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Abstract
Spiking neural networks (SNNs) have attracted much attention due to their great potential for
modeling time-dependent signals. The performance of SNNs depends not only on picking an
apposite architecture and searching optimal connection weights as well as conventional deep neural
networks, but also on the careful tuning of many hyper-parameters within fundamental spiking
neural models. However, so far, there has been less systematic work on analyzing SNNs’ dynamical
characteristics, especially ones relative to these internal hyper-parameters, which leads to whether
SNNs are adequate for modeling actual data relies on fortune. In this work, we provide a theoretical
framework for investigating spiking neural models from the perspective of dynamical systems. As a
result, we point out that the LIF model with control rate hyper-parameters is a bifurcation dynamical
system. This point explains why the performance of SNNs is so sensitive to the setting of control rate
hyper-parameters, leading to a recommendation that diverse and adaptive eigenvalues are beneficial
to improve the performance of SNNs. Inspired by this insight, we develop the Bifurcation Spiking
Neural Network (BSNN) with supervised implementation, and theoretically show that BSNN is an
adaptive dynamical system. Experiments validate the effectiveness of BSNN on several benchmark
data sets, showing that BSNN achieves superior performance to existing SNNs and is robust to the
setting of control rates.
Keywords: Spiking Neural Network, Leaky Integrate-and-Fire model, Control Rates, Eigenvalues,
Bifurcation Dynamical System

1. Introduction

Spiking neural networks (SNNs) take into account the time of spike firing rather than simply
relying on the accumulated signal strength in conventional neural networks, and thus offering the
possibility for modeling time-dependent data (Shimokawa et al., 1999; VanRullen et al., 2005). The
fundamental spiking neural model is usually formulated as a first-order parabolic equation with many
biologically realistic (i.e., internal) hyper-parameters, e.g., the membrane resistance and control rate
hyper-parameters in Leaky Integrate-and-Fire (LIF) model (Burkitt, 2006a,b) and the membrane
capacitance hyper-parameter in Hodgkin-Huxley (HH) model (Gerstner and Kistler, 2002). Thus,
the performance of SNNs depends not only on determining the neural network architecture and
training connection weights as well as conventional deep neural networks but also on the careful
tuning of these internal hyper-parameters. Existing SNNs often follow the bio-plausible knowledge
in neuroscience to set these internal hyper-parameters and then make minor a tuning of some hyper-
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parameters (Hohn and Burkitt, 2001; Carlson et al., 2014). Usually, the traditional manners look
clumsy and have unrobust performance with large computation due to the lack of systematic analysis
on designating which hyper-parameters are sensitive and guiding how to tune them.

This work investigates the dynamical properties of the LIF-modeling SNNs, especially the
influence of hyper-parameters on the model dynamics. As a result, we declare that the LIF model is
a bifurcation dynamical system, which means that its topology depends sensitively on the control
rate hyper-parameters. This result sheds three significant insights: (1) The performance of SNNs
is sensitive to the setting of control rates, which is consistent with the facts. (2) It is necessary to
enable diverse and learnable control rates, corresponding to the eigenvalues of bifurcation dynamical
systems, for achieving adaptive systems. This claim argues the conventional manners that the control
rates are neatly preset as a negative fixed value. (3) The role of control rates cannot be replaced by
learnable connection parameters and other hyper-parameters.

However, training control rates is a very tricky challenge. Since control rates and connection
weights are entangled during the training process, the approaches (Hunter et al., 2012; Lorenzo et al.,
2017) of turning hyper-parameters in conventional neural networks cannot be directly used to solve
this issue. An alternative way is to sample the control rates from a certain pre-defined distribution
and find the optimal ones by alternating optimization. Nevertheless, this method usually succeeds on
an apposite distribution and larger computation and storage.

To tackle the challenges above and improve the performance of SNNs, we propose the Bifurcation
Spiking Neural Network (BSNN). By exploiting the bifurcation theory, we convert the issue of
learning a group of adaptive control rates into a new problem of learning a collection of apposite
eigenvalues. So BSNN overcomes the obstacle that controls rates interact with connection weights,
leading to a robust control rate setting and achieves a laudable performance with considerably less
computation and storage than the alternating optimization approaches. The experiments conducted
on four benchmark data sets demonstrate the effectiveness of BSNN, showing that its performance
surpasses existing SNNs and is robust to the setting of control rates.

Our main contributions are summarized as follows:

• We provide a theoretical framework for studying the dynamical properties of spiking neural
models, e.g., we show the LIF model is a bifurcation dynamical system in Section 4.

• We point out the fact that the control rate hyper-parameter, rather than other ones, is sensitive
to the performance of SNNs with LIF neurons.

• We present the BSNN with supervised implementation, and then theoretically show that the
dynamical system led by BSNN has adaptive eigenvalues, leaving a robust setting of the
control rate hyper-parameters.

• We perform numerical studies on several data sets to demonstrate the conclusions above and
advantages of our proposed models.

The rest of this paper is organized as follows. Section 2 reviews the related works. Section 3
introduces some preliminary knowledge about spiking neural models. Section 4 establishes a
theoretical analysis for SNNs based on dynamical system theory and provides the alternating
optimization approaches for achieving adaptive systems. Section 5 formally presents the BSNN
with theoretical analysis and concrete implementation. The experiments are conducted in Section 6.
Finally, Section 7 concludes our work with prospects.
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2. Related Works

The last two decades have witnessed the increasing prominence of SNNs in machine learning and ar-
tificial intelligence research, leading to a proliferation of efficient software packages for their training
and deployment. Existing methods for training SNNs can be roughly divided into three categories.
The first category leverages the training procedure by exploring a simple continuous-valued artificial
neural network and converting this deep network to accurate spiking equivalents (O’Connor et al.,
2013; Rueckauer et al., 2017). The second category configures an SNN on discontinuous spike
activities. For example, SpikeProp and its varients transfer the information in the timing of a single
spike (Bohte et al., 2002; McKennoch et al., 2006). However, SpikeProps are limited to single-spike
learning, which usually cause a large number of neurons to be in a shutdown state. Recently, Jin
et al. (2018) account for the temporal contribution of the given pre-synaptic spike train to the firings
of the post-synaptic neuron. The third category attempts to train SNNs in a temporal manner. For
example, Huh and Sejnowski (2018) present a temporal gradient descent method with a differentiable
formulation of spiking dynamics. Shrestha and Orchard (2018) incorporate the temporal dependency
between spikes, and thus the back-propagated error at a given time step can be written as a integration
of earlier spike inputs.

