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Abstract

User preference modeling in recommendation system aims to improve customer experience
through discovering users’ intrinsic preference based on prior user behavior data. This is
a challenging issue because user preferences usually have complicated structure, such as
inter-user preference similarity and intra-user preference diversity. Among them, inter-user
similarity indicates different users may share similar preference, while intra-user diversity
indicates one user may have several preferences. In literatures, deep generative models have
been successfully applied in recommendation systems due to its flexibility on statistical dis-
tributions and strong ability for non-linear representation learning. However, they suffer
from the simple generative process when handling complex user preferences. Meanwhile,
the latent representations learned by deep generative models are usually entangled, and
may range from observed-level ones that dominate the complex correlations between users,
to latent-level ones that characterize a user’s preference, which makes the deep model
hard to explain and unfriendly for recommendation. Thus, in this paper, we propose
an Interpretable Deep Generative Recommendation Model (InDGRM) to characterize
inter-user preference similarity and intra-user preference diversity, which will simultane-
ously disentangle the learned representation from observed-level and latent-level. In InD-
GRM, the observed-level disentanglement on users is achieved by modeling the user-cluster
structure (i.e., inter-user preference similarity) in a rich multimodal space, so that users
with similar preferences are assigned into the same cluster. The observed-level disentangle-
ment on items is achieved by modeling the intra-user preference diversity in a prototype
learning strategy, where different user intentions are captured by item groups (one group
refers to one intention). To promote disentangled latent representations, InDGRM adopts
structure and sparsity-inducing penalty and integrates them into the generative procedure,
which has ability to enforce each latent factor focus on a limited subset of items (e.g.,
one item group) and benefit latent-level disentanglement. Meanwhile, it can be efficiently
inferred by minimizing its penalized upper bound with the aid of local variational optimiza-
tion technique. Theoretically, we analyze the generalization error bound of InDGRM to
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guarantee its performance. A series of experimental results on four widely-used benchmark
datasets demonstrates the superiority of InDGRM on recommendation performance and
interpretability.1

Keywords: Recommendation System, Collaborative Filtering, Deep Generative Model,
Interpretable Machine Learning, Latent Factor Model

1. Introduction

Interpretability can be defined as “the degree to which a human can understand the cause of
a decision”. Making machine learning models explainable helps understand why the models
succeed or fail, and could give us better intuition about the problem and higher trust in the
solution. More fundamental need for the explainability stems from an incompleteness in
the problem formalization. Explainable recommendation refers to personalized recommen-
dation algorithms that address the problem of why - they not only provide users or system
designers with recommendation results, but also explanations to clarify why such items are
recommended (Zhang and Chen, 2020). In this way, it helps to improve the transparency,
persuasiveness, effectiveness, trustworthiness, and user satisfaction of recommendation sys-
tems. It also facilitates system designers to diagnose, debug, and refine the recommenda-
tion algorithm. Even though significant progress has been made for recommendation, they
hardly realize the underlying reasons behind the users’ decision making processes since user
preferences are highly similar and diverse, and may range from inter-user preference sim-
ilarity that governs preference relationship among users to intra-user preference diversity
that characterizes a user’s diverse preference when executing an intention.

Learning representations that reflect users preference, based chiefly on user behavior, has
been a central theme of research on recommendation systems (Liang et al., 2018; Liu et al.,
2019b; Ma et al., 2019). However, complex user preference is hardly to model and the learned
representations are highly entangled and may range from observed-level ones that dominate
the complex correlations between users and items and latent-level ones that characterize a
user’s preference. On the one hand, the latent representations of different users are assumed
independent to each other when building the model. Actually, in real applications, different
users may interact with each other due to inter-user preference similarity on behaviors.
By using Movielens 20M 2 dataset as an example, we investigate the genres that each user
likes3. Figure 1(a) demonstrates the genres distribution related to 61 users for each genre4.
We can see that although different users have different genre distributions, users show a
strong correlation on genres. Furthermore, for each user, we sort the genres in descending
order according to the number of genres interactions, and take the top 20% genres as the
main preference of users. Figure 1(b) demonstrates the number of users who like each genre
together in terms of genres. We can see that there are a large number of users with the same

1. A preliminary version of this work was presented in Proceedings of the Web Conference (WWW),
2020 (Liu et al., 2020).

2. https://grouplens.org/datasets/movielens/
3. In Movielens 20M dataset, each user interacted with several items and each item is labeled by one or

more genre labels.
4. We count the interaction proportion of each user on different genres, and get the distribution of genres.

For each type of genres, we select the top 10 users to display. Considering that some users have more
interactions on multiple genres, a total of 61 users are statistically displayed.
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(a) Genres distribution related to top 10 users for each genre
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(b) The number of users who like each genre together in terms of genres
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(c) The number of interacted items along all users
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Figure 1: Some data distributions in Movielens 20M dataset.

preferences. Although different users may have different preference, users with the same
preference genre show a strong correlation. Thus, ignoring correlation between users may
destroy the data distribution estimation. Meanwhile, such correlations between users are
indeed helpful to explain the recommendation result, which has been proven by structural
user models (Balog et al., 2019).

On the other hand, the user representations can be highly entangled in the latent-level,
which preserves the confounding of the factors and is prone to mistake the relationship
between the latent factors and the observed user behavior, and further leads to non-robust
recommendation and low interpretability. In this case, the system designers can not inter-
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pret the learned latent factors, and the end-user can not understand the final recommen-
dation results. It is interesting to note that the intra-user preference diversity where the
preferences of a user are always diverse but sparsely distributed with respect to the whole
item space (Zhou et al., 2018; Liu et al., 2019a, 2020). Figure 1(c) shows the distribution
about the number of interacted items along all users. Many users are only interested with
a few items, which leads to a power-law distribution. This statistical observation confirms
that the interested item data set is sparsely distributed. Figure 1(d) demonstrates the size
of genres corresponding to items which are interacted by each user. It can be found that
most of the users are interested in more than ten genres, which indicates that users have
diverse interests. Thus, it is necessary to disentangle the latent representations so that
different factors can capture different preferences for each user. Such intra-user preference
diversity modeling is critical to improve the recommendation performance (Ma et al., 2019).

In this paper, based on our prior user preference modeling work (Liu et al., 2020), we
propose a new Interpretable Deep Generative Recommendation Model (InDGRM) to char-
acterize user behavior from both inter-user preference similarity and intra-user preference
diversity modeling, and achieve latent-level and observed-level disentanglements for inter-
pretable recommendation. In InDGRM, inter-user preference similarity indicates strong
correlations among a subset of users who have similar preference, and the latent user rep-
resentation is modeled by a mixture prior in a rich multimodal space, and further achieve
observed-level disentanglement on users by separating users into different preference groups.
Intra-user preference diversity represents user’s intrinsic diverse preference since one user
might be interested in different kinds items, which is model by identifying the item groups
via learning a set of prototypes to achieve observed-level disentanglement on items, based
on which the user intention related with each item is inferred, and then capturing the pref-
erence of a user about the different intentions separately. We promote disentangled latent
representations by introducing structure and sparsity-inducing penalty into a generative
procedure, which enforces each latent factor to influence a limited subset of items (i.e.,
item groups) and achieve latent-level disentanglement. To effectively handle the optimizing
process, we adopt Wasserstein auto-encoder (WAE) framework (Tolstikhin et al., 2018) to
measure the true preference data distribution and the generated data distribution. InDGRM
can be efficiently inferred via the local variational optimization technique. Theoretically,
we provide its generalization error bound to guarantee its performance. A series of exper-
iments are conducted on four real-world datasets, and the results have demonstrated that
InDGRM outperforms the state-of-the-art baselines in terms of several popular evaluation
metrics. And the learned disentanglement on latent representation and observed behavior
is demonstrated to be interpretable.

2. Related Work

In this section, we briefly review two different areas which are highly relevant to the proposed
method, interpretable recommendation and user preference modeling.

2.1 Interpretable Recommendation

Interpretable recommendation can not only provide interpretation to a user why the items
are recommended, but also facilitate system designers to diagnose, debug, and refine the
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recommendation models. Early interpretable approaches to personalized recommender sys-
tems mostly focused on content-based or collaborative filtering (CF) based recommenda-
tion (Adomavicius and Tuzhilin, 2005; Pazzani and Billsus, 2007; Sarwar et al., 2001; Kon-
stan et al., 1997). Content-based recommendation attempts to model user and/or item
profiles with various available content information, such as the price, color, brand of the
goods in e-commerce, or the genre, director, duration of movies in review systems. Since
the item contents are much understandable to the users, they are always used to explain
why an item is recommended out of other candidates in content-based recommendation.
However, collecting content information in different application scenarios is expensive and
time-consuming. The most popular CF-based recommendation includes user-based CF and
item-based CF (Konstan et al., 1997). Those methods can provide intuitive interpreta-
tions, such as “customers who bought this item also bought...” in user-based CF and “the
item is similar to your previously loved items” in item-based CF. Leveraging the neighbor-
hood style explanation mechanism, Abdollahi and Nasraoui (2016) presented an explainable
matrix factorization (EMF) by extending matrix factorization-based CF model via an ex-
plainability regularizer. Even though EMF provides explanation, it prefers to the popular
items recommendation. Inspired by the successes of attention-based deep learning methods,
researchers presented neural attentive interpretable recommendation model (NAIRS) (Yu
et al., 2019) to extend the traditional item similarity model (Kabbur et al., 2013). In
our recent work (Liu et al., 2019c), an influence-based interpretable recommendation was
proposed to modeling the influence of historical interactions. Recently, Ma et al. (2019)
focused on disentangled representation for interpretable recommendation. Although the
above methods are able to provide interpretable results, the learned deep latent features
are too entangled in preference space to investigate internal recommendation mechanism.

Another stream of work seeks for recommendation interpretations from auxiliary infor-
mation. For example, textual reviews and tag information are studied in additional to the
basic recommender model. To make use of textual reviews, topic model is integrated with
matrix factorization to determine the explicit review-aware item features which are aligned
to the latent factor for explanations generation (Mcauley and Leskovec, 2013; Zhang et al.,
2014). Recently, due to the powerful ability in representation learning, deep learning is
adopted in recommendation to model textual content and generate the explanations (Seo
et al., 2017; Chen et al., 2018b; Donkers et al., 2017; Chen et al., 2018a). For instance,
Seo et al. (2017) introduced an interpretable convolutional neural network to learn the
item feature from users’ review information. Donkers et al. (2017) combined the user-item
interaction and review information in a unified LSTM framework. Moreover, social trust
information has been proved an alternative view of user preference to improve trustworthi-
ness and transparency for recommendation (Park et al., 2018), and the utilization of tags
for explainable recommendation has been particularly well studied (Balog et al., 2019). We
in this work target on making interpretable recommendation from implicit feedback data
only. The key is to infer the interpretable disentangled factor from observed feedback data,
while related work discussed here aims at linking the auxiliary information with the rec-
ommendation decisions. Our study thus has a different problem setting and is generally
applicable to systems where the auxiliary information is unavailable.
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2.2 User Preference Modeling

User preference modeling in recommendation systems aims to explore users’ intrinsic pref-
erences to improve recommendation performance. Most existing recommender systems
represent a user’s preference with a feature vector, which is assumed to be fixed or followed
in the same distribution when predicting this user’s preferences for different items, e.g.,
latent factor models (Mnih and Salakhutdinov, 2008; Salakhutdinov et al., 2007; Xue et al.,
2017). However, the same vector or distribution cannot accurately capture a user’s varying
preferences on all items, especially when considering the diverse characteristics of various
items.

In order to capture the correlations among users and diverse preferences, recently, re-
searchers proposed several localized latent factor models (Lee et al., 2016; Wu et al., 2016;
Zhang et al., 2017; Liu et al., 2019a, 2020, 2021a,b) by exploiting local structure of the
large-scale preference matrix. The main idea focuses on dividing the whole preference ma-
trix into several submatrices so that each submatrix contains a set of like-minded users
and the items that they are interested in. To sufficiently reduce the approximation error,
the original preference matrix is partitioned several times to get a set of approximated
preference matrices, and reconstructed with them and the corresponding weights in an en-
semble manner. In literature, a simple way to capture local structure is randomly selecting
users/items to form submatrices with similar interests (Mackey et al., 2011), but it can not
guarantee that the users in the same submatrix share the common interests and the items
have the similar categories. To address this problem, several works (Lee et al., 2016; Chen
et al., 2015; Beutel et al., 2015; Wang et al., 2016; Zhang et al., 2017) are proposed to
effectively partition preference matrix. Lee et al. (2016) proposed a local low-rank matrix
approximation method using a kernel smoothing nearest neighbors method to acquire local
structure and represent rating matrix as a weighted sum of several local low-rank matrices.
In Beutel et al. (2015), Bayesian co-clustering was proposed to determine the local structure
and a concise model was designed for matrix approximation in an additive strategy. Zhang
et al. (2017) proposed a heuristic anchor-point selecting method to enhance local low-rank
matrix approximation. However, these methods assign each user/item to only one single
cluster, which make them can not handle the users with multiple interests well. Thus,
researchers introduced an affiliation score to characterize the strength between user/item
and the corresponding submatrices (Zhang et al., 2013; Wu et al., 2016). Our latest work
DGLGM aims to learn global and local user representation in a deep generative model and
achieve promising recommendation performance (Liu et al., 2020). However, above methods
modeling user preference solely focus on partitioning user well and neglect interpretability
of recommendation results.

Thus, in this paper, we focus on modeling user preference on both inter-user prefer-
ence similarity and intra-user preference diversity and achieving interpretable recommenda-
tion by investigating observed-level and latent-level disentanglement based on our previous
work (Liu et al., 2020).

3. Notations and Problem Formulation

Let calligraphic letter (e.g., A) indicate set, lower or upper case regular letter (e.g., a or
A) for scalar, lower-case bold letter (e.g., a) for vector, and upper-case bold letter (e.g.,
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A) for matrix. Suppose there are N users and M items, X = {(i, j, r), i ∈ DI , j ∈ DJ , r ∈
{0, 1, · · · , R} denotes user-item preference set where (i, j, r) indicates the i-th user gives
preference r to the j-th item (here preference value r is defined by non-negative integer
value.), DI and DJ are user set and item set respectively. In most scenarios, preference
value r is a binary value (i.e., 0 or 1) since it is collected implicitly, while, in few areas,
the explicit preference information (e.g., ratings) can be collected. Thus, in this paper,
we focus on modeling user’s implicit feedback to achieve interpretable recommendation.
Let X ∈ NN×M denote the user-item interaction matrix among N users and M items.
Its element xi,j ∈ {0, 1} indicates whether the j-th item is interacted by the i-th user.
xi = [xi,1, · · · , xi,M ]> ∈ NM is a binary vector demonstrating the interaction history of user
i on all items.

