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Abstract

We study the problem of k-way clustering in signed graphs. Considerable attention in
recent years has been devoted to analyzing and modeling signed graphs, where the affin-
ity measure between nodes takes either positive or negative values. Recently, Cucuringu
et al. (2019) proposed a spectral method, namely SPONGE (Signed Positive over Nega-
tive Generalized Eigenproblem), which casts the clustering task as a generalized eigenvalue
problem optimizing a suitably defined objective function. This approach is motivated by
social balance theory, where the clustering task aims to decompose a given network into
disjoint groups, such that individuals within the same group are connected by as many
positive edges as possible, while individuals from different groups are mainly connected
by negative edges. Through extensive numerical experiments, SPONGE was shown to
achieve state-of-the-art empirical performance. On the theoretical front, Cucuringu et al.
(2019) analyzed SPONGE, as well as the popular Signed Laplacian based spectral method
under the setting of a Signed Stochastic Block Model, for k = 2 equal-sized clusters, in the
regime where the graph is moderately dense.

In this work, we build on the results in Cucuringu et al. (2019) on two fronts for the
normalized versions of SPONGE and the Signed Laplacian. Firstly, for both algorithms,
we extend the theoretical analysis in Cucuringu et al. (2019) to the general setting of k ≥ 2
unequal-sized clusters in the moderately dense regime. Secondly, we introduce regularized
versions of both methods to handle sparse graphs – a regime where standard spectral
methods are known to underperform – and provide theoretical guarantees under the same
setting of a Signed Stochastic Block Model. To the best of our knowledge, regularized
spectral methods have so far not been considered in the setting of clustering signed graphs.
We complement our theoretical results with an extensive set of numerical experiments on
synthetic data, and three real world data sets standard in the signed networks literature.
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1. Introduction

Signed graphs. The recent years have seen a significant increase in interest for analysis of
signed graphs, for tasks such as clustering (Chiang et al., 2014; Cucuringu et al., 2019), link
prediction (Leskovec et al., 2010; Kumar et al., 2016) and visualization (Kunegis et al., 2010).
Signed graphs are an increasingly popular family of undirected graphs, for which the edge
weights may take both positive and negative values, thus encoding a measure of similarity
or dissimilarity between the nodes. Signed social graphs have also received considerable
attention to model trust relationships between entities, with positive (respectively, negative)
edges encoding trust (respectively, distrust) relationships.

Clustering is arguably one of the most popular tasks in unsupervised machine learning,
aiming at partitioning the node set such that the average connectivity or similarity between
pairs of nodes within the same cluster is larger than that of pairs of nodes spanning different
clusters. While the problem of clustering undirected unsigned graphs has been thoroughly
studied for the past two decades (and to some extent, also that of clustering directed graphs
in recent years), a lot less research has been undertaken on studying signed graphs.

Spectral clustering and regularization. Spectral clustering methods have become a
fundamental tool with a broad range of applications in areas including network science, ma-
chine learning and data mining (von Luxburg, 2007). The attractivity of spectral clustering
methods stems, on one hand, from its computational scalability by leveraging state-of-the-
art eigensolvers, and on the other hand, from the fact that such algorithms are amenable to
a theoretical analysis under suitably defined stochastic block models that quantify robust-
ness to noise and sparsity of the measurement graph. Furthermore, on the theoretical side,
understanding the spectrum of the adjacency matrix and its Laplacians, is crucial for the
development of efficient algorithms with performance guarantees, and leads to a very math-
ematically rich set of problems. One such example from the latter class is that of Cheeger
inequalities for general graphs, which relate the dominant eigenvalues of the Laplacian to
edge expansion on graphs (Chung, 1996), extended to the setup of directed graphs (Chung,
2005), and more recently, to the graph Connection Laplacian arising in the context of the
group synchronization problem (Bandeira et al., 2013), and higher-order Cheeger inequal-
ities for multiway spectral clustering (Lee et al., 2014). There has been significant recent
advances in theoretically analyzing spectral clustering methods in the context of stochastic
block models; for a detailed survey, we refer the reader to the comprehensive recent survey
of Abbe (2017).

In general, spectral clustering algorithms for unsigned and signed graphs typically have a
common pipeline, where a suitable graph operator is considered (e.g., the graph Laplacian),
its (usually k) extremal eigenvectors are computed, and the resulting point cloud in Rk is
clustered using a variation of the popular k-means algorithm (Rohe et al., 2011). The main
motivation for our current work stems from the lack of statistical guarantees in the above
literature for the signed clustering problem, in the context of sparse graphs and large number
of clusters k ≥ 3. The problem of k-way clustering in signed graphs aims to find a partition
of the node set into k disjoint clusters, such that most edges within clusters are positive,
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while most edges across clusters are negative, thus altogether maximizing the number of
satisfied edges in the graph. Another potential formulation to consider is to minimize the
number of (unsatisfied) edges violating the partitions, i.e, the number of negative edges
within clusters and positive edges across clusters.

A regularization step has been introduced in the recent literature motivated by the ob-
servation that properly regularizing the adjacency matrix A of a graph can significantly
improve performance of spectral algorithms in the sparse regime. It was well known before-
hand that standard spectral clustering often fails to produce meaningful results for sparse
networks that exhibit strong degree heterogeneity (Amini et al., 2013; Jin, 2015). To this

end, Chaudhuri et al. (2012) proposed the regularized graph Laplacian Lτ = D
−1/2
τ AD

−1/2
τ ,

where Dτ = D+ τI, for τ ≥ 0. The spectral algorithm introduced and analyzed in Chaud-
huri et al. (2012) splits the nodes into two random subsets and only relies on the subgraph
induced by only one of the subsets to compute the spectral decomposition. Qin and Rohe
(2013) studied the more traditional formulation of a spectral clustering algorithm that uses
the spectral decomposition on the entire matrix (Ng et al., 2001), and proposed a regular-
ized spectral clustering which they analyze. Subsequently, Joseph and Yu (2016) provided
a theoretical justification for the regularization Aτ = A+ τJ , where J denotes the all ones
matrix, partly explaining the empirical findings of Amini et al. (2013) that the performance
of regularized spectral clustering becomes insensitive for larger values of regularization pa-
rameters, and show that such large values can lead to better results. It is this latter form
of regularization that we would be leveraging in our present work, in the context of clus-
tering signed graphs. Additional references and discussion on the regularization literature
are provided in Section 1.2.

Motivation & Applications. The recent surge of interest in analyzing signed graphs
has been fueled by a very wide range of real-world applications, in the context of clustering,
link prediction, and node rankings. Such social signed networks model trust relationships
between users with positive (trust) and negative (distrust) edges. A number of online social
services such as Epinions and Slashdot that allow users to express their opinions are nat-
urally represented as signed social networks (Leskovec et al., 2010). Banerjee et al. (2012)
considered shopping bipartite networks that encode like and dislike preferences between
users and products. Other domain specific applications include personalized rankings via
signed random walks (Jung et al., 2016), node rankings and centrality measures (Li et al.,
2019), node classification (Tang et al., 2016), community detection (Yang et al., 2007; Chu
et al., 2016), and anomaly detection, as in Kumar et al. (2014) which classifies users of an
online signed social network as malicious or benign. In the very active research area of syn-
thetic data generation, generative models for signed networks inspired by Structural Balance
Theory have been proposed in Derr et al. (2018). Learning low-dimensional representations
of graphs (network embeddings) have received tremendous attention in the recent machine
learning literature, and graph convolutional networks-based methods have also been pro-
posed for the setting of signed graphs, including Derr et al. (2018); Li et al. (2020), which
provide network embeddings to facilitate subsequent downstream tasks, including clustering
and link prediction.

A key motivation for our line of work stems from time series clustering (Aghabozorgi
et al., 2015), an ubiquitous task arising in many applications that consider biological gene
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expression data (Fujita et al., 2012), economic time series that capture macroeconomic vari-
ables (Focardi, 2005), and financial time series corresponding to large baskets of instruments
in the stock market (Ziegler et al., 2010; Pavlidis et al., 2006). Driven by the clustering
task, a popular approach in the literature is to consider similarity measures based on the
Pearson correlation coefficient that captures linear dependence between variables and takes
values in [−1, 1]. By construing the correlation matrix as a weighted network whose (signed)
edge weights capture the pairwise correlations, we cluster the multivariate time series by
clustering the underlying signed network. To increase robustness, tests of statistical sig-
nificance are often applied to individual pairwise correlations, indicating the probability of
observing a correlation at least as large as the measured sample correlation, assuming the
null hypothesis is true. Such a thresholding step on the p-value associated to each individual
sample correlation (Ha et al., 2015), renders the correlation network as a sparse matrix,
which is one of the main motivations of our current work which proposes and analyzes
algorithms for handling such sparse signed networks. We refer the reader to the popular
work of Smith et al. (2011) for a detailed survey and comparison of various methodologies
for turning time series data into networks, where the authors explore the interplay between
fMRI time series and the network generation process. Importantly, they conclude that, in
general, correlation-based approaches can be quite successful at estimating the connectivity
of brain networks from fMRI time series.

Paper outline. This paper is structured as follows. The remainder of this Section 1
establishes the notation used throughout the paper, followed by a brief survey of related
works in the signed clustering literature and graph regularization techniques for general
graphs, along by a brief summary of our main contributions. Section 2 lays out the problem
setup leading to our proposed algorithms in the context of the signed stochastic block model
we subsequently analyze. Section 3 is a high-level summary of our main results across the
two algorithms we consider. Section 4 contains the analysis of the proposed SPONGEsym
algorithm, for both the sparse and dense regimes, for general number of clusters. Similarly,
Section 5 contains the main theoretical results for the symmetric Signed Laplacian, under
both sparsity regimes as well. Section 6 contains detailed numerical experiments on various
synthetic and real world data sets, showcasing the performance of our proposed algorithms,
as we vary the number of clusters, the relative cluster sizes, the sparsity regimes, and the
regularization parameters. Finally, Section 7 is a summary and discussion of our main
findings, with an outlook towards potential future directions. We defer to the Appendix
additional proof details and a summary of the main technical tools used throughout.

1.1 Notation

We denote by G = (V,E) a signed graph with vertex set V , edge set E, and adjacency
matrix A ∈ {0,±1}n×n. We will also refer to the unsigned subgraphs of positive (resp.
negative) edges G+ = (V,E+) (resp. G− = (V,E−)) with adjacency matrices A+ (resp.
A−), such that A = A+−A−. More precisely, A+

ij = max {Aij , 0} and A−ij = max {−Aij , 0},
with E+ ∩ E−= ∅, and E+ ∪ E−= E. We denote by D = D+ + D− the signed degree
matrix, with the unsigned versions given by D+ := A+1 and D− := A−1. For a subset of
nodes C ⊂ V , we denote its complement by C = V \ C.
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For a matrix M ∈ Rm×n, ‖M‖ denotes its spectral norm ‖M‖2, i.e., its largest singular
value, and ‖M‖F denotes its Frobenius norm. When M is a n × n symmetric matrix, we
denote Vk(M) be the n×k matrix whose columns are given by the eigenvectors corresponding
to the k smallest eigenvalues, and letR(Vk(M)) denote the range space of these eigenvectors.
We denote the eigenvalues of M by (λj(M))nj=1, with the ordering

λn(M) ≤ λn−1(M) ≤ · · · ≤ λ1(M).

We also denote Mi∗ to be the i-th row of M . We denote 1 = (1, . . . , 1) (resp. 1k) the all
ones column vector of size n (resp. k) and χ1 = 1√

k
1k. Im denotes the square identity

matrix of size m and is shortened to I when m = n. Jmn is the m × n matrix of all ones.
Finally, for a, b ≥ 0, we write a . b if there exists a universal constant C > 0 such that
a ≤ b. If a . b and b . a, then we write a � b.

1.2 Related literature on signed clustering and graph regularization techniques

Signed clustering. There exists a very rich literature on algorithms developed to solve
the k-way clustering problem, with spectral methods playing a central role in the devel-
opments of the last two decades. Such spectral techniques optimize an objective function
via the eigen-decomposition of a suitably chosen graph operator (typically a graph Lapla-
cian) built directly from the data, in order to obtain a low-dimensional embedding (most
often of dimension k or k − 1). A clustering algorithm such as k-means or k-means++ is
subsequently applied in order to extract the final partition.

Kunegis et al. (2010) introduced the combinatorial Signed Laplacian L = D − A for
the 2-way clustering problem. For heterogeneous degree distributions, normalized exten-

sions are generally preferred, such as the random-walk Signed Laplacian Lrw = I −D−1
A,

and the symmetric Signed Laplacian Lsym = I − D
−1/2

AD
−1/2

. Chiang et al. (2012)
pointed out a weakness in the Signed Laplacian objective for k-way clustering with k > 2,
and proposed instead a Balanced Normalized Cut (BNC) objective based on the opera-

tor LBNC = D
−1/2

(D+ − A)D
−1/2

. Mercado et al. (2016) based their clustering algo-
rithm on a new operator called the Geometric Mean of Laplacians, and later extended
this method in (Mercado et al., 2019) to a family of operators called the Matrix Power
Mean of Laplacians. Previous work (Cucuringu et al., 2019) by a subset of the authors of
the present paper introduced the symmetric SPONGE objective using the matrix opera-
tor T = (L−sym + τ+I)−1/2(L+

sym + τ−I)(L−sym + τ+I)−1/2, using the unsigned normalized

Laplacians L±sym = I − (D±)−1/2A±(D±)−1/2 and regularization parameters τ+, τ− > 0.
This work also provides theoretical guarantees for the SPONGE and Signed Laplacian al-
gorithms, in the setting of a Signed Stochastic Block Model.

Mercado et al. (2016) and Mercado et al. (2019) study the eigenspaces - in expectations
and in probability - of several graph operators in a certain Signed Stochastic Block Model.
However, this generative model differs from the one proposed in Cucuringu et al. (2019)
that we analyze in this work. In the former, the positive and negative adjacency matrices
do not have disjoint support, contrary to the latter. Moreover, their analysis is performed
in the case of equal-size clusters. We will later show in our analysis that their result for the
symmetric Signed Laplacian is not applicable in our setting.
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Hsieh et al. (2012) proposed to perform low-rank matrix completion as a preprocessing
step, before clustering using the top k eigenvectors of the completed matrix. For k = 2,
Cucuringu (2015) showed that signed clustering can be cast as an instance of the group syn-
chronization (Singer, 2011) problem over Z2, potentially with constraints given by available
side information, for which spectral, semidefinite programming relaxations, and message
passing algorithms have been considered. In recent work, Cucuringu et al. (2021) proposed
a formulation for the signed clustering problem that relates to graph-based diffuse interface
models utilizing the Ginzburg-Landau functionals, based on an adaptation of the classic
numerical Merriman-Bence-Osher (MBO) scheme for minimizing such graph-based func-
tionals (Merkurjev et al., 2014). We refer the reader to Gallier (2013) for a recent survey
on clustering signed and unsigned graphs.

In a different line of work, known as correlation clustering, Bansal et al. (2004) considered
the problem of clustering signed complete graphs, proved that it is NP-complete, and pro-
posed two approximation algorithms with theoretical guarantees on their performance. On
a related note, Demaine et al. (2006) studied the same problem but for arbitrary weighted
graphs, and proposed an O(log n) approximation algorithm based on linear programming.
For correlation clustering, in contrast to k-way clustering, the number of clusters is not
given in advance, and there is no normalization with respect to size or volume.

Regularization in the sparse regime. In many applications, real-world networks are
sparse. In this context, regularization methods have increased the performance of traditional
spectral clustering techniques, both for synthetic Stochastic Block Models and real data sets
(Chaudhuri et al., 2012; Amini et al., 2013; Joseph and Yu, 2016; Le et al., 2015).

Chaudhuri et al. (2012) regularize the Laplacian matrix by adding a (typically small)

weight τ to the diagonal entries of the degree matrix Lτ = I − D−1/2
τ AD

−1/2
τ with Dτ =

D + τI. Amini et al. (2013) regularize the graph by adding a weight τ/n to every edge,

leading to the Laplacian L̃τ = I −D−1/2
τ AτD

−1/2
τ with Aτ = A+ τ/n11T and Dτ = Aτ1.

Le et al. (2017) prove that this technique makes the adjacency and Laplacian matrices
concentrate for inhomogeneous Erdős-Rényi graphs. Zhang and Rohe (2018) show that
this technique prevents spectral clustering from overfitting through the analysis of dangling
sets. In (Le et al., 2017), Le et al. propose a graph trimming method in order to reduce the
degree of certain nodes. This is achieved by reducing the entries of the adjacency matrix
that lead to high-degree vertices. Zhou and Amini (2018) add a spectral truncation step
after this regularization method, and prove consistency results in the bipartite Stochastic
Block Model.

Very recently, regularization methods using powers of the adjacency matrix have been
introduced. Abbe et al. (2020) transform the adjacency matrix into the operator Ar =
1 {(I +A)r ≥ 1}, where the indicator function is applied entrywise. With this method,
spectral clustering achieves the fundamental limit for weak recovery in the sparse setting.
Very similarly, Stephan and Massoulié (2019) transform the adjacency matrix into a distance
matrix of outreach l, which links pairs of nodes that are l far apart w.r.t the graph distance.

1.3 Summary of our main contributions

This work extends the results obtained in Cucuringu et al. (2019) by a subset of the authors
of our present paper. This previous work introduced the SPONGE algorithm, a princi-
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pled and scalable spectral method for the signed clustering task that amounts to solving a
generalized eigenvalue problem. Cucuringu et al. (2019) provided a theoretical analysis of
both the newly introduced SPONGE algorithm and the popular Signed Laplacian-based
method (Kunegis et al., 2010), quantifying their robustness against the sampling sparsity
and noise level, under the setting of a Signed Stochastic Block Model (SSBM). These were
the first such theoretical guarantees for the signed clustering problem under a suitably
defined stochastic graph model. However, the analysis in Cucuringu et al. (2019) was re-
stricted to the setting of two equally-sized clusters, which is less realistic in light of most real
world applications. Furthermore, the same previous line of work considered the moderately
dense regime in terms of the edge sampling probability p, in particular, it operated in the
setting where E[Djj ] & lnn, i.e., p & lnn

n . Many real world applications involve large but
very sparse graphs, with p = Θ

(
1
n

)
, which provides motivation for our present work.

We summarize below our main contributions, and start with the remark that the the-
oretical analysis in the present paper pertains to the normalized version of SPONGE
(denoted as SPONGEsym) and the symmetric Signed Laplacian, while Cucuringu et al.
(2019) analyzed only the un-normalized versions of these signed operators. The experi-
ments reported in Cucuringu et al. (2019) also consider such normalized matrix operators,
and show their superior performance over their respective un-normalized versions, further
providing motivational ground for our current work.

(i) Our first main contribution is to analyze the two above-mentioned signed operators,
namely SPONGEsym and the symmetric Signed Laplacian, in the general SSBM
model with k ≥ 2 and unequal-cluster sizes, in the moderately dense regime. In
particular, we evaluate the accuracy of both signed clustering algorithms by bounding
the mis-clustering rate of the entire pipelines, as achieved by the popular k-means
algorithm.

(ii) Our second contribution is to introduce and analyze new regularized versions of both
SPONGEsym and the symmetric Signed Laplacian, under the same general SSBM
model, but in the sparse graph regime E[Djj ] & 1, a setting where standard spectral
methods are known to underperform. To the best of our knowledge, this sparsity
regime has not been previously considered in the literature of signed networks; such
regularized spectral methods have so far not been considered in the setting of clus-
tering signed networks, or more broadly in the signed networks literature, where such
regularization could prove useful for other related downstream tasks. One important
aspect of regularization techniques is the choice of the regularization parameters. We
show that our proposed algorithms can benefit from careful regularization and at-
tain a higher level of accuracy in the sparse regime, provided that the regularization
parameters scale as an adequate power of the average degree in the graph. These
findings are supported by our experiments on real-world datasets.

2. Problem setup

This section details the two algorithms for the signed clustering problem that we will analyze
subsequently, namely, SPONGEsym(Symmetric Signed Positive Over Negative Generalized
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Eigenproblem) and the symmetric Signed Laplacian, along with their respective regularized
versions.

2.1 Clustering via the SPONGEsym algorithm

The symmetric SPONGE method, denoted as SPONGEsym, aims at jointly minimizing
two measures of badness in a signed clustering problem. For an unsigned graph G and
X,Y ⊂ V , we define the cut function CutG(X,Y ) :=

∑
i∈X,j∈Y Aij , and denote the volume

of X by VolG(X) :=
∑

i∈X
∑n

j=1Aij .

For a given cluster set C ⊂ V , CutG(C,C) is the total weight of edges crossing from C to
C and VolG(C) is the sum of (weighted) degrees of nodes in C. With this notation in mind
and motivated by the approach of Cucuringu et al. (2016) in the context of constrained
clustering, the symmetric SPONGE algorithm for signed clustering aims at minimizing the

following two measures of badness given by
CutG+ (C,C)

VolG+ (C) and
(

CutG− (C,C)

VolG− (C)

)−1
=

VolG− (C)

CutG− (C,C)
.

To this end, we consider “merging” the objectives, and aim to solve

min
C⊂V

CutG+ (C,C)

VolG+ (C) + τ−

CutG− (C,C)

VolG− (C) + τ+
,

where τ+ > 0, τ− ≥ 0 denote trade-off parameters. For k-way signed clustering into disjoint
clusters C1, . . . , Ck, we arrive at the combinatorial optimization problem

min
C1,...,Ck

k∑
i=1

 CutG+ (Ci,Ci)

VolG+ (Ci)
+ τ−

CutG− (Ci,Ci)

VolG− (Ci)
+ τ+

 . (1)

Let D+, L+ denote respectively the degree matrix and un-normalized Laplacian associ-
ated with G+, and L+

sym = (D+)−1/2L+(D+)−1/2 denote the symmetric Laplacian matrix
for G+ (similarly for L−sym, D

−, L−). For a subset Ci ⊂ V , denote 1Ci to be the indicator
vector for Ci so that (1Ci)j equals 1 if j ∈ Ci, and is 0 otherwise. Now define the normalized
indicator vector xCi ∈ Rn where

xCi =

(
CutG−(Ci, Ci)

VolG−(Ci)
+ τ+

)−1/2
1√

VolG+(Ci)
(D+)1/21Ci .

In light on this, one can verify that

x>CixCi =

(
CutG−(Ci, Ci)

VolG−(Ci)
+ τ+

)−1
1>CiD

+1Ci

VolG+(Ci)
=

(
CutG−(Ci, Ci)

VolG−(Ci)
+ τ+

)−1

,

x>CiL
+
symxCi =

(
CutG−(Ci, Ci)

VolG−(Ci)
+ τ+

)−1
1>CiL

+1Ci

VolG+(Ci)

=

(
CutG−(Ci, Ci)

VolG−(Ci)
+ τ+

)−1
CutG+(Ci, Ci)

VolG+(Ci)
.
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Hence (1) is equivalent to the following discrete optimization problem

min
C1,...,Ck

k∑
i=1

x>Ci(L
+
sym + τ−I)xCi (2)

which is NP-Hard. A common approach to solve this problem is to drop the discreteness
constraints, and allow xCi to take values in Rn. To this end, we introduce a new set of vectors
z1, . . . , zk ∈ Rn such that they are orthonormal with respect to the matrix L−sym + τ+I, i.e.,

z>i (L−sym + τ+I)zi′ = δii′ . This leads to the continuous optimization problem

min
z>i (L−sym+τ+I)zi′=δii′

k∑
i=1

z>i (L+
sym + τ−I)zi. (3)

Note that the above choice of vectors z1, ..., zk is not really a relaxation of (2) since
xC1 , . . . , xCk are not necessarily (L−sym+τ+I)-orthonormal, but (3) can be conveniently for-
mulated as a suitable generalized eigenvalue problem, similar to the approach in Cucuringu
et al. (2016). Indeed, denoting yi = (L−sym + τ+I)1/2zi, and Y = [y1, . . . , yk] ∈ Rn×k, (3)
can be rewritten as

min
Y >Y=I

Tr
(
Y >(L−sym + τ+I)−1/2(L+

sym + τ−I)(L−sym + τ+I)−1/2Y
)
,

the solution to which is well known to be given by the smallest k eigenvectors of

T = (L−sym + τ+I)−1/2(L+
sym + τ−I)(L−sym + τ+I)−1/2,

see for e.g. (Sameh and Tong, 2000, Theorem 2.1). However this is not practically viable
for large scale problems, since computing T itself is already expensive. To circumvent
this issue, one can instead consider the embedding in Rk corresponding to the smallest k
generalized eigenvectors of the symmetric definite pair (L+

sym + τ−I, L−sym + τ+I). There
exist many efficient solvers for solving large scale generalized eigenproblems for symmetric
definite matrix pairs. In our experiments, we use the LOBPCG (Locally Optimal Block
Preconditioned Conjugate Gradient method) solver introduced in Knyazev (2001).

