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Abstract

One major obstacle hindering the ubiquitous use of CNNs for inference is their relatively
high memory bandwidth requirements, which can be the primary energy consumer and
throughput bottleneck in hardware accelerators. Inspired by quantization-aware training
approaches, we propose a compression-aware training (CAT) method that involves training
the model to allow better compression of weights and feature maps during neural network
deployment. Our method trains the model to achieve low-entropy feature maps, enabling
efficient compression at inference time using classical transform coding methods. CAT
significantly improves the state-of-the-art results reported for quantization evaluated on
various vision and NLP tasks, such as image classification (ImageNet), image detection
(Pascal VOC), sentiment analysis (CoLa) , and textual entailment (MNLI). For example, on
ResNet-18, we achieve near baseline ImageNet accuracy with an average representation of
only 1.5 bits per value with 5-bit quantization. Moreover, we show that entropy reduction
of weights and activations can be applied together, further improving bandwidth reduction.
Reference implementation is available.

Keywords: deep learning, neural network compression, efficient inference, entropy
encoding, custom hardware for deep learning

1. Introduction

Deep Neural Networks (DNNs) have become a popular choice for a wide range of applications
such as computer vision, natural language processing, autonomous cars, etc. Unfortunately,
their vast demands for computational resources often prevent their use on power-challenged
platforms. The desire for reduced bandwidth and compute requirements of deep learning
models has driven research into quantization (Hubara et al., 2016; Yang et al., 2019b; Liu
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et al., 2019; Gong et al., 2019), pruning (LeCun et al., 1990; Li et al., 2017; Molchanov et al.,
2019), and sparsification (Gale et al., 2019; Dettmers and Zettlemoyer, 2019).

In particular, quantization works usually focus on scalar quantization of the feature maps:
mapping the activation values to a discrete set {qi} of size L. Such representation, while
being less precise, is especially useful in custom hardware, where it allows more efficient
computations and reduces the memory bandwidth requirement. In this work, we focus on
the latter, which has been shown to dominate the energy footprint of CNN inference on
custom hardware (Yang et al., 2017a). We show that the quantized activation values {qi}
can further be coded to reduce memory requirements.

Raw quantized data require dlog2(L)e bits per value for storage, which quantity can
be reduced by compressing the feature maps. In particular, in the case of element-wise
compression of independent identically distributed values, the lower bound of the amount of
bits per element is given by the entropy (Shannon, 1948):

H(q) = −
L∑
i=1

p(qi) log2 p(qi) (1)

of the quantized values {qi}, where p(qi) denotes the probability of qi.

In this work, we take a further step by manipulating the distribution of the quantization
values so that the entropy H(q) is minimized. To that end, we formulate the training
problem by augmenting the regular task-specific loss (the cross-entropy classifier loss in our
case) with the feature map entropy serving as a proxy for the memory rate. The strength of
the latter penalty is controlled through a parameter λ > 0. Fig. 1 demonstrates the effect of
the entropy penalty on the compressibility of the intermediate activations.

In contrast to previous works that employed entropy encoders (Agustsson et al., 2017;
Aytekin et al., 2019) for weight compression, we focus on compression of activations.
Activations are responsible for a significant part of the memory I/O during inference
(Yang et al., 2017b; Siu et al., 2018), and their efficient encoding provides significant benefits
in terms of power. Nevertheless, we show that the proposed method is compatible with the
previously proposed weight compression approaches.

Our paper makes several contributions. Firstly, we introduce Compression-Aware
Training (CAT), a novel technique for memory bandwidth reduction. The method works by
introducing a loss term that penalizes the entropy of the activations at training time and by
applying entropy encoding (e.g., Huffman coding) on the resulting activations at inference
time. Similar to many successful and widely-used techniques in deep learning, the proposed
scheme is almost straightforward to implement.

Since the only overhead of the method at inference time is entropy encoding, the
improvement is universal for any hardware implementation, being especially efficient on
computationally optimized ones, where memory I/O dominates the energy footprint (Yang
et al., 2017a; Jouppi et al., 2017).

