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Abstract

This paper develops a new approach to learning high-dimensional linear structural equation
models (SEMs) without the commonly assumed faithfulness, Gaussian error distribution,
and equal error distribution conditions. A key component of the algorithm is component-
wise ordering and parent estimations, where both problems can be efficiently addressed
using `1-regularized regression. This paper proves that sample sizes n = Ω(d2 log p) and
n = Ω(d2p2/m) are sufficient for the proposed algorithm to recover linear SEMs with sub-
Gaussian and (4m)-th bounded-moment error distributions, respectively, where p is the
number of nodes and d is the maximum degree of the moralized graph. Further shown is
the worst-case computational complexity O(n(p3 + p2d2)), and hence, the proposed algo-
rithm is statistically consistent and computationally feasible for learning a high-dimensional
linear SEM when its moralized graph is sparse. Through simulations, we verify that the
proposed algorithm is statistically consistent and computationally feasible, and it performs
well compared to the state-of-the-art US, GDS, LISTEN and TD algorithms with our set-
tings. We also demonstrate through real COVID-19 data that the proposed algorithm is
well-suited to estimating a virus-spread map in China.
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1. Introduction

Directed acyclic graphical (DAG) models, also referred to as Bayesian networks, are popular
probabilistic statistical models that are associated with a graph where nodes correspond to
variables of interest. In addition, the edges of the graph describe conditional dependence
information and causal/directional relationships among the variables. Hence, the models
have been applied to a large number of fields, including bioinformatics, social science, control
theory, image processing, and marketing analysis, among others (see e.g., Hausman, 1983;
Newey et al., 1999; Friedman et al., 2000; Imbens and Newey, 2009; Nagarajan et al., 2013;
Peters and Bühlmann, 2014). However, structure learning for graphical models from the
observational distribution remains an open challenge due to non-identifiability and double-
exponentially growing computational complexity in the number of nodes. Therefore, learning
DAG models from purely observational data, also known as a causal discovery, has drawn
much attention.

Recently, it has been shown that DAG models can be fully identifiable with some re-
strictions on the distributions. For example, Shimizu et al. (2006); Zhang and Hyvärinen
(2009b) show that linear non-Gaussian additive noise models are identifiable where each
variable is determined by a linear function of its parents plus an independent error term.
Zhang and Hyvärinen (2009a); Hoyer et al. (2009); Mooij et al. (2009); Peters et al. (2012)
discuss the identifiability of non-linear SEMs where each variable is determined by a non-
linear function of its parents and an error term. Park and Raskutti (2015, 2018) prove
the identifiability of DAG models where a conditional distribution of each node given its
parents belongs to some exponential family distributions. Lastly, Peters and Bühlmann
(2014); Ghoshal and Honorio (2018); Park and Kim (2020) prove that linear SEMs can be
identifiable using error variances. We refer the readers to Peters et al. (2014); Eberhardt
(2017); Glymour et al. (2019); Park (2020) for their detailed review.

For these identifiable DAG models, recent literature has developed statistically consis-
tent learning algorithms that can be executed under the identifiability condition to target
the identifiable class of DAG models. Furthermore, the algorithms focus on learning the
models in polynomial time, as well as in a high-dimensional regime (e.g., Shimizu et al.,
2011; Bühlmann et al., 2014; Ghoshal and Honorio, 2017; Park and Park, 2019a; Chen et al.,
2019; Park and Kim, 2021).

In terms of learning high-dimensional (sub-)Gaussian linear SEMs, Ghoshal and Hono-
rio (2018) develops a constrained `1-minimization for inverse covariance matrix estimation
(CLIME)-based algorithm with the sample bound n = Ω(d4 log p), in which d is the maxi-
mum degree of the moralized graph when error variances are heterogeneous. Furthermore,
in the equal error variance setting, Loh and Bühlmann (2014); Ghoshal and Honorio (2017)
provide graphical lasso-based approaches with sample complexity n = Ω(d4 log p). In ad-
dition, Chen et al. (2019) develops a best subset-based algorithm with sample complexity
n = Ω(q2 log p) for ordering estimation, in which q is the predetermined upper bound of
the maximum indegree (see the brief review in Section 2.3). However, these existing al-
gorithms have not yet focused on a regularized regression-based approach for learning a
high-dimensional linear SEM, whereas undirected graphical models have been successfully
estimated based on `1-regularized regression.
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This paper focuses on developing a new `1-regularized regression-based algorithm for
learning high-dimensional linear SEMs, which allows a broader class of error distribu-
tion having the (4m)-th bounded moment. Also proven are its sample complexities n =
Ω(d2 log p) and n = Ω(d2p2/m), under which the proposed algorithm recovers linear SEMs
with sub-Gaussian and (4m)-th bounded-moment error distributions, respectively. Further
shown is that the proposed algorithm is computationally polynomial O(np3 +nd2p2) in the
worst case. Lastly, it is pointed out that the algorithm does not require the commonly
used faithfulness, Gaussian error distribution, and equal error distribution assumptions
that might be very restrictive. Section 3.3 provides comparisons in both computational and
sample complexities between the proposed and the high-dimensional linear SEM learning
algorithms, which are the linear structural equation model learning (LISTEN) (Ghoshal
and Honorio, 2018) and the top-down search (TD) (Chen et al., 2019) algorithms.

We demonstrate through simulations and real COVID-19 data that the proposed al-
gorithm performs well in terms of recovering directed edges. In the simulation study,
we consider low- and high-dimensional linear SEMs where the number of nodes is p ∈
{25, 50, 100, 150, 200, 250} and the maximum degree is d ∈ {5, 8}. Furthermore, the pro-
posed algorithm is compared to the state-of-the-art uncertainty scoring (US) (Park, 2020),
greedy DAG search (GDS) (Peters and Bühlmann, 2014), LISTEN, and TD algorithms.

The remainder of this paper is structured as follows. Section 2.1 summarizes the nec-
essary notations and problem settings. Section 2.2 explains basic concepts of a linear SEM
and Section 2.3 discusses identifiability conditions and existing learning algorithms. In
Section 3, we introduce the new algorithm for high-dimensional linear SEM learning with
sub-Gaussian and bounded-moment error distributions. Sections 3.1 and 3.2 provide the
theoretical guarantees and computational complexity,respectively, of the proposed algo-
rithm. Furthermore, Section 3.3 compares the proposed algorithm to relevant methods in
terms of sample and computational complexities. Sections 4 and 5 evaluate our method
and state-of-the-art algorithms using synthetic and real COVID-19 data. Lastly, Section 6
offers a discussion, and suggests future works.

2. Preliminaries

First introduced are some necessary notations and definitions for DAG models. Then, we
give a detailed description of identifiability conditions and existing algorithms for learning
linear SEMs.

2.1 Problem Set-up and Notations

Directed acyclic graph G = (V,E) consists of a set of nodes V = {1, 2, ..., p} and a set of
directed edges E ⊂ V × V with no directed cycles. A directed edge from node j to k is
denoted by (j, k) or j → k. The set of parents of node k, denoted by Pa(k), consists of all
nodes j such that (j, k) ∈ E. In addition, the set of children, denoted by Ch(j), consists of
all nodes k such that (j, k) ∈ E. The set of neighbors of node j, denoted by Ne(j), consists
of all nodes k connected by an edge. If there is a directed path j → · · · → k, then k is called
a descendant of j, and j is called an ancestor of k. The sets De(k) and An(k) denote the set
of all descendants and ancestors, respectively, of node k. An important property of DAGs
is that there exists a (possibly non-unique) ordering π = (π1, π2, ...., πp) of a directed graph
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that represents directions of edges such that for every directed edge (j, k) ∈ E, j comes
before k in the ordering. Hence, learning a graph is equivalent to learning the ordering
as well as its parents. Similar definitions and notations can be found in Lauritzen (1996);
Spirtes et al. (2000).

We consider a set of random variables X := (Xj)j∈V with a probability distribution
taking values in a sample space XV over the nodes in G. Suppose that a random vector
X has a joint probability density function Pr(G) = Pr(X1, X2, ..., Xp). For any subset S of
V , let XS := {Xj : j ∈ S ⊂ V } and XS := ×j∈SXj where Xj is a sample space of Xj . For
any node j ∈ V , Pr(Xj | XS) denotes the conditional distribution of a variable Xj given a
random vector XS . Then, a DAG model has the following factorization (Lauritzen, 1996):

Pr(G) = Pr(X1, X2, ..., Xp) =

p∏
j=1

Pr(Xj | XPa(j)), (1)

where Pr(Xj | XPa(j)) is the conditional distribution of Xj given its parents variables

XPa(j) := {Xk : k ∈ Pa(j) ⊂ V }.
This paper assumes that there are n independent and identically distributed (i.i.d.) sam-

ples X1:n := (X(i))ni=1 from a given graphical model where X
(i)
1:p := (X

(i)
j )pj=1 is a p-variate

random vector. The notation ·̂ denotes an estimate based on samples X1:n. This paper
also accepts the sparse moralized graph assumption and the causal sufficiency assumption
of XPa(j) being the only source of confounding for Xj .

Lastly, an important concept this paper needs to introduce is the moral graph or the
undirected graphical model representation of a DAG. Moralized graph G′ for DAG G =
(V,E) is an undirected graph where G′ = (V,E′) in which E′ includes the edge set E for
DAG G with directions removed plus edges between any nodes that are parents of a common
child. Hence, the maximum degree of the moralized graph is always greater than or equal
to the maximum indegree.

2.2 Linear Structural Equation Models

A linear SEM is a special DAG model where all errors are additive, and each variable is
modeled as a linear function of its parents. Hence, it can be written in the following matrix
form:

(X1, X2, ..., Xp)
> = B(X1, X2, ..., Xp)

> + (ε1, ε2, ..., εp)
>, (2)

whereB ∈ Rp×p is an edge weight matrix, an auto regression matrix, or a weighted adjacency
matrix, with each element [B]jk = βjk, in which βjk is the linear weight of an edge from Xk

to Xj . Without loss of generality, this paper assumes that E(Xj) = 0 for all j ∈ V . Then,
the covariance matrix of the linear SEM and its inverse, referred to as Σ and Ω, respectively,
are as follows:

Σ = (Ip −B)−1Σε(Ip −B)−>, and Θ = (Ip −B)>Σ−1ε (Ip −B), (3)

where Ip ∈ Rp×p is the identity matrix, and Σε = diag(σ21, σ
2
2, ..., σ

2
p) is a covariance matrix

of the independent errors.
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As a special case, where all errors are Gaussian in Equation (2), the joint density function
of the model is as follows:

fG(x1, x2, ..., xp; Θ) =
1√

(2π)p det(Θ−1)
exp
(
− 1

2
(x1, x2, ..., xp)Θ(x1, x2, ..., xp)

>
)
. (4)

Since the density function is parameterized by the inverse covariance matrix, recent Gaus-
sian linear SEM learning approaches exploit various inverse covariance matrix estimation
methods such as graphical lasso and CLIME (Loh and Bühlmann, 2014; Ghoshal and Hon-
orio, 2017, 2018).

A natural extension of Gaussian linear SEMs is a sub-Gaussian linear SEM in which
each error variable is sub-Gaussian; that is, εj/

√
Var(εj) is sub-Gaussian with parameter

sj . In a similar manner, a bounded-moment linear SEM is defined as the linear SEM with
errors having a bounded-moment where maxj∈V E((εj/

√
Var(εj))

4m) ≤ Km, where Km > 0
only depends on m.

In the linear SEM setting, each variable Xj can be expressed as the following linear
combination of independent errors corresponding to its ancestors:

Xj =
∑

k∈Pa(j)

βjkXk + εj =
∑

k∈An(j)

βk→jεk + εj ,

where βk→j is the sum over products of coefficients along directed paths from k to j. Hence,
if error variables hold a sub-Gaussian or a bounded-moment property, then Xj also satisfies
a sub-Gaussian or a bounded-moment property.