One can verify that (λ, v) is an eigenpair1 of T iff (λ, (L−sym+τ+I)−1/2v) is a generalized
eigenpair of (L+

sym + τ−I, L−sym + τ+I). Indeed, for symmetric matrices A,B with A � 0, it

holds true for w = A−1/2v that

A−1/2BA−1/2v = λv ⇐⇒ Bw = λAw.

Therefore, denoting Vk(T ) ∈ Rn×k to be the matrix consisting of the smallest k eigenvectors
of T , and Gk(T ) ∈ Rn×k to be the matrix of the smallest k generalized eigenvectors of
(L+

sym + τ−I, L−sym + τ+I), it follows that

Gk(T ) = (L−sym + τ+I)−1/2Vk(T ). (4)

Hence upon computing Gk(T ), we will apply a suitable clustering algorithm on the rows
of Gk(T ) such as the popular k-means++ (Arthur and Vassilvitskii, 2007), to arrive at the
final partition.

1With λ denoting its eigenvalue, and v the corresponding eigenvector.
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Remark 1 In Cucuringu et al. (2019), similar arguments as above were shown for the
SPONGE algorithm which led to computing the k smallest generalized eigenvectors of the
matrix pair (L+ + τ−D−, L− + τ+D+). SPONGEsym was proposed in Cucuringu et al.
(2019) but no theoretical results were provided.

Clustering in the sparse regime. We also provide a version of SPONGEsym for the
case where G is sparse, i.e., the graph has very few edges and is typically disconnected. In
this setting, we consider a regularized version of SPONGEsym wherein a weight is added
to each edge (including self-loops) of the positive and negative subgraphs, respectively.

Formally, for regularization parameters γ+, γ− ≥ 0, let us define A±
γ± := A±+ γ±

n 11
> to be

the regularized adjacency matrices for the unsigned graphs G+, G− respectively. Denoting
D±
γ± to be the degree matrix of A±

γ± , the normalized Laplacians corresponding to A±
γ± are

given by
L±
sym,γ± = I − (D±

γ±)−1/2A±
γ±(D±

γ±)−1/2.

Given the above modifications, let Vk(Tγ+,γ−) ∈ Rn×k denote the matrix consisting of the
smallest k eigenvectors of

Tγ+,γ− = (L−
sym,γ− + τ+I)−1/2(L+

sym,γ+
+ τ−I)(L−

sym,γ− + τ+I)−1/2 .

For the same reasons discussed earlier, we will consider the embedding given by the smallest
k generalized eigenvectors of the matrix pencil (L+

sym,γ+
+ τ−I, L−

sym,γ− + τ+I), namely

Gk(Tγ+,γ−) where

Gk(Tγ+,γ−) = (L−
sym,γ− + τ+I)−1/2Vk(Tγ+,γ−),

as in (44). The rows of Gk(Tγ+,γ−) can then be clustered using an appropriate clustering
procedure, such as k-means++.

Remark 2 Regularized spectral clustering for unsigned graphs involves adding γ
n11

> to the
adjacency matrix, followed by clustering the embedding given by the smallest k eigenvectors
of the normalized Laplacian (of the regularized adjacency), see for e.g. Amini et al. (2013);
Le et al. (2017). To the best of our knowledge, regularized spectral clustering methods have
not been explored thus far in the context of sparse signed graphs.

2.2 Clustering via the symmetric Signed Laplacian

The rationale behind the use of the (un-normalized) Signed Laplacian L for clustering is
justified by Kunegis et al. in Kunegis et al. (2010) using the signed ratio cut function. For
C ⊂ V ,

sRCut(C,C) =
(
2CutG+(C,C) + CutG−(C,C) + CutG−(C,C)

)( 1

|C|
+

1

|C|

)
. (5)

For 2-way clustering, minimizing this objective corresponds to minimizing the number of
positive edges between the two classes and the number of negative edges inside each class.
Moreover, (5) is equivalent to the following optimization problem

min
u∈U

u>Lu,

10
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where U ∈ Rn is the set of vectors of the form ∀i ∈ [n], ui = ±1
2

(√
|C|
|C| +

√
|C|
|C|

)
.

However, Gallier (2016) noted that this equivalence does not generalize to k > 2, and
defined a new notion of signed cut, called the signed normalized cut function. For a partition
C1, . . . , Ck with membership matrix X ∈ {0, 1}n×k,

sNCut(C1, . . . , Ck) =

k∑
i=1

CutG(Ci, Ci)

VolG(Ci)
+ 2

CutG−(Ci, Ci)

VolG(Ci)
=

k∑
i=1

(Xi)>LXi

(Xi)>DXi
,

with Xi the i-th column of X. Compared to (5), this objective also penalizes the number of
negative edges across two subsets, which may not be a desirable feature for signed clustering.
Minimizing this function with a relaxation of the constraint that Xi ∈ {0, 1}n leads to the
following problem

min
Y >Y=I

Tr
(
Y >LsymY

)
.

The minimum of this problem is obtained by stacking column-wise the k eigenvectors of
Lsym corresponding to the smallest eigenvalues, i.e. Vk(Lsym). Therefore, one can apply
a clustering algorithm to the rows of the matrix Vk(Lsym) to find a partition of the set of
nodes V .

In fact, we will consider using only the k− 1 smallest eigenvectors of Lsym and applying
the k-means++ algorithm on the rows of Vk−1(Lsym). This will be justified in our analysis
via a stochastic generative model, namely the Signed Stochastic Block Model (SSBM),
introduced in the next subsection. Under this model assumption, we will see later that
the embedding given by the k − 1 smallest eigenvectors of the symmetric Signed Laplacian
of the expected graph has k distinct rows (with two rows being equal if and only if the
corresponding nodes belong to the same cluster).

Clustering in the sparse regime. When G is sparse, we propose a spectral clustering
method based on a regularization of the signed graph, leading to a regularized Signed
Laplacian. To this end, for γ+, γ− ≥ 0, recall the regularized adjacency matrices A±

γ± , with

degree matrices D±
γ± , for the unsigned graphs G+, G− respectively. In light of this, the

regularized signed adjacency and degree matrices are defined as follows

Aγ := A+
γ+
−A−

γ− = A+
γ+ − γ−

n
11>,

Dγ := D+
γ+

+D−
γ− = D+ + γ+I +D− + γ−I = D + (γ+ + γ−)I = D + γI,

with γ := γ+ + γ−. Our regularized Signed Laplacian is the symmetric Signed Laplacian
on this regularized signed graph, i.e.

Lγ := I − (Dγ)−1/2Aγ(Dγ)−1/2. (6)

Similarly to the symmetric Signed Laplacian, our clustering algorithm in the sparse case
finds the k − 1 smallest eigenvectors of Lγ and applies the k-means algorithm on the rows
of Vk−1(Lγ).

11
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Remark 3 For the choice γ+ = γ−, the regularized Laplacian becomes

Lγ := I − (Dγ)−1/2A(Dγ)−1/2,

with Dγ = D+(γ++γ−)I. This regularization scheme is very similar to the degree-corrected
normalized Laplacian defined in Chaudhuri et al. (2012).

2.3 Signed Stochastic Block Model (SSBM)

Our work theoretically analyzes the clustering performance of SPONGEsym and the sym-
metric Signed Laplacian algorithms under a signed random graph model, also considered
previously in (Cucuringu et al., 2019; Cucuringu et al., 2021). We recall here its definition
and parameters.

• n: the number of nodes in network;

• k: the number of planted communities;

• p: the probability of an edge to be present;

• η: the probability of flipping the sign of an edge;

• C1, . . . , Ck: an arbitrary partition of the vertices with sizes n1, . . . , nk.

We first partition the vertices (arbitrarily) into clusters C1, . . . , Ck where |Ci| = ni. Next,
we generate a noiseless measurement graph from the Erdős-Rényi model G(n, p), wherein
each edge takes value +1 if both its endpoints are contained in the same cluster, and −1
otherwise. To model noise, we flip the sign of each edge independently with probability
η ∈ [0, 1/2). This results in the realization of a signed graph instance G from the SSBM
ensemble.

Let A ∈ {0,±1}n×n denote the adjacency matrix of G, and note that (Ajj′)j≤j′ are
independent random variables. Recall that A = A+ − A−, where A+, A− ∈ {0, 1}n×n are
the adjacency matrices of the unsigned graphs G+, G− respectively. Then, (A+

jj′)j≤j′ are

independent, and similarly (A−jj′)j≤j′ are also independent. But for given j, j′ ∈ [n] with

j 6= j′, A+
jj′ and A−jj′ are dependent. Let d±i denote the degree of a node in cluster i, for

i ∈ [k] in the graph E[A±]. Moreover, under this model, the expected signed degree matrix
is the scaled identity matrix ED = dI, with d = p(n− 1).

Remark 4 Contrary to stochastic block models for unsigned graphs, we do not require (for
the purpose of detecting clusters) that the intra-cluster edge probabilities to be different
from those of inter-cluster edges, since the sign of the edges already achieves this purpose
implicitly. In fact, it is the noise parameter η that is crucial for identifying the underlying
latent cluster structure.

To formulate our theoretical results we will also need the following notations. Let
si = ni/n denote the fraction of nodes in cluster i, with l (resp. s) denoting the fraction for
the largest (resp. smallest) cluster. Hence, the size of the largest (resp. smallest) cluster
is nl (resp. ns). Following the notation in Lei and Rinaldo (2015), we will denote Mn,k

12
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to be the class of “membership” matrices of size n × k, and denote Θ̂ ∈ Mn,k to be the
ground-truth membership matrix containing k distinct indicator row-vectors (one for each
cluster), i.e., for i ∈ [k] and j ∈ [n],

Θ̂ji =

{
1 if node j ∈ cluster Ci,

0 otherwise.

We also define the normalized membership matrix Θ corresponding to Θ̂, where for i ∈ [k]
and j ∈ [n],

Θji =

{
1/
√
ni if node j ∈ cluster Ci,

0 otherwise.

3. Summary of main results

We now summarize our theoretical results for SPONGEsym and the symmetric Signed
Laplacian methods, when the graph is generated from the SSBM ensemble.

3.1 Symmetric SPONGE

We begin by describing conditions under which the rows of the matrix Gk(T ) approximately
preserve the ground truth clustering structure. Before explaining our results, let us denote
the matrix T to be the analogue of T for the expected graph, i.e.,

T = (L−sym + τ+I)−1/2(L+
sym + τ−I)(L−sym + τ+I)−1/2 ,

where L±sym = I − (E[D±])−1/2 E[A±](E[D±])−1/2. We first show that for suitable values
of τ+ > 0, τ− ≥ 0 (with n large enough), the smallest k eigenvectors of T , denoted by
Vk(T ), are given by Vk(T ) = ΘR, for some k × k rotation matrix R. Hence, the rows of
Vk(T ) have the same clustering structure as that of Θ. Denoting Gk(T ) ∈ Rn×k to be the

matrix consisting of the k smallest generalized eigenvectors of (L+
sym + τ−I, L−sym + τ+I),

and recalling (4), we can relate Gk(T ) and Vk(T ) via

Gk(T ) = (L−sym + τ+I)−1/2Vk(T ). (7)

It turns out that when Vk(T ) = ΘR, and in light of the expression for L−sym + τ+I from
(24), we arrive at Gk(T ) = Θ(C−)−1/2R, where C− � 0 is as in (18). Since (C−)−1/2R is
invertible, it follows that Gk(T ) has k distinct rows, with the rows that belong to the same
cluster being identical. The remaining arguments revolve around deriving concentration
bounds on

∥∥T − T∥∥, which imply (for p large enough) that the distance between the column
spans of Vk(T ) and Vk(T ) is small, i.e., there exists an orthonormal matrix O such that∥∥Vk(T )− Vk(T )O

∥∥ is small. Finally, the expressions in (4) and (7) altogether imply that∥∥Gk(T )−Gk(T )O
∥∥ is small, which is an indication that the rows of Gk(T ) approximately

preserve the clustering structure encoded in Θ.

The above discussion is summarized in the following theorem, which is our first main
result for SPONGEsym in the moderately dense regime.

13
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Theorem 5 (Restating Theorem 29) (Eigenspace alignment of SPONGEsym in

the dense case) Assuming n ≥ max
{

2(1−η)
s(1−2η) ,

2η
(1−l)(1−η)

}
, suppose that τ+ > 0, τ− ≥ 0 are

chosen to satisfy

τ+ >
16η

βs(1− 2η)
, τ− <

β

2

(
s(1− 2η)

s(1− 2η) + 2η

)
min

{
1

4(1− β)
,
τ+

8

}
where β, η satisfy one of the following conditions

1. β = 4η
s(1−2η)+4η and 0 < η < 1

2 , or

2. β = 1
2 and η ≤ s

2s+4 .

Then Vk(T ) = ΘR and Gk(T ) = Θ(C−)−1/2R, where R is a rotation matrix, and C− � 0
is as defined in (18). Moreover, for any ε, δ ∈ (0, 1), there exists a constant c̃ε > 0 such
that the following is true. If p satisfies

p ≥ max

{
c̃εC2(s, η, l),

256C4
1 (τ+, τ−)(2 + τ+)4

δ4(1 + τ−)4(1− β)4
C2(s, η, l),

81

(1− l)δ4

}
ln(4n/ε)

n

with C1(·), C2(·) as in (45), then with probability at least 1− 2ε, there exists an orthogonal
matrix O ∈ Rk×k such that∥∥Vk(T )− Vk(T )O

∥∥ ≤ δ, and
∥∥Gk(T )−Gk(T )O

∥∥ ≤ δ√
τ+

+
δ

(τ+)2
.

Let us now interpret the scaling of the terms n, p, τ+ and τ− in Theorem 5, and provide
some intuition.

1. In general, when no assumption is made on the noise level η, we have β = 4η
s(1−2η)+4η

and the requirement on n is n & max
{

1
s(1−2η) ,

η
1−l

}
. Then a sufficient set of conditions

on τ+ > 0, τ− ≥ 0 are

τ+ & 1 +
η

s(1− 2η)
, τ− .

η

s(1− 2η) + 2η
. (8)

Moreover, we see from (45) that C1(τ+, τ−) . 1/τ+, and thus (2+τ+)C1(τ+,τ−)
1+τ− . 1.

Hence, a sufficient condition on p is

p &
1

δ4

(
1 +

η

s(1− 2η)

)4

C2(s, η, l)
lnn

n
.

2. In the “low-noise” regime where η ≤ s
2s+4 , the condition on τ− in (8) becomes strict,

especially as η → 0. In this regime, the second condition in Theorem 5 allows for a
wider range of values for τ−; in particular, the following set of conditions suffice

τ+ & 1, τ− .
s(1− 2η)

s(1− 2η) + 2η
.

Moreover, we then obtain that the condition p & 1
δ4
C2(s, η, l) lnn

n is sufficient.
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3. When τ+ →∞, then
∥∥Gk(T )−Gk(T )O

∥∥→ 0, which might lead one to believe that
the clustering performance improves accordingly. This is not the case however, since
when τ+ is large, then Gk(T ) ≈ 1√

τ+
Vk(T ) and Gk(T ) ≈ 1√

τ+
Vk(T ), which means that

clustering the rows of Gk(T ) (resp. Gk(T )) is roughly equivalent to clustering the rows
of Vk(T ) (resp. Vk(T )). Moreover, note that for large τ+, we have T ≈ 1

τ+
(L+

sym+τ−I)

and T ≈ 1
τ+

(L+
sym+τ−I) and thus the negative subgraph has no effect on the clustering

performance.

SPONGEsym in the sparse regime. Notice that the above theorem required the spar-
sity parameter p = Ω(lnn/n), when n is large enough. This condition on p is essentially

required to show concentration bounds on
∥∥∥L±sym − L±sym∥∥∥ in Lemma 27, which in turn im-

plies a concentration bound on
∥∥T − T∥∥ (see Lemma 28). However, in the sparse regime

p is of the order o(lnn)/n, and thus Lemma 27 does not apply in this setting. In fact,

it is not difficult to see that the matrices L±sym will not concentrate2 around L±sym in the
sparse regime. On the other hand, by relying on a recent result in (Le et al., 2017, Theorem
4.1) on the concentration of the normalized Laplacian of regularized adjacency matrices of
inhomogeneous Erdős-Rényi graphs in the sparse regime (see Theorem 31), we show con-

centration bounds on
∥∥∥L+

sym,γ+
− L+

sym

∥∥∥ and
∥∥∥L−sym,γ− − L−sym∥∥∥, which hold when p & 1/n

and γ+, γ− � (np)6/7 (see Lemma 32). As before, these concentration bounds can then be
shown to imply a concentration bound on

∥∥Tγ+,γ− − T∥∥ (see Lemma 33). Other than these
technical differences, the remainder of the arguments follow the same structure as in the
proof of Theorem 5, thus leading to the following result in the sparse regime.

Theorem 6 (Restating Theorem 34 ) Assuming n ≥ max
{

2(1−η)
s(1−2η) ,

2η
(1−η)(1−l)

}
, sup-

pose τ+ > 0, τ− ≥ 0 are chosen to satisfy

τ+ >
16η

βs(1− 2η)
, τ− <

β

2

(
s(1− 2η)

s(1− 2η) + 2η

)
min

{
1

4(1− β)
,
τ+

8

}
where β, η satisfy one of the following conditions

1. β = 4η
s(1−2η)+4η and 0 < η < 1

2 , or

2. β = 1
2 and η ≤ s

2s+4 .

Then Vk(T ) = ΘR and Gk(T ) = Θ(C−)−1/2R, where R is a rotation matrix, and C− � 0
is as defined in (18). Moreover, there exists a constant C > 0 such that for r ≥ 1 and
δ ∈ (0, 1), if p satisfies

p ≥ max

{
1,

(
4C1(τ+, τ−)(2 + τ+)

3(τ+)2(1− β)(1 + τ−)

)28
}
C14

4 (r, s, η, l)

δ28(1− η)n
,

and γ+, γ− = [np(1− η)]6/7, then with probability at least 1− 2e−r, there exists a rotation
O ∈ Rk×k so that∥∥Vk(Tγ+,γ−)− Vk(T )O

∥∥ ≤ δ, and
∥∥Gk(Tγ+,γ−)−Gk(T )O

∥∥ ≤ δ√
τ+

+
δ

(τ+)2
.

2See for e.g., Le et al. (2017).
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Here, C4(r, s, η, l) := 25/2Cr2 + 3
√

2C2(s, η, l), with C2(s, η, l) as defined in (45).

The following remarks are in order.

1. It is clear that γ+, γ− can neither be too small (since this would imply lack of concen-
tration), nor too large (since this would destroy the latent geometries of G+, G−). The

choice γ+, γ− � (np)6/7 provides a trade-off, and leads to the bounds
∥∥∥L+

sym,γ+
− L+

sym

∥∥∥,∥∥∥L−sym,γ− − L−sym∥∥∥ = O((np)−1/14) when p & 1/n (see Lemma 32).

2. In general, for η ∈ (0, 1/2), it suffices that τ+, τ− satisfy (8) and n & max
{

1
s(1−2η) ,

η
1−l

}
.

As discussed earlier, (2+τ+)C1(τ+,τ−)
1+τ− . 1, and hence it suffices that p & C14

4 (r,s,η,l)
δ28n

.

Mis-clustering error bounds. Thus far, our analysis has shown that under suitable
conditions on n, p, τ+ and τ−, the matrix Gk(T ) (or Gk(Tγ+,γ−) in the sparse regime)
is close to Gk(T )O for some rotation O, with the rows of Gk(T ) preserving the ground
truth clustering. This suggests that by applying the k-means clustering algorithm on the
rows of Gk(T ) (or Gk(Tγ+,γ−)) one should be able to approximately recover the underlying
communities. However, the k-means problem for clustering points in Rd is known to be
NP-Hard in general, even for k = 2 or d = 2 (Aloise et al., 2009; Dasgupta, 2008; Mahajan
et al., 2012). On the other hand, there exist efficient (1 + ξ)-approximation algorithms (for
ξ > 0), such as, for e.g., the algorithm of Kumar et al. (2004) which has a running time of

O(2(k/ξ)O(1)
nd).

Using standard tools (Lei and Rinaldo, 2015, Lemma 5.1), we can bound the mis-
clustering error when a (1 + ξ)-approximate k-means algorithm is applied on the rows of
Gk(T ) (or Gk(Tγ+,γ−)), provided the estimation error bound δ is small enough. In the
following theorem, the sets Si, i = 1, . . . , k contain those vertices in Ci for which we cannot
guarantee correct clustering.

Theorem 7 (Re-Stating Theorem 36) Under the notation and assumptions of Theo-
rem 5, let (Θ̃, X̃) ∈Mn×k×Rk×k be a (1 + ξ)-approximate solution to the k-means problem
minΘ∈Mn×k,X∈Rk×k ‖ΘX −Gk(T )‖2F . Denoting

Si =

j ∈ Ci :
∥∥∥(Θ̃X̃)j∗ − (Θ(C−)−1/2RO)j∗

∥∥∥ ≥ 1

2
√
ni(τ+ + 2

1−l )


it holds with probability at least 1− 2ε that

k∑
i=1

|Si|
ni
≤ δ2(64 + 32ξ)k

(
τ+ +

2

1− l

)(
(τ+)3 + 1

(τ+)4

)
. (9)

In particular, if δ satisfies

δ <
(τ+)2√

(64 + 32ξ)k(τ+ + 2
1−l )((τ

+)3 + 1)
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then there exists a k×k permutation matrix π such that Θ̃G = Θ̂Gπ, where G = ∪ki=1(Ci\Si).
In the sparse regime, the above statement holds under the notation and assumptions of

Theorem 6 with Gk(T ) replaced with Gk(Tγ+,γ−), and with probability at least 1− 2e−r.

We remark that when τ+ → ∞, the bound on δ becomes independent of τ+ and is of the
form δ . 1√

k
. This is also true for the mis-clustering bound in (9), which is of the form∑k

i=1
|Si|
ni

. δ2k.

3.2 Symmetric Signed Laplacian

We now describe our results for the symmetric Signed Laplacian. We recall that E[A] =
E[A+]− E[A−] and E[D] denote the adjacency and degree matrices of the expected graph,
under the SSBM ensemble. We define

Lsym = In − (E[D])−1/2E[A](E[D])−1/2, (10)

to be the normalized Signed Laplacian of the expected graph. Moreover, ρ = s
l ≤ 1 denotes

the aspect ratio, measuring the discrepancy between the smallest and largest cluster sizes
in the SSBM.