The general goal of deep generative recommendation method is to determine the latent
user representation by defining proper prior and generative process to user-item interac-
tions. In this work, we focus on learning latent user representations {zi}Ni=1 (zi ∈ Rdi ,
di is the size of the optimal latent space for current user) to model inter-user preference
similarity and intra-user preference diversity, and achieve the latent-level and observed-level
disentanglement of the representations for interpretable recommendation.
Inter-user preference similarity: In recommendation platform, users with similar pref-
erence may affect each other. In this case, it is intuitive to assume that users with similar
preference follow the same distribution, and their latent representations can be generated
in same way. Specifically, the users can be separated into several preference groups, where
users in the same group share the same interests (preference). This grouping operation
is helpful to achieve observed-level disentanglement on users. Given one user’s interaction
behavior xi, the corresponding latent user representation zi ∈ Rdi can be modeled in a rich
multimodal space. In this space, the whole preference space is partitioned into K disjoint
clusters, such that users in the same group are close to each other, while users in different
groups are far away from each other in terms of user’s preference. Meanwhile, different user
groups can be spanned by their own optimal latent space. Here the users are grouped into
K disjoint clusters to capture the inter-user preference similarity.
Intra-user preference diversity: One user might be interested in different kinds of items,
especially when the system contains a large set of items with various types. In literatures,
there is another line of work to handle preference diversity by introducing overlapping
clusters (Lee et al., 2016). In this work, we investigate the intra-user preference diversity
by introducing item groups. Specifically, a set of multi-hot vectors C = {cj}Mj=1 are used to

indicate the item-category membership. For the j-th item, cj = [cj,1, cj,2, · · · , cj,G]> ∈ NG,
and cj,g = 1 if item j belongs to category g, otherwise cj,g = 0. C is helpful to achieve
observed-level disentanglement on items. To capture the essential user preference in each
item category (group), the interaction behavior data of user i is split into G groups, denoted

as xi = {x(1)
i ,x

(2)
i , · · · ,x(G)

i }, where x
(g)
i contains the interaction data corresponding to

the items in group g. Meanwhile, in the latent space for user representation, each latent
factor can be connected to the explicit item group for latent-level disentanglement. Here, a

structure and sparsity mapping matrix Oi = [o
(1)
i ,o

(2)
i , · · · ,o(G)

i ] ∈ Rdi×G between factors
and item groups is designed for each user.

Modeling inter-user preference similarity and intra-user preference diversity is expected
to properly capture the user preference and output more accurate recommendation results,
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so as to achieve observed-level disentanglement on users and items, as well as latent-level
disentanglement on representations for interpretable recommendation. In the next section,
we will describe the model in detail.
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Figure 2: Architecture of the proposed InDGRM by modeling both inter-user preference
similarity and intra-user preference diversity to achieve observed-level disentangle-
ment and latent-level disentanglement. Inter-user preference similarity indicates
strong correlation among a subset of users who have similar preference, which is
achieved by learning a non-parametric mixture prior with several components to
capture the correlation among users (user clusters). Intra-user preference diver-
sity indicates the inherent diversity preferences of a single user, which is achieved
by learning a set of item group prototypes, based on which the user intention
related with each item is inferred, and then capturing the preference of a user
about the different intentions separately. Both inter-user preference similarity
and intra-user preference diversity modeling strategies focus on achieve disentan-
glement in observed-level and latent-level, i.e., users clusters, item groups, and
disentangled latent representations.

4. The Proposed Method

In this section, an Interpretable Deep Generative Recommendation Model (InDGRM) will
be presented by investigating user behaviors from the views of inter-user preference simi-
larity and intra-user preference diversity. Our goal is to achieve interpretable mechanism
for deep learning architecture from two perspectives, observed-level disentanglement and
latent-level disentanglement. The architecture of InDGRM is given in Figure 2.

InDGRM consists of three modules. One module is to capture the inter-user preference
similarity and achieve observed-level disentanglement on users via user grouping technique
with multimodal prior on latent user representations. The second module is to characterize
the intra-user preference diversity and achieve observed-level disentanglement on items via
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item prototype learning technique. The third module aims to disentangle the latent factor
with the aid of item groups and achieve latent-level disentanglement for interpretable recom-
mendation. In InDGRM, the behavior data of each user can be generated via a hierarchical
generative model with two layers of latent variables as follows:

pG(xi) =

K∑
k=1

πi,kEpθ(C)

∫ G∏
g=1

pθ

(
x
(g)
i |zi,o

(g)
i ,C

)
pθ(zi|k)pθ(k|πi)pθ(o

(g)
i |γ)p(γ)dγdzi


(1)

Here pθ(C) indicates the item-group correlation distribution which aims to assign items into
different groups. πi ∈ RK is the prior cluster probability for the i-th user and

∑K
k=1 πi,k = 1

(K is the number of clusters). pθ(k|πi) is the categorical distribution parameterized by πi,
and θ is the learnable parameters. The discrete latent variable k indicates the corresponding
cluster that the i-th user belongs to. According to the assigned user cluster k, the latent

user representation zi ∈ Rdi can be obtained by pθ(zi|k). The sparsity mapping {o(g)
i }Gg=1

(o
(g)
i ∈ Rdi) from latent factors to item groups is modeled by a sparsity-inducing penalty

pθ(o
(g)
i |γ)p(γ) (γ is a variable to control the sparsity, which can be sampled from a Gamma

distribution), which will lead to a disentangled latent representation. Finally, the user-
item interaction behavior data xi can be generated through the pre-defined distribution
parameterized with latent representation zi, item group assignment C and sparsity mapping

{o(g)
i }Gg=1. Next, we will describe the detailed implementation of above generative procedure.

4.1 Inter-user Preference Similarity Modeling

The general goal of deep generative recommendation method is to determine the latent user
representation zi by defining proper prior and generative process from latent representation
to observed user-item interaction data. Among it, the prior is usually crucial for recommen-
dation data generation. In literatures, most researches restrict user latent representation in
a univariate Gaussian space, which means that all users come from a single preference pat-
tern. As aforementioned, different users may have different habits, while some of them may
be effected to each other due to their similar preference. In this case, a simple prior, e.g.,
Gaussian distribution, becomes unreasonable to model such complicated user structure.

In order to properly capture the inter-user preference similarity and achieve observed-
level disentanglement on users, the mixture model is adopted as the prior distribution of
latent representation, because it has been proved was a universal approximator for any
continuous density function and able to characterize the recommendation data well (Ma
et al., 2019; Liu et al., 2020). Nevertheless, the existing methods have to predefine the
number of mixture components K and share the same latent space size in all components,
which often leads to a priori inaccuracy. Such hyperparameter setting definitely affects the
final recommendation performance. For instance, if K is too small, the mixture model may
not be able to well capture the complicated local structure from the wide-ranging sources.
On the other hand, if K is too large, it will be time-consuming to learn all components
even though most of them may make small contribution. Moreover, without a proper prior
assumption for the mixing coefficient, the mixture model may be unstable and result in
overfitting (Chen et al., 2016). Different components have their own structure or own space,
therefore, it is necessary to determine the optimal feature subspace for each component.
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4.1.1 User group structure identification

To capture the group structure among users, a deep mixture generative recommendation
model is designed, with which the latent user representation can be generated via

zi ∼
K∑
k=1

πi,kpθ(zi|k)pθ(k|πi). (2)

Here K is the number of components in mixture model, which is usually taken as a pre-
defined parameter. However, it is hard to previously set proper value for K. To automati-
cally determine the number of components, we exploit non-parametric Bayesian technique
which provides an elegant solution on automatic adaptation of model capacity. Such adap-
tivity can be obtained by defining stochastic processes on rich measure spaces such as
Dirichlet Process (Neal, 2000), Indian Buffet Process (Ghahramani and Griffiths, 2006) and
etc. In this work, the Dirichilet Process is adopted. More specifically, the latent variable zi
is generated via a hierarchical structure with two layers according to pθ(zi|k)pθ(k|πi) and
user-component membership πi. Among it, πi is sampled from Griffiths-Engen-McCloskey
(GEM ) distribution (Pitman, 2002) via πi ∼ GEM(α) (with

∑∞
k=1 πi,k = 1), which is a

special case of Dirichlet Process (DP). GEM (·) distribution is able to construct an infinite
data partition and can be efficiently constructed via a stick-breaking process. Considering
a stick with unit length, it can be broken into an infinite number of segments {πi,k}∞k=1 by
the following process with parameter vk ∼ Beta(1, α):

πi,k =

{
υ1 if k = 1,

υk
∏k−1
l=1 (1− υl) for k > 1.

(3)

The precision parameter α controls the number of significant sticks that have appreciable
weights πi,k. This process provides insights for developing variational approximate inference
algorithms (Blei and Jordan, 2006).

In each component, the data is assumed following a Gaussian distribution. Then, the
prior of user representation zi along all components can be formulated as:

zi ∼
∞∑
k=1

πi,kN
(
µ
(k)
i ,σ

(k)
i I
)

πi ∼ GEM(α) with
∞∑
k=1

πi,k = 1

(4)

here µ
(k)
i and σ

(k)
i I are mean and variance of Gaussian distribution related to the k-th

component. For the users with similar preference, they are expected to have similar user-
component distribution πi. In this case, their latent representation zi will approach to each
other.

4.1.2 Optimal subspace determination

For each component corresponding to one preference cluster, to capture its own structure,
its latent feature space including space size is automatically determined. For convenient

10
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computing and disentangled representation, the latent features in zi are assumed inde-
pendent to each other and each feature has zero mean. Then, the Gaussian distribution

N (µ
(k)
i ,σ

(k)
i I) related to the k-th component can be modeled as:

N
(
µ
(k)
i ,σ

(k)
i I
)

=
∏d(k)

l=1
N
(

0, λ
(k)
l

)
= N

(
0,Λ(k)

)
λ
(k)
l ∼ IG(ηa, ηb)

(5)

where µ
(k)
i ∈ Rd(k) and Λ(k) = diag(λ(k)) ∈ Rd(k)×d(k) are the mean vector and covariance

matrix respectively. In the covariance matrix, its l-th diagonal element (λ
(k)
l ) is sampled

from Inverse Gamma distribution with parameters ηa and ηb. To determine the optimal
dimensionality d(k), we take advantage of the automatic relevance determination (ARD)
technique (Neal, 1996; Wipf and Rao, 2007). Since each latent feature is assumed having

zero mean, the feature with small variance {λ(k)l } will shrink to zero. In this case, the latent
features with small variance can not contribute to characterize users, thus, we can remove
them. In other words, only the latent features with larger variance (empirically greater
than 0.001) are useful to form the latent space. A good by-product is that each component
can contain its own latent space size (d(k)).

Note that the generative process is built on the truncated stick-breaking process at step
K, which has been proved to closely approximate a true Dirichlet Process as long as K is
chosen to be large enough (Ishwaran and James, 2001). Empirically K may be initialized to
some value from tens to hundreds based on the model complexity. The useless dimensions
will gradually be pruned automatically. For our case, small πik indicates that it is very
unlike for some entries belonging to the corresponding cluster, thus, we can prune such
clusters because they make few contribution for generation process. As a consequence, the
users can be clustered into K groups without a complicated model selection procedure.
Meanwhile, user clustering is able to achieve observed-level disentanglement on users.

4.2 Intra-user Preference Diversity Modeling

To capture the preference diversity for each user, all interacted items are automatically
grouped via prototype learning technique.

4.2.1 Prototype-based item group assignment

To sufficiently exploit group structure among items, G category prototypes {pg}Gg=1 are
introduced. Meanwhile, a Multinomial distribution pθ(cj) over G groups is used to model
the j-th item along all groups, where cj = [cj,1, cj,2, · · · , cj,G]> is a multi-hot vector drawn
from

cj ∼Mult(Nj , sj)

sj,g ∝ exp

(
cos(hj ,pg)

τ

)
.

(6)

where {pg}Gg=1 indicates the G category prototypes and {hj}Mj=1 indicate the item latent
representations. The correlation between each pair of item and prototype is measured via

11
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cosine similarity5 cos(hj ,pg) =
h>j pg

||hj ||||pg || and normalized via a softmax function to produce

a probability vector sj = [sj,1, sj,2, · · · , sj,G]> ∈ SG−1 in a (G − 1)-simplex. Among it,
sj,g quantifies the correlation between the j-th item and the g-th group. The larger the
correlation value is, the higher probability that the j-th item belongs to the g-th group.
The hyperparameter τ aims to scales the similarity from [−1, 1] to [− 1

τ ,
1
τ ]. In experiments,

τ is set to be 0.1 for more skewed distribution. Nj is the number of groups to which the
j-th item belongs.

With the aid of the above variables, the multi-hot group membership vector cj can be
sampled from a Multinomial distribution with probability sj . According to the distribution

of cj , i.e., pθ(cj), we can get the item-group distribution pθ(C) =
∏M
j=1 pθ(cj) under the

assumption that all items are drawn from independent and identically distributed (i.i.d.).
The item j will be assigned to the group g∗ if g∗ = arg maxg{cj,g|Gg=1}.

4.2.2 Prototype enhancing with privileged information

According to the cognitive science(Hampton, 1993), the prototypes are expected to demon-
strate some concepts or categories, which are usually average or best exemplars. Prototypes
provide a concise representation for an entire group (category) of entities, providing means
to anticipate hidden properties and interact with novel stimuli based on their similarity to
prototypical members of their group. A prototype learning system is a system of cognitive
processes together with their underlying neural structures that enables one to learn a cate-
gory prototype from a set of data points(Zeithamova, 2012). The prototype learning on pure
interacted data is hard to achieve this goal. Fortunately, in the real-world applications, item
is usually labeled with special characteristics, such as genre information of movies(Harper
and Konstan, 2015), category information of goods(Ma et al., 2019) and etc. Such kind of
privilege information has been proved to be effective for prototype learning (Vapnik and
Izmailov, 2015). Thus, in this work, they are taken as prior knowledge and incorporated in
the prototype learning process.

Our main idea is to construct the triple set from item category or genre informa-
tion, and model the alignment between prototype relations and the given category re-
lations. Specifically, the category description can be collected and preprocessed as se-
mantical representations {tg}Gg=1 via word embedding technique. The triplet of cate-
gories can be constructed, where three categories in one set have the following indicator
s̄j,k,g = 1(cos(tg, tj) ≥ cos(tg, tk)) to demonstrate the ranking order of prototype j and k
when given prototype g. With the help of s̄j,k,g, the prototypes triplet (pg, pj , pk) can be

5. Here cosine similarity is adopted instead of the inner product similarity which is used by most existing
deep learning methods (He et al., 2017), because it is crucial for preventing mode collapse. Empirically,
with inner product, the majority of the items are highly likely to be assigned into a single category
pg with an extremely large norm. In contrast, cosine similarity avoids this degenerate case due to the
normalization. Moreover, cosine similarity is related with the Euclidean distance on the unit hypersphere,
and the Euclidean distance is a proper metric that is more suitable for inferring the cluster structure,
compared to inner product.
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constrained by the following Bernoulli distribution:

sj,k,g ∝ exp

{
cos(hj ,pk)

τ
− cos(hj ,pg)

τ

}
s̄j,k,g ∼ B(sj,k,g)

(7)

where the ranking order likelihood sj,k,g is modeled via a logistic function which maps
the similarity difference to probability. Incorporating similarity order, instead of direct
similarity, will enforce the hyperspherical prototypes have the same similarity ranking order
as the priors {tg}Gg=1, which is much more reasonable in real applications (Mettes et al.,
2019).

A good by-product of item grouping is to achieve observed-level disentanglement on
items. Specially, the observed interactions behavior data of the i-th user (xi) can be sepa-

rated into G groups, xi = [x
(1)
i ,x

(2)
i · · · ,x

(G)
i ]. x

(g)
i contains the interaction data related to

the items which belong to the g-th group.

