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Abstract

Hyperparameter optimization (HPO) plays a central role in the automated machine learn-
ing (AutoML). It is a challenging task as the response surfaces of hyperparameters are gen-
erally unknown, hence essentially a global optimization problem. This paper reformulates
HPO as a computer experiment and proposes a novel sequential uniform design (SeqUD)
strategy with three-fold advantages: a) the hyperparameter space is adaptively explored
with evenly spread design points, without the need of expensive meta-modeling and acqui-
sition optimization; b) the batch-by-batch design points are sequentially generated with
parallel processing support; ¢) a new augmented uniform design algorithm is developed
for the efficient real-time generation of follow-up design points. Extensive experiments are
conducted on both global optimization tasks and HPO applications. The numerical results
show that the proposed SeqUD strategy outperforms benchmark HPO methods, and it can
be therefore a promising and competitive alternative to existing AutoML tools.

Keywords: Automated machine learning, Hyperparameter optimization, Global opti-
mization, Sequential uniform design, Centered discrepancy.

1. Introduction

Machine learning models are becoming increasingly popular due to their strong predictive
performance. Meanwhile, the number of hyperparameters for these models also explodes,
and we often have to spend considerable time and energy on hyperparameter tuning (Probst
et al., 2019), also known as hyperparameter optimization (HPO). Such HPO procedure
is indeed essential but very tedious in machine learning. It is generally accepted that a
manual tuning procedure often fails to achieve the best model performance, and faces the
critical reproducibility issue. In recent years, the automated machine learning (AutoML) has
attracted great attention, highlighting the automatic procedure of hyperparameter tuning.

In this paper, we introduce the classical design of computer experiments to solve the
HPO problem with the purpose of maximizing algorithmic prediction accuracy. A com-
puter experiment is defined as a deterministic function or code that is very complicated and
time-consuming to evaluate (Fang et al., 2006). We may view HPO as a special computer
experiment in the sense that each hyperparameter configuration is an input, and the cor-
responding predictive performance is the output. In Figure 1, a sequential uniform design
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Figure 1: HPO problem reformulated as a kind of computer experiment based on sequential
uniform designs.

(SeqUD) approach is proposed for such HPO-type of computer experiment. It is a multi-
stage coarse-to-fine optimization framework based on uniform exploration and sequential
exploitation. At each stage, the search space is automatically adjusted, and a new batch of
design points is augmented with uniformity consideration.

Compared with existing HPO methods in the literature, the proposed SeqUD approach
has the following advantages: a) the hyperparameter trials are defined in a sequential man-
ner, as the SeqUD points are generated based on the information of existing design points;
b) each time the uniform design of points are considered, which targets the most represen-
tative exploration of the search space; c) the SeqUD points generated at the same stage
could be evaluated in parallel, which brings additional computation efficiency especially
when training large-scale machine learning algorithms. In addition, the proposed method
differs from the commonly used Bayesian optimization methods, as SeqUD is free from the
time-consuming surrogate modeling and acquisition optimization procedures.

The proposed SeqUD method is tested through extensive synthetic global optimization
tasks and real-world HPO experiments. The machine learning algorithms under our consid-
eration include the support vector machine (SVM), extreme gradient boosting (XGBoost),
and a machine learning pipeline that involves data preprocessing, feature engineering, model
selection, and hyperparameter tuning. Based on the results for a large amount of regres-
sion and classification data sets, it is demonstrated that the SeqUD method outperforms
Bayesian optimization and other benchmark methods. In summary, this paper contributes
to the HPO and AutoML literature in the following three aspects:

e We develop a novel AugUD algorithm for the efficient augmentation of uniform design
points. This is not only a new idea in AutoML, but also a new contribution to the
field of experimental designs.
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e The SeqUD strategy generalizes Bayesian optimization from one-point-at-a-time to
batch-by-batch. Meanwhile, it avoids expensive meta-modeling and acquisition opti-
mization procedures. The improved effectiveness and efficiency are achieved.

e Two open-source Python packages are developed, including the PyUniDOE package
that employs efficient C++ code for generating uniform designs, and the SeqUD
package that implements the proposed SeqUD method for HPO tasks.

The rest of the paper is organized as follows. Section 2 reviews the related HPO litera-
ture. In Section 3, we introduce the background of uniform designs and develop the AugUD
algorithm. The new SeqUD method is proposed for HPO in Section 4. A large amount
of global optimization experiments and HPO experiments are presented in Section 5 and
Section 6, respectively. Finally, we conclude in Section 7 and outline future works.

2. Related Work

This section reviews existing HPO methods from non-sequential and sequential perspectives.

2.1 Non-sequential HPO Methods

Most of the practical HPO methods are non-sequential, as they are easy to implement and
can evaluate multiple hyperparameter trials in parallel. For machine learning models with
one or two hyperparameters (e.g., SVM with regularization strength and kernel width), it
is common to use the exhaustive grid search method (Chang and Lin, 2011). The random
search is an alternative method that generates design points randomly in low or high di-
mensions (Bergstra and Bengio, 2012). It is commonly believed that the random search is
more flexible and useful for machine learning tasks.

The space-filling design is an optimal strategy when there is no prior information about
hyperparameter distribution (Crombecq et al., 2011), for which the uniform designs (Fang
et al., 2000), Sobol sequences (Sobol, 1998) and Latin hypercube sampling (LHS; Kenny
et al., 2000) can be used. These methods can generate design points with a low discrepancy
from the assumed uniform distribution. Given the same maximal number of runs, the space-
filling design has a lower risk of missing the optimal location than the random search. We
demonstrate grid search, random search, Sobol sequences, and uniform designs in Figure 2,
where each method generates 20 design points in the same two-dimensional space. For the
random search, it is observed that design points can be clustered, while lots of other areas
remain unexplored. The design points generated by Sobol sequences spread more evenly
than the random search. The best coverage is by the uniform design, as it is constructed
by optimizing a measure of uniformity to be introduced in Section 3.

2.2 Sequential HPO Methods

Sequential methods are adaptive variants of non-sequential methods, where new design
points are generated based on the information of existing design points. Exploration and
exploitation are two synergistic objectives of sequential methods. The former aims to better
explore the search space, and the latter aims to find the global optimum.
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Figure 2: An example that compares four different designs in a 2-D design space.

Bayesian optimization (Jones et al., 1998) is the most widely used sequential approach,
which samples one-point-at-a-time in the search space. At each iteration, it fits a surrogate
model for approximating the relationship between the design points and the evaluated out-
comes. Then, the next design point is generated by optimizing a predefined acquisition func-
tion. For HPO tasks in machine learning, the three most influential Bayesian optimization
works are arguably the GP (Gaussian process)-El (expected improvement) method (Snoek
et al., 2012), the sequential model-based algorithm configuration (SMAC; Hutter et al.,
2011) and the tree-structured parzen estimator (TPE; Bergstra et al., 2011), which we
review below.



HYPERPARAMETER OPTIMIZATION VIA SEQUENTIAL UNIFORM DESIGNS

GP-EI It uses the GP as the surrogate model and selects the next design point by
maximizing the following EI acquisition function:

agp(x) = o(x) [Z*CI)(Z*(X)) +o(z" (X)), (1)

where 2*(x) = (u(x) — y*)/o(x), y* is the observed maximum, and (u(x),o?(x)) are the
GP-predicted posterior mean and variance, respectively.

SMAC. It uses the random forest as the surrogate model. Compared to GP, the random
forest can be easily scaled up to high-dimensional settings and are more flexible for handling
discrete hyperparameters. However, as pointed out by (Shahriari et al., 2016), SMAC has
a potential drawback in that the estimated response surface is discontinuous, which makes
the optimization of acquisition functions difficult.

TPE. It models the conditional distribution p(x|y) instead of p(y|x), and then the EI
acquisition function can be parameterized by

o' (x)oc(e(x) +1-— >_1 (2)
Bl o))

Note that the equation is slightly different from its original form in Bergstra et al. (2011),
as we define it as a maximization problem. The functions g(x) and ¢(x) denote the density
functions of z|y as y > y* and y < y*, respectively; they are estimated by hierarchical
Parzen estimators. The value of y* is chosen as a quantile v of the observed y values, such
that p(y < y*) = v (Bergstra et al., 2011).

These Bayesian optimization methods have been implemented in various AutoML soft-
ware packages. For example, the GP-EI method is implemented in the Spearmint pack-
age (Snoek et al., 2012); the SMAC method appears in SMAC3, Auto-WEKA (Kotthoff
et al., 2017) and Auto-sklearn (Feurer et al., 2015); the TPE is wrapped into the Hyper-
opt package (Komer et al., 2014; Bergstra et al., 2015). There exist variants of Bayesian
optimization in other problem settings, for instance, high-dimensional tasks (Wang et al.,
2013; Kandasamy et al., 2015), collaborative hyperparameter tuning (Swersky et al., 2013;
Bardenet et al., 2013; Feurer et al., 2015), no-regret Bayesian optimization (Berkenkamp
et al., 2019), and parallelized Bayesian optimization (Snoek et al., 2012; Hutter et al., 2012).
One may refer to Shahriari et al. (2016) for a comprehensive review.

There are other sequential HPO methods, e.g., evolutionary methods (Escalante et al.,
2009; Di Francescomarino et al., 2018) and reinforcement learning (Lillicrap et al., 2015;
Zoph and Le, 2016). These methods generally require extensive computing resources and
are expensive in practice. One adaptive resource allocation idea is to allocate more com-
puting resources to the hyperparameter configurations that tend to perform better. For
instance, Successive Halving (Domhan et al., 2015) allocates the same budget to the best
half hyperparameter configurations, while the worst half would be dropped. Such procedure
is repeated until only one hyperparameter configuration is left. Hyperband (Li et al., 2017)
can be viewed as a natural extension of Successive Halving, as it treats Successive Halving
as a subroutine and calls it with different parameter settings.

Another sequential method related to our work can be referred to Huang et al. (2007).
It used a two-stage nested uniform design for training SVM with two hyperparameters,
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with 13 design points in the first stage (original search space) and 9 points in the second
stage (adjusted search space). This can be viewed as a special two-dimensional case of
our SeqUD approach, but the follow-up 9 points were not optimized with respect to the
existing 13 points in the first stage. In this work, we propose a general framework of
sequential uniform designs for HPO of various machine learning algorithms.

3. Augmented Uniform Design

The uniform design is a typical space-filling design (Fang et al., 2000), which aims to find
a discrete set of design points to represent the search space as well as possible.

Definition 1 (Uniform Design) In the unit hypercube C° = [0,1]°, a uniform design

with n runs is the point set D} = {xi1,X2,...,Xp} that minimizes a certain discrepancy
criterion:

D} «+ min ¢(Dy). 3

s min 6(Dy) Q

To limit the search space, the balanced U-type designs are often used for uniform design
construction. Denote by U, s = (u;;) a U-type design with n runs, s factors, and ¢ levels.
Each factor with ¢ levels is a permutation of the balanced arrangement

{L"',L"',Q,"',Q}, (4)

n/q n/q

and it is required that n is divisible by ¢q. Omne can convert it to the design matrix
Xp,s = (245) in C*® by x;; = (2u;; — 1) /2q. Such a U-type design that minimizes a certain
discrepancy criterion is called a U-type uniform design, denoted as U, (¢®). More details
about the uniform design theory and methods can be found in Fang and Wang (1990, 1994)
and Fang et al. (2000, 2006, 2018).

For example, a U-type uniform design Usg(20?) with 20 runs, 2 factors, and 20 levels
is shown in Table 1, which corresponds to the last plot in Figure 2. Below we provide
the commonly used definitions for uniform designs, as well as their connections with HPO
problems via Figure 1.

e Factors: the input variables of interest for a computer experiment, or the hyperpa-
rameters configured for a machine learning task.

e Levels: each factor or hyperparameter is assigned with discrete values within the ex-
perimental domain or the hyperparameter space. For a continuous factor, we typically
divide it into q levels. For categorical or integer-valued factors, their level assignment
will be discussed in Section 4.

e Design points: a design point is a possible level combination of different factors, and
it corresponds to a unique configuration of hyperparameters to be conducted.

e Runs or trials: a run or trial corresponds to the implementation of a design point,
and it generates the output or response for further analysis.
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No.|1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ry |16 18 12 19 1 10 9 4 2 14 6 15 5 20 11 13 8 7 3 17
zp (1519 1 3 9 7 20 13 18 10 16 5 6 12 14 17 4 11 2 8

Table 1: U-type uniform design Usg(202). Each integer of factors x1,xo represents a level
ke {1,2,...,q}, which corresponds to (2k — 1)/2q in the design space.