We will first show that for ρ large enough, the smallest k − 1 eigenvectors of Lsym,
denoted by Vk−1(Lsym), are given by Vk−1(Lsym) = ΘRk−1, with Rk−1 ∈ Rk×(k−1) a matrix
whose columns are the k−1 smallest eigenvectors of a k×k matrix C defined in Lemma 37.
We will then prove that the rows of Vk−1(Lsym) impart the same clustering structure as
that of Θ. The remaining arguments revolve around deriving concentration bounds on∥∥Lsym − Lsym∥∥, which imply, for n, p and ρ large enough, that the distance between the
column spans of Vk−1(Lsym) and Vk−1(Lsym) is small, i.e. there exists a unitary matrix
O such that

∥∥Vk−1(Lsym)− Vk−1(Lsym)O
∥∥ is small. Altogether, this allows us to conclude

that the rows of Vk−1(Lsym) approximately encode the clustering structure of Θ. The above
discussion is summarized in the following theorem, which is our first main result for the
symmetric Signed Laplacian, in the moderately dense regime.

Theorem 8 (Eigenspace alignment in the dense case) Assuming η ∈ [0, 1/2), k ≥
2, n ≥ 10, suppose the aspect ratio satisfies

√
ρ > 1− 1

4k(2 +
√
k)
, (11)

and suppose that, for δ ∈ (0, 1
2), it holds true that

p > C(k, η, δ)
lnn

n
with C(k, η, δ) =

(
2Ck

δ(1− 2η)

)2

and C < 43, (12)

Then there exists a universal constant c > 0, such that with probability at least 1 − 2
n −

n exp (−npc ), there exists an orthogonal matrix O ∈ R(k−1)×(k−1) such that

‖Vk−1(Lsym)−ΘRk−1O‖ ≤ 2δ,

where Rk−1 ∈ Rk×(k−1) is a matrix whose columns are the (k − 1) smallest eigenvectors of
the matrix C defined in Lemma 37.
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Remark 9 (Related work) As previously explained, for the special case where k = 2 and
with equal-size clusters, a similar result was proved in (Cucuringu et al., 2019, Theorem
3). Under a different SSBM model, the Signed Laplacian clustering algorithm was analyzed
by Mercado et al. (2019) for general k. Although their generative model is more general
than our SSBM, their results on the symmetric Signed Laplacian do not apply here. More
precisely, one assumption of Theorem 3 of Mercado et al. (2019) translates into our model
as p(k − 2)(1− 2η) < 0, which does not hold for η < 1

2 and k ≥ 2.

Remark 10 (Assumptions) The condition on the aspect ratio (11) is essential to apply
a perturbation technique, where the reference is the setting with equal-size clusters, i.e.
ni = n

k , ∀i ∈ [k] (see Lemma 39). In the sparsity condition (12), we note that the constant
C(k, η, δ) scales quadratically with the number of classes k and as δ−2 with δ > 0 the error
on the eigenspace. However, we conjecture that this assumption is only an artefact of the
proof technique, and that the result could hold for more general graphs with very unbalanced
cluster sizes.

Regularized Signed Laplacian. We now consider the sparse regime p = o(lnn)/n and
show that we can recover the ground-truth clustering structure up to some small error using
the regularized Signed Laplacian Lγ , provided that n, p and ρ are large enough, and that
the regularization parameters γ+, γ− are well-chosen. We denote Lγ to be the equivalent
of the regularized Laplacian for the expected graph in our SSBM, i.e.

Lγ = I − (E[Dγ ])−1/2E[Aγ ](E[Dγ ])−1/2,

with E[Aγ ], resp. E[Dγ ], denoting the adjacency matrix, resp. the degree matrix, of the
expected regularized graph. The next theorem is an intermediate result, which provides a
high probability bound on ‖Lγ − Lγ‖ and ‖Lγ − Lsym‖.

Theorem 11 (Error bound for the regularized Signed Laplacian) Assuming η ∈ [0, 1/2),
k ≥ 2, and regularization parameters γ+, γ− ≥ 0, γ := γ+ + γ−, it holds true that for any
r ≥ 1, with probability at least 1− 7e−2r, we have

‖Lγ − Lγ‖ ≤
Cr2

√
γ

(
1 +

d

γ

)5/2

+
32
√

2r
√
γ

+
8√
d
, (13)

with C > 1 an absolute constant. Moreover, it also holds true that

‖Lγ − Lsym‖ ≤
Cr2

√
γ

(
1 +

d

γ

)5/2

+
32
√

2r
√
γ

+
8√
d

+
γ

d+ γ
. (14)

In particular, for the choice γ = d
7/8

, if p ≥ 2/n, we obtain

‖Lγ − Lsym‖ ≤
(
128Cr2 + 1

)
(d)−

1
8 .

Remark 12 The above theorem shows the concentration of our regularized Laplacian Lγ
towards the regularized Laplacian (13) and the Signed Laplacian (14) of the expected graph.
More precisely, if for some well-chosen parameters γ+, γ− ≥ 0, these upper bounds are
small, e.g ‖Lγ−Lsym‖ << 1, then we have ‖Lγ−Lsym‖ << ‖Lsym‖ since ‖Lsym‖ = 2 (see
Appendix E).
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Using this concentration bound, we can show that the eigenspaces Vk−1(Lγ) and Vk−1(Lsym)
are “close”, provided that p = Ω(1/n), ρ is close enough to 1, and γ is well-chosen. This is
stated in the next theorem.

Theorem 13 (Eigenspace alignment in the sparse case) Assuming η ∈ [0, 1/2), k ≥
2, and n ≥ 10, suppose that (11) holds true, and for δ ∈ (0, 1

2) and r ≥ 1, the sparsity p
satisfies

p >

(
2kC4

δ(1− 2η)

)8 2

n
with C4 = 128Cr2 + 1 (15)

and C > 1 the constant defined in (13). If the regularization parameters γ+, γ− ≥ 0 are

chosen so that γ = d
7/8

, then with probability at least 1− 7e−2r − 2
n − ne

−np/c, there exists

an orthogonal matrix O ∈ R(k−1)×(k−1) so that

‖Vk−1(Lγ)−ΘRk−1O‖ ≤ 2δ.

Remark 14 In the sparse setting, the constant before the factor 1
n in the sparsity condition

(15) scales as
(
k
δ

)8
. However for k fixed, it would hold if p = ω(1/n) as n→∞.

Remark 15 In practice, one can choose the regularization parameters by first estimating
the sparsity parameter p, e.g. from the fraction of connected pairs of nodes

p =
2

n(n− 1)

∑
i<j

|Aij |,

then choosing γ ≥ 0 so that γ = (p̂(n− 1))7/8. However, from this analysis, it is not clear
how one would suitably choose γ+ and γ−.

Mis-clustering error bounds. Since Vk−1(Lsym) and Vk−1(Lγ) are “close” to Vk−1(Lsym),
we recover the ground-truth clustering structure up to some error, which we quantify in the
following theorem, where we bound the mis-clustering rate when using a (1+ξ)-approximate
k-means error on the rows of Vk−1(Lsym) (resp. Vk−1(Lγ)).

Theorem 16 (Number of mis-clustered nodes) Let ξ > 0 and δ ∈
(

0,
√

1
12(16+8ξ)(k−1)

)
,

and suppose that ρ and p satisfy the assumptions of Theorem 8 (resp. Theorem 13 and
r ≥ 1). Let (Θ̃, R̃k−1) be the (1 + ξ)-approximation of the k-means problem

min
Θ∈Mn,k,R∈Rk×(k−1)

∥∥ΘR− Vk−1(Lsym)
∥∥
F

(resp. min
Θ∈Mn,k,R∈Rk×(k−1)

‖ΘR− Vk−1(Lγ)‖F ).

Let Si =

{
j ∈ Ci;

∥∥∥(Θ̃R̃k−1)j∗ − (ΘRk−1O)j∗

∥∥∥2
≥ 2

3ni

}
and Ṽ = ∪ki=1Ci\Si. Then with

probability at least 1 − 2
n − n exp(−npc ) (resp. 1 − 7e−2r − 2

n − ne−np/c), there exists a

permutation π ∈ Rk×k such that Θ̃
Ṽ ∗ = Θ̂

Ṽ ∗π and

k∑
i=1

|Si|
ni
≤ 96(2 + ξ)(k − 1)δ2.

In particular, the set of mis-clustered nodes is a subset of ∪ki=1Si.
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4. Analysis of SPONGE Symmetric

This section contains the proof of our main results for SPONGEsym, divided over the
following subsections. Section 4.1 describes the eigen-decomposition of the matrix T , thus
revealing that a subset of its eigenvectors contain relevant information about Θ. Section 4.2
provides conditions on τ+, τ− which ensure that Vk(Θ) = ΘR (for some rotation matrix R),
along with a lower bound on the eigengap λn−k+1(T ) − λn−k(T ). Section 4.3 then derives
concentration bounds on

∥∥T − T∥∥ using standard tools from the random matrix literature.
These results are combined in Section 4.4 to derive error bounds for estimating Vk(T ) and
Gk(T ) up to a rotation (using the Davis-Kahan theorem). The results summarized thus far
pertain to the “dense” regime, where we require p = Ω(lnn/n) when n is large. Section
4.5 extends these results to the sparse regime where p = o(lnn)/n, for the regularized
version of SPONGEsym. Finally, we conclude in Section 4.6 by translating our results
from Sections 4.4 and 4.5 to obtain mis-clustering error bounds for a (1 + ξ)-approximate
k-means algorithm, by leveraging previous tools from the literature (Lei and Rinaldo, 2015).

4.1 Eigen-decomposition of T

The following lemma shows that a subset of the eigenvectors of T indeed contain information
about Θ, i.e., the ground-truth clustering.

Lemma 17 (Spectrum of T ) Let

d+
i = p (n(si(1− 2η) + η)− (1− η)) ,

d−i = p (n(−si(1− 2η) + (1− η))− η) ,

denote the expected degree of a node in cluster Ci, i ∈ [k]. Let u+ =

(√
n1

d+1
, . . . ,

√
nk
d+k

)>
,

u− =

(√
n1

d−1
, . . . ,

√
nk
d−k

)>
, α+

i = 1 + τ− + p(1 − η)/d+
i , and α−i = 1 + τ+ + pη/d−i , for

i ∈ [k], for some τ+ > 0, τ− ≥ 0. Let the columns of V ⊥ contain eigenvectors of E[D+]
which are orthogonal to the column span of Θ. It holds true that

T =
[
ΘR V ⊥

]


Λ
α+
1

α−1
In1−1

. . .
α+
k

α−k
Ink−1


[

(ΘR)>

V ⊥
>

]
, (16)

where R is a k × k rotation matrix, and Λ is a diagonal matrix, such that
(C−)−1/2 C+ (C−)−1/2 = RΛRT , where

C+ = −pηu+(u+)> + diag

(
1 + τ− +

p

d+
i

(1− η − ni(1− 2η))

)
, (17)

C− = −p(1− η)u−(u−)> + diag

(
1 + τ+ +

p

d−i
(η + ni(1− 2η))

)
. (18)
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Proof We first consider the spectrum of D+, D−, A+, A−, followed by that of (L+
sym+τ−I)

and (L−sym + τ+I), which altogether will reveal the spectral decomposition of T .
• Analysis in expectation of the spectra of D+, D−, A+, A−. Without loss of gener-

ality, we may assume that cluster C1 contains the first n1 vertices, cluster C2 the next n2 ver-
tices and similarly for the remaining clusters. Note that E[D±] = diag

(
d±1 In1 , . . . , d

±
k Ink

)
,

where for i ∈ [k], straightforward calculations reveal that d+
i = p (n(si(1− 2η) + η)− (1− η)),

and d−i = p (n(−si(1− 2η) + (1− η))− η). One can rewrite the matrices (E[D±])−1 in the
more convenient form

(E[D±])−1 = [Θ V ⊥] diag

(
1

d±1
, ...,

1

d±k
,

1

d±1
In1−1, ...,

1

d±k
Ink−1

)
[Θ V ⊥]> (19)

since the column vectors of Θ are eigenvectors of (E[D±])−1, and the eigenvalues of (E[D±])−1

are apparent because E[D±] is a diagonal matrix. Note that (19) is true in general, and
does not make any assumption on the placement of the vertices into their respective Ci
cluster. Furthermore, one can verify that E[A+] admits the eigen-decomposition

E[A+] = Θn×k


n1p(1− η)

√
n1n2pη . . .

√
n1nkpη√

n2n1pη n2p(1− η) . . .
√
n2nkpη

...
...

. . .
...√

nkn1pη
√
nkn2pη . . . nkp(1− η)


k×k

Θ>k×n − p(1− η)In×n (20)

and similarly, E[A−] can be decomposed as

E[A−] = Θn×k


n1pη

√
n1n2p(1− η) . . .

√
n1nkp(1− η)√

n2n1p(1− η) n2pη . . .
√
n2nkp(1− η)

...
...

. . .
...√

nkn1p(1− η)
√
nkn2p(1− η) . . . nkpη


k×k

Θ>k×n − pηIn×n .

• Analysis of the spectra of (L+
sym+ τ−I) and (L−sym+ τ+I). We start by observing

that

L±sym + τ∓I = I − (E[D±])−1/2(E[A±])(E[D±])−1/2 + τ∓I

= (1 + τ∓)I − (E[D±])−1/2(E[A±])(E[D±])−1/2 . (21)

In light of (20), one can write (E[D+])−1/2(E[A+])(E[D+])−1/2 as

(E[D+])−1/2(E[A+])(E[D+])−1/2 = −p(1− η)(E[D+])−1

+
[
Θ V ⊥

]


def
=B+︷ ︸︸ ︷

n1

d+1
p(1− η)

√
n1n2

d+1 d
+
2

pη . . .
√

n1nk
d+1 d

+
k

pη√
n2n1

d+2 d
+
1

pη n2

d+2
p(1− η) . . .

√
n2nk
d+2 d

+
k

pη

...
...

. . .
...√

nkn1

d+k d
+
1

pη
√

nkn2

d+k d
+
2

pη . . . nk
d+k
p(1− η)


k×k

0k×(n−k)

0(n−k)×k 0(n−k)×(n−k)



[
Θ>

V ⊥
>

]
.

(22)
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Similarly, using the expression for E[A−], the expression for (E[D−])−1/2(E[A−])(E[D−])−1/2

can be written as

(E[D−])−1/2(E[A−])(E[D−])−1/2 = −pη(E[D−])−1+

[
Θ V ⊥

]


def
=B−︷ ︸︸ ︷

n1

d−1
pη

√
n1n2

d−1 d
−
2

p(1− η) . . .
√

n1nk
d−1 d

−
k

p(1− η)√
n2n1

d−2 d
−
1

p(1− η) n2

d−2
pη . . .

√
n2nk
d−2 d

−
k

p(1− η)

...
...

. . .
...√

nkn1

d−k d
−
1

p(1− η)
√

nkn2

d−k d
−
2

p(1− η) . . . nk
d−k
pη


k×k

0k×(n−k)

0(n−k)×k 0(n−k)×(n−k)



[
Θ>

V ⊥
>

]
.

(23)
Combining (19), (22), and (23) into (21), we readily arrive at

(L±sym+τ∓I) =
[
Θ V ⊥

]


[diag(α±i )−B±]k×k︸ ︷︷ ︸
def
=C±

0k×(n−k)

α±1 In1−1

α±2 Ink−1

. . .

α±k Ink−1,


[

Θ>

V ⊥
>

]

(24)
where α±i and C+, C− are defined as in the statement of the lemma. The spectral de-
composition of T now follows trivially using (24), along with the spectral decomposition
(C−)−1/2C+(C−)−1/2 = RΛRT .

Lemma 17 reveals that we need to extract the k-informative eigenvectors ΘR from the
n-eigenvectors

[
ΘR V ⊥

]
of T . Clearly, it suffices to recover any orthonormal basis for the

column span of Θ, since the rows of any such corresponding matrix (one instance of which
is ΘR) will exhibit the same clustering structure as Θ.

4.2 Ensuring Vk(T ) = ΘR and bounding the spectral gap

In this section, our aim is to show that, for suitable values of τ+ > 0, τ− ≥ 0, the eigenvectors
corresponding to the smallest k eigenvalues of T are given by ΘR, i.e., Vk(T ) = ΘR. This
is equivalent to ensuring (recall Lemma 17) that

λn−k+1(T ) =
∥∥∥(C−)−1/2C+(C−)−1/2

∥∥∥ < min
i∈[k]

α+
i

α−i
= λn−k(T ). (25)

Moreover, we will need to find a strictly positive lower-bound on the spectral gap λn−k(T )−
λn−k+1(T ), as it will be used later on, in order to show that the column span of Vk(T ) is
close to that of Vk(T ). We first consider the equal-sized clusters case, and then proceed to
the general-sized clusters case.
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4.2.1 Spectral gap for equal-sized clusters

When the cluster sizes are equal, the analysis is considerably cleaner than the general
setting. Let us first establish notation specific to the equal-sized clusters case.

Remark 18 (Notation for the equal-sized clusters) For clusters of equal size, we have
that n1 = ... = nk = n/k, d+ := d+

1 = ... = d+
k , d− := d−1 = ... = d−k , α+ := α+

1 = ... = α+
k ,

and α− := α−1 = ... = α−k . Let C+
e , C

−
e , and Te denote the respective counterparts of

C+, C−, and T , for the equal-sized case. In light of (17) and (18), one can verify that C+
e

and C−e are simultaneously diagonalizable, which we show in Lemma 60.

In the following lemma, we show the exact value of ‖Λ‖ =
∥∥(C−e )−1/2C+

e (C−e )−1/2
∥∥.

Lemma 19 (Bounding the spectral norm of (C−e )−1/2C+
e (C−e )−1/2) For equal-sized clus-

ters, the following holds true

∥∥∥(C−e )−1/2C+
e (C−e )−1/2

∥∥∥ = max

{
τ−

τ+
,

τ− + pnη
d+

τ+ + pn(1−η)
d−

}
.

Proof The lemma follows directly from Lemma 60.

Next, we derive conditions on τ+ > 0, τ− ≥ 0 which ensure Vk(T ) = ΘR.

Lemma 20 (Conditions on τ− and τ+) Suppose n ≥ 2k(1−η)
1−2η , and τ− ≥ 0, τ+ > 0. If

τ−, τ+ satisfy

1.

τ−
(

1 +
pη

d−

)
< τ+

(
1 +

p(1− η)

d+

)
,

2.

τ−

[
(1− 2η)/k

(1− η)− 1−2η
k

]
+ τ+

[
(1− 2η)/k

η + 1−2η
k

]
+ 1 >

2η

η + 1−2η
2k

.

Then it holds true that Vk(T ) = ΘR, i.e., λn−k+1(T ) =
∥∥(C−e )−1/2C+

e (C−e )−1/2
∥∥ < α+

α− =

λn−k(T ).

Proof Recalling the expression for
∥∥(C−e )−1/2C+

e (C−e )−1/2
∥∥ from Lemma 19, we will ensure

that each term inside the max is less than α+/α−. To derive the first condition of the lemma,
we simply ensure that

τ−

τ+
<

1 + τ− + p(1− η)/d+

1 + τ+ + pη/d−
⇔ τ−

(
1 +

pη

d−

)
< τ+

(
1 +

p(1− η)

d+

)
.

Before deriving the second condition, let us note additional useful bounds on np
d− ,

np
d+

which
will be needed later.

1. d−/np = 1− η − (1− 2η)/k − η/n ≤ 1− η.
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2. Since n ≥ k ≥ 2, we obtain that d−/np ≥ (1 − η) − (1 − 3η)/k ≥ 1−η
2 . This also

implies that pη/d− ≤ 1.

Therefore, combining the above two bounds, we arrive at

1

1− η
≤ np

d−
≤ 2

1− η
.

3. d+/np = (1− 2η)/k + η − (1− η)/n ≤ η + (1− 2η)/k.

4. Since n ≥ 2k(1−η)
1−2η , it holds that d+/np = (1−2η)/k+η− (1−η)/n ≥ η+ (1−2η)/2k.

5. Therefore, combining the above two conditions yields

1

η + 1−2η
k

≤ np

d+
≤ 1

η + 1−2η
2k

.

To derive the second condition, we need to ensure
τ−+ pnη

d+

τ++
pn(1−η)
d−

< 1+τ−+p(1−η)/d+

1+τ++pη/d− , which

is equivalent to

τ−
[
1− np

d−

(
(1− η)− η

n

)]
< τ+

[
1− np

d+

(
η − 1− η

n

)]
+

[
np(1− η)

d−

(
1 +

p(1− η)

d+

)
− npη

d+

(
1 +

pη

d−

)]
︸ ︷︷ ︸

term 2

.

Now, we can lower bound “term 2” in the above equation as

np(1− η)

d−

(
1 +

p(1− η)

d+

)
− npη

d+

(
1 +

pη

d−

)
≥ 1− 2η

η + (1−2η)
k

.

Hence from the above two equations, we observe that it suffices that τ+, τ− satisfy

τ−

[
(1− 2η)/k

(1− η)− 1−2η
k

]
+ τ+

[
(1− 2η)/k

η + 1−2η
k

]
+ 1 >

2η

η + 1−2η
2k

.

Next, we derive sufficient conditions on τ+, τ− which ensure a lower bound on the
spectral gap

λn−k(T )− λn−k+1(T ) =
α+

α−
−
∥∥∥(C−e )−1/2C+

e (C−e )−1/2
∥∥∥ .

Lemma 21 (Conditions on τ+, τ−, and lower-bound on spectral gap) Suppose n ≥
2k(1−η)

1−2η , then the following holds.
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1. If τ+ > 0, τ− ≥ 0 satisfy

τ+ >
32ηk

3(1− 2η)
, τ− < min

{
3

2
,

3

16
τ+,

3(1− η)

8(η + 1−2η
k )

}
,

then Vk(T ) = ΘR, and
∥∥(C−e )−1/2C+

e (C−e )−1/2
∥∥ < (1− (1−2η)

2k(1−η)

)
α+

α− , i.e., λn−k(T )−

λn−k+1(T ) >
(

(1−2η)
2k(1−η)

)
α+

α− .

2. If η < 1
3k+2 and τ+ > 0, τ− ≥ 0 satisfy

τ− < min

{(
1−2η
k − η

1−2η
k + η

)
,
1

2
,
τ+

8

}
,

then Vk(T ) = ΘR, and
∥∥(C−e )−1/2C+

e (C−e )−1/2
∥∥ < α+

2α− , i.e., λn−k(T )− λn−k+1(T ) >
α+

2α− .

Proof We need to ensure the following two conditions for a suitably chosen β ∈ (0, 1].

τ− + pnη
d+

τ+ + pn(1−η)
d−

< β

(
1 + τ− + p(1− η)/d+

1 + τ+ + pη/d−

)
, (26)

τ−

τ+
< β

(
1 + τ− + p(1− η)/d+

1 + τ+ + pη/d−

)
. (27)

1. Ensuring (26) We can rewrite (26) as

τ−
(

1 +
pη

d−
− β pn(1− η)

d−

)
+ τ+

(
pnη

d+
− β

(
1 +

p(1− η)

d+

))
+ τ+τ−(1− β)

< β
pn(1− η)

d−

(
1 +

p(1− η)

d+

)
− pnη

d+

(
1 +

pη

d−

)
. (28)

Using the expressions for d+, d−, we can write the coefficients of the terms τ+, τ− as follows.

1 +
pη

d−
− β pn(1− η)

d−
=
−(1−2η

k ) + (1− η)(1− β)

−(1−2η
k ) + (1− η)− η

n

,

pnη

d+
− β

(
1 +

p(1− η)

d+

)
=
np

d+
(η − β 1− η

n
)− β =

η(1− β)− β(1−2η
k )

1−2η
k + η − 1−η

n

.

Moreover, using the bounds on d−

np ,
d+

np derived in Lemma 20, we can lower bound the RHS
term in (28) as

β
pn(1− η)

d−

(
1 +

p(1− η)

d+

)
− pnη

d+

(
1 +

pη

d−

)
> β − 2η

η + 1−2η
k

.