2.3 Identifiability and Existing Algorithms

This section reviews recent works on learning linear SEMs. As discussed, Peters and
Bühlmann (2014); Ghoshal and Honorio (2018); Park and Kim (2020) provide the following
different identifiability conditions for linear SEMs, expressed in Equation (2), using error
variances.

Lemma 1 (Identifiability Conditions in Theorem 2 of Park, 2020) Consider a lin-
ear SEM (2) with DAG G and true ordering π. Then, DAG G is uniquely identifiable if
either of the following conditions is satisfied.

(a) Equal error variance condition:

σ21 = σ22 = ... = σ2p.

(b) Forward stepwise selection condition; for any node j = πr ∈ V and k ∈ De(j):

σ2j = Var(Xj | Xπ1 , ..., Xπr−1)

< Var(Xk | Xπ1 , , ..., Xπr−1) = σ2k + E(Var(E(Xk | XPa(k)) | Xπ1 , ..., Xπr−1)).

(c) Backward stepwise selection condition; for any node j = πr ∈ V and ` ∈ An(j):

σ2j = Var(Xj | Xπ1 , ..., Xπr \Xj)

> Var(X` | Xπ1 , ..., Xπr \X`) = σ2` − E(Var(E(X` | Xπ1 , ..., Xπr \X`) | XPa(`))).
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In many areas, these conditions are acceptable and widely used; for example, the as-
sumption of the exact same error variances, proposed in Peters and Bühlmann (2014), is
used for applications with variables from a similar domain, a spatial or a time-series data.
Hence, recent works developed linear SEM learning algorithms in three different settings:
(i) Gaussian and non-Gaussian error distributions, (ii) low- and high-dimensional regimes,
and (iii) homogeneous and heterogeneous error variances.

The GDS algorithm proposed in Peters and Bühlmann (2014) is a popular graph-wise
estimation approach for a Gaussian linear SEM with homogeneous error variances. It applies
the following penalized maximum likelihood by assuming all error distributions are Gaussian
with the same error variances:

{B̂, σ̂2} = arg min
B∈Rp×p,σ2∈R+

np

2
log
(
2πσ2

)
+

n

2σ2
tr
{

(I −B)>(I −B)Σ̂
}

+
log(n)

2
‖B‖0,

where n is the sample size, B is the weight matrix, and Σ̂ is the sample covariance matrix
for X. In addition, ‖B‖0 = |{(j, k) | [B]jk 6= 0}|. In principle, the GDS algorithm directly
finds a directed graph, and hence, it calculates the likelihood of all possible graphs, where
the number of graphs exponentially grows with the number of nodes. Hence, the drawback
with the graph-wise estimation approach is an exponentially growing computational cost.

The TD algorithm developed in Chen et al. (2019) is a two-stage algorithm for learning
high-dimensional sub-Gaussian linear SEMs with the same error variances. The first stage
estimates an element of the ordering from the beginning by comparing the conditional
variance. And then, the second stage performs parent estimations using existing variable
selection techniques (Shojaie and Michailidis, 2010). More precisely, the r-th element of the
ordering is determined using a best subset-based method with predetermined size q such
that

π̂r = arg min
j∈V \π̂1:(r−1),S⊂π̂1:(r−1),|S|=q

Var(Xj | XS).

Like the GDS algorithm, the TD algorithm may not be computationally feasible for a
large-scale graph estimation, because it requires O(pq+1) conditional variance estimations to
infer the ordering. Furthermore, the specified q should be the upper bound of the maximum
indegree; otherwise, there is no guarantee that the algorithm finds the true graph. However,
this constraint enables the TD algorithm to recover a graph in a high-dimensional setting.

The GDS and TD algorithms assume the same error variances, and hence, the Ghoshal
and Honorio (2018); Park and Kim (2020); Park (2020) develop structure learning algo-
rithms based on the forward and backward stepwise selection conditions in Lemma 1. The
US algorithm in Park (2020) focuses on learning a low-dimensional SEM with heteroge-
neous error variances. In other words, the algorithm can learn not only Gaussian linear
SEMs, but also non-Gaussian and non-linear SEMs. More precisely, the algorithm first
estimates an element of the ordering either from the beginning or the end using node-wise
uncertainty scores. And then, it finds each directed edge using a conditional independence
test. However, it is only applicable to the low-dimensional model.

The LISTEN algorithm proposed in Ghoshal and Honorio (2018) focuses on learning a
high-dimensional linear SEM with heterogeneous error variances using the backward step-
wise selection condition. It allows a broader class of error distributions with a sub-Gaussian
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and (4m)-th bounded moment. More specifically, the LISTEN algorithm first estimates the
last element of the ordering using the diagonal entries of the inverse covariance matrix. And
then, it determines its parents with non-zero entries on its row of the inverse covariance
matrix. After eliminating the last element of the ordering, the algorithm applies the same
procedure until a graph is completely estimated.

The existing algorithms have not yet focused on the `1-regularized regression-based ap-
proach for learning a high-dimensional linear SEM, whereas undirected graphical models
have been successfully estimated based on `1-regularized regression. In particular, Mein-
shausen and Bühlmann (2006); Yang et al. (2015) establish consistency in learning (Gaus-
sian) undirected graphical models via `1-regularized regression where the sample bound is
Ω(d log p) in which d is the degree of the undirected graph. This motivates a new regression-
based algorithm that learns high-dimensional SEMs with relaxed error distributions holding
the sub-Gaussian and bounded-moment properties. We provide details on the new algo-
rithm in the next section.

3. Algorithm

This section introduces a new regression-based algorithm for high-dimensional linear SEMs.
The proposed algorithm mainly exploits the backward stepwise selection condition, and
hence, it allows heterogeneous error variances. A key component of the algorithm is
component-wise ordering and parent estimations, where the problems can be efficiently
addressed using `1-regularized regression. The overall process of the proposed algorithm is
summarized in Algorithm 1.

To be specific, the proposed algorithm first estimates the last element of the ordering,
and then determines its parents. The algorithm then estimates the next element of the
ordering and its parents. It iterates this procedure until the complete graph structure is
determined. Hence, the r-th iteration of the algorithm estimates πp+1−r and its parents,
given the estimated π̂p+2−r, ..., π̂p if r ≥ 2. More precisely, the r-th iteration of the algorithm
is first conducted by following `1-regularized regression: For each node j ∈ V ,

θ̂j(r) := arg min
θ∈R|Sj(r)|

1

2n

n∑
i=1

(X
(i)
j − 〈X

(i)
Sj(r)

, θ〉)2 + λ‖θ‖1, (5)

where Sj(r) = V \ ({j} ∪ {π̂p+2−r, ..., π̂p}) if r ≥ 2; otherwise, Sj(r) = V \ {j}. In addition,
〈·, ·〉 represents the inner product. This can be understood as the neighborhood estimation
of node j in the moralized graph under the faithfulness assumption where each conditional
independence relationship between Xj and Xk given XS is equivalent to d-separation be-
tween j and k given S (see details in Spirtes et al., 2000). However, it should be pointed
out that, without the faithfulness assumption, it still uncovers the parents for πp+1−r and
the subset of the neighborhood for j ∈ {π1, ..., πp−r} in the population. The detailed justi-
fication is provided in Section 3.1.

Then, the algorithm determines πp+1−r with the largest conditional variance, given
XSj(r) for all j ∈ {π1, ..., πp+1−r}, using the backward stepwise selection condition in
Lemma 1. Based on the result of `1-regularized regression expressed in Equation (5), there
are various consistent estimators, such as the residual sum of squares estimator, the cross-
validation-based estimator, and the refitted cross-validation estimator (see more details in
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Fan et al., 2012). In principle, any consistent estimator can be applied; however, this paper
focuses on the following two-stage `1-regularization method:

V̂ar(Xj | XSj(r)) :=
1

n

n∑
i=1

(
X

(i)
j − 〈X

(i)

T̂j(r)
, α̂j(r)〉

)2
, (6)

where α̂j(r) := arg min

α∈R|T̂j(r)|

1

n

n∑
i=1

(
X

(i)
j − 〈X

(i)

T̂j(r)
, α〉
)2
,

and T̂j(r) is the support of θ̂j(r) (i.e., T̂j(r) := {k ∈ Sj(r) | [θ̂j(r)]k 6= 0}) in which [θ̂j(r)]k
is an element of θ̂j(r) corresponding to the random variable Xk. In addition, α̂j(r) is the
ordinary least square estimator where Xj is a response variable and X

T̂j(r)
are explanatory

variables.

The parent estimation for πp+1−r is direct from the solution of `1-regularized regression,
because its support is the parents for πp+1−r in the population (see Proposition 2). Hence,

the parents of node j = πp+1−r are determined as P̂a(j) := {k ∈ Sj(r) : [θ̂j(r)]k 6= 0} where

θ̂j(r) is the solution to Equation (5).

The proposed approach is essentially an optimization problem that guarantees a global
optimum for the objective function in Equation (5). In other words, the performance of the
proposed method highly depends on that of `1-regularized regression. Hence, it intuitively
makes sense that the proposed algorithm consistently learns a high-dimensional linear SEM
without the commonly used faithfulness, known degree, and Gaussian error distribution
assumptions that are not necessary for `1-regularized regression. Furthermore, the proposed
method is computationally as efficient as `1-regularized regression.

Algorithm 1: High-dimensional Linear SEM Learning Algorithm

Input : n i.i.d. samples, X1:n

Output: Estimated graph structure, Ĝ = (V, Ê)

Set π̂p+1 = ∅ ;
for r = {1, 2, ..., p− 1} do

for j ∈ V \ {π̂p+1, ..., π̂p+2−r} do
Sj(r) = V \ ({j} ∪ {π̂p+1, ..., π̂p+2−r}) ;

Estimate θ̂j(r) for `1-regularized regression in Equation (5);

Estimate conditional variances V̂ar(Xj | XSj(r)) using Equation (6);

end
Determine the (p+ 1− r)-th element of the ordering:

π̂p+1−r = arg maxj V̂ar(Xj | XSj(r));

Determine the parents of π̂p+1−r: P̂a(π̂p+1−r) = {k ∈ Sj(r) : [θ̂π̂p+1−r
(r)]k 6= 0};

end

Return: Estimate an edge set, Ê = ∪r∈{1,2,...,p−1}{(k, π̂p+1−r) : k ∈ P̂a(π̂p+1−r)}
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3.1 Theoretical Guarantees

This section provides the statistical guarantees on Algorithm 1 for learning high-dimensional
linear SEMs (2). As discussed, although the proposed algorithm runs with any appropriate
estimator for conditional variances, we focus on the case where the two-stage lasso variance
estimator (6) is applied.

We begin in Section 3.1.1 by stating the assumptions on the sample covariance ma-
trix required in our analysis, including a particular type of mutual incoherence or irrepre-
sentability condition. Then, in Section 3.1.2, we state our main results on the consistency
of Algorithm 1 for both sub-Gaussian and (4m)-th bounded-moment linear SEMs. The
main results are expressed in terms of the triple (n, p, d) where n is the sample size, p is the
number of nodes, and d is the maximum degree of the moralized graph.

For ease of notation, θ∗j (r) denotes the solution to Equation (5) when λ = 0 in the
population. Then, it can be expressed as follows:

θ∗j (r) := arg min

θ∈R|S
∗
j
(r)|

E
(

(Xj − 〈XS∗j (r)
, θ〉)2

)
, (7)

where S∗j (r) = {π1, ..., πp+1−r} \ {j} and 〈·, ·〉 represents the inner product.
Simple algebra yields ΣS∗j (r)S

∗
j (r)

θ∗j (r) = ΣS∗j (r)j
where ΣS∗j (r)S

∗
j (r)

is a sub-matrix of the

true covariance matrix Σ corresponding to variables XS∗j (r)
. Hence, we re-formalize Xj as

follows:

Xj = 〈XPa(j), β
∗
j 〉+ εj = 〈XS∗j (r)

, θ∗j (r)〉+ δj ,

where β∗j = (βjk)k∈Pa(j) in Equation (2), and δj = Xj − 〈XS∗j (r)
, θ∗j (r)〉.