We demonstrate a two- to fourfold memory bandwidth reduction for multiple architectures:
MobileNetV2 and ResNet on the ImageNet visual recognition task, SSD512 on the PASCAL
VOC object detection task, BERT on CoLa sentiment analysis task and BERT on MNLI
textual entailment task. We also investigate several differentiable loss functions that lead to
activation entropy minimization and show a few alternatives that lead to the same effect.
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Figure 1: Pre-activation distributions of one layer in ResNet-18. (a) Evolution at differ-
ent epochs. As training progresses, the probability of non-positive pre-activation
values increases, zeroing more post-ReLU values. The sharp peak at zero reduces
entropy and thus improves compressibility. (b) Effect of entropy regulariza-
tion. Without regularization, the distribution has much heavier tails and thus
has higher entropy. As regularization increases, the probability of extreme values
is significantly reduced. The entropy penalty λ was selected so that the overall
accuracy is not affected. The compression ratio in the strongly regularized case is
2.23 times higher compared to the unregularized the baseline.

Moreover, applying the same regularization to both the weights and the activations allows a
further reduction in the memory bandwidth with only minor loss of accuracy. In addition,
we show that entropy reduction of weights and activation can be efficiently applied together,
further improving bandwith reduction.

Finally, we analyze the method’s rate–distortion tradeoff, achieving even stronger com-
pression at the expense of a minor reduction in accuracy: for ResNet-18, we manage to
achieve entropy inferior to one bit per value, at the expense of losing 2% of the top-1
accuracy.

2. Related Work

Recent studies (Yang et al., 2017a; Wang et al., 2019) have shown that almost 70% of
the energy footprint of custom hardware is due to the data movement to and from the
off-chip memory. Nonetheless, techniques for memory bandwidth reduction have not received
significant attention in the literature. One way to improve memory performance is by fusing
convolutional layers (Xiao et al., 2017; Xing et al., 2019), reducing the number of feature map
transfers. This reduces both runtime and energy consumption of the hardware accelerator.
Alternatively, it is possible to use on-chip cache instead of external memory. Morcel et al.
(2019) demonstrated order of magnitude improvement in power consumption using this
technique. Another important system parameter dominated by the memory bandwidth is
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Figure 2: Comparison with other methods: EPBC (Cavigelli et al. (2019)) and GF (Gu-
dovskiy et al. (2018)) in (a) ResNet-34 and (b) MobilenetV2. Different
marker sizes refer to different activation bitwidths before compression. For GF,
the compression rate was averaged only over compressed layers.

latency. Jouppi et al. (2017) and Wang et al. (2019) showed that the state-of-the-art DNN
accelerators are memory-bound, implying that increasing computation throughput without
reducing the memory bandwidth barely affects the total system latency.

Quantization reduces computation and memory requirements; 16-bit fixed point has
become a de facto standard for fast inference. In most applications, weights and activations
can be quantized down to 8 bits without noticeable loss of precision (Lee et al., 2018; Yang
et al., 2019a). Further quantization to lower precision requires non-trivial techniques (Mishra
et al., 2018; Zhang et al., 2018), which are currently capable of reaching around 3–4 bits per
entry without compromising precision (Choi et al., 2018b,a; Dong et al., 2019; Jin et al.,
2019).

A different way to reduce memory bandwidth is by compressing the intermediate acti-
vations prior to their transfer to memory with some computationally cheap encoding such
as Huffman (Chandra, 2018; Chmiel et al., 2020) encoding or run-length (RLE) encoding
(Cavigelli et al., 2019). A similar approach of storing only non-zero values was utilized by
Lin and Lai (2018). Chmiel et al. (2020) used linear dimensionality reduction (PCA) to
increase the effectiveness of Huffman coding, while Gudovskiy et al. (2018) proposed to use
nonlinear dimensionality reduction techniques.