From the above considerations, we see that (28) is ensured provided

τ−

[
(1−2η

k )− (1− η)(1− β)

−(1−2η
k ) + (1− η)− η

n

]
+ τ+

[
−η(1− β) + β(1−2η

k )
1−2η
k + η − 1−η

n

]
+β >

2η

η + 1−2η
k

+ τ+τ−(1−β).

(29)
We outline two possible ways in which (29) is ensured.
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• Note that the denominators of the coefficients of τ+, τ− in (29) are positive, while the

numerators are non-negative provided 1− β ≤ (1−2η)
2k(1−η) . Therefore, choosing

β = 1− (1− 2η)

2k(1− η)

(
≥ 3

4

)
,

note that (29) is ensured provided

τ−
[

(1− 2η)

2k(1− η)

]
+ τ+

 3(1− 2η)

8k
(
η + 1−2η

k

)
+

3

4
>

2η

η + 1−2η
k

+ τ+τ−
[

(1− 2η)

2k(1− η)

]
. (30)

Finally, we observe that in order for (30) to hold, it suffices that

τ+τ−
[

(1− 2η)

2k(1− η)

]
<
τ+

2

 3(1− 2η)

8k
(
η + 1−2η

k

)
 ⇐⇒ τ− <

3(1− η)

8
(
η + 1−2η

k

) , and

2η

η + 1−2η
k

<
τ+

2

 3(1− 2η)

8k
(
η + 1−2η

k

)
 ⇐⇒ τ+ >

32ηk

3(1− 2η)
.

• Alternatively, by setting β = 1/2, (29) can be rewritten as

τ+

[
−η

2 + 1−2η
2k

1−2η
k + η − 1−η

n

]
+

1

2
>

2η

η + 1−2η
k

+ τ−

[
−(1−2η

k ) + 1−η
2

−(1−2η
k ) + (1− η)− η

n

]
+
τ+τ−

2
. (31)

Clearly, it holds true that

1

2
>

2η

η + 1−2η
k

⇐⇒ η <
1

3k + 2
,

which also ensures that the numerator of the coefficient of τ+ is positive. Therefore,
if η < 1

3k+2 , then in order for (31) to hold, it suffices that

τ− <

[
−η + 1−2η

k
1−2η
k + η

]
=⇒ τ+

[
−η

2 + 1−2η
2k

1−2η
k + η − 1−η

n

]
>
τ+τ−

2
.

2. Ensuring (27) Note that one can rewrite (27) as

τ−τ+(1− β) + τ−
(

1 +
pη

d−

)
< βτ+

(
1 +

p(1− η)

d+

)
. (32)

Since pη
d− ≤ 1, (32) is ensured provided

τ−τ+(1− β) + 2τ− < βτ+
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which in turn holds if each LHS term is respectively less than half of the RHS term. This
leads to the condition

τ− < min

{
β

2(1− β)
,
β

4
τ+

}
.

Finally, plugging the choices β = 1− (1−2η)
2k(1−η)(≥ 3/4) and β = 1

2 in the above equation, and

combining it with the conditions derived for ensuring (26), we readily arrive (after minor
simplifications) at the statements in the Lemma.

4.2.2 Spectral gap for the general case

For the general-sized clusters case, it is difficult to find the exact value of
∥∥(C−)−1/2C+(C−)−1/2

∥∥.
Therefore, in the following lemma, we show an upper bound on this quantity by bounding
the spectral norms of C+ and (C−)−1.

Lemma 22 (Bounding the spectral norm of (C−)−1 and C+) Recall s := mini∈[k] ni/n.
Then it holds true that

λmax(C+) ≤ τ− +
nη

n(s(1− 2η) + η)− (1− η)
, (33)

λmin(C−) ≥ τ+ . (34)

From the above two inequalities, it follows that

∥∥∥(C−)−1/2C+(C−)−1/2
∥∥∥ ≤ λmax(C+)

λmin(C−)
≤
τ− + nη

n(s(1−2η)+η)−(1−η)

τ+
.

The proof of the above lemma is deferred to Appendix D.

Remark 23 It is difficult to obtain more precise bounds on λmax(C+) and λmin(C−), given
the expressions for C+ in (17), and C− in (18). Clearly, a tighter bound on∥∥(C−)−1/2C+(C−)−1/2

∥∥ would yield a tighter analysis in the general case.

Recall l := maxi∈[k] ni/n; with a slight abuse of notation, let d±l denote the degree of the
largest cluster (of size nl). As before, we now derive conditions on τ+ > 0, τ− ≥ 0 which
ensure Vk(T ) = ΘR, or equivalently,

λn−k+1(T ) =
∥∥∥(C−)−1/2C+(C−)−1/2

∥∥∥ < min
i∈[k]

α+
i

α−i
=

1 + τ− + p(1− η)/d+
l

1 + τ+ + pη/d−l
=
α+
l

α−l
= λn−k(T ).

(35)
Additionally, we find sufficient conditions on τ+ > 0, τ− ≥ 0 which ensure a lower bound

on the spectral gap λn−k(T ) − λn−k+1(T ) = mini∈[k]
α+
i

α−i
−
∥∥(C−)−1/2C+(C−)−1/2

∥∥. These

are shown in the following lemma.

Lemma 24 (Conditions on τ+, τ−, and Lower-Bound on Spectral Gap) Suppose n ≥
max

{
2(1−η)
s(1−2η) ,

2η
(1−l)(1−η)

}
, then the following is true.
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1. If τ+ > 0, τ− ≥ 0 satisfy

2τ− +
4η

s(1− 2η) + 2η
<

s(1− 2η)

s(1− 2η) + 2η
τ+ (36)

then Vk(T ) = ΘR, i.e., λn−k+1(T ) =
∥∥(C−)−1/2C+(C−)−1/2

∥∥ < α+
l

α−l
= λn−k(T ).

2. For β = 4η
s(1−2η)+4η with 0 < η < 1

2 , if τ+ > 0, τ− ≥ 0 satisfy

(1− β)τ−τ+ + 2τ− +
4η

s(1− 2η) + 2η
<
β

2

(
s(1− 2η)

s(1− 2η) + 2η

)
τ+ (37)

then Vk(T ) = ΘR, and
∥∥(C−)−1/2C+(C−)−1/2

∥∥ < β
α+
l

α−l
, i.e., λn−k(T )−λn−k+1(T ) >

(1− β)
α+
l

α−l
. Moreover, for (37) to hold, it suffices that

τ+ >
16η

βs(1− 2η)
, τ− <

β

2

(
s(1− 2η)

s(1− 2η) + 2η

)
min

{
1

4(1− β)
,
τ+

8

}
.

3. The statement in part (2) also holds for the choice β = 1
2 , and provided η ≤ s

2s+4 .

Proof From (35) and Lemma 22, it suffices to show for β ∈ (0, 1] that

τ− + η

s(1−2η)+η− (1−η)
n

τ+
< β

(
1 + τ− + p(1− η)/d+

l

1 + τ+ + pη/d−l

)
. (38)

For the stated condition on n, it is easy to verify that

n ≥ 2(1− η)

s(1− 2η)
=⇒ s(1− 2η) + η − (1− η)

n
≥ s(1− 2η)

2
+ η,

n ≥ 2η

(1− l)(1− η)
=⇒ pη

d−l
≤ 2η

n(1− η)(1− l)
≤ 1.

Using these bounds in (38), observe that it suffices that τ+, τ− satisfy

τ− + 2η
s(1−2η)+2η

τ+
< β

(
1 + τ−

2 + τ+

)
. (39)

Then for β = 1, we readily see that (39) is equivalent to (36).

To establish the second part of the Lemma, we begin by rewriting (39) as

(1− β)τ+τ− + 2τ− +
4η

s(1− 2η) + 2η
<

(
β − 2η

s(1− 2η) + 2η

)
τ+

=

[
βs(1− 2η)− 2η(1− β)

s(1− 2η) + 2η

]
τ+, (40)
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and observe that

βs(1− 2η) ≥ 4η(1− β) ⇐⇒ β ≥ 4η

s(1− 2η) + 4η
(41)

This verifies (37) in the statement of the Lemma. The “moreover” part is established by
ensuring that each term on the LHS of (37) is a sufficiently small fraction of the RHS term.
In particular, it is enough to choose this fraction to be 1/4 for the first two terms, and 1/2
for the third term.

Finally, the third part of the Lemma can be shown in the same manner as the second
part. The starting point is to ensure (40), and we simply observe that for β = 1/2, (41) is
equivalent to η ≤ s

2s+4 . The rest follows identically.

4.3 Concentration bound for
∥∥T − T∥∥

In this section, we bound the “distance” between T and T , i.e.,
∥∥T − T∥∥. This is shown

via individually bounding the terms
∥∥∥L+

sym − L+
sym

∥∥∥, and
∥∥∥L−sym − L−sym∥∥∥. To this end, we

first recall the following Theorem from Chung and Radcliffe (2011).

Theorem 25 (Bounding
∥∥Lsym − Lsym∥∥, (Chung and Radcliffe, 2011)) Let Lsym de-

note the normalized Laplacian of a random graph, and Lsym the normalized Laplacian of
the expected graph. Let δ be the minimum expected degree of the graph. Choose ε > 0. Then
there exists a constant cε such that, if δ ≥ cε lnn, then with probability at least 1 − ε, it
holds true that ∥∥Lsym − Lsym∥∥ ≤ 2

√
3 ln(4n/ε)

δ
.

Remark 26 A similar result appears in Imbuzeiro Oliveira (2009) for the (unsigned) inho-
mogeneous Erdős-Rényi model, where

∥∥Lsym − Lsym∥∥ = O(
√

lnn/d0), with d0 the smallest
expected degree of the graph.

Using Theorem 25, we readily obtain the following concentration bounds for
∥∥∥L+

sym − L+
sym

∥∥∥
and

∥∥∥L−sym − L−sym∥∥∥.

Lemma 27 (Bounding
∥∥∥L±sym − L±sym∥∥∥) Assuming n ≥ max

{
2(1−η)
s(1−2η) ,

2η
(1−l)(1−η)

}
, there

exists a constant cε > 0 such that if p ≥ cε lnn
n max

{
1

s(1−2η)+2η ,
2

1−l

}
, then with probability

at least 1− 2ε,∥∥∥L+
sym − L+

sym

∥∥∥ ≤ 2

√
6 ln(4n/ε)

np[s(1− 2η) + 2η]
, and

∥∥∥L−sym − L−sym∥∥∥ ≤ 2

√
12 ln(4n/ε)

np(1− l)
.

Proof Note that the minimum expected degrees of the positive and negative subgraphs
are given by d+

s , d
−
l , respectively. For the stated condition on n, it is easily seen that

d+
s ≥

np

2
[s(1− 2η) + 2η] , d−l ≥

np

2
(1− l)(1− η) ≥ np(1− l)

4
. (42)
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Invoking Theorem 25, and observing that d+
s , d

−
l ≥

cε
2 lnn are ensured for the stated condi-

tion on p, the statement follows via the union bound.

Next, using the above lemma, we can upper bound
∥∥T − T∥∥. This will help us show

that Vk(T ) and Vk(T ) are “close”.

Lemma 28 (Bounding
∥∥T − T∥∥) Let P = (L−sym + τ+I), P = (L−sym + τ+I), Q =

(L+
sym + τ−I), and Q = (L+

sym + τ−I). Assume that
∥∥P − P∥∥ ≤ ∆P , and

∥∥Q−Q∥∥ ≤ ∆Q.
Then it holds true that

∥∥T − T∥∥ ≤ (α+
s + ∆Q)

τ+

(
∆P

τ+
+ 2

√
∆P

τ+

)
+

∆Q

τ+

where α+
s = 1 + τ− + p(1−η)

d+s
(see Lemma 17).

Proof Since P, P ,Q,Q are positive definite, therefore using Proposition 59, we obtain the
bound∥∥T − T∥∥ ≤ ∥∥P−1

∥∥ ‖Q‖(∥∥(P )−1
∥∥∥∥P − P∥∥+ 2

∥∥∥(P )−1/2
∥∥∥∥∥P − P∥∥1/2

)
+
∥∥(P )−1

∥∥∥∥Q−Q∥∥ .
(43)

We know that
∥∥P−1

∥∥ = 1/τ+ =
∥∥∥P−1

∥∥∥ and
∥∥(P )−1/2

∥∥ = 1/
√
τ+. Moreover, ‖Q‖ ≤∥∥Q∥∥+ ∆Q by Weyl’s inequality (Weyl, 1912) (see Appendix B). Hence (43) simplifies to

∥∥T − T∥∥ ≤ (
∥∥Q∥∥+ ∆Q)

τ+

(
∆P

τ+
+ 2

√
∆P

τ+

)
+

∆Q

τ+
≤

(α+
s + ∆Q)

τ+

(
∆P

τ+
+ 2

√
∆P

τ+

)
+

∆Q

τ+
,

where the last inequality can be verified by examining the expression of Q in (24), and
noting from the definition of C+ that ‖C+‖ < max

{
α+

1 , ..., α
+
k

}
= α+

s holds (via Weyl’s
inequality).

4.4 Estimating Vk(T ) and Gk(T ) up to a rotation

We are now ready to combine the results of the previous sections to show that if n, p are
large enough, then the distance between the subspaces spanned by Vk(T ) and Vk(T ) is
small, i.e., there exists an orthonormal matrix O such that Vk(T ) is close to Vk(T )O. For
τ+, τ− chosen suitably, we have seen in Lemma 24 that Vk(T ) = ΘR for a rotation R, hence
this suggests that the rows of Vk(T ) will then also approximately preserve the clustering
structure of Vk(T ).

With P, P ,Q,Q as defined in Lemma 28 recall from (4), (7) that Gk(T ), Gk(T ) can be
written as

Gk(T ) = P
−1/2

Vk(T ), Gk(T ) = P−1/2Vk(T ). (44)
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Therefore if Vk(T ) = ΘR, then using the expression for P from (24) we see that Gk(T ) =
Θ(C−)−1/2R, and thus the rows of Gk(T ) also preserve the ground truth clustering struc-
ture. Moreover, if

∥∥Vk(T )− Vk(T )O
∥∥ is small, then it can be shown to imply a bound on∥∥Gk(T )−Gk(T )O

∥∥. Hence the rows of Gk(T ) will approximately preserve the clustering
structure of Gk(T ).

Before stating the theorem, let us define the terms

C1(τ+, τ−) = 3

(
(3 + τ−)(2

√
τ+ + 1) + τ+

(τ+)2

)
, C2(s, η, l) = max

{
1

s(1− 2η) + 2η
,

2

1− l

}
.

(45)

Theorem 29 Assuming n ≥ max
{

2(1−η)
s(1−2η) ,

2η
(1−l)(1−η)

}
, suppose τ+ > 0, τ− ≥ 0 are chosen

to satisfy

τ+ >
16η

βs(1− 2η)
, τ− <

β

2

(
s(1− 2η)

s(1− 2η) + 2η

)
min

{
1

4(1− β)
,
τ+

8

}
where β, η satisfy one of the following conditions.

1. β = 4η
s(1−2η)+4η and 0 < η < 1

2 , or

2. β = 1
2 and η ≤ s

2s+4 .

Then Vk(T ) = ΘR and Gk(T ) = Θ(C−)−1/2R where R is a rotation matrix, and C− � 0 is
as defined in (18). Moreover, for any ε, δ ∈ (0, 1), there exists a constant c̃ε > 0 such that
the following is true. If p satisfies

p ≥ max

{
c̃εC2(s, η, l),

256C4
1 (τ+, τ−)(2 + τ+)4

δ4(1 + τ−)4(1− β)4
C2(s, η, l),

81

(1− l)δ4

}
ln(4n/ε)

n
,

with C1(·), C2(·) as in (45), then with probability at least 1− 2ε, there exists an orthogonal
matrix O ∈ Rk×k such that∥∥Vk(T )− Vk(T )O

∥∥ ≤ δ, and
∥∥Gk(T )−Gk(T )O

∥∥ ≤ δ√
τ+

+
δ

(τ+)2
.

Proof We will first simplify the upper bound on
∥∥T − T∥∥ in Lemma 28, starting by

bounding α+
s . If n ≥ 2(1−η)

s(1−2η) , it is easy to verify that (1−η)p

d+s
≤ 1 which implies α+

s ≤ 2 + τ−.

Moreover, we observe from Lemma 27 that ∆P ,∆Q ≤ 1 is ensured if p ≥ c̃εC2(s, η, l) ln(4n/ε)
n

where c̃ε = max {24, cε}. These considerations altogether imply

∥∥T − T∥∥ ≤ (3 + τ−)(2
√
τ+ + 1)

(τ+)2

√
∆P +

∆Q

τ+

≤ (3 + τ−)(2
√
τ+ + 1) + τ+

(τ+)2
max

{√
∆P ,

√
∆Q

}
≤ C1(τ+, τ−)C

1/4
2 (s, η, l)

(
ln(4n/ε)

np

)1/4

(46)
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where in the penultimate inequality we used ∆Q ≤
√

∆Q, and the last inequality uses
Lemma 27.

Next, we will use the Davis-Kahan theorem (Davis and Kahan, 1970) (see Appendix B)
for bounding the distance

∥∥(I − Vk(T )Vk(T )T )Vk(T )
∥∥. Applied to our setup, it yields

∥∥(I − Vk(T )Vk(T )T )Vk(T )
∥∥ ≤ ∥∥T − T∥∥

λn−k+1(T )− λn−k(T )
, (47)

provided λn−k+1(T ) − λn−k(T ) > 0. From Weyl’s inequality, we know that λn−k+1(T ) ≥
λn−k+1(T ) −

∥∥T − T∥∥. Moreover, under the stated conditions on τ+, τ−, we obtain from
Lemma 24 the bound

λn−k+1(T )− λn−k(T ) ≥ (1− β)
α+
l

α−l
≥ (1− β)

(
1 + τ−

2 + τ+

)
,

where in the last inequality we used the simplifications p(1− η)/d+
l ≥ 0 and pη/d−l ≤ 1 in

the expressions for α+
l , α

−
l . Hence using (46), we observe that if

C1(τ+, τ−)C
1/4
2 (s, η, l)

(
ln(4n/ε)

np

)1/4

≤
(

1− β
2

)(
1 + τ−

2 + τ+

)
⇐⇒ p ≥

(
16C4

1 (τ+, τ−)C2(s, η, l)(2 + τ+)4

(1 + τ−)4(1− β)4

)
ln(4n/ε)

n
,

then the RHS of (47) can be bounded as

∥∥(I − Vk(T )Vk(T )T )Vk(T )
∥∥ ≤ 2(2 + τ+)

(1 + τ−)(1− β)
C1(τ+, τ−)C

1/4
2 (s, η, l)

(
ln(4n/ε)

np

)1/4

.

It follows that there exists an orthogonal matrix O ∈ Rk×k so that∥∥Vk(T )− Vk(T )O
∥∥ ≤ 2

∥∥(I − Vk(T )Vk(T )T )Vk(T )
∥∥ (using Proposition 57)

≤ 4(2 + τ+)

(1 + τ−)(1− β)
C1(τ+, τ−)C

1/4
2 (s, η, l)

(
ln(4n/ε)

np

)1/4

≤ δ

for the stated bound on p. This establishes the first part of the Theorem.
In order to bound

∥∥Gk(T )−Gk(T )O
∥∥, we obtain from (44) that∥∥Gk(T )−Gk(T )O

∥∥ =
∥∥∥P−1/2(Vk(T )− Vk(T )O) + (P−1/2 − P−1/2

)Vk(T )O
∥∥∥

≤
∥∥∥P−1/2

∥∥∥︸ ︷︷ ︸
(τ+)−1/2

∥∥Vk(T )− Vk(T )O
∥∥︸ ︷︷ ︸

≤δ

+
∥∥∥P−1/2 − P−1/2

∥∥∥∥∥Vk(T )
∥∥︸ ︷︷ ︸

=1

≤ δ√
τ+

+
∥∥∥P−1/2 − P−1/2

∥∥∥ . (48)
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The term
∥∥∥P−1/2 − P−1/2

∥∥∥ can be bounded as

∥∥∥P−1/2 − P−1/2
∥∥∥ =

∥∥∥P−1(P 1/2 − P 1/2
)P
−1
∥∥∥ ≤

∥∥∥P 1/2 − P 1/2
∥∥∥

(τ+)2

≤
∥∥P − P∥∥1/2

(τ+)2

≤ 3

(τ+)2

[
ln(4n/ε)

np(1− l)

]1/4

, (49)

where the penultimate inequality uses Proposition 58, and the last inequality follows
from Lemma 27 with a minor simplification of the constant. Plugging (49) in (48) leads to

the stated bound for p ≥ 81
(1−l)δ4

ln(4n/ε)
n .

4.5 Clustering sparse graphs

We now turn our attention to the sparse regime where p = o(lnn)/n. In this regime, Lemma
27 is no longer applicable since it requires p = Ω

(
lnn
n

)
. In fact, it is not difficult to see that

the matrices L±sym will not concentrate around L±sym in this sparsity regime. To circumvent

this issue, we will aim to show that the normalized Laplacian L±
sym,γ± corresponding to the

regularized adjacencies A±
γ± := A±+ γ±

n 11
> concentrate around L±sym, for carefully chosen

values of γ+, γ−.
To show this, we rely on the following theorem from Le et al. (2017), which states that

the symmetric Laplacian Lsym,γ of the regularized adjacency matrix Aγ := A + γ
n11

> is
close to the symmetric Laplacian Lsym,γ of the expected regularized adjacency matrix, for
inhomogeneous Erdős-Rényi graphs.

Theorem 30 (Theorem 4.1 of Le et al. (2017)) Consider a random graph from the
inhomogeneous Erdős-Rényi model (G = (n, pij)), and let d = maxpij npij. Choose a num-
ber γ > 0. Then, for any r ≥ 1, C being an absolute constant, with probability at least
1− e−r ∥∥Lsym,γ − Lsym,γ∥∥ ≤ Cr2

√
γ

(
1 +

d

γ

)5/2

. (50)

The above result leads to a bound on the distance between Lsym,γ and the normalized
Laplacian Lsym of the expected (un-regularized) adjacency matrix.

Theorem 31 (Concentration of Regularized Laplacians) Consider a random graph
from the inhomogeneous Erdős-Rényi model (G = (n, pij)), and let d = maxpij npij, dmin =
mini

∑
j pij . Choose a number γ > 0. Then, for any r ≥ 1, C being an absolute constant,

with probability at least 1− e−r

∥∥Lsym,γ − Lsym∥∥ ≤ Cr2

√
γ

(
1 +

d

γ

)5/2

+ 3

√
γ

dmin + γ
. (51)
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Proof To establish the above lemma we make use of triangle inequality, where we use the
fact that

∥∥Lsym,γ − Lsym∥∥ ≤ ∥∥Lsym,γ − Lsym,γ∥∥ +
∥∥Lsym,γ − Lsym∥∥. We know the bound

on the first term on the RHS from Lemma 30 (which holds with probability 1 − e−r). To
bound the second term on the RHS, note that∥∥Lsym,γ − Lsym∥∥ =

∥∥∥D−1/2
AD

−1/2 −D−1/2
γ AγD

−1/2
γ

∥∥∥
=
∥∥∥D−1/2

AD
−1/2 −D−1/2

γ AD
−1/2
γ +D

−1/2
γ AD

−1/2
γ −D−1/2

γ AγD
−1/2
γ

∥∥∥
≤
∥∥∥D−1/2

AD
−1/2 −D−1/2

γ AD
−1/2
γ

∥∥∥+
∥∥∥D−1/2

γ AD
−1/2
γ −D−1/2

γ AγD
−1/2
γ

∥∥∥ .
The second term of the inequality can be easily bounded as follows.∥∥∥D−1/2

γ AD
−1/2
γ −D−1/2

γ AγD
−1/2
γ

∥∥∥ ≤ ∥∥∥D−1/2
γ

∥∥∥2 ∥∥A−Aγ∥∥ ≤ γ

dmin + γ
≤
√

γ

dmin + γ
.