4.3 Factor-to-group Sparse Mapping

As we known, the latent representations learned by deep generative models are usually
entangled, which makes the deep model hard to explain and non-transparent for recom-
mendation. A straight but efficient way to handle this issue is to disentangle the latent
factors. In our work, the item groups with category information provide high-level and
interpretable concepts. Thus, we can connect the latent features of zi with the item groups
for interpretable recommendation model construction. Inspired by the sparse factor anal-
ysis (Tibshirani, 1996; Tank et al., 2018), the latent features can be well explained by
encouraging sparse mappings from latent features to item groups. Specifically, a group-

specific factor mapping vector o
(g)
i = [o

(g)
i,1 , o

(g)
i,2 , · · · , o

(g)
i,di

]> ∈ Rdi is introduced between the
latent representation and item group for the current user i, where di is the optimal latent
space size (as shown in the right part of Figure 2).

Note that the l-th element of the mapping vector, i.e., o
(g)
i,l , indicates the influence of

the items in group g on the l-th latent factor for user i. To make the influence more

explainable, o
(g)
i,l is set to be 0 if the g-th item group have no influence on the l-th latent

factor. Meanwhile, each latent factor should only focus on as few items as possible, i.e., the
mapping vector should be sparse (Anindya et al., 2015). To implement this, a hierarchical

distribution with Bayesian prior p(γ) is introduced to model o
(g)
i,l as follows:

γ2 ∼ Γ

(
a+ 1

2
,
b2

2

)
o
(g)
i,l ∼ N (0, γ2)

(8)

where sparsity variance γ2 is sampled from Gamma distribution parametrized by shape
parameter (a+1)

2 and rate parameter b2

2 . Among it, the sparsity can be controlled by rate

parameter b2

2 , larger b implying more sparse in o
(g)
i . Note that deep structure allows rescal-

ing of the parameters across layer boundaries without affecting the end behavior of the
networks.
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With the aid of mapping vectors {o(g)
i }Gg=1, the generative process of InDGRM has the

ability to capture the group-specific latent feature. Obviously, such latent feature learning
is helpful to achieve disentangled latent representation. In addition, since each item group
is related to one type of user preferences, such group-specific latent feature is beneficial to
model intra-user preference diversity.

4.4 Interaction Data Generation

Once having the latent representation zi for user i, sparse mapping vectors {o(g)
i }Gg=1 and

item representations {hj}Mj=1, the interaction behavior data xi can be generated. To suffi-
ciently exploit the preference diversity, xi is split into G groups (as shown in Subsection 4.2).

For each user, all interaction behaviors [x
(g)
i,j ]1≤g≤G,1≤j≤M share the same user latent repre-

sentation zi. In this case, the user-item interaction information xi = {x(1)
i ,x

(2)
i , · · · ,x(G)

i }
with group structure can be generated by:

xi ∼
M∏
j=1

G∏
g=1

B

x(g)i,j ;

∑G
g=1 cj,gfθ(g)

(
cos(hj , zi)/τ + o

(g)
i z>i

)
∑M

j=1

∑G
g=1 cj,gfθ(g)

(
cos(hj , zi)/τ + o

(g)
i z>i

)
 (9)

Among them, the user-item interaction behavior x
(g)
i,j can be decoded with an individual

Bernoulli distribution. Here function fθ(g)(·) indicates neural network parameterized by
θ(g) that estimates how much the user with a given preference is interested in item group g.
cos(hj , zi)/τ implies that item representation hj will be disentangled if zi is disentangled,

as the two’s dimensions are aligned. o
(g)
i z>i connects the latent user representation and item

groups to achieve latent-level disentanglement. Consider the computational complexity, here

we use sampled softmax (Jean et al., 2015) to estimate
∑M

j=1

∑G
g=1 cj,gfθ(g)

(
cos(hj , zi)/τ + o

(g)
i z>i

)
based on a few sampled items when M is vary large. The whole generative process of InD-
GRM is summarized in Algorithm 1.

4.5 The Interpretability of InDGRM

The proposed InDGRM model aims to capture the complicated user preference pattern and
simultaneously provide interpretable recommendation. The interpretability of InDGRM
can be guaranteed from two aspects:

1. Observed-level disentanglement on users and items: By introducing mixture prior
to model inter-user preference similarity on latent user representation, InDGRM al-
lows dynamic allocation of statistical capacity among components, where users will
be assigned into different components (clusters) so that users with similar preference
belong to one component. In this case, users in the same component can be taken
as neighborhood to each other. Based to this operation, InDGRM is able to cap-
ture user correlations structure and achieve observed-level disentanglement on users.
Furthermore, this kind of disentanglement alleviates data sparsity by allowing a near
cold-start user to borrow information from other users from the same cluster. By
introducing prototype-based item grouping to model intra-user preference diversity,
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Algorithm 1 InDGRM Generative Process

1. Randomly initialize hyperparameters α, ηa, ηb, a, b, item representations {hj}Nj=1, group

representations {pg}Gg=1;
2. For each item j ∈ [1,M ]:

1) For each item group g ∈ [1, G]:

a) Draw sj,g ∝ exp
(

cos(hj ,pg)
τ

)
b) if privilege information

i) Draw sj,k,g ∝ exp
{

cos(hj ,pk)
τ − cos(hj ,pg)

τ

}
ii) Draw s̄j,k,g ∼ B(sj,k,g)

2) Draw cj ∼Mult(Nj , sj)
3. For each user i ∈ [1, N ]:

1) Draw πi ∼ GEM(α)
2) For each latent dimension l ∈ [1, d(k)]

a) Draw λ
(k)
l ∼ IG(ηa, ηb)

3) Draw use representation zi ∼
∑∞
k=1 πi,kN

(
µ

(k)
i ,σ

(k)
i I

)
=
∑∞
k=1 πi,k

∏d(k)

l=1 N
(

0, λ
(k)
l

)
4) For each interaction related to user i:

a) Draw γ2 ∼ Γ
(
a+1
2 , b

2

2

)
b) For each item group g ∈ [1, G] and each latent dimension l ∈ [1, d(k)]:

i) Draw o
(g)
i,l ∼ N (0, γ2)

c) Draw the rating xi ∼
∏M
j=1

∏G
g=1 B

(
x
(g)
i,j ;

∑G
g=1 cj,gfθ(g)

(
cos(hj ,zi)/τ+o

(g)
i z>

i

)
∑M
j=1

∑G
g=1 cj,gfθ(g)

(
cos(hj ,zi)/τ+o

(g)
i z>

i

))
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InDGRM captures item groups to reflect the diverse interests of single user so as to
achieve observed-level disentanglement on items.

2. Latent-level disentanglement on representations: By introducing the column-wise
latent-to-group sparse mapping matrix from latent user representation to item groups,
each latent factor will be automatically associated with item group. The mapping ma-
trix can be taken as a bipartite graph on latent feature set and item group set, from
which we can quickly identify the relationships among these two sets. When we have
category prior for each group, the latent feature can be directly explained accord-
ing to the category information of the most related groups. A good by-product of
factor-to-group mapping is that the latent feature can be easily disentangled in the
latent space. Specially, by penalizing mapping between the latent features and item
groups, for each user, we can force the model to learn a latent representation where
the correlation among latent features is as small as possible. Furthermore, the co-
sine similarity measurement between user representation and item representation (in
Eq. (9)) also encourages latent-level disentanglement on item representations when
their dimensions are aligned well.

In a word, in InDGRM, the observed-level and latent-level disentanglement schemes are
properly designed and seamlessly integrated into the recommendation model via a unified
generative process, which will enforce each other to improve recommendation performance
and achieve model interpretability.

4.6 Inference Learning for InDGRM

Deep generative models target to minimizing certain discrepancy measures between the
true data distribution and the generative distribution (Kingma and Welling, 2013; Goodfel-
low et al., 2014). Kullback-Leibler (KL) divergence (equivalently maximizing the marginal
data log-likelihood) or Jensen-Shannon (JS) divergence are commonly used to estimate the
model parameters. However, user behavior data is characterized by few frequently occur-
ring items and a large amount of tail items, where data can be actually characterized by
a low dimensional manifold. In this case, thus, we adopt Wasserstein distance (Villani,
2008) to measure the difference between two distributions rather than KL-divergence or
JS-divergence, because it has the ability to preserve the transitivity in latent space due
to the much weaker topology (Tolstikhin et al., 2018; Liu et al., 2019b). Meanwhile, the
generative process can be implemented under the auto-encoder framework from the optimal
transport point of view (Tolstikhin et al., 2018; Arjovsky et al., 2017).

Motivated by above techniques, the parameters in InDGRM can be determined by mini-
mizing Wasserstein distance between the ground truth distribution and the model generated
distribution on user-item interaction data. It can be approximated by optimizing the fol-
lowing bound:

L(xi; θ, φ,O) = inf
qφ(zi,k|xi,C)∈QZ×K

Ep(xi)Eqφ(zi,k|xi,C)[c(xi, x̂i)]

+ λrEp(xi)[D (qφ(zi, k|xi,C)||pθ(zi|k)pθ(k|πi))]− λo
∑
g

||o(g)
i ||2.

(10)
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where xi and x̂i are the original and generated feedback data respectively. c(x, y) is the cost
function to measure the distance between x and y, here the squared cost function c(x, y) =
||x − y||22 is used. infqφ(zi,k|xi,C)∈QZ×K Ep(xi)Eqφ(zi,k|xi,C)[c(xi, x̂i)] is the tractable upper
bound of Wasserstein distance W(p(xi), pG(xi)), and QZ×K is the set of all conditioned
distributions over zi. Variational distribution qφ(zi, k|xi,C) in the inference model can be
factorized as qφ(zi|k,xi,C) and qφ(k|xi,C). Since any parametrization of qφ(zi, k|xi,C)
reduces the search space of the infimum, the above objective function can be taken as an
upper bound of the true Wasserstein distance. D(·) is an arbitrary divergence between
prior and posterior, two mixture of Gaussian distributions, which can be efficiently and
effectively approximated (Hershey and Olsen, 2007). The last penalty term on Oi aims to
constrain its values in he collapsed bound and encourage it sparse. λr > 0 and λo > 0 are
two hyperparameters.

As we mentioned before, prototype learning can be promoted via introducing privilege
information (Eq. (7)). Thus, the final objective can be formulated as follow:

L(xi; θ, φ,O) = inf
qφ(zi,k|xi,C)∈QZ×K

Ep(xi)Eqφ(zi,k|xi,C)[c(xi, x̂i)]

+ λrEp(xi)[D (qφ(zi, k|xi,C)||pθ(zi|k)pθ(k|πi))]− λo
∑
g

||o(g)
i ||2

+ λp
1

|P|
∑

(j,k,g)∈P

−s̄j,k,g log sj,k,g − (1− s̄j,k,g) log(1− sj,k,g).

(11)

where the last term λp
1
|P|
∑

(j,k,g)∈P −s̄j,k,g log sj,k,g−(1−s̄j,k,g) log(1−sj,k,g) is derived from

Eq. (7) in Section 4.2.2. P denotes the set of all ranking order triplets for prototype and
λp is a hyperparameter controlling the effect of prototype enhancing. Intuitively, this term
optimizes for hyperspherical prototypes to have the same ranking order as the semantic
priors.

The second term with KL divergence in Eq. (10) and Eq. (11) can be rewritten as

Ep(xi) [D(qφ(zi, k|xi,C)||pθ(zi|k)pθ(k|πi))]

= Ep(xi)
[
Eqφ(zi,k|xi,C)

[
ln
qφ(zi, k|xi,C)

qφ(zi, k|C)
+ ln

qφ(zi, k|C)

pθ(zi|k)pθ(k|πi)

]]
= Ep(xi)[D(qφ(zi, k|xi,C)||qφ(zi, k|C))] + Eqφ(zi|xi,C)

[
ln

qφ(zi, k|C)

pθ(zi|k)pθ(k|πi)

]
= I(xi, zi) +D(qφ(zi, k|C)||pθ(zi|k)pθ(k|πi)).

(12)

I(xi, zi) is the mutual information between xi and zi. Minimizing it is equivalent to applying
the information bottleneck principle on the learning process, which encourages zi to ignore
as much noise in the input as it can, so that the latent representation mainly focus on
the essential information. The second term can encourage independence among latent
features with the aid of proper prior. For instance, a prior with independent features,
pθ(zi|k) =

∏d
l=1 pθ(zi,l|k) (as shown in Eq.(5)) is adopted here. Penalizing this KL term

will make the posterior approach to the prior and preserve such independent properties.
Meanwhile, this term seamlessly integrate preference diversity modeling and user correlation
modeling.
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As mentioned before, to capture the inter-user preference similarity, each user latent
representation is assumed following a Mixture of Gaussian distribution. By sufficiently
exploiting the relationship between user clusters and item groups, the variational posterior
qφ(zi|k,xi,C) can be approximated by

qφ(zi|k,xi,C) =
K∑
k=1

π̃i,kN
(
µ
(φ,k)
i ,σ

(φ,k)
i I

)
. (13)

In mixture model, each component is a Gaussian distribution with the following mean µ
(φ,k)
i

and standard deviation σ
(φ,k)
i :

µ
(φ,k)
i = W(k)

µ

∑M
j=1

∑G
g=1 cj,ghj√∑M

j=1

∑G
g=1 cj,g

, fφ

(
{x(g)

i }
G
g=1

) ,
σ
(φ,k)
i = softplus

W(k)
σ

∑M
j=1

∑G
g=1 cj,ghj√∑M

j=1

∑G
g=1 cj,g

, fφ

(
{x(g)

i }
G
g=1

) ,

(14)

where W
(k)
µ and W

(k)
σ are learnable weight matrices related to the k-th component. fφ(·)

is the neural network to extract the high-level features from user behavior information with
group structure. {π̃i,k}Kk=1 are the group-specific attention weights, which can be computed
via:

π̃i,k = softmax
(
W2tanh

(
W1

[
xi, {xi′}i′∈Uk , {hj}xij=1

]))
. (15)

Here Uk indicates users set related to the k-th user cluster and hj is representation for the
j-th item. W1 and W2 are learnable weight metrices.

To mirror the prior, we parameterize variational distribution qφ(k|xi,C) via mixture
prior pθ(zi|k) pθ(k|πi). Specifically,

qφ(k|xi,C) =
πi,kN

(
µ
(k)
i ,σ

(k)
i I
)

∑K
k′=1 πi,k′N

(
µ
(k′)
i ,σ

(k′)
i I

) (16)

is a categorical distribution over K user clusters. The information loss induced by the fac-
torized approximation can be mitigated by forcing its dependency on the posterior pθ(k|zi)
and non-formative prior pθ(k|πi).

For the group lasso penalty on the latent-to group matrix Oi in Eq.(10) or Eq.(11), we
update it via proximal gradient descent method, which is efficient for the separable objec-
tives with both differentiable and potentially non-differentiable components. Specifically,

the proximal operator on vector λo
∑

g ||o
(g)
i ||2 can be formulated as:

o
(g)
i =

o
(g)
i

||o(g)
i ||2

max
(

0, ||o(g)
i ||2 − ηoλo

)
.