Definition 2 (Augmented Uniform Designs) Given an initial uniform design D,,, C
C? and the follow-up run size no, an augmented uniform design is to find a follow-up design
Dy, that minimizes the discrepancy of the combined design, i.e.,

* . Dnl
Dy, Dglcncﬁ <[ D, D : (5)

Clearly, when the initial design is empty, the augmented uniform design reduces to the
ordinary uniform design as in Definition 1. Next, we introduce the discrepancy for measuring
the uniformity of the design points. Traditionally, the star discrepancy (Niederreiter, 1992)
is the most popular choice in quasi-Monte Carlo methods. It is defined as the maximum
deviation between the empirical distribution and uniform distribution,

|Dn N [0,1’)‘

¢(Dy) = sup — Vol([0,2))|, (6)
zeC'* N
where the symbol | - | denotes the number of points in a set and Vol([0,x)) is the uniform

distribution function on the unit cube [0,z). Later, the generalized ¢)-discrepancy (Hick-
ernell, 1998) extends the star discrepancy to be more computationally tractable. Among
various generalized ¢,-discrepancies, the centered ¢»-discrepancy (CD3) is given by

v ~(2) 201 (1o

k=1j=1

(7)

n n S

ORI [IEE

k=1j=11i=1

xki—§ +§

1 ‘ 1

1 1
Lji — 2’ ) |k —iji@ :

The CDy discrepancy can be intuitively interpreted as the relative proportion of design
points belonging to subregions of the search space (Hickernell, 1998). It has several appeal-
ing properties: a) easiness to compute; b) projection uniformity over all sub-dimensions; c)
reflection invariance around the plane x; = % (for any j =1,---,s).

There also exist other uniformity criteria, including the wrap-around f¢o-discrepancy
(WD3) and the mixture fo-discrepancy (MDsg). They share similar properties as CDg. For
simplicity, we use CD3 as the default criterion for generating and evaluating uniform designs
and augmented uniform designs throughout the paper.
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3.1 Construction Algorithm

Due to the balance requirement for U-type designs, we assume the total number of runs
n = ny1 + ng is divisible by ¢. The construction of U-type augmented uniform designs is
a combinatorial optimization problem, which is extremely difficult for large design tables.
The enhanced stochastic evolutionary (ESE) algorithm proposed by Jin et al. (2005) is
the most influential work for constructing space-filling designs. It is built upon threshold
accepting (TA) and stochastic evolutionary (SE), for which a rather sophisticated procedure
is designed to automatically control the acceptance threshold. This algorithm has been
implemented in the R package DiceDesign (Dupuy et al., 2015).

Inspired by ESE, we provide a simple yet effective AugUD algorithm for constructing
augmented uniform designs. The proposed AugUD algorithm is composed of two nested
loops. The inner loop rolls over columns for element-wise exchange while the outer loop
adaptively changes the acceptance threshold. It involves the following critical steps.

Initialization. Given a fixed D,,, initialize the augmented design D, such that

([ gg; ]) is a balanced U-type design. Note that D}, can be randomly generated or
user-specified as long as it satisfies the balance requirement.

Element-wise Exchange. This is a basic procedure for searching optimal designs (Fang
et al., 2000; Jin et al., 2005). Given the current Dy _, we randomly exchange two elements
of a factor in Dy, , in order to obtain a new combined design with improved uniformity. Re-
peat this operation for Mg times. According to the CD2 criterion (7), only a small part of
terms needs to be updated for each element-wise exchange, which is an appealing property
in practice as it can help save a lot of computing time.

Threshold Accepting. The TA strategy is employed for jumping out of local optima.
The best candidate design D,,, obtained by element-wise exchange can be accepted with a

probability:
. A
p=1—min (1, max <0, >> , (8)
Ty

where T}, is the acceptance threshold for accepting suboptimal solutions and A is the change
of the uniformity criterion:

s=eflo]) (5 ]) ®

When A < 0, D,,, will be accepted with the 100% probability; otherwise, Dy, with worse
performance may still be accepted with a probability p.

Adaptive Threshold. It is critical to select the threshold T}, in the TA algorithm. We
propose an adaptive updating rule for T}. It is firstly initialized as

m=(] o3 ]); w9

where v is a factor controlling the initial threshold. During optimization, T} can be adap-
tively updated by

T if h; <,
Th:{ Wi 0 a1

ady,  otherwise,
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where « is the scaling factor for adjusting the threshold. The symbol h; represents the
hit ratio in the ith iteration (outer loop). When h; is smaller than 7, T} will be increased
for more exploration; when h; remains a large value, the threshold should be decreased for
better exploitation.

A formal description of the AugUD construction is given in Algorithm 1, which requires
input of multiple pre-specified parameters. In practice, we mimic the settings used in Jin
et al. (2005) and specify the parameters as follows.

e 7 =0.005. It denotes the multiplier of the initial acceptance threshold.

e 1 = 0.1. The hit ratio threshold controls the acceptance threshold adjustment.

e a = (.8. It is the scaling factor for adjusting the acceptance threshold.

e Mg = min{50,0.2xn3(¢—1)/(2¢)}. It controls the number of element-wise exchange.

Finally, the numbers of loops are empirically determined as Mgyuter = 50 and Mipner =
100, which appear to work well in our tested cases. The AugUD algorithm can be further
enhanced by restarting multiple times with different random seeds, and the one with the
best uniformity criterion can be selected.

Software Implementation. The proposed AugUD algorithm and related functionali-
ties have been wrapped and implemented in our open-source Python package PyUniDOE *.
The core algorithm is written by C++ programming language, and we provide user-friendly
application programming interfaces (APIs) in Python. It supports the real-time generation
of uniform designs and augmented uniform designs under various uniformity criteria, e.g.,
CD3y, WD, and MD,. In PyUniDOE, we also include a database of many state-of-the-art
U-type uniform designs, which can be directly queried.

3.2 Experimental Evaluation

The proposed AugUD algorithm serves as an efficient tool for the design community re-
garding the generation of both uniform designs and augmented uniform designs.

3.2.1 AucUD FOR GENERATING UNIFORM DESIGNS

We download the U, (n®) designs from the uniform design website ? maintained by Hong
Kong Baptist University, which collects the commonly used uniform designs with factors
s=2,3,---,29. Each factor has different number of runs n =s+1,s+2,---,30. In total,
406 U-type uniform designs are downloaded. Although these designs are widely used, we
experimentally show that most of them are not optimal.

We treat the downloaded U-type uniform designs as initializations and then compare
the proposed AugUD algorithm (implemented in our PyUniDOE package) with the ESE
algorithm (implemented in the DiceDesign package by Dupuy et al., 2015). For a fair
comparison, these two methods are configured with the same number of iteration loops and
element-wise exchange. Each method is repeated ten times with different random seeds. For

1. https://github.com/SelfExplainML/PyUniDOE
2. http://www.math.hkbu.edu.hk/UniformDesign
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Algorithm 1: The proposed AugUD algorithm
Input: D, (Existing Design), n; (# Existing Runs), na (# Augmented Runs), s
(# Factors), q (# Levels), Mouters Minner (# Outer and Inner Loops).
Output: The optimal augmented design Dy, .
1 Initialize D}, and calculate T} by (10).
2 for i =1, 2, ..., Myuter do
Set k= 0.
for j =1, 2, ..., Mipper do
Select the column j (mod s) of Dy, .
Randomly pick Mg element pairs on the selected column.
Perform element-wise exchange for selected pairs and evaluate discrepancy.
Choose the best candidate design and calculate p by (9).
Update D and set k = k + 1 (with the probability p).

n2

© 0 N o kW

10 end

11 Calculate the hit ratio h; = k/Minner-
12 Adaptively update Ty, by (11).

13 end

evaluation, we report the average and best performance of each method. The average CDo
improvement ratios (over ten repetitions) of different initial uniform designs are reported in
Figure 15 in the appendix. For simplification, we aggregate the improvement ratios by the
number of factors, and the averaged results against different numbers of factors are reported
in Figure 3. For example, the bars at x = 2 are averaged over all the 2-factor designs with
runs ranging from 3 to 30, while the bars at 2 = 29 only represent the results of Usg(30%%).

It is surprising to observe that a large proportion of classic uniform design tables can be
improved. According to the best designs found in the ten repetitions, 317 out of the tested
406 uniform designs have been improved by AugUD compared to 313 by ESE. This means
that almost 80% of existing uniform designs maintained by the uniform design website are
not optimal, which further reflects the difficulty of generating uniform designs. Meanwhile,
the best results of AugUD (over the ten repetitions) improve CDy of existing designs by
0.2433% on average, which is much better than that of ESE (0.1875%). It is also observed
that the average improvement for 2-factor designs is relatively small compared to other high-
dimensional designs. The reason is that these small-scale designs are easy to construct, and
most of them are already optimal.

In general, the proposed AugUD algorithm tends to outperform the ESE algorithm.
Due to the efficient computational enhancement (e.g., C++ acceleration) in PyUniDOE,
AugUD only uses around 0.34% computing time of ESE (which is based on pure R language).
The results demonstrate the superiority of the proposed AugUD algorithm and its efficient
implementation in PyUniDOE. Moreover, it is worth mentioning that all the existing designs
are already widely used, and such improvement marks a non-trivial contribution to the
uniform design community.

10
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Figure 3: Experimental results for generating uniform designs averaged against different
number of factors. (a) Average improvement ratios compared with uniform de-
signs obtained from the uniform design website; (b) Time cost.

3.2.2 AuGUD FOR GENERATING AUGMENTED UNIFORM DESIGNS

In the literature, a commonly used strategy for generating sequential designs is the nested
uniform design (Fang and Wang, 1994), in which a new uniform design is embedded into
existing designs. However, nested uniform designs do not consider the relationship between
new and existing design points. The AugUD algorithm provides a practical and fast solu-
tion for augmenting design points subject to overall uniformity. Thus, AugUD can avoid
clustered or duplicated design points and better explore the search space.

Experimentally, we consider a test scenario in which 5 design points are randomly ob-
tained from U, (n)® for each s = 2,---,24, and n = 8,---,30,(n > s+ 5). These points
are treated as existing designs, and we then augment (n — 5) design points to the design
space. Five strategies are involved for augmentation, i.e., random augmentation, nested
LHS (i.e., a new LHS is embedded into the design space), nested Sobol (i.e., a new Sobol
sequence is embedded into the design space), nested uniform design (i.e., a new uniform
design U,_5(n — 5)° is embedded into the design space; nested UD), and AugUD. Each
method is repeated ten times, and we calculate the average CDs over ten repetitions for
comparison.

The detailed improvement ratios of AugUD and nested UD against random augmenta-
tion for each (factor, run) pair are reported in Figure 16 in the appendix. A summary of
the experimental results is provided in Figure 4. The bars at x = 2 denote the improvement
ratios averaged over all the 2-factor designs with runs ranging from 8 to 30. In contrast,
the bars at x = 24 only represent the average improvement ratio of the 30-run, 24-factor
design. Both AugUD and nested UD show superior performance to random augmentation,
nested LHS, and nested Sobol regarding the overall uniformity.

It is also observed that AugUD significantly outperforms nested UD in all the compared
cases. For AugUD, the improvement ratios show a decreasing trend as the number of factors

11
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Figure 4: Average results for generating design augmentation. (a) Improvement ratios of
nested UD and AugUD against random augmentation; (b) Time cost.

increases. That is, large-sized designs are generally hard to optimize, and the augmented
designs found by AugUD may be still not optimal. In Figure 4b, the computing time of
AugUD is slightly larger than that of nested UD (generated using our PyUniDOE package),
as the evaluation of (7) is a little bit expensive for large-sized designs, i.e., n versus (n —5).
Note that nested LHS and nested Sobol can be easily generated without any complicated
optimization, and hence their time costs are not reported (almost zero).

For illustration, Figure 5 shows the results of adding 15 design points to 5 existing
design points in a 2-D design space. It can be observed that the added points by random
augmentation and nested UD can be quite close to existing points. In contrast, the proposed
AugUD performs significantly better in terms of space-filling performance.

4. Sequential Uniform Design

Sequential uniform design (SeqUD) is a general multi-stage optimization framework that
incorporates uniform designs and a simple yet effective search strategy, i.e., sequential space
halving. We first present the general SeqUD framework, then discuss its application for
HPO, and finally remark its benefits and limitations.

4.1 SeqUD Framework

The SeqUD framework comprises the following components: A) initial uniform design; B)
subspace zooming & level doubling for sequentially adjusting the search space; and C)
uniform design augmentation.

A) Initial Uniform Design. At the first stage, a U-type uniform design U,(¢°) is
generated. These design points are evaluated through the corresponding experiments. Note
that the number of initial design points n and the level number ¢ should be predetermined
for a specific task. For problems with possibly complex response surface, it is recommended

12



HYPERPARAMETER OPTIMIZATION VIA SEQUENTIAL UNIFORM DESIGNS

° ¢ ° ‘
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CD2 = 0.02599 CD2 = 0.00503 CD2 = 0.00077

Figure 5: A 2D example illustrating different augmentation methods. (a) Random aug-
mentation; (b) Nested UD; (¢) AugUD. In each plot, the 5 red dots represent the
existing design D,, and the 15 blue dots represent the augmented design D, .

to use more runs and more levels so that the initial design can better cover the search space.
After initialization, steps B) and C) are repeated until the maximal number of runs Tiax
is reached.