To analyse the first term, we observe that∥∥∥D−1/2
AD

−1/2 −D−1/2
γ AD

−1/2
γ

∥∥∥ =∥∥∥D−1/2
AD

−1/2 −D−1/2
γ D

1/2
D
−1/2

AD
−1/2

D
1/2
D
−1/2
γ

∥∥∥
=
∥∥∥(I − Lsym)(I −D1/2

D
−1/2
γ ) + (I −D−1/2

γ D
1/2

)(I − Lsym)D
1/2
D
−1/2
γ

∥∥∥
≤
∥∥∥I −D1/2

D
−1/2
γ

∥∥∥+
∥∥∥I −D−1/2

γ D
1/2
∥∥∥∥∥∥D1/2

D
−1/2
γ

∥∥∥
≤

(
1−

√
dmin

dmin + γ

)
+

(
1−

√
dmin

dmin + γ

)

≤ 2

√
γ

dmin + γ
,

where in the first inequality we use the fact that
∥∥I − Lsym∥∥ ≤ 1, and in the last inequality

we use the fact that for two numbers a, b > 0 if a > b then
√
a−
√
b ≤
√
a− b. We have all

the components to plug into the triangle inequality, which yields the desired statement of
the theorem.

We now translate Theorem 31 to our setting for G+, G− and show that if p = Ω(1/n) for

n large enough, then for the choices γ+, γ− � (np)6/7, the bounds
∥∥∥L±sym,γ± − L±sym∥∥∥ =

O
(

1
(np)1/14

)
hold with sufficiently high probability.

Lemma 32 Let n ≥ max
{

2(1−η)
s(1−2η) ,

2η
(1−η)(1−l)

}
and p ≥ 1

n(1−η) . Then for the choices

γ+, γ− = [np(1 − η)]6/7, and any r ≥ 1, there exists a constant C > 0 such that with
probability at least 1− 2er, it holds true that∥∥∥L+

sym,γ+
− L+

sym

∥∥∥ ≤ (25/2Cr2 +
3
√

2√
s(1− 2η) + 2η

)
1

[np(1− η)]1/14
, (52)

∥∥∥L−sym,γ− − L−sym∥∥∥ ≤ (25/2Cr2 +
6√

1− l

)
1

[np(1− η)]1/14
. (53)

34



Regularized spectral methods for clustering signed networks

Proof We will apply Theorem 31 to the subgraphs G+, G−. Let us denote d± to be the
quantity maxij npij , and d±min to be the minimum expected degree for the positive and
negative subgraphs, respectively. From the SSBM model, it can be verified that d± =
np(1− η). We also know that d+

min = d+
s and d−min = d−l , where for the stated condition on

n, d+
s , d

−
l satisfy the bounds in (42). The latter can be written as

d+
min ≥

d+

2
[s(1− 2η) + 2η], d−min ≥

d−(1− l)
4

.

Let us denote C3(s, η) = s(1−2η)+2η for convenience. In order to show (52), we obtain
from Theorem 31 that, with probability at least 1− e−r,

∥∥∥L+
sym,γ+

− L+
sym

∥∥∥ ≤ Cr2√
γ+

(
1 +

d+

γ+

)5/2

+ 3

√
γ+

d+
min + γ+

≤ Cr2√
γ+

(
1 +

d+

γ+

)5/2

+ 3

√
γ+

C3(s, η)d+
,

where the last inequality uses d+
s + γ+ ≥ d+

s . Now note that if γ+ ≤ d+, then the above
bound simplifies to∥∥∥L+

sym,γ+
− L+

sym

∥∥∥ ≤ 25/2Cr2(d+)5/2

(γ+)3
+

3
√

2√
C3(s, η)

√
γ+

d+
. (54)

Choosing γ+ such that (d+)5/2

(γ+)3
=
√

γ+

d+
, or equivalently, γ+ = (d+)6/7, and plugging this in

(54), we arrive at (52). Clearly, γ+ ≤ d+ is equivalent to the stated condition on p. The
bound in (53) follows in an identical manner and is omitted.

We are now in a position to write the bound on
∥∥Tγ+,γ− − T∥∥ in terms of

∥∥∥L±sym,γ± − L±sym∥∥∥,

in a completely analogous manner to Lemma 28.

Lemma 33 (Adapting Lemma 28 for the sparse regime) Let Pγ− = (L−
sym,γ−+τ+I),

P = (L−sym + τ+I), Qγ+ = (L+
sym,γ+

+ τ−I), and Q = (L+
sym + τ−I). Assume that∥∥Pγ− − P∥∥ ≤ ∆Pγ−

,
∥∥Qγ+ −Q∥∥ ≤ ∆Qγ+

. Then it holds true that

∥∥Tγ+,γ− − T∥∥ ≤ (α+
s + ∆Qγ+

)

τ+

∆Pγ−

τ+
+ 2

√
∆Pγ−

τ+

+
∆Qγ+

τ+
,

where α+
s = 1 + τ− + p(1−η)

d+s
(see Lemma 17).

Next, we derive the main theorem for SPONGEsym in the sparse regime, which is the
analogue of Theorem 29. The first part of the Theorem remains unchanged, i.e., for n large
enough and τ+, τ− chosen suitably, we have Vk(T ) = ΘR and Gk(T ) = Θ(C−)−1/2R for
a k × k rotation R, and C− � 0. The remaining arguments follow the same outline of
Theorem 29, i.e., (a) using Lemma 33 and Lemma 32 to obtain a concentration bound on
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∥∥Tγ+,γ− − T∥∥ (when p = Ω(1/n)), and (b) using the Davis-Kahan theorem to show that the
column span of Vk(Tγ+,γ−) is close to Vk(T ). The latter bound then implies that Gk(Tγ+,γ−)
is close (up to a rotation) to Gk(T ), where we recall

Gk(T ) = P
−1/2

Vk(T ), Gk(Tγ+,γ−) = P
−1/2
γ− Vk(Tγ+,γ−) (55)

with Pγ− , P as defined in Lemma 33.

Theorem 34 Assuming n ≥ max
{

2(1−η)
s(1−2η) ,

2η
(1−l)(1−η)

}
, suppose τ+ > 0, τ− ≥ 0 are chosen

to satisfy

τ+ >
16η

βs(1− 2η)
, τ− <

β

2

(
s(1− 2η)

s(1− 2η) + 2η

)
min

{
1

4(1− β)
,
τ+

8

}
where β, η satisfy one of the following conditions.

1. β = 4η
s(1−2η)+4η and 0 < η < 1

2 , or

2. β = 1
2 and η ≤ s

2s+4 .

Then Vk(T ) = ΘR and Gk(T ) = Θ(C−)−1/2R where R is a rotation matrix, and C− � 0
is as defined in (18). Moreover, there exists a constant C > 0 such that for r ≥ 1 and
δ ∈ (0, 1), if p satisfies

p ≥ max

{
1,

(
4C1(τ+, τ−)(2 + τ+)

3(τ+)2(1− β)(1 + τ−)

)28
}
C14

4 (r, s, η, l)

δ28(1− η)n
,

and γ+, γ− = [np(1− η)]6/7, then with probability at least 1− 2e−r, there exists a rotation
O ∈ Rk×k so that∥∥Vk(Tγ+,γ−)− Vk(T )O

∥∥ ≤ δ, ∥∥Gk(Tγ+,γ−)−Gk(T )O
∥∥ ≤ δ√

τ+
+

δ

(τ+)2
.

Here, C4(r, s, η, l) := 25/2Cr2 + 3
√

2C2(s, η, l) with C2(s, η, l) as defined in (45).

Proof We will first simplify the upper bound on
∥∥Tγ+,γ− − T∥∥ in Lemma 33. Note that

n ≥ 2(1−η)
s(1−2η) implies α+

s ≤ 2+τ−, and moreover, we can bound
∥∥∥L±sym,γ± − L±sym∥∥∥ uniformly

(from (52), (53)) as∥∥∥L±sym,γ± − L±sym∥∥∥ ≤ 25/2Cr2 + 3
√

2C2(s, η, l)

[np(1− η)]1/14
≤ C4(r, s, η, l)

[np(1− η)]1/14
(= ∆Pγ−

,∆Qγ+
). (56)

Note that ∆Pγ−
,∆Qγ+

≤ 1 if p ≥ C14
4 (r,s,η,l)
n(1−η) . Under these considerations, the bound in

Lemma 33 simplifies to∥∥Tγ+,γ− − T∥∥ ≤ (3 + τ−)(2
√
τ+ + 1) + τ+

(τ+)2
max

{√
∆Pγ−

,
√

∆Qγ+

}
=
C1(τ+, τ−)

√
C4(r, s, η, l)

3(τ+)2[np(1− η)]1/28
.
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Following the steps in the proof of Theorem 29, we observe that∥∥Tγ+,γ− − T∥∥ ≤ 1

2
(λn−k+1(Tγ+,γ−)− λn−k(T )),

is guaranteed to hold, provided

C1(τ+, τ−)
√
C4(r, s, η, l)

3(τ+)2[np(1− η)]1/28
≤ (

1− β
2

)

(
1 + τ−

2 + τ+

)
⇐⇒ p ≥

(
2C1(τ+, τ−)(2 + τ+)

3(τ+)2(1− β)(1 + τ−)

)28
C14

4 (r, s, η, l)

n(1− η)
.

Then, we obtain via the Davis-Kahan theorem that there exists an orthogonal matrix O ∈
Rk×k such that∥∥Vk(Tγ+,γ−)− Vk(T )O

∥∥ ≤ 4
∥∥Tγ+,γ− − T∥∥

λn−k+1(T )− λn−k(T )

≤
4C1(τ+, τ−)

√
C4(r, s, η, l)(2 + τ+)

3(τ+)2[np(1− η)]1/28(1− β)(1 + τ−)
≤ δ,

for the stated bound on p in the theorem. This establishes the first part of the theorem.
In order to bound

∥∥Gk(Tγ+,γ−)−Gk(T )O
∥∥, first observe that∥∥Gk(Tγ+,γ−)−Gk(T )O

∥∥ =
∥∥∥P−1/2

γ− (Vk(Tγ+,γ−)− Vk(T )O) + (P
−1/2
γ− − P−1/2

)Vk(T )O
∥∥∥

≤
∥∥∥P−1/2

γ−

∥∥∥︸ ︷︷ ︸
≤(τ+)−1/2

∥∥Vk(Tγ+,γ−)− Vk(T )O
∥∥︸ ︷︷ ︸

≤δ

+
∥∥∥P−1/2 − P−1/2

∥∥∥∥∥Vk(T )
∥∥︸ ︷︷ ︸

=1

≤ δ√
τ+

+
∥∥∥P−1/2

γ− − P−1/2
∥∥∥ . (57)

The second term
∥∥∥P−1/2

γ− − P−1/2
∥∥∥ can be bounded as∥∥∥P−1/2

γ− − P−1/2
∥∥∥ =

∥∥∥P−1
γ− (P

1/2
γ− − P

1/2
)P
−1
∥∥∥ (58)

≤

∥∥∥P 1/2
γ− − P

1/2
∥∥∥

(τ+)2
≤
∥∥Pγ− − P∥∥1/2

(τ+)2
≤

√
C4(r, s, η, l)

(τ+)2[np(1− η)]1/28
, (59)

where the penultimate inequality uses Proposition 58, and the last inequality uses (56).

Plugging (58) into (57) leads to the stated bound for p ≥ C14
4 (r,s,η,l)
n(1−η)δ28

.

4.6 Mis-clustering rate from k-means

We now analyze the mis-clustering error rate when we apply a (1+ξ)-approximate k-means
algorithm (e.g., (Kumar et al., 2004)) on the rows of Gk(T ) (respectively, Gk(Tγ+,γ−) in the
sparse regime). To this end, we rely on the following result from Lei and Rinaldo (2015),
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which when applied to our setting, yields that the mis-clustering error is bounded by the

estimation error
∥∥Gk(T )−Gk(T )O

∥∥2

F
(or
∥∥Gk(Tγ+,γ−)−Gk(T )O

∥∥2

F
in the sparse setting).

By an (1 + ξ)-approximate algorithm, we mean an algorithm that is provably within an
(1 + ξ) factor of the cost of the optimal solution achieved by k-means.

Lemma 35 (Lemma 5.3 of Lei and Rinaldo (2015), Approx. k-means error) For
any ξ > 0, and any two matrices U,U , such that U = ΘX with (Θ, X) ∈ Mn×k × Rk×k,
let (Θ̃, X̃) ∈ Mn×k × Rk×k be a (1 + ξ)-approximate solution to the k-means problem
minΘ∈Mn×k,X∈Rk×k ‖ΘX − U‖

2
F so that∥∥∥Θ̃X̃ − U
∥∥∥2

F
≤ (1 + ξ) min

Θ∈Mn×k,X∈Rk×k
‖ΘX − U‖2F

and Ũ = Θ̃X̃. For any δi ≤ mini′ 6=i
∥∥Xi′∗ −Xi∗

∥∥, define

Si =
{
j ∈ Ci :

∥∥∥Ũj∗ − U j∗∥∥∥ ≥ δi/2} , then,

k∑
i=1

|Si| δ2
i ≤ 4(4 + 2ξ)

∥∥U − U∥∥2

F
. (60)

Moreover, if

(16 + 8ξ)
∥∥U − U∥∥2

F
/δ2
i < ni ∀i ∈ [k] , (61)

then there exists a k×k permutation matrix π such that Θ̃G = ΘGπ, where G = ∪ki=1(Ci\Si).

Combining Lemma 35 with the perturbation results of Theorem 29 and Theorem 34, we
readily arrive at mis-clustering error bounds for SPONGEsym.

Theorem 36 (Mis-clustering error for SPONGEsym) Under the notation and assump-

tions of Theorem 29, let (Θ̃, X̃) ∈ Mn×k × Rk×k be a (1 + ξ)-approximate solution to the
k-means problem minΘ∈Mn×k,X∈Rk×k ‖ΘX −Gk(T )‖2F . Denoting

Si =

j ∈ Ci :
∥∥∥(Θ̃X̃)j∗ − (Θ(C−)−1/2RO)j∗

∥∥∥ ≥ 1

2
√
ni(τ+ + 2

1−l )

 ,

it holds with probability at least 1− 2ε that

k∑
i=1

|Si|
ni
≤ δ2(64 + 32ξ)k

(
τ+ +

2

1− l

)(
(τ+)3 + 1

(τ+)4

)
.

In particular, if δ satisfies

δ <
(τ+)2√

(64 + 32ξ)k(τ+ + 2
1−l )((τ

+)3 + 1)
,

then there exists a k×k permutation matrix π such that Θ̃G = Θ̂Gπ, where G = ∪ki=1(Ci\Si).
In the sparse regime, the above statement holds under the notation and assumptions of

Theorem 34 with Gk(T ) replaced with Gk(Tγ+,γ−), and with probability at least 1− 2e−r.
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Proof Since Gk(T )−Gk(T )O has rank at most 2k, we obtain from Theorem 29 that

∥∥Gk(T )−Gk(T )O
∥∥
F
≤
√

2k
∥∥Gk(T )−Gk(T )O

∥∥ ≤ δ√2k

(
(τ+)3/2 + 1

(τ+)2

)
. (62)

We now use Lemma 35 with U = Gk(T ) and U = Gk(T )O. It follows from (44) and
Lemma 17 thatGk(T ) = Θ(C−)−1/2R = Θ∆ ∆−1(C−)−1/2R where ∆ = diag(

√
n1, . . . ,

√
nk).

Denoting X = ∆−1(C−)−1/2RO, we can write Gk(T )O = Θ̂X, where Θ̂ ∈ Mn×k is the
ground truth membership matrix, and for each i 6= i′ ∈ [k], it holds true that

∥∥Xi∗ −Xi′∗
∥∥ ≥ λmin((C−)−1/2)

√
1/ni + 1/ni′ ≥

1√
λmax(C−)ni

.

From (18), one can verify using Weyl’s inequality that

λmax(C−) ≤ 1 + τ+ + max
i

p

d−i
(ηi + sin(1− 2η)) ≤ τ+ +

2

1− l
,

where the last inequality holds if n ≥ 2η
(1−l)(1−η) . The above considerations imply that

δi = 1√
ni(τ++ 2

1−l )
. Now with Si as defined in the statement, we obtain from (60) and (62)

that

k∑
i=1

|Si| δ2
i =

1

τ+ + 2
1−l

k∑
i=1

|Si|
ni
≤ δ2(32 + 16ξ)k

((τ+)3/2 + 1)2

(τ+)4
≤ δ2(64 + 32ξ)k

(
(τ+)3 + 1

(τ+)4

)
,

where the last inequality uses (a+ b)2 ≤ 2(a2 + b2) for a, b ≥ 0. This yields the first part of
the Theorem.

For the second part, we need to ensure (61) holds. Using (62) and the expression for δi,
it is easy to verify that (61) holds for the stated condition on δ.

Finally, the statement for the sparse regime readily follows in an analogous manner (re-
placing Gk(T ) with Gk(Tγ+,γ−)), by following the same steps as above.

5. Concentration results for the symmetric Signed Laplacian

This section contains proofs of the main results for the symmetric Signed Laplacian, in both
the dense regime p & lnn

n and the sparse regime p & 1
n . Before proceeding with an overview

of the main steps, for ease of reference, we summarize in the Table below the notation
specific to this section.
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Notation Description

Lsym symmetric Signed Laplacian

Lsym population Signed Laplacian

Lγ regularized Laplacian

Lγ population regularized Laplacian

γ+, γ− > 0 regularization parameters

γ = γ+ + γ−

α = 1 + p

d
(1− 2η)

d = p(n− 1) expected signed degree

ρ = nmin
nmax

= s
l aspect ratio

The proof of Theorem 8 is built on the following steps. In Section 5.1, we compute
the eigen-decomposition of the Signed Laplacian of the expected graph Lsym. Then in
Section 5.2, we show Lsym and Lsym are “close”, and obtain an upper bound on the error∥∥Lsym − Lsym∥∥. Finally, in Section 5.3, we use the Davis-Kahan theorem (see Theorem 56)
to bound the error between the subspaces Vk−1(Lsym) and Vk−1(Lsym). To prove The-
orem 11, in Section 5.4, we first use a decomposition of the set of edges [n] × [n] and
characterize the behaviour of the regularized Signed Laplacian on each subset. This leads
in Section 5.5 to the error bounds of Theorem 11. Finally, the proof of Theorem 13, that
bound the error on the eigenspace, relies on the same arguments as Theorem 8 and can be
found in Section 5.6. Similarly to the approach for SPONGEsym, the mis-clustering error is
obtained using a (1+ξ)-approximate solution of the k-means problem applied to the rows of
Vk−1(Lsym) (resp. Vk−1(Lγ)). This solution contains, in particular, an estimated member-

ship matrix Θ̃. The bound on the mis-clustering error of the algorithm given in Theorem 16
is derived using Lemma 35 (Lemma 5.3 of Lei and Rinaldo (2015)), in Section 5.7.

5.1 Analysis of the expected Signed Laplacian

In this section, we compute the eigen-decomposition of the matrix Lsym. In particular,
we aim at proving a lower bound on the eigengap between the (k − 1)th and kth smallest
eigenvalues. For equal-size clusters, there is an explicit expression for this eigengap.

5.1.1 Matrix decomposition

Lemma 37 Let Θ ∈ Rn×k denote the normalized membership matrix in the SSBM. Let
V ⊥ ∈ Rn×(n−k) be a matrix whose columns are any orthonormal base of the subspace orthog-
onal to R(Θ). The Signed Laplacian of the expected graph has the following decomposition

Lsym = [Θ V ⊥]

(
C 0
0 αIn−k

)[
ΘT

(V ⊥)T

]
, (63)

with C = αIk −B, α = 1 + p

d
(1− 2η) and B is a k × k matrix such that

Bii′ =

{
nip

d
(1− 2η); if i = i′

−
√
nini′p

d
(1− 2η); if i 6= i′.

(64)

Proof On one hand, we recall from Section 2.3 that the expected degree matrix is a scaled
identity matrix E[D] = dIn, with d = p(n − 1). Thus, any vector v ∈ Rn is an eigenvector
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of E[D] with corresponding eigenvalue d, and it holds true that

E[D]−1/2 =
1√
d
In =

1√
d

[Θ (V ⊥)] In

[
ΘT

(V ⊥)T

]
. (65)

On the other hand, the signed adjacency matrix can be written in the form

E[A] = E[A+]− E[A−] = M − p(1− 2η)In, (66)

where

M =


p(1− 2η)Jn1 −p(1− 2η)Jn1×n2 . . . −p(1− 2η)Jn1×nk

−p(1− 2η)Jn2×n1 p(1− 2η)Jn2 . . . −p(1− 2η)Jn2×nk
...

...
. . .

...
−p(1− 2η)Jnk×n1 . . . . . . p(1− 2η)Jnk

 .
The matrix M has the following decomposition

M = dΘBΘT = d[Θ V ⊥]

(
B 0
0 0

)[
ΘT

(V ⊥)T

]
,

with B defined in (64). Thus, combining (65) and (66), we arrive at

E[D]−1/2E[A]E[D]−1/2 =
1

d
M − p(1− 2η)

1

d
In = [Θ V ⊥]

(
B 0
0 0

)[
ΘT

(V ⊥)T

]
− (1− 2η)

p

d
In.

This finally leads to the decomposition of Lsym

Lsym = I − E[D]−1/2E[A]E[D]−1/2 = [Θ V ⊥]

(
C 0
0 αIn−k

)[
ΘT

(V ⊥)T

]
,

with C = αIk −B and α = 1 + p(1− 2η).

We can infer from Lemma 37 that the spectrum of Lsym is the union of the spectrum
of the matrix C ∈ Rk×k and {α}. Moreover, denoting u = 1√

d
(
√
n1, . . . ,

√
nk)

T , we have

C = p(1 − 2η)uuT + diag
(

1 + p

d
(1− 2η)(1− 2ni)

)
. For a SSBM with equal-size clusters,

we are able to find explicit expressions for the eigenvalues of C.

5.1.2 Spectrum of the Signed Laplacian: equal-size clusters

In this section, we assume that the clusters in the SSBM have equal sizes n1 = n2 = · · · =
nk = n

k . In this case,

1√
d

(
√
n1, . . . ,

√
nk)

T =

√
n

d
χ1,

and denoting by Ce the matrix C in this setting of equal clusters, we may write

Ce =
np

d
(1− 2η)χ1χ

T
1 +

(
1 +

p

d
(1− 2η)

(
1− 2

n

k

))
Ik. (67)
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Hence, the spectrum of Ce contains only two different values. The largest one has multi-
plicity 1, and χ1 is the corresponding largest eigenvector. The k − 1 remaining eigenvalues
are all equal. In fact, we have

λi(Ce) =

1 + p

d
(1− 2η)(n+ 1− 2nk ); if i = 1

1 + p

d
(1− 2η)

(
1− 2nk

)
; if 2 ≤ i ≤ k.

One can easily check that these eigenvalues are positive, and that the following inequality
holds true

λ1(Ce) = α+
p

d
(1− 2η)(n− 2

n

k
) ≥ α > α− 2

n

k
(1− 2η) = λ2(Ce).

We finally have

λj(Lsym) =


1 + p

d
(1− 2η)(n+ 1− 2nk ); if j = 1

α; if 2 ≤ j ≤ n− k + 1

λ2(Ce); if n− k + 2 ≤ j ≤ n.