Geometrically, this operator reduces the norm of o
(g)
i by ηoλo, and shrinks o

(g)
i with

||o(g)
i ||2 ≤ ηoλo to zero. Obviously, this updating is cheap for computing and leads to

machine-precision zeros.
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4.7 Local Variational Optimization for InDGRM

In the objective function, Eq.(10) or Eq.(11), {θ, φ,O} are the parameters to be optimized.
Among it, the latent representation zi can be obtained via reparametrization trick, zi =

µ
(φ,g)
i + εn � σ

(φ,g)
i , where εn ∼ N (0, I). Thus, the posterior is be controlled by following

variational parameters:

ψ(xi) =
{
{µ(φ,g)

i }Gg=1, {σ
(φ,g)
i }Gg=1

}
.

In this case, given xi, our main goal is to find the optimal variational parameters ψ(xi),
which can be implemented by maximizing L(xi; θ, φ,O, ψ(xi)) on the neural network with
parameters φ.

A simple and popular way is random sampling ψ(xi). However, it has been proven
that such strategy can not guarantee optimal variational parameters and may yield a much
looser upper bound for the original generative model designed on Wasserstein distance
(between prior and posterior distributions) (Krishnan et al., 2017). Therefore, in this work,
the optimal variational parameters ψ∗ are automatically determined, which has ability to
obtain a tighter upper bound L (xi; θ, φ,O, ψ

∗(xi)) as follows.

L(xi; θ, φ,O) ≥ L (xi; θ, φ,O, ψ
∗(xi)) ≥ W(p(xi), pG(xi)) (17)

Algorithm 2 Learning with local variational optimization for InDGRM

Input: Implicit user-item interaction matrix X with N users and M items. Randomly
initialized parameters {θ, φ,O}.

1: for t = 1, 2, · · · , T
2: Sample a user xi and set ψ0 = ψ(xi).
3: Learning item group assignment C and prototypes via Eq.(6) and Eq.(7).
4: Approximate ψL ≈ ψ∗(xi) = minψ LG(xi; θ

t, φt,Ot, ψ(xi)).
5: for τ = 0, · · · , L− 1
6: ψτ+1 = ψτ + ηψ∇ψτLG(xi; θ

t, φt,Ot, ψτ ).
7: Update θ: θt+1 ← θt + ηθ∇θtL(xi; θ

t, φt,Ot, ψL).
8: Update φ: φt+1 ← φt + ηφ∇φtL(xi; θ

t, φt,Ot, ψL).
9: Update O: Ot+1 ← Ot + ηo∇otL(xi; θ

t, φt,Ot, ψL).
10: for g = 1, 2, · · · , G
11: Update o

(g)
i with o

(g)
i =

o
(g)
i

||o(g)
i ||2

max
(

0, ||o(g)
i ||2 − ηoρ

)
.

12: Reduce certain dimension of zi if corresponding ARD variance is less than ελ.
Output: The learned optimal parameters {θ, φ,O}.

To obtain the optimal ψ∗ for further updating model parameters {θ, φ,O}, we adopt a
local variational optimization (LVO) method to estimate parameters ψ = ψ(xi) with the
aid of the inference network. Its main idea is to optimize ψ via gradient descent, where
one initializes with ψ0 and takes successive steps of ψτ+1 = ψτ + ηψ∇ψτL(xi; θ, φ,O, ψ

τ ),
where the gradient with respect to ψ can be approximated via Monte Carlo sampling. As
shown in line 5-7 of Algorithm 2, the resulting ψL can approach the optimal variational
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parameters. Note that L in inner optimization is a predefined value, usually few steps are
enough to find the optimal ψ. With ψL, we can update the parameters θ, φ and O via
stochastic back-propogation, as shown in line 8, 9 and 10, where the learning rates ηψ, ηθ, ηφ
and ηo obtained via ADAM (Kingma and Ba, 2014). The factor-to-group mapping vector

o
(g)
i is updated by the proximal stochastic gradient descent method, as shown in line 11-13.

The whole training procedure for InDGRM with local variational optimization strategy is
summarized in Algorithm 3.

5. Theoretical Analysis of InDGRM

In this section, we focus on theoretically analyzing the proposed InDGRM model including
its generalization error bound and relationship with existing methods. In the first we analyze
the generalization error bound of the proposed InDGRM to underscore the characteristics
of estimation error in terms of model parameters. Then we prove that InDGRM is superior
to the existing recommendation methods.

5.1 Generalization Error Bound

Motivated by Arora et al. (2017) and Lee et al. (2016), the generalization of interaction
data generation process can be defined by measuring the difference between generative
data distribution X̂p and real data distribution Xp. Our main idea is check whether the
population distance between Xp and X̂p is close to the empirical distance between the
empirical distributions (Xe and X̂e).

Definition 1 For the empirical version of the true distribution (Xe) with N training exam-
ples, a generative distribution (X̂e) generalizes under the distance d(·, ·) between distributions
with generalization error δ1 > 0 if the following holds with high probability,

|Ep(X̂)− Ee(X̂)| ≤ δ1 (18)

where

Ep(X̂) = Ex(p)∼Xp,x(p)∼X̂pd
(
x(p), x̂(p)

)
,

Ee(X̂) =
1

NM

N∑
i=1

M∑
j=1

d
(
x
(e)
i,j , x̂

(e)
i,j

)
| x(e)i,j ∼ X̂e, x̂

(e)
i,j ∼ X̂e

(19)

Ep(X̂) indicates the population distance between the true and generative distributions (Xp
and X̂p). Ee(X̂) is the empirical distance between the true and generative distributions (Xe
and X̂e).

Since the proposed InDGRM with single user cluster and item group can be seem as a
generalized matrix completion model, the Frobenius norm between the ground truth data
(X(e)) and the generative data (X̂(e)) with N users and M items, is used as the metric to

establish the error bound of the proposed method, i.e. d(x
(e)
ij , x̂

(e)
i,j ) = ||x(e)i,j − x̂

(e)
i,j ||22. In the
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Algorithm 3 The training procedure for InDGRM with local variational optimization
strategy.

1: input: user-item interaction matrix X ∈ RM×N .
2: parameters: The parameters {θ, φ,O} include: user representations {zi}Ni=1 ∈ RN×di ,

item representations {hj}Mj=1 ∈ RM×di , group prototypes {pg}Gk=g ∈ RK×di , sparse map-
ping {Oi}Ni=1 ∈ RN×di×G, and the parameters of neural networks.

3: function PrototypeGroupAssignment()
4: if privilege information
5: s̄j,k,g = 1(cos(tg, tj) ≥ cos(tg, tk)), (i, j, k) ∈ P
6: sj,k,g ∝ exp

{
cos(hj ,pk)

τ − cos(hj ,pg)
τ

}
7: PI = 1

|P|
∑

(j,k,g)∈P −s̄j,k,g log sj,k,g − (1− s̄j,k,g) log(1− sj,k,g)

8: sj,g ← exp
(
cos(hj ,pg)

τ

)
, g = 1, 2, · · · , G

9: cj ∼ Gumble-Softmax([sj,1, · · · , sj,G])
10: return {cj}Mj=1,PI
11: function Encoder(xi, {cj}Mj=1)

12: µ
(φ,k)
i = W

(k)
µ

[∑M
j=1

∑G
g=1 cj,ghj√∑M

j=1

∑G
g=1 cj,g

, fφ

(
{x(g)

i }Gg=1

)]
,

13: σ
(φ,k)
i = softplus

(
W

(k)
σ

[∑M
j=1

∑G
g=1 cj,ghj√∑M

j=1

∑G
g=1 cj,g

, fφ

(
{x(g)

i }Gg=1

)])
14: π̃i,k = softmax

(
W2tanh

(
W1

[
xi, {xi′}i′∈Uk , {hj}xij=1

]))
15: zi =

∑K
k=1 π̃i,kN

(
µ
(φ,k)
i ,σ

(φ,k)
i I

)
16: return zi, KL =

∑K
k=1KL

(
N (µ

(φ,k)
i ,σ

(φ,k)
i I)||N (0,Λ(k)

)
17: function Decoder(zi, {cj}Mj=1)

18: SP =
∑

g ||o
(g)
i ||2

19: for g = 1, 2, · · · , G // For simplicity, we omite sup-script (g) and denote p
(g)
i,j as

pi,j .

20: pi,j ←
∑G
g=1 cj,gfθ(g)

(
cos(hj ,zi)/τ+o

(g)
i z>i

)
∑M
j=1

∑G
g=1 cj,gfθ(g)

(
cos(hj ,zi)/τ+o

(g)
i z>i

) , j = 1, 2, · · · ,M

21: [x̂i,1, x̂i,2, · · · , x̂i,M ]← Softmax([pi,1, pi,2, · · · , pi,M ])
22: RC = ||xi − x̂i||2F
23: return RC + λoSP
24: {cj}Mj=1,PI ← PrototypeGroupAssignment().

25: zi, KL ←Encoder(xi, {cj}Mj=1)

26: RC + λoSP ← Decoder(zi, {cj}Mj=1)
27: if privilege information
28: L (xi; θ, φ,O, ψ

∗(xi)) = RC + λrKL+ λoSP + λpPI
29: else
30: L (xi; θ, φ,O, ψ

∗(xi)) = RC + λrKL+ λoSP
31: θ, φ,O ← Update θ, φ and O to minimize L (xi; θ, φ,O, ψ

∗(xi)), using the proposed
local variational optimization method.
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following content, we abbreviate X(e) as X and X̂(e) as X̂, and d (xi,j , x̂i,j) = ||xi,j − x̂i,j ||22
is used as shorthand for d(x

(e)
ij , x̂

(e)
i,j ) = ||x(e)i,j − x̂

(e)
i,j ||22.

According to the generative process of InDGRM, it can be seen that the whole inter-
action matrix is generated by K ×G components with different properties. Here we define
X(k,g) as the (k, g)-th submatrix, N (k,g) is the number of users in submatrix X(k,g) and
M (k,g) is the number of items. Firstly, we establish the error bound of the proposed InD-
GRM, i.e., the generative error of the proposed deep generative recommendation model is
bounded, so that we can still find optimal generative model for recommendation by opti-
mizing the proposed optimization problem.

Theorem 2 For any X ∈ NN×M (N,M > 2),

Ep(X̂) ≤ Ee(X̂) +

√
log δ1
−2NM

(
max
(i,j)

di,j

)2

(20)

holds with probability at least 1 − δ1 over uniformly choosing an empirical version of X.
Here, di,j = d (xi,j , x̂i,j).

Proof Since the entries in X are chosen independently and uniformly, it is reasonable to
assume each di,j = d(xi,j , x̂i,j) is a random variable and satisfies

p(ζ ≥ di,j ≥ 0) = 1

where ζ = max(i,j) di,j . Hence, based on the Hoeffding Inequality, we have p(|Ep(X̂) −

Ee(X̂)| ≥ ε) ≤ exp
(
−2NMε2

ζ2

)
. By setting ε =

√
log δ1
−2NM ζ

2, we have

p

(
|Ep(X̂)− Ee(X̂)| ≤

√
log δ1
−2NM

ζ2

)
≥ 1− δ1 (21)

i.e.,

p

Ep(X̂) ≤ Ee(X̂) +

√
log δ1
−2NM

(
max
(i,j)

di,j

)2
 ≥ 1− δ1 (22)

Therefore, the errors of interaction data generative model are bounded.

Then, we theoretically prove the generalization error bound of InDGRM related to a
single user cluster and a single item group, X(k,g). To make the theorem more convincing,
we make several standard assumptions: (1) each submatrix X(k,g) related to the (k)-th user
cluster and the (g)-th item group is incoherent (Candès and Recht, 2009; Sun and Luo,
2016); (2) X(k,g) is well-conditioned (Candès and Recht, 2009); (3) the number of users is
larger than items in each submatrix (N (k,g) ≥ M (k,g)). As shown in Theorem 7 in Candes
and Plan (2011), a theoretical bound to generalized matrix reconstruction model is existing
as follows.
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Theorem 3 If X(k,g) is well-conditioned and incoherent such that |D(k,g)| ≥ Cµ2M (k,g)d(k,g) log6M (k,g),
then with high probability 1− (M (k,g))−3, X(k,g) satisfies

||X(k,g) − X̂(k,g)||F ≤ 4ε

√
(2 + ρ(k,g))M (k,g)

ρ(k,g)
+ 2ε

= 4

√
(2 + ρ(k,g))M (k,g)

ρ(k,g)
+ 2

(23)

where ρ(k,g) = |X(k,g)|
N(k,g)M(k,g) indicates the density of the observed entries ρ in every subma-

trix is consistent with each other. ε = max(X̂) − min(X̂) = 1 and d(k,g) is the optimal
dimensionality of latent representation for the (k, g)-th submatrix, D(k,g) ⊂ D is the set of
observed feedback in submatrix X(k,g).

This theorem indicates that the generative error of each submatrix X̂(k,g) is bounded.
Then, based on Theorem 3, we can analyze the generalization error bound of the proposed
InDGRM method on whole interaction matrix via the following theorem.

Theorem 4 If matrix related to K user clusters and G item groups satisfied Theorem 3,
then with high probability 1− δ2, X̂ is divided into K ×G submatrices satisfies

p

(
||X− X̂||F ≤

ω√
NM

(
4

√
(2 + ρ)NKG

ρ
+ 2KG

))
≥ 1− δ2 (24)

where δ2 = (2KGM)−3 and ω indicates the average weight, ρ = |X|
NM is the density of the

observed entries in X.

Proof For each user-item pair (i, j), an implicit feedback xi,j is equal to x̂i,j + z where z
is a random variable whose absolute error is bounded by

||W ⊗ (X− X̂)||∞ ≤ ω(max (X)−min (X)) = ωε = ω (25)

where W indicates the mixture weights. ε = max (X) − min (X) = 1 since we focus
on implicit feedback data. By applying Theorem 3 to implicit preference reconstruction
problem with bounded noise, we get with probability greater than 1 − v−3 that every
mixture model to approximate X will satisfy

||W ⊗ (X− X̂)||F ≤
ω√
NM

(
4

√
γ(2 + ρ)

ρ
+ 2

)
(26)

where v = max(N,M), γ = min(N,M). For a submatrix, there are K × G different
components X(k,g) and obviously

∑
k

∑
g γ

(k,g) ≤ N . Using Cauchy-Schwarz inequality, we
get ∑

(k,g)

√
γ(k,g) ≤

√
KG

∑
(k,g)

γ(k,g) ≤
√
KGN (27)
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Therefore, we can bound the reconstruction error as follow:

||W ⊗ (X− X̂)||F
(a)

≤
∑
(k,g)

||W (k,g) ⊗ (X(k,g) − X̂(k,g))||F

(b)

≤
∑
(k,g)

ω√
NM

4

√
γ(k,g)(2 + ρ)

ρ
+ 2


(c)

≤ ω√
NM

(
4

√
2KGN(2 + ρ)

ρ
+ 2KG

)
(28)

in which (a) holds due to the triangle inequality of Frobenius norm; and (b) holds due to
(26); and (c) holds due to (27). Since for all user-item pairs, we have

Ee(X̂) =
||X− X̂||F√

NM
≤ ||W ⊗ (X− X̂)||F√

NM
(29)

Combining (28) and (29), we established the error bound of X̂ as stated above. In
order to adjust the confidence level, we take a union bound of events ||W ⊗ (X− X̂)||F ≥
ω√
NM

(
4
√

γ(2+ρ)
ρ + 2

)
for each mixture component, then we have

∑
(k,g)

(
v(k,g)

)−3
≥

KG∑
(k,g)

v(k,g)

−3 ≥ (2KGM)−3 (30)

thus, the error bound holds with probability at least 1− (2KGM)−3.

