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Abstract

Given a measurement graph G = (V,E) and an unknown signal r ∈ Rn, we investigate
algorithms for recovering r from pairwise measurements of the form ri − rj ; {i, j} ∈ E.
This problem arises in a variety of applications, such as ranking teams in sports data
and time synchronization of distributed networks. Framed in the context of ranking, the
task is to recover the ranking of n teams (induced by r) given a small subset of noisy
pairwise rank offsets. We propose a simple SVD-based algorithmic pipeline for both the
problem of time synchronization and ranking. We provide a detailed theoretical analysis in
terms of robustness against both sampling sparsity and noise perturbations with outliers,
using results from matrix perturbation and random matrix theory. Our theoretical findings
are complemented by a detailed set of numerical experiments on both synthetic and real
data, showcasing the competitiveness of our proposed algorithms with other state-of-the-art
methods.

Keywords: ranking, angular synchronization, spectral algorithms, matrix perturbation
theory, singular value decomposition, random matrix theory, low-rank matrix completion.
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Ranking & synchronization via SVD

1. Introduction

Let r = (r1, . . . , rn)T ∈ Rn be an unknown signal and G = ([n], E) be an undirected
measurement graph. Given a subset of noisy pairwise measurements of the form ri − rj
for each {i, j} ∈ E, the goal is to estimate the original vector r. Clearly, this is only
possible only up to a global shift. Moreover, when measurements are exact without any
measurement noise, one can recover the strength vector r if and only if the graph G is
connected, by simply considering a spanning tree, fixing the value of the root node, and
traversing the tree while propagating the information by summing the given offsets. For
simplicity, we assume the graph is connected, otherwise it is not possible to estimate the
offset values between nodes belonging to different connected components of the graph.

Instantiations of the above problem are ubiquitous in engineering, machine learning and
computer vision, and have received a great deal of attention in the recent literature. There
are two main classes of applications where this problem arises.

• Time synchronization of wireless networks. A popular application arises in engi-
neering, and is known as time synchronization of distributed networks (Giridhar and
Kumar, 2006; Karp et al., 2003), where clocks measure noisy time offsets ri − rj , and
the goal is to recover r1, . . . , rn ∈ R.

• Ranking. A fundamental problem in information retrieval is that of recovering the
ordering induced by the latent strengths or scores r1, . . . , rn ∈ R of a set of n players,
that is best reflected by the given set of pairwise comparisons ri − rj . We refer the
reader to Cucuringu (2016) and references therein for a detailed overview.

A naive approach by sequentially propagating the information along spanning trees is
doomed to fail in the presence of noise, due to accumulation of the errors. To this end,
in order to increase the robustness to noise, one typically aims to simultaneously integrate
all the pairwise measurements in a globally consistent framework. This line of thought ap-
pears in the literature in the context of the group synchronization problem (Singer, 2011),
for recovering group elements from noisy pairwise measurements of their ratios. We briefly
review the current literature in group synchronization in Section 2.1, which almost exclu-
sively pertains to synchronization over compact groups. The problem we study in this paper
can be construed as synchronization over the real line, hence a non-compact group. There
exists a very rich literature on ranking, and it is beyond the scope of our work to provide
an extensive review of it. Instead, in Section 2.2, we give a brief overview of the literature
on ranking and time synchronization, and point out some of the methods that relate to our
work. In particular, we focus on spectral methods and approaches that leverage low-rank
matrix completion as a pre-processing step.

Contributions. We propose SVD-RS, a simple spectral algorithm for ranking and syn-
chronization from pairwise comparisons, along with a normalized version denoted SVD-
NRS1. We provide a detailed theoretical consistency analysis for both algorithms for a ran-
dom measurement model (see Section 3) in terms of robustness against sampling sparsity of

1By normalized, we mean that the measurement matrix is normalized by the degree matrix of the graph,
see Section 4.
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the measurement graph and noise level. Additionally, we provide extensive numerical exper-
iments on both synthetic and real data, showing that in certain noise and sparsity regimes,
our proposed algorithms perform comparable or better than state-of-the-art methods.

On the theoretical side, our specific contributions can be summarized as follows (see
also Section 3.3).

• For SVD-RS, we provide `2 and `∞ recovery guarantees for the score vector r (see
Theorem 8). For instance, in the setting when ri = i, Ω(n log n) measurements suffice
for `2 recovery, while Ω(n4/3(log n)2/3) measurements suffice for `∞ recovery.

• The `∞ analysis of SVD-RS leads to guarantees for rank recovery in terms of the
maximum displacement error between the recovered ranking and the ground truth, as
in Theorem 7. For e.g., when ri = i, Ω(n4/3(log n)2/3) measurements suffice.

• For SVD-NRS, we provide in Theorem 10, `2 recovery guarantees for the score
vector r, and leave the `∞ guarantees for future work, essentially by following a
similar, though more intricate, pipeline. Similar to SVD-RS, for ri = i, Ω(n log n)
measurements suffice for `2 recovery.

We remark that all the above recovery results hold with high probability.

Outline. The remainder of this paper is organized as follows. Section 2 is a brief survey
of the relevant literature, with a focus on group synchronization and ranking. Section 3
starts with the formal setup of the problem, presents the gist of our SVD-based approach
along with the two algorithms SVD-RS, SVD-NRS, and summarizes our main theoretical
results. Section 4 details and interprets our theoretical results, with the main steps of the
proofs outlined in Section 5. Section 6 discusses the low-rank matrix completion problem
and its applicability in the setting of this paper. Section 7 contains numerical experiments
on various synthetic and real data sets. Finally, Section 8 summarizes our findings along
with future research directions. The Appendix contains additional technical details for the
theoretical results, as well as further numerical experiments.

Notation. Vectors and matrices are denoted by lower case and upper case letters respec-
tively. For a matrix A ∈ Rm×n where m ≥ n, we denote its singular values by σ1 ≥ · · · ≥ σn
and the corresponding left (resp. right) singular vectors by ui (resp. vi). ‖A‖2 denotes the
spectral norm (largest singular value), ‖A‖∗ denotes the nuclear norm (sum of the singular
values), and ‖A‖max := maxi,j |Aij | denotes the max-norm of A. R(A) denotes the range
space of its columns. We denote e to be the all ones column vector. The symbol U is used
to denote the uniform distribution. For positive numbers a, b, we denote a . b (resp. a & b)
to mean that there exists an absolute constant C > 0 such that a ≤ Cb (resp. a ≥ Cb).

2. Related work

This section is a brief survey of the relevant literature for the tasks we consider out in this
paper. The first part focuses on the group synchronization problem, a relevant instance
of it being that of synchronization of clocks arising often in engineering, while the second
part surveys the very rich ranking literature, with an emphasis on spectral methods and
approaches that leverage low-rank matrix completion.
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2.1 Synchronization literature

Much of the engineering literature has focused on least-squares approaches for solving the
time synchronization problem. In its simplest terms, the approach can be formulated as
follows. Let m = |E| denote the number of edges in G, and B denote the edge-vertex
incidence matrix of size m × n. For l = {i, j} ∈ E, with i < j, the entries Bli and Blj are
given by Bli = 1, Blj = −1. If i′ /∈ {i, j} then Bli′ = 0. Let w ∈ Rm encode the pairwise
rank measurements Cij , for all edges {i, j} ∈ E. The least-squares solution to the ranking
problem can be obtained by solving

minimize
x∈Rn

||Bx− w||22, (2.1)

where B denotes the design matrix with two non-zero entries per row corresponding to
the edge {i, j} indexed by l. In a related line of work, Hirani et al. (2010) show that the
problem of least-squares ranking on graphs has far-reaching rich connections with seemingly
unrelated areas, such as spectral graph theory and multilevel methods for graph Laplacian
systems, Hodge decomposition theory and random clique complexes in topology.

The problem we consider in this paper can also be framed in the context of the group
synchronization problem, of finding group elements from noisy measurements of their ratios.
For example, synchronization over the special orthogonal group SO(d) consists of estimating
a set of n unknown d×d matrices R1, . . . , Rn ∈ SO(d) from noisy measurements of a subset
of the pairwise ratios RiR

−1
j via

minimize
R1,...,Rn∈SO(d)

∑
{i,j}∈E

wij‖R−1
i Rj −Rij‖2F , (2.2)

where || · ||F denotes the Frobenius norm, and wij are non-negative weights representing the
confidence in the noisy pairwise measurements Rij . Spectral and semidefinite programming
(SDP) relaxations for solving an instance of the above synchronization problem were origi-
nally introduced and analyzed by Singer (2011), in the context of angular synchronization
over the group SO(2) of planar rotations. There, one is asked to estimate n unknown an-
gles θ1, . . . , θn ∈ [0, 2π) given m noisy measurements of their offsets θi − θj mod 2π. The
difficulty of the problem is amplified, on one hand, by the amount of noise in the offset
measurements, and on the other hand by sparsity - the fact that m �

(
n
2

)
, i.e., only a

very small subset of all possible pairwise offsets are measured. In general, one may consider
other groups G (such as SO(d), O(d)) for which there are available noisy measurements gij
of ratios between the group elements

gij = gig
−1
j , gi, gj ∈ G. (2.3)

The set E of pairs {i, j} for which a ratio of group elements is available can be realized as the
edge set of a graph G = (V,E), |V | = n, |E| = m, with vertices corresponding to the group
elements g1, . . . , gn, and edges to the available pairwise measurements gij = gig

−1
j . As long

as the group G is compact and has a real or complex representation, one may construct a
real or Hermitian matrix (which may also be a matrix of matrices) where the element in the
position {i, j} is the matrix representation of the measurement gij (possibly a matrix of size
1×1, as is the case for Z2), or the zero matrix if there is no direct measurement for the ratio
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of gi and gj . For example, the rotation group SO(3) has a real representation using 3 × 3
rotation matrices, and the group SO(2) of planar rotations has a complex representation as
points on the unit circle.

The setting we consider in this paper, namely that of recovering points on the real
line from a subset of noisy pairwise differences, is essentially synchronization over the non-
compact group R. In recent work in the context of ranking from pairwise cardinal and
ordinal measurements (Cucuringu, 2016), the real line was compactified by wrapping it over
the upper half of the unit circle, making the problem amenable to standard synchronization
over the compact group SO(2). The estimated solution allowed for the recovery of the player
rankings, after a post-processing step of modding out the best circular permutation. Note
that the proposed approach only focused on recovering the individual rankings, and not the
magnitude (i.e., strength) of each player, as we propose to do in this paper.

Very recently, Ozyesil et al. (2018) proposed an approach that allows one to consider
the synchronization problem in the setting of non-compact groups. The authors leverage
a compactification process, that relies on a mapping from a non-compact domain into a
compact one, for solving the synchronization problem. The contraction mapping enables
one to transform measurements from a Cartan motion group to an associated compact
group, whose synchronization solution provides a solution for the initial synchronization
problem over the original domain.

2.2 Ranking literature

Fogel et al. introduced Serial-Rank (Fogel et al., 2014, 2016), a ranking algorithm that
explicitly leverages the connection with seriation, a classical ordering problem that considers
the setting where the user has available a similarity matrix (with ±1 entries) between a set
of n items, and assumes that there exists an underlying one-dimensional ordering such that
the similarity between items decreases with their distance. The authors propose a spectral
algorithm Serial-Rank, and show that under an Erdös-Renyi random graph model and a
given noise model, it recovers the underlying ranking with Ω(n3/2 log4 n) comparisons where
the estimation error is bounded in the `∞ norm.

A popular theme in the literature is the rank aggregation setting (where players meet
in multiple matches), where there exists a latent probability matrix P ∈ [0, 1]n×n, wherein
Pij denotes the probability that player i defeats player j, with Pij + Pji = 1. For each pair
(i, j), one observes Yij ∈ {0, 1} ∼ Bern(Pij). A number of so-called Random Utility models
have been considered in the literature, starting with the seminal work of Bradley-Terry-Luce
(BTL) (Bradley and Terry, 1952), which is by far the most popular model considered. In the
most basic version of the BTL model, the probability that player i beats player j is given by
Pij = wi

wi+wj
, where the vector w ∈ Rn+ is the parameter vector to be inferred from the data,

with wi being a proxy for the score or strength associated to player i. In the Thurstone
model (Thurstone, 1927), Pij = Φ(si−sj), where Φ denotes the standard normal cumulative
distribution function (CDF), and s ∈ Rn is the score vector. Negahban et al. proposed
Rank-Centrality in the context of the rank aggregation problem from multiple ranking
systems, under a Bradley-Terry-Luce (BTL) model (Negahban et al., 2012, 2017). Rank-
Centrality is an iterative algorithm that estimates the ranking scores from the stationary
distribution of a certain random walk on the graph of players. Edges encode the outcome of
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pairwise comparisons, and are directed i −→ j towards the winner, where the weight captures
the proportion of times j defeated i in case of multiple direct matches. The authors show
that under some assumptions on the connectivity of the underlying graph, their algorithm
estimates the underlying score vector of the BTL model with Ω(npoly(log n)) comparisons.
Very recently, Agarwal et al. (2018) propose Accelerated Spectral Ranking, a provably faster
spectral ranking algorithm in the setting of the multinomial logit (MNL) and BTL models.
The authors considered a random walk that has a faster mixing time than the random walks
associated with previous algorithms (including Rank-Centrality (Negahban et al., 2017)),
along with improved sample complexity bounds (of the order npoly(log n)) for recovery of
the MNL and BTL parameters.

Cucuringu (2016) introduced Sync-Rank, formulating the problem of ranking with
incomplete noisy information as an instance of the group synchronization problem over
the group SO(2) of planar rotations. Sync-Rank starts by making the ansatz that items
are embedded on the upper-half of the unit circle in the complex plane, and transforms
the pairwise input measurements into pairwise angle offsets. It then solves the spectral or
SDP relaxation of synchronization, and finally chooses amongst the circular permutations
of the ranking induced by the synchronized solution by minimizing the number of upsets.
The method was shown to compare favorably with a number of state-of-the-art methods,
including Rank-Centrality (Negahban et al., 2012), Serial-Rank (Fogel et al., 2016),
and a SVD-based ranking algorithm similar to the one we consider in this paper, but without
the projection step and its normalized extension, and without any theoretical guarantees
(see Remark 3 for details). Along the same lines, and inspired by the group synchronization
framework, Fanuel and Suykens (2017) propose a certain deformation of the combinatorial
Laplacian, in particular, the so-called dilation Laplacian whose spectrum is leveraged for
ranking in directed networks of pairwise comparisons. The method is reported to perform
well on both synthetic and real data, and enjoys the property that it can place an emphasis
of the top-k items in the ranking.

More recently, De Bacco et al. (2018) proposed Spring-Rank, an efficient physically-
inspired algorithm, based on solving a linear system of equations, for the task of inferring
hierarchical rankings in directed networks, which also comes with a statistical significance
test for the inferred hierarchy. The model considered also incorporates the assumption
that interactions are more likely to occur between individuals with similar ranks, which is
sometimes the case in real applications, such as sport competitions. The authors compare
Spring-Rank to a wealth of algorithms, including the above-mentioned Sync-Rank and
Serial-Rank, in terms of an accuracy defined as the fraction of edges whose direction is
consistent with the inferred ranking, and conclude that, on average across various synthetic
and real data sets, Spring-Rank and Sync-Rank have the highest accuracy.

Volkovs and Zemel (2014) consider two instances (in the unsupervised and supervised
settings) of the preference aggregation problem where the task is to combine multiple pref-
erences (either in the form of binary comparisons or as score differences) over objects into
a single consensus ranking. Both settings rely on a newly introduced Multinomial Pref-
erence model (MPM) which uses a multinomial generative process to model the observed
preferences. Dalal et al. (2012) consider a multi-objective rank aggregation problem (where
pairwise information is in the form of score differences), and rely on the framework of the
combinatorial Hodge decomposition (Jiang et al., 2011). In particular, they first formulate
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the problem of reducing global inconsistencies and then propose techniques for identifying
local observations which can reduce such global inconsistencies.

Low-rank matrix completion approaches for ranking. Gleich and Lim (2011) pro-
posed a new method for ranking a set of items from pairwise observations in the form
ri − rj . They first use matrix completion to fill in a partial skew-symmetric matrix, fol-
lowed by a simple row-sum to recover the rankings. Using standard recovery results from
matrix completion literature, it follows that in the absence of noise, and under some coher-
ence assumptions on the score vector r, the true ranking can be recovered exactly from a
random subset of pairs of size Ω(npoly(log n)). In case the observations are given as a rating
matrix (users and items), they show how to transform it into a pairwise comparison matrix
involving score differences so that their method can be applied. Ye et al. (2012) proposed a
rank-minimization approach to aggregate the predicted confidence scores of multiple mod-
els. The authors cast the score fusion problem as that of finding a shared rank-2 pairwise
relationship matrix that renders each of the original score matrices from the different models
to be decomposed into the common rank-2 matrix and the sparse error component.