As mentioned above, the performance of SNNs depends not only on determining the neural
network architecture and training connection weights as well as conventional deep neural networks
but also on the careful tuning of these internal hyper-parameters. Existing SNNs, such as Hohn and
Burkitt (2001), Jin et al. (2018), and Zhang and Li (2019), often follow the bio-plausible knowledge
in neuroscience to set these internal hyper-parameters and then make a fine-tuning of all hyper-
parameters. Carlson et al. (2014) employed evolutionary algorithms to optimize the hyper-parameters
within spiking neural models. Kulkarni and Rajendran (2018) described several hyper-parameter
tuning experiments achieved on the MNIST data set. However, there still lacks apposite theoretical
analysis for guiding whether all hyper-parameters are important, which hyper-parameter is sensitive,
and how to tune them. Our work, thanks to dynamical system theory, provides a theoretical framework
for investigating spiking neural models. We point out the dynamical properties of SNNs with different
neuron models and give positive suggestions on the setting of sensitive hyper-parameters.

Zero-order alternating optimization has been widely discussed in neural-network-related re-
searches. These approaches can roughly be divided into two categories: (1) Optimizing the archi-
tectures of neural networks. For example, Lorenzo et al. (2017) use particle swarm optimization to
select the architectures of DNNs. (2) Optimizing internal hyper-parameters. Bergstra and Bengio
(2012) provide a classical way that randomly samples hyper-parameters from a prior distribution
and finds the best one. However, due to the limitation of observation information, the zero-order
alternating optimization approaches intrinsically require large computation and storage.

3. Spiking Neural Model

In this work, we focus more on the LIF model, not only due to the ease with which the LIF model
can be analyzed and simulated but also because this model is the most widely used in the intersection
of SNN and Artificial Intelligence. Here, we review a general form of the LIF model as follows:

τm
du

dt
= −u+R f(I(t)), (1)

3



ZHANG, ZHANG, AND ZHOU

where I(t) = (I1(t), . . . , IM (t))> denotes theM -dimensional input signals, u(t) indicates the mem-
brane potential of the concerned neuron at time t, τm and R are positive-valued hyper-parameters
with respect to membrane time and membrane resistance, respectively, and f represents the aggre-
gation function, usually expressed in a linear formation, f(I(t)) =

∑M
j=1WjIj(t), in which Wj

denotes the learnable connection weight corresponding to the j-th input channel. Based on the spike
response model scheme (Gerstner, 1995), the LIF equation has a general solution with the boundary
condition urest = 0 as follows:

u(t) =
M∑
j=1

Wj

[∫ t

t′
exp

(
t′ − s
τm

)
Ij(s) ds

]
, (2)

where t′ denotes the last firing time t′ = max{s | u(s) = ufiring, s < t}. An output stimulus
S(t) is generated whenever the membrane potential u(t) reaches a certain threshold ufiring (firing
threshold). We formulate this procedure using a spike excitation function

fe : u→ S, where S(t) ,

⌊
u(t)

ufiring

⌋
.

After firing, the membrane potential is instantaneously reset to a lower value urest (rest voltage).
Some researchers take the delayed-firing behaviors in neuroscience, i.e., add an absolute refractory
period ∆abs (Hunsberger and Eliasmith, 2015) or a refractory kernel ηref (τm) (Dumont et al., 2017)
to the LIF model. Thus, Eq. (2) becomes

u(t) =

M∑
j=1

Wj

[∫ t

t′
exp

(
t′ − s
τm

)
Ij(s) ds

]
+ ηref (τm) ∗ S(t), (3)

where ∗ denotes the convolution operation and ηref (τm) ∗S(t) is the refractory response of a neuron.
Notice that the LIF model with the initial condition u(0) = urest or u(t′) = urest leads to an

ordinary differential equation dynamical system. The eigenvalue ρ of this dynamical system is equal
to the quotient of −1 and τm by solving the following algebraic equations

du

dt
= − 1

τm
u,

u(0) = urest.

Subsection 3.2 details the calculation of the eigenvalues of ordinary differential equations.

3.1 Neural Encoding

Before fed up to SNNs, the real input data (e.g., image or video) should be pre-converted into a
spiking version. The conversion procedure is called neural encoding. There are two main categories
of neural encoding approaches, that is, temporal encoding and rate-based encoding. In temporal
encoding (Yu et al., 2014), the input data is encoded by the distance between time instances that
fire spikes. In rate-based encoding (Lobo et al., 2020), the input data is encoded by the number
of fired spikes within temporal windows. The representative approaches are usually encoded by a
Poisson distribution and recorded by a Dynamic Vision Sensor (Quiroga et al., 2005; Anumula et al.,
2018), illustrated in Figure 1. Thus, the rate-based encoding becomes the simplest and most popular
encoding scheme in SNNs. Throughout this paper, we adopt rate-based encoding as the default.
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Figure 1: Illustrations of rate-based neural encoding in spiking versions.

3.2 Eigenvalues and Abstract Equations

For a system of first-order linear differential equations

d

dt

u1...
un

 =

α11 . . . α1n
...

. . .
...

αn1 . . . αnn


u1...
un

+

f1(t)...
fn(t)

 ,

we have its algebraic formulation

d

dt

u1...
un

 = A ·

u1...
un

 with A =

α11 . . . α1n
...

. . .
...

αn1 . . . αnn

 .

These algebraic equations are only related to the observation variables u1, . . . , un. So the eigenvalues
(spectrum values) of the matrix (operator) A lead to the evolution rules of the dynamical system.

4. Dynamical Properties of Spiking Neural Models

From Section 3, there are two internal hyper-parameters, i.e., the membrane time τm and membrane
resistance R in the LIF spiking neural model. In this section, we will investigate the dynamical
properties of the LIF spiking neural models concerning the hyper-parameters above. For convenience,
we define a new hyper-parameter γ = −1/τm, called control rate.

4.1 Bifurcation Dynamics of LIF-modeling SNNs

Now, we present the first main theorem as follows:

Theorem 1 Given the initial condition u(0) = urest or u(t′) = urest, the dynamical system led by
one layer of LIF neurons is a bifurcation dynamical system, and control rate γ is the corresponding
bifurcation hyper-parameter.
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According to the bifurcation theory in dynamical systems, a bifurcation occurs when a small
smooth change of the parameter values (often the bifurcation hyper-parameters pass through a critical
point) causes a sudden topological change in its behavior (Onuki, 2002; Kuznetsov, 2013). Theorem 1
shows that the bifurcation dynamical system led by one layer of LIF neurons is structurally unstable,
and its performance is sensitive to the setting of the control rates.
Proof We start by formulating the total energy of the LIF model. From the perspective of dynamical
systems, the LIF model with initial condition u(0) = urest or u(t′) = urest guides a continuous
dynamical system. Multiplying both sides of Eq. (1) by the membrane potential u, as commonly
used by Hirsch et al. (2012), we can obtain the energy of a one-LIF-neuron dynamical system