Remark 5 According to above theorems, we can underscore the characteristics of estima-
tion error in terms of parameters such as the training set size of each submatrix |D(k,g)|,
optimal dimensions of each user representation di, and the number of submatrix K × G.
Considering the basic assumption of each submatrix is followed by Candes and Plan (2011),
our model with K user clusters and G item groups requires a lower training set size, i.e.,∑

(k,g) |D(k,g)| ≤ |D|. This property also guarantees that our model is able to achieve com-
petitive performance in more sparse scenario. And we observe empirically that this phe-
nomenon does occur with cold-start scenario (see Table 3). Furthermore, our method is
able to model user representations in each submatrix with the optimal subspace dimensions
since the introduction of ARD technique, which further relaxes the requirement of the size
of training set.

5.2 Relations to Existing Methods

Generative model aims to reconstruct the input interaction data including the observed
data and the unobserved data. In this scenario, the proposed method is closely related to
global-based methods (e.g., PMF (Mnih and Salakhutdinov, 2008)) and local-based methods
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(e.g., LLORMA (Lee et al., 2016), DGLGM (Liu et al., 2020)). In this section, we will
theoretically compare them from the perspective of generalization bound.

The objective function of the traditional matrix reconstruction methods (Mnih and
Salakhutdinov, 2008) can be formulated as follow:

Lg =
1

|D|
∑

(i,j)∈D

||xi,j − x̂i,j ||22. (31)

Here we ignore the regularization term. For local-based matrix reconstruction method with
S local structures (Lee et al., 2016), its objective function can be written

Ll =
S∑
s=1

ws

|D(s)|
∑

(i,j)∈D(s)

||x(s)i,j − x̂
(s)
i,j ||

2
2, (32)

where D(s) is the observed entries set related to the s-th local structure and ws indicates
the importance of the corresponding local structure with

∑S
s=1ws = 1 and the interactions

in the same local structure have the same weight. Next, let’s prove that the local-based
method (Eq. (32)) can achieve lower generalization error bound than global-based method
(Eq. (31)), i.e., the later has ability to obtain potentially better generalization performance
than the former.

Theorem 6 Let E[Lg] = E[Ll] = µ. For any ε > 0, if p(|Ll − µ| ≤ ε) ≥ 1 − δl and
p(|Lg − µ| ≤ ε) ≥ 1− δg, then δl ≤ δg.

Proof Based on Markov’s inequality6 and Hoeffding’s Lemma7, for any ε, t > 0, we have

p(Lg − µ ≥ ε) = p
(
et(Lg−µ) ≥ etε

)
(a)

≤ E[et(Lg−µ)]

etε

(b)

≤
1
8 t

2(a− b)b

etε
,

(33)

where µ is the expectation of Lg, a = sup{Lg − µ} and b = inf{Lg − µ}. (a) holds due to
Markov’s inequality, and (b) holds due to Hoeffding’s Lemma. Similarly, we have

p(µ− Lg ≥ ε) ≤
e

1
8
t2(a−b)2

etε
. (34)

Combing the above two inequalities, we have

p(|µ− Lg| ≤ ε) ≥ 1− 2e
1
8
t2(a−b)2

etε
, (35)

6. (Markov’s Inequality) Let x be a real-valued non-negative random variable. Then, for any ε > 0,

p(x ≥ ε) ≤ E[x]
ε

.
7. (Hoeffding’s Lemma) Let x be a real-valued random variable with zero mean and p(x ∈ [a, b]) = 1. Then,

for any z ∈ R, E[ezx] ≤ exp( 1
8
z2(b− a)2).
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i.e.,

δg =
2e

1
8
t2(a−b)2

etε
. (36)

Let L(s)g = 1
D(s)

∑
(i,j)∈D(s) ||xi,j − x̂i,j ||22 (s ∈ {1, 2, · · · , S}). Then, we know that Ll and

Lg have the same expectation µ, Therefore, we can derive δl for Ll as follows:

p

(
S∑
s=1

wsL(s)l − µ ≥ ε

)
(a)

≤ E[et(
∑
s wsL

(s)
l −µ)]

etε

(b)

≤
∑
s

wsE[et(L
(s)
l −µ)]

etε

(c)

≤
∑
s

wse
1
8
t2(as−bs)2

etε
,

(37)

where (a) holds due to E[et(
∑
s wsL

(s)
l
−µ)

]
etε = E[et(

∑
s ws(L

(s)
l
−µ))

]
etε and Markov’s inequality, (b)

holds due to the convexity of exponential function, and (c) holds due to Hoeffding’s Lemma.

Let as = sup{L(s)l − µ} and bs = inf{L(s)l − µ}, we have

δl = 2
∑
s

wse
1
8
t2(as−bs)2

etε
. (38)

Considering D(s) ⊂ D, we know sup{L(s)l } ≤ sup{Lg} and inf{L(s)l } ≥ inf{Lg}. There-

fore, sup{L(s)l − µ} ≤ sup{Lg − µ} and inf{L(s)l − µ} ≥ inf{Lg − µ}, i.e., as ≤ a and bs ≥ b.
Then, we have (a− b)2 ≥ (as − bs)2, i.e.,

e
1
8
t2(as−bs)2

etε
≤ e

1
8
t2(a−b)2

etε
for ∀s ∈ {1, · · · , S}. (39)

Then, under the constraint
∑

sws = 1, we can conclude that δl ≤ δg.

Remark 7 The above theorem demonstrates that Ll will be close to its expectation µ with
higher probability than Lg. Note that Theorem 6 can be applied to general local-based ma-
trix reconstruction methods. However, different local structure determination strategies can
derive different δl, i.e., a well-designed local structure determination strategy can achieve
better generalization performance than random splitting because a well-designed local struc-
ture determination strategy can achieve more accurate submatrix partition.

Similar to the local-based method, we can rephrase the objective function of the proposed
InDGRM method by

L =
1

|D|
∑

(i,j)∈D

S∑
s=1

ws

|D(s)|
∑

(i,j)∈D(s)

w
(s)
i,j ||x

(s)
i,j − x̂

(s)
i,j ||

2
2 (40)
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where ws is the local-specific weight. Similarly, all weights are constrained by
∑S

s=1ws = 1.

w
(s)
i,j indicates the entry-specific weight in the s-local structure. We can prove that L can

achieve lower generalization error bound in the following Theorem.

Theorem 8 Let E[L] = E[Ll] = µ. For any ε > 0, if p(|Ll − µ| ≤ ε) ≥ 1 − δl and
p(|L − µ| ≤ ε) ≥ 1− δ, then δ ≤ δl.

Proof According to the definition of L and L(s), we can get E[L] = E[Ll] = µ.

Let L(s) =
∑

(i,j)∈D(s) w
(s)
i,j ||x

(s)
i,j − x̂

(s)
i,j ||22 (s ∈ {1, 2, · · · , S}). We can derive δ for L as

follows:

p

∑
D

∑
s∈{1,2,··· ,S}

wsL(s) − µ ≥ ε

 (a)

≤ E[et(
∑
s wsL(s)−µ)]

etε

(b)

≤
∑
s

wsE[et(L
(s)−µ)]

etε

(c)

≤
∑
s

wse
1
8
t2(cs−ds)2

etε
,

(41)

where inequalities (a), (b) and (c) hold due to the Markov’s inequality, the convexity of
exponential function, and Hoeffding’s Lemma, respectively. Let cs = sup{L(s) − µ} and
ds = inf{L(s) − µ}, we have

δ = 2
∑
s

wse
1
8
t2(cs−ds)2

etε
. (42)

According to Theorem 6, we know sup{L(s)} ≤ sup{L(s)l } and inf{L(s)} ≥ inf{L(s)l }. There-

fore, sup{L(s) − µ} ≤ sup{L(s)l − µ} and inf{L(s) − µ} ≥ inf{L(s)l − µ}, i.e., cs ≤ as and
ds ≥ bs. Then, we have (as − bs)2 ≥ (cs − ds)2, i.e.,

e
1
8
t2(cs−ds)2

etε
≤ e

1
8
t2(as−bs)2

etε
for ∀s ∈ {1, · · · , S}. (43)

Then, under the constraint
∑

sws = 1, we can conclude that δ < δl.

Remark 9 Theorem 8 indicates that our InDGRM have a lower generalization bound than
the existing local-based matrix reconstruction methods, because L will be close to its ex-
pectation µ with higher probability than Ll. Therefore, minimizing L can achieve small
generalization error with higher probability than minimizing Ll.

6. Experimental Results

In this section, we evaluate the proposed deep generative model on four datasets by com-
paring with the state-of-the-art recommendation methods.
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ML 20M Netflix AliShop-7C Yelp
] users (N) 138,493 480,189 10,668 1,182,626
] items (M) 26,744 17,770 20,591 156,638
] Interactions 20,000,263 100,000,000 767,493 4,731,265
Density 0.54% 1.17% 0.35% 0.0026%
M i 144 208 47 4
N j 748 5,627 231 30

M i: the average number of items rated by each user
N j : the average number of users interested in each item

Table 1: Summary of experimental datasets

6.1 Experimental Setting

Datasets: In experiments, four widely-used recommendation datasets, MovieLens 20M
(ML 20M) 8, Netflix 9, AliShop-7C 10 and Yelp 11, are used to validate the recommendation
performance. Among them, ML 20M (Harper and Konstan, 2015) and Netflix come from
movie domain, Alishop-7C (Ma et al., 2019) belongs to online product domain, and Yelp
is related to local business domain. The preference scores in ML 20M are 10 discrete
numerical values in the range of [0.5,5] with step 0.5, while the ratings in other datasets are
ordinal values on the scale 1 to 5. Following Liang et al. (2018), we binarize explicit data
by keeping ratings of four or higher. More detailed information is summarized in Table 1.

Metrics for ranking estimation: Recall

Recall@n(i) =
|Re(i) ∩ T (i)

|T (i)|

is used as ranking estimation, where Re(i) denotes the set of recommended items to user i
and T (i) denotes the set of favorite items of user i. Meanwhile, the normalized discounted
cumulative gain (NDCG) is adopted to measure the item ranking accuracy, which can be
computed by:

NDCG@n(i) =
DCG@n(i)

IDCG@n(i)
DCG@n(i) =

n∑
r=1

2relr − 1

log2(r + 1)

where IDCG is the DCG value with perfect ranking. relr is the graded relevance of the
result at position r.

Metrics for interpretability: Two metrics, Explainability Precision (EP) and Explain-
ability Recall (ER), are adopted to evaluate model interpretability (Abdollahi and Nasraoui,
2017). EP is defined as the proportion of explainable items in the top-n recommendation
list relative to the number of recommended (top-n) items for each user. Similar to the recall
metric, ER is the proportion of explainable items in the top-n recommendation list relative
to the number of all explainable items for a given user. Note that an item j is explainable

8. https://grouplens.org/datasets/movielens/
9. https://www.netflixprize.com

10. https://jianxinma.github.io/disentangle-recsys.html
11. https://www.yelp.com/dataset/challenge
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for user i if

E(xij |j ∈ Np) = xij ×
Np ∩ Ii
|Np|

> ξ,

where Np is the set of neighbors of item p. For each item, cosine similarity based on in-
teraction behaviors is used to measure the relationship between items, top-50 items are
selected as neighbors. Ii is the set of items that user i interacted with. Following (Abdol-
lahi and Nasraoui, 2016), we set explainable threshold ξ = 0.01. Mean EP (MEP) is the
average value of explainability precision over all users and mean ER (MER) is the mean
explainability recall calculated over all users.

Baselines: Two kinds of recommendation methods are adopted as baselines: Traditional
recommendation method (EMF (Abdollahi and Nasraoui, 2016)) and Deep generative rec-
ommendation models (Mult-VAE (Liang et al., 2018), MacridVAE (Ma et al., 2019) and
DGLGM (Liu et al., 2020)).

Parameter setting: For fair comparison, the number of learnable parameters is set around
2Mdmax for each method, which is equivalent to using dmax-dimensional representations for
the M items. The initial dimensionality dmax is set as 150. The dropout technique (Sri-
vastava et al., 2014) is adopted at the input layer with probability 0.5. The model is
trained using Adam (Kingma and Ba, 2014) with batch size of 128 users for 200 epoch
on all datasets. The regularization coefficient λ is set to 1.2 for ML 20M and Netflix,
1.5 for AliShop-7C and Yelp. λo is set to 1 for better disentanglement. For auto-encoder
based deep methods (Mult-VAE, MacriVAE, DGLGM and our method), the hyperparam-
eters are automatically tuned via TPE (Bergstra et al., 2011), which searches the optimal
hyperparameter configuration with 200 trials on the validation set.

The held-out users strategy and five-fold cross validation are used to evaluate the recom-
mendation performance. The 20% users are taken as held-out users and evenly separated for
validation and test respectively. For each held-out user, his/her feedback data is randomly
split into five equal sized subsets. Among them, four subsets are used to obtain the latent
representation, and the rest subset is for evaluation in each round. Finally, the averaged
results on five rounds are reported.

6.2 Results and Discussion

In this section, the proposed InDGRM is sufficiently investigated from seven views. Firstly,
InDGRM is compared with baselines from All Users view and Near-cold-start Users view in
terms of recommendation performance.Secondly, the interpretability of InDGRM is evalu-
ated in terms of two metrics. Thirdly, a series of ablation experiments is conducted to illus-
trate the performance of the proposed model. Fourthly, we demonstrate the observed-level
disentanglement on users and items. Fifthly, we analyze the factor-to-group interactions
to show the disentanglement of user representations and the interpretability of InDGRM.
Sixthly, the disentanglement ability on item representations are investigated to further con-
firm the interpretability of InDGRM. fFinally, the generalization ability and convergence of
the proposed model is empirically analyzed.
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Datasets Methods
Recall NDCG

@1 @5 @10 @50 @100 @1 @5 @10 @50 @100

ML 20M

EMF 0.1011 0.1985 0.3168 0.4662 0.5437 0.1026 0.2128 0.3235 0.3541 0.3764
Mult-VAE 0.1231 0.2231 0.3320 0.5184 0.5761 0.1211 0.2453 0.3185 0.3833 0.4122

MacridVAE 0.1322 0.2433 0.3411 0.5233 0.6032 0.1322 0.2633 0.3376 0.3790 0.4122
DGLGM 0.1442 0.2542 0.3428 0.5205 0.6231 0.1527 0.2876 0.3391 0.3931 0.4198
InDGRM 0.1631 0.2651 0.3458 0.5264 0.6389 0.1723 0.3041 0.3426 0.4152 0.4276

Netflix

EMF 0.1422 0.2411 0.3123 0.4143 0.5772 0.0944 0.1511 0.2234 0.2753 0.3422
Mult-VAE 0.1675 0.2651 0.3208 0.4232 0.5996 0.1238 0.1782 0.2449 0.2985 0.3689

MacridVAE 0.1842 0.2782 0.3521 0.4348 0.6181 0.1437 0.1916 0.2584 0.3156 0.3798
DGLGM 0.1942 0.2953 0.3513 0.4401 0.6331 0.1653 0.2142 0.2669 0.3289 0.3763
InDGRM 0.2131 0.3153 0.3585 0.4453 0.6542 0.1841 0.2316 0.2695 0.3451 0.3831

AliShop-7C

EMF 0.0421 0.0852 0.1152 0.2367 0.3651 0.0782 0.1123 0.1522 0.1842 0.2141
Mult-VAE 0.0589 0.1032 0.1343 0.2459 0.3856 0.0943 0.1322 0.1632 0.2032 0.2387

MacridVAE 0.0642 0.1152 0.1544 0.3025 0.3984 0.1085 0.1527 0.1722 0.2231 0.2925
DGLGM 0.0743 0.1165 0.1585 0.3036 0.4132 0.1231 0.1675 0.1792 0.2431 0.2994
InDGRM 0.0895 0.1287 0.1622 0.3067 0.4275 0.1406 0.1873 0.1853 0.2633 0.3021

Yelp

EMF 0.2322 0.3536 0.4873 0.5589 0.7431 0.4354 0.5642 0.7285 0.7378 0.7531
Mult-VAE 0.2548 0.3753 0.5322 0.5824 0.7643 0.4558 0.5885 0.7328 0.7551 0.7689

MacridVAE 0.2773 0.3871 0.5435 0.5903 0.7834 0.4669 0.5973 0.7386 0.7663 0.7746
DGLGM 0.2697 0.3795 0.5458 0.5893 0.7896 0.4772 0.6085 0.7404 0.7595 0.7734
InDGRM 0.2846 0.3996 0.5496 0.5932 0.8132 0.4875 0.6173 0.7542 0.7762 0.7785

Table 2: Comparisons of different methods in terms of ranking estimation (Recall and
NDCG) from All Users view.