Lossless coding was previously utilized in a number of ways for DNN compression:
Han et al. (2015) and Zhao et al. (2019) used Huffman coding to compress weights, while
Wijayanto et al. (2019) used the more complicated DEFLATE (LZ77 + Huffman) algorithm
for the same purpose. Aytekin et al. (2019) proposed to use compressibility loss, which
induces sparsity and has been shown (empirically) to reduce entropy of the non-zero part of
the activations.
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3. Method

We consider a feed-forward DNN F composed of L layers. Each subsequent layer processes
the output of the previous one: xi = Fi

(
xi−1

)
, using the parameters wi ∈ RNi×Ni−1 . We

denote by x0 = x and xL = y the input and output of the network, respectively, and the
number of elements of xi as Ni. The parameters w of the network are learned by minimizing
L(x, y; w) +λR(w), with the former term L being the task loss, and the latter term R being
a regularizer (e.g., ‖w‖2) inducing some properties on the parameters w.

3.1 Entropy Encoding and Rate Regularization

Entropy encoders are a family of lossless data encoders that compress each symbol inde-
pendently. In this case, assuming i.i.d. distribution of the input, it has been shown that
optimal code length is − logb p, where b is the size of the alphabet and pi is the probability
of the ith symbol (Shannon, 1948). Thus, for a discrete random variable X, we define an
entropy H(X) = −E log2X = −

∑
i p(xi) log2 p(xi), which is a lower bound on the amount

of information required for lossless compression of X. The expected total space required
to encode the message is N ·H, where N is the number of symbols. Since we encode the
activations with the entropy encoder before writing them into memory, we would like to
minimize the entropy of the activations to improve the compression rate.

One example of an entropy encoder is Huffman coding – a prefix coding that assigns
shorter codes to the more probable symbols. The simplicity along with the high compression
rate (Szpankowski, 2000), bounded by H(X) ≤ R ≤ H(X) + 1, renders it especially useful
in performance-critical applications. The comparison between the compression achieved by
Huffman coding and the lower bound, entropy, in case of neural networks is shown Figs. 3
and 4. For large values of bits per value, the difference between Huffman coding and entropy
is negligible. Other entropy encoders, such as arithmetic coding or asymmetric numeral
systems (Duda et al., 2015), can provide even better compression rates; for instance, for
large enough inputs, arithmetic coding achieves optimal rates. These schemes, however,
require more computational resources for encoding and are harder to implement.

3.2 Differentiable Entropy-Reducing Loss

Since the empirical entropy is a discrete function, it is not differentiable and thus cannot be
directly minimized with gradient descent. Nevertheless, there exist a number of differentiable
functions which either approximate entropy or have same minimizer. Thus, we optimize

L = Lp + λLH , (2)

where Lp is a target loss function and LH is some regularization that minimizes the entropy.
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3.2.1 Soft Entropy

First, we consider the differentiable entropy estimation suggested by Agustsson et al. (2017).
We start from the definition of the entropy,

H(X) = −
∑

p(xi) log(p(xi)) (3)

p(xi) =

∣∣{x∣∣x = qi
}∣∣

N
, (4)

where q is a vector of quantized values. Let m be an index of the bin to which the current
value is mapped, and Q a one-hot encoding of this index, i.e.,

qm = arg min
qi∈Q
|x− qi| = arg max

qi∈Q
(−|x− qi|) (5)

Qi = δim, (6)

where δim denotes Kroneker’s delta. To make the latter expression differentiable, we can
replace argmax with softmax:

Q̃(x) = softmax(−|x− q|, T ), (7)

where T is the temperature, and Q̃(x) → Q(x) as T → 0. Finally, the soft entropy Ĥ is
defined as

Ĥ(X) = −
∑

p̂(xi) log(p̂(xi)) (8)

p̂(xi) =

∑
j Q̃i(xj)

N
. (9)

To improve both memory requirements and time complexity of the training, we calculate
the soft entropy only on part of the batch, reducing the amount of computation and the
gradient tensor size.In particular, we try to take each kth pixel of every feature map or a
random subset of the activation, both leading to the same performance. We empirically
confirm that this choice gives a reasonable approximation of the real entropy (Section 4.1.5).