In the special case where j is πp+1−r, θ
∗
j (r) corresponds exactly to the set of true

parameters; that is, [θ∗j (r)]k = βjk if k ∈ Pa(j); otherwise, [θ∗j (r)]k = 0. However, our
results apply more generally for j 6= πp+1−r. Hence, the following proposition is necessary
to guarantee that the above re-formalized problem in terms of θ∗j (r) is a still sparse regression
problem under the bounded degree of the moralized graph condition.

Proposition 2 For any r ∈ {1, 2, ..., p − 1}-th iteration and j ∈ {π1, ..., πp+1−r}, the true
support of the solution θ∗j (r) to Equation (7) is a subset of the neighborhood of j in the
moralized graph:

Supp(θ∗j (r)) ⊂ Ne(j).

In addition, for j = πp+1−r, it is the parents of j:

Supp(θ∗j (r)) = Pa(j).

The detailed proof is provided in Appendix C.1. It should be pointed out that Proposi-
tion 2 does not require the faithfulness assumption that can be very restrictive especially for
linear SEMs (see details in Uhler et al., 2013). The faithfulness assumption guarantees that
Supp(θ∗j (r)) = Ne(j) for j ∈ {π1, ..., πp+1−r}. However, our focus is to learn the parents of
j = πp+1−r, and hence, Algorithm 1 accurately recovers a graph without the faithfulness
assumption.

9



Park, Moon, Park, and Jeon

3.1.1 Assumptions

We begin by discussing the assumptions we impose on the linear SEM (2) for both sub-
Gaussian and bounded-moment error distributions. Our first two assumptions are prevalent
in the literature, such as Wainwright et al. (2006); Ravikumar et al. (2011); Yang et al.
(2015); Park and Raskutti (2018); Park and Park (2019b) where `1-regularized regression
was used for graphical model learning.

Assumption 3 (Incoherence Assumption) For any r ∈ {1, 2, ..., p−1}-th iteration and
j ∈ {π1, ..., πp+1−r}, there exists a positive constant γ > 0 such that

max
j,r

max
t∈Tj(r)c

∥∥∥∥∥∥
n∑
i=1

(X
(i)
t )>X

(i)
Tj(r)

(
n∑
i=1

(X
(i)
Tj(r)

)>X
(i)
Tj(r)

)−1∥∥∥∥∥∥
∞

≤ 1− γ,

where Tj(r) ⊂ Ne(j) is the support of the solution θ∗j (r) to Equation (7).

Assumption 4 (Dependency Assumption) There exists a positive constant λmin > 0
such that

min
j∈V

Λmin

(
1

n

n∑
i=1

(X
(i)

Ne(j))
>X

(i)

Ne(j)

)
≥ λmin,

where Λmin(A) denotes the minimum eigenvalue of a matrix A.

The incoherence assumption ensures that parent and non-parent variables are not overly
correlated. Furthermore, the dependency condition forces the number of neighbors to be
small (d < n), and ensures that variables belonging to the neighborhood do not become
overly dependent.

Assumption 5 For any node j = πr ∈ V and ` ∈ An(j), there exists a positive constant
τmin > 0 such that

σ2j − σ2` + E(Var(E(X` | Xπ1 , ..., Xπr \X`) | XPa(`))) > τmin.

Assumption 6 (Minimum Signal Assumption) For any r ∈ {1, 2, ..., p − 1}-th itera-
tion and j ∈ {π1, ..., πp+1−r}, there exists a positive constant θmin > 0 such that

min
j,r
|θ∗j (r)| > θmin.

Assumption 5 is the sample version of the backward selection identifiability condition in
Lemma 1. Since this section focuses on learning a linear SEM in the finite sample setting,
this stronger identifiability assumption is inevitable. In the same manner, Assumption 6 is
required to ensure that each non-zero coefficient of θ∗j (r) is sufficiently far away from zero.

Although our assumptions are standard in the previous graphical model learning ap-
proaches using `1-regularized regressions (e.g., Meinshausen and Bühlmann, 2006; Raviku-
mar et al., 2011; Yang et al., 2015), it should be noted that these assumptions might be very
restrictive and non-checkable. For instance, the minimum signal assumption, also referred
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to as the beta-min condition, is questionable to be true in a real-world problem when the
presence of weak signals cannot be ruled out.

However, we also point out that a lot of recent works have studied variable selection
approaches under weaker assumptions (e.g., Bühlmann et al., 2013; Zhang and Zhang,
2014; Chernozhukov et al., 2019). In principle, accurate variable selection and conditional
variance estimation are sufficient for recovering linear SEM, and thus, we believe that one
can develop a more practical and consistent algorithm under milder assumptions. We leave
this to future study.

3.1.2 Main Result

This section provides the theoretical results of Algorithm 1 in terms of the triple (n, p, d)
where n is the sample size, p is the number of nodes, and d is the maximum degree of the
moralized graph. More precisely, it provides theoretical guarantees on the `1-regularized
regression problem in Equation (5) and on the ordering estimation problem when the two-
stage lasso variance estimator (6) is applied.

Theorem 7 Consider a linear SEM (2) with sub-Gaussian and (4m)-th bounded-moment
errors. Suppose that Assumptions 3, 4, and 6 are satisfied. In addition, suppose that

a regularization parameter is λ ∈ (0,min{θminλmin,
10σ2

max
γ }) where σ2max is the maximum

error variance.

• For a sub-Gaussian linear SEM, there exist positive constants C1, C2, C3, and C4 > 0
such that, for any r ∈ {1, 2, ..., p− 1} and j ∈ {π1, ..., πp+1−r},

Pr
(

sign
(
θ̂j(r)

)
= sign

(
θ∗j (r)

))
≥ 1− C1exp

(
−C2nλ

2

d2

)
− C3exp

(
−C4n

d2

(
θmin −

λ

λmin

)2
)
.

• For a (4m)-th bounded-moment linear SEM, there exist positive constants D1 and
D2 > 0 such that, for any r ∈ {1, 2, ..., p− 1} and j ∈ {π1, ..., πp+1−r},

Pr
(

sign
(
θ̂j(r)

)
= sign

(
θ∗j (r)

))
≥ 1−D1

d2m

nmλ2m
−D2

d2m

nm

(
θmin −

λ

λmin

)−2m
.

The detailed proof is in Appendix A. The key technique for the proof is the primal-
dual witness method used in sparse `1-regularized regressions and related techniques as in
Meinshausen and Bühlmann (2006); Wainwright et al. (2006); Ravikumar et al. (2010); Yang
et al. (2015). Theorem 7 intuitively makes sense, because neighborhood selection via `1-
regularized regression is a well-studied problem, and its bias can be controlled by choosing an
appropriate regularization parameter. Hence, our `1-regularized regression-based approach
successfully recovers the sign of the solution in Equation (7) for sub-Gaussian and (4m)-th
bounded-moment error variables.

A combination of Theorem 7 and Proposition 2 implies that the directed edges can be
recovered with high probability when the ordering is provided. Hence, with an appropriate
regularization parameter, and applying the union bound, if n = Ω(d2 log p) for a sub-
Gaussian linear SEM and if n = Ω(d2p1/m) for a (4m)-th bounded-moment linear SEM, the
proposed algorithm accurately learns the parents with high probability.
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Theorem 8 Consider a linear SEM (2) with sub-Gaussian and (4m)-th bounded-moment
errors. Suppose that Assumptions 3, 4, 5, and 6 are satisfied. In addition, for any r ∈
{1, 2, ..., p − 1} and j ∈ {π1, ..., πp+1−r}, the supports of (θ∗j (r)) are correctly recovered.
Then, Algorithm 1 estimates the ordering with high probability.

• For a sub-Gaussian linear SEM, there exist positive constants C1 and C2 > 0 such
that

Pr (π̂ = π) > 1− C1p
2exp

(
−C2n

d2

)
.

• For a (4m)-th bounded-moment linear SEM, there exists a positive constant D1 > 0
such that

Pr (π̂ = π) > 1−D1p
2d

2m

nm
.

The main point of the proof is to show the consistency of the two-stage lasso condi-
tional variance estimator and the conditional variance comparisons based on the backward
selection condition in Lemma 1. This also intuitively makes sense because, in principle, it
involves the conditional variance estimations in low-dimensional settings where the number
of variables belonging to the conditioning set is up to d. However, there are p(p+ 1)/2− 1
conditional variances to be estimated. Furthermore, sub-Gaussian and (4m)-th bounded-
moment variables are considered, and hence, we provide the detailed proof in Appendix B.

Finally, by combining Theorems 7, 8, and Proposition 2, we reach the final main result
that Algorithm 1, with high probability, successfully recovers the true structure of a sub-
Gaussian and a (4m)-th bounded-moment linear SEM, respectively.

Corollary 9 (Consistency of the Proposed Algorithm) Consider a linear SEM (2)
with sub-Gaussian and bounded-moment errors. Suppose that Assumptions 3, 4, 5, and 6
are satisfied, and an appropriate regularization parameter is chosen.

• For a sub-Gaussian linear SEM, Algorithm 1 finds the true graph with high probability
if sample size n = Ω(d2 log p).

• For a (4m)-th bounded-moment linear SEM, Algorithm 1 finds the true graph with
high probability if sample size n = Ω(d2p2/m).

3.2 Computational Complexity

In this section, we provide the computational complexity for Algorithm 1 where the lasso
variance estimator seen in Equation (6) is applied, as discussed in Section 3.1. Then, the
proposed algorithm involves O(p2) `1-regularized regressions where the worst-case complex-
ity is O(np) for a single `1-regularized regression run (Friedman et al., 2009). Specifically,
the coordinate descent method updates each gradient in O(p) operations. Hence, with the
maximum d non-zero terms in the regression in Equation (5), a complete cycle costs O(pd)
operations if no new variables become non-zero, and costs O(np) for each new variable
entered (see details in Friedman et al., 2010). Since Algorithm 1 has p − 1 iterations, and
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there are p + 1 − r regressions with p − r independent variables for the r-th iteration, the
total worst-case complexity for `1-regularized regressions is O(np3).

For a conditional variance estimation, there are p(p + 1)/2 − 1 conditional variance
estimations, and the worst-case computational cost of each estimation is O(nd2 +d3). Since
a sparse moralized graph is assumed and a comparison of conditional variances takes up
to O(p2 log p) for all p − 1 iterations, the total worst-case complexity in recovering the
ordering is O(nd2p2 +p2 log p). Consequently, Algorithm 1 has a polynomial computational
complexity of O(np3 + nd2p2) at worst.

3.3 Comparisons to Other Works

Here, we compare our theoretical results against those in some related works. We first
compare Algorithm 1, against the high-dimensional linear SEM learning LISTEN, and TD
algorithms in terms of the sample complexity. Ghoshal and Honorio (2018) shows that the
CLIME-based LISTEN algorithm successfully learns a sub-Gaussian linear SEM with high
probability if the sample size is sufficiently large n = Ω(d4 log p). In addition, Chen et al.
(2019) proves that the best subset-based TD algorithm successfully learns a sub-Gaussian
linear SEM with high probability if the sample size is sufficiently large n = Ω(q2 log p),
where q is the predetermined upper bound of the maximum indegree. Hence, it can be
n = Ω(d2in log p) where din ≤ d is the maximum indegree of a graph. However, in terms
of the sample complexity of `1-regularized-based Algorithm 1, Section 3.1.2 shows that it
accurately estimates a sub-Gaussian linear SEM with high probability if the sample size
scales at n = Ω(d2 log p). Hence, the TD algorithm has the smaller sample complexity than
the proposed and LISTEN algorithms when learning a sub-Gaussian linear SEM.