B) Subspace Zooming & Level Doubling. At the jth stage (j > 2), the search
space is halved into a subspace while the doubled granularity. The optimal point x} among
all the evaluated design points is treated as the center of the new subspace, and the new
search space is defined with levels (for each factor i = 1,2, ..., s)

* q— 1 * * q— 1
UJ,Z = {.’I}]’,L — %’ ...,:L'jﬂ-, ...733]'71' + 2]q } y (12)

when ¢ is odd, or

* q—2 * * 1
Uj,i = {x],l — 2]q ,...,xjﬂ" ""':Uj7i + 2]} 5 (13)

when ¢ is even. It is possible that the selected optimal center point is close to the search
boundary, and some parts of the reduced subspace can be outside of C°. Accordingly,
we introduce a subspace shifting procedure to prevent this from happening. The reduced
subspace is moved perpendicularly towards the inner side of the search space until all the
levels are within the boundary.

C) Uniform Design Augmentation. This step is to augment design points in the
reduced subspace. After the existing design points are converted to the new level space (12)
or (13), the new design points can be augmented via the AugUD algorithm.

A summary of the above procedures is provided in Algorithm 2. As the termination of
SeqUD is controlled by Ty ax, the number of design points per stage should be accordingly
specified. In the beginning, the granularity is generally not sufficient for finding the optimal
point, e.g., for stages j < 3; as the search space is halved sequentially, the search space will
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Algorithm 2: The proposed SeqUD framework
Input: Ti,.x (# Total Runs), n (# Runs per Stage), s (# Factors), ¢ (# Levels).
Output: The optimal design point x* from all evaluations.
Generate an initial uniform design U, (¢®).
Evaluate each initial design point.
Collect the design-response pairs H = {(x1,41), -, (Xn,Yn) }-
Set stage j =2 and T = n.
while True do
Reduce the space of interest by centering on z7 = argmaxy,cp y.

Count the number of existing design points in the subspace as ne.

Calculate the number of new design points to be augmented as n; = n — ne.
if T+ n; > T}, then break;

10 Augment n; design points via the AugUD algorithm.

© W N o Ok W =

11 Evaluate each augmented design point, and update H.
12 Set j=j+1land T =T +n;.
13 end

be sufficiently small as, e.g., for stages j > 10. Further exploration over such a small region
is somehow meaningless. Hence, the number of design points per stage should be roughly
selected within the range [Timax/10, Tmax/3], considering the complexity of the task. For
illustration, a two-stage example of SeqUD is provided in Figure 6. It can be observed
that the search space is well covered by the initial uniform design. The reduced subspace
is centered on the best-evaluated point and more design points can be added accordingly.

Remark 3 A sequential random search (SeqRand) approach is proposed as a naive version
of SeqUD. It is based on the space halving strateqy while design points at each stage are
randomly generated. Since uniformity is not a concern of SeqRand, the number of randomly
generated design points can be directly set to n for each stage. Moreover, SeqRand can also
be viewed as a sequential version of the random search.

4.2 SeqUD for Hyperparameter Optimization

In this part, we present the details of applying SeqUD for HPO. Let f be a function
that measures the performance of a machine learning algorithm with hyperparameters
0 = (01,02, ...,04), where d denotes the number of hyperparameters to be optimized. Our
objective is to find the best hyperparameter configuration 6* that maximizes f, which can
be the cross-validation or hold-out validation score.

Hyperparameters are usually of different types and scales. In HPO, the first step is to
identify the tunable hyperparameters and corresponding search domains. Hyperparameters
of machine learning algorithms may have various ranges and formats, and it is necessary to
do some preprocessing. In general, they can be classified into three types, i.e., continuous
(or numerical), integer-valued, and categorical. Continuous and integer-valued hyperparam-
eters can be linearly transformed within the range [0, 1]. For categorical hyperparameters,
one-hot encoding should be employed for transformation.
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Figure 6: A two-stage example of SeqUD in a 2-D space. The circle points represent the
initial uniform design via Us(20?). The surrounding box serves as the subspace of
interest centered on the optimal design point xJ at the first stage, which is denoted
by a square point in green. At the second stage, a new design is augmented (blue
points) considering the overall uniformity within the subspace.

SeqUD proceeds HPO as follows. First, as the initial uniform design is constructed,
we inversely transform these design points to their original forms. For continuous hy-
perparameters, the inverse mapping can be directly implemented, while for integer-valued
hyperparameters, they should be rounded to the nearby integers. Each categorical hyperpa-
rameter is represented by multiple dummy variables so that the corresponding design space
dimension is greater than the number of hyperparameters. The encoded dummy variables
are inversely transformed to corresponding hyperparameters by the arg max operation.
More detailed discussion for handling categorical and integer-valued hyperparameters can
be referred to Garrido-Merchan and Hernéndez-Lobato (2020).

All the generated hyperparameter configurations are then evaluated by training the
machine learning algorithm and calculating the predefined evaluation metric. The best
performing configuration is selected for further investigation at the next stage. Through
subspace zooming & level doubling, new design space will be generated, and the AugUD
algorithm can be used to augment sequential design points. After the optimization termi-
nates, the machine learning model will be configured with the optimal hyperparameters and
refitted to the whole training data.

Software Implementation. The procedures mentioned above are wrapped in our
Python package SeqUD 3. It includes the proposed SeqUD method and some related bench-
mark methods with an interface to the well-known machine learning platform scikit-learn.
In addition to SeqUD and SeqRand, the APIs for some non-sequential methods are also pro-
vided by SeqUD, including grid search, random search, uniform designs, Latin hypercube
sampling (by Python package pyDOE), and Sobol sequences (by Python package sobol_seq).

3. https://github.com/SelfExplainML/SeqUD
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Moreover, the three classic Bayesian optimization methods are included by using the inter-
faces of Hyperopt, Spearmint, and SMAC3.

4.3 Discussion

The idea behind the proposed SeqUD framework is intuitive and straightforward. It uses the
space halving strategy to adjust the search space, and the main difference between SeqUD
and other space halving-based approaches lies in its uniformity consideration. Compared to
coarse-to-fine grid search methods, a) SeqUD is not limited to low-dimensional problems;
b) the uniformity of new design points with existing design points is considered. Thus,
it should have better optimization performance. We summarize its beneficial aspects as
follows.

e SeqUD shares the benefits of all the other sequential methods. Except for the initial
design, design points in SeqUD are sequentially constructed based on the preliminary
information of existing design points. This procedure is more flexible and efficient
than non-sequential methods, e.g., grid search and random search.

e SeqUD makes a good balance between exploration (by uniform designs) and exploita-
tion (by sequential space halving). SeqUD is less likely to be trapped into local areas
for complicated hyperparameter response surfaces as the design points are uniformly
located in the area of interest.

e SeqUD is free from the surrogate modeling and acquisition optimization used in
Bayesian optimization. These procedures are all difficult tasks. For example, the
GP model may fail when design points are close to each other; building a random
forest on the hyperparameter space may be more expensive than conducting the ex-
periments; in high-dimensional settings, it may find the best design point using the
fitted surrogate model is also time-consuming. In contrast, new design points in Se-
qUD can be quickly generated without too much computation.

e Design points generated at the same stage can be evaluated in parallel. Given suffi-
cient computing resources, this property will bring significant computation efficiency,
especially for training large-scale machine learning algorithms. Methods like GP-EI,
SMAC, and TPE, are initially designed to select new design points one by one, leading
to a waste of computing resources. There also exist some strategies for speeding up
computations for Bayesian optimization methods (Snoek et al., 2012; Hutter et al.,
2012), while the optimization performance may be sacrificed. Also, these methods are
not natural for performing parallelization (Shahriari et al., 2016).

The possible limitation of SeqUD, SeqRand, and all the other space halving strategies
lies in the local optima problem. Although sampling uniformity is considered in SeqUD, it
can still be trapped into local optima. This problem can be mitigated by performing more
exploration over the search space, and in practice, the following two ways can be used to
enhance the exploration.

e Employ more design points per stage for complex tasks, so that the algorithm is less
likely to be trapped into locally optimal areas.
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e Multiple shooting, i.e., except for zooming into the best-evaluated point per stage,
we may simultaneously search the nearby subspace of the second and the third-best
points (when these points are distant from each other).

Given a sufficient number of runs, these two strategies may help increase the success
rate of optimization. However, as the total budget is usually limited, the trade-off between
exploration and exploitation still exists.

5. Experiments for Global Optimization

Extensive synthetic functions are involved in testing the performance of SeqUD on global
optimization tasks. The benchmark models include grid search (Grid), random search
(Rand), Latin hypercube sampling (LHS), Sobol Sequences (Sobol), uniform designs (UD),
sequential random search (SeqRand), GP-EI, SMAC, and TPE. A total budget of 100 runs
is allowed for each method. That is, all the compared methods can evaluate at most 100
design points. Finally, grid search is only tested on 2-D tasks.

All the benchmark methods are kept to their default settings. In SeqUD, we set the
number of runs and levels per stage as n = ¢ = 15 when s < 5; otherwise, we use n =
q = 25 for higher-dimensional tasks. This setting compromises exploration and exploitation
and works well in our experiments. For a fair comparison, the SeqRand approach is also
configured with 15 or 25 runs per stage (depending on s). All the global optimization
experiments are repeated 100 times. Throughout this paper, the statistical significance is
reported based on paired t-test, with a significance level of 0.05. Due to the page limit,
results reported in tables are all rounded to a certain precision, while the rank and statistical
significance comparisons among different methods are based on the original precision.

5.1 Example Functions

The working mechanism of each compared method is first investigated through the following
2-D synthetic functions.

Cliff Function. The first example is obtained from Haario et al. (1999, 2001). As
shown in Figure 7a, its mesh plot looks like a “cliff”, where the non-zero-value area is
narrow and long.

12?2 1
fl (1-1’;(;2) =exp {_xl —_ = (.%'2 + 003:(}% — 3)2} s

x1 € [—20,20], 22 € [-10,5].

(14)

Octopus Function. The second scenario is much more complicated, with multiple
local extrema within the response surface (Renka and Brown, 1999). Accordingly, we name
it “octopus” due to its shape as shown in Figure 8a.

fa(x1, 22) =2cos(10z1) sin(10x2) + sin(10z;x2),

xr1,T9 € [0, 1]. (15)

The goal is to find the maximal values using the compared methods. For demonstra-
tion, the evaluated design points of SeqUD are visualized in Figure 7b and Figure 8b; the
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Figure 7: The 3-D surface of the cliff function and SeqUD evaluated points against the
ground truth contour plot.

(a) 3-D Surface (b) SeqUD Evaluated Points

Figure 8: The 3-D surface of the octopus function and SeqUD evaluated points against the
ground truth contour plot.

corresponding plots for benchmark methods are placed in Figure 17 and Figure 18 in the
appendix. Some impressive results are observed. All the non-sequential methods together
with SMAC and TPE use many design points in less promising areas in the cliff function.
The SeqRand shares the benefits of the space halving strategy and can finally find the global
optimal region. However, as randomly generated samples are not representative, SeqRand
is less efficient as compared to SeqUD. Similar results could be found in the octopus func-
tion. For example, SeqRand, TPE, and GP-EI are trapped in a sub-optimal area; the best
location found by SMAC is just close to the global optimum. In contrast, the proposed
SeqUD approach tends to be more promising as it successfully finds the correct area and
achieves the best performance.
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Data Set| Grid Sobol UD Rand LHS SeqRand TPE SMAC GP-EI  SeqUD
cliff  |0.869 0.877 0.983 0.907+0.082 0.931+0.063 0.9614+0.098 0.9734+0.026 0.913+0.102 0.994+0.036 1.000
octopus [2.889 2.778 2.849 2.78440.136 2.805+0.132 2.904+0.157 2.858+0.113 2.8574+0.163 2.898+0.198 2.996

Table 2: The optimization results of cliff and octopus functions. The best performing meth-
ods are highlighted in bold and underlined results are significantly different from
the best ones. Note that the standard deviations of Grid, Sobol, UD and SeqUD
are omitted as they are all zero.
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Figure 9: The optimization results against the number of runs of the two example functions.
Each point is averaged over 100 repetitions, and the areas between the 5th and
95th percentiles are shadowed.