3.2.2 Compressibility Loss

An alternative loss promoting entropy reduction was proposed by Aytekin et al. (2019) under
the name of compressibility loss and based on earlier work by Hoyer (2004):

Lc =
‖x‖1
‖x‖2

. (10)

This loss has the advantage of computational simplicity, and has been shown both theoretically
and practically to promote sparsity and low entropy in input vectors. While originally applied
to the weights of the network, here we apply the same loss to the activations. As shown in
Section 4.1, both the soft entropy and the compressibility loss lead to similar results.

We summarize the proposed method for reducing memory bandwidth as follows: at
training time, we fine-tune (training from scratch is also possible but was not performed in our
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Architecture
Compute Memory Compression Top-1

(bits) (bits) ratio accuracy (%)

ResNet-18, CAT
32 32 1 69.70
5 1.5 3.33 69.20
4 1.51 2.65 68.08

ResNet-50, CAT
32 32 1 76.1
5 1.60 3.125 74.90
4 1.78 2.25 74.50

SSD512-SqueezeNet
(Gudovskiy et al., 2018)

32 32 1 68.12
8 2 4 64.39
6 2 3 62.09

SSD512-VGG, CAT
32 32 1 80.72
6 2.334 2.57 77.49
4 1.562 2.56 77.43

Table 1: Results for ResNet-18, ResNet-50, and SSD512. We include the results by Gudovskiy
et al. (2018) for the SSD512 model on the same task but with a different backbone,
for which we obtain a better compression with a lower accuracy degradation.
Compute denotes the activation bitwidth used for arithmetic operations. Memory
denotes the average number of bits for memory transactions (after compression).
Compression ratio denotes the reduction in representation size. Weight bitwidth
is 8 except for the full-precision experiments. Additional results are provided in
Tables A.1 and A.2 in the Appendix.

experiments) the pre-trained network F with the regularized loss (2), with LH =
∑
Ni ·Ĥ(xi)

in the case of differentiable entropy and LH =
∑
Lc(xi) in the case of compressability loss,

where the sum is running over network layers. At test time, we apply entropy coding on the
activations (on a per layer basis) before writing them to memory, thus reducing the amount
of memory transactions. In contrast to Chmiel et al. (2020), who avoided fine-tuning by
using test-time transformation to reduce entropy, our method does not requires complex
transformations at test time because it induces low entropy during training.

4. Experimental Results

We evaluate the proposed scheme on common CNN architectures for image classification
(ResNet-18/34/50, MobileNetV2) on ImageNet (Russakovsky et al., 2015) , object detection
(SSD5121, Liu et al., 2016) on Pascal VOC (Everingham et al., 2010) as well as Transformers
(BERT, Devlin et al., 2019) for sentimental analysis on CoLA (Warstadt et al., 2019) and
for textual entailment on MNLI (Williams et al., 2018).

1. Our code is based on an implementation by Li (2018).
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Data set Architecture
Compute Memory, embeddings Memory, fully connected

(%)(bits) (bits) (bits)
weights activ. weights activ. weights activ.

CoLa
Baseline 32 32 – – – – 49.23
No regularization 8 8 5.06 6.3 5.1 5.4 49.00
CAT 8 8 2.64± 0.07 3.17± 0.10 2.47± 0.07 2.97± 0.08 49.10

MNLI
Baseline 32 32 – – – – 83.91/84.1
No regularization 8 8 5.4 6.7 5.33 6.3 83.88/84
CAT 8 8 2.92± 0.08 3.4± 0.10 2.87± 0.07 3.37± 0.06 83.9/83.9

Table 2: Results of compression of both weights and activations for sentiment analysis
task on CoLa data set and textual entailment on MNLI data set using BERT
model. The primary performance metric for CoLa dataet is Matthews correlation
coefficient (MCC) and matched/mismatched accuracy (MA/MI) for MNLI data
set. The notation is the same as in Table 1, as compared to full precision baseline
and Huffman coding without regularization. We provide standard deviation over
different samples in form mean± std.