In terms of (4m)-th bounded-moment linear SEM learning, Ghoshal and Honorio (2018)
shows that the LISTEN algorithm accurately recovers a graph if sample size n = Ω(d4p2/m).
In contrast, the proposed algorithm requires sample size n = Ω(d2p2/m). Hence, in learning
both sub-Gaussian and bounded-moment linear SEMs, the proposed algorithm has a better
sample complexity than the LISTEN algorithm. This difference in sample complexity can
also be found in Gaussian undirected graphical model learning between lasso-based learning
and graphical lasso-based learning approaches.

Now, we compare the computational complexities of the proposed, LISTEN, and TD
algorithms. The LISTEN algorithm has a complexity of O(n(p3 +pd4)) in learning a sparse
linear SEM. In addition, the TD algorithm requires O(npq) in which q is the upper bound
of the maximum indegree of a graph. Lastly, the worst-case complexity of the proposed
algorithm is O(n(p3 +p2d2)). We note that the computational complexities of the proposed
and LISTEN algorithms rely on the maximum degree of the moralized graph, whereas that
of the TD algorithm depends on the maximum indegree. Hence, they cannot be directly
compared. However, it is expected that if a graph has a node with a lot of parent nodes such
as a hub-node, the TD algorithm would require a huge run time. Comparisons of average
run times for the algorithms are provided in Section 4.3.

Lastly, we compare our algorithm to the `1-regularized-based Gaussian undirected graph-
ical model learning method. Meinshausen and Bühlmann (2006) shows that Gaussian
undirected graphical models can be recovered via `1-regularized regression if sample size
n = Ω (d log p), where d is the degree of the undirected graph. In contrast, this paper shows

13



Park, Moon, Park, and Jeon

that Gaussian linear SEMs can be learned via `1-regularized regression if n = Ω(d2 log p)
where d is obtained by the moralized graph. Furthermore, in terms of computational com-
plexity, the proposed algorithm is p times slower in the worst case. These differences in the
sample and time complexities mainly come from the presence of the ordering.

4. Numerical Experiments

This section presents the empirical performance of Algorithm 1 to support our theoretical
results indicating that the proposed algorithm consistently learns not only Gaussian linear
SEMs, but general linear SEMs with light and heavy tail distributions under appropriate
conditions. Hence, considered are high-dimensional (i) Gaussian linear SEMs and (ii) gen-
eral linear SEMs where error distributions are sequentially Gaussian, Uniform, Student’s
t, and Beta. Also shown is a comparison of Algorithm 1, the US (Park and Kim, 2020),
GDS (Peters and Bühlmann, 2014), LISTEN (Ghoshal and Honorio, 2018), and TD (Chen
et al., 2019) algorithms in terms of both accuracy and computational cost.

The proposed algorithm was evaluated for the empirical probability of successfully recov-
ering all edges; that is, P (E = Ê). In addition, the proposed algorithm and the comparison
US, GDS, LISTEN, and TD algorithms were evaluated in terms of the average Hamming
distance between the estimated and true DAGs (the number of edges that are different
between two graphs). For the Hamming distance, smaller is better.

To validate our theoretical findings from Theorems 7 and 8, the two-stage lasso-based
conditional variance estimator was applied to the proposed method. In terms of the regu-

larization parameters for the proposed and LISTEN algorithms, they were set to 2
√

log p
n .

In addition for the LISTEN algorithm, the hard threshold parameter was set to half of
the minimum value of true edge weights, min(|β∗jk|/2), by using the true model informa-
tion. Lastly, for the TD algorithm, we always set predetermined parameter q to the true
maximum indegree of a graph.

For the US algorithm, Fisher’s independence test was exploited with the significance
level α = 1−Φ(0.5n1/3) where Φ(·) is the cumulative distribution function of the standard
normal distribution. For the GDS algorithm, we set the initial graph to a random graph.
Since the GDS algorithm uses a greedy search, its accuracy relies on the initial graph, so
the GDS algorithm can recover the graph better with an appropriate choice of an initial
graph. Finally, the US and GDS algorithms were not applied to high-dimensional models
(n < p) because they are designed only for low-dimensional linear SEMs.

4.1 Gaussian Linear SEMs

We first conducted simulations using 100 realizations of p-node Gaussian linear SEMs (4)
with randomly generated underlying DAG structures for node size p ∈ {25, 50, 100, 150, 200, 250}
while respecting the maximum degree constraint d ∈ {5, 8} as done by Ghoshal and Honorio
(2017). The set of non-zero parameters, βjk ∈ R in Equation (4), was generated uniformly
at random in the range βjk ∈ (−0.6,−0.4) ∪ (0.4, 0.6). Lastly, all noise variances were set
to σ2j = 0.75.

Figures 1 (a) and (c) show the empirical probability of successful DAG recovery with Al-
gorithm 1 by varying sample size n ∈ {100, 200, ..., 1500} for d = 5 and n ∈ {100, 200, ..., 2000}
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(a) Sparse: d = 5 (b) Sparse: d = 5

(c) Dense: d = 8 (d) Dense: d = 8

Figure 1: Probabilities of successful structure recovery for Gaussian linear SEMs with max-
imum degree d ∈ {5, 8}. The empirical probability of successful directed graph
recovery is shown versus sample size n (left) and versus re-scaled sample size
C = n/(log p) (right).

for d = 8, respectively. Figures 1 (b) and (d) plot the empirical probability against re-scaled
sample size C = n/ log p. This confirms Corollary 9 that sample size n required for a suc-
cessful graph structure recovery scales logarithmically with the number of nodes p. Hence,
we would expect the empirical curves for different problem sizes to more closely align with
this re-scaled sample size on the horizontal axis, a result clearly seen in Figures 1 (b) and
(d). Figures 1 (a) - (d) also reveal that Algorithm 1 requires fewer samples to recover a
sparse graph. Hence, these simulation results empirically support our theoretical findings.

Figure 2 evaluates the proposed algorithm and the state-of-the-art US, GDS, LISTEN,
and TD algorithms in terms of recovering DAGs with p ∈ {25, 50, 100} by varying sample
size n ∈ {100, 200, ..., 1000}. As seen in Figure 2, the proposed algorithm (HLSM) recovers
the true directed edges better as the sample size increases and the Hamming distance
converges to 0. We also see that the proposed algorithm performs better for the sparse
setting (d = 5) than for the dense setting (d = 8). Hence, these simulation results also
heuristically confirm the consistency of the proposed algorithm.

Figure 2 shows that the proposed algorithm generally performs as accurately as, or
significantly better than, the comparison algorithms with our settings. This phenomenon is
not contradictory, because the comparison methods are designed for learning (sub-)Gaussian
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(a) p = 25, d = 5 (b) p = 50, d = 5 (c) p = 100, d = 5

(d) p = 25, d = 8 (e) p = 50, d = 8 (f) p = 100, d = 8

Figure 2: Comparison of the proposed algorithm (HLSM) against the US, GDS, LISTEN,
and TD algorithms in terms of average Hamming distance for learning Gaussian
linear SEMs.

linear SEMs in low- and high-dimensional settings. However, it must be emphasized that
the comparison US and GDS algorithms cannot be implemented in high-dimensional or
large-scale graph settings. Furthermore, the TD algorithm is not applicable to large-scale
dense graphs owing to the heavy computational cost discussed in Section 3.2. Hence, we
do not present the results of the comparison methods for large-scale graphs because of the
lack of samples and the huge run time, but a comparison of the run times is provided in
Section 4.3.

Lastly, we again point out that the performances of the US, GDS, and LISTEN al-
gorithms depend highly on the significance level, the initial graph, and the regularization
parameter, respectively. In addition, unlike the proposed and LISTEN algorithms, the sam-
ple complexity of the TD algorithm relies on the maximum indegree of a true graph rather
than the maximum degree of the moralized graph. Hence, we emphasize that this numer-
ical study does not imply that the proposed method is always better than the comparison
algorithm.

4.2 Linear SEMs with Different Error Distributions

This section verifies the main result that Algorithm 1 successfully learns high-dimensional
linear SEMs where non-Gaussian error distributions are allowed. Hence, 100 sets of samples
were generated under the procedure specified in Sections 4.1, except that error distributions
were sequentially Uniform, U(−1.25, 1.25), Gaussian, N(0, 0.5), a 1√

3
Student’s t with 6

degree of freedom, and a twice centered Beta, Beta(0.5, 0.5), distributions. Then, the

16



Learning a High-dimensional Linear SEM via `1-Regularized Regression

(a) Sparse: d = 5 (b) Sparse: d = 5

(c) Dense d = 8 (d) Dense: d = 8

Figure 3: Probabilities of successful structure recovery for linear SEMs with maximum de-
gree d ∈ {5, 8}. The empirical probability of successful directed graph recov-
ery is shown versus the sample size n (left) and versus re-scaled sample size
C = n/(log p) (right).

proposed algorithm and the comparison methods were evaluated by varying the sample
size, as seen in Figures 3 and 4.

The simulation results in Figure 3 and 4 are analogous to the results for Gaussian linear
SEMs in Section 4.1. More specifically, they empirically support the assertion that the
proposed algorithm requires sample size n depending on maximum degree d and log p for
successful graph structure recovery. Hence, these numerical experiments confirm that, un-
der the required conditions, Algorithm 1 consistently learns high-dimensional sparse linear
SEMs, regardless of the type of error distribution.

Further shown is that the proposed algorithm at our settings recovers the graph as ac-
curately as, and better than, the comparison algorithms in terms of Hamming distance.
That is also expected, because Peters and Bühlmann (2014); Chen et al. (2019) empirically
show that the GDS and TD algorithms can successfully learn linear SEMs even with het-
erogeneous error variances. Furthermore, Park (2020) discusses the robustness of the US
algorithm with non-Gaussian linear SEMs without theoretical guarantees. However, the
GDS algorithm is only applied to 25-node graphs because of the huge computational cost.
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(a) p = 25, d = 5 (b) p = 50, d = 5 (c) p = 100, d = 5

(d) p = 25, d = 8 (e) p = 50, d = 8 (f) p = 100, d = 8

Figure 4: Comparison of the proposed algorithm (HLSM), against the US, GDS, LISTEN,
and TD algorithms in terms of average Hamming distance when learning linear
SEMs with Gaussian, Uniform, Student’s t error, and Beta error distributions.

4.3 Computational Complexity

One of the important issues in learning DAG models is computational cost owing to the
super-exponentially growing number of DAGs in the number of nodes. To validate the
computational complexity discussed in Section 3.2, Figure 5 compares the average log run
time of high-dimensional linear SEM learning algorithms. More specifically, Figure 5 mea-
sured the run time of the proposed, LISTEN and TD algorithms when learning Gaussian
SEMs, exploited in Section 4.1, with fixed sample size n = 1000 by varying node size
p ∈ {25, 50, 100, 150, 200} and maximum degree d ∈ {5, 8}.

As we can see in Figure 5, the proposed algorithm has polynomial computational com-
plexity in the number of nodes. In addition, as the number of nodes increases, the pro-
posed algorithm is computationally more efficient than the comparison methods. This
phenomenon is more exaggerated in our settings when the considered graphs are dense. For
a 200-node dense graph estimation especially, the average run time of the TD algorithm
takes over 10 hours, and hence, its result does not appear in Figure 5. However, we again
point out that the computational complexity of the TD algorithm depends on the maximum
indegree of a graph. Hence, when the maximum indegree of a true graph is small, while the
degree of its moralized graph is large, the TD algorithm is computationally more efficient.