The recent work of Levy et al. (2018) relies on matrix completion in the context of
the rank aggregation problem from a small subset of noisy pairwise comparisons, wherein
the user observes L repeated comparisons between the same set of players. The authors
work in the setting of the Bradley-Terry-Luce model (BTL) that assumes that a set of
latent scores (or strengths) underlies all players, and each individual pairwise comparison
is a probabilistic outcome, as a function of the underlying scores. The resulting pipeline is
reported to improve over state-of-the-art in both simulated scenarios and real data. Prior
to that, Kang et al. (2016) also relied on matrix completion and proposed an algorithm for
top-N recommender systems. The authors filled in the user-item matrix based on a low-
rank assumption, by considering a nonconvex relaxation, as opposed to the usual nuclear
norm, and argued that it provides a better rank approximation and empirically leads to
an accuracy superior to that of any state-of-the-art algorithm for the top-N recommender
problem, on a comprehensive set of experiments on real data sets.

Another relevant line of work is that of Massimino and Davenport (2013), who consider
an adaptation of the one-bit matrix completion framework (Davenport et al., 2014) to
the setting of pairwise comparison matrices. One observes measurements Yij = ±1 with
probability f(Mij), where Mij = ri−rj , and f(Mij) = P(Mij > 0); for example, the authors
consider f(x) = (1 + e−x)−1. On a related note, Yang and Wakin (2015) considered the
rank aggregation setting, extending the work of Gleich and Lim (2011) to the setup of non-
transitive matrices, for which it does not necessarily hold true that Yi,j = Yi,k+Yk,j ,∀i, j, k,
as is the case in the special setting when Yi,j = ri − rj (and thus Y = reT − erT ), for a
score vector r. In particular, Yang and Wakin were interested in modeling and recovering Y
itself as opposed to the one-dimensional ranking, and introduced a model for non-transitive
pairwise comparisons Yij = riaj−rjai, where, for example, ri could denote offensive strength
of player i, and aj defensive strength of player j, thus giving Yij the interpretation of the
anticipated margin of victory for player i over player j. The authors then propose a low-
rank matrix completion approach based on alternating minimization, along with recovery
guarantees for the estimate Ŷ of the form ||Ŷ − Y ||F ≤ ε, after log 1/ε iterations.
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The recent seminal work of Rajkumar and Agarwal (2016) considered the question
of recovering rankings from O(n log n) comparisons between the items. Their proposed
pipeline starts by mapping the input binary entries of the comparison matrix to a low-rank
matrix. More specifically, a link function is applied entry-wise to the input comparison
matrix, which renders the resulting incomplete matrix to be of low rank. Standard low-rank
matrix completion is applied to complete the matrix, followed by the inverse link function
applied entry wise, which effectively maps the data back to binary pairwise measurements.
Finally, the Copeland ranking procedure (Copeland, 1951) is applied, that ranks items by
their Copeland scores, which is effectively given by the number of wins in the comparison
matrix after thresholding the entries with respect to 0.5. This approach can be seen as a
generalization of the pipeline proposed by Gleich and Lim (2011), in the sense that both
lines of work rely on matrix completion followed by row-sum, the main difference being that
Rajkumar and Agarwal (2016) uses the link function that maps the binary input matrix
to a low-rank one. Borrowing tools from matrix completion, restricted strong convexity
and prior work on Random Utility Models, Negahban et al. (2018) propose a nuclear norm
regularized optimization problem for learning the parameters of the MultiNomial Logit
(MNL) model that best explains the data, typically given as user preference in the form
of choices and comparisons. The authors show that the convex relaxation for learning the
MNL model is minimax optimal up to a logarithmic factor, by comparing its performance
to a fundamental lower bound.

3. Problem setup and main results

Our formal setup is as follows. Consider an undirected graph G = ([n], E) and an unknown
vector r ∈ Rn, where ri is the score associated with node i. In particular, G is assumed
to be a G(n, p), i.e., the popular Erdős-Rényi random graph model, where edges between
vertices are present independently with probability p. Moreover, we assume ri to be bounded
uniformly, i.e., ri ∈ [0,M ] for each i. Hence ri − rj ∈ [−M,M ] for all i, j. Requiring ri ≥ 0
is only for convenience and w.l.o.g. Importantly, M is not assumed to be known to the
algorithm.

For each {i, j} ∈ E, we are given noisy, independent measurements Rij where

Rij =

{
ri − rj ; w.p η

∼ U [−M,M ]; w.p (1− η).
(3.1)

The parameter η ∈ [0, 1] controls the level of noise; we will denote the noise level explicitly
by γ = 1− η. It is important to note that the parameters η, p are not assumed to be known
to the algorithm. This model will be referred to as the Erdős-Rényi Outliers model, or in
short, ERO(n, p, η). It was also considered in previous works in ranking (Cucuringu, 2016)
and angular synchronization (Singer, 2011), and is amenable to a theoretical analysis. Al-
ternatives to this noise model include the multiplicative uniform noise model, as considered
in Cucuringu (2016). Our goal is two fold - we would like to recover2 the score vector r,
and also the ranking π induced by r.

2Clearly, this is possible only up to a global shift.
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Remark 1 The above model is only for the purpose of theoretically analyzing the statistical
performance of our methods. Other statistical models could also be considered of course,
and we will see that our methods are completely model-independent.

3.1 Main idea: SVD-based spectral algorithm

We start by forming the measurement matrix H ∈ Rn×n, where

• Hii = 0, ∀i = 1, . . . , n,

• Hij = Rij and Hji = −Rij , if {i, j} ∈ E, and

• Hij = 0, if {i, j} /∈ E.

If G is the complete graph and the measurements are noise free, it holds true that H =
reT − erT , which is a rank 2 skew-symmetric matrix. Denoting α = rT e

n , one can verify
that the two non-zero left singular vectors are u1 = e/

√
n, u2 = r−αe

||r−αe||2 with equal non-zero

singular values σ1 = σ2 = ‖r − αe‖2
√
n (see Lemma 11). Therefore, given any orthonormal

basis for span{u1, u2}, we can simply find a vector orthonormal to e/
√
n and which lies in

span{u1, u2}; this will give us candidate solutions ± r−αe
||r−αe||2 . Multiplying these candidates

by σ1/
√
n recovers the scale information of r, while the sign ambiguity is resolved by

selecting the candidate which is most consistent with the measurements. If one is interested
only in ranking the items, then there is of course no need to estimate the scale above.

If G is not complete (thus there are missing edges) and the measurements are noisy, then
H will typically not be rank 2, but as will see shortly, it can be thought of as a perturbation
of the rank-2 matrix ηp(reT − erT ). Proceeding similarly to the noiseless case, we can find
the top two singular vectors of H (denoted by û1, û2), project u1 = e/

√
n on to span{û1, û2}

to obtain ū1, and then find a unit vector in span{û1, û2} which is orthonormal to ū1 (call
this ũ2). If the noise level is not too large and we have sufficiently many edges in G, then
one can imagine that ũ2 will be close (up to a sign flip) to u2, and σ̂i ≈ ηpσi. Hence we can
recover the ranking from ũ2 after resolving the sign ambiguity (as mentioned earlier). This
also implies that the centered version of σ̂1ũ2

ηp
√
n

will be close (up to a sign flip) to r−αe. But

since we do not know η, p, we will resort to other data-driven approaches for recovering the
scale parameter, see Section 3.2.

The above approach is outlined formally as Algorithm 1, namely SVD-RS (SVD-
Ranking and Synchronization) which is a spectral method for recovering the ranks and
scores (up to a global shift) of a collection of n items. Additionally, we also consider a
“normalized” version of SVD-RS, wherein H is replaced by Hss = D̄−1/2HD̄−1/2 with
D̄ being a diagonal matrix and D̄ii =

∑n
j=1 |Hij |. Clearly, Hss is also skew symmetric.

Such a normalization step is particularly useful when the degree distribution is skewed,
and is commonly employed in other problem domains involving spectral methods, such as
clustering (see for eg. Kunegis et al. (2010)). The ensuing algorithm, namely SVD-NRS
(SVD-Normalized Ranking and Synchronization), is outlined as Algorithm 2.

Remark 2 Algorithms 1 and 2 are model-independent, and only require as input (a) the
measurement graph G, and (b) the corresponding pairwise measurements Rij.

10
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Algorithm 1 SVD-RS

1: Input: Measurement graph G = ([n], E) and pairwise measurements Rij for {i, j} ∈ E.
2: Output: Rank estimates: π̂ and score estimates r̂ ∈ Rn.
3: Form measurement matrix H ∈ Rn×n using Rij as outlined in Section 3.1.
4: Find the top two left singular vectors (resp. singular values) of H, namely û1, û2 (resp.
σ̂1, σ̂2).

5: Obtain vector ū1 as the orthogonal projection of u1 = e/
√
n on to span {û1, û2}.

6: Obtain a unit vector ũ2 ∈ span {û1, û2} such that ũ2 ⊥ ū1.
7: Rank recovery: Obtain ranking π̃ induced by ũ2 (up to global sign ambiguity) and

reconcile its global sign by minimizing the number of upsets. Output ranking estimate
π̂.

8: Score recovery: Use ũ2, H to recover the scale τ ∈ R as in Section 3.2. Output

r̂ = τ ũ2 − eT (τũ2)
n e.

Algorithm 2 SVD-NRS

1: Input: Measurement graph G = ([n], E) and pairwise measurements Rij for {i, j} ∈ E.
2: Output: Rank estimates: π̂ and score estimates r̂ ∈ Rn.
3: Form Hss = D̄−1/2HD̄−1/2 with H formed using Rij as outlined in Section 3.1. D̄ is a

diagonal matrix with D̄ii =
∑n

j=1 |Hij |.
4: Find the top two left singular vectors (resp. singular values) of Hss, namely û1, û2 (resp.
σ̂1, σ̂2).

5: Obtain vector ū1 as the orthogonal projection of u1 = D̄−1/2e
‖D̄−1/2e‖2

on to span {û1, û2}.
6: Obtain a unit vector ũ2 ∈ span {û1, û2} such that ũ2 ⊥ ū1.
7: Rank recovery: Obtain ranking π̃ induced by D̄1/2ũ2 (up to global sign ambiguity)

and reconcile its global sign by minimizing the number of upsets. Output ranking
estimate π̂.

8: Score recovery: Use ũ2, H to recover the scale τ ∈ R as in Section 3.2. Output

r̂ = τD̄1/2ũ2 − eT (τD̄1/2ũ2)
n e.

Remark 3 Note that the SVD-based algorithm introduced in Cucuringu (2016) considers
the four possible rankings induced by the singular vectors {±û1,±û2}, and chooses the one
that minimizes the number of upsets. In contrast, SVD-RS first computes ū1 as the orthog-
onal projection of the all ones vector e on to span {û1, û2}, finds a vector ũ2 ∈ span {û1, û2}
perpendicular to ū1, and finally extracts the ranking induced by ũ2. Furthermore, unlike
Cucuringu (2016), SVD-NRS introduces an additional normalization step of the measure-
ment matrix H to alleviate potential issues arising from skewed degree distributions. Such
a normalization step is fairly common for spectral methods in general. For example, this
operator was considered in Cucuringu et al. (2012a) and Cucuringu et al. (2012b) in the
context of angular synchronization (Singer, 2011) and the graph realization problem, and
Singer and Wu (2012) who introduced Vector Diffusion Maps for nonlinear dimensionality
reduction and explored the interplay with the Connection-Laplacian operator for vector fields
over manifolds.

11
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Computational complexity. Our proposed SVD-based methods rely on computing the
top two singular vectors of the input matrix which in practice can be done very efficiently.
In general, the leading singular values and singular vectors can be computed using iterative
techniques at a typical cost of O(pn2), using for example, a simple power method (since all
iterations only require a matrix-vector product at a cost of pn2, where p is the sampling
probability). In the sparse setting, the computational cost is essentially linear in the number
of nonzero entries in the matrix, thus making the approach scalable to large measurement
graphs. The data-driven approach for scale recovery will also require O(pn2) cost, as will
be seen in the next Section 3.2.

Remark 4 The computational complexity of our proposed SVD-based algorithms is on par
with that of other competitive methods, detailed and compared against in the numerical
experiments Section 7. For example, the Serial-Rank approach (Fogel et al., 2014) first
computes a shifted version of the similarity matrix HHT , then considers the graph Lapla-
cian, and computes its Fiedler eigenvector, much like our SVD-based approach, which can
be done at a typical cost of O(pn2). The Row-Sum method computes the sum of the entries
in each row of H, which has complexity O(pn2), though Gleich and Lim (2011) first rely on
a matrix completion step to fill in a partial skew-symmetric matrix, before computing the
row sums. However, performing a low-rank matrix completion step can be computationally
expensive, depending on the approach used; in general, alternating minimization has been
proven empirically to be one of the most accurate and efficient methods for matrix comple-
tion (Jain et al., 2013). In the numerical experiments reported in Section 7, we ran into
computational issues when running matrix completion for values of n significantly larger
than 1000, even for very sparse graphs (eg, p = 0.01).

For the Least-Squared-based ranking approach, also considered in Cucuringu (2016), the
setup is the following. Each (potentially noisy) pairwise comparison ri− rj contributes with
a row to a design matrix T of size m× n, where m (≈ pn2) denotes the number of edges in
the graph G. Each row of T has only two non-zero elements, in particular, a +1 in column
i, and a −1 in column j. To estimate the score vector s of length n, we solve the linear
system Ts = b in the least-squares sense, where b is a column vector with the outputs of the
pairwise comparisons. One potential approach for solving such linear least-squares problems
of the form Ts = b is to use conjugate gradient iterations applied to the normal equations
T TTs = T T b (which can be achieved without explicitly performing the expensive calculation
of the matrix T TT ). Note that the rate of convergence of the gradient iterations is dictated
by the condition number κ of the matrix T TT , and the number of iterations required for
convergence is O(

√
κ) (Trefethen and Bau, 1997). For matrices that are sparse or have

exploitable structure (like the sparse matrix T with only two nonzero entries per row), each
conjugate gradient iteration has complexity as low as O(m).

3.2 Recovering the global scale: data-driven procedures

To recover the scaling factor τ ∈ R, we consider two possible approaches: a first one based
on a median estimator, and a second one that relies on a least-squares estimator. We
briefly review both methods, and remark that we only consider the median-based estimator
throughout the rest of the paper, due to its additional robustness. We compare results on
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two problem instances of varying levels of noise, and also compare with the ground truth,
as detailed below.

(a) Histogram of pairwise ratios
in absolute value (on a log scale),
for γ = 0.02.

(b) Histogram of pairwise ratios
in absolute value, for γ = 0.02.

(c) Regression-based estimator
of the scaling factor, for γ =
0.02.

(d) Histogram of pairwise ratios
in absolute value (on a log scale),
for γ = 0.30.

(e) Histogram of pairwise ratios
(zoom in [-15,15]), with the me-
dian estimator, for γ = 0.30.

(f) Regression-based estimator
of the scaling factor, for γ =
0.30.

Figure 1: Two instances (top: low-noise regime γ = 0.02, bottom: high-noise regime γ =
0.30) showcasing the median and least-squares based estimators for scale recovery
(shown in blue), along with their respective ground truth values (shown in red).
Note that the bottom instance is also reconciliating the global sign. Scores are
gamma distributed, with n = 500, and edge density p = 0.25.

To begin with, we define the entrywise ratio of offsets/comparisons as

Πi,j =

{
Hi,j
Si,j

, {i, j} ∈ E
0; otherwise,

(3.2)

where Hi,j denotes the pairwise comparison measurement initially available, and Si,j denotes
the recovered/estimated pairwise offset given by Si,j = si−sj , where si denotes the recovered
score by either SVD-RS and SVD-NRS. In particular, si = (ũ2)i for SVD-RS, and si =
(D̄1/2ũ2)i for SVD-NRS. This scale recovery method is broadly applicable to other ranking
methods we compare against, and we further detail this in the experiments section. If
|E| = m, we next consider the vector ρ of length m with the pairwise ratios, i.e. nonzero
entries in the matrix Πi,j in (3.2) corresponding to the edges in the measurement graph G.

13
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The median estimator is given by

τ̂Median = median (ρ1, . . . , ρm) , (3.3)

as illustrated in the middle plot in Figure 1. From a computational perspective, the median-
based estimator only requires forming the pairwise ratios for the m edges in the graph, and
computing the median element can be performed in linear time.