Table 2 reports the final optimization results of all compared methods, where the best
performing methods are highlighted in bold and underlined results are significantly differ-
ent from the best ones. The performance of sequential methods over the number of runs is
visualized in Figure 9. In the cliff function, SeqUD uses fewer trials to reach the best point.
Given 100 runs, SeqUD performs slightly better than GP-EI, but no statistical significance
is observed. In particular, SMAC fails in this task, and its performance is close to random
search. For the octopus function, SeqUD achieves significantly better performance as com-
pared to all the benchmarks. SeqRand and GP-EI show similar performance at 100 runs,
and both of them outperform SMAC and TPE in this task.

5.2 Systematic Investigation

A systematic investigation is conducted on extensive standard unconstrained global opti-
mization tasks summarized by Surjanovic and Bingham (2020). Out of the 47 synthetic
functions, 32 are selected using the following rules: a) one-dimensional optimization prob-
lems are removed (too simple to use for comparison); b) tasks with global optimal points
exactly located at the center of the search spaces are removed due to fairness consideration,
as some of the compared methods routinely search the center. Table 3 provides more infor-
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mation for these selected synthetic functions, which are grouped into six categories with 2
to 8 dimensions. Note that some of the functions are allowed to have various dimensions.
We follow their recommended settings for powersum, zakharov, dixonpr, rosen, powell, and
michal. For the remaining synthetic functions, a somehow arbitrary setting is used, that is,
langer, levy, perm0db, trid, prmdb are set to have two dimensions; schwef and stybtang are
set to have six dimensions.

Similar to Table 2, the averaged optimization results over 100 repetitions are reported
in Table 9 in the appendix, in which all the listed results should be multiplied by the
corresponding scaling factors in the last column. To have an exact comparison of different
methods, we evaluate their relative performance using rank statistics. For each synthetic
function, the averaged results of all compared methods are ranked from 1 (the best) to 10
(the worst). A box plot for the rank statistics across the 32 synthetic functions is reported
in Figure 10a. The five sequential methods are also ranked (from 1 to 5) for every ten runs,
and the ranks averaged over the 32 synthetic functions are reported in Figure 10b.

From the results, we can observe that sequential methods are superior to non-sequential
methods, and among the compared sequential methods, the proposed SeqUD achieves the
best overall performance. It ranks the first in more than half of the 32 synthetic functions
and the second in 7 functions. The overall performance of GP-EI is inferior to SeqUD but
better than other compared methods. Although GP-EI performs the best on 9 synthetic
functions, it also ranks the last in 5 functions. The rest sequential methods, i.e., SeqRand,
SMAC, and TPE, are slightly poorer than SeqUD and GP-EI.

Note that two failure cases are observed in SeqUD, i.e., for langer and holder. Both
of these two functions have a lot of locally optimal regions. It is worth mentioning that
SeqRand does not fail in these two functions. That is because design points in SeqUD are
constructed with uniformity consideration, such that its design points are relatively stable
across different repetitions. In contrast, SeqRand may have very different design points for
different random seeds. Therefore, it is possible that SeqRand outperforms SeqUD.

5.3 Ablation Study for 1000 Runs

An ablation study is further conducted with 1000 runs for each compared method. For
SeqUD, we increase the number of runs and levels (per stage) proportionally, i.e., n =
g = 150 for s < 5 and n = ¢ = 250 for s > 5. The SeqRand approach is accordingly
configured. Given more runs, the design points of GP-EI tend to cluster. Such clustered
design points may make GP-EI extremely slow and even crash due to the singular matrix
problem. Therefore, we remove GP-EI from the benchmark list, and all the other models
are still employed here for comparison.

Table 10 in the appendix presents the experimental results of this ablation study, with
the same formatting style as in Table 9. We calculate the rank statistics for each synthetic
function, and the corresponding box plots are shown in Figure 11. The ranks based on 1000
runs are consistent with that of 100 runs. SeqUD still performs the best in most synthetic
functions, followed by SeqRand, TPE, SMAC, and all the non-sequential methods.

In the early stage of the optimization, SeqUD and SeqRand have poorer performance
than TPE and SMAC. For instance, both TPE and SMAC are better than SeqUD at 100,
200, and 300 runs. That is because we use larger n in this ablation study. The first 300
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Category Function Name  Abbr Dim|| Category |Function Name Abbr Dim
Bukin N. 6 bukin6 2 Perm 0, d, # permOdb 2
Cross-in-Tray crossit 2 Bowl-Shaped Trid trid 2
Eggholder egg 2 . | De Jong N. 5 dejongd 2
Holder Table holder 2 Steep Ridges Easom easom 2
Many or Drops . . .
Local Minima Langermann langer 2 Michalewicz ~ michal 5
Levy levy 2 Beale beale 2
Levy N. 13 levyl3 2 Branin branin 2
Schwefel schwef 6 Colville colville 4
Shubert shubert 2 Goldstein-Price goldpr 2
Booth booth 2 Hartmann 3-D  hart3 3
Plate-Shaped McCormick mccorm 2 Other Hartmann 4-D  hart4d 4
P Power Sum  powersum 4 Hartmann 6-D hart6 6
Zakharov zakharov 4 Perm d, permdb 2
Six-Hump Camel camel6 2 Powell powell 4
Valley-Shaped| Dixon-Price dixonpr 4 Shekel shekel 4
Rosenbrock rosen 8 Styblinski-Tang stybtang 6
Table 3: The 32 synthetic functions for global minimization.
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Figure 10: The ranks of compared methods over the 32 synthetic functions.

runs correspond to the early stages of SeqUD, which means that the search points are of low
granularity. In contrast, TPE and SMAC keep their original settings and perform better
for the first 300 runs. But as more design points are evaluated, SeqUD gradually exceeds
these two Bayesian optimization methods. Consistent patterns are observed for SeqRand,
while it needs more design points to exceed TPE and SMAC.

Given a larger number of design points per stage, SeqUD tends to achieve better perfor-
mance in 29 out of 32 synthetic functions. The results of SeqUD on langer and holder are
largely improved, and SeqUD even outperforms all the compared benchmarks at 1000 runs.
However, SeqUD also gets poorer results on three synthetic functions. Although using a
larger number of design points per stage can have a better exploration of the search space,
it is still possible that the initial design points are scattered within locally optimal regions.
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Figure 11: The ranks of compared methods over the 32 synthetic functions (with 1000 runs).

6. Experiments for Hyperparameter Optimization

We continue to test the proposed SeqUD method for HPO tasks in the AutoML context.

6.1 Experimental Setup

We consider 20 regression and 20 binary classification data sets obtained from the UCI
machine learning repository and OpenML platform, in which we select the data with mod-
erate features and sample sizes. Each data is preprocessed by imputing missing values by
the median (for continuous variables) or most frequent (for categorical variables) values, as
summarized in Table 4. Before training, categorical features are preprocessed using one-hot
encoding, and numerical features are scaled within [0, 1]. For each data, we split 50% of
the data samples for training, and the remaining 50% is used for testing. Five-fold cross-
validation (CV) performance in the training set is employed as the optimization target. The
root-mean-square error (RMSE) and accuracy score are used as the evaluation criteria for
regression and classification tasks, respectively.

Two representative machine learning algorithms are first involved, i.e., support vector
machine (SVM) and extreme gradient boosting (XGBoost). A pipeline optimization task is
also considered, which involves data preprocessing, feature engineering, model selection, and
HPO. Some of the compared methods are implemented to utilize dependence information
among hyperparameters, while the rest are not. To eliminate this influence, the depen-
dence information of hyperparameters is not utilized throughout. All the experiments are
conducted based on the scikit-learn platform and related packages (e.g., xgboost).

SVM. We consider a classical 2-D hyperparameters optimization problem in SVM. The
popular Gaussian kernel is fixed, and we tune the two continuous hyperparameters, i.e., the
kernel parameter and penalty parameter. They are optimized in the base-2 log scale within
[2716 26] and [276,2%6], respectively. The training algorithm of SVM is not scalable even
for data with moderate sample sizes. To save computing time, we instead use scikit-learn’s
“SGDRegressor” or “SGDClassifier” (with hinge loss for regression and epsilon insensitive
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Regression Classification

Abbr. Data Set Feature Size ||Abbr. Data Set Feature Size
R1 no2 7 500 C1 breast cancer wisc diag 30 569
R2 sensory 11 576 C2 ilpd indian liver 10 583
R3 disclosure z 3 662 C3 credit approval 15 690
R4 bike share day 11 731 C4 breast cancer wisc 9 699
R5 era 4 1000 || C5 pima 8 768
R6 treasury 15 1049 || C6 tic tac toe 9 958
R7 airfoil 5 1503 || C7  statlog german credit 24 1000
RS wine red 11 1599 || C8 pcl 21 1109
R9 skill craft 18 3395 || C9 seismic bumps 15 2584
R10 abalone 8 4177 || C10 churn 20 5000
R11 parkinsons tele 19 5875 || C11 banana 2 5300
R12 wind 14 6574 || C12 twonorm 20 7400
R13 cpu small 12 8192 || C13 ringnorm 20 7400
R14 topo 2 1 266 8885 || Cl14 jml 21 10885
R15 combined cycle power plant 4 9568 || C15 eeg eye state 14 14980
R16 electrical grid 11 10000(| C16 magic telescope 10 19020
R17 ailerons 40  13750|| C17 adult 14 32561
R18 elevators 18  16599|| C18 nomao 118 34465
R19 bike share hour 12 17379 C19 bank marketing 16 45211
R20 california housing 8 20640(| C20 electricity 8 45312

Table 4: The data sets for testing different HPO methods.

loss for classification) with the “Nystroem” transformer. Here we use this approach to
handle data with more than 3000 samples. The number of components in the “Nystroem”
transformer is fixed to 500. The initial learning rate is set to 0.01, and we use the “adaptive”
optimizer to adjust the learning rate during optimization.

XGBoost. Hyperparameter optimization of XGBoost is much more complicated than
that of SVM. Eight important hyperparameters in XGBoost are introduced, including
booster (categorical; “gbtree” or “gblinear”), maximum tree depth (integer-valued; within
the range [1, 8]), number of estimators (integer-valued; within the range [100, 500]), ratio of
features in each tree (continuous; within the range [0.5,1]), learning rate (continuous; the
base-10 log scale within the range [107°,10%]), minimum loss reduction (continuous; the
base-10 log scale within the range [107°,10%]), ¢;-regularization (continuous; the base-10
log scale within the range [107°,10°]) and /3-regularization (continuous; the base-10 log
scale within the range [1075,10°]).

Pipeline Optimization. In addition to optimizing a single machine model’s hyperpa-
rameters, we move one step further to the challenging pipeline optimization task. In par-
ticular, we consider data preprocessing (“MinmaxScaler” and “Standardizer”), feature en-
gineering (All Features, “SelectKBest”, and “PCA”), model selection (SVM and XGBoost)
and HPO for the selected model. Each of the first three steps, i.e., data preprocessing,
feature engineering, and model selection, can be treated as a categorical hyperparameter.
In data preprocessing, “MinmaxScaler” linearly maps each feature within [0, 1]; “Standard-
izer” instead standardizes each feature with zero mean and unit variance. While for feature
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engineering, “SelectKBest” selects the top-K features with the highest F-values. We tune K
within [1, min{m, 20}] (m denotes the number of features after one-hot encoding); similarly,
“PCA” denotes the principal component analysis, and the number of principal components
is selected within [1, min{m, 20}]. For the selected machine learning model (either SVM or
XGBoost), we use their corresponding HPO configurations as mentioned above.

In total, six groups of tasks are involved, i.e., SVM-Regression (SVM-Reg), SVM-
Classification (SVM-Cls), XGBoost-Regression (XGB-Reg), XGBoost-Classification (XGB-
Cls), Pipeline-Regression (Pipe-Reg), and Pipeline-Classification (Pipe-Cls). The same set-
tings are used for the compared HPO methods as in Section 5. That is, all the compared
methods are allowed to evaluate at most 100 hyperparameter configurations. For SeqUD
and SeqRand, we use n = ¢ = 15 when s < 5 and n = ¢ = 25 when s > 5. The optimization
results regarding the 5-fold CV performance, computing time, and test set performance are
all recorded. Each experiment is repeated ten times. The final results are reported with
average, standard deviation, and statistical significance across the ten repetitions.

6.2 Results Analysis

The 5-fold CV and test set results of HPO experiments on the 40 data sets are reported
in the appendix. Bold numbers indicate the best-performing methods, and results that are
significantly different from the best are underlined. Note that the RMSE results should be
multiplied by the corresponding scaling factors in the last column. We analyze the results
from the following perspectives.