5. Real Data: Spread Map of COVID-19 in China

This section applies the proposed algorithm to real COVID-19 data for daily confirmed
cases in China where the COVID-19 viral disease first spread in Wuhan and became highly

18



Learning a High-dimensional Linear SEM via `1-Regularized Regression

(a) Sparse: d = 5 (b) Dense: d = 8

Figure 5: Comparison of the proposed algorithm (HLSM), against the LISTEN and TD
algorithms in terms of average log run time for learning Gaussian linear SEMs
when sample size n = 1000 and number of nodes p ∈ {25, 50, 100, 150, 200}.

(a) January 24, 2020 (b) January 31, 2020

(c) February 07, 2020 (d) February 14, 2020

Figure 6: Heat maps of the cumulative confirmed cases for major cities and provinces in
China from January 24, 2020, to February 14, 2020.

contagious (Wu et al., 2020). Although the disease spread may not be acyclic, the vio-
lation of the assumptions was considered as additive errors. Hence, the estimated graph
provides the major trend of the disease spread rather than the exact spread. The data were
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(a) March 22, 2020 (b) March 29, 2020

(c) April 5, 2020 (d) April 12, 2020

Figure 7: Heat maps of the cumulative confirmed cases for major cities and provinces in
China from March 22, 2020, to April 12, 2020.

collected from the Coronavirus Resource Center of Johns Hopkins University & Medicine
(https://coronavirus.jhu.edu/map.html).

We focused on 31 major cities and provinces and the daily percentage of new infec-
tions over each of the following two periods: Stage (1) from January 24, 2020 (the early
days of the COVID-19) to March 15, 2020 (when transmission of the virus stabilized), and
Stage (2) from March 16, 2020 (when the number of confirmed cases began to increase
again) to May 6, 2020. Hence, the data set for each stage has a total of 52 records by date
for the following 31 regions in China: Anhui, Beijing, Chongqing, Fujian, Gansu, Guang-
dong, Guangxi, Guizhou, Hainan, Hebei, Heilongjiang, Henan, Hong Kong, Hunan, Inner
Mongolia, Jiangsu, Jiangxi, Jilin, Liaoning, Macau, Ningxia, Qinghai, Shaanxi, Shandong,
Shanghai, Shanxi, Sichuan, Tianjin, Xinjiang, Yunnan, and Zhejiang. In summary, both
data sets contain p = 31 covariates and n = 52 samples. However, Hubei and Tibet were
excluded from the analysis because Wuhan, a major city in Hubei, had been locked down
from January 23 to April 8, and Tibet had only one confirmed case (a person who had
traveled to Wuhan). Lastly, owing to skewness in the data from outliers, we exploited a
3-day moving average for each day calculated by averaging the values of that day, the day
before, and the next day.

Figures 6 and 7 show the heat maps for the total number of confirmed cases for Stages
(1) and (2), respectively. However, for Figure 7, the confirmed cases before March 15 were
excluded to focus only on how the coronavirus spread in Stage (2). Hence, they uncover
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the approximate infection status, and how COVID-19 spread in Stages (1) and (2). As can
be seen in Figure 6, comparatively, there were a lot of confirmed cases in south-central and
eastern China, in places such as Henan, Guangdong, and Zhejiang, whereas northern and
north-western China had only a few confirmed cases on January 24. However, at the end
of Stage (1) on February 14, a lot of confirmed cases were seen in all provinces. Hence, it
seemed that COVID-19 was spreading outward from south-central China.

Figure 7 shows a lot of confirmed cases in southern China (for example, in Hong Kong)
on March 16. However, at the end of Stage (2), on April 12, there were more confirmed
cases reported in northern and north-eastern China. This phenomenon might be from a
spread of infections from Hong Kong to northern and north-eastern China in Stage (2). In
the same manner, it seems the disease spread from Beijing to adjacent provinces. Lastly,
there were no confirmed cases were reported in Hainan, Ningxia, Qinghai, and Xinjiang in
Stage (2). Hence, they were not considered for the analysis of COVID-19 spread in Stage
(2).

Figures 8 (a) and (b) show directed graphs estimated by the proposed algorithm for
Stages (1) and (2), respectively, where the regularization parameter was set to λ = 7.5 ×√

log p
n in order to see only legitimate edges. As we can see in Figure 8 (a), there were 32

directed edges, and most of the directed edges were from south-central China toward other
regions. In particular, there were 10 edges from Guangdong and Henan, whereas the regions
in north-eastern and north-western provinces, such as Xinjiang, Jilin, and Heilongjiang, had
only incoming edges. We believe this result agrees with Figure 6, which shows the disease
movement trend from south-central China toward other districts. Hence, it seems to make
sense for there to be many directed edges from Guangdong and Henan. In the same manner,
most of the estimated directed edges are interpretable.

However, we also acknowledge that there were some non-explainable edges between
spatially far-away districts, such as (Liaoning, Qinghai), (Fujian, Qinghai), and (Shanghai,
Yunan). In addition, some important edges are missing between adjacent provinces, such
as edges from Zhejiang, which was one of the most infectious areas in the early days of
Stage (1). These falsely estimated and missing edges are also shown in the estimated graph
for Stage (2). That might have been caused by the following: (i) the data used in this
paper are not independent; (ii) the required conditions for the proposed algorithm may not
be satisfied; and (iii) inner-province infections and mutual transmissions between provinces
existed.

Figure 8 (b) presents 25 directed edges, and we can see a trend where most of the edges
are toward northern and north-eastern China. Furthermore, there were 5 directed edges
from Hong Kong, which is consistent with Figure 7, where there was a trend of infections
spreading from Hong Kong to northern and north-eastern China.

Finally, we acknowledge that our proposed method has many errors, because other
neighboring countries were not considered and our assumptions, such as the existence of
clear cycles, nonlinear dependency and independent samples, may not be completely sat-
isfied. Nevertheless, it should be emphasized that this analysis does not apply any prior
information on COVID-19’s spread, but only exploits the number of daily confirmed cases
in China. Hence, we believe the proposed method is applicable as a low-resolution way to
figure out how a viral disease spreads, even when there is no prior tracking information.
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(a) Stage (1): January 24, 2020 - March 15, 2020
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(b) Stage (2): March 16, 2020 - May 6, 2020

Figure 8: Estimated directed graphs for new COVID-19 confirmed-case proportions in
China via the proposed algorithm.
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6. Discussion and Future Works

This paper provides a statistically consistent and computational feasible algorithm for learn-
ing high-dimensional linear SEMs via `1-regularized regression. However, several topics re-
main for future work. An important problem is determining whether the backward stepwise
selection identifiability condition is satisfied from the observational data. However, not yet
studied is how it can be confirmed from the data. The proposed method requires a sparse
moralized graph that could be restrictive for special types of graphs, such as a bipartite
graph and a star graph. Hence, it would be interesting to explore a new approach with
relaxed sparsity condition (e.g., a maximum indegree constraint or approximate sparsity
condition in Klaassen et al., 2018). Furthermore, the proposed algorithm needs restrictive
linearity, incoherence and minimum signal assumptions. We believe that a new method
with milder conditions can be developed, and one may be able to prove its consistency.

In addition, we conjecture that the proposed algorithm can be improved in terms of the
computational cost, because the algorithm may not require O(p2) `1-regularized regressions.
Hence, we believe it is possible to develop a more computationally efficient algorithm. Lastly,
we also believe our regression-based algorithm can easily be extended to robust linear SEM
learning, like the undirected graphical model learning approaches.
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Appendix A. Proof for Theorem 7

Proof Algorithm 1 involves p(p− 1)/2 optimization problems in Equation (10). However,
the theoretical guarantees for all problems are analogous, and hence, we only consider an
arbitrary r ∈ {1, 2, ..., p − 1}-th iteration, and node j ∈ {π1, ..., πp+1−r} in Algorithm 1.
For ease of notation, let [·]k and [·]S denote parameter(s) corresponding to variable Xk

and random vector XS , respectively. In addition, subscripted j and r in parentheses are
omitted to improve readability, and hence, we denote θ∗j (r), θ̂j(r), Sj(r), Tj(r), Zj(r), and

Ẑj(r) as θ∗, θ̂, S, T , Z, and Ẑ, respectively. Furthermore, we let smax and Kmax are
the maximum values of the sub-Gaussian and the (4m)-th bounded moment parameters of
variables, respectively. Lastly, σ2max is the maximum error variance.

We restate the true parameters in Equation (7). Suppose that θ∗ denotes the solution to
the following problem, where S ⊂ V \({j}∪{πp, ..., πp+2−r}) if r ≥ 2; otherwise, S = V \{j}:

θ∗ := arg min
θ∈R|S|

E
(
(Xj − 〈XS , θ〉)2

)
. (8)

Simple algebra yields ΣSS θ
∗ = ΣSj where ΣSS is a sub-matrix of the true covariance

matrix Σ corresponding to variables XS . Hence, we re-formalize Xj as the following:

Xj = 〈XPa(j), β
∗〉+ εj = 〈XS , θ

∗〉+ δj ,

where δj = Xj − 〈XS , θ
∗〉.
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For ease of notation, we define a set of non-zero elements as an index of θ∗, which is
T := {k ∈ S | [θ∗]k 6= 0}. Then, Xj can be re-written as

Xj = 〈XS , θ
∗〉+ δj = 〈XT , [θ

∗]T 〉+Xj − 〈XT , [θ
∗]T 〉. (9)

The main goal of the proof is to find a minimizer of the following `1-regularized regression
problem:

θ̂ = argmin
θ∈R|S|

1

2n

n∑
i=1

(
X

(i)
j − 〈X

(i)
S , θ〉

)2
+ λ‖θ‖1, (10)

where λ > 0 is a regularization parameter. By setting the sub-differential to 0, θ̂ satisfies
the following condition:

5θ

(
1

2n

n∑
i=1

(X
(i)
j − 〈X

(i)
S , θ〉)2 + λ‖θ‖1

)
=

1

n

n∑
i=1

(
X

(i)
j − 〈X

(i)
S , θ〉

)
X

(i)
S + λẐ = 0, (11)

where Ẑ ∈ R|S| and [Ẑ]t = sign([θ̂]t) if t ∈ T ; otherwise, |[Ẑ]t| ≤ 1.

In the high-dimensional setting (p > n), the convex program in Equation (10) is not
necessarily strictly convex, so it might have multiple optimal solutions. Hence, we introduce
the following lemma, adapted from Lemma 1 in Ravikumar et al., 2010 and Lemma 8 in
Yang et al., 2015, implying that the solutions nonetheless share their support set under
appropriate conditions.

Lemma 10 (Lemma1 in Ravikumar et al., 2010, Lemma 8 in Yang et al., 2015)
For any r ∈ {1, 2, ..., p−1}-th iteration, and j ∈ {π1, ..., πp+1−r}, suppose that |[Ẑj(r)]t| < 1

for t /∈ Tj(r) in Equation (11). Then, any solution θ̂j(r) of Equation (10) satisfies [θ̂j(r)]t =

0 for all t /∈ Tj(r). Furthermore, if 1
nX
>
Tj(r)

XTj(r) is invertible, then θ̂ is unique.

Applying Assumption 4, Lemma 10 ensures that the solution to the `1-regularized re-
gression is unique, as long as |[Ẑ]t| < 1 for all t /∈ T . Hence, the remainder of the proof is
to show |[Ẑ]t| < 1 for all t /∈ T .

The following lemma provides the probability bound that maxt∈T c |[Ẑ]t| is less than 1
for sub-Gaussian and bounded-moment error distributions, respectively.

Lemma 11 Consider a fixed r ∈ {1, 2, ..., p − 1}-th iteration, j ∈ {π1, ..., πp+1−r} and

λ < 10σ2
max
γ .