6.2.1 Recommendation Performance

The first experiment is conducted to compare the proposed InDGRM with the baselines
from two views (All Users and Near-cold-start Users) on four datasets in terms of Recall
and NDCG. All Users indicates that all users are used as the testing set. Near-cold-start
Users view means that the users with less than 5 interacted items are involved in the
testing set12. Table 2 shows the recommendation performance (Recall and NDCG) for All
Users on four datasets. The best and second results are marked in bold and underline.
We can see that deep methods significantly outperform the traditional recommendation
approach (EMF) on All Users, which indicates that non-linear deep features are beneficial
for improving recommendation quality. As expected, InDGRM performs better than all
deep generative baselines, which confirms that modeling inter-user preference similarity
and intra-user preference diversity in a proper way is beneficial to capture user’s intrinsic
preference and further improve the prediction accuracy.

The more sparser feedback data is, the more challenging the personalized recommenda-
tion task is. In these four datasets, the average number of Near-cold-start Users are 1543,
2201, 5310 and 4431526 in ML 20M, Netflix, AliShop-7C and Yelp respectively, and they are
about 1.85%, 0.46%, 57.4%, 46.7% of all users in the corresponding datasets. It can be seen
that AliShop-7C and Yelp are more sparse, thus we further evaluate the recommendation
performance on Near-cold-start Users. The results obtained by the proposed model and all
baselines are listed in the bottom part of Table 3. It is exciting to see that InDGRM is

12. It is not suitable to set the cold start user with less than 5 interacted items on yelp dataset since it is
extremely sparse. We define Near-cold-start Users on Yelp as users with less than 2 interacted items.
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Datasets Methods
Recall NDCG

@1 @5 @10 @50 @100 @1 @5 @10 @50 @100

ML 20M

EMF 0.0843 0.1433 0.2122 0.3431 0.4955 0.0564 0.1003 0.1933 0.2345 0.3154
Mult-VAE 0.1054 0.1534 0.2390 0.3763 0.5432 0.0675 0.1226 0.1976 0.2557 0.3256

MacridVAE 0.1251 0.1833 0.2339 0.3843 0.5642 0.0762 0.1323 0.1974 0.2733 0.3412
DGLGM 0.1346 0.1963 0.2431 0.3816 0.5598 0.0721 0.1296 0.1998 0.2872 0.3314
InDGRM 0.1421 0.1985 0.2498 0.3928 0.5795 0.0898 0.1473 0.2033 0.2965 0.3433

Netflix

EMF 0.0784 0.1342 0.1752 0.2546 0.3421 0.1021 0.1342 0.1852 0.2123 0.2655
Mult-VAE 0.0931 0.1489 0.1945 0.2794 0.3575 0.1321 0.1489 0.1938 0.2322 0.2921

MacridVAE 0.1034 0.1543 0.2042 0.2852 0.3678 0.1465 0.1589 0.2052 0.2456 0.3015
DGLGM 0.1142 0.1698 0.2076 0.2893 0.3801 0.1634 0.1731 0.2136 0.2542 0.3078
InDGRM 0.1298 0.1846 0.2136 0.2954 0.3988 0.1814 0.1896 0.2144 0.2679 0.3124

AliShop-7C

EMF 0.0132 0.0436 0.0731 0.1923 0.2653 0.0236 0.0563 0.0852 0.1432 0.1842
Mult-VAE 0.0245 0.0576 0.0952 0.2124 0.2781 0.0353 0.0655 0.1023 0.1623 0.2042

MacridVAE 0.0276 0.0631 0.1052 0.2241 0.2833 0.0403 0.0732 0.1103 0.1673 0.2134
DGLGM 0.0315 0.0615 0.1084 0.2278 0.2913 0.0514 0.0833 0.1156 0.1765 0.2312
InDGRM 0.0397 0.0783 0.1126 0.2337 0.3042 0.0703 0.0984 0.1214 0.1896 0.2363

Yelp

EMF 0.0232 0.0511 0.0788 0.1231 0.3244 0.0421 0.0873 0.1122 0.1766 0.2456
Mult-VAE 0.0341 0.0631 0.0981 0.1328 0.3433 0.0542 0.0967 0.1352 0.1879 0.2642

MacridVAE 0.0421 0.0745 0.1031 0.1398 0.3542 0.0672 0.1042 0.1428 0.1982 0.2762
DGLGM 0.0542 0.0872 0.1121 0.1472 0.3648 0.0732 0.1101 0.1531 0.2098 0.2892
InDGRM 0.0673 0.0993 0.1289 0.1628 0.3761 0.0894 0.1315 0.1672 0.2214 0.3015

Table 3: Comparisons of different methods in terms of ranking estimation (Recall and
NDCG) from Near-cold-start Users view.

superior to all baselines. The main reason, we believe, is that InDGRM sufficiently exploits
the user correlations which is helpful to characterize the Near-cold-start Users. Inter-user
preference similarity and intra-user preference diversity not only allow us to accurately rep-
resent the diverse interests of a user with the aid of group structure among users and items,
but also alleviates data sparsity by allowing a rarely visited item to propagate information
from other items of the same item group.

For demonstrating the efficiency of the proposed InDGRM method intuitively, we cal-
culate improvements between InDGRM and four baselines, as shown in Figure 3. Although
the percentage of relative improvements are small, small improvements can lead to sig-
nificant differences of recommendations in practice (Koren et al., 2010). Meanwhile, we
conduct paired t-test (confidence 0.95) between InDGRM and each baseline with five-fold
cross-validation results. As shown in Table 4, we list the p-value obtained by InDGRM vs.
four baselines on All Users view. The p-values in all cases are less than 10−5, which indi-
cates that our improvements are statistically significant at the 5% level. Similar statistical
test results can be found in Near-cold-start Users view, we omit it here. Therefore, based
on these observations, we can say InDGRM consistently outperforms the state-of-the-art
recommendation methods and significantly improves the recommendation performance.

6.2.2 Interpretability Performance

Following Abdollahi and Nasraoui (2016) and Abdollahi and Nasraoui (2017), two metrics,
Mean Explainable Precision (MEP) and Mean Explainable Recall (MER), are adopted to
evaluate the performance on explainability. Larger MEP and MER indicate better inter-
pretability performance. As shown in Table 5 and 6, InDGRM consistently performs better
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Figure 3: The relative improvements of InDGRM vs. four baselines in terms of recommen-
dation performance (Recall and NDCG) on All Users and Near-cold-start Users
views.
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Datasets Methods
Recall NDCG

@1 @5 @10 @50 @100 @1 @5 @10 @50 @100

ML 20M

vs.EMF 2.52E-08 7.12E-08 4.93E-06 7.66E-07 9.09E-06 6.34E-07 7.85E-05 1.41E-07 8.65E-06 5.23E-05
vs.Mult-VAE 4.88E-07 3.78E-07 8.24E-09 4.79E-07 5.29E-05 5.52E-06 6.19E-05 3.95E-05 3.83E-08 4.42E-08

vs.MacridVAE 1.38E-08 2.28E-07 3.57E-07 9.85E-07 4.99E-08 5.52E-06 6.19E-05 6.23E-06 3.53E-06 2.53E-08
vs.DGLGM 6.07E-08 5.18E-06 4.67E-07 6.44E-06 1.69E-06 3.52E-05 5.89E-07 9.85E-07 4.99E-05 5.52E-06

Netflix

vs.EMF 5.32E-06 5.75E-07 7.34E-09 4.79E-07 6.21E-07 3.58E-06 5.34E-06 1.55E-06 2.42E-08 3.52E-07
vs.Mult-VAE 8.07E-06 7.43E-08 3.66E-08 9.85E-07 4.99E-05 5.52E-06 6.19E-05 4.33E-08 2.22E-06 3.09E-08

vs.MacridVAE 8.08E-08 3.66E-08 5.23E-09 5.31E-05 3.91E-05 2.53E-07 9.12E-06 1.03E-08 1.39E-06 5.78E-07
vs.DGLGM 3.55E-07 3.53E-08 5.23E-07 3.33E-06 3.72E-06 3.31E-07 2.69E-05 2.55E-05 8.97E-06 6.45E-07

AliShop-7C

vs.EMF 6.95E-05 5.56E-07 3.22E-06 6.54E-06 3.33E-06 4.12E-07 2.88E-05 9.07E-06 8.51E-06 3.53E-06
vs.Mult-VAE 8.06E-05 5.24E-05 3.52E-06 2.72E-07 3.36E-06 3.53E-07 2.88E-09 2.79E-07 5.33E-05 2.78E-08

vs.MacridVAE 8.32E-06 2.90E-05 4.98E-05 5.33E-09 3.23E-07 3.11E-06 2.93E-05 6.63E-06 1.20E-06 4.66E-08
vs.DGLGM 4.19E-07 3.36E-06 5.81E-05 3.82E-06 2.94E-06 2.26E-06 6.11E-08 3.81E-07 1.92E-06 3.44E-07

Yelp

vs.EMF 9.54E-07 5.93E-05 4.42E-06 2.73E-06 9.49E-06 8.58E-08 3.14E-05 4.96E-07 6.12E-06 8.60E-06
vs.Mult-VAE 9.65E-06 7.56E-07 4.86E-07 2.83E-06 2.44E-05 2.55E-07 3.33E-08 3.73E-06 3.95E-06 8.68E-08

vs.MacridVAE 5.23E-06 4.22E-07 4.62E-08 4.71E-06 2.79E-06 3.58E-07 3.38E-06 3.34E-07 8.74E-06 3.53E-08
vs.DGLGM 3.65E-08 2.99E-06 3.52E-07 6.26E-08 2.27E-06 3.33E-06 6.36E-07 6.35E-07 3.47E-08 3.27E-05

Table 4: Statistical significance (p-value) obtained by InDGRM vs. four baselines on All
Users view.

Datasets Methods
MEP MER

@1 @5 @10 @50 @100 @1 @5 @10 @50 @100

ML 20M

EMF 0.1233 0.2524 0.5121 0.6422 0.7832 0.0023 0.0046 0.0066 0.0098 0.1135
Mult-VAE 0.1354 0.2653 0.5001 0.6555 0.7943 0.0037 0.0049 0.0062 0.0142 0.1256

MacridVAE 0.1398 0.2734 0.5242 0.6653 0.8033 0.0035 0.0057 0.0068 0.0189 0.1354
DGLGM 0.1453 0.2844 0.5232 0.6873 0.8142 0.0043 0.0068 0.0069 0.0197 0.1398
InDGRM 0.1512 0.2952 0.5234 0.6793 0.8233 0.0056 0.0075 0.0073 0.0202 0.1435

Netflix

EMF 0.2313 0.3766 0.6657 0.7322 0.7932 0.0023 0.0056 0.0093 0.0145 0.0342
Mult-VAE 0.2521 0.3872 0.6325 0.7593 0.8132 0.0028 0.0067 0.0089 0.0242 0.0433

MacridVAE 0.2633 0.3933 0.6732 0.7633 0.8234 0.0034 0.0075 0.0094 0.0342 0.0489
DGLGM 0.2692 0.3842 0.6643 0.7768 0.8293 0.0038 0.0079 0.0095 0.0387 0.0532
InDGRM 0.2753 0.3992 0.6801 0.7832 0.8432 0.0046 0.0073 0.0096 0.0424 0.0593

AliShop-7C

EMF 0.1452 0.3522 0.5433 0.6892 0.7832 0.0242 0.0456 0.0742 0.0953 0.1231
Mult-VAE 0.1569 0.3688 0.5401 0.6945 0.7985 0.0356 0.0543 0.0753 0.1032 0.1389

MacridVAE 0.1678 0.3764 0.5552 0.7065 0.8032 0.0384 0.0598 0.0843 0.1135 0.1456
DGLGM 0.1732 0.3734 0.5563 0.7121 0.8142 0.0396 0.0613 0.0855 0.1189 0.1498
InDGRM 0.1787 0.3875 0.5642 0.7232 0.8214 0.0406 0.0645 0.0913 0.1232 0.1534

Yelp

EMF 0.1358 0.2533 0.3923 0.4983 0.6732 0.0142 0.0235 0.0357 0.0642 0.0983
Mult-VAE 0.1542 0.2661 0.3778 0.5122 0.6893 0.0246 0.0342 0.0353 0.0714 0.1042

MacridVAE 0.1688 0.2785 0.3943 0.5235 0.6832 0.0346 0.0398 0.0358 0.0798 0.1098
DGLGM 0.1752 0.2549 0.3913 0.5212 0.6901 0.0389 0.0412 0.0358 0.0833 0.1123
InDGRM 0.1872 0.2911 0.4078 0.5378 0.6993 0.0477 0.0479 0.0361 0.0819 0.1242

Table 5: Comparing different methods in terms of explainability metrics (MEP and MER)
on All Users view.
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Datasets Methods
MEP MER

@1 @5 @10 @50 @100 @1 @5 @10 @50 @100

ML 20M

EMF 0.0544 0.1823 0.2152 0.4222 0.5433 0.0012 0.0024 0.0037 0.0065 0.0842
Mult-VAE 0.0636 1922 0.2251 0.4367 0.5546 0.0014 0.0027 0.0042 0.0072 0.0887

MacridVAE 0.0698 0.1976 0.2336 0.4403 0.5598 0.0018 0.0032 0.0046 0.0078 0.0938
DGLGM 0.0721 0.1989 0.2386 0.4451 0.5648 0.0021 0.0037 0.0051 0.0094 0.0984
InDGRM 0.0789 0.2032 0.2451 0.4526 0.5687 0.0026 0.0043 0.0054 0.0098 0.1032

Netflix

EMF 0.1124 0.1831 0.3326 0.4257 0.5452 0.0014 0.0024 0.0045 0.0112 0.0215
Mult-VAE 0.1255 0.1925 0.3453 0.4333 0.5544 0.0016 0.0027 0.0047 0.0124 0.0227

MacridVAE 0.1358 0.1993 0.3533 0.4428 0.5646 0.0019 0.0033 0.0049 0.0135 0.0245
DGLGM 0.1527 0.2043 0.3596 0.4489 0.5766 0.0023 0.0036 0.0051 0.0153 0.0263
InDGRM 0.1738 0.2176 0.3645 0.4573 0.5834 0.0026 0.0042 0.0056 0.0178 0.0276

AliShop-7C

EMF 0.0633 0.1443 0.2353 0.3411 0.5123 0.0133 0.0225 0.0412 0.0591 0.0716
Mult-VAE 0.0783 0.1325 0.2443 0.3537 0.5236 0.0147 0.0261 0.0451 0.0633 0.0821

MacridVAE 0.0856 0.1489 0.2495 0.3646 0.5312 0.0166 0.0276 0.0487 0.0684 0.0895
DGLGM 0.0945 0.1437 0.2575 0.3735 0.5463 0.0178 0.0296 0.0516 0.0742 0.0963
InDGRM 0.0987 0.1514 0.2651 0.3829 0.5535 0.0189 0.0314 0.0578 0.0793 0.1035

Yelp

EMF 0.0256 0.1336 0.1945 0.3144 0.4877 0.0064 0.0121 0.0215 0.0401 0.0634
Mult-VAE 0.0358 0.1453 0.2042 0.3228 0.4964 0.0121 0.0154 0.0226 0.0458 0.0712

MacridVAE 0.0411 0.1478 0.2148 0.3328 0.5024 0.0153 0.0168 0.0231 0.0549 0.0789
DGLGM 0.0436 0.1562 0.2235 0.3446 0.5120 0.0162 0.0185 0.0248 0.0637 0.0846
InDGRM 0.0458 0.1635 0.2358 0.3562 0.5258 0.0178 0.0197 0.0262 0.0691 0.0915

Table 6: Comparing different methods in terms of explainability metrics (MEP and MER)
on Near-cold-start Users view.