Five-fold CV Performance. As the optimization target, 5-fold CV performance
directly reflects the optimization capability of each compared method. To make a clear
comparison, we rank the methods according to their averaged results for each data, as
shown in Figure 12. A one-verse-one win/loss comparison for all the methods is further
presented in Table 5, which is summarized over the 120 tasks (40 data sets by 3 machine
learning models). For instance, in the cell for “Rand”-“Grid”, “19 (7)” denotes that random
search is better than grid search on 19 tasks in which 7 tasks are tested to be significantly
better. Similarly, random search also shows inferior performance to grid search on 21 tasks,
with 9 tasks being significantly worse. Note that grid search is applied only for 2-D synthetic
functions, hence the total number of compared tasks is 40.

Several interesting findings are observed. First, the uniformity of design points is posi-
tively related to the performance of non-sequential methods. With better uniformity, both
UD and Sobol show slightly better performance than random search and LHS, but no big
difference is observed between UD and Sobol. Given 100 runs, both UD and Sobol have
better uniformity performance than random search and LHS. For instance, in the case of
SVM with s = 2, the best uniformity among non-sequential methods is achieved by UD
(CD2 = 0.000035), followed by Sobol (CDs = 0.000142), LHS (CDs = 0.000340), and
random search (CDg = 0.003440).

Second, sequential methods are in general superior to non-sequential methods. SeqRand
outperforms random search on 106 out of the 120 tasks. The proposed SeqUD also signif-
icantly beats the non-sequential UD on 109 out of the 120 tasks. The other sequential
methods, including TPE, SMAC, and GP-EI, also exhibit competitive performances.
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Figure 12: The ranks of 5-fold CV performance across different tasks. Each sub-figure
represents one of the six tasks, and the boxes are drawn based on the averaged
results of corresponding 20 data sets.

Third, by incorporating uniform design and sequential optimization, the proposed Se-
qUD achieves the best overall performance among all the compared methods. Given the
proposed sequential strategy, SeqUD significantly improves over its naive baseline SeqRand.
The SeqUD results are better than or on par with its counterpart Bayesian optimization
methods in most cases. GP-EI is the second-best among all the tested methods. The
GP-EI method works well on low-dimensional tasks (i.e., SVM), but it is less efficient for
high-dimensional tasks (i.e., XGBoost and pipeline optimization). On the contrary, TPE
and SMAC are more robust for high-dimensional tasks.

Computational Cost. The computing time required by each method is reported in
Figure 13. In SeqUD, augmented design points can be efficiently generated within a few sec-
onds. This is negligible as compared to the computational complexity of training a machine
learning model. Therefore, the time complexity of SeqUD is close to that of simple non-
sequential methods like grid search and random search. Moreover, the proposed SeqUD,
SeqRand, and all the non-sequential methods can be further accelerated by performing
design point-level parallelization. This type of parallelization will not sacrifice the opti-
mization performance. However, Bayesian optimization methods are less efficient regarding
computing time. Both TPE and SMAC are fast for optimizing 2-D SVM tasks; while for
high-dimensional tasks, SMAC and GP-EI would need more time for surrogate modeling
and acquisition optimization.
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Grid Rand  LHS Sobol UD SeqRand TPE SMAC GP-EI SeqUD
Grid - 21(9) 19(6) 19(12) 16(9) 7(2) 9(1) 12(2) 6(2) 5(2)
Rand |19 (7) - 57(0) 32(4) 39(4) 14(1) 9(1) 17(1) 39 (15) 7 (2)
LHS |20 (10) 61 (8) - 34 (4) 40(7) 20(0) 7(0) 23(1) 43 (14) 6 (3)
Sobol |21 (11) 86 (30) 84 (21) 61 (24) 29 (4) 17 (2) 36 (4) 52 (19) 10 (4)
UD |23 (13) 80 (26) 79 (18) 59 (22) - 30 (6) 21(3) 41 (3) 46 (20) 10 (3)
SeqRand |33 (21) 106 (54) 98 (59) 90 (49) 89 (50) 49 (5) 65 (16) 66 (19) 26 (4)
TPE |31 (17) 109 (71) 112 (68) 102 (60) 95 (63) 69 (10) - 82 (18) 70 (25) 32 (7)
SMAC |27 (12) 103 (45) 95 (51) 82 (46) 79 (41) 54 (8) 38 (5H) - 61 (24) 20 (5)
GP-EI (34 (27) 81 (49) 75 (46) 66 (49) 73 (43) 54 (30) 50 (31) 57 (29) - 34 (18)
SeqUD |35 (28) 113 (83) 114 (81) 109 (80) 109 (81) 91 (36) 87 (39) 97 (47) 85 (31) -

Table 5: Pairwise win/loss over the 120 HPO tasks (5-fold CV): the numbers in each cell
indicate how often the method in row (significantly) outperforms the method in
column. The statistical significance is calculated by paired t-test with a significance
level of 0.05.

It is observed that SeqUD often runs faster than grid search and random search. First,
the time cost of generating (augmented) uniform designs using AugUD is rather small. In
most cases, it can be finished within a few seconds, which is negligible as compared to the
training cost of machine learning models. Second, the training time of a machine learning
model depends on specific hyperparameter settings. In grid search and random search, they
may generate many design points on time-consuming hyperparameter configurations; while
for SeqUD, it focuses more on the best performing regions, which could be less computa-
tionally intensive.

Test Set Performance. Figure 14 reports the ranks of test set performance achieved
by different methods. Table 6 provides the one-verse-one win/loss comparison results.

Hyperparameter configurations that achieve better 5-fold CV performance can usually
perform well on the test set. The Spearman rank-order correlation coefficient is calculated
between SeqUD’s 5-fold CV and test set performance (over the 120 tasks), which are shown
positively correlated with a correlation coefficient greater than 0.6. The proposed SeqUD
achieves not only superior 5-fold CV performance but also competitive test set performance.
For instance, SeqUD outperforms each of GP-EI, SMAC, and TPE 79 times. The superiority
of SeqUD over other non-sequential methods is much more significant. Therefore, it is
evident that the proposed SeqUD approach is a competitive HPO method.

Despite the positive relationship between 5-fold CV and test set performance, there
exist cases that are not consistent. For example, sequential methods generally perform
much better than non-sequential methods regarding 5-fold CV performance, while for test
set performance, the gap is reduced. Such an observation can be due to overfitting. It is
known that when there are a limited number of validation samples, the hyperparameters
can overfit the validation set. However, the best hyperparameter configuration on the
validation set does not necessarily generalize well for the test set (Hutter et al., 2019). Some
possible solutions have been proposed in the literature to alleviate this problem, e.g., data
reshuffling for each function evaluation (Lévesque, 2018), finding stable optima instead of
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Figure 13: Computing time comparison across different tasks. Each sub-figure represents
one of the six tasks, and the boxes are drawn based on the averaged results of

corresponding 20 data sets.

Grid Rand LHS Sobol UD SeqRand TPE SMAC GP-EI SeqUD
Grid - 20 (7) 18 (10) 19 (9) 19(4) 16(4) 13(2) 19(2) 12(2) 10(2)
Rand |18 (4) - 55 (4) 40 (2) 49 (9) 40 (1) 31 (3) 34 (3) 56 (14) 24 (3)
LHS |21 (4) 65 (5) - 37 (5) 49 (10) 38 (4) 40 (0) 42 (2) 58 (19) 24 (4)
Sobol |18 (7) 77 (19) 80 (21) - 64 (25) 57 (9) 44 (7) 62 (7) 61 (19) 30 (9)
UD |19 (6) 69 (18) 69 (14) 53 (18) - 54 (9) 42 (5) 53 (7) 63 (19) 35 (5)
SeqRand| 24 (7) 79 (23) 80 (18) 62 (16) 64 (19) - 54 (8) 56 (7) 58 (17) 32 (5)
TPE |24 (7) 86 (30) 79 (29) 74 (29) 75 (28) 64 (9) - 67 (6) 64 (15) 39 (7)
SMAC |21 (7) 86 (20) 76 (20) 56 (24) 65 (17) 62 (6) 47 (4) 67 (21) 35 (7)
GP-EI |28 (13) 64 (26) 60 (27) 58 (25) 56 (23) 59 (12) 54 (11) 53 (14) - 41 (8)
SeqUD (28 (12) 94 (43) 93 (43) 87 (36) 83 (36) 86 (20) 79 (13) 79 (22) 79 (24) -

Table 6: Pairwise win/loss over the 120 HPO tasks (test set): the numbers in each cell
indicate how often the method in row (significantly) outperforms the method in
column. The statistical significance is calculated by paired t-test with a significance
level of 0.05.

sharp optima (Dai Nguyen et al., 2017), and the ensemble of multiple good hyperparameter
configurations (Momma and Bennett, 2002). However, overfitting is still an open question
in HPO, which is worthy of further investigation.
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Figure 14: The ranks of test set performance across different tasks. Each sub-figure repre-
sents one of the six tasks, and the boxes are drawn based on the averaged results
of corresponding 20 data sets.

Possible Limitations. Although the proposed SeqUD achieves promising results on
multiple HPO tasks, the experimental evaluation can be possibly limited and may lead to a
biased conclusion. First, as the computing resources are limited, this paper only considers
two machine learning tasks, three machine learning models, and small and medium-sized
data sets. Such empirical results may not generalize universally on other machine learning
tasks. Besides, the hyperparameter search space is according to our experience (as well as
common practice), but it does not represent all possible hyperparameter settings.

Second, the choice of evaluation metric for regression or classification tasks may affect
the final result. In our experiments, it is observed that SeqUD performs slightly better
on regression tasks than classification tasks. As SVM can only output binary prediction,
we used the accuracy score metric (a discrete measurement) in classification tasks. It is
possible that the difference between tested methods cannot be fully revealed. However, for
regression tasks, the MSE metric is a continuous measure, under which the superiority of
SeqUD has been shown more obvious.

6.3 Comparison with Hyperband

Additional experiments are conducted to compare SeqUD with Hyperband. Hyperband is
an adaptive computing resource allocation algorithm based on random search. It is mainly
used to tune the models that can be iteratively trained, where the performance of different
trials can be evaluated during training, such that the worst half trials are early stopped.

28



HYPERPARAMETER OPTIMIZATION VIA SEQUENTIAL UNIFORM DESIGNS

For instance, hyperparameters of deep neural networks can be tuned by Hyperband, as they
are typically fitted by the iterative backpropagation algorithm. In this paper, we compare
Hyperband with SeqUD using the XGBoost model, as the amount of computing resources
in XGBoost can be determined by the number of estimators. In Hyperband, the search
space of hyperparameters is kept the same as that of SeqUD, except for the number of
estimators, which is instead used as the indicator of amount of resources.

In SeqUD, the optimization is terminated as the maximal number of runs is reached.
But for Hyperband, the termination is not controlled by the maximal number of runs, but
by “min_iter” (the minimum amount of resource), “max_iter” (the maximum amount of
resource), and “eta” (inverse of the proportion of configurations that are discarded). For a
fair comparison, we set “min_iter”=10, “max_iter’=500, and “eta”=2. Under this setting,
the total number of runs of Hyperband is 138, which is larger than that of SeqUD (100).

The test set performance is reported in Table 7, and the proposed SeqUD shows sig-
nificantly better performance than Hyperband on the tested tasks. The reason is that
Hyperband still uses random search as the core algorithm for optimization, and its main
advantage lies in the adaptive resource allocation. However, it is still hard to observe the
superior performance of Hyperband, even given more trials.