An alternative approach is to consider the least-squares formulation

τ̂LS = arg min
τ∈R

∑
{i,j}∈E

(Hi,j − τSi,j)2 =

∑
{i,j}∈E Hi,j∑
{i,j}∈E Si,j

, (3.4)

as shown in the rightmost column of Figure 1. In the low-noise regime, the least-squares
estimator is close to the median-based estimator, and the discrepancy increases as the noise
levels becomes larger. As shown in the left plot of Figure 1, which contains a histogram
of the nonzero entries Πi,j 6= 0, {i, j} ∈ E on a log-scale, gross outliers can affect the
regression formulation (3.4). As expected, we have observed in our simulations that the
median estimator (3.3) leads to lower recovery errors compared to the regression-based
estimator. In Figure 1, we show in red the recovered scaling when employing the ground
truth data, in particular

Π
(ground truth)
i,j =

{
ri−rj
Si,j

, {i, j} ∈ E
0; otherwise,

Similarly to (3.3) and (3.4), we compute τMedian, respectively, τLS , construed as the ground
truth, and shown in red in the middle and right plots of Figure 1. Note that, in both
instances, the median-based estimator is closer to the ground truth than the least-squares
based estimator. In the low-noise regime γ = 0.02 (top plot of Figure 1), τ̂Median is within
0.23% from its ground true counterpart, while τ̂LS is within 1.7%. However, the performance
gap widens as we increase the noise level. In the high noise regime γ = 0.30 (bottom plot
of Figure 1), τ̂Median is off by 4.5% with respect to the ground truth, while τ̂LS is off by
27.1% from its ground truth counterpart. Note that in the latter problem instance, the
recovered scaling is negative, emphasizing that the global sign has been reconciled. Due to
its increased robustness, for the remainder of the numerical experiments in this paper, we
henceforth rely only on the median-based estimator to perform the scale recovery step.

3.3 Summary of main theoretical results

Broadly speaking, the bulk of our analysis revolves around bounding the distance between
the unit norm vectors u2 = r−αe

‖r−αe‖2 and ũ2 (up to a global sign), the latter obtained in

SVD-RS (Step 6) and SVD-NRS (Step 6). For SVD-RS, these error estimates are stated
in Theorem 5 (resp. Theorem 6) for the `2 (resp. `∞) norm, while Theorem 9 states the
corresponding `2 error bound for SVD-NRS. Below, we outline what this implies for rank
and score recovery.

1. Theorem 7 gives guarantees for rank recovery (up to a global order reversal) for
SVD-RS in terms of the maximum displacement error (defined in (4.6)) between
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the ranking π̃ obtained in Step 7 of Algorithm 1, and the ground truth ranking π.
Denoting α = rT e

n to be the average score, it states that if

‖r − αe‖2 &
M

η
√
p
, p &

log n

n
, (3.5)

and if n is large enough, then ‖π̃ − π‖∞ . ‖r−αe‖2
ρ Υ(n,M, η, p, ε, r) w.h.p. Here

Υ(n,M, η, p, ε, r) is the bound on the `∞ error between ũ2 and u2 (up to a global
sign) in Theorem 6. For concreteness, if ri = i, we show in Example 3 that for a fixed

δ ∈ (0, 1), if p & 1
η2δ2/3

(
(logn)2/3

n2/3

)
and n is large enough, then ‖π̃ − π‖∞ . δ n

logn

w.h.p. Note that this implies that Ω(n4/3(log n)2/3) measurements suffice.

2. Theorem 8 provides `2 and `∞ bounds (up to a global sign and shift) for SVD-RS
for the score vector r and a vector r̂ (derived from ũ2) where

w̃ =
σ̂1

ηp
√
n
ũ2; r̃ := w̃ − eT w̃

n
e. (3.6)

If one knew the product ηp, then (3.6) corresponds to choosing the scale τ = σ̂1
ηp
√
n

in

Step 8.

(a) If the conditions in (3.5) hold, then for r̃ as in (3.6), ∃β ∈ {−1, 1} such that

‖r̃ − β(r − αe)‖2 ≤
M

η
√
p

+

√
M‖r − αe‖2

ηp1/2

holds w.h.p. If ri = i, we show in Example 4 that if p & logn
η2δ2n

for a fixed

δ ∈ (0, 1), then ‖r̃ − β(r − αe)‖2 . n3/2

(logn)1/4

√
δ w.h.p. Hence Ω(n log n) mea-

surements suffice for `2 recovery.

(b) If the conditions in (3.5) hold and n is large enough, then for r̂ as in (3.6), there
exists β ∈ {−1, 1} such that

‖r̃ − β(r − αe)‖∞ . ‖r − αe‖2[C(n,M, η, p, r) +
√
nC2(n,M, η, p, r)] +

M(M − α)

η
√
p‖r − αe‖2

,

holds with C(n,M, η, p, r) as defined in (4.3). When ri = i, we show in Example

4 that if p & 1
η2δ2/3

(
(logn)2/3

n2/3

)
for a fixed δ ∈ (0, 1), and n is large enough, then

‖r̃ − β(r − αe)‖∞ . n
lognδ holds w.h.p.

3. In the same spirit as Theorem 8, Theorem 10 provides a `2 error bound (up to a global
sign and shift) for SVD-NRS for the score vector r and a vector r̃ (derived from ũ2

in Step 6) where

w̃ =
σ̂1

ηp‖D̄−1/2e‖2
D̄1/2ũ2; r̃ := w̃ − eT w̃

n
e. (3.7)
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Again, if one knew the product ηp, then (3.7) corresponds to choosing the scale
τ = σ̂1

ηp‖D̄−1/2e‖2
in Step 8. While the conditions on p are more convoluted than those

in Theorem 8 – in large part due to the normalization – the essence is the same. In
the setting where ri = i, we can derive a simplified version of the theorem as shown in

Example 6. Let us now denote α = rT (E[D̄])−1e
eT (E[D̄])−1e

and α′ = eT (r−αe)
n . Theorem 10 states

that if p & logn
η2δ2n

for fixed δ ∈ (0, 1), then for r̃ as in (3.7), there exists β ∈ {−1, 1}
such that w.h.p,

‖r̃ − β(r − (α+ α′)e)‖2 . n3/2η1/4δ1/2 + δ1/2 n3/2

(log n)1/4
.

The closest works to our setting are those of Gleich and Lim (2011) and Yang and Wakin
(2015) which rely on matrix completion, followed by a row sum to compute rankings. In
our experiments, we also consider matrix completion as a preprocessing step (see Section
6) before applying our SVD-based algorithms, and find that in general it does improve the
performance of our methods. However, this comes at the cost of an additional computational
overhead; our SVD-based methods rely on computing the top two singular vectors of the
input matrix, which in practice can be done very efficiently. The theoretical guarantees
we provide for our problem setting, are new to the best of our knowledge, and have been
lacking in the ranking and synchronization literatures currently.

4. Theoretical results for SVD-RS and SVD-NRS

We begin by detailing the theoretical results for SVD-RS in Section 4.1, followed by those
for SVD-NRS in Section 4.2. Throughout, we instantiate the main theorems for the special
setting where ri = i, for ease of interpretability.

4.1 Analysis of Algorithm 1 (SVD-RS)

We will assume throughout this section that for {i, j} ∈ E, the measurementRij corresponds
to i < j. This is clearly without loss of generality. From (3.1), we can write the entry Hij

(for i < j) as the following mixture model

Hij =


ri − rj w.p ηp

Nij ∼ U [−M,M ] w.p (1− η)p
0 w.p 1− p,

with (Hij)i<j being independent random variables. Since Hii = 0 and Hij = −Hji (by
construction of H), therefore for all i, j ∈ [n], we obtain E[Hij ] = ηp(ri− rj). In particular,
we have that

E[H] = ηpC, (4.1)

where C = reT − erT is a skew-symmetric matrix of rank 2. We can decompose H as

H = E[H] + Z = ηpC + Z,
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where Z is a random noise matrix with Zii = 0, ∀i = 1, . . . , n. For 1 ≤ i < j ≤ n the entries
of Z are defined by the following mixture model

Zij =


(ri − rj)− ηp(ri − rj) ; w.p ηp

Nij − ηp(ri − rj) ; w.p (1− η)p
−ηp(ri − rj) ; w.p (1− p).

(4.2)

Note that (Zij)i<j are independent3 random variables and Zij = −Zji. Hence the
matrices H,C,Z are all skew-symmetric. We now proceed to show in Theorem 5 that,
provided p is large enough, it holds true that ũ2 (obtained in Step 6 of SVD-RS) is close
to u2 = r−αe

||r−αe||2 in the `2 norm (up to a global sign) with high probability. The proof is
outlined in Section 5.1.

Theorem 5 (`2 recovery, ERO model) Denoting α = rT e
n , for a given 0 < ε ≤ 1/2, let

‖r − αe‖2 ≥ 24M
η

√
5
3p(2 + ε). Let ũ2 ∈ Rn be the vector obtained in Step 6 of SVD-RS

(with ‖ũ2‖2 = 1) and u2 = r−αe
||r−αe||2 . Then, there exists β ∈ {−1, 1} and a constant cε > 0

depending only on ε such that

||ũ2 − βu2||22 ≤
120M

η

√
5

3p

(2 + ε)

‖r − αe‖2
,

with probability at least 1− 2n exp
(
−20pn

3cε

)
.

Theorem 5 says that for δ ∈ (0, 1), if p & max
{

M2 logn
η2δ2‖r−αe‖22

, logn
n

}
, then with high probabil-

ity, we have

‖ũ2 − βu2‖22 .
δ√

log n
.

Note that the bounds involved are invariant to the scaling of r, and essentially depend on
the variance of the normalized entries of r, wherein each ri

M ∈ [0, 1]. We can see that as
‖r−αe‖22
M2 becomes small, then the corresponding condition on p becomes more stringent.

Example 1 Consider the case where ri = i for i = 1, . . . , n. Then M = n, α = n+1
2

and ‖r − αe‖2 = Θ(n3/2). Hence Theorem 5 now says that if p & logn
η2δ2n

, then with high

probability, we have ‖ũ2 − βu2‖22 . δ√
logn

.

If in addition, n is also large enough, then we show in Theorem 6 that ũ2 is close to u2 (up
to a global sign) in the `∞ norm as well. The proof is outlined in Section 5.2.

Theorem 6 (`∞ recovery, ERO model) With the same notation as in Theorem 5, for

a given 0 < ε ≤ 1/2, let ‖r − αe‖2 ≥ 24M
η

√
5
3p(2 + ε). Assume p ≥ max

{
1

2n ,
2 logn

15n

}
.

Choose ξ > 1, 0 < κ < 1 and define µ = 2
κ+1 . Let n satisfy 16

κ ≤ (log n)ξ. Then, there
exists β ∈ {−1, 1} and constants Cε, cε > 0 depending only on ε such that with probability
at least

1− 2n exp

(
−20pn

3cε

)
− 4

n
− 2n1− 1

4
(logµ n)ξ−1(logµ e)

−ξ

3Since Zii = 0, clearly (Zij)i≤j are independent as well.
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we have that

||ũ2 − βu2||∞ ≤ 4(2 +
√

2)C(n,M, η, p, ε, r) + 4
√
nC2(n,M, η, p, ε, r),

where

C(n,M, η, p, ε, r) = Cε

[(
M
√

log n

η
√
p‖r − αe‖2

+
M2(log n)2ξ

η2p‖r − αe‖22

)(
1√
n

+
M − α
‖r − αe‖2

)
+

M3

η3p3/2‖r − αe‖32

]
.

(4.3)

Let us look at bounding the admittedly complicated looking term C(n,M, η, p, ε, r). For
δ ∈ (0, 1), say p satisfies

p &
M2

‖r − αe‖22
max

{
n log3 n

η2δ2

(
1√
n

+
M − α
‖r − αe‖2

)2

,

√
n(log n)2ξ+1

η2δ

(
1√
n

+
M − α
‖r − αe‖2

)
,
(
√
n log n)2/3

η2δ2/3

}
.

(4.4)

Then we have that C(·) . δ√
n logn

. Hence if additionally p & max
{

M2

η2‖r−αe‖22
, logn

n

}
and

n = Ω(1) hold, then Theorem 6 says that

‖ũ2 − βu2‖∞ .
δ√

n log n

holds w.h.p. Note that the condition on p is stricter than that in Theorem 5.

Example 2 Let us revisit the case where ri = i for all i. The condition (4.4) then simplifies
to

p & max

{
1

η2δ2

(
(log n)3

n

)
,

1

η2δ

(
(log n)2ξ+1

n

)
,

1

η2δ2/3

(
(log n)2/3

n2/3

)}
. (4.5)

Since M2

‖r−αe‖22
= 1

n , we conclude that for a fixed δ ∈ (0, 1), if p & 1
η2δ2/3

(
(logn)2/3

n2/3

)
and

n = Ω(1), then ‖ũ2 − βu2‖∞ . δ√
n logn

holds with high probability.

Recovering ranks in the `∞ norm. Let us assume that ũ2 is aligned with u2, i.e.,
‖ũ2 − u2‖∞ ≤ Υ(n,M, η, p, ε, r) where Υ(·) is the bound in Theorem 6. For any s ∈ Rn, we
say that the permutation π : [n]→ [n] is consistent with s if for all pairs (i, j), π(i) < π(j)
implies si ≥ sj . For the purpose of recovering the rankings, we will consider the entries of
r to be pairwise distinct, i.e. ri 6= rj for all i 6= j. Hence there is a unique permutation
π which is consistent with r. Let π̃ be a permutation that is consistent with ũ2, note that
this is not unique since some entries of ũ2 could have the same value. Our goal is to bound
the maximum displacement error between π and π̃ defined as

‖π̃ − π‖∞ := max
i

 ∑
π(j)>π(i)

1π̃(j)<π̃(i) +
∑

π(j)<π(i)

1π̃(j)>π̃(i)

 . (4.6)

To this end, we have the following theorem the proof of which is provided in Section
5.3. Notice that bounding ‖π − π̃‖∞ requires a bound on ‖ũ2 − u2‖∞ which is obtained
from Theorem 6. The proof technique is essentially the same as that of (Fogel et al., 2016,
Theorem 24).
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Theorem 7 Assuming ri 6= rj for all i 6= j, let π denote the (unique) ranking consistent
with r and also define ρ := mini 6=j |ri − rj |. Assuming β = 1, denote Υ(n,M, η, p, ε, r) to
be the bound on ‖ũ2 − u2‖∞ in Theorem 6. Then under the notation and assumptions in

Theorem 6, we have with probability at least 1−2n exp
(
−20pn

3cε

)
− 4
n−2n1− 1

4
(logµ n)ξ−1(logµ e)

−ξ

that

‖π̃ − π‖∞ ≤
4‖r − αe‖2

ρ
Υ(n,M, η, p, ε, r) (4.7)

holds for all rankings π̃ which are consistent with ũ2.

Example 3 Let us examine the bound in (4.7) for the case where ri = i for i = 1, . . . , n.
We have seen that ‖r − αe‖2 = Θ(n3/2). Theorem 6 tells us that for a fixed δ ∈ (0, 1), if

p & 1
η2δ2/3

(
(logn)2/3

n2/3

)
and n = Ω(1), then ‖ũ2 − u2‖∞ ≤ Υ(·) . δ√

n logn
w.h.p. Since ρ = 1,

we obtain from (4.7) that

‖π̃ − π‖∞ . δ
n

log n
.

Recovering scores in the `2 and `∞ norms. We now bound the error between the
score vector estimate r̃ as in (3.6), and r up to a global shift and sign. This is shown in the
following theorem for the `2 and `∞ norms. The proof is outlined in Section 5.4. Note that
both r̃ and r − αe are centered vectors.

Theorem 8 Recall r̃ ∈ Rn as defined in (3.6).

1. Under the notation and assumptions of Theorem 5, there exists β ∈ {−1, 1} such that

‖r̃ − β(r − αe)‖2 ≤
8M

η

√
5

3p
(2 + ε) +

√
120M(2 + ε)‖r − αe‖2

ηp1/2

(
5

3

)1/4

(4.8)

with probability at least 1− 2n exp
(
−20pn

3cε

)
.

2. Under the notation and assumptions of Theorem 6, there exists β ∈ {−1, 1} such that

‖r̃ − β(r − αe)‖∞ ≤
16

3
‖r − αe‖2[(2 +

√
2)C(n,M, η, p, ε, r) +

√
nC2(n,M, η, p, ε, r)]

+ 8

√
5

3
(2 + ε)

M(M − α)

η
√
p‖r − αe‖2

(4.9)

with probability at least

1− 2n exp

(
−20pn

3cε

)
− 4

n
− 2n1− 1

4
(logµ n)ξ−1(logµ e)

−ξ
.

Example 4 When ri = i for all i, the bound in (4.8) is of the form

‖r̃ − β(r − αe)‖2 .
n

η
√
p

+
n5/4

√
ηp1/4

. (4.10)
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Recall from Theorem 5 that p is required to satisfy p & logn
η2δ2n

for δ ∈ (0, 1). Then, (4.10)
simplifies to

‖r̃ − β(r − αe)‖2 .
n3/2

(log n)1/4

√
δ.

Turning our attention to (4.9), recall from Theorem 6 that we require p & 1
η2δ2/3

(
(logn)2/3

n2/3

)
and n = Ω(1). This leads to

‖r̃ − β(r − αe)‖∞ .
n

log n
δ +

√
n

η
√
p
.

n

log n
δ +

n5/6

(log n)1/3
δ1/3 .

n

log n
δ.