Dataset Methods
0-5 6-20 21-50 51-100 > 100

MEP MER MEP MER MEP MER MEP MER MEP MER

ML 20M
EMF 0.4578 0.0065 0.4656 0.0065 0.4756 0.0068 0.4941 0.0069 0.5153 0.0070

MacridVAE 0.4615 0.0066 0.4734 0.0068 0.4861 0.0069 0.4904 0.0069 0.5211 0.0070
InDGRM 0.4745 0.0068 0.4989 0.0069 0.4868 0.0071 0.4922 0.0072 0.5222 0.0071

Netflix
EMF 0.5812 0.0088 0.6479 0.0090 0.6621 0.0093 0.6656 0.0095 0.6653 0.0096

MacridVAE 0.6033 0.0084 0.6472 0.0086 0.6615 0.0089 0.6714 0.0090 0.6731 0.0097
InDGRM 0.6232 0.0089 0.6574 0.0092 0.6734 0.0095 0.6802 0.0096 0.6812 0.0098

AliShop-7C
EMF 0.5053 0.0698 0.5315 0.0713 0.5401 0.0739 0.5423 0.0742 0.5432 0.0752

MacridVAE 0.5231 0.0783 0.5351 0.0803 0.5415 0.0822 0.5514 0.0832 0.5531 0.0847
InDGRM 0.5389 0.0834 0.5571 0.0856 0.5634 0.0884 0.5643 0.0898 0.5652 0.0911

Yelp
EMF 0.3521 0.0357 0.3751 0.0363 0.3901 0.0369 0.3925 0.0371 0.3911 0.0374

MacridVAE 0.3656 0.0353 0.3765 0.0359 0.3901 0.0365 0.3914 0.0368 0.3931 0.0373
InDGRM 0.3733 0.0362 0.3856 0.0371 0.3953 0.0376 0.3998 0.0379 0.3998 0.0384

Table 7: Comparisons of explainable recommendation methods (EMF, MacriVAE and In-
DGRM) on all items with different interaction degrees in terms of MEP@10 and
MER@10.
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Figure 4: The relative improvements of InDGRM vs. four baselines in terms of inter-
pretability (MEP and MER) on All Users and Near-cold-start Users view.
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than baselines in terms of both All Users view and Near-cold-start Users view. These re-
sults demonstrate that the proposed model has ability to improve the interpretability of
recommendation system. At least, the recommended list includes much more explainable
recommended items for each user. Note that whether a recommended item is explainable or
not depends on whether it is also interacted by similar users. The good performance ben-
efits from two points. Firstly, InDGRM sufficiently determines the user-cluster structure,
which is helpful to determine similar users according to their similar preference. Secondly,
InDGRM bridges the semantic gap between the latent factors and user-item interaction
behavior groups, which is able to disentangle the user latent representation and further
improve the model’s interpretability. We also report the improvements between InDGRM
between four baselines in terms of interpretability metrics, as shown in Figure 4. We can
see that the improvements on MEP are more obvious, that is, InDGRM can recall more
interpretable items than the baselines. The possible reason is that prototype learning in
InDGRM can effectively mine the relationship between items and achieve better preference
modeling with the aid of sparse mapping mechanism.

To further demonstrate the interpretability, we split items into five groups (0-5, 6-20,
21-50, 51-100, >100) according to their number of interactions from all users in training
data. Three interpretable methods (EMF, MacridVAE and InDGRM) are used for com-
parison. The interpretability performance on each group is shown in Table 7 (in terms of
MEP and MER). The proposed InDGRM and baselines have the similar trends with respect
to different groups, i.e., MEP and MER becomes better and better with the increasing of
interactions, which indicates that item interaction frequency plays an important role in
interpretability performance. To be exciting, the proposed InDGRM significantly outper-
forms the baselines for all groups. This result further demonstrates that InDGRM has the
ability to effectively handle data with various items, especially for Near-cold-start Items.

6.2.3 Ablation Test

The proposed InDGRM can be regraded as an improved deep generative model equipped
with three modules, mixture of Gaussian prior for latent user representation, item group
mining and factor-to-group sparse mapping. In this ablation experiment, we try to demon-
strate the effect of each module. Two simplified versions of InDGRM (denoted as InDGRM-
a and InDGRM-b) are mainly constructed. InDGRM-a considers item group mining and
factor-to-group sparse mapping, and removes the mixture of Gaussian prior. InDGRM-b
only considers mixture of Gaussian prior.

Table 8 lists the results (including recommendation performance and interpretability)
on Mult-VAE, InDGRM-a, InDGRM-b and InDGRM in terms of All Users view and Near-
cold-start Users view. Here Mult-VAE is used as a basic baseline, which is deep generative
model but does not consider three modules (Kingma and Welling, 2013). InDGRM-a and
InDGRM-b are superior to Mult-VAE, which show the effectiveness of the corresponding
proposed modules. InDGRM-b is superior to InDGRM-a in terms of interpretability eval-
uation metrics (MEP and MER). The possible reason is that mixture of Gaussian prior is
able to grouping users with similar preference. Like the neighborhood-based interpretation,
this scheme is helpful to provide clues for interpretation. As expected, InDGRM outper-
forms Mult-VAE, InDGRM-a and InDGRM-b. This confirms that modeling both inter-user
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Datasets Methods
All Users Near-cold-start Users

Recall@10 NDCG@10 MEP@10 MER@10 Recall@10 NDCG@10 MEP@10 MER@10

ML 20M

Mult-VAE 0.3320 0.3185 0.5001 0.0062 0.2390 0.1976 0.2251 0.0042
InDGRM-a 0.3368 0.3365 0.5194 0.0070 0.2415 0.1996 0.2402 0.0048
InDGRM-b 0.3397 0.3396 0.5203 0.0071 0.2433 0.2004 0.2413 0.0050
InDGRM 0.3458 0.3426 0.5234 0.0073 0.2498 0.2033 0.2451 0.0054

Netflix

Mult-VAE 0.3208 0.2449 0.6325 0.0089 0.1945 0.1938 0.3453 0.0047
InDGRM-a 0.3453 0.2623 0.6725 0.0092 0.2078 0.2103 0.3597 0.0052
InDGRM-b 0.3496 0.2649 0.6743 0.0093 0.2093 0.2112 0.3605 0.0053
InDGRM 0.3585 0.2695 0.6801 0.0096 0.2136 0.2144 0.3645 0.0056

AliShop-7C

Mult-VAE 0.1343 0.1632 0.5401 0.0753 0.0952 0.1023 0.2443 0.0451
InDGRM-a 0.1573 0.1804 0.5591 0.8985 0.1095 0.1183 0.1603 0.0521
InDGRM-b 0.1589 0.1821 0.5604 0.0900 0.1101 0.1191 0.2617 0.0543
InDGRM 0.1622 0.1853 0.5642 0.0913 0.1126 0.1214 0.2651 0.0578

Yelp

Mult-VAE 0.5322 0.7328 0.3778 0.0353 0.0981 0.1352 0.2042 0.0226
InDGRM-a 0.5421 0.7356 0.3984 0.0359 0.1589 0.1600 0.2287 0.0245
InDGRM-b 0.5443 0.7390 0.4025 0.0360 0.1611 0.1621 0.2307 0.0251
InDGRM 0.5496 0.7542 0.4078 0.0361 0.1289 0.1672 0.2358 0.0262

Table 8: Ablation analysis of InDGRM in terms of different metrics.

Datasets Methods
All Users Near-cold-start Users

Recall@10 NDCG@10 MEP@10 MER@10 Recall@10 NDCG@10 MEP@10 MER@10

ML 20M
InDGRM-p 0.3498 0.3545 0.5361 0.0077 0.2590 0.2136 0.2563 0.0057
InDGRM 0.3458 0.3426 0.5234 0.0073 0.2498 0.2033 0.2451 0.0054

Netflix
InDGRM-p 0.3658 0.2789 0.6942 0.0098 0.2251 0.2261 0.3763 0.0059
InDGRM 0.3585 0.2695 0.6801 0.0096 0.2136 0.2144 0.3645 0.0056

AliShop-7C
InDGRM-p 0.1733 0.1894 0.5731 0.0963 0.1262 0.1331 0.2721 0.0615
InDGRM 0.1622 0.1853 0.5642 0.0913 0.1126 0.1214 0.2651 0.0578

Yelp
InDGRM-p 0.5562 0.5631 0.4151 0.0363 0.1341 0.1721 0.2425 0.0273
InDGRM 0.5496 0.7542 0.4078 0.0361 0.1289 0.1672 0.2358 0.0262

Table 9: Comparison between InDGRM and InDGRM-p in terms of different metrics.

preference similarity and intra-user preference diversity has ability to significantly improve
model performance. Furthermore, InDGRM with prototype enhancing by considering priv-
ilege information (InDGRM-p) is also investigated. Table 9 lists the comparison results
between InDGRM-p and InDGRM. We can see that prototype enhancing with privilege
information is helpful for better preference modeling and further improving performance in
terms of both recommendation accuracy and interpretability.

Additionally, the number of mixture components K is a key parameter in the proposed
InDGRM, which affects the ability of capturing the inter-user preference similarity. Thus,
we conduct experiment to evaluate the effect of K on the recommendation performance of
InDGRM. Among it, K is selected from {1, 2, 4, 6, 8, 10, 15, 20, 25, 30}. Figure 5 shows
the recommendation performance (in terms of Recall@10 and NDCG@10) by varying K.
It can be seen that the performance is improved with the increasing of K. This is due
to the fact that different mixture components may capture different user preferences and
further improve recommendation performance. After reaching the optimal value K (The
optimal values are 6, 8, 4 and 15 on ML 20M, Netflix, AliShop-7C and Yelp, respectively),
the performance decreases when K further increases. This phenomenon implies that large
K may overfit the training data. Meanwhile, an interesting observation is that the optimal
K is larger on the large dataset than that on the small dataset. This is reasonable because
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Figure 5: Effect of K (the number of mixture components (i.e., user clusters)) on InDGRM.

large dataset contains the larger number of users and items, which is much more complicated
and requires more components to capture their characteristics.

In Section 4.2, the cosine similarity, instead of inner product similarity, is used to cal-
culate the correlations between each pair of item and propertype. In this experiment, a
new model with inner product similarity is trained to compare that with cosine similarity.
Figure 6 shows the learned item groups with two models on Ml 20M and AliShop. It can be
seen that, inner product promotes most items belonging to one prototype (see Figure 6 (a)
and (c)). As expected, each prototype output by cosine-based model can contain a certain
number of items (see Figure 6 (b) and (d)). This finding confirms our claim that selecting
a proper metric, such as cosine similarity, is important for model training.

6.2.4 Observed-level Disentanglement Analysis

To capture the user-cluster structure reflecting inter-user preference similarity, the mixture
prior is introduced to model user’s preference so that users with similar tastes can be
assigned to the same group. To confirm this, taking ML 20M dataset as an example, we try
to investigate the corresponding semantical information of the mixture components with
the aid of side information. In ML 20M, each movie is marked by one or more genres, and
all movies belong to 18 genres, including ‘Action’, ‘Adventure’, ‘Animation’, ‘Children’,
‘Comedy ’, ‘Crime’, ‘Documentary ’, ‘Drama’, ‘Fantasy ’, ‘Film-Noir ’, ‘Horror ’, ‘Musical ’,
‘Mystery ’, ‘Romance’, ‘Sci-Fi ’, ‘Thriller ’, ‘War ’ and ‘Western’.

For the k-th user cluster obtained by InDGRM, let M (k) be the number of items related
by the users belonging to this cluster, where the number of items belonging to the q-th

genre is denoted as M
(k)
q and

∑Nl
q=1M

(k)
q = M (k) (Nl = 18 (the number of genres) in ML

20M ). {M (k)
q /M (k)}Nlq=1 indicates the item proportion along different genres for k-th user
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Figure 6: The number of item in each item group obtained via InDGRM with cosine simi-
larity and inner product similarity.
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Figure 7: The item proportion with genre in each user clusters obtained by InDGRM on
ML 20M.

Dataset K∗ d(k) in each component
ML 20M 6 {159, 126, 147, 152, 144, 156}
Netflix 8 {144, 78, 134, 153, 126, 159, 145, 114}

AliShop-7C 4 {136, 184, 135, 90}
Yelp 15 {137, 126, 154, 142, 137, 165, 121, 95, 78, 115, 125, 147, 89, 120, 156}

Table 10: The optimal latent dimensionality dk in each component determined by InDGRM
on four datasets. K∗ is the optimal number of mixture components. dk is the
optimal dimensionality in the k-th component.

cluster. The item proportion with specific genre is shown for six clusters in Figure 7. It
can be seen that most items (> 70%) in one component are always from the same genre,
such as {Drama}, {Comedy}, {Action}, {Romance}, {Thriller}, {Animation, Children’s}
for user cluster 1 to 6. This result indicates each user cluster definitely captures one main
user preference. Thus, we can say InDGRM has the ability to determine the user-cluster
structure and achieve observed-level disentanglement on users.