Regression (RMSE) Classification (Accuracy %)
Data Set Hyperband SeqUD scale || Data Set Hyperband SeqUD
R1 5.0644+0.261 4.829+0.184 x0.1 C1 96.63+£0.82 96.28+0.90
R2 7.304+0.252 7.2834+0.253 0.1 C2 69.97+£0.98 69.28+2.14
R3 2.4264+0.104 2.424+0.105 x10000 C3 86.52+1.46 86.52+1.49
R4 7.293£0.341 7.146+0.274 x100 C4 96.094+0.89 96.63+0.54
R5 1.576+0.018 1.576+0.018 x1 Ch 75.424+1.61 75.62+1.29
R6 2.424+0.204 2.43640.193 x0.1 C6 98.71+0.61 98.81+0.41
R7 2.0894+0.159 1.980+£0.179 x1 Cc7 75.12+1.44 74.484+1.14
RS 6.201+0.115 6.136+0.115 x0.1 C8 93.05+£0.45 93.01+£0.65
R9 9.2804+0.130 9.209+£0.132 x0.1 C9 93.27+0.20 93.36+0.11
R10 2.21940.040 2.185+0.032 x1 C10 95.43+0.22 95.50+0.23
R11 2.4774+0.325 2.015+0.111 x1 C11 74.13+0.78 75.294+4.90
R12 3.14440.034 3.114+0.032 x1 C12 97.64+0.13 97.62+0.10
R13 2.792+0.068 2.753+0.051 x1 C13 97.61+0.27 97.75+0.28
R14 2.8994+0.153 2.886+0.154 x0.01 Cl14 81.23+0.19 81.28+0.22
R15 3.355+0.091 3.276+0.053 x1 C15 92.844+0.50 93.53+0.27
R16 9.75740.476 9.042+0.195 x0.001 C16 87.754+0.29 87.96+0.16
R17 1.6304+0.020 1.603£0.014 x0.0001 C17 87.08+0.21 87.10+0.16
R18 2.29240.077 2.214£0.052 x0.001 C18 97.03+£0.16 97.09+0.17
R19 4.368+0.225 4.228+0.071  x10 C19 90.664+0.12 90.76+0.10
R20 4.7054+0.091 4.654£0.064 x0.1 C20 92.084+0.60 92.99+0.23

Table 7: Test set performance comparison between HyperBand and SeqUD over XGBoost
optimization tasks. The best performing methods are highlighted in bold and

underlined results are significantly different from the best ones.
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6.4 Comparison with AutoSklearn

Since AutoSklearn is a fully automated pipeline that integrates many machine learning
models, it is employed to make comparison with SeqUD for the pipeline optimization task.
AutoSklearn is configured with the default settings, while SeqUD follows the pipeline op-
timization setup in Section 6.1. In AutoSklearn, the termination of the optimization is
mainly controlled by the time limit. For each data set, we first calculate the average time
cost of SeqUD (Tsequd), then set the time limit of AutoSklearn to be 1.05Tscquq-

The experimental results in Table 8 show that SeqUD beats AutoSklearn in 17 out of
the 40 compared tasks but fails in the other 23 tasks. The results indicate that AutoSklearn
is slightly better than SeqUD. The AutoSklearn package is mainly based on SMAC. The
reasons why AutoSklearn can achieve such a good performance are summarized below.
First, AutoSklearn has a much larger search space. For instance, it is optimized over tens
of machine learning models and has a higher probability of achieving better predictive
performance. Second, AutoSklearn is enhanced with meta-learning of data set information
and ensemble learning. Therefore, the direct comparison between SeqUD and AutoSklearn
is somehow unfair.

Nevertheless, it is possible to enhance SeqUD with such practical pipeline optimization
techniques in our future work.

Regression (RMSE) Classification (Accuracy %)
Data Set AutoSklearn SeqUD scale || Data Set AutoSklearn — SeqUD
R1 5.197£0.711 4.8294+0.184 x0.1 C1 62.81+0.00 96.95+0.63
R2 8.303+0.182 7.283+0.253  x0.1 C2 70.58+1.30 68.66+2.70
R3 2.42140.107 2.42440.105 10000 C3 85.88+1.22 85.83+1.50
R4 1.957+0.024 0.715+0.027 %1000 C4 96.57+0.72 96.54+0.84
R5 1.568+0.017 1.576+0.018 x1 C5 72.14+4.72 76.04£1.24
R6 2.127+1.515 0.244+0.019 x1 C6 34.66£0.00 99.35+0.30
R7 2.108+0.101 1.980=+0.179 x1 c7 75.02+£0.93 74.72+1.60
RS 5.939+0.093 6.136+0.115  x0.1 C8 92.77+0.40 93.08+0.60
R9 9.4594+0.185 9.209+0.132  x0.1 C9 93.41+0.05 93.40%0.08
R10  2.181+£0.048 2.18540.032 x1 C10 95.10+0.40 95.46+0.55
R11 8.374+0.110 2.015+0.111 x1 C11 89.83+£0.47 90.52£0.29
R12 3.338+0.245 3.114+0.032 x1 C12 97.73+0.16 97.724+0.18
R13  2.723+0.085 2.753+0.051 x1 C13 98.58+0.14 98.62+0.16
R14  2.868+0.158 2.886+0.154 x0.01 C14 81.57+0.23 81.234+0.22
R15  3.234+0.064 3.276+0.053 x1 C15 96.91+0.95 92.87+1.05
R16  7.980+0.135 9.0424+0.195 x0.001 C16 88.47+0.24 87.86+0.27
R17 1.584+0.020 1.603+0.014 x0.0001 C17 87.144+0.14 87.0940.15
R18 2.18440.042 2.21440.052 x0.001 C18 96.96+0.18 97.07+0.16
R19  4.187+0.172 4.228+0.071 x10 C19 90.79+0.11 90.70+0.10
R20  4.507+0.042 4.6544+0.064  xO0.1 C20 91.96+1.08 92.66+0.11

Table 8: Test set performance comparison between AutoSklearn and SeqUD over Pipeline
optimization tasks. The best performing methods are highlighted in bold and

underlined results are significantly different from the best ones.
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7. Conclusion

In this paper, we propose a SeqUD framework for global optimization and potential appli-
cation in HPO of machine learning models. A real-time AugUD algorithm is introduced for
fast construction of augmented uniform designs. The proposed SeqUD combines the benefits
of uniform designs and sequential exploitation. It balances exploration and exploitation, and
could be easily parallelized to save computation time. Both synthetic function optimization
and HPO experiments are conducted. The results show that the proposed approach is a
competitive alternative to existing HPO methods.

The SeqUD method can be improved in several directions. First, to avoid SeqUD trials
being trapped into local optima, the multiple shooting strategy mentioned in Section 4 is
worthy of our future investigation. Second, the generalization ability of different hyperpa-
rameters can be incorporated into the optimization framework. Third, the current SeqUD
implementation requires a suitable pre-specified range of each hyperparameter and needs
to determine the number of runs/levels per stage. In the future, it is a promising direction
to extend SeqUD to a fully automated HPO framework.
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Appendix A. Additional Results
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Figure 15: Average Improvement ratios (%) of ESE and AugUD against uniform designs
obtained from the uniform design website. For each sub-figure, the x-axis rep-
resents the number of factors and the y-axis represents the number of runs.
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Figure 16: Average improvement ratios (%) of nested UD and AugUD against random
augmentation. For each sub-figure, the x-axis represents the number of factors
and the y-axis represents the number of runs.
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(f) SeqRand

(g) TPE (h) SMAC (i) GP-EI

Figure 17: The evaluated design points by each benchmark method against the ground
truth contour plot of the cliff function. Each red point represents an evaluated
point, and the actual optimal point of the cliff function is located in the upper
center area.
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(h) SMAC (i) GP-EI

Figure 18: The evaluated design points by each benchmark method against the ground truth
contour plot of the octopus function. Each red point represents an evaluated
point, and the actual optimal point of the octopus function is located in the
center-left area.
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Table 9: Average optimal values found over 32 synthetic global optimization tasks (100 runs).

Name Grid Rand LHS Sobol UD SeqRand TPE SMAC GP-EI SeqUD Scale
bukin6 1.845+0.000 1.607+£0.851  1.366+0.865  1.56440.000 3.286+0.000 0.688+0.343  1.156+0.554  0.564+0.448 0.352+0.183 0.455+0.126 x10
crossit —2.050+0.000 —2.021£0.038 —2.024+0.035 —2.060+0.000 —2.058+0.000 —2.048+0.044 —2.0514+0.014 —2.0454+0.025 —1.922+0.084 —2.063+0.000 X1
egg —9.206+0.000 —7.438+0.985 —7.636+0.902 —6.7364+0.000 —6.601+0.000 —7.470+1.369 —7.8354+1.077 —7.2344+1.236 —5.8254+1.616 —7.3551+0.286 X100
holder —1.736+0.000 —1.589+0.248 —1.610+0.289 —1.213+0.000 —1.7774+0.000 —1.740+0.349 —1.7824+0.124 —1.8194+0.228 —1.915+0.022 —0.9504+0.000 x10
langer —3.5074+0.000 —3.28740.638 —3.258+0.628 —2.781+0.000 —3.668+0.000 —3.358+0.841 —3.493+0.641 —3.380+0.753 —3.401+0.797 —1.4784+0.000 X1
levy 0.152+0.000  3.65043.028  2.94842.678  2.6524+0.000  0.123+0.000  0.331-41.041  1.24841.166  1.76641.664  0.004+0.008  0.00240.001 | x0.1
levyl3 | 0.78940.000 2.261+1.808 2.210+1.823  2.000+£0.000  0.68540.000  0.2374+0.170  0.8524+0.573  1.0914+0.622  0.040+0.047  0.035+0.006 x1
schwef - 1.355+£0.198  1.295+0.205  1.51440.000 1.37740.000 1.366+£0.181  1.257+0.211 0.998+0.262  1.187+40.136 1.221+0.216 X 1000
shubert —0.2184+0.000 —1.063+0.453 —1.045+0.443 —0.471+0.000 —1.5654+0.000 —1.238+0.585 —1.248+0.448 —1.2844+0.541 —0.952+0.649 —1.864+0.000 X100
booth 0.91440.000  3.7274+3.351  3.733+3.353  1.43240.000  5.22040.000  0.18040.660  1.240+1.198  4.7814+5.095  0.01340.041  0.0004-0.000 x1
mccorm —0.991+0.000 —0.772+0.112 —0.757+£0.113 —0.704+0.000 —0.7354+0.000 —0.871+0.147 —0.9414+0.073 —0.756+0.175 —1.01240.000 —0.946+0.090 x10
powersum - 1.6254+1.756  1.83641.862  3.686+0.000  0.9834+0.000  0.61941.040  0.843+0.859  2.238+2.794  2.2444+3.045 0.56040.695 | x10
zakharov - 1.9174+1.009 2.0294+1.056  2.1754+0.000 2.345+0.000 0.538+0.610 0.9304+0.625  2.586+1.429 2.956+0.250 0.801+0.810 x10
camel6 —0.791+0.000 —0.850+0.161 —0.844+0.164 —0.939+0.000 —1.0004+0.000 —1.0224+0.012 —0.9494+0.079 —0.8954+0.164 —1.031+0.003 —1.031+0.000 X1
dixonpr - 4.102+4.765 5.000+5.116 0.010£0.000 3.248+0.000 0.304+0.449 0.78040.727 0.010+0.000 0.010£0.000 0.078+0.116 X100
rosen . 3.5034+2.005 3.61641.954 0.986+0.000  3.3094+0.000  0.4704+0.500 1.011+0.643 0.8914+0.188  0.5954+0.158  0.13140.111 | x 10000
permOdb | 0.33440.000 0.636+0.868  0.36040.414  0.479+0.000 0.11140.000  0.03240.090  0.12340.171  0.58040.767  1.78542.402  0.004-+0.000 | x10
trid —1.9514+0.000 —1.800+0.191 —1.855+0.141 —1.9384+0.000 —1.90240.000 —1.996+0.003 —1.9554+0.040 —1.8864+0.141 —2.000+0.000 —2.00040.000 x1
dejong5 | 4.835+0.000 0.4454+0.608 0.2354+0.344  0.054+£0.000  0.756+0.000  0.1254+0.085 0.15240.219  0.109+0.032  0.10740.031  0.040-0.000 | x100
easom —0.0004+0.000 —0.024+0.239 —0.188+1.318 —0.0004+0.000 —0.000+0.000 —1.429+4+2.461 —0.004%0.037 —0.095+0.914 —0.0004+0.000 —7.748+3.761| xO0.1
michal - —2.1674+0.351 —2.1394+0.293 —2.0754+0.000 —3.2924+0.000 —2.7344+0.490 —2.497+0.414 —3.020+0.432 —3.1484+0.509 —2.489+0.535 x1
beale 0.39540.000  0.69540.629  0.567+0.674  0.26640.000  0.81440.000  0.41940.588  0.254+0.383  0.52040.514  4.68140.426  0.0004-0.000 x1
branin | 0.789+0.000  0.960+0.652  0.887-+0.458  1.07940.000  0.4654+0.000  0.51140.232  0.664+0.280 0.742+0.451 0.39820.000  0.39840.000 x1
colville . 1.7584+1.572  1.45241.141  0.04240.000  0.473+0.000  0.29540.542  0.49340.410  0.04140.005 0.035+0.007  0.258+0.518 | x 1000
goldpr 0.19740.000 0.202+0.159  0.228+0.180  0.246+0.000 0.14940.000 0.101+£0.198  0.099+0.090  0.324+0.254 1.029+1.265 0.030+0.000 X100
hart3 - —3.628+0.163 —3.6194+0.176 —3.7844+0.000 —3.564+0.000 —3.762+0.154 —3.768+0.073 —3.764+0.155 -3.824+0.168 —3.852+0.018 x1
hart4 - —2.625+0.203 —2.588+0.243 —2.4024+0.000 —2.9484+0.000 —2.976+0.164 —2.8764+0.151 —2.807+0.195 —3.0614+0.110 —3.12640.015 X1
hart6 - —2.4104+0.206 —2.3904+0.220 —2.4654+0.000 —2.542+0.000 —2.75540.154 —2.672+0.156 —2.682+0.233 —3.026+0.039 —2.9174+0.020 x1
permdb 1.516+0.000 1.089+1.340 1.410+1.832 0.244+0.000 0.104+0.000 1.310+5.568 0.249+40.313 0.914+1.166 0.015+0.060 0.002+0.003 x0.1
powell - 7.422+5.988  6.881+5.675  3.0314+0.000 3.533+0.000 0.988+1.032  2.608+2.291  2.508+0.838 0.098+0.331 0.208+0.308 x10
shekel - —1.22140.453 —1.2714+0.702 —1.3264+0.000 —1.070+£0.000 —3.020+1.541 —1.593+0.372 —2.517+1.752 —5.957+3.337 —3.954+1.678 X1
stybtang - —1.626+0.159 —1.660+0.138 —1.8284+0.000 —1.7424+0.000 —1.778+0.166 —1.74140.156 —1.8144+0.175 —1.8894+0.187 —1.968+0.035 X100
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YANG AND ZHANG

Table 11: Average RMSE over different SVM-Reg tasks (5-fold CV).