4.2 Analysis of Algorithm 2 (SVD-NRS)

We now analyze Algorithm 2, namely SVD-NRS, under the ERO model. The random matrix
D̄−1/2HD̄−1/2 will concentrate around (E[D̄])−1/2E[H](E[D̄])−1/2. Recall from (4.1) that
E[H] = ηp(reT − erT ), hence (E[D̄])−1/2E[H](E[D̄])−1/2 is a rank-2 matrix. It is easy to
verify that

E[D̄ii] = ηp
n∑
j=1

|ri − rj |+ (1− η)p
M

2
.

It will be useful to denote

max
i

E[D̄ii] = p

ηmax
i

 n∑
j=1

|ri − rj |

+ (1− η)
M

2

 = pλmax, (4.11)

min
i

E[D̄ii] = p

ηmin
i

 n∑
j=1

|ri − rj |

+ (1− η)
M

2

 = pλmin. (4.12)

Recall ũ2 ∈ Rn obtained in Step 6 of SVD-NRS, and denote u2 = (E[D̄])−1/2(r−αe)
‖(E[D̄])−1/2(r−αe)‖2

. The

following theorem bounds the `2 error between ũ2 and u2 up to a global sign, its proof is
given in Section 5.5.

Theorem 9 (`2 recovery, ERO model) Denote

α =
rT (E[D̄])−1e

eT (E[D̄])−1e
, A(η,M) = ηM2 + (1− η)

M

2
and C1(η,M) = 4A1/4(η,M).

For ε > 0, denote

σmin =
η‖r − αe‖2

√
n

λmax
, σmax =

η‖r − αe‖2
√
n

λmin
,

∆̃ = 16M

√
5

3
pn

(2 + ε)

pλmin
+
C1(η,M)(np log n)1/4σmax

p3/2λ
3/2
min

(
C1(η,M)(np log n)1/4

√
pλmin

+ 2
√

2

)
.

Let ũ2 ∈ Rn be the vector obtained in Step 6 of SVD-NRS (with ‖ũ2‖2 = 1) and denote

u2 = (E[D̄])−1/2(r−αe)
‖(E[D̄])−1/2(r−αe)‖2

. If

p ≥ M2

9A(η,M)

log n

n
, p ≥ 16(

√
2 + 1)2A(η,M)n log n

λ2
min

and ∆̃ ≤ σmin

3
(4.13)
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hold, then there exists β ∈ {−1, 1} and a constant cε > 0 depending only on ε such that

||ũ2 − βu2||22 ≤
15∆̃

σmin

holds with probability at least 1− 2
n − 2n exp

(
−20pn

3cε

)
.

The quantities σmin, σmax are lower and upper bounds on the non-zero singular values of
the rank 2 matrix (E[D̄])−1/2E[H](E[D̄])−1/2, while ∆̃ is an upper bound on the quantity
‖D̄−1/2HD̄−1/2 − (E[D̄])−1/2E[H](E[D̄])−1/2‖2. The theorem essentially states that if p is
sufficiently large, then ũ2 is close to u2 up to a sign flip. In order to get a sense of the
precise scaling of the quantities involved, we consider the special case ri = i.

Example 5 Consider ri = i for all i with η ∈ (0, 1) fixed, hence M = n. Denoting

Si =
∑n

j=1 |ri − rj |, one can verify that Si = i2 − i(n + 1) + n2+n
2 . This implies that

λmax, λmin = Θ(ηn2) = A(η,M), and so, C(η,M) = Θ(η1/4n1/2). Now let us find the
scaling of α. Since E[D̄ii] = Θ(pηn2), we obtain

α =

∑n
i=1 i(E[D̄ii])

−1∑n
i=1(E[D̄ii])−1

= Θ

(∑n
i=1 i

n

)
= Θ(n).

This in particular implies that ‖r − αe‖22 =
∑n

j=1(j − α)2 = Θ(n3). We then obtain

σmin, σmax = Θ(1); plugging the aforementioned scalings in the expression for ∆̃ leads to

∆̃ = O

(
1

η
√
np

+
(log n)1/4

(ηp)5/4n9/4

(
(log n)1/4

(ηnp)1/4
+ 2
√

2

))
.

The first two conditions on p in (4.13) translate to p & 1
η

logn
n . Since σmin = Θ(1), hence

the third condition in (4.13) holds provided ∆̃ . 1. In fact, for any δ ∈ (0, 1), we have
∆̃ . δ√

logn
if p additionally satisfies

1

η
√
np

.
δ√

log n
⇔ p &

log n

η2δ2n
and

(log n)1/4

(ηp)5/4n9/4
.

δ√
log n

⇔ p &
(log n)3/5

ηn9/5δ4/5
.

Clearly, the first condition on p dominates since logn
η2δ2n

& (logn)3/5

ηn9/5δ4/5
. To summarize, Theorem

9 states that if p satisfies

p &
log n

η2δ2n
, (4.14)

then ∃β ∈ {−1, 1} such that ||ũ2 − βu2||22 . δ.

Recovering scores in the `2 norm. The following theorem bounds the `2 error between
the score vector estimate r̃ defined in (3.7), and r up to a global sign and shift. Its proof is
outlined in Section 5.6. Note that both r̃ and r − (α+ α′)e are centered vectors.
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Theorem 10 Recall r̃ ∈ Rn as defined in (3.7). Under the notation and assumptions of

Theorem 9, and denoting α′ = eT (r−αe)
n , there exists β ∈ {−1, 1} such that

‖r̃ − β(r − (α+ α′)e)‖2 ≤
2

ηp

[√
3

n

(
σmax + ∆̃

)
(2
√

2 + 1)1/2(A(η,M)np log n)1/4

(√
pλmax +

λmax

λmin

)

+
∆̃pλmax√

n
+

√
15∆̃

σminn
σmaxpλmax

]

holds with probability at least 1− 2
n − 2n exp

(
−20pn

3cε

)
.

Example 6 Consider the scenario where ri = i for each i. Then as discussed above for
Theorem 9, if p satisfies (4.14), we obtain the bound

‖r̃ − β(r − (α+ α′)e)‖2 .
1

ηp

[
(ηn3p log n)1/4

√
n

(
√
pηn2 + 1) +

pηn2δ√
n log n

+

√
δ

n
√

log n
pηn2

]

.
1

ηp

[
η3/4n5/4(log n)1/4p3/4 + ηpδ1/2 n3/2

(log n)1/4

]

=
n5/4(log n)1/4

(ηp)1/4
+ δ1/2 n3/2

(log n)1/4

. n3/2η1/4δ1/2 + δ1/2 n3/2

(log n)1/4
(using (4.14)).

5. Proofs

5.1 Proof of Theorem 5

We now outline the proof of Theorem 5 by highlighting the steps involved, along with the
intermediate Lemmas (the proofs of which are in Appendix C). The proof is broken into
the following steps.

Step 1: Singular values and singular vectors of C. We begin by finding the singular
values and singular vectors of C.

Lemma 11 For C = reT − erT , it holds true that C = σ1u1v
T
1 + σ2u2v

T
2 , with σ1 = σ2 =

‖r − αe‖2
√
n, and

u1 = v2 =
e√
n

; v1 = − r − αe
||r − αe||2

; u2 =
r − αe
||r − αe||2

,

where α = rT e
n .

Step 2: Bounding the spectral norm of Z. Recall that (Zij)i≤j are independent zero-
mean random variables with Zii = 0 and moreover, Zji = −Zij . Denote Z = S−ST , where
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S is an upper-triangular matrix with Sij = Zij for i ≤ j. Note that ||Z||2 ≤ ||S||2+||ST ||2︸ ︷︷ ︸
=||S||2

≤

2||S||2 . We define a symmetric matrix

S̃ :=

[
0 S
ST 0

]
∈ R2n×2n.

It is easy to check that ||S̃||2 = ||S||2, and thus ||Z||2 ≤ 2||S̃||2. Since S̃ is a random sym-
metric matrix with the entries (S̃ij)i≤j being centered, independent and bounded random
variables, we can bound ||S̃||2 using a recent result of (Bandeira and van Handel, 2016,
Corollary 3.12, Remark 3.13) that gives non-asymptotic bounds on the spectral norm of
such random symmetric matrices. This altogether leads to the following Lemma.

Lemma 12 For Z ∈ Rn×n as defined in (4.2), we have that

||Z||2 ≤ 8M

√
5

3
pn(2 + ε) (5.1)

holds with probability at least 1− 2n exp
(
−20pn

3cε

)
.

Step 3: Using Wedin’s bound. Let us denote U = [u1 u2] ∈ Rn×2 (recall u1, u2

from Lemma 11). Denote Û = [û1 û2] ∈ Rn×2 where û1, û2 are the left singular vectors
corresponding to the top two singular values of H. The following Lemma states thatR(U) is
close toR(Û) if ‖Z‖2 is small. The proof uses Wedin’s bound (Wedin, 1972) for perturbation
of singular subspaces.

Lemma 13 Given H = ηpC + Z, where ||Z||2 ≤ ∆, if ∆ < ηp||r − αe||2
√
n, then

||(I − Û ÛT )U ||2 ≤
∆

ηp||r − αe||2
√
n−∆

(=: δ). (5.2)

Step 4: Analyzing the projection step. Next, we project u1 on span(Û) to obtain
ū1, find a unit vector orthogonal to ū1 lying in R(Û) (denote this by ũ2), and show that ũ2

is close to u2 up to a sign flip.

Lemma 14 With δ as defined in Lemma 13 let δ ≤ 1/2 hold. Then, there exists β ∈ {−1, 1}
such that

||ũ2 − βu2||22 ≤ 10δ.

Step 5: Putting it together. We now use the above Lemma’s to readily obtain Theorem

5 (see appendix for details). Using ‖Z‖2 ≤ ∆ = 8M
√

5
3pn(2 + ε) in the expression for δ,

one can verify that
δ ≤ 1/2⇔ 3∆ ≤ ηp||r − αe||2

√
n (5.3)

holds if ‖r − αe‖2 ≥ 24M
η

√
5
3p(2 + ε). By using the bound on 4 in (5.3) in the expression

for δ, we finally obtain

δ ≤ 12M

η

√
5

3p

(2 + ε)

‖r − αe‖2
.

Plugging this in Lemma 14 yields the stated `2 bound and completes the proof.
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5.2 Proof of Theorem 6

Recall that U = [u1 u2], Û = [û1 û2] ∈ Rn×2 correspond to the two largest singular vectors
of E[H], and H respectively. The proof is broken down into three main steps. The first step
involves bounding ‖ũ2 − βu2‖∞ in terms of ‖Û − UO∗‖max – where O∗ is a 2×2 orthogonal
matrix that “aligns” U with Û – provided ‖Z‖2 is small. The second step involves bounding
‖Û − UO∗‖max, and in the third step we combine the results from the previous steps. The
proofs of all lemmas are provided in Appendix D.

Step 1: Bounding ‖ũ2 − βu2‖∞ in terms of ‖Û − UO∗‖max. The following Lemma
states this formally.

Lemma 15 For ∆ as defined in Lemma 13, let ∆ ≤ ηp||r−αe||2
√
n

3 hold. Then for any
orthogonal matrix O ∈ R2×2, there exists β ∈ {−1, 1} depending on O such that

‖ũ2 − βu2‖∞ ≤ 4‖Û − UO‖max

(
2 +

√
n(M − α)

‖r − αe‖2

)
+ 4
√
n‖Û − UO‖2max. (5.4)

Moreover, there exists an orthogonal matrix O∗ ∈ R2×2 such that

‖Û − UO∗‖2 ≤
3∆

ηp
√
n‖r − αe‖2

. (5.5)

Step 2: Bounding ‖Û − UO∗‖max. Since HT = −H, therefore −H2 = HHT . Using the
SVD H = Û Σ̂V̂ , we arrive at

HHT Û = −H2Û = Û Σ̂2

⇒ Û = −H2Û Σ̂−2 = −(E[H]2 + E[H]Z + ZE[H] + Z2)Û Σ̂−2. (5.6)

For convenience of notation, denote σ = σi(E[H]) = ηp
√
n‖r − αe‖2; i = 1, 2. Since

E[H]T = −E[H], we get

−E[H]2 = E[H]E[H]T = UΣ2UT = σ2(UO∗)(UO∗)T

UO∗ = − 1

σ2
(E[H])2(UO∗). (5.7)

Subtracting (5.7) from (5.6) leads to

Û − UO∗ = −E[H]2(Û − UO∗)Σ̂−2︸ ︷︷ ︸
E1

+E[H]2UO∗(σ−2I − Σ̂−2)︸ ︷︷ ︸
E2

−E[H]ZÛ Σ̂−2︸ ︷︷ ︸
E3

− ZE[H]Û Σ̂−2︸ ︷︷ ︸
E4

−Z2Û Σ̂−2︸ ︷︷ ︸
E5

= E1 + E2 − E3 − E4 − E5

⇒ ‖Û − UO∗‖max ≤
5∑
i=1

‖Ei‖max. (5.8)

We now proceed to bound each term in the RHS of (5.8). This is stated precisely in the
following Lemma.
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Lemma 16 If ∆ ≤ σ
3 = ηp

√
n‖r−αe‖2

3 , then the following holds true.

1. ‖E1‖max ≤ 27∆
4σ

(
1√
n

+ M−α
‖r−αe‖2

)
.

2. ‖E2‖max ≤ 21∆
4σ

(
1√
n

+ M−α
‖r−αe‖2

)
.

3. ‖E3‖max ≤ 9∆
4σ

(
1√
n

+ M−α
‖r−αe‖2

)
.

4. ‖E4‖max ≤ 9
4σ (‖Zu1‖∞ + ‖Zu2‖∞).

5. ‖E5‖max ≤ 27∆3

4σ3 + 9
4σ2 (‖Z2u1‖∞ + ‖Z2u2‖∞).

Next, we will bound ‖Zui‖∞ and ‖Z2ui‖∞ for i = 1, 2. Bounding ‖Zui‖∞ is a relatively
straightforward consequence of Bernstein’s inequality (Boucheron et al., 2013, Corollary
2.11), we state this in the following Lemma.

Lemma 17 If p ≥ 2 logn
15n then the following holds.

1. P(‖Zu1‖∞ ≥ 2
√

2+4
3 M

√
15p log n) ≤ 2

n .

2. P(‖Zu2‖∞ ≥ 2
√

2+4
3 M

√
15pBn log n) ≤ 2

n where B = (M−α)2

‖r−αe‖22
.

Bounding ‖Z2ui‖∞ is a considerably more challenging task since the entries within a row
of Z2 will not be independent now. However, leveraging a recent entry-wise concentration
result for the product of a random matrix (raised to a power) and a fixed vector (Eldridge
et al., 2018, Theorem 15) (see Theorem 25), we are able to do so and arrive at the following
Lemma.

Lemma 18 Let p ≥ 1
2n hold. Choose ξ > 1, 0 < κ < 1 and define µ = 2

κ+1 . Then if
16
κ ≤ (log n)ξ, the following holds true.

1. P
(
‖Z2u1‖∞ ≥ 8

√
npM2(log n)2ξ

)
≤ n1− 1

4
(logµ n)ξ−1(logµ e)

−ξ
.

2. P
(
‖Z2u2‖∞ ≥ 8npM2 M−α

‖r−αe‖2 (log n)2ξ
)
≤ n1− 1

4
(logµ n)ξ−1(logµ e)

−ξ
.

Step 3: Putting it together. We now combine the results of the preceding Lemmas to

derive the final approximation bound. Recall from Lemma 12 that ∆ = 8M
√

5
3pn(2 + ε).

Also, σ = ηp
√
n‖r − αe‖2 and so

∆

σ
=

8M

η

√
5

3p

(2 + ε)

‖r − αe‖2
. (5.9)
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Using Lemmas 16,17,18 and (5.9) in (5.8), we get

‖Û − UO∗‖max ≤
(

114M

η

√
5

3p

(2 + ε)

‖r − αe‖2

)(
1√
n

+
M − α
‖r − αe‖2

)
+

(
3
√

15(2
√

2 + 4)

4

)(
M
√

log n

η
√
p‖r − αe‖2

)(
1√
n

+
M − α
‖r − αe‖2

)

+
18M2(log n)2ξ

η2p‖r − αe‖22

(
1√
n

+
M − α
‖r − αe‖2

)
+

27

4

(
8
√

5

3

)3
M3

η3p3/2

(2 + ε)3

‖r − αe‖32

≤ Cε
[(

M
√

log n

η
√
p‖r − αe‖2

+
M2(log n)2ξ

η2p‖r − αe‖22

)(
1√
n

+
M − α
‖r − αe‖2

)
+

M3

η3p3/2‖r − αe‖32

]
= C(n,M, η, p, ε, r)

where Cε > 0 is a universal constant depending only on ε. Plugging this in (5.4), we arrive
at the stated `∞ bound in the Theorem. The lower bound on the success probability follows
readily via a union bound on the events stated in Lemmas 12, 17, 18.