Thanks for ARD technique with thresh, the proposed InDGRM model can adaptively
determine the optimal latent dimensionality for each mixture component. Table 10 demon-
strates the optimal latent space size for zi in each user cluster on different datasets. It
can be seen that the latent dimensionalities have different variances from different datasets.
For instance, the minimal and maximal sizes are {126, 159}, {78, 159}, {90, 184} and {78,
165} on ML 20M, Netflix, AliShop-7C and Yelp, respectively. An interesting thing is that
the optimal size is almost proportional to the group density. This result confirms that user
clusters with few interactions should be represented in a lower dimensional space, other be
of higher dimensional space, which is consistent with the conclusion given in Li et al. (2017)
and Liu et al. (2019a).
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Datasets ML 20M Netflix AliShop-7C Yelp

Metrics Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

InDGRM(d=10) 0.3334 0.3323 0.3401 0.2489 0.1537 0.1822 0.5403 0.7343
InDGRM(d=20) 0.3338 0.3357 0.3419 0.2504 0.1558 0.1824 0.5405 0.7369
InDGRM(d=50) 0.3314 0.3283 0.3405 0.2545 0.1543 0.1784 0.5393 0.7354
InDGRM(d=80) 0.3321 0.3314 0.3414 0.2506 0.1545 0.1805 0.5398 0.7365
InDGRM(d=90) 0.3345 0.3355 0.3422 0.2555 0.1546 0.1815 0.5421 0.7388
InDGRM(d=100) 0.3326 0.3311 0.3431 0.2553 0.1589 0.1835 0.5431 0.7391
InDGRM(d=110) 0.3354 0.3326 0.3457 0.2589 0.1598 0.1846 0.5415 0.7387
InDGRM(d=120) 0.3389 0.3331 0.3478 0.2656 0.1577 0.1836 0.5396 0.7385
InDGRM(d=130) 0.3413 0.3358 0.3532 0.2675 0.1568 0.1827 0.5382 0.7378
InDGRM(d=140) 0.3424 0.3379 0.3492 0.2631 0.1555 0.1815 0.5390 0.7381
InDGRM(d=150) 0.3373 0.3369 0.3455 0.2575 0.1532 0.1789 0.5395 0.7383
InDGRM(d=160) 0.3367 0.3358 0.3432 0.2557 0.1576 0.1825 0.5374 0.7376
InDGRM(d=170) 0.3354 0.3328 0.3446 0.2565 0.1554 0.1813 0.5353 0.7368
InDGRM(d=180) 0.3321 0.3310 0.3421 0.2545 0.1533 0.1804 0.5365 0.7372
InDGRM(d=190) 0.3348 0.3356 0.3468 0.2595 0.1565 0.1819 0.5345 0.7369
InDGRM(d=200) 0.3346 0.3357 0.3446 0.2564 0.1542 0.1816 0.5327 0.7361

DGLGM 0.3428 0.3391 0.3513 0.2669 0.1585 0.1792 0.5458 0.7404

InDGRM 0.3458 0.3426 0.3585 0.2695 0.1622 0.1853 0.5496 0.7542

Table 11: Recommendation performance of InDGRM against InDGRM with fixed latent
dimensionality for zi in terms of Recall@10 and NDCG@10.

Additionally, we compare the recommendation performance of InDGRM against InD-
GRM with fixed latent dimensionalities in all components {10, 20, 50, 80, 90, 100, 110, 120,
130, 140, 150, 160, 170, 180, 190, 200}. The results are list in Table 11. As we can see, the
performance of InDGRM with fixed latent dimensionality is unstable when the dimension-
ality increases from 10 to 200. The competitive performance can be obtained by InDGRM
with fixed dimensions 140, 130, 110 and 100 on ML 20M, Netflix, AliShop-7C and Yelp,
respectively. In the case of fixed dimensions, the optimal value is better than DGLGM, but
still worse than InDGRM. The reason is that mapping users with preference diversity into a
fixed latent space size cannot model all users well, so that some users are either under-fitted
or over-fitted. Furthermore, InDGRM is superior to DGLGM which adopts ARD technique
as well, the main reason is that item group structure can model user preference in a more
fine-grained manner.

6.2.5 Disentangled User Representations Analysis

a). Factor-to-group Mapping

By telling us the item groups “responsible” for a given prediction, factor-to-group map-
ping matrices reveal insights about how models rely on and extrapolate from the user be-
havior. In this subsection, we focus on show how InDGRM can understand model behavior
with the aid of factor-to-group mapping mechanism.

Group structure among items can effectively reflect the intra-user preference diversity.
Firstly, we investigate the properties of the learned factor-to-group mapping matrix by

splitting its values (o
(g)
i,l ) into ten groups at interval of 0.1 according. Figure 8 shows the

proportion of mapping value in difference intervals. Obviously, they approximately follow
Laplace-like distribution. In other words, most values belong to first three ranges, which
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Figure 8: Factor-to-group mapping value learned by InDGRM.
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Figure 9: Demonstrating the learned factor-to-group mapping matrices O>i related to 2
sampled users on ML 20M and AliShop-7C.
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indicates that there is few relations between a large number of dimensions and item groups.
This result is obtained by penalizing the interactions via group lasso, which has ability to
encourage each factor to capture the distinct modes of variation, so that the correlations
among factors of zi can be minimized as much as possible. Therefore, InDGRM can achieve
the disentanglement of latent item representations.

Furthermore, we plot the learned factor-to-group matrix Oi for two sampled users in
ML 20M (Figure 9(a) - (b)) and AliShop-7C (Figure 9(c) - (d)). InDGRM successfully
disentangles the dimensions of zi because each dimension only corresponds to one group
with higher probability. For instance, from Figure 9(a), we know that sampled user 1 likes
movies with genre ‘Action’, ‘Adventure’, ‘Comedy’, ‘Fantasy’, ‘Musical’, and ‘Romance’.
Sampled user 2 in Figure 9(b) tends to watch movies about ‘Action’, ‘Adventure’, ‘Crime’,
‘Horror’ genres, which indicates this user’s taste is crime and violence. Category ‘Action’ is
liked by most of users. The reason is that lots of movies contain genre ‘Action’. Furthermore,
we can see some dimensions are associated with multiple genres since some genres are usually
co-existed, e.g., an ‘Action’ movie is usually an ‘Adventure’ movie.

AliShop-7C contains goods with 7 categories, including ‘Computer accessories & hard-
ware’, ‘Office supplies’, ‘Food’, ‘Household goods’, ‘Mobile phone accessories’, ‘Electrical
appliances’, and ‘Bag’. Figure 9(c) -(d) show two sample users with diverse interests on
AliShop-7C. For example, sample user 1 tends to buy ‘Computer accessories & hardware’,
‘Office supplies’ and ‘Household goods’, while sample user 2 like to buy ‘Food’, ‘Household
goods’ and ‘Bag’. Like ML 20M, each dimensions is related to its own group. However,
unlike in ML 20M (where each dimension is related to one group), in AliShop-7C each
group is usually associated with more than one dimensions. The main reason is that cate-
gory information in AliShop-7C is high-level primary category and contains more categories
that can be subdivided. For example, ‘Food’ includes sea food, fruit, meat and etc. It can
be seen that the factor-to-group mapping matrix is able to demonstrate user’s preference
explicitly. This interpretable result benefits from the factor-to-group sparse mapping so
that each latent factor is associated with distinct mode.

b). Disentangled Representation

Inspired by Kim and Mnih (2018), the disentanglement ability of the latent represen-
tations can be quantitatively assessed. Specifically, by fixing a particular latent feature u
(1 ≤ u ≤ d), we can generate the user-item interaction information (xi) with randomly
varying other features. Then the empirical variance of each feature is computed according
to the normalized generated data. The feature with lowest variance and target feature u will
be taken as two samples and fed into a majority-vote classifier to check the disentanglement
scores of u. The evaluation metric Independence (Ma et al., 2019) is adopted to investigate
the relationship (independence) between any pair of latent features, which is defined as

Independence = 1− 2

d(d− 1)

∑
1≤i<j≤d

|corr(i, j)|.

Here d is the number of latent features. corr(i, j) is the correlation between dimension i
and j, which is computed via cosine similarity.

Table 12 lists the disentanglement score (mean ± one standard deviation) and inde-
pendence score on all latent features for each dataset. It can be seen that InDGRM is
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Metrics Datasets Mult-VAE DGLGM MacridVAE InDGRM-a InDGRM-b InDGRM

Disentanglement

ML 20M 0.4122±0.005 0.4132±0.005 0.4218±0.005 0.4253±0.005 0.4144±0.005 0.4346±0.005
Netflix 0.4628±0.005 0.4611±0.006 0.4654±0.006 0.4674±0.005 0.4608±0.005 0.4844±0.007

AliShop-7C 0.3521±0.005 0.3513±0.004 0.3589±0.005 0.3664±0.005 0.3532±0.005 0.3732±0.006
Yelp 0.8341±0.005 0.8315±0.006 0.8536±0.005 0.8594±0.005 0.8321±0.005 0.8732±0.006

Independence

ML 20M 0.8242 0.8233 0.8344 0.8854 0.8232 0.9056
Netflix 0.5322 0.5325 0.5457 0.5648 0.5344 0.5677

AliShop-7C 0.6042 0.6115 0.6235 0.6389 0.6105 0.6437
Yelp 0.7402 0.7531 0.7783 0.7843 0.7520 0.7931

Table 12: Disentanglement and independence evaluation on learned user representations.

competitive to Mult-VAE, DGLGM and MacridVAE in disentangled and independent abil-
ity. To be exciting, InDGRM and InDGRM-a obviously improve the independence among
latent features (e.g., improvement gain is larger than 7% on ML 20M ). The main reason is
that each latent factor is associated with only few item groups via the column-wise factor-to-
group sparse mapping matrix, which is able to identify disentangled representations. These
results further confirm that our approach is able to discover and disentangle the latent
structure underlying the user behavior in an interpretable way.

6.2.6 Disentangled Item Representations Analysis

In this experiment, Movielens Tag Genome (Vig et al., 2012) and ML 20M dataset are used
to evaluate the disentanglement of item representations. In Movielens Tag Genome, each
“genome” describes a given movie via 1128 tags with relevance scores between [0, 1]. After
removing the non-informative tags (e.g., ‘good’, ‘bad’) and merging the similar tags (their
relevance scores are combined via a weighted mean), each movie is represented by 450 tags.

Here, we aim to evaluate the interpretability of the dimensions in item representation,
thus proposing new items to create. Similar to the previous disentanglement experiment
on users, the target dimension is gradually altered to demonstrate the disentanglement
of item representations. Here we selected four movies with similar tags, and listed their
representations in Figure 10. Among it, Figure 10(a)-(d) list four generated movies (GM-1
to GM-4) related to action, and Figure (e)-(h) are about movies about dramas (GM-5 to
GM-8). Although these generated movies (by modifying the value of a particular dimension)
belong to the same category, they all have their own characteristics. Specificially, GM-1 is
an action movie with a tense plot and violence; GM-2 is an adventure action comedy with
superhero; GM-3 is an action thriller with a tense plot and satire; GM-4 is an action sci-fi
movie with an emphasis on the future and technology; GM-5 is a sentimental drama with
mentor and love; GM-6 is a sentimental drama with intense plot and dark humor; GM-7
is a sentimental drama with crime and war; GM-8 a realistic and narrated drama with
great ending and friendship. This experiment not only evaluates the disentangled ability of
learned item representations, but also determines the important features. For example, the
tags shared by the generated movies (”sentimental”,“mentor”, and “story”) suggest that
these movies have common properties, thus it is necessary to perform item grouping.

Furthermore, we demonstrate the good’s images generated by gradually altering the
value of target dimension on AliShop-7C. Since we can not guarantee the generated items
exist in the dataset, only the generated items similar to the existed items are selected.
Here, inner-product is used to measure the similarity between two items. For convenient
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Figure 10: Demonstrating top 20 tags for the generated movie tag genomes by varying the
value of a target dimension.
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(a) The color of fruit: Yellow −→ Green −→ Red

(b) The color of bag: Pink −→ Brown −→ Black

(c) The type of flesh: Prawn −→ Crab −→ Meat

Figure 11: Disentangled representations with human-understandable factor. Starting from
an item representation, we gradually alter the value of a target dimension, and
list the items that have representations similar to the altered representations.

demonstration, three representative dimensions with human-understandable semantics are
used, the color of fruit, the color of bag and the type of flesh. As shown in Figure 11,
the target dimensions control the specific aspects, which has ability to provide fine-grained
interpretability on the recommendation lists. However, we note that not all dimensions are
human-understandable, as shown in Figure 12. Fortunately, the generated items belong to
the same category, i.e., fruit, bag and flesh, which demonstrates a high-level disentangle-
ment.

6.2.7 Generalization ability and convergence analysis

In order to evaluate the generalization ability of the proposed model, we choose different
training sets with different sizes {20%, 40%, 60%, 80%} and fix the testing set. We guarantee
that small size training set is included in large size training set. Since Mult-VAE and aWAE
obtain competitive performance among all baselines, the following comparisons and analysis
focus on Mult-VAE, MacridVAE, DGLGM and InDGRM. Figure 13 shows the comparison
results in terms of NDCG@10 on different training sizes for four datasets. Obviously,
the recommendation performance becomes better and better with the increasing of training
data. As expected, InDGRM is superior to baselines in all cases. Note that Yelp is extremely
sparse, Figure 13(d) shows that InDGRM significantly outperforms Mult-VAE, especially
for small size training sets (20%, 40%). This result demonstrates that InDGRM has a strong
generalization ability.

Furthermore, we investigate the convergence property of the proposed local variational
optimization (LVO) method. As mentioned before, the proposed LVO algorithm has ability
to theoretically obtain tighter upper bound for InDGRM model than the original stochastic
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(a) Fruit

(b) Bag

(c) Flesh

Figure 12: Entangled representations with human-misunderstood factor. Starting from an
item representation, we gradually alter the value of a target dimension, and list
the items that have representations similar to the altered representations.
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Figure 13: NDCG@10 comparison of Mult-VAE, MacriVAE, DGLGM, and InDGRM in
terms of different training sets.
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Metrics Methods ML 20M Netflix AliShop-7C Yelp

InDGRM-SGD
Recall@10 0.3438 0.3536 0.1601 0.5471
NDCG@10 0.3403 0.2679 0.1821 0.7498

InDGRM-LVO
Recall@10 0.3458 0.3589 0.1622 0.5496
NDCG@10 0.3426 0.2695 0.1853 0.7542

Table 13: Comparisons of InDGRM-SGD and InDGRM-LVO.
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Figure 14: Comparison of reconstruction loss versus epochs between InDGRM-SGD and
InDGRM-LVO.

gradient descent (SGD) optimization method (see Eq. (17)). The objective loss (reflecting
the upper bound) on training set is visualized as a function of epochs in Figure 14. As
expected, LVO is much faster to converge and obtain tighter upper bound for our proposed
model InDGRM. Additionally, the recommendation performance obtained by InDGRM
with SGD and LVO are listed in Table 13. The results indicate that LVO can estimate
more precise model parameters and further improve the recommendation performance.

7. Conclusion and Future Work

In this paper, we propose an interpretable deep generative method (InDGRM) for rec-
ommendation by modeling both inter-user preference similarity and intra-user preference
diversity to achieve disentanglement from both observed-level and latent-level. A mixture
distribution is introduced to model the latent representation to capture the user correlations
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the aid of non-parametric Bayesian prior. Meanwhile, the items are grouped via a prototype
learning technique. With the aid of user grouping and item grouping, the whole deep gen-
erative model leads to a meaningful factor-to-group interaction and effectively disentangle
the latent factors. The experiments have shown that InDGRM has the ability to output the
high-quality recommended items and provide interpretable results. It will be an interesting
topic to extend this interpretable model with the aid of multi-resource recommendation
data, such as social relations among users, item contents, user profiles and etc.
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