To perform an evaluation in conditions close to real-life setups, we chose to quantize
the weights to 8 bits and activations to the range of 4–8 bits. Adding a complicated
quantization method to CAT would require more resources and might add additional noise
to the measurements, without contributing much to the analysis of CAT. Thus, we chose a
simple quantization method and did not attempt to achieve state-of-the-art quantization
performance for the baseline. Compute bits refers to the bitwidth the activations or weights
during computation, while memory bits refers to the number of bits used for storage, i.e.,
after applying Huffman coding.

The weights were initialized with a pre-trained model and quantized with uniform
quantization using the shadow weights, i.e. applying updates to a full precision copy of
quantized weights (Hubara et al., 2016; Rastegari et al., 2016). The activations were clipped
with a learnable parameter and then uniformly quantized as suggested by Baskin et al.
(2018). Similarly to previous works (Zhou et al., 2016; Rastegari et al., 2016), we used the
straight-through estimator (Bengio et al., 2013) to approximate the gradients. We quantize
all layers in the network, in contrast to the common practice of leaving the first and last
layers in high precision (Zhou et al., 2016; Baskin et al., 2018).

For optimization, we used SGD with a learning rate of 10−4, momentum 0.9, and weight
decay 4× 10−5 for up to 30 epochs (usually, 10 to 15 epochs were sufficient for convergence).
Our initial choice of temperature was T = 10, which performed well. We tried to apply
exponential scheduling to the temperature (Jang et al., 2017), but it did not have any
noticeable effect on the results.

In Fig. 2 we compare our method with EPBC (Cavigelli et al. (2019)) and GF (Gudovskiy
et al. (2018)). EPBC is based on a lossless compression method that maintains the full
precision accuracy while reducing the bit rate to approximately 3.5 bits/value in both
models. GF, on the other hand, provides strong compression at the expense of larger
accuracy degradations. In addition, Gudovskiy et al. (2018) compressed only part of the
layers. Unlike these two methods, CAT allows more flexible tradeoff between compression
and accuracy. CAT shows better results in ResNet-34 and shows either better accuracy
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Figure 3: Tradeoff between rate and accuracy for (a) ResNet-18 and (b) ResNet50 in
weight compression. The activations are quantized to 8 bits for fair comparison.
“No fine-tuning” refers to pre-trained model with activations and weights quantized
to 8 bits and the Huffman coding applied to the weights.

or compression for MobileNetV2. We also ran our method on additional architectures:
ResNet-18, ResNet-50, and SSD512 with VGG backbone; the results are listed in Table 1.
Even though we cannot directly compare detection results with Gudovskiy et al. (2018), the
drop in accuracy is lower in our case. Additional experimental results are presented in the
Appendix.

In Table 2 we evaluate our method on BERT. Since those models are more challenging
for quantization, we used 8-bit quantization for both weights and activations. We used
sentiment analysis task on CoLa data set and textual entailment task on MNLI data set
for evaluation. The primary performance metric for CoLa dataet is Matthews correlation
coefficient (MCC) and matched/mismatched accuracy (MA/MI) for MNLI data set. CAT
was able to compress feature maps in CoLa data set to ~3-bit, while Huffman coding alone
requires almost twice higher bandwidth. In both cases there is only minor performance
degradation.

4.1 Ablation study

To better study the proposed approach and its properties, we perform multiple ablation
studies.

4.1.1 Rate–Accuracy Tradeoff

The proposed algorithm tries to balance between the compression and the accuracy of the
network by means of the parameter λ in Eq. (2). To evaluate this tradeoff, we trained
ResNet-18 and MobileNetV2 with different values of λ in the range of 0− 0.3, with results
shown in Fig. 4. Increasing the value of the regularization term results in weights that
produce lower-entropy activations and thus allow a better compression rate, at the expense
of accuracy degradation. We show the values of the theoretical entropy and the average
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Figure 4: Tradeoff between rate and accuracy for different values of λ (ranged between 0 and
0.3) in (a) ResNet-18 and (b) MobileNetV2 in activations compression. In
ResNet-18, the activations are quantized to 5 bits; in MobileNet we show results
for activation quantized to 6 and 8 bits.