Note that for k = 2, λ1(Ce) = α and the spectrum of Lsym contains only two values
{α, λ2(Ce)}. For k > 2, λ1(Lsym) > α > λ2(Ce). Writing the spectral decomposition

Ce = R ΛRT = [Rk−1 γ1] Λ

[
RTk−1

γT1

]
,

with γ1 = χ1 and Rk−1 ∈ Rk×(k−1) being the matrix of eigenvectors associated to λ2(Ce),
we conclude that Vk−1(Lsym) = ΘRk−1. In fact, since Θ has k distinct rows and R is a
unitary matrix, ΘR also has k distinct rows. As χ1 is the all one’s vector , ΘRk−1 has k
distinct rows as well. These observations are summarized in the following lemma and lead
to the expression of the eigengap.

Lemma 38 (Eigengap for equal-size clusters) For the SSBM with k ≥ 2 clusters of
equal-size n

k , we have that Vk−1(Lsym) = ΘRk−1 ∈ Rn×(k−1), where Rk−1 corresponds to the
(k − 1) smallest eigenvectors of Ce. Moreover, with the eigengap defined as

λgap := λn−k+1(Lsym)− λn−k+2(Lsym),

it holds true that

λgap = α− λ2(Ce) =
2np

kd
(1− 2η) ≥ 2

k
(1− 2η). (68)

5.1.3 Non-equal-size clusters

In the general setting of non-equal-size clusters, it is difficult to obtain an explicit expression
of the spectrum of Lsym. Thus, using a perturbation method, we establish a lower bound
on the eigengap, provided that the aspect ratio ρ is close to 1. Recall that

C = p(1− 2η)uuT + diag

(
1 +

p

d
(1− 2η)(1− 2ni)

)
= p(1− 2η)uuT − 2p(1− 2η)diag(u2

i )
n
i=1 + diag

(
1 +

p

d
(1− 2η)

)
. (69)
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We note that this matrix is of the form Λ+vvT , with Λ being a diagonal matrix and v ∈ Rk
a vector. Using again the spectral decomposition

C = R ΛRT = [Rk−1 γ1] Λ

[
RTk−1

γT1

]
, (70)

where γ1 is the largest eigenvector and Rk−1 ∈ Rk×(k−1) contains the smallest (k − 1)
eigenvectors of C, we would like to ensure that the smallest (k−1) eigenvectors of Lsym are
related to the (k − 1) eigenvectors of C in the following way Vk−1(Lsym) = ΘRk−1. Note
that γ1 is not necessarily the all one’s vector, and ΘRk−1 has at least k − 1 distinct rows.
To this end, we will like to ensure that

{λ2(C), . . . , λk−1(C), λk(C)} = {λn−k+2(Lsym), . . . , λn−1(Lsym), λn(Lsym)}. (71)

From Weyl’s inequality (see Theorem 55), we know that

|λi(Ce)− λi(C)| ≤ ‖C − Ce‖ ∀i = 1, . . . k,

which in particular implies

λ2(C) ≤ λ2(Ce) + ‖C − Ce‖, λ1(C) ≥ λ1(Ce)− ‖C − Ce‖.

Moreover, λ1(C) = α when k = 2, and λ1(C) > α when k > 2. Thus, for Condition 71 to
be true, it suffices to ensure

λ2(Ce) + ‖C − Ce‖ < α+ ‖C − Ce‖ ⇐⇒ ‖C − Ce‖ <
α− λ2(Ce)

2

⇐⇒ ‖C − Ce‖ <
np

kd
(1− 2η),

using (68). In this case, we indeed have that Vk−1(Lsym) = ΘRk−1. As it will be convenient
later, we will ensure a slightly stronger condition, i.e.

‖C − Ce‖ <
α− λ2(Ce)

4
=

np

2kd
(1− 2η). (72)

Now we compute the error ‖C − Ce‖. We recall that ‖u‖ =
√

n
d

and denote Du =:

1
‖u‖2 diag(u2

i )
n
i=1, then (69) becomes

C = αIk +
np

d
(1− 2η)

(
u

‖u‖

)(
u

‖u‖

)T
− 2

np

d
(1− 2η)Du.

Using (67), we obtain

‖C − Ce‖ =

∥∥∥∥∥npd (1− 2η)

((
u

‖u‖

)(
u

‖u‖

)T
− χ1χ

T
1

)
− 2

np

d
(1− 2η)

(
Du −

1

k
In

)∥∥∥∥∥
≤ np

d
(1− 2η)

∥∥∥∥∥
(

u

‖u‖

)(
u

‖u‖

)T
− χ1χ

T
1

∥∥∥∥∥+ 2
np

d
(1− 2η)

∥∥∥∥Du −
1

k
In

∥∥∥∥ . (73)
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For the first term on the RHS, we have∥∥∥∥∥
(

u

‖u‖

)(
u

‖u‖

)T
− χ1χ

T
1

∥∥∥∥∥ ≤ 2

∥∥∥∥ u

‖u‖
− χ1

∥∥∥∥ ≤ 2
√
kmax

i

∣∣∣∣∣
√
ni
n
−
√

1

k

∣∣∣∣∣
≤ 2
√
k(
√
l −
√
s) ≤ 2

√
k(1−√ρ), (74)

while for the second term on the RHS, we have∥∥∥∥Du −
1

k
In

∥∥∥∥ = max
i

∣∣∣∣∣
√
ni
n
−
√

1

k

∣∣∣∣∣ ≤ 1−√ρ. (75)

By combining (74) and (75) into (73), we arrive at

‖C − Ce‖ ≤
np

d
(1− 2η)

√
k(1−√ρ) +

2np

d
(1− 2η)(1−√ρ)

≤ np

d
(1− 2η)(1−√ρ)

(√
k + 2

)
≤ 2(2 +

√
k)(1− 2η)(1−√ρ),

using that np

d
= n

n−1 ≤ 2. Now since np

2kd
≥ 1−2η

2k and from Condition 72, it suffices that ρ
satisfies

2(2 +
√
k)(1− 2η)(1−√ρ) ≤ 1− 2η

2k
⇐⇒ 1−√ρ ≤ 1

4k(2 +
√
k)
.

Finally, we can compute

λgap := λn−k+1(Lsym)− λn−k+2(Lsym)

≥ α− ‖C − Ce‖ − (λ2(Ce) + ‖C − Ce‖)
≥ α− λ2(Ce)− 2‖C − Ce‖

≥ α− λ2(Ce)

2
=
np

kd
(1− 2η) ≥ 1− 2η

k
.

Hence we arrive at the following lemma.

Lemma 39 (General lower-bound on the eigengap) For a SSBM with k ≥ 2 clusters
of general sizes (n1, . . . , nk) and aspect ratio ρ satisfying

√
ρ > 1− 1

4k(2 +
√
k)
,

it holds true that Vk−1(Lsym) = ΘRk−1, where Rk−1 ∈ Rk×k−1 corresponds to the (k − 1)
smallest eigenvectors of C. Furthermore, we can lower-bound the spectral gap λgap as

λgap := λn−k+1(Lsym)− λn−k+2(Lsym) ≥ 1− 2η

k
.

We will now show that Lsym concentrates around the population Laplacian Lsym, pro-
vided the graph is dense enough.
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5.2 Concentration of the Signed Laplacian in the dense regime

In the moderately dense regime where p & lnn
n , the adjacency and the degree matrices

concentrate towards their expected counterparts, as n increases. This can be established
using standard concentration tools from the literature.

Lemma 40 We have the following concentration inequalities for A and D

1. ∀0 < ε ≤ 1
2 ,∃cε > 0,

P
(
‖A− E[A]‖ ≤ ((1 + ε)4

√
2 + 2)

√
np

)
≥ 1− n exp

(
− np

cε

)
.

In particular, there exists a universal constant c > 0 such that

P
(
‖A− E[A]‖ ≤ 12

√
np

)
≥ 1− n exp

(
− np

c

)
.

2. If p > 12 lnn
n ,

P
(
‖D − E[D]‖ ≤

√
3np lnn

)
≥ 1− 2

n
.

Proof For the first statement, we recall that A is a symmetric matrix, with Ajj′ = 0 and
with independent entries above the diagonal (Ajj′)j<j′ . We denote Zjj′ = Ajj′ −E[Ajj′ ]. If
j, j′ lie in the same cluster,

Zjj′ =


1− p(1− 2η) ; w. p. p(1− η)
−1− p(1− 2η) ; w. p. pη
−p(1− 2η) ; w. p. 1− p

.

If j, j′ lie in different clusters,

Zjj′ =


1 + p(1− 2η) ; w. p. pη
−1 + p(1− 2η) ; w. p. p(1− η)

p(1− 2η) ; w. p. 1− p
.

One can easily check that in both cases, it holds true that

E[(Zjj′)
2] = p

[
(1− η)(1− p(1− 2η))2 + η(1 + p(1− 2η))2 + p(1− 2η)2)(1− p)

]
≤ p(1 + η(1 + p)2 + p) ≤ 4p.

Thus we can conclude that for each j ∈ [n], the following holds√√√√ n∑
j′=1

E[(Zjj′)2] ≤
√

4np = 2
√
np.

Hence, σ̃ := maxj
√∑n

j′=1 E[(Zjj′)2 ] ≤ 2
√
np. Moreover, σ̃∗ := maxj,j′

∥∥∥Z+
jj′

∥∥∥
∞

= 1 +

p(1− 2η) ≤ 2. Therefore, we can apply the concentration bound for the norm of symmetric
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matrices by Bandeira and van Handel (2016, Corollary 3.12, Remark 3.13) (recalled in
Appendix 53) with t = 2

√
np, in order to bound ‖Z‖ = ‖A− E[A]‖. For any given 0 < ε ≤

1/2, we have that
‖A− E[A]‖ ≤

(
(1 + ε)4

√
2 + 2

)√
np,

with probability at least 1− n exp
(
−pn
cε

)
, where cε only depends on ε.

For the second statement, we apply Chernoff’s bound (see Appendix A.1) to the random

variables Djj =
∑n

j′=1

(
A+
jj′ +A−jj′

)
, where we note that (A+

jj′ +A−jj′)
n
j′=1 are independent

Bernoulli random variables with mean p. Hence, E[Djj ] = d = p(n − 1). Let δ =
√

6 lnn
d

and assuming that p > 12 lnn
n (so that δ < 1), we obtain

P
[∣∣Djj − d

∣∣ ≥√6d lnn
]
≤ P

[∣∣Djj − d
∣∣ ≥√3np lnn

]
≤ 2 exp

(
− 2 lnn

)
=

2

n2
,

using that n− 1 ≥ n
2 . Applying the union bound, we finally obtain that

P
(
‖D − E[D]‖ ≥

√
3np lnn

)
≤ 2

n
.

Lemma 41 If ‖A− E[A]‖ ≤ ∆A, ‖D − E[D]‖ ≤ ∆D and p > 12 lnn
n , then with probability

at least 1− 2
n , it follows that

‖Lsym − Lsym‖ ≤
∆A

d
+ 2

∆D

d
+

∆2
D

d
2 .

Proof We first note that using the proof of Lemma 40, with probability at least 1− 2
n , we

have that
∣∣Djj − d

∣∣ ≤ δd,∀j ∈ [n], with δ < 1. Consequently,

‖(E[D])−1/2D
1/2 − I‖ = max

j

∣∣∣∣∣∣
√
Djj

d
− 1

∣∣∣∣∣∣ ≤ max
j

|Djj − d|
d

=
∆D

d
,

since |
√
x− 1| ≤ |x− 1| for 0 < x < 1. We now apply the first inequality of Proposition 59

with A− = D,A+ = A,B− = E
[
D
]
, B+ = E [A]. We obtain

‖Lsym − Lsym‖ ≤
∆A

d
+
∥∥∥D−1

∥∥∥ ‖A‖(∆2
D

d
2 + 2

∆D

d

)
.

It remains to prove that
∥∥∥D−1

∥∥∥ ‖A‖ ≤ 1. It holds since D is a diagonal matrix, thus∥∥∥D−1
∥∥∥ ‖A‖ =

∥∥∥D−1
A
∥∥∥ and similarly to Lemma 61, it is straightforward to prove that

I −
∥∥∥D−1

A
∥∥∥ ≤ 2, therefore

∥∥∥D−1
A
∥∥∥ ≤ 1.

Combining the results from Lemma 40 and Lemma 41, we arrive at the concentration bound
for ‖Lsym − Lsym‖.
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Lemma 42 Under the assumptions of Theorem 8, if n ≥ 10, then with probability at least
1− n exp(−np

cε
)− 2

n there exists a universal constant 0 < C < 43 such that

‖Lsym − Lsym‖ ≤ C

√
lnn

np
.

Proof If p ≥ 12 lnn
n , the bounds in Lemma 40 hold simultaneously with probability at

least 1− n exp(−np
c )− 2

n and we have, with the notations of Lemma 41, ∆A ≤ 12
√
np and

∆D ≤
√

3np lnn. Applying Lemma 41, we then obtain

‖Lsym − Lsym‖ ≤
12
√
np

d
+ 2

√
3np lnn

d
+

3np lnn

d
2 ≤ 24

√
np

+ 4
√

3

√
lnn

np
+

12 lnn

np
.

If n ≥ 10, lnn ≥ 1 and
√

lnn
np ≥

1√
np . Moreover, since p ≥ 12 lnn

n , then lnn
np ≤

1
12 < 1 and√

lnn
np ≥

lnn
np . We finally obtain

‖Lsym − Lsym‖ ≤ (24 + 4
√

3 + 12)

√
lnn

np
= C

√
lnn

np
,

with C = 24 + 4
√

3 + 12 ≤ 43.

5.3 Proof of Theorem 8

The proof of this theorem relies on the Davis-Kahan theorem. Using Weyl’s inequality (see
Theorem 55) and Lemma 42, we obtain for all 1 ≤ j ≤ n,

|λj(Lsym)− λj(Lsym)| ≤ C
(

lnn

np

)1/2

.

In particular, for the k-th smallest eigenvalue,

λn−k+1(Lsym) ≥ λn−k+1(Lsym)− C
(

lnn

np

)1/2

,

λn−k+1(Lsym)− λn−k+2(Lsym) ≥ λn−k+1(Lsym)− λn−k+2(Lsym)− C
(

lnn

np

)1/2

= λgap − C
(

lnn

np

)1/2

.

For δ ∈ (0, 1), we will like to ensure that

λgap − C
(

lnn

np

)1/2

> λgap

(
1− δ

2

)
. (76)
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From Lemma 39, if
√
ρ > 1 − 1

4k(2+
√
k)

, then λgap ≥ 1
k (1 − 2η). Then for the previous

condition (76) to hold, it is sufficient that

C

(
lnn

np

)1/2

<
δ

2k
(1− 2η) ⇐⇒ p >

(
2Ck

δ(1− 2η
)

)2 lnn

n
= C(k, η, δ)

lnn

n
, (77)

with C(k, η, δ) =
(

2Ck
δ(1−2η)

)2
. We note that since C(k, η, δ) ≥ C ≥ 12, hence (77) implies

that p > 12 lnn
n .

With this condition, we now apply the Davis-Kahan theorem (Theorem 56)

‖(I − Vk−1(Lsym)Vk−1(Lsym)T )Vk−1(Lsym)‖ ≤
∥∥Lsym − Lsym∥∥
λgap − C

(
lnn
np

)1/2

≤ δλgap/2

λgap(1− δ/2)
=

δ/2

1− δ/2
≤ δ.

Using Proposition 57, there then exists an orthogonal matrix O ∈ R(k−1)×(k−1) so that

‖Vk−1(Lsym)−ΘRk−1O‖ ≤ 2δ.

5.4 Properties of the regularized Laplacian in the sparse regime

The analysis of the signed regularized Laplacian differs from the one of unsigned regu-
larized Laplacian. In particular, Lemma 30 cannot be directly applied, since the trimming
approach of the adjacency matrix for unsigned graphs is not available in this case. However,
we will also use arguments of Le et al. (2015) and Le et al. (2017) for unsigned directed ad-
jacency matrices in the inhomogeneous Erdős-Rényi model G(n, (pjj′)j,j′). More precisely,
in Section 5.4.1, we will prove that the adjacency matrix concentrates on a large subset of
edges called the core. On this subset, the unregularized (resp. regularized) Laplacian also
concentrates towards the expected matrix Lsym (resp. Lγ). In Section 5.4.2, we will show
that on the remaining subset of nodes, the norm of the regularized Laplacian is relatively
small.

5.4.1 Properties of the signed adjacency and degree matrices

In this section, we adapt the results by Le et al. (2017) for the signed adjacency matrix and
the degree matrix in our SSBM. Similarly to Le et al. (2017, Theorem 2.6) (see Theorem 54),
the following lemma shows that the set of edges can be decomposed into a large block, and
two blocks with respectively few columns and few rows.

Lemma 43 (Decomposition of the set of edges for the SSBM) Let A be the signed adjacency
matrix of a graph sampled from the SSBM. For any r ≥ 1, with probability at least 1−6n−r,
the set of edges [n]× [n] can be partitioned into three classes N ,R and C such that

1. the signed adjacency matrix concentrates on N

‖(A− EA)N ‖ ≤ Cr3/2
√
d(1− η),

with C > 1 a constant;

48



Regularized spectral methods for clustering signed networks

2. R (resp. C) intersects at most 4n/d columns (resp. rows) of [n]× [n];

3. each row (resp. column) of AR (resp. AC) has at most 128r non-zero entries.

Remark 44 We underline that this lemma is valid because the unsigned adjacency matrices
A+ and A− have disjoint support. We do not know if similar results could be obtained for
the Signed Stochastic Block Model defined by Mercado et al. (2016).

Proof We denote A±sup (resp. A±inf ) the upper (resp. lower) triangular part of the unsigned
adjacency matrices. Using this decomposition, we have

A = A+
inf +A+

sup −A−inf −A
−
sup.

We note that A+
inf , A

+
sup, A

−
inf , A

−
sup have disjoint supports, and each of them has indepen-

dent entries. We can hence apply Theorem 54 to each of these matrices, where we note that
for each matrix

d := nmax
j,j′

E[Ajj′ ] = np(1− η) ≤ 2d(1− η).

With probability at least 1 − 2 × 3n−r, there exists N±inf ,R
±
inf , C

±
inf ,N

±
sup,R±sup, C±sup four

partitions of [n]× [n] that have the subsequent properties. For e.g., for A+
inf ,

• ‖(A+
inf − EA+

inf )N ‖ ≤ Cr3/2
√
d ≤ Cr3/2

√
2d(1− η);

• R+
inf (resp. C+

inf ) intersects at most n/d ≤ n/d columns (resp. rows) of [n]× [n];

• each row (resp. column) of (A+
inf )R (resp. (A+

inf )C) have at most 32r ones.

We note that this decomposition holds simultaneously for A±inf and A±sup. Taking the unions
of these subsets,

N = N+
inf ∪N

+
sup ∪N−inf ∪N

−
sup,

and similarly for R and C, we have, with the triangle inequality

‖(A− EA)N ‖
= ‖(A+

inf − EA+
inf )N+

inf
+ (A+

sup − EA+
sup)N+

sup
− (A−inf − EA−inf )N−inf

− (A−sup − EA−sup)N−sup‖

≤ ‖(A+
inf − EA+

inf )N+
inf
‖+ ‖(A+

sup − EA+
sup)N+

sup
‖+ ‖(A−inf − EA−inf )N−inf

‖

+ ‖(A−sup − EA−sup)N−sup‖

≤ 4Cr3/2
√
d ≤ C1r

3/2
√
d(1− η),

with C1 = 4C
√

2. Moreover, each row of R (resp. each column of C) has at most 2 × 32r
entries equal to 1 and 2 × 32r entries equal to −1, which means at most 128r non-zero
entries. Finally R (resp. C) intersects at most 4n/d rows (resp. columns) of [n]× [n].
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For the degree matrix D, we use inequality (4.3) from (Le et al., 2017). Recall that the
degree of node j is Djj =

∑n
j′=1(A+

jj′ + A−jj′) which is a sum of n independent Bernoulli
variables with bounded variance d/n. We can thus find an upper bound on the error
‖D−E[D]‖F . This bound is weaker than the one obtained in Lemma 40 with the assumption
p & lnn

n .

Lemma 45 There exists a constant C ′ > 0 such that for any r ≥ 1, with probability at
least 1− e−2r, it holds true

n∑
j=1

(Djj′ − d)2 ≤ C ′r2nd ≤ 2C ′r2nd(1− η).

5.4.2 Properties of the regularized Laplacian outside the core

In this section, we will bound the norm of the Signed Laplacian restricted to the subsets
of edges N and C. The following “restriction lemma” is an extension of Lemma 8.1 in Le
et al. (2015) for Signed Laplacian matrices.

Lemma 46 (Restriction of Signed Laplacian) Let B be a n× n symmetric matrix, Bγ its
regularized form as described in Section 2.2, and C ⊂ [n]×[n]. We denote Dγ the regularized

degree matrix , and Lγ = D
−1/2
γ BγD

−1/2
γ the modified “Laplacian” and BC the n×n matrix

such that the entries outside of C are set to 0. Let 0 < ε < 1 such that the degree of each
node in (Bγ)C is less that ε times the the corresponding degree in Bγ. Then we have

‖(Lγ)C‖ ≤
√
ε.

Proof We denote Dr (resp. Dc) the degree matrix of (Bγ)C (resp. (Bγ)TC ) and L̃ its
regularized “Laplacian” (it is not necessarily a symmetric matrix) where

L̃ = (D
1/2
r )†(Bγ)C(D

1/2
c )†.

By definition of Lγ , (Lγ)C = D
−1/2
γ (Bγ)CD

−1/2
γ . Since in (Bγ)C , some entries in B are

set to 0, we have that for all 1 ≤ j ≤ n,

(Dc)jj ≤ [Dγ ]jj .

Moreover, by assumption, (Dr)jj ≤ ε[Dγ ]jj . We denote X = (D
1/2
r )†, Y = (D

1/2
c )† and

Z = D
−1/2
γ , and now we have

LC = ZBCZ = ZX†XBCY Y
†Z = ZX†L̃Y †Z.

Because ‖ZX†‖ ≤
√
ε and ‖Y †Z‖ ≤ 1, by sub-multiplicativity of the norm, we thus obtain

‖LC‖ ≤ ‖ZX†‖ · ‖L̃‖ · ‖Y †Z‖ ≤
√
ε‖L̃‖.

In addition, by considering the 2n× 2n symmetric matrix L̃′

L̃′ =

(
0n L̃

L̃ 0n

)
,
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we have ‖L̃′‖ = ‖L̃‖ ≤ 1. In fact, L̃′ is equal to the identity matrix minus the regularized
Laplacian of (

0n (Bγ)C
(Bγ)TC 0n

)
.

Using Appendix E, we can conclude that the eigenvalues of L̃′ are between -1 and 1, leading
to ‖L̃′‖ ≤ 1. Hence, we finally arrive at ‖(Lγ)C‖ ≤

√
ε.

Remark 47 We note that this lemma is not specific to the rows of the matrix B, and one
could also derive the same lemma with the assumptions on the columns of the matrix.

5.5 Error bounds w.r.t the expected regularized Laplacian and expected
Signed Laplacian

In this section, we prove an upper bound on the errors ‖Lγ − Lγ‖ and ‖Lγ − Lsym‖ from
Theorem 11. We will use the decomposition of the set of edges (N ,R, C) from Lemma 43,
and sum the errors on each of these subsets of edges. We recall that on the subset N ,
we have an upper bound on ‖(A − EA)N ‖. We will also use the fact that the regularized
degrees [Dγ ]jj are lower-bounded by the regularization parameter γ. On the subsets R and
C, we will use Lemma 46 to upper bound the norm of the regularized Laplacian.