• For a sub-Gaussian linear SEM,

Pr

(
max
t∈T c

j (r)
|[Ẑj(r)]t| < 1

)

≥ 1− 4 · exp

(
−n

128(1 + 4s2max) maxj(Σjj)2
λ2γ2λ4min

(d+ 2)2(10σ4max + λγσ2max + λγλmin)2

)
.
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• For a (4m)-th bounded-moment linear SEM,

Pr

(
max
t∈T c

j (r)
|[Ẑj(r)]t| < 1

)

≥ 1− 4 · 22m maxj(Σjj)
2mCm(Kmax + 1)

nm

(
λ2γ2λ4min

(d+ 2)2(10σ4max + λγσ2max + λγλmin)2

)−m
,

where Cm is a constant depending only on m.

So far, we have shown that the solution θ̂ to Equation (10) satisfies [θ̂]t = 0 for all t ∈ T c
with high probability. Now, we focus on sign([θ̂]t) = sign([θ]t) for all t ∈ T . The following
lemma provides the maximum error bound of each component of [θ̂]t for any t ∈ T .

Lemma 12 Consider a fixed r ∈ {1, 2, ..., p − 1}-th iteration, j ∈ {π1, ..., πp+1−r}, and an
arbitrary small positive ε′ ∈ (0, θmin).

• For a sub-Gaussian linear SEM,

Pr

(
max
j∈V
‖[θ̂j ]Tj(r) − [θj ]

∗
Tj(r)
‖∞ ≤ ε′

)
≥ 1− 4 · exp

(
−n

128(1 + 4s2max) maxj(Σjj)2

(
1

C1|Tj(r)|

(
ε′ − λ

λmin

))2
)
.

• For a (4m)-th bounded-moment linear SEM,

Pr

(
max
j∈V
‖[θ̂j ]Tj(r) − [θj ]

∗
Tj(r)
‖∞ ≤ ε′

)
≥ 1− 4 · 22m maxj(Σjj)

2mCm(Kmax + 1)

nm

(
1

C1|Tj(r)|

(
ε′ − λ

λmin

))−2m
,

where Cm is a constant depending only on m.

Applying Assumption 6, mint∈T |[θ∗]t| ≥ θmin and setting ε′ = θmin, it is clear that
sign([θ̂]t) = sign([θ∗]t) for all t ∈ T with high probability. Hence, combining the results
shown above, we reach one of our main theoretical results. For a sub-Gaussian error linear
SEM,

Pr
(

sign
(

[θ̂]Tj(r)

)
= sign

(
[θ∗]Tj(r)

))
≥ 1− 4 · exp

(
−n

128(1 + 4s2max) maxj(Σjj)2

(
1

C1|Tj(r)|

(
θmin −

λ

λmin

))2
)
.

In addition for a (4m)-th bounded-moment linear SEM,

Pr
(

sign
(

[θ̂]Tj(r)

)
= sign

(
[θ∗]Tj(r)

))
≥ 1− 4 · 22m maxj(Σjj)

2mCm(Kmax + 1)

nm

(
1

C1|Tj(r)|

(
θmin −

λ

λmin

))−2m
.
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Therefore, for a sub-Gaussian linear SEM, there exist positive constants C1, C2, C3, C4 >
0 such that

Pr
(

sign
(
θ̂j(r)

)
= sign

(
θ∗j (r)

))
≥ 1− C1 · exp

(
−C2nλ

2

d2

)
− C3 · exp

(
−C4n

d2

(
θmin −

λ

λmin

)2
)
.

In addition for a (4m)-th bounded-moment linear SEM, there exist positive constants
D1, D2 > 0 such that

Pr
(

sign
(
θ̂j(r)

)
= sign

(
θ∗j (r)

))
≥ 1−D1 ·

d2m

nmλ2m
−D2 ·

d2m

nm

(
θmin −

λ

λmin

)−2m
.

Appendix B. Proof for Theorem 8

Proof This section proves that Algorithm 1 accurately estimates the ordering with high
probability, given that θ∗j (r) are well estimated from `1-regularized regression. This theorem
can be proved in the same manner as the one developed in Park (2020). Here, we restate
the proof in our framework.

Without loss of generality, assume that the true ordering is unique, and that π =
(π1, π2, ..., πp) = (1, 2, ..., p). In addition for ease of notation, let π1:j = (π1, π2, ..., πj), and
omit subscripted j and r in parentheses as done in Appendix A. In addition, let smax and
Kmax are the maximum values of sub-Gaussian and (4m)-th bounded moment parameter of
variables, respectively. Lastly, σ2max is the maximum error variance. Then, the probability
that the ordering is correctly estimated from Algorithm 1 is

Pr (π̂ = π) = Pr
(

min
j=2,...,p

k=1,...,j−1

V̂ar(Xj | Xπ1:j\j)− V̂ar(Xk | Xπ1:j\k) > 0
)
.

Since it can be decomposed into the following two terms, we have

Pr (π̂ = π) ≥ Pr
(

min
j=2,...,p

k=1,...,j−1

{
Var(Xj | Xπ1:j\j)−Var(Xk | Xπ1:j\k)

}
> τmin, and

max
j=2,...,p
k=1,...,j

∣∣∣Var(Xk | Xπ1:j\k)− V̂ar(Xk | Xπ1:j\k)
∣∣∣ < τmin

2

)
.

The first term in the above probability is always satisfied because min{Var(Xj | Xπ1:j\j)−
Var(Xk | Xπ1:j\k)} > τmin from Assumption 5. Hence, the probability that the ordering is
correctly estimated from Algorithm 1 is reduced to

Pr (π̂ = π) ≥ Pr

 max
j=2,...,p
k=1,...,j

∣∣∣Var(Xk | Xπ1:j\k)− V̂ar(Xk | Xπ1:j\k)
∣∣∣ < τmin

2

 .
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Applying the union bound, we have

Pr (π̂ = π) ≥ 1− p2 max
j,k

Pr
(∣∣∣Var(Xk | Xπ1:j\k)− V̂ar(Xk | Xπ1:j\k)

∣∣∣ < τmin

2

)
.

Now, we focus on the consistency rate of the two-stage `1-regularization based condi-
tional variance estimator in Equation (6), which can be written as follows:

V̂ar(Xj | XS) :=
1

n

n∑
i=1

(Xj − 〈XT , α̂〉)2 , where α̂ := arg min
α∈R|T |

1

n

n∑
i=1

(
X

(i)
j − 〈X

(i)
T , α〉

)2
,

where T := {k ∈ S | [θ∗]k 6= 0} as defined in Appendix A. We acknowledge that the above
two-stage conditional variance estimator is well-known to be consistent. However, we prove
its consistency in our settings where variables have the sub-Gaussian and bounded-moment
properties.

Lemma 13 Consider a fixed r ∈ {1, 2, ..., p− 1}-th iteration, j ∈ {π1, ..., πp+1−r}.

• For a sub-Gaussian linear SEM,

Pr
(∣∣∣V̂ar(Xj | XSj(r))−Var(Xj | XSj(r))

∣∣∣ < ε
)

≥ 1− 4 · exp

(
−n

128(1 + 4s2max) maxj(Σjj)2
ε2λ4min

(d+ 1)2(σ2max(ε+ 5σ2max) + ελmin)2

)
.

• For a (4m)-th bounded-moment linear SEM,

Pr
(∣∣∣V̂ar(Xj | XSj(r))−Var(Xj | XSj(r))

∣∣∣ < ε
)

≥ 1− 4 · 22m maxj(Σjj)
2mCm(Kmax + 1)

nm

(
ε2λ4min

(d+ 1)2(σ2max(ε+ 5σ2max) + ελmin)2

)−m
,

where Cm is a constant depending only on m.

Hence, we complete the proof. For a sub-Gaussian linear SEM, there exist positive
constants C1, C2 > 0 such that

Pr (π̂ = π) > 1− C1p
2 · exp

(
−C2n

(d+ 1)2

)
.

For a (4m)-th bounded-moment linear SEM, there exists positive constant D1 > 0 such
that

Pr (π̂ = π) > 1−D1p
2 · (d+ 1)2m

nm
.
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Appendix C. Useful Propositions and their Proofs

C.1 Proof for Proposition 2

Proposition 2 For any r ∈ {1, 2, ..., p − 1}-th iteration and j ∈ {π1, ..., πp+1−r}, the true
support of the solution θ∗j (r) to Equation (7) is a subset of the neighborhood of j in the
moralized graph:

Supp(θ∗j (r)) ⊂ Ne(j).

In addition, for j = πp+1−r:

Supp(θ∗j (r)) = Pa(j).

Proof Without loss of generality, suppose Σε = Ip. For an arbitrary r-th iteration, consider
a fixed node, j ∈ {π1, ..., πp+1−r}. Then, by definition, Sj(r) = V \({j}∪{πp+1, ..., πp+2−r})
where πp+1 = ∅. For notional convenience, let S = Sj(r) and π = (1, 2, ..., p).

Suppose that Ω is the inverse covariance matrix for (Xj , XS), which can be partitioned
into four blocks using the Shur complement:

Ω =

[
Ωjj ΩjS

Ω>jS ΩSS

]
=

[
(Σjj − ΣjSΣ−1SSΣSj)

−1 −ΣjSΣ−1SS(Σjj − ΣjSΣ−1SSΣSj)
−1

−(Σjj − ΣjSΣ−1SSΣSj)
−TΣ−TSS ΣSj ΩSS

]
,

where ΣS1S2 and ΩS1S2 are sub-matrix of Σ and Ω corresponding to variables XS1 and XS2 ,
respectively. From the definition of θ∗j (r) in Equation (7), we have

θ∗j (r) = −
ΩjS

Ωjj
.

In addition, from the definition of the linear SEM in Equation (2), for k ∈ S,

Ωjk = [I −B −B> +B>B]jk = −βjk − βkj +
∑

`∈S\{k}

β`jβ`k.

Note that for all k 6∈ Ne(j), βjk = βkj = 0, and β`jβ`k = 0 for all ` ∈ V \ {j, k}. Hence, we
complete the proof that [θ∗j (r)]k = 0 and Supp(θ∗j (r)) ⊂ Ne(j).

Finally, for the special case j = πp+1−r, S does not contain any descendant; that is, for
all k ∈ S, βkj = 0, and β`jβ`k = 0 for all ` ∈ S \ {k}. Hence, we obtain −Ωjk an edge
weight from k to j; that is, βjk. Since there is no path cancellation involved, we obtain the
final result, Supp(θ∗j (r)) = Pa(j), without the faithfulness assumption.

C.2 Proof for Proposition 14

Proposition 14 For any r ∈ {1, 2, ..., p − 1}-th iteration and j ∈ {π1, ..., πp+1−r}, the
conditional variance of Xj given Sj(r) satisfies the following.

Var(Xj | XSj(r)) = Var(Xj | XTj(r)),

where Tj(r) is support of the solution θ∗j (r) in Equation (7).
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Proof For an arbitrary r-th iteration, consider a fixed node j ∈ V \{πp+1, ..., πp+1−r}. For
notional convenience, let S = Sj(r), T = Tj(r), and θ∗ = θ∗j (r).

Applying the properties of Equation (7) and the conditional expectation, we have

E(Xj | XS) = E(E(Xj | XT ) | XS) = E(E(〈XT , [θ
∗]T 〉 | XT ) | XS) = 〈XT , [θ

∗]T 〉.

Applying the law of total variance, Var(Xj | XT ) can be decomposed into

Var(Xj | XT ) = E(Var(Xj | XS) | XT ) + Var(E(Xj | XS) | XT )

= E(Var(Xj | XS) | XT ) + Var(〈XT , [θ
∗]T 〉 | XT )

= E(Var(Xj | XS) | XT ).

Applying the Schur complement, we can see that there exists a function h such that

Var(Xj | XS) = Σjj − ΣjSΣ−1SSΣSj = [Σj∪S,j∪S ]−1jj

= h
(
(βjk)(k,j)∈E , σ

2
j∈V
)
.

This result shows that Var(Xj | XS) is not a function of random variables X. Hence,
this completes the proof that

Var(Xj | XS) = Var(Xj | XT ).