H(u, t) = u2 +
2R

τm
F (u, t) = u2 − 2γRF (u, t), (4)

where u2 indicates the kinetic energy and F is the primitive function of f · u that represents the
non-potential forces. SoH(u, t) is a Lyapunov-like function. Direct calculations show that:

dH
dt

= 2u
du

dt
+

2R

τm
fu = 2u

(
du

dt
+

2R

τm
f

)
= − 2

τm
u2 = 2γu2. (5)

Based on Eqs. (4) and (5), both the energy functionH(u, γ, t) and its time derivative are dominated
by the control rate. If the control rate is set as a negative constant as usual, we have dH/ dt < 0.
Thus, the dynamical system led by one LIF neuron is energy-dissipating. This means that information
will be continuously lost during the learning process of one LIF neuron and the concerned spiking
neuron appears to hinder spike excitation. When γ = 0, one LIF neuron becomes a conservative
system where the conversation from received signals to biological spikes is without damage, i.e.,
the Integrate-and-Fire (IF) model. When γ > 0, the system energy would be increasing since
dH/ dt > 0, and thus, the concerned neuron is encouraged to firing spikes.

Next, we extend the aforementioned results relative to one LIF neuron to a fully-connected feed-
forward SNN. Similarly, by adding apposite initial conditions to the concerned spiking equations,
the total energy of a layer of N LIF neurons can be given by

HN (u, t) = |u|2 +
2R

τm
F (u, t), (6)

where u is a N -dimensional vector that the i-th component represents the membrane potential of the
i-th spiking neuron, and F (u, t) is the primitive function of 〈f ,u〉. The time derivative of the total
energy function can be calculated by

dHN
dt

= 2γ|u|2. (7)

Similar to Eq. (5), the control rate is proportional to the eigenvalue ρ of LIF equation, i.e., γ = ρ. So
the time derivative of energy function, described by Eq. (5), becomes dHN/dt = 2ρ|u|2.

A bifurcation occurs once the control rate γ, as well as the eigenvalue ρ of this dynamical system,
crosses the critical value 0; ρ > 0 leads to an unstable manifold, while ρ < 0 leads to a stable
one. Therefore, HN (u, t), described by Eq. (6), coincides with a bifurcation dynamical system
concerning control rate γ. This completes the proof.
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Based on the results above, the control rate γ relative to the membrane time hyper-parameter τm
plays a crucial role on SNNs, directly affecting the topology of the dynamical system led by the LIF-
based SNN. As conventionally preset γ to a negative value (since τm is often positive) in the whole
network, SNNs comprise the stacking of dissipating systems. Thus, the energy will be continuously
lost layer by layer during the learning process of SNNs. A better way is to adaptively learn the
control rate so that SNNs can determine the desired system mode (i.e., dissipating, conservative,
diffusion systems, or a mixture of the three) according to the actual environment. On the other
hand, existing SNNs usually employ unified control rates, that is, γ1 = · · · = γN . According to
Theorem 1 and Eq. (7), this manner makes the topology structure of whole SNNs tied to only one
pre-given hyper-parameter γ, thus greatly weakening the representation ability of SNNs. To revise
this manner, we force the control rates in one layer to be diverse, i.e., each neuron has an exclusive
control rate parameter. In summary, the traditional manners that employ unified control rates and
preset all control rates to one fixed and negative constant impede the flexibility of SNNs. To achieve
adaptive systems, the control rates in SNNs should be diverse and learnable.

Notice that the change of the membrane resistance hyper-parameter R and connection weights
W only affect the system energy from Eqs. (4) and (6), but has nothing to do with their intrinsic
dynamical properties according to Eqs. (5) and (7). Therefore, the role of control rates cannot be
replaced by learnable connection weights and other hyper-parameters.

4.2 Approaches for Parameterizing Control Rates

An intuitive idea for achieving adaptive SNN systems is to parameterize the control rates. However,
training SNNs with parametric control rates is a brand-new challenge since there is almost no mature
experience of training hyper-parameters in neural networks to borrow. The difficulty is twofold: (1)
The existing SNNs are almost trained based on the spike response model scheme. This leads to the
membrane potential in Eq. (2) is dominated by an indirect product interaction of connection weights
Wj and control rate γ. So we cannot optimize the control rates and connection weights in parallel.
(2) The roles of control rates and connection weights are distinctly different; each control rate is
convolved with the received spikes aggregated by connection weights. So the spike errors caused
by control rates spread temporally, while connection weights only transmit errors between layers.
Formally, let E be the empirical loss, then we have

∂E

∂γk
=
∂E

∂uk

∂uk
∂γk

=
∂E

∂uk

 M∑
j=1

Wj

[∫ t

t′
exp

(
γk(s− t′)

)
(s− t′)Ij(s) ds

] ,

where the subscript k denotes the k-th spiking neuron. When the firing period of the concerned
spiking neuron is too small, i.e., (t− t′)→ 0, the gradients appear to vanish as ∂uk/∂γk → 0; when
the firing period is slightly longer, i.e., t � t′, the gradients will be of explosion though time. To
sum up, simply utilizing gradient-based methods to train the control rates is easier to fall into the
quagmire of gradient vanishing and explosion.

An alternative approach to alleviate the issue is to employ alternating optimization for estimating
control rate hyper-parameters. The key idea is to regard the control rates as a group of hyper-
parameters drawn from a prior distribution so that solving for each learnable variable (connection
weights or control rates) reduces to well-known methods. More formally, we consider a fully-
connected feed-forward architecture and list this optimization procedure as follows:
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Initialization: Sampling a group of control rates γ = {γk} from a pre-given distribution, such as
the uniform distribution U [−1, 1]. Then spikes spread according to

S1
j (t) = Ij(t),

ul+1
k (t) =

nl∑
j=1

Wl
kj

[∫ t

t′
exp

(
γk(s− t′)

)
Slj(s) ds

]
,

Sl+1
k (t)← fe

(
ul+1
k (t)

)
,

where nl is the number of spiking neurons in the l-th layer, W is the connection weight matrix,
the superscript l denotes the l-th layer, and the subscripts k and j indicate the k-th and j-th
spiking neurons, respectively.

Update connection weights: How to update the connection weights W with fixed γ depends on
the choice of error-propagation techniques. Here, we employ a considerably mature work,
SLAYER (Shrestha and Orchard, 2018) as a basic model.

Update γ: We solve arg minγ Loss(γ|I,y;W), where y denotes the supervised signals. Thus,
existing algorithms, such as alternating coordinate descent (Beck and Tetruashvili, 2013) or
Bayesian optimization (Snoek et al., 2012; Zhang and Zhou, 2020) can be applied directly to
find a collection of apposite control rates.

Notice that the approaches based on alternating optimization place larger demands on computation
and storage, and usually converge slowly in neural networks.

