4 observations per stage, and we averaged
them, to make the comparison fair. The choice of N = 4 was due to the use of a four-core
computer, on which the N transitions could be simulated and analyzed in parallel.

We compared the performance of the risk-averse and risk-neutral TD()\) algorithms for
A =0, 0.5, and 0.9, and o = 0.95, 0.8, and 0.6, in terms of average profit per stage, on a
trajectory with 20,000 decision stages. The results are depicted in Figure 1. We observe
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Figure 1: Evolution of the average profit per stage.
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that in many cases the risk-averse algorithms outperform their risk-neutral counterparts in
terms of the average profit in the long run. A large value of A appears to be problematic
and leads to the failure of the optimistic method in one case. Our results illustrate that
the risk-averse method not only has solid theoretical guarantees but can also operate in an
efficient way on a nontrivial problem.

Observed distributiion function

=
€]

o o o
NooWw s

=
i

In addition to these results, we used 207 distinct trajectories, each with 200 decision
stages, to compare the performance of the risk-averse and risk-neutral algorithms at the
early training stages in terms of profit per stage. Figure 2 shows the empirical distribution
function of the profit per stage of the risk-averse and risk-neutral algorithms at ¢t = 200, for
a=0.95and A =0, 0.5, and 0.9.
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Figure 2: Empirical distribution of the average profit at t = 200.

The results demonstrate that in the early stages of learning (¢ = 200), the time-average
profit of the risk-averse algorithm is more likely to be higher than that of the risk-neutral
algorithm, and the difference is very pronounced for lower values of A\. The first order
stochastic dominance relation between empirical distributions appears to exist. In that case,
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by the consistency with first order stochastic dominance, for every law invariant monotonic
risk measure, our risk-averse solution will be preferred (Shapiro et al., 2014, Thm. 6.50).

Although risk-averse methods aim at optimizing the dynamic risk measure, rather than
the expected value, they may outperform the expected value model also in expectation.
This may be due to the fact that the use of risk measures makes the method less sensitive
to the imperfections of the value function approximation.

To gain more insight into this issue, we carried out a small-scale experiment with K = 12
vehicles and M = 3 locations (the first three locations of the large-scale experiment). In
this case, the size of the state space is 91 and the calculation of the policy value functions
v () and v (+) in the risk-neutral and the risk-averse models was possible. As a reference
policy we chose the myopic policy, corresponding to 7 = 0 in (53). Then we carried out the
approximate policy evaluation by the method of temporal differences, in both cases with the
linear architecture, by using the observed temporal differences (56). In parallel to that, we
calculated the “full” policy evaluation sequence Vi(-), t = 0,1,2..., by the corresponding
method of temporal differences as well:

d™ = Vi(ar) - a7 (PY, T (a1, D) + aVi (z; — Au (. D)) ),
Vipa () = V() — ™.

For the risk neutral model we proceeded in the same way, just o(-,-) was replaced by the
expected value with respect to PN.

In this way, in one simulation run of the myopic policy we learned four evaluations of this
policy: two full 91-dimensional vectors for the risk-neutral and the risk-averse case, and two
linear approximations for both cases. Figure 3 depicts the evolution of the mean-squared
errors between the full and linear policy evaluation in the risk-neutral case (the top graph)
and the full and linear policy evaluation in the risk-averse case (the bottom graph). The
evaluations are learned over time, so the graphs stabilize half-way through the run. As we
can see, both approximations are rather crude, and the final error is twice as large for the
risk-neutral case, as it is for the risk averse case. The final values of the coefficients of the
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o
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Figure 3: The mean-square errors of the policy value approximations.
linear value function approximations are denoted by rgnx and rra, for the risk-neutral and

the risk-averse case, respectively.
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Finally, we compare long simulations of three policies: the initial myopic policy with
m = 0in (53), the new risk-neutral policy with m = rgn, and the new risk-averse policy with
m = rra (this was the first step of the policy iteration method for both settings). Figure
4 depicts the average profits over time of the three policies. It appears that the linear
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Figure 4: Performance of the three policies.

approximation of the value function is unsuitable in the risk-neutral case, and the myopic
policy is better than the policy based on this approximation. In the risk-averse case, a small
improvement in performance over the myopic policy is observed (even in the expected value
and certainly in risk). Apparently, some robustness of the risk-averse method with respect
to the model imperfections exists in our example.

Undoubtedly, very serious theoretical challenges arise from our preliminary observations.
We plan to address them in our future research.
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