Data Set Grid Rand LHS Sobol UD SeqRand TPE SMAC GP-EI SeqUD scale
R1 5.311+0.137 5.320+0.124 5.318+0.150 5.3184+0.128 5.3054+0.128 5.307+0.153 5.3024+0.129 5.306+0.143 5.293+0.132 5.3024+0.135 x0.1
R2 7.38040.184 7.37240.179 7.36240.184 7.356+0.176 7.36940.181 7.351+0.182 7.36040.177 7.36140.186 7.35340.175 7.33440.181| x0.1
R3 2.296+0.099 2.29940.098 2.2994+0.100 2.29940.098 2.298+0.099 2.296+0.101 2.297+0.097 2.298+0.097 2.298+0.099 2.29740.097 | X 10000
R4 8.10240.165 8.09440.181 8.114+0.170 8.120+0.166 8.098+0.174 8.07140.182 8.08140.173 8.091+0.173 8.055+0.166 8.070+0.172 | x100
R5 1.56440.020 1.5654+0.020 1.565+0.021 1.565+0.021 1.564+0.020 1.5644+0.020 1.5644+0.020 1.563+0.020 1.564+0.020 1.56440.021 X1
R6 9.792+0.146 9.344-4-0.384 9.31640.287 9.31040.303 9.30040.305 9.293+0.309 9.298+0.307 9.32540.307 9.283-+0.301 9.283-40.302 | x0.1
R7 3.39540.096 3.36940.096 3.348-0.090 3.350-£0.087 3.370+0.093 3.34840.117 3.35240.101 3.346+0.108 3.32840.104 3.323+0.103| x1
R8 6.574+0.060 6.608+0.055 6.5934+0.063 6.591+0.065 6.585+0.061 6.594+0.067 6.587+0.071 6.590+0.059 6.560+0.067 6.579+0.058 x0.1
R9 9.894+0.152 9.862+0.162 9.861+0.171 9.855+0.158 9.8574+0.159 9.8474+0.159 9.850+0.159 9.873+0.195 9.841+0.160 9.843+0.159 x0.1
R10 | 2.232+40.027 2.237+0.025 2.2344+0.025 2.23340.027 2.232-4-0.026 2.230-£0.027 2.230-40.026 2.231+0.026 2.22840.027 2.22940.026 x1
R11 7.104£0.089 7.267+0.276 7.172+0.147 7.119+0.092 7.1154+0.097 7.0984+0.101 7.103+0.097 7.1004+0.098 7.089+0.094 7.098+0.094 X1
R12 | 3.20540.042 3.20340.044 3.19940.040 3.19740.040 3.20040.041 3.19440.041 3.19640.041 3.19740.040 3.19340.041 3.19340.041 x1
R13 | 4.73040.112 4.74940.137 4.723+0.140 4.745+0.108 4.657+0.115 4.667+0.125 4.659+0.123 4.67840.113 4.619+0.116 4.64040.112 x1
R14 2.99140.157 3.016+0.190 3.0034+0.168 3.0154+0.141 3.013+0.184 2.987+0.152 2.984+0.149 3.0051+0.179 2.989+0.155 2.985+0.155 | x0.01
R15 | 4.30340.043 4.30240.045 4.2934+0.047 4.299+0.046 4.295+0.047 4.290+0.048 4.289-+0.048 4.2954+0.045 4.287-+0.048 4.286+0.048| x1
R16 | 1.19040.009 1.15640.047 1.15940.046 1.1304+0.007 1.154+0.007 1.128+0.007 1.13040.008 1.14040.020 1.12740.009 1.12640.007| x0.01
R17 1.75240.018 1.750+0.018 1.747+0.020 1.74340.019 1.7434+0.019 1.7414+0.019 1.74240.019 1.746+0.018 1.74240.019 1.741+0.019 | x0.0001
R18 | 2.92340.029 2.99740.095 2.98140.097 2.94740.027 2.94140.024 2.909+0.025 2.91640.024 2.95040.047 2.90540.025 2.90340.024 | x0.001
R19 | 1.27740.010 1.27940.016 1.276+0.013 1.274+0.010 1.2774+0.010 1.269+0.010 1.27040.010 1.269+0.010 1.267-+0.010 1.26740.010 | x100
R20 6.496£0.050 6.554+0.100 6.520+0.069 6.507+0.050 6.498+0.051 6.4964+0.049 6.496+0.051 6.5004+0.049 6.493+0.050 6.496+0.050 x0.1

Table 12: Average RMSE over different SVM-Reg tasks (test set).

Data Set Grid Rand LHS Sobol UD SeqRand TPE SMAC GP-EI SeqUD scale
R1 5.176+£0.166 5.1424+0.131 5.1484+0.187 5.1454+0.156 5.1384+0.159 5.1574+0.178 5.1574+0.147 5.127+0.173 5.1344+0.143 5.1404+0.136 x0.1
R2 7.466+£0.252 7.476+0.232 7.4531+0.237 7.47540.238 7.4414+0.243 7.45240.235 7.4734+0.228 7.453+0.233 7.46940.234 7.470+0.234 x0.1
R3 2.439+0.114 2.4424+0.113 2.44140.118 2.433+0.111 2.4514+0.119 2.44040.117 2.4404+0.105 2.436+0.112 2.436+0.116 2.437£0.110 | x 10000
R4 8.102+0.325 8.108+0.317 8.1414+0.301 8.12440.297 8.114+0.294 8.0854+0.306 8.085+0.305 8.120+0.240 8.075+0.301 8.104+0.320 X100
R5 1.5774+0.020 1.5754+0.019 1.5754+0.019 1.578+0.017 1.5794+0.014 1.5754+0.018 1.576+0.017 1.580+0.016 1.579+0.015 1.5754+0.017 X1
R6 9.76440.336 9.325+0.430 9.303+0.355 9.278+0.330 9.279+0.344 9.261+0.336 9.271+0.338 9.310+0.351 9.2724+0.353 9.268+0.348 x0.1
R7 3.375+0.167 3.3414+0.162 3.3474+0.156 3.3974+0.246 3.377+0.153 3.3934+0.186 3.3724+0.197 3.383+0.198 3.4134+0.249 3.384+0.204 X1
R8 6.5404+0.114 6.534+0.073 6.524+0.108 6.5144+0.116 6.518+0.104 6.5154+0.123 6.5104+0.115 6.522+0.113 6.500+0.107 6.480+0.098 x0.1
R9 9.8534+0.152 9.826+0.141 9.823+0.117 9.8124+0.140 9.810+0.138 9.808+0.139 9.808+0.142 9.829+0.108 9.809+0.142 9.805+0.141 x0.1
R10 |2.24540.042 2.2494+0.043 2.24940.042 2.24840.043 2.24640.043 2.2454+0.042 2.246+0.043 2.245+0.043 2.244-0.042 2.245+0.042 x1
R11 |7.02240.117 7.187+0.245 7.0744+0.144 7.03240.115 7.02040.120 7.024+0.122 7.0284+0.120 7.03040.119 7.02140.119 7.02440.120 x1
R12 3.169+0.042 3.172+0.041 3.169+0.041 3.168+0.041 3.172+0.040 3.167£0.041 3.1664+0.041 3.169+0.042 3.166+0.041 3.16640.041 X1
R13 |4.74240.107 4.71240.087 4.69240.171 4.767+0.119 4.637+0.158 4.677+0.156 4.61940.126 4.681+0.157 4.621+0.139 4.64540.147 x1
R14 2.9714£0.150 2.999+40.139 3.0014+0.152 3.066+0.187 3.003+0.123 2.9814+0.155 2.970+0.150 3.02740.159 2.97940.143 2.99440.138 | x0.01
R15 4.27740.051 4.279+0.054 4.2714+0.054 4.277+0.052 4.269+0.052 4.267+0.054 4.2681+0.052 4.271+0.052 4.267+0.053 4.266+0.055 X1
R16 1.15940.011 1.130£0.042 1.128+0.048 1.102+0.015 1.1284+0.014 1.1024+0.015 1.103+0.018 1.116+0.035 1.103+0.015 1.101+0.016 x0.01
R17 1.74140.016 1.739+0.019 1.7384+0.018 1.7344+0.017 1.73440.016 1.7334+0.017 1.73340.017 1.736+0.019 1.733£0.016 1.733£0.018 | x0.0001
R18 |2.85040.038 2.93040.099 2.90640.096 2.87840.041 2.872-40.045 2.844+0.038 2.849+0.043 2.88140.066 2.83940.035 2.83440.038 | x0.001
R19 |1.27540.011 1.278-40.009 1.27340.014 1.270+0.013 1.27540.011 1.266+0.012 1.26740.013 1.266+0.012 1.265-40.013 1.265+0.012 | x100
R20 6.460£0.054 6.522+0.111 6.4824+0.052 6.473+0.055 6.4644+0.057 6.460+0.060 6.4611+0.059 6.462+0.058 6.458+0.058 6.460+£0.058 x0.1
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YANG AND ZHANG

Table 15: Average RMSE over different Pipe-Reg tasks (5-fold CV).

Data Set Rand LHS Sobol UD SeqRand TPE SMAC GP-EI SeqUD scale
R1 5.160+0.111 5.1624+0.130 5.17240.115 5.171+0.124 5.23240.171 5.09440.138 5.1964+0.149 5.2774+0.147 5.11940.087 x0.1
R2 7.288+0.138 7.354+0.217 7.312+40.180 7.262+0.152 7.252+0.132 7.266+0.278 7.216+0.222 7.405+0.241 7.243+0.228 x0.1
R3 2.298+0.096 2.296+0.096 2.298+0.099 2.29740.099 2.296+0.099 2.2964+0.098 2.29740.098 2.310+0.104 2.296+0.101 | x 10000
R4  |7.50040.413 7.50940.381 7.32440.255 7.4654+0.434 7.546--0.515 7.46340.491 7.53740.271 8.34640.767 6.905+0.265| x100
R5 1.5654+0.020 1.5664+0.020 1.565+0.020 1.5654+0.020 1.565+0.020 1.566+0.020 1.565+0.020 1.5684+0.020 1.564+0.020 X1
R6 2.6234+0.208 2.595+0.218 2.6734+0.132 2.638+0.180 2.536+£0.199 2.473+0.161 2.567+0.105 5.760+2.329 2.484+0.143 x0.1
R7  |2.31340.158 2.33340.252 2.185+0.116 2.6144+0.243 2.41440.374 2.279+0.308 2.56540.263 3.24840.317 2.278+0.108 x1
R8 6.323+0.115 6.329+0.093 6.3574+0.116 6.268+0.085 6.279+0.104 6.252+0.132 6.2884+0.129 6.448+0.208 6.239+0.110 x0.1
R9 9.481+0.172 9.471+0.237 9.369+0.135 9.363+0.163 9.381+0.215 9.3604+0.201 9.3614+0.138 9.637+0.249 9.255+0.134 x0.1
R10 [2.16940.043 2.179+0.034 2.145-+0.040 2.165+0.023 2.15440.031 2.1594+0.037 2.175+0.028 2.246+0.211 2.194+0.039 x1
R11 2.9014+0.375 2.802+0.351 2.340+0.106 3.1114+0.390 2.647+0.394 2.29440.187 2.868+0.486 3.2724+1.977 2.24140.070 X1
R12 |3.17740.043 3.182+0.043 3.186+0.033 3.16340.057 3.2204+0.125 3.15320.036 3.15840.033 3.20740.070 3.12520.033| x1
R13 2.92140.217 2.899+0.176 2.798+0.046 2.935+0.072 2.821+0.079 3.0071+0.656 3.042+0.627 4.808+1.328 2.782+0.054 x1
R14 2.898+0.129 2.907+0.137 2.894+0.131 2.899+0.136 2.893+0.141 2.886+0.139 2.896+0.131 3.025+0.198 2.882+0.134| x0.01
R15 3.606+0.099 3.602+0.206 3.5274+0.076 3.645+0.138 3.7434+0.380 3.518+0.288 3.5994+0.231 4.120+0.395 3.437+0.070 X1
R16 |1.05140.049 0.99240.062 0.988+0.012 0.990+0.050 1.03040.078 0.96640.045 1.010+0.069 0.928+0.067 1.094+0.055 | x0.01
R17 1.669+0.056 1.665+0.066 1.645+0.026 1.642+0.034 1.653+0.061 1.630%0.038 1.662+0.063 1.864+0.507 1.615+0.019 | x0.0001
R18 2.579+0.297 2.366+0.114 2.39240.031 2.660+0.179 2.6094+0.749 2.2834+0.047 2.5024+0.251 2.795+0.292 2.197+0.030| x0.001
R19 |0.496+0.058 0.503+0.125 0.43440.004 0.5014+0.027 0.499+0.134 0.43240.012 0.50440.123 1.051+0.237 0.425+0.006| x100
R20 4.8334+0.117 4.866+0.143 4.751+0.035 4.8744+0.075 4.975+0.469 4.705+0.035 4.780+0.109 5.823+0.602 4.7184+0.046 x0.1

Table 16: Average RMSE over different Pipe-Reg tasks (test set).