4.3 Dynamical Properties for Other Spiking Neural Models

Adhering to the analysis framework mentioned in Subsection 4.1, we here introduce several famous
spiking neural models and analyze their dynamical properties. The first concerned one is the HH
model (Hodgkin and Huxley, 1952), which usually be described as follows:

τu
du

dt
= −g1u− g2um3h− g3un4 + f(I(t)),

τn
dn

dt
= −n,

τm
dm

dt
= −m,

τh
dh

dt
= −h,

where u is the concerned electro-chemical membrane variable, n, m, and h describe the opening
and closing of the voltage-dependent channels, τu is the capacitance of the membrane u, τn, τm, and
τh are the corresponding membrane time hyper-parameters, g1, g2, and g3 denote the conductance
parameters for the different ion channels (e.g., sodium Na and potassium K), and f represents the
aggregation function of input signals I(t), as mentioned in Section 3.

Corollary 1 The HH model with positive hyper-parameters (i.e., g1, τu, τn, τm, and τh) is a
dissipative system.
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Proof The energy function of the HH model can be given byHHH(u, n,m, h, t) = |u|2 + o(|u|) +
2F (u, t), where u = (u, n,m, h) is a short notation and o(|u|) = −2(g2m

3h+ g3n
4h)u2 denotes

the high-order term of |u|, and F is the primitive function of f · u, representing the non-potential
forces. Thus, we can obtain its time derivative

dHHH

dt
= −2

(
g1
u2

τu
+
n2

τn
+
m2

τm
+
h2

τh

)
.

Therefore, we have dHHH/ dt < 0 since g1, τu, τn, τm, τh > 0. This completes the proof.

We also investigate Izhikevich’s neuron model (Izhikevich, 2003), which is a good compromise
between biophysical plausibility and computational cost. It is usually simple formulated by the
following coupled equations 

du

dt
= auu

2 + buu− w + f(I(t)),

dw

dt
= aw(bwu− w),

where u andw are dimensionless membrane variables, au, bu, aw, and bw are (positive) dimensionless
hyper-parameters, and f represents the corresponding aggregation function of input signals I(t).
Izhikevich’s neuron model usually employs a group of typical values, i.e., au = 0.04, bu = 5,
aw = 0.02, and bw = 0.2.

Corollary 2 Izhikevich’s neuron model leads to a hyperbolic system.

Proof Write its energy functionHI(u,w, t) = |(u,w)|2 + o(|u|) + 2F (u, t), where o(|u|) = 2auu
3

denotes the high-order term of |u| and F is the primitive function of f · u, representing the non-
potential forces. Then the time derivative is at your fingertips

dHI

dt
= 2(u,w)A(u,w)> with A =

(
bu 0
awbw −aw

)
.

Izhikevich’s neuron model has more complicated dynamical properties. Since the matrix A has
two sign-opposite eigenvalues, i.e., ρ1 = bu > 0 and ρ2 = −aw < 0, the tangent space becomes a
hyperbolic manifold. So the neuron has two fixed points: a saddle point and an attractor. Around the
saddle point, the dynamical system is unstable; the membrane potential will not stay at this point
and the neuron either tends to fire or returns to near 0. However, the dynamical system around the
attractor is relatively stable. Once the membrane potential trap in this region, it is difficult for neurons
to fire again. This completes the proof.

5. Bifurcation Spiking Neural Networks

We present the BSNN for achieving adaptive SNN systems. In contrast to the LIF model that the
eigenvalue is proportional to its control rate, BSNN employs a group of trainable parameters to
separate the eigenvalues of the spiking neuron model from the control rates, making it possible to
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achieve diverse and learnable eigenvalues. Formally, we present the bifurcation spiking neurons
model as follows:

∂u(t)

∂t
= γu(t) + λu∗ +

R

τm
f(I), (8)

where γ is the control rate, λ is a bifurcation parameter matrix, and the vector u∗ = (u∗1, . . . , u
∗
N )

portrays the mutual promotion between neurons. Here, we unfold the k-th variable as u∗k =∑
i 6=k ui + o(|uk|), where o(|uk|) denotes the high-order term of uk. Thus, Eq. (8) becomes

∂u1(t)

∂t
= γ u1(t) +

∑
i 6=1

λ1iui + o(|u1|) +
R

τm
f1(I),

...
...

∂uN (t)

∂t
= γ uN (t) +

∑
i 6=N

λNiui + o(|uN |) +
R

τm
fN (I),

where

fk(I) =
M∑
j=1

WkjIj(t).

The basic building block of BSNN is a system of equations concerning a cluster of spiking neurons.
Invoke this cluster of spiking neurons to constitute a layer and reuse Eq. (8) layer by layer. Then we
can establish a feed-forward multi-layer network.

5.1 Adaptive Dynamical System

To ensure BSNN becomes an adaptive dynamical system, we need to verify that the time derivative
of the energy function produced by BSNN has learnable and diverse eigenvalues. Similar to the
analysis in Section 4, we have the total energy of the BSNN model as follows

HB(u, t) = |u|2 +
2R

τm
F (u, t).

Correspondingly, the time derivative of energy function can be calculated by

dHB

dt
= 2u>Lλu with Lλ =

γ . . .
γ

+ λ.

Further, we can declare that BSNN has non-trivial solutions for achieving adaptive dynamical system.

Theorem 2 If the bifurcation hyper-parameters λij are all great than 0, there are at most 2N−1

bifurcation solutions in Eq. (8).

Proof Theorem 2 can be roughly proved by the following steps. First, finding the characteristic roots
of our proposed BSNN model. According to Eq. (8), we can obtain its algebraic representation

du

dt
= Lλu+G(u,λ) with Lλ = A+Bλ and G(u,λ) = o(|u|),

10
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where

A =

γ . . .
γ

 and Bλ =


0 λ12 . . . λ1n
λ21 0 . . . λ2n

...
...

. . .
...

λn1 λn(n−1) . . . 0

 .

Suppose that the eigenvalues of the matrix Bλ are β1, . . . , βn. So the eigenvalue ρi of Lλ can be
calculated as the sum of that of A and that of Bλ, that is, ρi = −γ + βi.

Next, we can elucidate the bifurcation solutions relative to the eigenvalues. For simplicity, we
take the 2-neuron model as an example, that is,

A =

(
γ 0
0 γ

)
and Bλ =

(
0 λ1
λ2 0

)
.

LetD1 = 2γ andD2 = γ2−λ1λ2. When ∆ = D2
1−4D2 = λ1λ2 ≥ 0, Lλ has two real eigenvalues

ρ1 =
−D1 −

√
D2

1 − 4D2

2
and ρ2 =

−D1 +
√
D2

1 − 4D2

2
.