Network
Accuracy, % Memory, bits
(mean± std) (mean± std)

ResNet-18 69.122± 0.016 1.5150± 0.0087

ResNet-34 73.025± 0.095 1.7875± 0.033

Table 3: Mean and standard deviation over five runs of ResNet-18 and ResNet-34 with 5
bit compute.

bitwidth of the Huffman-coded activations. The main advantage of Huffman coding is
computational efficiency: even the naive implementation of the Huffman coding introduces
only 4% overhead for inference time. For high bitwidth, Huffman coding is close (~3%
overhead) to the theoretical entropy, while for lower entropy there is a larger difference (in
particular, Huffman coding is bounded from below by 1 bit per value) – in this case, different
lossless coding schemes such as arithmetic coding or asymmetric numeral systems (Duda
et al., 2015) can provide better results.

4.1.2 Robustness

To check the robustness of our method, we performed several runs with the same hyperpa-
rameters and a different random seed. The results, reported in Table 3, suggest that the
method is robust and stable under random initialization.

4.1.3 Soft Entropy vs. Compressibility Loss

Replacing the soft entropy with a different entropy-minimizing loss has a minor effect on
the results (Table 4). In contrast, using `1 regularization, which promotes sparsity, shows
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Compute, bits Loss Accuracy Memory, bits

4 entropy 67.86% 1.43
4 comp. 67.84% 1.50
4 `1 65.3% 2.4

5 entropy 69.49% 1.79
5 comp. 69.36% 1.73
5 `1 67.9% 3.7

Table 4: Performance of soft entropy (8), compressibility loss (10) and `1 regularization on
ResNet-18.
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Figure 5: Soft entropy with different sample sizes compared to a real entropy of a single
batch. The shaded region covers the standard deviation over three runs.

lower accuracy for higher bitwidth. This suggests that the desired effect is the result of an
entropy reduction rather than a particular form of regularization promoting it.

4.1.4 Batch Size

We noticed that training ResNet-50 on a single GPU mandated the use of small batches,
leading to performance degradation. Increasing the batch size from 16 to 64 without other
changes increased accuracy by more than 0.5% with an entropy increase of less than 0.1
bits/value.

4.1.5 Sample Size in Soft Entropy Calculation

To check whether the number of values used to calculate soft entropy is enough, we ran a
soft entropy evaluation on a single tensor and compared it to real values. Since the tensors
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Architecture
Compute Memory, original Memory, CAT Top-1

accuracy
(%)

(bits) (bits) (bits)
weights activ. weights activ. weights activ.

ResNet-18
32 32 32 32 – – 69.70
8 6 5.1 3.5 2.2± 0.06 2.4± 0.07 68.90
8 5 5.1 3 1.9± 0.03 2.24± 0.04 66.80

ResNet-50
32 32 32 32 76.15
8 6 4.6 3.6 2.4± 0.08 2.6± 0.09 75.1
8 5 4.6 2.95 2.3± 0.06 1.9± 0.04 74.5

Table 5: Results of compression of both weights and activations for ResNet-18 and ResNet-50.
The notation is the same as in Table 1. We add the baseline (“Memory, original”)
that employs Huffman coding but no regularization to pre-trained model. We
provide standard deviation over different samples in form mean± std.

are large (hundreds of thousands of elements), even 5% of the values already provide a
reasonable approximation of the real entropy, as shown in Fig. 5.

4.1.6 Weight Compression

We also show that the proposed method can be applied along with weight compression.
First, we performed experiments with regularization applied only to weights. Fig. 3 shows
the result for ResNet-18 and ResNet-50 and Table 2 show the result of BERT on CoLa and
MNLI data set. Both activations and weights are quantized to 8 bits. The regularization
provides a significant improvement, reducing the entropy of weights to ~2.5 bits without a
loss in accuracy or MCC score in CoLa data set. A further increase in regularization allows
us to achieve 2-bit entropy with less than 1% loss in accuracy.

Finally, we apply the entropy reduction to both weights and activations. The results
are presented in Table 5. With less than 1% loss in accuracy, we get an almost twofold
improvement over unregularized version in both weight and activation entropy.