5.3 Proof of Theorem 7

We assume w.l.o.g that π is identity so that π(i) = i. For any i ∈ [n], we have for all
rankings π̃ which are consistent with ũ2 that

|i− π̃(i)| =
∑
j>i

1{π̃(j)<π̃(i)} +
∑
j<i

1{π̃(j)>π̃(i)} ≤
∑
j>i

1{ũ2,j≥ũ2,i} +
∑
j<i

1{ũ2,j≤ũ2,i},

leading to the bound

‖π − π̃‖∞ = max
i
|i− π̃(i)| ≤

∑
j>i

1{ũ2,j≥ũ2,i} +
∑
j<i

1{ũ2,j≤ũ2,i}.

Now for a given i′ ∈ [n], we can decompose ũ2,i′ − ũ2,j as

ũ2,i′ − ũ2,j = (ũ2,i′ − u2,i′) + (u2,i′ − u2,j) + (u2,j − ũ2,j),

which in turn implies ũ2,i′ − ũ2,j ≤ (u2,i′ − u2,j) + 2‖ũ2 − u2‖∞. Hence if j is such that

i′ > j, then ‖ũ2 − u2‖∞ ≤
|u2,i′−u2,j|

2 implies

ũ2,i′ − ũ2,j ≤ (u2,i′ − u2,j)︸ ︷︷ ︸
≤0

+
∣∣u2,i′ − u2,j

∣∣ = 0.
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Using this, we obtain∑
j<i′

1{ũ2,j<ũ2,i′} ≤
∑
j<i′

1{
‖ũ2−u2‖∞>

|u2,i′−u2,j|
2

}

≤
∑
j<i′

1{
Υ(n,M,η,p,ε,r)>

|u2,i′−u2,j|
2

} (since ‖ũ2 − u2‖∞ ≤ Υ(n,M, η, p, ε, r))

=
∑
j<i′

1{2Υ(n,M,η,p,ε,r)‖r−αe‖2>|ri′−rj |}

=

⌊
2Υ(n,M, η, p, ε, r)‖r − αe‖2

ρ

⌋
≤ 2Υ(n,M, η, p, ε, r)‖r − αe‖2

ρ
.

The same bound holds for
∑

j>i′ 1{ũ2,j>ũ2,i′} and hence the statement of the Theorem

follows.

5.4 Proof of Theorem 8

Recall that w̃ = σ̂1
ηp
√
n
ũ2. Let us denote

w =
σ

ηp
√
n
βu2 = ‖r − αe‖2βu2 = (r − αe)β.

For any norm ‖·‖ on Rn, we have by triangle inequality that

‖r̃ − w‖ ≤ ‖w̃ − w‖+

∣∣∣∣eT w̃n
∣∣∣∣ ‖e‖.

Since eTw = 0, therefore we obtain via Cauchy-Schwarz that∣∣∣∣eT w̃n
∣∣∣∣ =

∣∣∣∣eT (w̃ − w)

n

∣∣∣∣ ≤ ‖w̃ − w‖2√
n

.

Hence we have that

‖r̃ − w‖2 ≤ 2‖w̃ − w‖2 and ‖r̃ − w‖∞ ≤ ‖w̃ − w‖∞ +
‖w̃ − w‖2√

n
≤ 2‖w̃ − w‖∞.

It remains to bound ‖w̃ − w‖2 and ‖w̃ − w‖∞. Our starting point will be

‖w̃ − w‖ =
1

ηp
√
n
‖σ̂1ũ2 − σ1βu2‖

=
1

ηp
√
n
‖(σ̂1 − σ1)ũ2 + σ1(ũ2 − βu2)‖

⇒ ‖w̃ − w‖ ≤ 1

ηp
√
n

(|σ̂1 − σ| ‖ũ2‖+ σ1‖ũ2 − βu2‖)

≤ 1

ηp
√
n

(∆‖ũ2‖+ ηp‖r − αe‖2
√
n‖ũ2 − βu2‖). (5.10)
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1. Bounding ‖w̃ − w‖2. From (5.10), we have that

‖w̃ − w‖2 ≤
1

ηp
√
n

(∆ + ηp‖r − αe‖2
√
n‖ũ2 − βu2‖2)

Plugging the expression for ∆ from Lemma 12, and the bound on ‖ũ2 − βu2‖2 from
Theorem 5, we readily obtain the bound in part (i) of the Theorem.

2. Bounding ‖w̃ − w‖∞. From (5.10), we have that

‖w̃ − w‖∞ ≤
1

ηp
√
n

[∆‖ũ2‖∞ + σ1‖ũ2 − βu2‖∞]

≤ 1

ηp
√
n

[∆(‖ũ2 − βu2‖∞ + ‖u2‖∞) + σ1‖ũ2 − βu2‖∞]

=
1

ηp
√
n

[
(σ1 + ∆)‖ũ2 − βu2‖∞ + ∆

(M − α)

‖r − αe‖2

]
. (5.11)

Plugging the expression for σ1 (from Lemma 11) and ∆ (from Lemma 12), followed
by some simplification, we arrive at the bound in part (ii) of the Theorem.

5.5 Proof of Theorem 9

The outline is similar to the proof of Theorem 5 with some technical changes. We first note
that the SVD of (E[D̄])−1/2E[H](E[D̄])−1/2 is given by σ(u1v

T
1 + u2v

T
2 ) where

σ = ηp‖(E[D̄])−1/2(r − αe)‖2‖(E[D̄])−1/2e‖2, v2 = u1 =
(E[D̄])−1/2e

‖(E[D̄])−1/2e‖2
, (5.12)

v1 = −u2 = − (E[D̄])−1/2(r − αe)
‖(E[D̄])−1/2(r − αe)‖2

,

and α = rT (E[D̄])−1e
eT (E[D̄])−1e

. This is verified easily by proceeding as in the proof of Lemma 11. One

can also readily see that σmin ≤ σ ≤ σmax. Now let us write

D̄−1/2HD̄−1/2 = (E[D̄])−1/2E[H](E[D̄])−1/2 + Z̃

where Z̃ = D̄−1/2(H − E[H])D̄−1/2 + D̄−1/2E[H]D̄−1/2 − (E[D̄])−1/2E[H](E[D̄])−1/2. In
order to bound ‖Z̃‖2, we will first need to establish the concentration of D̄ around E[D̄].

Lemma 19 Denote A(η,M) = ηM2 + (1− η)M2 . If p ≥ M2

9A(η,M)
logn
n then,

P(‖D̄ − E[D̄]‖2 ≥ 2(
√

2 + 1)
√
A(η,M)np log n) ≤ 2/n.

The proof is deferred to Appendix E. Conditioned on the event in Lemma 19, we have that

D̄ii ∈ [E[D̄ii]± 2(
√

2 + 1)
√
A(η,M)np log n], ∀i = 1, . . . , n.

In particular, if 2(
√

2 + 1)
√
A(η,M)np log n ≤ 1

2 mini E[D̄ii] = pλmin
2 , then

min
i
D̄ii ≥ pλmin/2. (5.13)
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Using triangle inequality, we obtain the bound

‖Z̃‖2 ≤ ‖D̄−1/2(H − E[H])D̄−1/2︸ ︷︷ ︸
Z̃1

‖2 + ‖D̄−1/2E[H]D̄−1/2 − (E[D̄])−1/2E[H](E[D̄])−1/2︸ ︷︷ ︸
Z̃2

‖2.

From sub-multiplicativity of the spectral norm and also (5.13), we have that

‖Z̃1‖2 ≤
‖H − E[H]‖2

mini D̄ii
≤ 2∆

pλmin
. (5.14)

Here, we used the bound ‖H − E[H]‖2 ≤ ∆ from Lemma 12. In order to bound ‖Z̃2‖2, we
add and subtract E[D̄] from D̄ and apply triangle inequality. This yields

‖Z̃2‖2 ≤ ‖(D̄−1/2 − (E[D̄])−1/2)E[H](D̄−1/2 − (E[D̄])−1/2)‖2
+ ‖(D̄−1/2 − (E[D̄])−1/2)E[H]D̄−1/2‖2 + ‖D̄−1/2E[H](D̄−1/2 − (E[D̄])−1/2)‖2
≤ ‖D̄−1/2 − (E[D̄])−1/2‖22‖E[H]‖2 + 2‖D̄−1/2 − (E[D̄])−1/2‖2‖E[H]‖2‖D̄−1/2‖2.

(5.15)

Note that

‖(D̄−1/2 − (E[D̄])−1/2)‖2 = ‖D̄−1/2(D̄1/2 − (E[D̄])1/2)(E[D̄])−1/2‖2
≤ ‖D̄−1/2‖2‖(D̄1/2 − (E[D̄])1/2)‖2‖(E[D̄])−1/2‖2.

Moreover, we can bound ‖(D̄1/2 − (E[D̄])1/2)‖2 ≤ ‖D̄ − E[D̄]‖1/22 since D̄,E[D̄] � 0 and

(·)1/2 is operator monotone (see (Bhatia, 1996, Theorem X.1.1)). Using ‖D̄−1/2‖2 ≤
√

2
pλmin

,

‖(E[D̄])−1/2‖2 ≤
√

1
pλmin

and the bound from Lemma 19 in (5.15), we get

‖Z̃2‖2 ≤ C2
1 (η,M)

(np log n)1/4

pλmin
‖E[H]‖2 +

2
√

2C1(η,M)‖E[H]‖2(np log n)1/4

(pλmin)3/2
, (5.16)

where C1(η,M) = 4A1/4(η,M). From (5.14), (5.16), we get

‖Z̃‖2 ≤
2∆

pλmin
+
C1(η,M)‖E[H]‖2(np log n)1/4

(pλmin)3/2

[
C1(η,M)(np log n)1/4

√
pλmin

+ 2
√

2

]

≤ 16M

√
5

3
pn

(2 + ε)

pλmin
+
C1(η,M)(np log n)1/4σ

(pλmin)3/2

(
C1(η,M)(np log n)1/4

√
pλmin

+ 2
√

2

)
= ∆̃

where the second inequality follows using Lemma 12 and (5.12). Let Û = [û1 û2] denote the
top two left singular vectors of D̄−1/2HD̄−1/2. Then from Wedin’s bound, we know that

∆̃ < σ ⇒ ‖(I − Û ÛT )U‖2 ≤
∆̃

σ − ∆̃
= δ. (5.17)

Finally, Lemma 14 can be used here unchanged. Hence if δ ≤ 1/2 ⇔ ∆̃ ≤ σ/3, then

there exists β ∈ {−1, 1} such that ‖ũ2 − βu2‖22 ≤ 10δ. Since ∆̃ ≤ σmin/3 ⇔ δ ≤ 3∆̃
2σmin

⇒
∆̃ ≤ σ/3, we obtain the stated bound on ‖ũ2 − βu2‖22. The lower bound on the success
probability follows by applying the union bound to the events in Lemmas 12, 19.
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5.6 Proof of Theorem 10

Recall that w̃ = σ̂1
ηp‖D̄−1/2e‖2

D̄1/2ũ2 and r̃ = w̃ − eT w̃
n e. Let us denote

w =
σ

ηp‖(E[D̄])−1/2e‖2
(E[D̄])1/2βu2 = (r − αe)β,

w′ = w − eTw

n
e = β(r − (α+ α′)e),

where α′ = eT (r−αe)
n . Then using triangle inequality, we can bound ‖r̃ − w′‖2 as

‖r̃ − w′‖2 ≤ ‖w − w̃‖2 +

∣∣∣∣eT (w̃ − w)

n

∣∣∣∣ ‖e‖2 ≤ 2‖w − w̃‖2.

In order to bound ‖w − w̃‖2, note that we can write w̃ − w = 1
ηp(a1 + a2 + a3 + a4) where

a1 =
σ̂1

‖D̄−1/2e‖2
D̄1/2ũ2 −

σ̂1

‖D̄−1/2e‖2
(E[D̄])1/2ũ2,

a2 =
σ̂1

‖D̄−1/2e‖2
(E[D̄])1/2ũ2 −

σ̂1

‖(E[D̄])−1/2e‖2
(E[D̄])1/2ũ2,

a3 =
σ̂1

‖(E[D̄])−1/2e‖2
(E[D̄])1/2ũ2 −

σ

‖(E[D̄])−1/2e‖2
(E[D̄])1/2ũ2,

a4 =
σ

‖(E[D̄])−1/2e‖2
(E[D̄])1/2ũ2 −

σ

‖(E[D̄])−1/2e‖2
(E[D̄])1/2βu2.

Since ‖w̃ − w‖2 ≤ 1
ηp

∑4
i=1 ‖ai‖2 we will now bound ‖ai‖2 for each i. Before proceeding,

recall from the proof of Theorem 5.5 that mini D̄ii ≥ pλmin
2 . We also have

max
i
D̄ii ≤ pλmax +

pλmin

2
≤ 3pλmax

2
,

and σ̂1 ≤ σ + ∆̃ where the latter is due to Weyl’s inequality.

Bounding ‖a1‖2. Since σ ≤ σmax, we have that

‖a1‖2 ≤
∆̃ + σmax

‖D̄−1/2e‖2
‖D̄1/2 − (E[D̄])1/2‖2 ≤

∆̃ + σmax

‖D̄−1/2e‖2
‖D̄ − E[D̄]‖1/22 (5.18)

where the second inequality is due to D̄,E[D̄] � 0 and since (·)1/2 is operator monotone

(see (Bhatia, 1996, Theorem X.1.1)). Using the bound ‖D̄−1/2e‖2 ≥
√

2n
3pλmax

, along with

the bound for ‖D̄ − E[D̄]‖2 (from Lemma 19) in (5.18), we arrive at

‖a1‖2 ≤
√

3

2n
pλmax(σmax + ∆̃)(2

√
2 + 1)1/2(A(η,M)np log n)1/4.
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Bounding ‖a2‖2. We begin by noting that

‖a2‖2 = σ̂1

∣∣∣∣ 1

‖D̄−1/2e‖2
− 1

‖(E[D̄])−1/2e‖2

∣∣∣∣ ‖(E[D̄])1/2ũ2‖2 ≤ (σmax+∆̃)

∣∣∣∣∣‖(E[D̄])−1/2e‖2 − ‖D̄−1/2e‖2
‖D̄−1/2e‖2‖(E[D̄])−1/2e‖2

∣∣∣∣∣ .
Since ‖D̄−1/2e‖2 ≥

√
2n

3pλmax
, ‖(E[D̄])−1/2e‖2 ≥

√
n√

pλmax
, and∣∣∣‖(E[D̄])−1/2e‖2 − ‖D̄−1/2e‖2

∣∣∣ ≤ ‖(D̄−1/2 − (E[D̄])−1/2)e‖2

≤ ‖D̄−1/2‖2‖D̄1/2 − (E[D̄])1/2‖2‖(E[D̄])−1/2‖2
√
n

≤
√

2

pλmin
(2
√

2 + 1)1/2(A(η,M)np log n)1/4,

we can bound ‖a2‖2 as

‖a2‖2 ≤
√

3

n
(σmax + ∆̃)

λmax

λmin
(2
√

2 + 1)1/2(A(η,M)np log n)1/4.

Bounding ‖a3‖2. This is easily achieved by noting that

‖a3‖2 =
|σ̂1 − σ|

‖(E[D̄])−1/2e‖2
‖(E[D̄])1/2ũ2‖2 ≤

∆̃
√
pλmax√

n/
√
pλmax

=
∆̃pλmax√

n
.

Bounding ‖a4‖2. This is also easily achieved by noting that

‖a4‖2 ≤
σ

‖(E[D̄])−1/2e‖2
‖(E[D̄])1/2‖2‖ũ2 − βu2‖2

≤ σmax
√
pλmax√

n/
√
pλmax

√15

√
∆̃

σmin


≤

√
15∆̃

σminn
σmaxpλmax.

The stated bound now follows from ‖r̃ − β(r − (α+ α′)e)‖2 ≤ 2
ηp

∑4
i=1 ‖ai‖2.

6. Matrix completion as a preprocessing step for ranking

Low-rank matrix completion is the problem of recovering the missing entries of a low-rank
matrix given a subset of its entries. This line of research started with the results in Candès
and Recht (2009) and Candes and Tao (2010) which showed that given a rank-r matrix C of
size n1×n2 (with n = max {n1, n2}), one can recover it by observing only O(nr polylog(n))
randomly selected entries (under some assumptions on C) via a simple convex optimization
algorithm. This was partly inspired by similar approaches used previously in the compressed
sensing literature (Candes et al., 2006; Candes and Tao, 2006). This problem has received
tremendous attention in the last decade, due to a number of applications such as in phase
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retrieval (Candès et al., 2013), computer vision (Tomasi and Kanade, 1992; Özyeşil et al.,
2017) and sensor network localization (Cucuringu et al., 2012a) to name a few.