Obviously, ρ1 must be less than zero, whereas ρ2 is indefinite. Let λc = γ2 be the critical threshold,
then the bifurcation solutions of Eq. (8) are dominated by one pair of bifurcation eigenvalues

ρ1 =
−D1 −

√
D2

1 − 4D2

2
< 0,

ρ2 =
−D1 +

√
D2

1 − 4D2

2


< 0, λ1λ2 < λc;

= 0, λ1λ2 = λc;

> 0, λ1λ2 > λc.

As long as the product of λ1 and λ2 is greater than 0, there exists at least one non-trivial solution of
Eq. (8). In detail, when λ1λ2 < λc, both eigenvalues are negative, and thus, the whole dynamical
system consists of two dissipative sub-systems, where both spiking neurons tend to hinder spike
excitation. When λ1λ2 = λc, the whole dynamical system consists of a dissipative sub-system
relative to the negative eigenvalue ρ1 and a conservative one that ρ2 is equal to 0. When λ1λ2 > λc,
a new bifurcation phenomenon occurs, the whole dynamical system becomes structurally unstable,
intuitively, one neuron still works in a “leaky” mode, but the other one contributes to spike excitation.

The existence of bifurcation eigenvalues is equivalent to the existence of non-trivial solutions of
Eq. (8), and one pair of bifurcation solutions induces a group of apposite eigenvalues for achieving
adaptive dynamical systems. Generally, for the case of N neurons, the solution of Eq. (8) possesses
at most 2N−1 bifurcation solutions.

Based on the results of Theorem 2, the eigenvalues of Eq. (8) are dominated by a series of
bifurcation parameters λ. So we can convert the issue of searching for apposite control rate hyper-
parameters into a new problem of how to train the bifurcation parameters. Therefore, even if the
control rate is fixed, BSNN can still achieve an adaptive dynamic system. The training procedure for
BSNN is introduced in the rest of this section.

11
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5.2 Implementation

Here, we consider a feed-forward BSNN with M pre-synaptic input channels and N -dimensional
output spiking neurons, and approximate the mutual promotion from the i-th neuron to the k-th
neuron using the last spike of neuron i, noted as Si(t′i), where t′i = max{s|ui(s) = ufiring, s < ti}.
Formally, for the k-th neuron, we have

duk(t)

dt
= γuk(t) +

N∑
i=1,i 6=k

λkiSi(t
′
i) +

M∑
j=1

WkjIj(t). (9)

According to Eq. (9), BSNN has two types of learnable parameters, i.e., bifurcation parameters λ
and connection weights W, where λ is linearly independent to W at time t. Thus, BSNN avoids the
problem of parameters entanglement.

Akin to the spike response model scheme (Gerstner, 1995), Eq. (9) has a closed-form solution

uk(t) =

∫ t

t′
exp

(
γ(s− t′)

)
·Qk(s) ds with Qk(t) =

M∑
j=1

WkjIj(t) +
∑
i 6=k

λkiSi(t
′
i). (10)

Finally, the generated spike is transmitted to the next neuron via the spike excitation function fe.

5.3 Error Backpropagation in BSNN

BSNN with supervised signals can also be optimized via error backpropagation. Firstly, we denote
the input (spike) sequence to a neuron as the following general form (Huh and Sejnowski, 2018)

Ij(t) =
∑
firing

εj

(
t− tfiringj

)
,

where tfiringj is the spike time of the j-th input and ε(t) is a corresponding Dirac-delta function.
Summing up the loss of the k-th target supervised signal Ŝk(t) related to Sk(t) in time interval [0, T ]

Ek =
1

2

∫ T

0
Ek(t) dt =

1

2

∫ T

0

(
Sk(t)− Ŝk(t)

)2
dt. (11)

So for time t, we have
∂Ek(t)

∂Wkj
=
∂Ek(t)

∂Sk

∂Sk
∂uk

∂uk
∂Wkj

, (12)

where the first term is the error back-propagation of the excitatory neurons, the second term is that of
the generated spikes with respect to the membrane potential, and the third term denotes the that of
basic bifurcation neuron. Plugging Eqs. (10) and (11) into Eq. (12), we have

∂Ek(t)

∂Wkj
=
(
Sk(t)− Ŝk(t)

)
f ′e(uk)δj(t) with δj(t) =

εj(t)

τm
exp (γt) .

However, the derivative of the spike excitation function f ′e(u) is a persistent problem for training
SNNs with supervised signals. Recently, there have emerged many seminal approaches for addressing

12
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this problem. In this paper, we directly employ the result of Shrestha and Orchard (2018). Therefore,
we obtain the backpropagation pipeline related to connection weights Wkj

∇Wkj
E =

∫ T

0

∂Ek(t)

∂Wkj
dt.

Similarly, the correction formula with respect to λki is given by

∇λkiE =

∫ T

0

(
Ŝk(t)− Sk(t)

)
f ′e(uk)Si(t

′
i)γ exp (γt) dt.

We can also add a learning rate to help convergence, just like most deep artificial neural networks.
Here, BSNN is implemented by an extended backpropagation algorithm. Compared with the

existing SNNs, BSNN only needs to calculate one more set of gradients, i.e.,∇λkiE during feedback.
The records of Si(t′i) do not cause additional storage because we intrinsically need the membrane
potential values of each spiking neuron during the gradient calculation procedure as shown in
Eq. (12). So both the computation and storage of BSNN are considerably less in comparison with
the alternating optimization approaches.

In summary, the proposed BSNN has at least three advantages: (1) BSNN employs learnable
parameters to adjust eigenvalues, and thus, its topology becomes flexible, enabling SNNs to capture
the adaptive learning behavior of spiking neurons to the environment change. (2) Since the new-
added bifurcation parameters λ are independent of the connection weights W, these two will not
be entangled and conflict when using the spike response model scheme to train SNNs. (3) The
performance of BSNN depends less on the control rates.

6. Experiments

In this section, we conducted experiments on four benchmark data sets to evaluate the functional
performance of BSNN. The experiments are performed to discuss the following questions:

Q1: Is the performance of BSNN comparable with state-of-the-art SNNs?

Q2: Does the performance of BSNN surpass that of alternating optimization, especially in terms of
accuracy and efficiency?

Q3: Concerning BSNN, is the performance robust to the control rate? In which conditions?