Appendix D. Useful Lemmas and their Proofs

D.1 Proof for Lemma 10

Lemma 10 (Lemma1 in Ravikumar et al., 2010, Lemma 8 in Yang et al., 2015) For any
r ∈ {1, 2, ..., p − 1}-th iteration and j ∈ {π1, ..., πp+1−r}, suppose that |[Ẑj(r)]t| < 1 for

t /∈ Tj(r) in Equation (11). Then, the solution θ̂j(r) of Equation (10) satisfies [θ̂j(r)]t = 0

for all t /∈ Tj(r). Furthermore, if 1
nX
>
Tj(r)

XTj(r) is invertible, then θ̂j(r) is unique.

Proof This lemma can be proven in the same manner developed for special cases (Wain-
wright et al., 2006; Ravikumar et al., 2010). In addition, this proof is directly from Lemma
8 in Yang et al. (2015). Here, we restate the proof in our framework. For ease of notation,
we again omit subscripted j and r in parentheses as in Appendix A.

In the main problem (10), all solutions have the same fitted value. That is mainly
because if 〈X, θ1〉 6= 〈X, θ2〉 for some solutions θ1 and θ2, we have the following contradiction:

1

2n

n∑
i=1

(
X

(i)
j − δ〈X

(i)
S , θ1〉 − (1− δ)〈X(i)

S , θ2〉
)2

+ λ‖δθ1 + (1− δ)θ2‖1

<
δ

2n

n∑
i=1

(
X

(i)
j − 〈X

(i)
S , θ1〉

)2
+

1− δ
2n

n∑
i=1

(
X

(i)
j − 〈X

(i)
S , θ2〉

)2
+ λ (‖δθ1‖1 + ‖(1− δ)θ2‖1)

= min
θ

[
1

2n

n∑
i=1

(
X

(i)
j − 〈X

(i)
S , θ〉

)2
+ λ‖θ‖1

]
,
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for any δ ∈ (0, 1)
Since any two solutions should have the same fitted value, they have the same squared

error loss. Since all solutions should also achieve the same minimum value in the lasso
problem (10), they must have the same `1-norm, ‖θ1‖1 = ‖θ2‖1. Furthermore, all solutions
should satisfy the stationary condition X>S (Xj − 〈XS , θ̂〉) = λẐ. Combining this with the

uniqueness of fitted values, we conclude that sub-gradient Ẑ is unique for all solutions. The
form of Ẑ, where [Ẑ]t = sign([θ̂]t) if [θ̂]t 6= 0, implies that 〈Ẑ, θ̂〉 = ‖θ̂‖1. Hence, for any
other solutions θ̃, we have 〈Ẑ, θ̃〉 = ‖θ̃‖1. Briefly, using complementary slackness, we have
〈Ẑ, θ̃〉 = ‖θ̃‖1. This implies that for all index t for which |[Ẑ]t| < 1, [θ̃]t = 0 (see Lemma1
of Ravikumar et al., 2010 for details). Therefore, if there exists a primal optimal solution
θ̂ with associated sub-gradient Ẑ such that |[Ẑ]t| < 1, then any optimal solution θ̃ also
satisfies [θ̃]t = 0 for all t ∈ {k | |[Ẑ]k| < 1}.

Finally, given that all optimal solutions satisfy [θ̃]t = 0 for all t ∈ T c, we may consider
the restricted optimization problem subject to this set of constraints. Hence, if the principal
sub-matrix of the Hessian is positive definite, 1

nX
>
T XT , this sub-problem is strictly convex,

so the optimal solution must be unique.

D.2 Proof for Lemma 11

Lemma 11 Consider a fixed r ∈ {1, 2, ..., p − 1}-th iteration, j ∈ {π1, ..., πp+1−r} and

λ < 10σ2
max
γ .

• For a sub-Gaussian linear SEM:

Pr

(
max
t∈T c

j (r)
|[Ẑj(r)]t| < 1

)

≥ 1− 4 · exp

(
−n

128(1 + 4s2max) maxj(Σjj)2
λ2γ2λ4min

(d+ 2)2(10σ4max + λγσ2max + λγλmin)2

)
.

• For a (4m)-th bounded-moment linear SEM:

Pr

(
max
t∈T c

j (r)
|[Ẑj(r)]t| < 1

)

≥ 1− 4 · 22m maxj(Σjj)
2mCm(Kmax + 1)

nm

(
λ2γ2λ4min

(d+ 2)2(10σ4max + λγσ2max + λγλmin)2

)−m
,

where Cm is a constant depending only on m.

Proof The main idea of the proof is built on Lemma 5 in Harris and Drton (2013) and
Lemmas 1 and 2 of Ravikumar et al. (2011) where the infinity norm of a matrix inversion
error is considered when the sample covariance entries satisfy exponential-type tail and a
polynomial-type tail bounds. Again, we restate the proof in our framework. For ease of
notation, we again omit subscripted j and r in parentheses as in Appendix A. Therefore,
[θ̂j(r)]T , [Ẑj(r)]T , and [Ẑj(r)]T c are denoted by θ̂T , ẐT , and ẐT c , respectively.
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The idea of the primal-dual witness method is to plug in the sub-gradient of the esti-
mated coefficients to true support. In order to obtain the closed form of ẐT c , we divide
Equation (11) into the following two parts:

1

n
X>T

(
Xj − 〈XT , θ̂T 〉

)
= λẐT , and

1

n
X>T c

(
Xj − 〈XT , θ̂T 〉

)
= λẐT c . (12)

Since Assumption 4 ensures 1
nX
>
T XT is invertible, Equation (12) derives the following:

θ̂T =

(
1

n
X>T XT

)−1( 1

n
X>T Xj − λẐT

)
.

Applying θ̂T to the second part of Equation (12), we have the following form of ẐT c :

λẐT c =
1

n
X>T cXj −

1

n
X>T cXT

(
1

n
X>T XT

)−1( 1

n
X>T Xj − λẐT

)
=

1

n
X>T cXj −X>T cXT

(
X>T XT

)−1( 1

n
X>T Xj − λẐT

)
=

1

n
X>T c

(
I −XT

(
X>T XT

)−1
X>T

)
Xj +

(
X>T cXT

(
X>T XT

)−1
λẐT

)
.

Taking the `∞-norm of both sides, we have the following upper bound of ‖ẐT c‖∞:

‖ẐT c‖∞ ≤
1

nλ
‖X>T c(I − PT )Xj‖∞ + ‖X>T cXT

(
X>T XT

)−1
ẐT ‖∞

≤ 1

nλ
‖X>T c(I − PT )Xj‖∞ +

∥∥∥∥X>T cXT

(
X>T XT

)−1∥∥∥∥
∞
,

where PT = XT

(
X>T XT

)−1
X>T .

Recalling the mutual incoherence assumption 3, ‖X>T cXT

(
X>T XT

)−1 ‖∞ ≤ (1 − γ), we
have

‖ẐT c‖∞ ≤
1

nλ
‖X>T c(I − PT )Xj‖∞ + (1− γ).

This implies that ‖ẐT c‖∞ < 1 if

1

n
‖X>T c(I − PT )Xj‖∞ = max

k∈T c

∣∣∣Σ̂jk − Σ̂jT Σ̂−1TT Σ̂Tk

∣∣∣ < λγ

2
,

where Σ̂ is the sample covariance matrix, and Σ̂S1S2 is its sub-matrix, corresponding to
variables XS1 and XS2 .

From the definition of the partial correlation, we have

ρj,k,T =
Σjk − ΣjTΣ−1TTΣTk√

Σjj − ΣjTΣ−1TTΣTj

√
Σkk − ΣkTΣ−1TTΣTk

,
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The partial correlation is also obtained using the inversion of the covariance matrix,

ρj,k,T = −
Ωjk√
ΩjjΩkk

,

where Ω is the inversion of the covariance matrix for (Xj , Xk, XT ).
Combining Proposition 2 and the facts that βjk = βkj = 0 and diagonal entries are

Ωkk = 1
σ2
k

+ 1∑
`∈Ch(k)∩(T∪j)

β2
k`σ

2
`
, we have

Ω−1jj = Σjj −ΣjTΣ−1TTΣTj ,Ω
−1
kk = Σkk −ΣkTΣ−1TTΣTk, and Σjk −ΣjTΣ−1TTΣTk = −

Ωjk

ΩjjΩkk
.

Furthermore, from the conditional independence relationships, Xj and Xk are condi-
tionally independent given XT , and hence, Σjk − ΣjTΣ−1TTΣTk = Ωjk = 0. Combining the
results shown above, for k ∈ T c, it is sufficient to show that∣∣∣∣ 1nX>k (I − PT )Xj

∣∣∣∣ =
∣∣(Σ̂jk − Σ̂jT Σ̂−1TT Σ̂Tk

)
−
(
Σjk − ΣjTΣ−1TTΣTk

)∣∣
=

∣∣∣∣∣ Ω̂jk

Ω̂jjΩ̂kk

−
Ωjk

ΩjjΩkk

∣∣∣∣∣ < λγ

2
.

Applying Lemma 16 and Lemma 17, the sufficient condition is as follows:

‖Ω̂− Ω‖∞ ≤
λγ

σ2max(λγ + 10σ2max)
.

Now, applying Lemma 15 (Lemma 5 in Harris and Drton, 2013), it is sufficient that Σ̂
satisfies

‖Σ̂− Σ‖∞ <
λγλ2min

(|T |+ 2)(σ2max(λγ + 10σ2max) + λγλmin)
.

Applying the results of Lemma 18 (Lemmas 1 and 2 of Ravikumar et al., 2011), we
complete the proof. For a sub-Gaussian linear SEM:

Pr

(
max
t∈T c

j (r)
|[Ẑj(r)]t| < 1

)

≥ 1− 4 · exp

(
−n

128(1 + 4s2max) maxj(Σjj)2
λ2γ2λ4min

(d+ 2)2(σ2max(λγ + 10σ2max) + λγλmin)2

)
.

In addition for a (4m)-th bounded-moment linear SEM,

Pr

(
max
t∈T c

j (r)
|[Ẑj(r)]t| < 1

)

≥ 1− 4 · 22m maxj(Σjj)
2mCm(Kmax + 1)

nm

(
λ2γ2λ4min

(d+ 2)2(σ2max(10σ2max + λγ) + λγλmin)2

)−m
,

where Cm is a constant depending only on m.
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D.3 Proof for Lemma 12

Lemma 12 Let [∆]Tj(r) := [θ̂j(r)]Tj(r) − [θ∗j (r)]Tj(r). For a sub-Gaussian linear SEM,

Pr

(
‖[∆]Tj(r)‖∞ ≤ C1|Tj(r)|ε+

λ

λmin

)
≥ 1− 4 · exp

(
−nε2

128(1 + 4s2max) maxj(Σjj)2

)
.

In addition, for a (4m)-th bounded-moment linear SEM,

Pr

(
‖[∆]Tj(r)‖∞ ≤ C1|Tj(r)|ε+

λ

λmin

)
≥ 1− 4 · 22m maxj(Σjj)

2mCm(Kmax + 1)

nmε2m
,

where Cm is a constant depending only on m.
Proof For better readability, we again omit subscripted j and r in parentheses. Therefore,
[θ̂j(r)]T and [θ∗j (r)]T are denoted by θ̂T and θ∗T , respectively.

From the previous proof for Lemma 11, Equation (12) implies that

θ̂T =

(
1

n
X>T XT

)−1( 1

n
X>T XT θ

∗
T +

1

n
X>T δj − λsign(θ̂T )

)
= θ∗T +

(
1

n
X>T XT

)−1( 1

n
X>T δj − λsign(θ̂T )

)
. (13)

Hence, we obtain the gap between θ̂T and θ∗T :

[∆]T := θ̂T − θ∗T =

(
1

n
X>T XT

)−1( 1

n
X>T δj − λsign(θ̂T )

)
.