More formally, let us assume for simplicity that r = O(1) and the SVD of C =∑
i∈[r] σiuiv

T
i satisfies

‖ui‖∞ ≤
√

µ

n1
, ‖vi‖∞ ≤

√
µ

n2
; ∀i, j, (6.1)

for some µ ≥ 1. Here, µ is a coherence parameter which measures how spread out the entries
of ui, vi are - the smaller the value of µ, the better. Say we observe m entries of C on a
subset Ω ⊂ [n1] × [n2], sampled uniformly at random. Denoting PΩ : Rn1×n2 → Rn1×n2 to
be the projection operator on Ω, it was shown in Candes and Tao (2010) that the solution
Ĉ of

min ‖X‖∗ s.t PΩ(X) = PΩ(C) (6.2)

equals C with high probability, provided m = Ω(µ4n log2 n). The nuclear norm minimiza-
tion problem (6.2) is a SDP and hence can be solved in polynomial time using, for eg.,
interior point methods. In fact, the result holds under a different Bernoulli sampling model
too, wherein each entry of M is observed independently with a certain probability (Candès
and Recht, 2009, Section 4.1). Moreover, say that the observations are noisy, i.e, we observe

Yi,j = Ci,j + Zi,j ; (i, j) ∈ Ω ⇔ PΩ(Y ) = PΩ(C) + PΩ(Z),

where Z is the noise matrix. Say ‖PΩ(Z)‖F ≤ δ. Then, it was shown in Candes and Plan
(2010) (under certain additional conditions) that the solution of

min ‖X‖∗ s.t ‖PΩ(X)− PΩ(Y )‖F ≤ δ, (6.3)

is stable, i.e., the estimation error ‖Ĉ − C‖F is bounded by a term proportional to δ.
In our setting, we observe (noisy versions of) a subset of the entries of the n×n matrix

C = reT−erT where each off-diagonal entry of C is revealed with probability p. Since C has
rank 2, it is natural to consider estimating C via matrix completion as a preprocessing step,
and then subsequently applying SVD-RS or SVD-NRS on the obtained estimate of C for
recovering the underlying ranks and scores. In order to understand the sample complexity
for successful matrix completion, we need to express µ defined in (6.1) in terms of the score
vector r. To this end, we see from Lemma 11 that

‖u2‖∞, ‖v1‖∞ =
‖r − αe‖∞
‖r − αe‖2

≤ M − α
‖r − αe‖2

,

and ‖u1‖∞, ‖v2‖∞ = 1/
√
n. Hence it follows that

µ = max

{
(M − α)

√
n

‖r − αe‖2
, 1

}
.

In order to get a sense of the scaling of µ, consider the setting ri = i. As seen before,
we then have ‖r − αe‖2 = Θ(n3/2), M = n, and α = Θ(n). This in turn implies that
µ = Θ(1) which is the ideal scenario for matrix completion. In our numerical experiments,
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we rely on the TFOCS software library (Becker et al.), that allows for construction of first-
order methods for a variety of convex optimization problems (Becker et al., 2011). In our
implementation, we also set the diagonal entries of X to be equal to zero since the same is
true for C. We do not enforce the skew-symmetry constraints Xij = −Xji for (i, j) ∈ Ω, so

the solution Ĉ to C is not guaranteed to be skew-symmetric. Instead, we output Ĉ−ĈT
2 as

the final (skew-symmetric) estimate obtained from the preprocessing step. Note that since
CT = −C, we have∥∥∥∥∥ Ĉ − ĈT2

− C

∥∥∥∥∥
F

=

∥∥∥∥∥ Ĉ − ĈT − C + CT

2

∥∥∥∥∥
F

≤ ‖C − Ĉ‖F .

Remark 20 Note that in the setting of matrix completion, we perform the scaling recovery
procedure outlined in Section 3.2 as follows. We build the matrix Π from equation (3.2) by
only consider the entries/edges {i, j} ∈ E from the original measurement graph G, and do
not include the entries filled in during the matrix completion step.

Finally, we end with a motivating discussion for the applicability of the matrix com-
pletion approach in the setting of ranking from pairwise comparisons. The recent work
of Udell and Townsend (2019) provides a compelling argument on why big data matrices
are approximately low-rank. The authors consider a simple generative model for matrices,
assuming that each row or column is associated to a (possibly high dimensional) bounded
latent variable, with the individual matrix entries being generated by applying a piecewise
analytic function to these latent variables. While the initial resulting matrices are typically
full rank, the authors show that one can approximate every entry of an m×n matrix drawn
from the above model to within a fixed absolute error by a low-rank matrix whose rank
grows as O(log(m + n)). In other words, any sufficiently large matrix from such a latent
variable model can be approximated by a low-rank matrix (up to a small entrywise error).
The paradigm that “nice latent variables models are of log-rank” (Udell and Townsend,
2019) is also applicable in the ranking setting, where one assumes that the final ranking (or
skill) of each player varies smoothly as a function of covariate information, which is typically
available in many real word applications. For example, in sport or clinical data, covariates
may provide additional information about both the ranked players and the rankers/judges,
which can overall lead to better aggregated results.

7. Numerical Experiments

We compare the performance of Algorithm 1 SVD-RS (SVD in the figure legends for
brevity) and Algorithm 2 SVD-NRS (SVD-N in the figure legends) with that of seven
other algorithms from the literature, namely RowSum Ranking (RSUM) (Gleich and
Lim, 2011), Least-Squares-Rank (LS) as considered in Cucuringu (2016), Serial-Rank
(SER) (Fogel et al., 2016), Spring-Rank (SPR) (De Bacco et al., 2018), Bradley–Terry
(BTL) (Bradley and Terry, 1952), Page-Rank (PGR) (Page et al., 1998), and Sync-
Rank (SYNC) (Cucuringu, 2016). We refer the reader to Section 2.2 for a brief survey
of the ranking literature, including the above algorithms. We compare the performance
of all algorithms on synthetic data in Section 7.1, and on real data in Section 7.2. We
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consider a variety of performance metrics summarized further below, altogether highlighting
the competitiveness of our proposed SVD-based algorithms with that of state-of-the-art
methods.

7.1 Synthetic data

This section details the outcomes of synthetic numerical experiments, under the ERO model,
where the measurement graph is Erdős-Rényi and the noise comes in the form of outliers
from a uniform distribution.

We consider two sets of experiments, a first one where the strengths ri are uniformly
distributed in [0, 1], and a second one where they are Gamma distributed with shape pa-
rameter a = 0.5 and scale parameter b = 1. This choice of parameters for the Gamma
distribution leads to a skewed distribution of player strengths, and subsequently a skewed
distribution of node degrees, which is a setting realistic in practice but known to be chal-
lenging for spectral methods. We fix the number of nodes (n), and vary the edge density
(p), and noise level (γ) as follows.

We broadly consider two main experimental settings.

• In Figure 2 (uniform scores) and Figure 3 (Gamma scores) we consider a synthetic
model with n = 1000, with sparsity parameters p = 0.05 (column 1) and p = 1 (column
3). For the p = 0.05 scenario, we also show the results after running all algorithms on
top of a reprocessing step that applies low-rank matrix completion (column 2).

• In Figure 4 (uniform scores) and Figure 5 (Gamma scores), we consider a synthetic
model with n = 3000, and sparsity parameter p ∈ {0.01, 0.05, 0.1}, indexing the
columns.

Across all the above experiments, we consider three different performance metrics, as we
vary the noise level γ on the x-axis. Whenever ground truth is available, we plot in the top
row of Figures 2, 3, 4, 5 the Kendall Distance between the recovered strength vector r̂ and
the ground truth r, for different noise levels γ. The Kendall distance counts the number of
pairs of candidates that are ranked in different order (flips), in the original ranking versus
the recovered one. The middle row of each Figure plots the Correlation Score, computed
as the Pearson correlation between the ground truth r and the recovered r̂. Finally, the

bottom row in each Figure plots the RMSE error, defined as
√

1
n ||r − r̂||2, after having

centered r and r̂. Note that the low-rank matrix completion is illustrated in the middle
column of Figures 2 and 3.

Performance comparison. For the remainder of this section, we compare and contrast
the performance of our algorithms with that of the other methods, across four synthetic
data sets, detailed below.
• In Figure 2 (uniform scores with n = 1000): in the setting p = 0.05, our methods

perform better than SER but are in general outperformed by the other methods in terms
of Kendall Distance (KD) and Correlation Score (CS) (except at very low levels of noise),
and they perform on par with all the methods in terms of RMSE (in particular for γ > 0.30
our methods outperform SER, PGR, BTL, and SPR). After the matrix completion step,
both SVD and SVD-N outperform all other methods except LS and RSUM in terms of
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RMSE, to which they are comparable (visually indistinguishable) up until γ < 0.50, and
only slightly outperformed for higher noise. In terms of KD and CS, our two SVD-based
algorithms perform on par with most other methods, and clearly outperform both SER and
PGR. Finally, for the complete graph case p = 1, our methods perform at the top of the
rankings in terms of KD, CS, and RMSE, and are only matched in performance or slightly
outperformed depending on the noise regime, by SYNC, LS, and RSUM.

• In Figure 3 (Gamma scores with n = 1000): for the very sparse regime SYNC clearly
outperforms all other methods, with the SVD-based methods outperforming only SER.
After the matrix completion step, our proposed algorithms outperform all other methods
except LS and RSUM. For the complete graph case, SYNC is by far the winner in terms of
KD, with the remaining methods performing comparably, except PGR. In terms of RMSE,
our methods perform best along with LS and RSUM, and clearly outperform SYNC, SPR,
PGR, BTL and SER.

• In Figure 4 (uniform scores with n = 3000): for p = 0.01 there is very clear ordering
of the methods, mostly consistent across all three performance metrics. We observe that
SYNC, SPR, RSUM, and LS, are the top three best performing methods, followed by
BTL, PGR, SVD, SVD-N, and SER. At slightly higher edge density p = 0.05, our SVD
methods perform better than SER, PGR, and BTL, for the first part of the noise spectrum,
while in terms of RMSE, SVD and SVD-N clearly outperform SER, PGR, BTL, SPR,
and SYNC, and are surpassed only by LS and RSUM. The relative performance is similar
for p = 0.10.

• Finally, we comment on the results from Figure 5 (Gamma scores with n = 3000):
for p = 0.01, SYNC is the clear winner in terms of KD, CS, and RMSE, while SER, SVD
and SVD-N are at the bottom of the ranking. The relative ordering is roughly preserved
for higher edge densities, with the comment that SER is clearly the worst performer, while
SYNC is by far the most accurate method, especially in terms of KD, where it outperforms
all other methods by a large margin.

7.2 Real data

We also apply all ranking algorithms to a variety of real world networks, and measure the
performance of the outcome by the number of upsets in the final ranking, computed with
respect to the given pairwise measurements. To this end, we consider two types of upsets,
as detailed below. Let r̂i denote the estimated score of item i as computed by the method of
choice. Note that higher values of r̂i correspond to higher ranks, meaning stronger players
or more preferred items. Next, we construct the induced (possibly incomplete) matrix of
estimated/denoised pairwise rank-offsets

R̂ij =

{
r̂i − r̂j ; if {i, j} ∈ E
0; if (i, j) /∈ E,

with R̂ij > 0 denoting that the rank of player i is higher than the rank of player j. To
measure the accuracy of a proposed reconstruction, we rely on the following two metrics.

35



d’Aspremont, Cucuringu, Tyagi

p = 0.05 p = 0.05 + Matrix Completion p = 1

Figure 2: Performance statistics in terms of Kendall distance (top row; lower is better),
correlation score (middle row; higher is better), and RMSE (bottom row; lower
is better), for synthetic data with scores generated from a Uniform distribution
with n = 1000. The first and third columns pertain to the case of sparsity
p = 0.05, respectively p = 1, without the matrix completion step, while the
middle column, for p = 0.05, employs a matrix-completion preprocessing step.
Results are averaged over 20 runs.
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p = 0.05 p = 0.05 + Matrix Completion p = 1

Figure 3: Performance statistics in terms of Kendall distance (top row), correlation score
(middle row), and RMSE (bottom row), for synthetic data with scores generated
from a Gamma distribution with n = 1000. The first and third columns pertain
to the case of sparsity p = 0.05, respectively p = 1 without the matrix comple-
tion step, while the middle column, for p = 0.05, employs a matrix-completion
preprocessing step. Results are averaged over 20 runs.
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p = 0.01 p = 0.05 p = 0.1

Figure 4: Performance statistics in terms of Kendall distance (top row), correlation score
(middle row), and RMSE (bottom row), for synthetic data with scores generated
by a Uniform distribution with n = 3000, and sparsity p ∈ {0.01, 0.05, 0.1},
without the matrix completion preprocessing step. Note that log(3000)/3000 =
0.00267. Results are averaged over 20 runs.
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p = 0.01 p = 0.05 p = 0.1

Figure 5: Performance statistics in terms of Kendall distance (top row), correlation score
(middle row), and RMSE (bottom row), for synthetic data with scores generated
by a Gamma distribution with n = 3000, and sparsity p ∈ {0.01, 0.05, 0.1},
without the matrix completion preprocessing step. Note that log(3000)/3000 =
0.00267. Results are averaged over 20 runs.

39



d’Aspremont, Cucuringu, Tyagi

First, we use the popular metric

Number of upsets =
n−1∑
i=1

n∑
j=i+1

1{sign(RijR̂ij)=−1}, (7.1)

which counts the number of upsets (lower is better), i.e., the number of disagreeing ordered
comparisons. It contributes a +1 to the summation whenever the ordering in the provided
data contradicts the ordering in the induced ranking. Next, we define a weighted version of
the upset criterion (lower is better) between the given rank comparison data, and the one
induced by the recovered solution

Weighted upsets =

n−1∑
i=1

n∑
j=i+1

|Rij − R̂ij |. (7.2)

For ease of visualization and comparison, in all the barplot figures shown in this section,
we color in red (resp. blue) the outcomes attained by SVD (resp. SVD-N). For brevity,
for each real data set, we primarily comment on the performance of the two SVD-based
methods relative to the other seven methods. We compare performance both before and
after the matrix completion step. In each scenario, we compute the above two performance
metrics, hence the four columns in the five Figures 6, 8, 9, 10, 11 corresponding to the five
real data sets we consider.

NCAA College Basketball. Our first and most comprehensive real data set comes from
sports, and contains the outcomes of NCAA College Basketball matches during the regular
season, for the years 1985 - 2014. Each separate season provided a pairwise comparison
matrix on which we evaluate all algorithms. This data set can essentially be construed as
30 separate problem instances. The input matrix corresponding to each season contains
the point difference of the direct match between a pair of teams. If the same pair of
teams played multiple matches against each other, the point differences are added up. The
resulting pairwise comparison matrix is thus skew-symmetric by construction.

The experimental results shown in the left column of Figure 6 pertain to the setting
without the matrix completion step, while the right column compares the outcome of all
methods after the low-rank matrix completion pre-processing step. The first row shows
performance in terms of the number of upsets across time for each season, while the barplot
in the second row shows the average attained by all methods across all seasons. Before
matrix completion, SVD-N and SVD are ranked 6th, respectively 8th, while after matrix
completion, they are ranked 6th, respectively 7th, out of the 9 algorithms considered. The
third and fourth row depict similar results, but the performance metric used is the weighted
upsets, which is shown on a log scale for ease of visualization, primarily due to the poor
performance of BTL, which would otherwise distort the y-axis. In this case, SVD-N and
SVD are ranked 5th, respectively 6th, while after matrix completion, they are ranked 4th,
respectively 5th, out of 9 methods, visibly outperforming the rest of the methods, and
attaining a comparable performance to that of the top three methods.

The heatmaps shown in the top row of Figure 7 contain the pairwise correlations between
the rankings attained by all methods over the 30 seasons. In other words, for any pair
of methods, we compute the correlation between the respective rankings attained in each
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season, which we then average over the entire set of 30 seasons. To the best of our knowledge,
such a correlation study has not been performed in the literature, and provides insights on
the potentially different latent rankings inherent in each data set, while still minimizing the
number of upsets. SYNC, the best performing method in terms of the number of upsets,
has a comparable performance to BTL, and a correlation of 86%. PGR and SVD-N
attain a comparable number of upsets, but their Kendall score correlation is only 70%. The
bottom barplot of the same Figure 7 show the average correlation of each of the methods,
highlighting that SPR, LS and BTL yield the most correlated rankings with the other
methods. A similar correlation analysis is performed on all rankings algorithms after the
low-rank matrix completion step, which reveals a number of clusters. As expected, SVD
and SVD-N produce very related rankings to each others, and similarly for RSUM and
LS, and finally, SPR and BTL.