Data Sets: (1) The MNIST handwritten digit data set1 comprises a training set of 60,000
examples and a testing set of 10,000 examples in 10 classes, where each example is centered in
a 28 × 28 image. Using Poisson encoding, we produce a list of spike signals with a formation of
784 × T binary matrices, where T denotes the encoding length and each row represents a spike
sequence at each pixel. (2) The Neuromorphic-MNIST (N-MNIST) data set2 (Orchard et al., 2015)
is a spiking version of the original frame-based MNIST data set. Each example in N-MNIST was
converted into a spike sequence by mounting the ATIS sensor on a motorized pan-tilt unit and having

1. http://yann.lecun.com/exdb/mnist/
2. https://www.garrickorchard.com/datasets/n-mnist

13

http://yann.lecun.com/exdb/mnist/
https://www.garrickorchard.com/datasets/n-mnist


ZHANG, ZHANG, AND ZHOU

Table 1: Parameter Setting of BSNN on Various Data Sets.
Parameters Value MNIST N-MNIST Fashion-MNIST EMNIST

Batch Size 32 32 32 64
Encoding Length T 300 300 400 400

Expect Spike Count(True) 100 80 100 140
Expect Spike Count(False) 10 5 10 0

Learning Rate η 0.01 0.01 0.001 0.01
Refractory Period 2 ms 1 ms 2 ms 2 ms

Time Constant of Synapse τs 8 ms 8 ms 8 ms 8 ms

the sensor move while it views MNIST examples on an LCD monitor. It consists of the same 60,000
training and 10,000 testing samples as the original MNIST data set, and is captured at the same
visual scale as the original MNIST data set (28× 28 pixels) with both “on” and “off” spikes. (3) The
Fashion-MNIST data set3 consists of a training set of 60,000 examples and a testing set of 10,000
examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. (4)
The Extended MNIST-Balanced (EMNIST) (Cohen et al., 2017) data set is an extension of MNIST
to handwritten, which contains handwritten upper & lower case letters of the English alphabet in
addition to the digits, and comprises 112,800 training and 18,800 testing samples for 47 classes.

Customization: The pre-processing steps for these experiments are the same as those used
by Pillow et al. (2005); Quiroga et al. (2005); Anumula et al. (2018). Each static image of (1)
MNIST, (3) Fashion-MNIST, and (4) EMNIST is transformed as a spike sequence using Poisson
Encoding, while each instance in N-MNIST was encoded by a Dynamic Audio / Vision Sensor (DAS
/ DVS). For these image classification tasks, we set 10 output spiking neurons corresponding to the
classification labels. The output label of SNNs is the one with the greatest spike count. Table 1 lists
the typical constant values in BSNNs.

Contenders: We also employ two types of contenders to competing with the proposed BSNN: (1)
several state-of-the-art SNNs with the spike response model scheme and (2) alternating optimization
algorithms, see Subsection 4.2. In this work, all SNN models are without any convolution structure.
The alternating optimization algorithms pre-sample a group of control rates from two uniform
distributions, U1 = U [−1, 0] and U2 = U [−1, 1]. For example, SLAYER-U1 denotes an alternating
optimization method based on SLAYER, which draws control rate hyper-parameters from U [−1, 0].

Experimental Results: Table 2 lists the comparative performance (accuracy) and configurations
(setting and epoches) of the contenders and BSNN on 3 digit data sets. As we can see, BSNN
performs best against other competing approaches, achieving very superior testing accuracy (i.e.,
more than 99% on MNIST, around 99.24% on NMNIST, and more than 91% on Fashion-MNIST).
It is a laudable result for SNNs. In addition, the alternating optimization algorithms, i.e., both
SLAYER-U1 and SLAYER-U2 steadily surpass the original SLAYER algorithm, which demonstrates
the way of achieving diverse and adaptive control rates is significant and effective for improving the
performance of SNNs.

To help understand the learning process of SNNs and highlight the difference between the
contenders and BSNN, we illustrate the spike raster plots of SLAYER, SLAYER-U2, and BSNN. We
show the neuron excitation snapshots of these three approaches on the 4881-st and 6429-th MNIST
testing samples with label 0 in Figure 2. The horizontal and vertical axes indicate the time interval

3. https://www.kaggle.com/zalando-research/fashionmnist
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Table 2: The comparative performance of the contenders and BSNN.
Data Sets Contenders Accuracy (%) Setting Control Rate (γ) Epochs

MNIST

Deep SNN (O’Connor and Welling, 2016) 97.80 28×28-300-300-10 ♠ - 50
Deep SNN-BP (Lee et al., 2016) 98.71 28×28-800-10 - 200

SNN-EP ♥ 97.63 28×28-500-10 - 25
HM2-BP (Jin et al., 2018) 98.84 ± 0.02 28×28-800-10 - 100

SNN-L (Rezaabad and Vishwanath, 2020) 98.23 ± 0.07 28×28-1000-R28-10 - -
SLAYER (Shrestha and Orchard, 2018) 98.39 ± 0.04 28×28-500-500-10 - 50

SLAYER-U1 ♣ 98.53 ± 0.03 28×28-500-500-10 - -
SLAYER-U2 98.59 ± 0.01 28×28-500-500-10 - -

BSNN (this work) 99.02 ± 0.04 28×28-500-500-10 -0.21 50

N-MNIST

SKIM (Cohen et al., 2016) 92.87 2*28×28-10000-10 - -
Deep SNN-BP 98.78 2*28×28-800-10 - 200

HM2-BP 98.84 ± 0.02 2*28×28-800-10 - 60
SLAYER 98.89 ± 0.06 2*28×28-500-500-10 - 50

SLAYER-U1 99.01 ± 0.01 2*28×28-500-500-10 - -
SLAYER-U2 99.07 ± 0.02 2*28×28-500-500-10 - -

BSNN (this work) 99.24 ± 0.12 2*28×28-500-500-10 -0.49 50

Fashion-MNIST

HM2-BP 88.99 28×28-400-400-10 - 15
SLAYER 88.61 ± 0.17 28×28-500-500-10 - 50

SLAYER-U1 90.53 ± 0.04 28×28-500-500-10 - -
SLAYER-U2 90.61 ± 0.02 28×28-500-500-10 - -

ST-RSBP (Zhang and Li, 2019) 90.00 ± 0.13 28×28-400-R400-10 ♦ - 30
BSNN (this work) 91.22 ± 0.06 28×28-500-500-10 -0.32 50

EMNIST

eRBP (Neftci et al., 2017) 78.17 28×28-200-200-47 - 30
HM2-BP 84.43 ± 0.10 28×28-400-400-10 - 20
SNN-L 83.75 ± 0.15 28×28-1000-R28-10 - -

SLAYER 85.73 ± 0.16 28×28-500-500-47 - 50
SLAYER-U2 86.62 ± 0.03 28×28-500-500-47 - 50

BSNN (this work) 87.51 ± 0.23 28×28-500-500-47 -0.37 50
♠ :-300-300- denotes two hidden layers with 300 spiking neurons, while -800- is one hidden layer with 800 spiking neurons.
♥ : SNN-EP (O’Connor et al., 2019) proposes an implementation for training SNN with equilibrium propagation.
♣ : -U1 and -U2 indicate the alternating optimization algorithms with parametric control rates sampled from U1 and U2, respectively.
♦ : R400 represents a recurrent layer of 400 spiking neurons.