Data Set Rand LHS Sobol UD SeqRand TPE SMAC GP-EI SeqUD scale
R1 5.01940.246 4.979+0.253 4.973+£0.203 5.060+0.162 5.18440.214 5.0734+0.282 5.0254+0.228 5.1594+0.187 5.066+0.245 x0.1
R2 7.46740.256 7.45840.218 7.50040.201 7.38140.269 7.459+0.293 7.48640.157 7.34740.223 7.59240.243 7.42240.218 | x0.1
R3 2.44240.104 2.445+0.103 2.431+0.111 2.434+0.111 2.440+0.106 2.444+0.106 2.4444+0.111 2.441+0.119 2.438+0.116 | x 10000
R4 |7.59040.434 7.68540.407 7.40840.300 7.718+0.416 7.776+0.542 7.5364+0.509 7.7374+0.490 8.620+0.729 7.142+0.209| x100
R5 1.5804+0.016 1.576+0.016 1.5794+0.017 1.582+0.015 1.578+0.015 1.5774+0.017 1.579+0.015 1.5814+0.018 1.576+0.018 X1
R6 2.56140.255 2.607+0.094 2.564--0.288 2.587+0.220 2.582+0.248 2.497+0.222 2.565+0.255 5.62242.440 2.449+0.181| x0.1
R7  |2.17440.235 2.23440.211 2.060+0.167 2.488+0.244 2.336+0.448 2.20740.315 2.4514+0.440 3.512+0.806 2.175-+0.164 x1
R8 6.246+0.104 6.234+0.142 6.2814+0.178 6.1954+0.096 6.231+0.176 6.2434+0.133 6.311+0.196 6.3944+0.239 6.2764+0.170 x0.1
R9 0.941+0.022 0.943+0.014 0.930+0.011 0.927+£0.010 0.9374+0.030 0.9334+0.023 0.9314+0.010 1.0604+0.298 0.923+0.011 X1
R10 [2.19040.029 2.214+0.035 2.160-+£0.035 2.195-0.035 2.180-+0.043 2.207+0.054 2.210-+0.040 2.270-40.159 2.210-40.033 x1
R11 |2.746+0.418 2.61840.320 2.178+0.093 2.94740.360 2.46940.372 2.1544+0.210 2.69540.513 3.2184+1.998 2.05440.122| x1
R12 |3.15540.053 3.15240.057 3.17140.051 3.16040.044 3.19540.071 3.13740.034 3.148+0.043 3.188+0.089 3.119+40.036| x1
R13 2.906+0.243 2.825+0.145 2.7454+0.049 2.875+0.092 2.793+0.072 2.95440.609 2.9634+0.583 4.732+1.308 2.748+0.030 x1
R14 2.90040.158 2.940+0.147 2.901+0.154 2.91740.162 2.918+0.135 2.966+0.166 2.913+0.161 3.010+0.257 2.8914+0.151| x0.01
R15 |3.485+0.141 3.48240.218 3.39040.046 3.53640.114 3.64240.448 3.414+0.262 3.46740.247 4.069+0.407 3.29340.066| x1
R16 |1.00640.051 0.95740.072 0.9414+0.013 0.96040.043 0.995+0.076 0.929+0.045 0.97040.075 0.888+0.084 1.06740.050 | x0.01
R17 1.6544+0.054 1.642+0.061 1.614+0.016 1.624+0.026 1.6394+0.071 1.617+0.051 1.64440.057 1.8584+0.528 1.604+0.018 | x0.0001
R18 2.525+0.288 2.312+0.110 2.3084+0.054 2.5914+0.236 2.600+0.821 2.24540.072 2.4234+0.282 2.763+0.263 2.173+0.031| x0.001
R19 0.489+0.059 0.496+0.131 0.425+0.003 0.489+0.027 0.494+0.139 0.4224+0.014 0.4994+0.132 1.048+0.243 0.419+0.005 X100
R20 4.726+0.109 4.793+0.175 4.646+0.050 4.798+0.106 4.9001+0.500 4.624+0.068 4.685+0.140 5.7744+0.611 4.65040.109 x0.1
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Table 19: Average

Accuracy (%) over different XGB-Cls tasks (5-fold CV).

Data Set Rand LHS Sobol UD SeqRand TPE SMAC GP-EI SeqUD
C1 97.2240.60 97.32+1.10 97.57+0.62 97.89+0.67 97.68+0.59 97.22+0.68 97.714+0.60 96.86+0.86 97.78+0.74
C2 73.41+1.12 73.55+1.19 73.58+1.06 73.444+1.33 73.34+1.51 73.75+1.02 73.95+1.65 73.44+1.55 73.68+1.08
C3 86.96+0.79 87.33+1.00 87.45+0.88 87.284+0.96 87.54+0.84 87.684+0.83 87.54+0.93 87.42+1.07 87.54+1.08
C4 97.1440.52 97.22+40.48 97.364+0.49 97.314+0.51 97.1940.51 97.254+0.63 97.2240.54 97.16£0.52 97.31+0.46
C5 77.50£2.00 77.294+1.92 77.55+1.56 77.424+1.81 77.53£1.96 77.50+1.68 77.424+1.68 77.63+£1.72 T7.87+1.61
C6  |98.56+0.24 98.4140.35 98.48-+0.31 98.48+0.23 98.60+0.34 98.68+£0.27 98.64+0.33 98.60+0.25 98.7340.36
Cc7 76.424+1.69 76.34+1.59 76.22+1.44 76.56+1.42 76.70+1.49 76.80+1.52 76.684+1.60 76.86+1.72 76.88+1.38
08 |94.1540.39 94.2140.39 94.1240.33 94.1740.40 94.1940.35 94.2640.40 94.3940.38 94.1940.43 94.23+0.33
Cc9 93.45+0.05 93.484+0.08 93.48+0.05 93.494+0.07 93.494+0.10 93.484+0.08 93.48+0.09 93.48+0.12 93.484+0.07
C10 | 95.5040.32 95.52+0.34 95.504+0.34 95.554+0.32 95.63+£0.31 95.65+0.35 95.674+0.35 95.73+0.31 95.72-0.36
C11 73.4940.71 73.504+0.63 73.614+0.63 73.524+0.75 73.72+40.73 73.85+0.71 73.86+0.68 89.17+1.55 75.00+4.68
C12 97.72+£0.15 97.71+0.14 97.73+0.16 97.744+0.14 97.77+0.14 97.74+0.18 97.66+0.27 97.39+0.18 97.754+0.15
C13 97.764+0.22 97.80+0.16 97.79+0.16 97.80+0.18 97.89+0.19 97.9440.24 97.924+0.19 97.94+0.20 97.88+0.21
Cl4 |81.5040.13 81.5440.14 81.5940.12 81.5440.17 81.6240.14 81.6440.19 81.67+0.16 81.5840.17 81.6340.17
C15 |92.3040.32 92.3340.25 92.514+0.21 92.4040.23 92.5040.29 92.7040.21 92.7440.23 92.854+0.31 92.82-40.19
C16 |87.82+0.19 87.754+0.14 87.834+0.20 87.8040.22 87.8840.17 87.89+0.19 87.8740.17 87.994+0.20 87.98-40.19
C17 |87.0240.12 87.0040.18 87.044+0.16 87.00+0.13 87.0840.15 87.06+0.14 87.104+0.14 87.14+0.12 87.08+0.15
C18 96.924+0.15 96.91+0.15 96.92+0.15 96.894+0.12 96.96+0.13 96.96+0.11 96.954+0.12 96.95+0.16 96.99+0.14
C19 |90.80+0.10 90.7740.08 90.7940.09 90.7740.10 90.8440.09 90.8340.10 90.8840.11 90.89+0.09 90.88-+0.10
€20 |91.7240.19 91.5940.21 91.7640.11 91.704+0.15 92.0140.17 92.03+0.18 92.034+0.22 92.18+0.11 92.17+0.11

Table 20: Average Accuracy (%) over different XGB-Cls tasks (test set).

Data Set Rand LHS Sobol UD SeqRand TPE SMAC GP-EI SeqUD
C1 96.114+1.08 96.39+0.80 96.70+0.89 96.674+0.83 96.354+0.74 96.11+1.02 96.324+0.77 95.33+1.22 96.284+0.90
C2 69.554+2.40 69.01£2.58 69.52+2.22 69.974+1.37 69.69+2.36 69.76+1.43 69.14+2.05 69.83+1.87 69.28+2.14
C3 86.724+1.38 86.75+1.06 86.55+1.35 86.43+1.73 86.124+1.21 86.64+1.49 85.97+1.47 86.41+1.72 86.52+1.49
C4 96.20+0.84 96.57+0.73 96.51+0.73 96.46+0.90 95.974+0.77 96.26+0.58 96.314+0.55 95.974+0.73 96.63+0.54
5 76.48+1.38 75.914+1.30 76.154£1.62 75.49+1.69 75.864£1.42 75.6841.70 75.6841.39 75.70+£1.80 75.6241.29
C6 98.734+0.51 98.52+£0.63 98.79+0.35 98.60+0.40 98.75+0.37 98.83+0.67 98.91+0.54 98.504+0.65 98.81+0.41
CcT7 75.36+1.62 75.08+1.32 75.124+1.51 74.884+1.31 74.80+1.22 75.624+1.93 74.844+1.53 74.74+0.97 74.48+1.14
C8 93.194+0.53 92.774+0.78 92.954+0.52 93.03+0.37 92.90+0.52 93.104+0.48 92.974+0.51 92.94+0.53 93.01+0.65
Cc9 93.2740.20 93.36£0.11 93.25+0.18 93.304+0.17 93.37+£0.13 93.30+£0.17 93.344+0.11 93.35+0.15 93.36+0.11
C10 95.4740.38 95.44+0.41 95.49+0.33 95.584+0.34 95.464+0.34 95.55+0.29 95.524+0.40 95.54+0.29 95.50+0.23
c11 74.3140.79 73.9040.94 74.1141.13 74.1841.06 74.09+41.06 74.31+1.21 74.264+1.15 89.06+0.92 75.29+4.90
C12 92.83+14.27 97.55+0.21 92.86+14.30 97.61+0.12 97.59+0.15 97.534+0.23 97.47+0.26 97.18+0.35 97.62+0.10
C13 | 97.66+0.15 97.75+0.24 97.69+0.21 97.68+0.07 97.77+0.26 97.86+0.18 97.92+0.15 97.81+0.33 97.75+0.28
C14 81.2240.19 80.994+0.39 81.21+0.22 81.20+0.23 81.184+0.20 81.27+0.24 81.284+0.17 81.1940.25 81.28+0.22
C15 | 93.3340.22 93.2340.39 93.3040.26 93.0540.44 93.2740.39 93.3740.42 93.4840.25 93.4340.39 93.53+0.27
C16 87.854+0.35 87.80+0.30 87.86+0.19 87.944+0.19 87.794+0.27 87.87+0.17 87.864+0.24 87.89+0.28 87.96+0.16
C17 87.0940.17 87.13+£0.15 87.15+0.15 87.16+0.22 87.17+0.13 87.08+0.14 87.124+0.12 87.15+0.16 87.104+0.16
C18 97.06+0.15 97.04+0.16 97.05+0.17 97.03+0.13 97.05+£0.13 97.04+0.19 97.084+0.16 97.08+0.17 97.09+0.17
C19 90.754+0.10 90.68+0.17 90.77+0.15 90.68+0.13 90.714+0.14 90.784+0.13 90.76+0.15 90.76+0.10 90.76+0.10
C20 92.5440.29 92.59+0.31 92.57+0.15 92.76+0.13 92.784+0.25 92.94+0.16 92.86+0.14 93.00£0.12 92.99+0.23
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