Animal dominance network. Our second real world example is a set of two networks
of animal dominance among captive monk parakeets (Hobson and DeDeo, 2015). The input
matrix H is skew-symmetric, with Hij denoting the number of net aggressive wins of animal
i toward animal j. The study covers two groups (of 21, respectively, 19 individuals), and
spans across four quarters. We follow the same approach as in De Bacco et al. (2018), and
only tested the algorithms on Quarters 3 and 4, based on guidance from the behavioral
ecologist who collected and analyzed the data. Since the animals did not know each other
well at the start of the experiment, the hierarchies were still in the transient process of
forming. Figure 8 compares performance in terms of the number of upsets and weighted
upsets, with and without the matrix completion step. Overall, we observe that SVD-N
outperforms SVD, and the two methods typically rank halfway in the performance ranking,
except in the leftmost column, where SVD performs worst.

Faculty hiring networks. Our next example covers three North American academic
hiring networks, that track the flow of academics between universities (Clauset et al., 2015).
The flow is captured in a directed graph with adjacency matrix A, such that Aij is the
number of faculty at university j who received their doctorate from university i. We then
consider the skew symmetric matrix H = A−AT , capturing the net flow of faculty between
a pair of institutions. Figure 9 shows the number of upsets attained by each algorithm,
for three different disciplines: (a) Computer Science (n = 206), (b) Business (n = 113)
and (c) History (n = 145), before and after the matrix completion step, for both upsets
criteria. Again, we observe that SVD-N outperforms SVD. Furthermore, SVD-N typically
ranks in the top half of the rankings, and for the case of weighted upsets after the matrix
completion step, it is the best performer for the Business and History fields, and second
best in Computer Science.

Microsoft Halo 2 Tournament. Our third experiment was performed on a real data
set of game outcomes collected during the Beta testing period for the Xbox game4 Halo 2.
The graph has a total of n = 606 players, and 6227 head-to-head games. After removing
the low-degree nodes, i.e., players who have played less than 3 games, we arrive at a graph
with n = 535 nodes and 6109 edges, with an average degree of roughly 23. The skew-
symmetric pairwise comparison matrix H captures the net number of wins of player i over

4Credits for using the Halo 2 Beta data set are given to Microsoft Research Ltd. and Bungie.
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Without Matrix Completion With Matrix Completion

Number
of Upsets

Number
of Upsets

Weighted
Upsets

Weighted
Upsets

Figure 6: Comparison of the algorithms for the NCAA College Basketball data set (1984 -
2014), before (left column) and after (right column) the matrix completion step.
We analyze 30 measurement graph instances, one for each season, and estimate
rankings for each problem instance, for all the algorithms we considered. The first
row shows the number of upsets for each season, and the second row displays the
averages across all the seasons. Similar plots are shown in the third and fourth
row, but this time we compare performance in terms of weighted upsets. The
heatmaps in the fifth row show the average (across seasons) correlation between
the rankings estimated by each pair of methods, with the average correlation
degree depicted in the bottom row.
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Without Matrix Completion With Matrix Completion

Correlation
across
methods

Average
correlation
with
other
methods

Figure 7: Comparison of the algorithms for the NCAA College Basketball data set (1984
- 2014), before (left column) and after (right column) the matrix completion
step. The heatmaps in the first row show the average (across seasons) correla-
tion between the rankings estimated by each pair of methods, with the average
correlation degree depicted in the bottom row.
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Group
Quarter

Number of Upsets
Number of Upsets
(Matrix Completion)

Weighted Upsets
Weighted Upsets

(Matrix Completion)

G1-Q3

G1-Q4

G2-Q3

G2-Q4

Figure 8: Performance comparison in the animal dominance networks, for two groups in
Quarters 3-4, thus a total of four networks altogether. We compare both in
terms of the number of upsets (first two columns) and weighted upsets (last two
columns). The results without the matrix completion step pertain to the first and
third columns, while columns two and four show results obtained after a low-rank
matrix completion preprocessing step.

Field Number of Upsets
Number of Upsets
(Matrix Completion)

Weighted Upsets
Weighted Upsets

(Matrix Completion)

Computer
Science

Business

History

Figure 9: Performance comparison in the faculty hiring networks, for three networks corre-
sponding to different fields. We compare both in terms of the number of upsets
(first two columns) and weighted upsets (last two columns). The results without
the matrix completion step pertain to the first and third columns, while columns
two and four show results obtained after a low-rank matrix completion prepro-
cessing step.
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Number of Upsets
Number of Upsets
(Matrix Completion)

Weighted Upsets
Weighted Upsets

(Matrix Completion)

Figure 10: Recovery results for the Microsoft Halo Tournament data set, both in terms of
the number of upsets (first two columns) and weighted upsets (last two columns).
Columns one and three show results without the matrix completion step, while
columns two and four show results obtained after a low-rank matrix completion
preprocessing step.

Season Number of Upsets
Number of Upsets
(Matrix Completion)

Weighted Upsets
Weighted Upsets

(Matrix Completion)

2009-2010

2010-2011

2011-2012

2012-2013

Figure 11: Performance comparison for the Premier League data set, for four seasons dur-
ing 2009-2013. We compare both in terms of the number of upsets (first two
columns) and weighted upsets (last two columns). Recovery performance after
the matrix completion step is shown in columns two and four, while columns
one and three do not rely on matrix completion.

player j. In this example illustrated in Figure 10, SVD-N outperforms SVD in three out
of four instances, and the two methods are always ranked in the interval 5-7 out of the 9
algorithms considered.

Premier League. Our final real example is a Premier League data set, with four seasons
(2009-2013), shown in Figure 11. The skew-symmetric pairwise comparison matrix H cap-
tures the net goal difference accrued in the two matches each pair of teams played against
each other (home and away games). Across all the experimental setups considered and the
different performance metrics, SVD-N outperforms SVD in 12 out of 16 rankings shown
in Figure 11, and the two methods typically score in the top half best performing methods.
Furthermore, SVD-N comes first in three instances. Note that Tsokos et al. (2019) also
considers a subset of the same ranking methods in the context of football matches.
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8. Conclusion and future directions

This paper considered the problems of ranking and time synchronization given a subset of
noisy pairwise comparisons, and proposed an SVD-based algorithmic pipeline to solve both
tasks.

We analyzed the robustness of SVD-RS in the form of `2 and `∞ recovery guarantees
for the score vector r, against sampling sparsity and noise perturbation, using tools from
matrix perturbation and random matrix theory. The `∞ analysis of SVD-RS leads to
guarantees for rank recovery in terms of the maximum displacement error with respect to
the ground truth. We also introduced SVD-NRS, a normalized version of SVD-RS, and
provided `2 recovery guarantees for the score vector r.

We have augmented our theoretical analysis with a comprehensive set of numerical ex-
periments on both synthetic and real data (five different real data sets, which altogether
contained 42 distinct problem instances/comparison graphs), showcasing the competitive-
ness of our approach when compared to other seven algorithms from the literature. In
particular, SVD-NRS was shown to perform particularly well on many of the real data
sets, often ranking in the top three algorithms in terms of performance, out of the nine
algorithms considered.

There are several avenues for future work. An interesting direction pertains to extending
our analysis to the setting of very sparse graphs, with p on the order of 1

n , by leveraging
recent regularization techniques as introduced in Joseph and Yu (2016) and Le et al. (2015).
Analysis of other, perhaps more realistic, noise models would also be of interest (such as
the the multiplicative noise models), as well as obtaining theoretical guarantees for the
pipeline with low-rank matrix completion as a pre-processing step. Extending this work
to the problem of ranking and synchronization in the heterogeneous setting, as recently
explored in Cucuringu and Tyagi (2020) is another interesting direction, well motivated by
real-world applications.
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Per-Åke Wedin. Perturbation bounds in connection with singular value decomposition. BIT
Numerical Mathematics, 12(1):99–111, Mar 1972.

Hermann Weyl. Das asymptotische verteilungsgesetz der eigenwerte linearer partieller dif-
ferentialgleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung). Math-
ematische Annalen, 71(4):441–479, 1912.

D. Yang and M. B. Wakin. Modeling and recovering non-transitive pairwise compari-
son matrices. In 2015 International Conference on Sampling Theory and Applications
(SampTA), pages 39–43, 2015.

Guangnan Ye, Dong Liu, I-Hong Jhuo, and Shih-Fu Chang. Robust late fusion with rank
minimization. In 2012 IEEE Conference on Computer Vision and Pattern Recognition,
pages 3021–3028, 2012.

50



Ranking & synchronization via SVD

Appendix A. Matrix perturbation analysis

Let A, Ã ∈ Cm×n where we assume m ≥ n w.l.o.g. Let

σ1(A) ≥ · · · ≥ σn(A), σ1(Ã) ≥ · · · ≥ σn(Ã)

denote the singular values of A and Ã respectively, and denote E = Ã−A.
To begin with, we would like to quantify the perturbation of the singular values of Ã

with respect to those of A. Weyl’s inequality (Weyl, 1912) is a very useful result in this
regard.

Theorem 21 (Weyl’s inequality (Weyl, 1912)) It holds that∣∣∣σi(Ã)− σi(A)
∣∣∣ ≤ ‖E‖2, i = 1, . . . , n.

Next, let us write the singular value decomposition of A as

A = [U1 U2 U3]

 Σ1 0
0 Σ2

0 0

 [V1 V2]∗,

and the same for Ã (conformal partition) so that

Ã = [Ũ1 Ũ2 Ũ3]

 Σ̃1 0

0 Σ̃2

0 0

 [Ṽ1 Ṽ2]∗.

We will like to quantify the perturbation of R(U1),R(V1), this is given precisely by Wedin’s
theorem (Wedin, 1972). Before introducing the theorem, we need some definitions. Let
U, Ũ ∈ Cn×k (for k ≤ n) have orthonormal columns respectively and let σ1 ≥ · · · ≥ σk
denote the singular values of U∗Ũ . Then the k canonical angles between R(U),R(Ũ) are
defined as θi := cos−1(σi) for 1 ≤ i ≤ k, with each θi ∈ [0, π/2]. It is usual to de-
fine k × k diagonal matrices Θ(R(U),R(Ũ)) := diag(θ1, . . . , θk) and sin Θ(R(U),R(Ũ)) :=
diag(sin θ1, . . . , sin θk). Denoting ||| · ||| to be any unitarily invariant norm (Frobenius, spec-
tral, etc.), it is useful to know that the following relation holds (see for eg., (Li, 1994, Lemma
2.1), (Stewart and guang Sun, 1990, Corollary I.5.4)).

||| sin Θ(R(U),R(Ũ))||| = |||(I − Ũ Ũ∗)U |||.

Let Φ be the matrix of canonical angles between R(U1),R(Ũ1) and let Θ be the matrix
of canonical angles between R(V1),R(Ṽ1).

Theorem 22 ((Wedin, 1972)) Suppose that there are numbers α, δ > 0 such that

minσ(Σ̃1) ≥ α+ δ and maxσ(Σ2) ≤ α. (A.1)

Then,

max {‖sin Θ‖2, ‖sin Φ‖2} ≤
‖E‖2
δ

.

Note that due to (A.1) the bounds are restricted to subspaces corresponding to the largest
singular values. But one can derive bounds on max {‖sin Θ‖F , ‖sin Φ‖F } without this re-
striction (see for eg. (Stewart and guang Sun, 1990, Theorem 4.1)).
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Appendix B. Useful concentration inequalities

We outline here some useful concentration inequalities that are used in our proofs.

B.1 Spectral norm of random symmetric matrices

We will make use of the following result for bounding the spectral norm of random symmetric
matrices with independent, centered and bounded entries.

Theorem 23 ((Bandeira and van Handel, 2016, Corollary 3.12, Remark 3.13)) Let
X be an n×n symmetric matrix whose entries Xij (i ≤ j) are independent, centered random
variables. There there exists for any 0 < ε ≤ 1/2 a universal constant cε such that for every
t ≥ 0,

P(‖X‖2 ≥ (1 + ε)2
√

2σ̃ + t) ≤ n exp

(
− t2

cεσ̃2
∗

)
(B.1)

where

σ̃ := max
i

√∑
j

E[X2
ij ], σ̃∗ := max

i,j
‖Xij‖∞.

Note that it suffices to employ upper bound estimates on σ̃, σ̃ in (B.1).

B.2 Bernstein inequality

Theorem 24 ((Boucheron et al., 2013, Corollary 2.11)) Let X1, . . . , Xn be indepen-
dent random variables with |Xi| ≤ b for all i, and v =

∑n
i=1 E[X2

i ]. Then for any t ≥ 0,

P

(∣∣∣∣∣
n∑
i=1

(Xi − E[Xi])

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− t2

2(v + bt
3 )

)
.

B.3 Product of a random matrix (raised to a power) and a fixed vector

Given a random symmetric matrix X with independent entries on and above the diagonal,
and a fixed vector u, (Eldridge et al., 2018, Theorem 15) provided an upper tail bound for∣∣(Xku)i

∣∣. The proof technique therein followed that of Erdős et al. (2013). In fact, the
proof goes through even if X is a random skew-symmetric matrix, the version stated below
is for such matrices.

Theorem 25 ((Eldridge et al., 2018, Theorem 15)) Let X be a n×n skew-symmetric
and centered random matrix. Let u ∈ Rn be a fixed vector with ‖u‖∞ = 1. Choose ξ > 1,
0 < κ < 1 and define µ = 2

κ+1 . If E[|Xij |m] ≤ 1/n for all m ≥ 2, 1 ≤ i, j ≤ n and

k ≤ κ
8 (log n)2ξ, then we have for any given l ∈ [n] that

P(
∣∣∣(Xku)l

∣∣∣ ≥ (log n)kξ) ≤ n−
1
4

(logµ n)ξ−1(logµ e)
−ξ
.
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Appendix C. Proof of Theorem 5

C.1 Proof of Lemma 11

We begin by noting that for α = rT e
n , 〈e, r − αe〉 = 0 and so u1, u2 (similarly v1, v2) are

orthogonal. Moreover, u1, u2, v1, v2 also have unit `2 norm. Finally, we note that

u1v
T
1 + u2v

T
2 =

1√
n‖r − αe‖2

[−e(r − αe)T + (r − αe)eT ] =
1√

n‖r − αe‖2
[reT − erT︸ ︷︷ ︸

C

],

which completes the proof.

C.2 Proof of Lemma 12

We begin by considering the second moment of Sij for i < j. Note that E[Nij ] = 0 and
E[N2

ij ] = M2/3. We thus obtain

E[(S)2
ij ] = ηp(1− ηp)2(ri − rj)2 + (1− η)pE[Nij − ηp(ri − rj)]2 + (1− p)(ri − rj)2η2p2

= ηp(1− ηp)2(ri − rj)2 + (1− η)p

[
M2

3
+ η2p2(ri − rj)2

]
+ (1− p)(ri − rj)2η2p2

which together with (ri − rj)2 ≤M2 yields

E[(S)2
ij ] ≤ ηp(1− ηp)2M2 + (1− η)p

[
M2

3
+ η2p2M2

]
+ (1− p)η2p2M2

= [ηp(1− ηp)2 + (1− η)p

(
1

3
+ η2p2

)
+ (1− p)η2p2]M2

≤
(
ηp+

4

3
p+ η2p2 ≤ 10

3
p

)
M2 =

10p

3
M2. (C.1)

We thus have that E[(S)2
ij ] ≤

10p
3 M2 for i < j; the same bound holds for i > j as well.

Hence we can bound the quantities σ̃, σ̃∗ defined in Theorem 23 as follows.

σ̃ := max
i

√∑
j

E[(S̃)2
ij ] ≤

√
10p

3
nM2 = M

√
10p

3
n,

σ̃∗ := max
i,j
||(S̃)ij ||∞ ≤ 2M.

Then by invoking Theorem 23, we obtain for any given t ≥ 0, 0 < ε ≤ 1/2 that

P(||S̃||2 ≥ (1 + ε)2
√

2M

√
10p

3
n+ t) ≤ P(||S̃||2 ≥ (1 + ε)2

√
2σ̃ + t)

≤ 2n exp

(
−t2

cεσ2
∗

)
≤ 2n exp

(
−t2

4cεM2

)
,

where cε > 0 depends only on ε. Plugging t = 2
√

2M
√

10p
3 n we obtain the stated bound.
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C.3 Proof of Lemma 13

Note that Weyl’s inequality (Weyl, 1912) (see Theorem 21) for singular value perturbation
readily yields

σi(H) ∈ [σi(ηpC)±∆], ∀i = 1, . . . , n.

In particular, using the expressions for σ1(C), σ2(C) from Lemma 11, we have that

σ1(H), σ2(H) ≥ ηp
√
n‖r − αe‖2 −∆,

σ3(H), . . . , σn(H) ≤ ∆.

Then using Wedin’s bound for perturbation of singular subspaces (Wedin, 1972) (see The-
orem 22), we obtain

|| sin Θ(R(Û),R(U))||2 = ||(I − Û ÛT )U ||2 ≤
∆

ηp
√
n‖r − αe‖2 −∆

(=: δ),

provided ∆ < ηp
√
n‖r − αe‖2 holds.