and the sequence of spiking neurons or encoding channels, respectively. In detail, we pick up a
representative instance, the 4881-st one, and then convert this image into a spike sequence using a
DVS, as shown in the left two subplots of Figure 2(a). It is observed that there are two fractures, one
around time interval [80, 100] and the other around time interval [200, 230]. The spike raster plots
of spiking neurons (in Layer 1, Layer 2, and Layer Output) of SLAYER, SLAYER-U2, and BSNN
are successively shown in the right nine subplots. As mentioned in Section 4, a dissipating system
would hinder the spike excitation. Thus, we can observe the plots of SLAYER with the following
properties. (1) The neurons in the same hidden layer have almost the same firing rates. (2) The plots
of Layer 1 and Layer 2 of SLAYER display two distinct fractures. Specifically, Layer 2 even enlarges
the fracture. In practice, it is more likely to fall into the situation of “dead neurons”. (3) In Layer
Output, the neuron corresponding to label 0 has no obvious advantage over other neurons in terms
of total spiking counts, leading this instance to be incorrectly classified as label 8. In contrast, both
SLAYER-U2 and BSNN have indefinite eigenvalues, where negative ones hinder the spike excitation,
positive ones promote the spike excitation, and ones with zero are a conservative system. Thus, the
developed models can dynamically determine the firing rates of spiking neurons. In detail, (1) the
firing rates of spiking neurons in the same layer show significant differences. (2) The output spiking
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(a) Example 4881.

(b) Example 6429.

Figure 2: The spike raster plots of SLAYER, SLAYER-U2, and BSNN on (a) 4881 and (b) 6429.

neurons relative to wrong labels are suppressed. In contrast, the neuron relative to the correct label is
“encouraged” to fire more spikes and eventually win with a significant advantage.
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(a) (b) (c)

Figure 3: (a) Robustness of BSNN with respect to control rates. The training (b) and testing (c)
accuracy curves of the contenders and BSNN on MNIST.

We also demonstrate the robustness of BSNN to the control rate. This experiment is conducted
on the MNIST data set, setting the architecture of BSNN as 28×28-500-500-10. The control rate
hyper-parameters are optimized by grid search. For each control rate value, we ran BSNN 5 times,
recorded the largest accuracy of each round within 50 epochs, and averaged five accuracy records as
its performance. The results plotted in Figure 3(a) show that BSNN is able to perform better than the
alternating optimization algorithms in a broad-range setting of control rates. Besides, Figure 3(b)
and (c) show the learning curves with γ = −0.21 on MNIST. As we can see, BSNN converges fast
and surpasses the contenders.

Based on the experimental results and discussions above, we can conclude that BSNN achieves
superior performance to the existing SNNs and the improved contenders - approaches based on
alternating optimization algorithms. Additionally, the performance of BSNN is considerably robust
to the setting of control rates.

7. Conclusion and Prospects

In this paper, we investigated spiking neural models and networks from the perspective of dynamical
systems. We reveal the dynamical properties of spiking neural models by providing their energy
function and conclude that the LIF model is a bifurcation dynamical system, where the control rates
are the corresponding bifurcation hyper-parameters. Further, by employing the spiking neural model
to enable adaptable eigenvalues, we proposed the Bifurcation Spiking Neural Network (BSNN).
Compared with the alternating optimization approaches, BSNN tackles the challenge that control
rates interact with connection weights in the training procedure, leading to a robust setting of control
rates. Besides, BSNN achieves a better accuracy with considerably less computation and storage in
supervised classification tasks. The experiments verified the effectiveness of BSNN.

We introduced a mathematical framework for analyzing the spiking neural models, including but
not limited to using a Lyapunov-like function to formulate the total energy, revealing the bifurcation
characteristics of SNNs, and providing systematic guidance on hyper-parameter setting in SNNs.
These results may contribute to the development of SNN-related theories. Besides, we declare that
our work doesn’t aim to realize a biological learning phenomenon but to explore some new thoughts

17



ZHANG, ZHANG, AND ZHOU

on SNNs. In this situation, Eq. (9) that employs the last spikes of adjacent neurons to approximate the
mutual promotion only provides a feasible paradigm of implementing dynamic bifurcation neurons.

There are some important future issues. First, it is crucial to develop in-depth theoretical
understandings of SNNs, such as from aspects of approximation complexity (Eldan and Shamir,
2016), algorithmic power (Barrett et al., 2013; Chou et al., 2019), representation ability (Zhang and
Zhou, 2021a), and especially in over-parameterized architectures (Zhou, 2021). Second, recently
another bio-plausible neuron model, the Flexible Transmitter (FT) model (Zhang and Zhou, 2021b),
has been proposed. In contrast to the spiking neural model that is formulated as first-order parabolic
equations, the FT neuron model mimics the neurotrophic potentiation and depression effects by a
formulation of two-variable function, exhibiting great potential on temporal-spatial data processing.
Much effort is required to explore the theoretical properties of the FT model (Wu et al., 2021), with a
possible way from the perspective of dynamical systems.
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D. G. Barrett, S. Denève, and C. K. Machens. Firing rate predictions in optimal balanced networks.
In Advances in Neural Information Processing Systems 26, pages 1538–1546, 2013.

A. Beck and L. Tetruashvili. On the convergence of block coordinate descent type methods. SIAM
Journal on Optimization, 23(4):2037–2060, 2013.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. The Journal of Machine
Learning Research, 13(1):281–305, 2012.

S. M. Bohte, J. M. Kok, and H. La Poutre. Error-backpropagation in temporally encoded networks
of spiking neurons. Neurocomputing, 48(1-4):17–37, 2002.

A. N. Burkitt. A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input.
Biological Cybernetics, 95(1):1–19, 2006a.

A. N. Burkitt. A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input
and network properties. Biological Cybernetics, 95(2):97–112, 2006b.

K. D. Carlson, J. M. Nageswaran, N. Dutt, and J. L. Krichmar. An efficient automated parameter
tuning framework for spiking neural networks. Frontiers in Neuroscience, 8:10, 2014.

C.-N. Chou, K.-M. Chung, and C.-J. Lu. On the algorithmic power of spiking neural networks.
In Proceedings of the 10th Innovations in Theoretical Computer Science Conference, pages
26:1–26:20, 2019.

18



BIFURCATION SPIKING NEURAL NETWORK

G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik. EMNIST: Extending MNIST to handwritten
letters. In Proceesdings of the 2017 International Joint Conference on Neural Networks, pages
2921–2926, 2017.

G. K. Cohen, G. Orchard, S.-H. Leng, J. Tapson, R. B. Benosman, and A. Van Schaik. Skimming
digits: Neuromorphic classification of spike-encoded images. Frontiers in Neuroscience, 10:184,
2016.

G. Dumont, A. Payeur, and A. Longtin. A stochastic-field description of finite-size spiking neural
networks. PLoS Computational Biology, 13(8):1005691, 2017.