Lemma 48 Under the assumptions of Theorem 11, for any r ≥ 1, with probability at least
1− 7e−2r, we have

‖Lγ − Lγ‖ ≤
Cr2

√
γ

(
1 +

d

γ

)5/2

+
32
√

2r
√
γ

+
8√
d
. (78)

Proof Let Lγ − Lγ = S + T with

S = (Dγ)−1/2Aγ(Dγ)−1/2 − (Dγ)−1/2EAγ(Dγ)−1/2 = (Dγ)−1/2(Aγ − EAγ)(Dγ)−1/2,

T = (Dγ)−1/2EAγ(Dγ)−1/2 − (EDγ)−1/2EAγ(EDγ)−1/2.

We will bound the norm of S+T on N , and the norms of Lγ and Lγ on the residuals R, C.
We first use the triangle inequality to obtain

‖Lγ − Lγ‖
≤ ‖ (Lγ − Lγ)N ‖+ ‖ ((Lγ − I)− (Lγ − I))R ‖+ ‖ (Lγ − Lγ)C ‖
≤ ‖ (Lγ − Lγ)N ‖+ ‖ (I − Lγ)R ‖+ ‖ (I − Lγ)R ‖+ ‖ (I − Lγ)C ‖+ ‖ (I − Lγ)C ‖
= ‖ (S + T )N ‖+ ‖ (I − Lγ)R ‖+ ‖ (I − Lγ)R ‖+ ‖ (I − Lγ)C ‖+ ‖ (I − Lγ)C ‖
≤ ‖SN ‖+ ‖TN ‖+ ‖ (I − Lγ)R ‖+ ‖ (I − Lγ)R ‖+ ‖ (I − Lγ)C ‖+ ‖ (I − Lγ)C ‖.

51



Cucuringu, Singh, Sulem, Tyagi

1. Bounding the norm ‖TN ‖. Denoting γ = γ+ + γ−, we have that

‖TN ‖2 ≤ ‖TN ‖2F

=

n∑
j,j′=1

T 2
jj′

=
n∑

j,j′=1

(
EAjj′ + (γ+ − γ−)/n

)2  1√
(Djj + γ)(Dj′j′ + γ)

− 1

d+ γ

2

(79)

≤ (d+ γ)2

2n2γ6

 n∑
j=1

(Djj + γ)2
n∑

j′=1

(Dj′j′ − d)2 + n(d+ γ)2
n∑
i=1

(Djj − d)2

 . (80)

To upper bound (79) by (80), we have used the simplification trick in the proof of (Le et al.,
2017, Theorem 4.1) which we now recall. Firstly, the second factor of (79) can be upper
bounded in the following way. For 1 ≤ j, j′ ≤ n,

∣∣∣∣∣∣ 1√
(Djj + γ)(Dj′j′ + γ)

− 1

d+ γ

∣∣∣∣∣∣
=

|(Djj + γ)(Dj′j′ + γ)− (d+ γ)2|

(Djj + γ)(Dj′j′ + γ)(d+ γ) +
√

(Djj + γ)(Dj′j′ + γ)(d+ γ)2

≤
|(Djj + γ)(Dj′j′ + γ)− (d+ γ)2|

2γ3

=
|(Djj + γ)(Dj′j′ + γ)− (d+ γ)(Djj + γ) + (d+ γ)(Djj + γ)− (d+ γ)2|

2γ3

=
|(Djj − d)(Dj′j′ + γ) + (d+ γ)(Djj − d)|

2γ3
, (81)

where the inequality comes from the fact that Djj + γ ≥ γ. Secondly, we use the inequality
(a+ b)2 ≤ 2(a2 + b2) and we recall that by definition, we can bound the first factor of (79)

by |E(Aγ)jj′ | ≤ d+γ
n . This finally leads to (80).

Now we will bound each term of (80). Using Lemma 45, we have, for any r ≥ 1, with
probability at least 1− e−2r,

n∑
j=1

(Djj − d)2 ≤ 2C ′r2nd(1− η) ≤ 2C ′r2nd.
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If this holds, then the first term of (80) is upper bounded by

n∑
i=1

(Djj + γ)2
n∑
j=1

(Dj′j′ − d)2 ≤

2

n∑
j=1

(Djj − d)2 + 2n(d+ γ)2

 n∑
j′=1

(Dj′j′ − d)2

≤ 2C ′r2nd
(
4C ′r2nd+ 2n(d+ γ)2

)
≤ 2C ′r2n(d+ γ)(1− η)

(
4C ′r2nd+ 2n(d+ γ)2

)
≤ 2C ′r2n(d+ γ)

(
2(2C ′ + 1)r2n(d+ γ)2

)
≤ C1r

4n2(d+ γ)3,

with C1 = 4C ′(2C ′ + 1). Similarly, we can bound the second term of (80)

n(d+ γ)2
n∑
j=1

(Djj − d)2 ≤ 2C ′(d+ γ)2r2n2d ≤ 2C ′(d+ γ)3r2n2.

Hence, we obtain the following upper bound of (80)

‖TN ‖2 ≤
(C1 + 2C ′)r4

2γ6
(d+ γ)5 =

C2r
4

γ

(
1 +

d

γ

)5

, (82)

with C2 = (C1 + 2C ′)/2.

2. Bounding the norm ‖SN ‖. We first note that

S = (Dγ)−1/2(Aγ − EAγ)(Dγ)−1/2 = (Dγ)−1/2(A− EA)(Dγ)−1/2.

We also recall that ‖Dγ‖ ≥ γ. Hence, using Lemma 43, with probability at least 1− 6n−r,
we have

‖SN ‖ ≤ ‖D
−1/2
γ ‖ ‖(A− EA)N ‖ ‖D

−1/2
γ ‖ ≤ ‖(A− EA)N ‖/γ ≤

Cr3/2

γ

√
d(1− η)

≤ Cr3/2

γ

√
d. (83)

Summing the bounds in (82) and (83), we have the intermediate result

‖(Lγ − Lγ)N ‖ ≤
Cr3/2

γ

√
d+

√
C2r

2

√
γ

(
1 +

d

γ

)5/2

(84)

≤ r2

√
γ

C
√
d

γ
+
√
C2

(
1 +

d

γ

)5/2
 (85)

≤ r2

√
γ

(C +
√
C2)

(
1 +

d

γ

)5/2

=
C3r

2

√
γ

(
1 +

d

γ

)5/2

, (86)

with C3 = C +
√
C2.
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3. Bounding
∥∥(Lγ)R

∥∥ , ∥∥(Lγ)C
∥∥ ,∥∥(Lγ)R

∥∥ , ∥∥(Lγ)C
∥∥. Using the proof of Lemma 43,

each row of AR has at most 128r non-zeros entries and intersects at most 4n/d columns.
Thus, for all 1 ≤ j ≤ n

n∑
j′=1

[
(A+

γ +A−γ )R
]
jj′
≤ 128r +

4γ

d
= γ

(
128r

γ
+

4

d

)
≤
∑
j′

[
A+
γ +A−γ

]
jj′

(
128r

γ
+

4

d

)
,

as
∑

j′ [A
+
γ +A−γ ]jj′ ≥ n×

(
γ+

n + γ−

n

)
= γ. We can thus apply Lemma 46 with ε = 128r

γ + 4
d
,

and we arrive at

‖(Lγ)R‖ ≤
√

128r

γ
+

4

d
.

We also obtain the same bound for ‖(Lγ)C‖. Similarly, we have
∑

j′
[
E[A+

γ ] + E[A−γ ]
]
jj′

=

(n− 1)p+ γ = d+ γ ≥ γ and

n∑
j′=1

[
(E[A+

γ ] + E[A−γ ])R
]
jj′
≤ 4

np

d
+

4γ

d
≤ 8 +

4γ

d
= γ

(
8

γ
+

4

d

)

≤
∑
j′

[
E[A+]γ + E[A−]γ

]
jj′

(
8

γ
+

4

d

)
.

We arrive at ‖(Lγ)R‖ ≤
√

8
γ + 4

d
, and finally, we also have ‖(Lγ)C‖ ≤

√
8
γ + 4

d
.

4. Bounding ‖Lγ −Lγ‖. Summing up the bounds obtained in the first three steps, with
probability at least 1− e−2r − 6n−r ≥ 1− 7e−2r, we finally arrive at the bound

‖Lγ − Lγ‖ ≤
C3r

2

√
γ

(
1 +

d

γ

)5/2

+ 2

√
128r

γ
+

4

d
+ 2

√
8

γ
+

4

d

≤ C3r
2

√
γ

(
1 +

d

γ

)5/2

+ 4

√
128r

γ
+

4

d

≤ C3r
2

√
γ

(
1 +

d

γ

)5/2

+
32
√

2r
√
γ

+
8√
d
.

This bound also provides easily a bound on the norm of Lγ − Lsym.

Corollary 49 (Error bound of the regularized Laplacian) With the notations of Theorem 8
and Theorem 11, and γ = γ+ + γ−, we have

‖Lγ − Lsym‖ ≤
Cr2

√
γ

(
1 +

d

γ

)5/2

+
32
√

2r
√
γ

+
8√
d

+
γ

d+ γ
=: ∆L(γ, d). (87)

In particular, for the choice γ = d
7/8

, if p ≥ 2/n, we obtain

‖Lγ − Lsym‖ ≤
(
128Cr2 + 1

)
d
−1/8

.
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Proof By triangular inequality,

‖Lγ − Lsym‖ ≤ ‖Lγ − Lγ‖+ ‖Lγ − Lsym‖.

For the second term on the RHS, we have

‖Lγ − Lsym‖ =

∥∥∥∥ 1

d+ γ
EA− 1

d
EA
∥∥∥∥ =

γ

d(d+ γ)
‖EA‖ ≤ γ

d+ γ
. (88)

The last inequality comes from the fact that ‖EA‖ ≤ (n − 1)p(1 − η) ≤ d. Thus, by
summing the bound obtained in Lemma 48 and (88), we arrive at the expected result in
(87). Moreover, if γ ≤ d, since C > 1, one can readily verify that

‖Lγ − Lsym‖ ≤ 128Cr2d
5
2

γ3
+
γ

d
. (89)

If γ = d
7/8

, then γ ≤ d holds provided d ≥ 1 or equivalently, p ≥ 1
n−1 . The latter is ensured

if p ≥ 2/n (since n ≥ 2). Plugging this in (89), we then obtain the bound

‖Lγ − Lsym‖ ≤
(
128Cr2 + 1

)
d
−1/8

.

This concludes the proof of Corollary 49 and Theorem 11.

5.6 Error bound on the eigenspaces and mis-clutering rate in the sparse
regime

This section provides a bound on the misalignment error of the eigenspaces of Lγ and Lsym,
which then leads to a bounds on the mis-clustering rate of the k-means clustering step.

5.6.1 Eigenspace alignment

Using the bound from Corollary 49, we can perform the same analysis of the eigenspaces of
Lγ and Lsym, as in Theorem 8, which will prove Theorem 13. We apply, once again, Weyl’s
inequality and the Davis-Kahan theorem to bound the distance between the two subspaces
R(Vk−1(Lγ)) and R(Vk−1(Lsym)). We have that

λn−k+1(Lγ)− λn−k+2(Lsym) ≥ λgap − ‖Lγ − Lsym‖ ≥ λgap −∆L(γ, d),

using Corollary 49. If γ = γ0d
7/8

, then

∆L(γ, d) ≤
(
128Cr2 + 1

)
(d)−1/8 :=

C4

d
1/8

,

with C4 = 128Cr2 + 1. For 0 < δ < 1/2, we would like to ensure that

λgap −∆L(γ, d) ≥ λgap
(

1− δ

2

)
.

55



Cucuringu, Singh, Sulem, Tyagi

Hence, using the lower bound on the eigengap from Lemma 39, it suffices that

λgap −
C4

d
1/8
≥ λgap

(
1− δ

2

)
⇐⇒ d

1/8 ≥ 2kC4

δ(1− 2η)
⇐⇒ p ≥

(
2kC4

δ(1− 2η)

)8 1

n− 1
.

Thus, the condition p ≥
(

2kC4
δ(1−2η)

)8
2
n is sufficient. Applying the Davis-Kahan theorem, we

arrive at

‖(I − Vk−1(Lγ)Vk−1(Lγ)T )Vk−1(Lsym)‖ ≤ δλgap/2

λgap(1− δ/2)
≤ δ/2

1− δ/2
≤ δ,

and using once again Proposition 57, there exists an orthogonal matrix O ∈ R(k−1)×(k−1)

such that

‖Vk−1(Lγ)−ΘRk−1O‖ ≤ 2δ.

5.7 Proof of Theorem 16

In this section, we finally prove our result on the clustering performance of the Signed
Laplacian and regularized Laplacian algorithms. The proof essentially relies on the following
lemma, which provides a lower bound on the distance between two rows of ∆−1Rk−1, with
∆ = diag(

√
ni).

Lemma 50 For all 1 ≤ i 6= i′ ≤ k, we have ‖(Rk−1)i∗ − (Rk−1)i′∗‖ ≥ 1. Moreover, for
i ∈ [k], it holds that

min
i,i′∈[k],i 6=i′
j∈Ci,j′∈Ci′

∥∥(∆−1Rk−1)j∗ − (∆−1Rk−1)j′∗
∥∥2 ≥ 2

3ni
.

Proof Recall from (69) that C = p(1− 2η)uuT + diag(di), with di = u2
i +
(

1 + p

d
(1− 2η)

)
and ui =

√
ni
d
, 1 ≤ i ≤ k. Moreover, from (70), C = RΛR with R = [Rk−1 γ1] and γ1 the

largest eigenvector of C. We first show that the entries of γ1 are necessarily of the same
sign, i.e. (γ1)i ≥ 0, ∀i or (γ1)i ≤ 0, ∀i. In fact, by definition, γ1 is the solution of

max
‖v‖=1

vTCv = max
‖v‖=1

p(1− 2η)(vu)2 +

k∑
i=1

div
2
i . (90)

Since all the entries of u are positive, it is easy to see that any solution γ1 of (90) necessarily
has entries of the same sign (otherwise you could replace some (γ1)i) by −(γ1)i and increase
the objective function).

Let i 6= i′ ∈ [k]. As R has orthonormal rows,

〈Ri∗, Ri′∗〉 = 0 ⇐⇒ 〈(Rk−1)i∗, (Rk−1)i′∗〉+ (γ1)i(γ1)i′︸ ︷︷ ︸
≥0

= 0

=⇒ 〈(Rk−1)i∗, (Rk−1)i′∗〉 ≤ 0.
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Hence,

‖(Rk−1)i∗ − (Rk−1)i′∗‖2 = ‖(Rk−1)i∗‖2 +
∥∥(Rk−1)i′∗

∥∥2 − 2 〈(Rk−1)i∗, (Rk−1)i′∗〉︸ ︷︷ ︸
≤0

≥ ‖(Rk−1)i∗‖2 + ‖(Rk−1)i′∗‖2

= 2− [(γ1)2
i + (γ1)2

i′ ]︸ ︷︷ ︸
≤1

≥ 1.

In particular, this implies that Rk−1 has k distinct rows. Now let j, j′ ∈ [n] such that j ∈ Ci
and j′ ∈ Ci′ . Recalling that with ∆ = diag(

√
ni), Vk−1(Lsym) = ΘRk−1 = Θ∆∆−1Rk−1 =

Θ̂∆−1Rk−1, we have {
(∆−1Rk−1)j∗ = 1√

ni
(Rk−1)i∗,

(∆−1Rk−1)j′∗ = 1√
ni′

(Rk−1)i′∗.

Hence, ∥∥(∆−1Rk−1)j∗ − (∆−1Rk−1)j′∗
∥∥2

=
1

ni
‖(Rk−1)i∗‖2 +

1

ni′
‖(Rk−1)i′∗‖2 − 2

1
√
nini′

〈(Rk−1)i∗, (Rk−1)i′∗〉︸ ︷︷ ︸
≤0

≥ 1

ni
‖(Rk−1)i∗‖2 +

1

ni′
‖(Rk−1)i′∗‖2

≥ 1

ni
+

1

ni′
− (γ1)2

i

ni
−

(γ1)2
i′

n′i

≥ 1

ni
+

1

ni′
−

(γ1)2
i + (γ1)2

i′

ns
≥ 1

ni
+

1

ni′
− 1

ns
≥ 1

ni
+

1

nl
− 1

ns
.

Besides, we know that 1
nl ≥

ρ
ni

and 1
ns ≤

1
ρni

. Therefore, we obtain the bound

∥∥(∆−1Rk−1)j∗ − (∆−1Rk−1)j′∗
∥∥2 ≥ 1

ni

(
1 + ρ− 1

ρ

)
.

We will now prove that with the condition
√
ρ > 1− 1

4k(2+
√
k)

, we have 1 + ρ− 1
ρ ≥

2
3 and

this will lead to the final result. First, we note that ρ > 1− 1
2k(2+

√
k)

and 2k(2 +
√
k) ≥ 12,

and 2k(2+
√
k)

2k(2+
√
k)−1

≤ 5
4 for k ≥ 2. Thus,

1 + ρ− 1

ρ
≥ 2− 1

2k(2 +
√
k)
− 2k(2 +

√
k)

2k(2 +
√
k)− 1

≥ 2− 1

12
− 5

4
=

2

3
.
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Remark 51 In the equal-size case ni = n
k ,∀1 ≤ i ≤ k, since γ1 = χ1, Rk−1 has orthogonal

rows and

‖(Rk−1)i∗ − (Rk−1)i′∗‖2 = ‖Ri∗ −Ri′∗‖2 = 2.

This implies that

∥∥(∆−1Rk−1)j∗ − (∆−1Rk−1)j′∗
∥∥2

=
2k

n
.

From Lemma 50, we have that ∀1 ≤ i ≤ k, min
i,i′∈[k],i 6=i′
j∈Ci,j′∈Ci′

∥∥(∆−1Rk−1)j∗ − (∆−1Rk−1)j′∗
∥∥2 ≥

2
3ni
. Hence with δ2

i := 2
3ni

and using Lemma 35, we obtain

k∑
i=1

δ2
i |Si| =

k∑
i=1

2|Si|
3ni

≤ 4(4 + 2ξ)
∥∥Vk−1(Lsym)− Vk−1(Lsym)

∥∥2

F

≤ 4(16 + 8ξ)(k − 1)
∥∥Vk−1(Lsym)− Vk−1(Lsym)O

∥∥2

≤ 8(16 + 8ξ)(k − 1)δ2,

using Theorem 8 . Moreover, we have∥∥Vk−1(Lsym)− Vk−1(Lsym)
∥∥2

F
≤ 2(k − 1)

∥∥Vk−1(Lsym)− Vk−1(Lsym)O
∥∥2

≤ 8(k − 1)δ2

< 8(k − 1) · 1

12(16 + 8ξ)(k − 1)

=
niδ

2
i

16 + 8ξ
, ∀1 ≤ i ≤ k.

Therefore, we can use the second part of Lemma 35 and finally conclude that

k∑
i=1

|Si|
ni
≤ 96(2 + ξ)δ2.

For the regularized Laplacian algorithm, the same computations are valid using the
result from Theorem 13.

6. Numerical experiments

In this section, we report on the outcomes of several numerical experiments that compare our
two proposed algorithms with a suite of state-of-the-art methods from the signed clustering
literature. We test the performances of the different algorithms on signed graphs drawn
from our Signed Stochastic Block Model, as well as on three real-world data sets that are
standard benchmarks in the signed networks literature. We rely on a previous Python
implementation of SPONGE and Signed Laplacian (along with their respective normalized
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versions), and of other methods from the literature3, made available in the context of
previous work of a subset of the authors of the present paper (Cucuringu et al., 2019). More
specifically, we consider algorithms based on the adjacency matrix A, the Signed Laplacian
matrix L, its symmetrically normalized version Lsym (Kunegis et al., 2010), SPONGE and
its normalized version SPONGEsym, and the two algorithms introduced in Chiang et al.
(2012) that optimize the Balanced Ratio Cut and the Balanced Normalized Cut objectives.

We note that once the low-dimensional embedding has been computed by any of the
considered algorithms, the final partition is obtained after running k-means++ (Arthur
and Vassilvitskii, 2007), which improves over the popular k-means algorithm by employing
a careful seeding initialization procedure and is the typical choice in practice.

6.1 Grid search for choosing the parameters τ+, τ−

In the following experiments, the Signed Stochastic Block Model will be sampled with the
following set of parameters

• the number of nodes n = 5000,

• the number of communities k ∈ {3, 5, 10, 20},

• the relative size of communities ρ = 1 (equal-size clusters) and ρ = 1/k (non-equal
size clusters).

For the edge density parameter p, we choose two sparsity regimes, Regime I and Regime
II, where Regime II is strictly harder than Regime I, in the sense than for the same value
of k, the edge density in Regime I is significantly larger compared to Regime II. The noise
level η is chosen such that the recovery of the clusters is unsatisfactory for a subset of pairs
of parameters (τ+, τ−). For each set of parameters, we sample 20 graphs from the SSBM
and average the resulting ARI.

Our experimental setup is summarized in the following steps.

1. Select a set of parameters (k, ρ, p, η) from the regime of interest;

2. Sample a graph from the SSBM(n, k, ρ, p, η);

3. Extract the largest connected component of the measurement graph (regardless of the
sign of the edges);

4. If the size of the latter is too small (< n/2), resample a graph until successful;

5. For each pair of parameters (τ+, τ−), compute the k-dimensional embeddings using the
SPONGEsym algorithm (with the implementation in the signet package (Cucuringu
et al., 2019));

6. Obtain a partition of the graph into k clusters, and compute the ARI between this
estimated partition and the ground-truth clusters using the implementation in scikit-
learn of the k-means++ algorithm;

3Python implementations of a suite of algorithms for signed clustering are available at https://github.
com/alan-turing-institute/signet
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7. Repeat 20 times the steps 2−7 mentioned above, and record the average performance
over the 20 runs.

The results in the dense regimes are reported in Figure 1, while those for the sparse
regimes in Figure 2. This set of results indicate that the gradient of the ARI in the space
of parameters (τ+, τ−) is larger when the cluster sizes are very unbalanced and the edge
density is low. We attribute this to the fact that, for suitably chosen values, the parameters
(τ+, τ−) are performing a form of regularization of the graph that can significantly improve
the clustering performance.

6.2 Comparison of a suite of spectral methods

This section performs a comparison of the performance of the following spectral clustering
algorithms. We rely on the same notation used in Cucuringu et al. (2019), when mentioning
the names of the SPONGE algorithms, namely SPONGE and SPONGEsym. The complete
list of algorithms compared is as follows.

• the combinatorial (un-normalized) Signed Laplacian L = D −A,

• the symmetric Signed Laplacian Lsym = I −D−1/2
AD

−1/2
,

• SPONGE and SPONGEsym with a suitably chosen pair of parameters (τ+, τ−)

• the Balanced Ratio Cut LBRC = D+ −A

• the Balanced Normalized Cut LBNC = D−1/2(D+ −A)D−1/2.

For the combinatorial and symmetric Signed Laplacians L and Lsym, we compute (k−1)-
dimensional embeddings before applying the k-means++ algorithm. For all other methods,
we use the k smallest eigenvectors.

In this experiment, we fix the parameters n = 5000, k ∈ {3, 5, 10, 20} and p, η in a certain
set, and for each plot, we vary the aspect ratio ρ ∈ [0, 1]. The relative proportions of the
classes si = ni

n are chosen according to the following procedure

1. Fix s′1 = 1/k, pick a value for ρ and compute s′k = s′1/ρ.

2. For i ∈ [2, k − 1], sample s′i from the uniform distribution in the interval [s′1, s
′
k].

3. Compute the proportions si =
s′i∑k
i=1 s

′
i

, and then sample the graph from the resulting

SSBM.