Using the triangle inequality, we have

‖[∆]T ‖∞ ≤ ‖(X>T XT )−1X>T δj‖∞ + λ

∥∥∥∥∥
(

1

n
X>T XT

)−1
sign(θ̂T )

∥∥∥∥∥
∞

≤ ‖(X>T XT )−1X>T δj‖∞ +
λ

λmin
.

Since δj = Xj −XTΣ−1TTΣTj , the first term can be expressed as

(X>T XT )−1X>T δj = Σ̂−1TT Σ̂Tj − Σ−1TTΣTj .

Using the sub-multiplicativity of a matrix norm, we have∥∥(X>T XT )−1X>T δj
∥∥
∞ ≤

∥∥(Σ̂−1TT − Σ−1TT )ΣTj

∥∥
∞ +

∥∥Σ̂−1TT (Σ̂Tj − ΣTj)
∥∥
∞

≤ ‖Σ̂−1TT − Σ−1TT ‖2
∥∥ΣTj

∥∥
2

+ ‖Σ̂−1TT ‖2 ·
√
|T |
∥∥Σ̂Tj − ΣTj

∥∥
∞.

Applying Lemma 15 (Lemma 5 in Harris and Drton, 2013), if ‖Σ̂TT − ΣTT ‖∞ < ε <
λmin/|T |, then

‖Σ̂−1TT − Σ−1TT ‖2 ≤
|T |ε/λ2min

1− |T |ε/λmin
.
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Hence, if ‖Σ̂TT − ΣTT ‖∞ < ε < λmin/|T |, we have

‖[∆]T ‖∞ ≤
∥∥ΣTj

∥∥
2

|T |ε
λmin(λmin − |T |ε)

+
1

λmin
·
√
|T |ε+

λ

λmin
.

Applying the results of Lemma 18, we complete the proof. For a sub-Gaussian linear
SEM,

Pr

(
‖[∆]T ‖∞ ≤ C1|T |ε+

λ

λmin

)
≥ 1− 4 · exp

(
−nε2

128(1 + 4s2max) maxj(Σjj)2

)
.

In addition for a (4m)-th bounded-moment linear SEM,

Pr

(
‖[∆]T ‖∞ ≤ C1|T |ε+

λ

λmin

)
≥ 1− 4 · 22m maxj(Σjj)

2mCm(Kmax + 1)

nmε2m
.

where Cm is a constant depending only on m.
Applying the results of Lemma 18, we complete the proof. For a sub-Gaussian linear

SEM,

Pr
(
‖[∆]T ‖∞ ≤ ε′

)
≥ 1− 4 · exp

(
−n

128(1 + 4s2max) maxj(Σjj)2

(
1

C1|T |

(
ε′ − λ

λmin

))2
)
.

In addition for a (4m)-th bounded-moment linear SEM,

Pr
(
‖[∆]T ‖∞ ≤ ε′

)
≥ 1− 4 · 22m maxj(Σjj)

2mCm(Kmax + 1)

nm

(
1

C1|T |

(
ε′ − λ

λmin

))−2m
,

where Cm is a constant depending only on m.

D.4 Proof for Lemma 13

Lemma 13 For any r ∈ {1, 2, ..., p− 1}-th iteration, j ∈ {π1, ..., πp+1−r}, sufficiently small
ε > 0, and

• a sub-Gaussian linear SEM:

Pr
(∣∣∣V̂ar(Xj | XSj(r))−Var(Xj | XSj(r))

∣∣∣ < ε
)

≥ 1− 4 · exp

(
−n

128(1 + 4s2) maxj(Σjj)2
ε2λ4min

(d+ 1)2(σ2max(ε+ 5σ2max) + ελmin)2

)
.

• a (4m)-th bounded-moment linear SEM:

Pr
(∣∣∣V̂ar(Xj | XSj(r))−Var(Xj | XSj(r))

∣∣∣ < ε
)

≥ 1− 4 · 22m maxj(Σjj)
2mCm(Km + 1)

nm

(
ε2λ4min

(d+ 1)2(σ2max(ε+ 5σ2max) + ελmin)2

)−m
,
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where Cm is a constant depending only on m.
Proof

Consider a fixed r ∈ {1, 2, ..., p− 1}-th iteration and j ∈ {π1, ..., πp+1−r}. For compact-
ness in notation, subscripted j and r in parentheses are omitted, as done in Appendix A.

According to Proposition 14, the conditional variance ofXj given S satisfies the following
inequality:

Var(Xj | XS) = Var(Xj | XT ),

where T is the support of the solution θ∗ in Equation (7).
Applying the above result and the Schur complement, we have∣∣∣V̂ar(Xj | XS)−Var(Xj | XS)

∣∣∣ =
∣∣∣V̂ar(Xj | XS)−Var(Xj | XT )

∣∣∣
=
∣∣∣Σ̂jj − Σ̂jT Σ̂−1TT Σ̂Tj − (Σjj − ΣjTΣ−1TTΣTj)

∣∣∣
=
∣∣∣1/Ω̂jj − 1/Ωjj

∣∣∣ ,
where Ω is the inversion of the covariance matrix for (Xj , XT ).

Then, it can easily be verified that∣∣∣V̂ar(Xj | XS)−Var(Xj | XS)
∣∣∣ < ε ⇐⇒

∣∣∣1/Ω̂jj − 1/Ωjj

∣∣∣ < ε.

Applying Lemma 17 and Lemma 16, |V̂ar(Xj | XS)−Var(Xj | XS)| < ε, if

‖Ω̂− Ω‖∞ ≤
ε

σ2max(ε+ 5σ2max)
.

Now, applying Lemma 15 (Lemma 5 in Harris and Drton, 2013), it is a sufficient condi-
tion that Σ̂ satisfies the following:

‖Σ̂− Σ‖∞ <
ελ2min

(|T |+ 1)(σ2max(ε+ 5σ2max) + ελmin)
.

Applying the results of Lemma 18, we complete the proof. For a sub-Gaussian linear
SEM,

Pr
(∣∣∣V̂ar(Xj | XS)−Var(Xj | XS)

∣∣∣ < ε
)

≥ 1− 4 · exp

(
−n

128(1 + 4s2) maxj(Σjj)2
ε2λ4min

(d+ 1)2(σ2max(ε+ 5σ2max) + ελmin)2

)
.

In addition for a (4m)-th bounded-moment linear SEM,

Pr
(∣∣∣V̂ar(Xj | XS)−Var(Xj | XS)

∣∣∣ < ε
)

≥ 1− 4 · 22m maxj(Σjj)
2mCm(Km + 1)

nm

(
ε2λ4min

(d+ 1)2(σ2max(ε+ 5σ2max) + ελmin)2

)−m
.
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D.5 Proof for Lemma 15

Lemma 15 (Lemma 5 in Harris and Drton, 2013 ) If Σ ∈ Rq×q is a positive definite
matrix, with minimal eigenvalue λmin > 0, and if E ∈ Rq×q is a matrix of errors with
‖E‖∞ < ε < λmin/q, then Σ + E is invertible and

‖(Σ + E)−1 − Σ−1‖∞ ≤ ‖(Σ + E)−1 − Σ−1‖2 ≤
qε/λ2min

1− qε/λmin
.

Lemma 15 is the same as Lemma 5 in Harris and Drton (2013), except for the bound
‖(Σ +E)−1−Σ−1‖2. Since the proof is directly from Harris and Drton (2013), we omit the
proof.

D.6 Proof for Lemma 16

Lemma 16 (Lemma 6 in Harris and Drton, 2013) If Σ is a covariance matrix for Xπ1,...,πr

in a linear SEM (2), then the diagonal entries of Σ−1 satisfy Σ−1jj ≥
1

σ2
max

where σ2max is the
maximum error variance.

Proof For any j ∈ {π1, ..., πr} and Pa(j) ⊂ S := {π1, ..., πr} \ {j}, recall that, for any
variable Xj , its conditional variance is as follows:

Var(Xj | XS) = σ2j − E(Var(E(Xj | XS) | XPa(j)))

≤ σ2j = Var(εj).

This implies that

Σ−1jj =
1

Var(Xj | XS)
≥ 1

Var(εj)
.

Therefore, the diagonal entries of Σ−1 satisfy min(Σ−1jj ) ≥ 1/max(Var(εj)).

Lemma 16 guarantees that diagonal entries for the inversion of the correlation matrix are
greater than, or equal to, 1/maxj(Var(εj)), which is a required condition for the following
lemma.

D.7 Proof for Lemma 17

Lemma 17 Let A = (ajk) and B = (bjk) be the 2×2 sub-matrices of an inverse covariance
matrix and its estimated matrix. If A is positive definite with a11, a22 ≥ amin and ‖A −
B‖∞ < δ < amin/2, then ∣∣∣∣ a12

a11a22
− b12
b11b22

∣∣∣∣ < 5δ

amin(amin − δ)
.

Proof Without loss of generality, suppose a12 ≥ 0. Since ‖A−B‖∞ < δ,

b12
b11b22

− a12
a11a22

<
a12 + δ

(a11 − δ)(a22 − δ)
− a12
a11a22

=
δ

(a11 − δ)(a22 − δ)
+ a12

(
1

(a11 − δ)(a22 − δ)
− 1

a11a22

)
.
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Using a11, a22 ≥ amin to bound the first term and a212 < a11a22 to bound the second
term, we obtain∣∣∣∣ b12

b11b22
− a12
a11a22

∣∣∣∣ < δ

(amin − δ)2
+
√
a11a22

(
1

(a11 − δ)(a22 − δ)
− 1

a11a22

)
.

Since the function
√
xy( 1

(x−δ)(y−δ) −
1
xy ) is decreasing when x, y ≥ 0, applying the condition

a11, a22 ≥ amin, we have∣∣∣∣ b12
b11b22

− a12
a11a22

∣∣∣∣ < δ

(amin − δ)2
+

(
amin

(amin − δ)2
− 1

amin

)
=

1

amin

(
3δ

amin − δ
+

2δ2

(amin − δ)2

)
.

Applying the condition, δ < amin/2, we can see that∣∣∣∣ b12
b11b22

− a12
a11a22

∣∣∣∣ < 5δ

amin(amin − δ)
.

Lemma 17 provides the error bound for a conditional variance given the error in inverse
covariance matrix estimation. Its proof is analogous to the proof for Lemma 7 in Harris
and Drton (2013) where a partial correlation bound is considered.

D.8 Proof for Lemma 18

Lemma 18 (Error Bound for the Sample Covariance Matrix) Consider a random
vector (Xj)

p
j=1 and suppose that its covariance matrix is Σ.

• Lemma 1 of Ravikumar et al. (2011): Suppose that X
(i)
j are i.i.d. sub-Gaussian with

proxy parameter s2maxΣjj. Then,

Pr

(∣∣Σ̂jk − Σjk

∣∣ ≥ ζ) ≤ 4 · exp

(
−nζ2

128(1 + 4s2max) maxj(Σjj)2

)
,

for all ζ ∈ (0,maxj Σjj8(1 + 4s2max)).

• Lemma 2 of Ravikumar et al. (2011): Suppose that X
(i)
j are i.i.d. and there exists a

positive integer m and scalar Km ∈ R such that E(X4m
j ) ≤ KmaxΣ2m

jj . Then,

Pr

(∣∣Σ̂jk − Σjk

∣∣ ≥ ζ) ≤ 4 · 22m maxj(Σjj)
2mCm(Kmax + 1)

nmζ2m
,

where Cm is a constant depending only on m.

Lemma 18 shows that the entries of the sample covariance satisfy an exponential-type tail
bound with exponent a = 2, when samples are sub-Gaussian random vectors. Furthermore,
Lemma 18 provides that the sample covariance entries satisfy a polynomial-type tail bound
when samples are from random variables with bounded moments. Since it is the same as
Lemmas 1 and 2 from Ravikumar et al. (2011), we omit the proof.
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