R. Eldan and O. Shamir. The power of depth for feedforward neural networks. In Proceedings of
29th Annual Conference on Learning Theory, pages 907–940, 2016.

W. Gerstner. Time structure of the activity in neural network models. Physical Review E, 51(1):738,
1995.

W. Gerstner and W. M. Kistler. Spiking Neuron Models: Single Neurons, Populations, Plasticity.
Cambridge University Press, 2002.

M. W. Hirsch, S. Smale, and R. L. Devaney. Differential Equations, Dynamical Systems, and An
Introduction to Chaos. Academic Press, 2012.

A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its application
to conduction and excitation in nerve. The Journal of Physiology, 117(4):500, 1952.

N. Hohn and A. N. Burkitt. Shot noise in the leaky integrate-and-fire neuron. Physical Review E, 63
(3):031902, 2001.

D. Huh and T. J. Sejnowski. Gradient descent for spiking neural networks. In Advances in Neural
Information Processing Systems 31, pages 1440–1450, 2018.

E. Hunsberger and C. Eliasmith. Spiking deep networks with LIF neurons. arXiv:1510.08829, 2015.

D. Hunter, H. Yu, M. S. Pukish III, J. Kolbusz, and B. M. Wilamowski. Selection of proper
neural network sizes and architectures — a comparative study. IEEE Transactions on Industrial
Informatics, 8(2):228–240, 2012.

E. M. Izhikevich. Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6):
1569–1572, 2003.

Y. Jin, W. Zhang, and P. Li. Hybrid macro/micro level backpropagation for training deep spiking
neural networks. In Advances in Neural Information Processing Systems 31, pages 7005–7015,
2018.

S. R. Kulkarni and B. Rajendran. Spiking neural networks for handwritten digit recogni-
tion—supervised learning and network optimization. Neural Networks, 103:109–127, 2018.

Y. A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, 2013.

19



ZHANG, ZHANG, AND ZHOU

J. H. Lee, T. Delbruck, and M. Pfeiffer. Training deep spiking neural networks using backpropagation.
Frontiers in Neuroscience, 10:508, 2016.

J. L. Lobo, J. Del Ser, A. Bifet, and N. Kasabov. Spiking neural networks and online learning: An
overview and perspectives. Neural Networks, 121:88–100, 2020.

P. R. Lorenzo, J. Nalepa, M. Kawulok, L. S. Ramos, and J. R. Pastor. Particle swarm optimization
for hyper-parameter selection in deep neural networks. In Proceedings of the 2017 Genetic and
Evolutionary Computation Conference, pages 481–488, 2017.

S. McKennoch, D. Liu, and L. G. Bushnell. Fast modifications of the spikeprop algorithm. In
Proceedings of the 2006 International Joint Conference on Neural Network, pages 3970–3977,
2006.

E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis. Event-driven random back-propagation:
Enabling neuromorphic deep learning machines. Frontiers in Neuroscience, 11:324, 2017.

P. O’Connor and M. Welling. Deep spiking networks. arXiv:1602.08323, 2016.

P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer. Real-time classification and sensor
fusion with a spiking deep belief network. Frontiers in Neuroscience, 7:178, 2013.

P. O’Connor, E. Gavves, and M. Welling. Training a spiking neural network with equilibrium
propagation. In Proceesdings of the 22nd International Conference on Artificial Intelligence and
Statistics, pages 1516–1523, 2019.

A. Onuki. Phase Transition Dynamics. Cambridge University Press, 2002.

G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor. Converting static image datasets to spiking
neuromorphic datasets using saccades. Frontiers in Neuroscience, 9:437, 2015.

J. W. Pillow, L. Paninski, V. J. Uzzell, E. P. Simoncelli, and EJ Chichilnisky. Prediction and decoding
of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25
(47):11003–11013, 2005.

R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch, and I. Fried. Invariant visual representation by single
neurons in the human brain. Nature, 435(7045):1102, 2005.

A. Lotfi Rezaabad and S. Vishwanath. Long short-term memory spiking networks and their applica-
tions. In Proceesdings of the 2020 International Conference on Neuromorphic Systems, pages 1–9,
2020.

B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu. Conversion of continuous-valued deep
networks to efficient event-driven networks for image classification. Frontiers in Neuroscience,
11:682, 2017.

T. Shimokawa, K. Pakdaman, and S. Sato. Time-scale matching in the response of a leaky integrate-
and-fire neuron model to periodic stimulus with additive noise. Physical Review E, 59(3):3427,
1999.

20



BIFURCATION SPIKING NEURAL NETWORK

S. B. Shrestha and G. Orchard. SLAYER: Spike layer error reassignment in time. In Advances in
Neural Information Processing Systems 31, pages 1419–1428, 2018.

J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine learning
algorithms. Advances in Neural Information Processing Systems 25, pages 2951–2959, 2012.

R. VanRullen, R. Guyonneau, and S. J. Thorpe. Spike times make sense. Trends in Neurosciences,
28(1):1–4, 2005.

J.-H. Wu, S.-Q. Zhang, Y. Jiang, and Z.-H. Zhou. Towards theoretical understanding of flexible
transmitter networks via approximation and local minima. arXiv:2111.06027, 2021.

Q. Yu, H. Tang, K. C. Tan, and H. Yu. A brain-inspired spiking neural network model with temporal
encoding and learning. Neurocomputing, 138:3–13, 2014.

S.-Q. Zhang and Z.-H. Zhou. Harmonic recurrent process for time series forecasting. In Proceedings
of the 24th European Conference on Artificial Intelligence, pages 1714–1721, 2020.

S.-Q. Zhang and Z.-H. Zhou. Arise: Aperiodic semi-parametric process for efficient markets without
periodogram and gaussianity assumptions. arXiv:2111.06222, 2021a.

S.-Q. Zhang and Z.-H. Zhou. Flexible transmitter network. Neural Computation, 33(11):2951–2970,
2021b.

W. Zhang and P. Li. Spike-train level backpropagation for training deep recurrent spiking neural
networks. In Advances in Neural Information Processing Systems 32, pages 7800–7811, 2019.

Z.-H. Zhou. Why over-parameterization of deep neural networks does not overfit? Science China
Information Sciences, 64(1):1–3, 2021.

21


	Introduction
	Related Works
	Spiking Neural Model
	Neural Encoding
	Eigenvalues and Abstract Equations

	Dynamical Properties of Spiking Neural Models
	Bifurcation Dynamics of LIF-modeling SNNs
	Approaches for Parameterizing Control Rates
	Dynamical Properties for Other Spiking Neural Models

	Bifurcation Spiking Neural Networks
	Adaptive Dynamical System
	Implementation
	Error Backpropagation in BSNN

	Experiments
	Conclusion and Prospects