4. Repeat 20 times the steps 1-3 mentioned above, and record the average performance
over the 20 runs.

The results are reported in Figure 3. We note that in almost all settings, the SPONGEsym
algorithm outperforms the other clustering methods, in particular for low values of the as-
pect ratio ρ. With the exception of the symmetric Signed Laplacian, most methods seem
to perform worse when the aspect ratio is higher, meaning that the clusters are more un-
balanced, which is a more challenging regime.
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Regime
I

Equal-size clusters Unequal-size clusters

k = 3

k = 5

k = 10

k = 20

Figure 1: Heatmaps of the Adjusted Rand Index between the ground truth and the par-
tition obtained using the SPONGEsym algorithm with varying regularization parameters
(τ+, τ−), for a SSBM in Regime I, with n = 5000 and k = {3, 5, 10, 20} clusters of equal
sizes (left column) and unequal sizes (right column).
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Regime
II

Equal-size clusters Unequal-size clusters

k = 3

k = 5

k = 10

k = 20

Figure 2: Heatmaps of the Adjusted Rand Index between the ground truth and the partition
obtained using the SPONGEsym algorithm with varying regularization parameters (τ+, τ−),
for a SSBM in Regime II with n = 5000 and k = {3, 5, 10, 20} clusters of equal sizes (left
column) and unequal sizes (right column).

62



Regularized spectral methods for clustering signed networks

Figure 3: Performance of the various clustering algorithms, as measured by the Adjusted
Rand Index, versus the aspect ratio ρ for a SSBM with k = {3, 5, 10, 20} for n = 5000. For
larger number of clusters, k = 10 and especially k = 20, SPONGEsym is essentially the
only algorithm able to produce meaningful results, and clearly outperforms all the other
methods. Note that no regularization has been used throughout this set of experiments.

6.3 Performance of the regularized algorithms in the sparse regime

In this batch of experiments, we study how the regularized Signed Laplacian and the
SPONGEsym sparse algorithms perform. We consider sparse settings of the SSBM (p ≤
0.003) with n = 5000 nodes. For the SPONGEsym algorithm, we fix the parameters (τ+, τ−)
in each setting. Our parameter selection procedure is to chose a pair of parameters that
leads to a “good” recovery of the clusters for the unregularized algorithm (see Figure 2). We
perform a grid search on the parameters (γ+, γ−) for each of the two regularized algorithms
(see Figure 4 and Figure 5). For the regularized Signed Laplacian algorithm, we observe
distinct regions of performance on the space of parameters (γ+, γ−). This is not predictable
from our theoretical results, where the positive and negative regularization parameters play
symmetric roles. We conjecture this to be due to the difference of density of the positive
and negative subgraphs in our signed random graph model. For the SPONGEsym sparse
algorithm, we note that the gradient of performances in the heatmaps (Figure 4, Figure 5) is
similar to what was reported in Figure 2, which could be due to the fact that the parameters
(τ+, τ−) already have a regularization effect.
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Sparse
Regime
k=3

Lγ SPONGEsym

Figure 4: Heatmaps of the Adjusted Rand Index between the ground truth and the partition
obtained using the Lγ and SPONGEsym algorithm with fixed parameters (τ+, τ−) and
varying regularization parameters (γ+, γ−), for a SSBM in two sparse regimes, with
n = 5000 and k = 3 clusters.
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Sparse
Regime
k=5

Lγ SPONGEsym

Figure 5: Heatmaps of the Adjusted Rand Index between the ground truth and the partition
obtained using the Lγ and SPONGEsym algorithm with fixed parameters (τ+, τ−) and
varying regularization parameters (γ+, γ−), for a SSBM in two sparse regimes, with
n = 5000 and k = 5 clusters.
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Dataset Number of nodes Edge density

Wikipedia 11, 259 2.2× 10−3

Slashdot 82, 140 1.3× 10−4

Bitcoin 5, 875 3.6× 10−3

Table 1: Characteristics of the three benchmark data sets.

6.4 Performances on real-world data sets

Finally, we measure the performances of our unregularized and regularized algorithms on
three benchmark data sets in the signed clustering problem: the Wikipedia Requests for
Adminship, the Slashbot Zoo and Bitcoin data sets from Leskovec and Krevl (2014). These
networks are large and sparse (see Table 1 for a summary of the number of nodes and edge
densities). Since no ground-truth clusters are available for these networks, we measure the
quality of the clustering using an objective score, namely the normalized adjacency score.
This metric is defined as the sum of ratios of the number of positive edges over the number
of negative edges within each cluster. We assume that a higher value of this score indicates
a better partition of the node set. Our results are reported in Figure 6. We observe that
the regularized versions of our algorithms, namely SPONGEsym and the Symmetric Signed
Laplacian, perform much better that their respective unregularized versions, confirming
the fact that regularization improves the performance of spectral algorithms in the sparse
regime. We also note that the standard Spectral Clustering algorithm based on the signed
adjacency matrix - denoted by A in the figure legend - also performs well on these real-world
data sets.

7. Concluding remarks and future research directions

In this work, we provided a thorough theoretical analysis of the robustness of the SPONGEsym
and symmetric Signed Laplacian algorithms, for graphs generated from a Signed Stochastic
Block Model. Under this model, the sign of the edges (rather than the usual discrepancy
of the edge densities across clusters versus within clusters) is an essential attribute which
induces the underlying cluster structure of the graph. We proved that our signed clustering
algorithms, based on suitably defined matrix operators, are able to recover the clusters un-
der certain favorable noise regimes, and under two regimes of edge sparsity. Although the
sparse setting is particularly challenging, our algorithms based on regularized graphs per-
form well, provided that the regularization parameters are suitably chosen. We also expect
that the same type of analysis could be adapted to other probabilistic generative models for
signed networks. For instance, extensions of the unsigned Stochastic Block Models, such as
the Degree-Corrected Stochastic Block Model, that includes degree-heterogeneity could be
considered, as well extensions to the setting of polarized communities, in the spirit of those
proposed by Bonchi et al. (2019) and Xiao et al. (2020).

One theoretical question that has been not been answered yet relates to the choice of
the positive and negative regularization parameters γ+, γ−. Having a data-driven approach
to tune the regularization parameters would be of great use in many practical applications
involving very sparse graphs. An interesting future line of work would be to study the latest
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Figure 6: Objective clustering scores attained by the different spectral clustering algorithms,
as we vary the number of clusters k on the Wikipedia (top left panel), the Bitcoin (top right
panel), and Slashdot (bottom panel) data sets.

regularizing techniques based on powers of adjacency matrices or certain graph distance
matrices, in the context of sparse signed graphs.

Yet another approach is to consider a pre-processing stage that performs low-rank ma-
trix completion on the adjacency matrix, whose output could subsequently be used as input
for our proposed algorithms. An extension of the Cheeger inequality to the setting of signed
graphs, analogue to the generalized Cheeger inequality previously explored in Cucuringu
et al. (2016), is another interesting research question. Extensions to the time-dependent
setting and online clustering (Liberty et al., 2016; Mansfield et al., 2018), or when covari-
ate information is available (Yan and Sarkar, 2020), are further research directions worth
exploring, well motivated by real world applications involving signed networks.
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Ludovic Stephan and Laurent Massoulié. Robustness of spectral methods for community
detection. In Proceedings of the Thirty-Second Conference on Learning Theory, volume 99
of Proceedings of Machine Learning Research, pages 2831–2860, Phoenix, USA, 2019.
PMLR.

G.W. Stewart and Ji-guang Sun. Matrix Perturbation Theory. Academic Press, 1990.

Jiliang Tang, Charu Aggarwal, and Huan Liu. Node classification in signed social networks.
In SDM, 2016.

U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17:395–416,
2007.

Hermann Weyl. Das asymptotische verteilungsgesetz der eigenwerte linearer partieller dif-
ferentialgleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung). Math-
ematische Annalen, 71(4):441–479, 1912.

72



Regularized spectral methods for clustering signed networks

Han Xiao, Bruno Ordozgoiti, and Aristides Gionis. Searching for polarization in signed
graphs: a local spectral approach. Proceedings of The Web Conference 2020, pages 362–
372, 2020. doi: 10.1145/3366423.3380121.

Bowei Yan and Purnamrita Sarkar. Covariate regularized community detection in sparse
graphs. Journal of the American Statistical Association, 0(0):1–12, 2020.

B. Yang, W. K. Cheung, and J. Liu. Community mining from signed social networks. IEEE
Trans Knowl Data Eng, 19(10):1333–1348, 2007.

Y. Yu, T. Wang, and R. J. Samworth. A useful variant of the Davis–Kahan theorem for
statisticians. Biometrika, 102(2):315–323, 2015.

Yilin Zhang and Karl Rohe. Understanding regularized spectral clustering via graph con-
ductance. In Advances in Neural Information Processing Systems, volume 31, 2018.

Zhixin Zhou and Arash A. Amini. Analysis of spectral clustering algorithms for community
detection: the general bipartite setting, 2018.

Hartmut Ziegler, Marco Jenny, Tino Gruse, and Daniel A Keim. Visual market sector anal-
ysis for financial time series data. In Visual Analytics Science and Technology (VAST),
2010 IEEE Symposium on, pages 83–90. IEEE, 2010.

73



Cucuringu, Singh, Sulem, Tyagi

Appendix A. Useful concentration inequalities

A.1 Chernoff bounds

Recall the following Chernoff bound for sums of independent Bernoulli random variables.

Theorem 52 ((Mitzenmacher and Upfal, 2005, Corollary 4.6)) Let X1, . . . , Xn be
independent Bernoulli random variables with P [Xi = 1] = pi. Let X =

∑n
i=1Xi and µ =

E[X]. For δ ∈ (0, 1), it holds true that

P [|X − µ| ≥ δµ] ≤ 2 exp(−µδ2/3).

A.2 Spectral norm of random matrices

We will make use of the following result for bounding the spectral norm of symmetric
matrices with independent, centered and bounded random variables.

Theorem 53 ((Bandeira and van Handel, 2016, Corollary 3.12, Remark 3.13)) Let
X be an n×n symmetric matrix whose entries Xij (i ≤ j) are independent, centered random
variables. There there exists for any 0 < ε ≤ 1/2 a universal constant cε such that for every
t ≥ 0,

P
[
‖X‖ ≥ (1 + ε)2

√
2σ̃ + t

]
≤ n exp

(
− t2

cεσ̃2
∗

)
(91)

where

σ̃ := max
i

√∑
j

E[X2
ij ], σ̃∗ := max

i,j
‖Xij‖∞ .

Note that it suffices to employ upper bound estimates on σ̃, σ̃∗ in (91). Indeed, if σ̃ ≤ σ̃(u)

and σ̃∗ ≤ σ̃(u)
∗ , then

P
[
‖X‖ ≥ (1 + ε)2

√
2σ̃(u) + t

]
≤ P

[
‖X‖ ≥ (1 + ε)2

√
2σ̃ + t

]
≤ n exp

(
− t2

cεσ̃2
∗

)
≤ n exp

(
− t2

cε(σ̃
(u)
∗ )2

)
.

A.3 A graph decomposition result

The following graph decomposition result for inhomogeneous Erdős-Rényi graphs was es-
tablished in (Le et al., 2017, Theorem 2.6).

Theorem 54 (Le et al., 2017, Theorem 2.6) Let A be a directed adjacency matrix sampled
from an inhomogeneous Erdős-Rényi G(n, (pjj′)j,j′) model and let d = nmaxj,j′ pjj′. For
any r ≥ 1, with probability at least 1 − 3n−r, the set of edges [n] × [n] can be partitioned
into three classes N ,R and C, such that

1. the signed adjacency matrix concentrates on N

‖(A− EA)N ‖ ≤ Cr3/2
√
d,

2. R (resp. C) intersects at most n/d columns (resp. rows) of [n]× [n],

3. each row (resp. column) of AR (resp. AC) have at most 32r non-zero entries.
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Appendix B. Matrix perturbation analysis

In this section, we recall several standard tools from matrix perturbation theory for studying
the perturbation of the spectra of Hermitian matrices. The reader is referred to Stewart
and Sun (1990) for a more comprehensive overview of this topic.

Let A ∈ Cn×n be Hermitian with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn and corresponding
eigenvectors v1, v2, . . . , vn ∈ Cn. Let Ã = A + W be a perturbed version of A, with the
perturbation matrix W ∈ Cn×n being Hermitian. Let us denote the eigenvalues of Ã and
W by λ̃1 ≥ · · · ≥ λ̃n, and ε1 ≥ ε2 ≥ · · · ≥ εn, respectively.

To begin with, one can quantify the perturbation of the eigenvalues of Ã with respect to
the eigenvalues of A. Weyl’s inequality (Weyl, 1912) is a very useful result in this regard.

Theorem 55 (Weyl’s Inequality (Weyl, 1912)) For each i = 1, . . . , n, it holds that

λi + εn ≤ λ̃i ≤ λi + ε1. (92)

In particular, this implies that λ̃i ∈ [λi − ‖W‖ , λi + ‖W‖].

One can also quantify the perturbation of the subspace spanned by eigenvectors of A,
which was established by Davis and Kahan (1970). Before introducing the theorem, we
need some definitions. Let U, Ũ ∈ Cn×k (for k ≤ n) have orthonormal columns respectively,
and let σ1 ≥ · · · ≥ σk denote the singular values of U∗Ũ . Also, let us denote R(U) to
be the range space of the columns of U , and similarly for R(Ũ). Then the k principal
angles between R(U),R(Ũ) are defined as θi := cos−1(σi) for 1 ≤ i ≤ k, with each θi ∈
[0, π/2]. It is usual to define k×k diagonal matrices Θ(R(U),R(Ũ)) := diag(θ1, . . . , θk) and
sin Θ(R(U),R(Ũ)) := diag(sin θ1, . . . , sin θk). Denoting ||| · ||| to be any unitarily invariant
norm (Frobenius, spectral, etc.), the following relation holds (see for eg., (Li, 1994, Lemma
2.1), (Stewart and Sun, 1990, Corollary I.5.4)).

||| sin Θ(R(U),R(Ũ))||| = |||(I − Ũ Ũ∗)U |||.

With the above notation in mind, we now introduce a version of the Davis-Kahan theorem
taken from (Yu et al., 2015, Theorem 1) (see also (Stewart and Sun, 1990, Theorem V.3.6)).

Theorem 56 (Davis-Kahan) Fix 1 ≤ r ≤ s ≤ n, let d = s − r + 1, and let U =
(ur, ur+1, . . . , us) ∈ Cn×d and Ũ = (ũr, ũr+1, . . . , ũs) ∈ Cn×d. Write

δ = inf
{∣∣∣λ̂− λ∣∣∣ : λ ∈ [λs, λr], λ̂ ∈ (−∞, λ̃s+1] ∪ [λ̃r−1,∞)

}
where we define λ̃0 =∞ and λ̃n+1 = −∞ and assume that δ > 0. Then

||| sin Θ(R(U),R(Ũ))||| = |||(I − Ũ Ũ∗)U ||| ≤ |||W |||
δ

.

For instance, if r = s = j, then by using the spectral norm ‖·‖, we obtain

sin Θ(R(ṽj),R(vj)) =
∥∥(I − vjv∗j )ṽj

∥∥ ≤ ‖W‖

min
{∣∣∣λ̃j−1 − λj

∣∣∣ , ∣∣∣λ̃j+1 − λj
∣∣∣} . (93)
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Finally, we recall the following standard result which states that given any pair of k-
dimensional subspaces with orthonormal basis matrices U, Ũ ∈ Rn×k, there exists an align-
ment of U, Ũ with the error after alignment bounded by the distance between the subspaces.
We provide the proof for completeness.

Proposition 57 Let U, Ũ ∈ Rn×k respectively consist of orthonormal vectors. Then there
exists a k × k rotation matrix O such that∥∥∥Ũ − UO∥∥∥ ≤ 2

∥∥∥(I − UUT )Ũ
∥∥∥ .

Proof Write the SVD as UT Ũ = V Σ(V ′)T , where we recall that the ith largest singular
value σi = cos θi with θi ∈ [0, π/2] denoting the principal angles between R(U) and R(Ũ).
Choosing O = V (V ′)T , we then obtain∥∥∥Ũ − UV (V ′)T

∥∥∥ ≤ ∥∥∥Ũ − UUT Ũ∥∥∥+
∥∥∥UUT Ũ − UV (V ′)T

∥∥∥
=
∥∥∥(I − UUT )Ũ

∥∥∥+
∥∥∥UT Ũ − V (V ′)T

∥∥∥
=
∥∥∥(I − UUT )Ũ

∥∥∥+ ‖I − Σ‖

≤ 2
∥∥∥(I − UUT )Ũ

∥∥∥ ,
where the last inequality follows from the fact ‖I − Σ‖ = 1− cos θk ≤ sin θk.

Appendix C. Summary of main technical tools

This section collects certain technical results that were used in the course of proving our
main results.

Proposition 58 ((Bhatia, 1996, Theorem X.1.1)) For matrices A,B � 0,∥∥∥A1/2 −B1/2
∥∥∥ ≤ ||A−B||1/2

holds as (·)1/2 is operator monotone.

Proposition 59 For symmetric matrices A+, A−, B+ and B− where A−, B− � 0, the
following holds.∥∥∥(A−)−1/2A+(A−)−1/2 − (B−)−1/2B+(B−)−1/2

∥∥∥
≤
∥∥(A−)−1

∥∥∥∥A+
∥∥(∥∥∥I − (B−)−1/2(A−)1/2

∥∥∥2
+ 2

∥∥∥I − (B−)−1/2(A−)1/2
∥∥∥)

+
∥∥(B−)−1

∥∥∥∥A+ −B+
∥∥

≤
∥∥(A−)−1

∥∥∥∥A+
∥∥(∥∥(B−)−1

∥∥∥∥(B−)− (A−)
∥∥+ 2

∥∥∥(B−)−1/2
∥∥∥∥∥(B−)− (A−)

∥∥1/2
)

+
∥∥(B−)−1

∥∥∥∥A+ −B+
∥∥ .
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Proof∥∥∥(A−)−1/2A+(A−)−1/2 − (B−)−1/2B+(B−)−1/2
∥∥∥

=
∥∥∥(A−)−1/2A+(A−)−1/2 − (B−)−1/2A+(B−)−1/2

+ (B−)−1/2A+(B−)−1/2 − (B−)−1/2B+(B−)−1/2
∥∥∥

≤
∥∥∥(B−)−1/2(A+ −B+)(B−)−1/2

∥∥∥+
∥∥∥(A−)−1/2A+(A−)−1/2 − (B−)−1/2A+(B−)−1/2

∥∥∥ .
Now, we bound the two terms separately. The first term is easy to bound.∥∥∥(B−)−1/2(A+ −B+)(B−)−1/2

∥∥∥ ≤ ∥∥∥(B−)−1/2
∥∥∥∥∥A+ −B+

∥∥∥∥∥(B−)−1/2
∥∥∥

=
∥∥(B−)−1

∥∥∥∥A+ −B+
∥∥ . (94)

To bound the second term, we do the following manipulations,∥∥∥(A−)−1/2A+(A−)−1/2 − (B−)−1/2A+(B−)−1/2
∥∥∥

=
∥∥∥(A−)−1/2A+(A−)−1/2 − (A−)−1/2(A−)1/2(B−)−1/2A+(B−)−1/2(A−)1/2(A−)−1/2

∥∥∥
=
∥∥∥(A−)−1/2

(
A+ − (A−)1/2(B−)−1/2A+(B−)−1/2(A−)1/2

)
(A−)−1/2

∥∥∥
=
∥∥∥(A−)−1/2

(
A+ −

(
(A−)1/2(B−)−1/2 − I + I

)
A+
(

(B−)−1/2(A−)1/2 − I + I
))

(A−)−1/2
∥∥∥

=
∥∥∥(A−)

−1
2 ( ((A−)

1
2 (B−)−

1
2 − I)A+((B−)−

1
2 (A−)

1
2 − I) +A+((B−)−

1
2 (A−)

1
2 − I)

+ ((A−)
1
2 (B−)−

1
2 − I)A+ ) (A−)−

1
2

∥∥∥
≤
∥∥(A−)−1

∥∥∥∥A+
∥∥(∥∥∥I − (B−)−1/2(A−)1/2

∥∥∥2
+ 2

∥∥∥I − (B−)−1/2(A−)1/2
∥∥∥) . (95)

The first inequality of the lemma follows by adding (95) and (94). To see the second
inequality of the lemma, observe that,∥∥∥I − (B−)−1/2(A−)1/2

∥∥∥ =
∥∥∥(B−)−1/2((B−)1/2 − (A−)1/2)

∥∥∥
≤
∥∥∥(B−)−1/2

∥∥∥∥∥∥(B−)1/2 − (A−)1/2
∥∥∥

≤
∥∥∥(B−)−1/2

∥∥∥∥∥B− −A−∥∥1/2
(using Proposition 58) . (96)

The second inequality of the lemma follows by substituting (96) in the first inequality of
the lemma.

Appendix D. Proofs from Section 4

Lemma 60 (Expression for C+
e & C−e )

C+
e = −pη n

d+
χ1χ

>
1 +

(
1 + τ− +

p

d+

(
1− η − n

k
(1− 2η)

))
I ,
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C−e = −p(1− η)
n

d−
χ1χ

>
1 +

(
1 + τ+ +

p

d−

(
η +

n

k
(1− 2η)

))
I .

It follows that can be written as C+
e = RΣ+R> and C−e = RΣ−R>, where R is a rotation

matrix, and

Σ+ =

(1 + τ− + p
d+

(
1− η − n

(
η + 1−2η

k

))) (
1 + τ− + p

d+

(
1− η − n

(
1−2η
k

)))
Ik−1

 ,
Σ− =

(1 + τ+ + p
d−

(
η − n

(
1− η − 1−2η

k

))) (
1 + τ+ + p

d−

(
η + n

(
1−2η
k

)))
Ik−1

 .
The above lemma shows that we know the spectrum of (C−)−1/2C+(C−)−1/2 exactly,

in the case of equal-sized clusters.
Proof [Proof of Lemma 22] From (17) it follows that,

λmax(C+) ≤ max
i∈[k]

(
1 + τ− +

p

d+
i

(1− η − ni(1− 2η))

)
.

The maximum is achieved for the smallest sized cluster. This shows the proof for (33).
The proof of (34) follows from the fact that in (24) we had decomposed the matrix

L−sym + τ+I as a block-diagonal matrix, with block of C−, α−1 In1−1, . . . , α
−
k Ink−1. Since

L−sym is a symmetric Laplacian, we know that λmin(L−sym + τ+I) = τ+. Also, α−i > τ+ for
i ∈ [k]. Thus the equation follows.

Appendix E. Spectrum of Signed Laplacians

This section extends some classical results for the unsigned Laplacian to the symmetric
Signed Laplacian and the regularized Laplacian.

Lemma 61 For all x ∈ Rn,

xTLsymx =
1

2

∑
j,j′

|Ajj′ |

(
xj√
dj
− sgn(Ajj′)

xj′√
dj′

)2

(97)

Moreover, the eigenvalues of Lsym and Lγ are in the interval [0, 2].

Proof Equation (97) is adapted from Proposition 5.2 from Gallier (2016) and is obtained

by replacing x by D
−1/2

x. The second part of the lemma comes from the fact that (a±b)2 ≤
2(a2 + b2). In fact, for x ∈ Rn such that ‖x‖ = 1, we have

xTLsymx ≤
∑
j,j′

|Ajj′ |

(
x2
j

dj
+
x2
j′

dj′

)

= 2
∑
j,j′

|Ajj′ |
x2
j

dj
= 2

∑
j

x2
j = 2.
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Similarly, we have

xTLγx ≤
∑
j,j′

|(Aγ)jj′|

(
x2
j

Djj + γ
+

x2
j′

Dj′j′ + γ

)

≤ 2
∑
j,j′

(|Ajj′ |+
γ

n
)

x2
j

Djj + γ

= 2
∑
j

(Djj + γ)x2
j

Djj + γ
= 2.

Moreover Lsym and Lγ are positive semi-definite, thus we can conclude that their eigenval-
ues are between 0 and 2.
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