5. Discussion

Quantization of activations reduces memory access costs that are responsible for a significant
part of the energy footprint of DNN accelerators. Conservative quantization approaches,
known as post-training quantization, take a model trained for full precision and directly
quantize it to 8-bit precision. These methods are simple to use and allow for quantization
with limited data. Unfortunately, post-training quantization below 8 bits usually incurs
significant accuracy degradation. Quantization-aware training approaches involve some sort
of training either from scratch (Hubara et al., 2016), or as a fine-tuning step from a pre-
trained floating point model (Han et al., 2015). Training usually compensates significantly
for a model’s accuracy loss due to quantization.

In this work, we take a further step and propose a compression-aware training method
to aggressively compress activations to as low as 2 average bit/value representations without

12
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harming accuracy. Our method optimizes the average bit per value needed to represent
activation values by minimizing the entropy. We demonstrate the applicability of our
approach and its compatibility with other compression methods, such as quantization and
weight entropy reduction, on classification tasks using the MobileNetV2 and various ResNet
models, as well as an object detection task using the model SSD512, sentimental analysis
and textual entailment tasks using BERT model. Also, we show that entropy reduction of
weights and activations can be applied together, further improving bandwidth reduction.
Because of the low overhead, the method provides universal improvement for any custom
hardware, being especially useful for accelerators with efficient computations, where memory
transfers are a significant part of the energy budget. We show that the effect is universal
among loss functions and robust to random initialization.
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Appendix A. Additional experimental results

We provide additional experimental results in Tables A.1 and A.2.

Architecture Batch size lr λ
Compute Memory Top-1

(bits) (bits) accuracy (%)

ResNet-18 96 0.001

0
4

2.050 68.000
0.05 1.540 67.950
0.08 1.430 67.860

0.05

5

1.790 69.490
0.05 1.750 69.400
0.1 1.410 69.120
0.12 1.361 68.900
0.15 1.280 68.914
0.18 1.120 68.160
0.2 1.110 68.300
0.25 1.040 67.800
0.3 0.974 67.700

0
6

3.100 70.000
0.05 1.930 69.710
0.08 1.700 69.500

0.05 7 2.280 69.660

0
8

5.100 69.900
0.05 2.460 69.820
0.08 2.410 69.110

ResNet-34 96 0.001
0.05 8 2.750 73.200
0.05 6 2.000 73.200
0.05 5 1.790 73.100

ResNet-50

16

0.0001

0

4

2.500 73.700
16 0.05 1.720 73.800
64 0.05 1.78 74.5
48 0.08 1.67 74.2

16 0

5

2.950 75.500
16 0.05 1.920 75.460
16 0.08 1.700 75.200
16 0.1 1.600 74.900

Table A.1: Experimental results for ResNet.

14



CAT: Compression-Aware Training for Bandwidth Reduction

Architecture Batch size lr λ
Compute Memory Top-1

(bits) (bits) accuracy (%)

MobileNetV2

64 0.0001 0

4

2.200 66.150
64 0.001 0 2.800 66.200
64 0.0001 0.05 2.100 66.900
64 0.001 0.05 2.080 66.400
64 0.001 0.08 1.830 66.200
64 0.0001 0.08 1.980 66.450

64 0.001 0

6

3.900 69.600
64 0.0001 0 3.700 71.000
96 0.0001 0.05 2.950 71.500
32 0.0001 0.08 2.700 70.930
64 0.0001 0.1 2.700 70.950
32 0.001 0.15 1.750 64.000
64 0.0001 0.15 2.600 71.200
64 0.0001 0.2 2.450 70.700

64 0.0001 0

8

4.750 71.300
64 0.0001 0.05 4.150 71.400
64 0.001 0.08 2.600 70.000
64 0.0001 0.08 4.120 71.600
64 0.001 0.1 2.400 69.600
64 0.0001 0.1 4.100 71.250
64 0.001 0.15 2.300 68.500
64 0.001 0.2 2.150 68.000
64 0.0001 0.2 3.500 71.200
32 0.0001 0.3 2.900 70.700

Table A.2: Experimental results for MobileNet.
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