C.4 Proof of Lemma 14

To begin with, note that ū1 = Û ÛTu1 is the orthogonal projection of u1 on R(Û). A unit
vector orthogonal to ū1 and lying in R(Û) is given by

ũ2 =
1

||ū1||2
Û

[
∓〈û2, ū1〉
±〈û1, ū1〉

]
.

Denoting ū2 to be the orthogonal projection of u2 on R(Û), we can decompose 〈ũ2, u2〉 as

〈ũ2, u2〉 = 〈ũ2, u2 −
ū2

||ū2||2
〉+ 〈ũ2,

ū2

||ū2||2
〉,

which leads to

|〈ũ2, u2〉| ≥ |〈ũ2,
ū2

||ū2||2
〉| − |〈ũ2, u2 −

ū2

||ū2||2
〉|. (C.2)

We will now bound the two terms in the RHS of (C.2) starting with the first term.
Lower bounding the first term in RHS of (C.2). Since 〈û2, ū1〉 = 〈û2, u1〉, 〈û1, ū1〉 =

〈û1, u1〉, we obtain

〈ũ2,
ū2

||ū2||2
〉 =

uT2
||ū1||2||ū2||2

Û ÛT Û︸ ︷︷ ︸
I

[
∓〈û2, ū1〉
±〈û1, ū1〉

]
=

1

‖ū1‖2‖ū2‖2

[∓〈u2, û1〉〈û2, u1〉 ± 〈u2, û2〉〈û1, u1〉]

=
1

‖ū1‖2‖ū2‖2

[±det(UT Û)].

Recall the definition of δ in (5.2). The following simple claims will be useful for us.

Claim 1 With δ as defined in (5.2) we have
∣∣∣det(UT Û)

∣∣∣ ≥ 1− δ2.
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Proof Since UT Û is a 2× 2 matrix, we have that∣∣∣det(UT Û)
∣∣∣ ≥ σ2

min(UT Û) = 1− || sin Θ(R(Û),R(U))||22 ≥ 1− δ2.

Claim 2 It holds that ‖ū1 − u1‖2, ‖ū2 − u2‖2 ≤ δ.

Proof We will only show the bound for ‖ū1 − u1‖2 as an identical argument holds for
bounding ‖ū2 − u2‖2. Using the facts ū1 = Û Ûu1 and u1 = UUTu1, we obtain

‖u1 − ū1‖2 = ‖(I − Û ÛT )u1‖2 = ‖(I − Û ÛT )UUTu1‖2 ≤ ‖(I − Û ÛT )UUT ‖2 = ‖(I − Û ÛT )U‖2 ≤ δ

where the last inequality follows from (5.2).

Using Claims 1, 2 we can lower bound the first term in RHS of (C.2) as follows.∣∣∣∣〈ũ2,
ū2

||ū2||2
〉
∣∣∣∣ ≥ 1− δ2

(1 + δ)2
=

1− δ
1 + δ

= 1− 2δ

1 + δ
≥ 1− 2δ. (C.3)

Upper bounding the second term in RHS of (C.2). We can do this as follows.∣∣∣∣〈ũ2, u2 −
ū2

||ū2||2
〉
∣∣∣∣ ≤ ‖u2 −

ū2

||ū2||2
‖2 (Cauchy-Schwartz and since ‖ũ2‖2 = 1)

= ‖u2 − ū2 + ū2 −
ū2

||ū2||2
‖2

≤ ‖u2 − ū2‖2 + ‖ū2 −
ū2

||ū2||2
‖2

≤ δ +

∣∣∣∣1− 1

||ū2||2

∣∣∣∣ ( Using Claim 2)

= δ +
|||ū2||2 − 1|
||ū2||2

≤ δ +
δ

1− δ
(since ||ū2||2 ∈ [1− δ, 1 + δ] from Claim 2)

≤ 3δ (whenever δ ≤ 1/2). (C.4)

Altogether, we conclude that if δ ≤ 1/2 then using (C.3), (C.4) in (C.2), we obtain

|〈ũ2, u2〉| ≥ 1− 5δ,

and consequently, there exists β ∈ {−1, 1} such that

||ũ2 − βu2||22 = 2− 2〈ũ2, βu2〉 ≤ 10δ. (C.5)
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Appendix D. Proof of Lemmas from Section 5.2

D.1 Proof of Lemma 15

Proof Recall from the proof of Lemma 14 that

ũ2 =
1

||ū1||2
Û

[
∓〈û2, ū1〉
±〈û1, ū1〉

]
=

1

||ū1||2
Û

[
0 ∓1
±1 0

]
ÛT ū1 =

1

||ū1||2
Û

[
0 ∓1
±1 0

]
ÛTu1,

(D.1)
where the last equality follows from the fact 〈û2, ū1〉 = 〈û2, u1〉, 〈û1, ū1〉 = 〈û1, u1〉. Let O
be any 2×2 orthogonal matrix, clearly, UO also corresponds to the two largest left singular
vectors of E[H] (since σ1(E[H]) = σ2(E[H])). Denote P = Û − UO. Plugging in (D.1), we
obtain

ũ2 =
1

||ū1||2
Û

[
0 ∓1
±1 0

]
︸ ︷︷ ︸

D

ÛT ū1[OTUT + P ]u1

= ±det(O)u2 +
1

||ū1||2
UODP Tu1︸ ︷︷ ︸
w1

+
1

||ū1||2
PDOTUTu1︸ ︷︷ ︸
w2

+
1

||ū1||2
PDP Tu1︸ ︷︷ ︸
w3

⇒ ‖ũ2 ∓ det(O)u2‖∞ ≤ ‖w1‖∞ + ‖w2‖∞ + ‖w3‖∞. (D.2)

Denoting

P = [p1 p2], O =

[
o11 o12

o21 o22

]
we will now bound ‖w1‖∞, ‖w2‖∞, ‖w3‖∞.

To begin with,

w1 =
1

‖ū1‖2
[u1 u2]O

[
0 ∓1
±1 0

] [
〈p1, u1〉
〈p2, u1〉

]
=

1

‖ū1‖2
[u1 u2]O

[
∓〈p2, u1〉
±〈p1, u1〉

]
=

1

‖ū1‖2
[u1 u2]

[
∓o11〈p2, u1〉 ± o12〈p1, u1〉
∓o21〈p2, u1〉 ± o22〈p1, u1〉

]
⇒ ‖w1‖∞ ≤

1

‖ū1‖2
[(|〈p2, u1〉|+ |〈p1, u1〉|)(‖u1‖∞ + ‖u2‖∞)] . (D.3)

Clearly, ‖u1‖∞ = 1√
n

and ‖u2‖∞ ≤ M−α
‖r−αe‖2 . Using Hölder’s inequality,

|〈pi, u1〉| ≤ ‖P‖max‖u‖1 = ‖P‖max

√
n; i = 1, 2.

Moreover, from Claim 2, we know that ‖ū1‖2 ≥ 1− δ where we recall δ defined in (5.2). We

saw in (5.3) that ∆ ≤ ηp||r−αe||2
√
n

3 ⇔ δ ≤ 1/2, which implies ‖ū1‖2 ≥ 1/2. Plugging these
bounds in (D.3), we obtain

‖w1‖∞ ≤ 4‖P‖max

(
1 +

√
n(M − α)

‖r − αe‖2

)
. (D.4)
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Next, we can bound ‖w2‖∞ as follows.

w2 =
1

‖ū1‖2
[p1 p2]

[
0 ∓1
±1 0

]
OT
[
1
0

]
=

1

‖ū1‖2
[p1 p2]

[
∓o12

±o11

]
⇒ ‖w2‖∞ ≤

2‖P‖max

‖ū1‖2
≤ 4‖P‖max (D.5)

since ∆ ≤ ηp||r−αe||2
√
n

3 .
We now bound ‖w3‖∞.

w3 =
1

‖ū1‖2
[p1 p2]

[
0 ∓1
±1 0

] [
〈p1, u1〉
〈p2, u1〉

]
=

1

‖ū1‖2
[p1 p2]

[
∓〈p2, u1〉
±〈p1, u1〉

]
⇒ ‖w3‖∞ ≤

1

‖ū1‖2
((|〈p2, u1〉|+ |〈p1, u1〉|)‖P‖max)

≤ 4‖P‖2max‖u1‖1 = 4
√
n‖P‖2max (since ∆ ≤ ηp||r − αe||2

√
n

3
and using Hölder’s inequality).

(D.6)

Plugging (D.4), (D.5), (D.6) in (D.2), we obtain

‖ũ2 ∓ det(O)u2‖∞ ≤ 4‖P‖max

(
2 +

√
n(M − α)

‖r − αe‖2

)
+ 4
√
n‖P‖2max

= 4‖Û − UO‖max

(
2 +

√
n(M − α)

‖r − αe‖2

)
+ 4
√
n‖Û − UO‖2max.

The above bound is true for any orthogonal matrix O, it is not difficult to see that there
exists an orthogonal matrix O = O∗ such that Û is “aligned” with UO∗. Indeed, for any
orthogonal O, we first obtain via triangle inequality that

‖Û − UO‖2 ≤ ‖(I − UUT )Û‖2 + ‖UUT Û − UO‖2 = ‖sin Θ(R(U),R(Û))‖2 + ‖UT Û −O‖2.
(D.7)

Denoting ŨD̃Ṽ T to be the SVD of UT Û , we choose O = O∗ = Ũ Ṽ T (so O∗ is orthogonal).
Denoting θp to be the principal angle between R(U),R(Û), we obtain

‖UT Û −O∗‖2 = ‖I − D̃‖2 = 1− cos θp ≤ sin θp = ‖sin Θ(R(U),R(Û))‖2.

Plugging this in (D.7) leads to

‖Û − UO∗‖2 ≤ 2‖sin Θ(R(U),R(Û))‖2

≤ 2∆

ηp
√
n‖r − αe‖2 −∆

(see proof of Lemma 13)

≤ 3∆

ηp
√
n‖r − αe‖2

. (since ∆ ≤ ηp||r − αe||2
√
n

3
)
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D.2 Proof of Lemma 16

Proof

1. (Bounding ‖E1‖max) Denoting (Û − UO∗)i to be the ith column of Û − UO∗, we
note that

E1 = −E[H]2(Û − UO∗)Σ̂−2

= σ2UUT (ÛT − UO∗)Σ̂−2

= (u1u
T
1 + u2u

T
2 )
[
(Û − UO∗)1

σ2

σ̂2
1

(Û − UO∗)2
σ2

σ̂2
2

]
=
[
u1〈u1, (Û − UO∗)1〉σ

2

σ̂2
1

+ u2〈u2, (Û − UO∗)1〉σ
2

σ̂2
1

u1〈u1, (Û − UO∗)2〉σ
2

σ̂2
2

+ u2〈u2, (Û − UO∗)2〉σ
2

σ̂2
2

]
.

For the ith entry in the first column (i = 1, . . . , n), we have that∣∣∣∣u1,i〈u1, (Û − UO∗)1〉
σ2

σ̂2
1

+ u2,i〈u2, (Û − UO∗)1〉
σ2

σ̂2
1

∣∣∣∣
≤ ‖u1‖∞ ‖(Û − UO∗)1‖2︸ ︷︷ ︸

≤‖Û−UO∗‖2

σ2

σ̂2
1

+ ‖u2‖∞ ‖(Û − UO∗)1‖2︸ ︷︷ ︸
≤‖Û−UO∗‖2

σ2

σ̂2
1

.

Since ‖u1‖∞ = 1√
n

, ‖u2‖∞ ≤ M−α
‖r−αe‖2 , and σ̂1 ≥ σ −∆ ≥ 2σ

3 , we obtain

∣∣∣∣u1,i〈u1, (Û − UO∗)1〉
σ2

σ̂2
1

+ u2,i〈u2, (Û − UO∗)1〉
σ2

σ̂2
1

∣∣∣∣
≤ 9

4
‖Û − UO∗‖2

(
1√
n

+
M − α
‖r − αe‖2

)
≤ 27∆

4σ

(
1√
n

+
M − α
‖r − αe‖2

)
where in the last inequality, we used ‖Û − UO∗‖2 ≤ 3∆

σ (from Lemma 15). The
same entry-wise bound holds for the second column, leading to the stated bound on
‖E1‖max.

2. (Bounding ‖E2‖max) Denoting the (i, j)th entry of O∗ by o∗ij , we have that

E2 = E[H]2UO∗(σ−2I − Σ̂−2)

= −UUTσ2(UO∗)

[
σ−2 − σ̂−2

1 0

0 σ−2 − σ̂−2
2

]
= −σ2

[
(σ−2 − σ̂−2

1 )(u1o
∗
11 + u2o

∗
21) (σ−2 − σ̂−2

2 )(u1o
∗
12 + u2o

∗
22)
]
.
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Hence the ith entry of the first column can be bounded as follows.

σ2
∣∣σ−2 − σ̂−2

1

∣∣ |u1,io
∗
11 + u2,io

∗
12| ≤

∆(2σ + ∆)

(σ −∆)2
(‖u1‖∞ + ‖u2‖∞) (using |σ̂1 − σ| ≤ ∆)

≤ 21∆

4σ

(
1√
n

+
M − α
‖r − αe‖2

)
(using ∆ ≤ σ

3
).

The same entry-wise bound holds for the second column, leading to the stated bound
on ‖E2‖max.

3. (Bounding ‖E3‖max) We have that

E3 = −E[H]ZÛ Σ̂−2

= −σ(u1v
T
1 + u2v

T
2 )Z

[
σ̂−2

1 û1 σ̂−2
2 û2

]
= −σ

[
u1〈v1, Zû1〉σ̂−2

1 + u2〈v2, Zû1〉σ̂−2
1 u1〈v1, Zû2〉σ̂−2

2 + u2〈v2, Zû2〉σ̂−2
2

]
.

The ith entry of the first column can be bounded as follows.

σ
∣∣u1,i〈v1, Zû1〉σ̂−2

1 + u2,i〈v2, Zû1〉σ̂−2
1

∣∣ ≤ σ

σ̂2
1

(‖u1‖∞ |〈v1, Zû1〉|+ ‖u2‖∞ |〈v2, Zû1〉|)

≤ σ

σ̂2
1

‖Z‖2
(

1√
n

+
M − α
‖r − αe‖2

)
(using Cauchy-Schwarz)

≤ 9∆

4σ

(
1√
n

+
M − α
‖r − αe‖2

)
(using σ̂1 ≥ 2σ/3).

The same entry-wise bound holds for the second column, leading to the stated bound
on ‖E3‖max.

4. (Bounding ‖E4‖max) We have that

E4 = ZE[H]Û Σ̂−2 = σZ(u1v
T
1 + u2v

T
2 )[σ̂−2

1 û1 σ̂
−2
2 û2]

= σ
[
Zu1

vT1 û1
σ̂2
1

+ Zu2
vT2 û1
σ̂2
1

Zu1
vT1 û2
σ̂2
2

+ Zu2
vT2 û2
σ̂2
2

]
.

The magnitude of the ith entry of the first column can be bounded as

σ

σ̂2
1

∣∣(vT1 û1)(Zu1)i + (vT2 û1)(Zu2)i
∣∣ ≤ σ

σ̂2
1

(‖Zu1‖∞ + ‖Zu2‖∞) (Using Cauchy-Schwarz)

≤ 9

4σ
(‖Zu1‖∞ + ‖Zu2‖∞) (using σ̂1 ≥ 2σ/3).

The same entry-wise bound holds for the second column, leading to the stated bound
on ‖E4‖max.

5. (Bounding ‖E5‖max) We can write

E5 = Z2Û Σ̂−2 = Z2(Û − UO∗)Σ̂−2 + Z2(UO∗)Σ̂−2
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which in turn implies ‖E5‖max ≤ ‖Z2(Û − UO∗)Σ̂−2‖max + ‖Z2(UO∗)Σ̂−2‖max. We
will now bound these terms individually, below. To begin with,

‖Z2(Û − UO∗)Σ̂−2‖max ≤ ‖Z2(Û − UO∗)Σ̂−2‖2
≤ ∆2‖Û − UO∗‖2‖Σ̂−2‖2 (sub-multiplicativity of ‖·‖2)

≤ 3∆3

σ
‖Σ̂−2‖2 (from Lemma 15)

≤ 27∆3

4σ3
(using σ̂i ≥ 2σ/3).

Additionally, denoting O∗ = [o∗1 o
∗
2], we can write

Z2(UO∗)Σ̂−2 = [Z2u1 Z2u2]︸ ︷︷ ︸
Ã

[σ̂−2
1 o∗1 σ̂−2

2 o∗2] = [σ̂−2
1 Ão∗1 σ̂−2

2 Ão∗2]

which in turn implies

‖Z2(UO∗)Σ̂−2‖max ≤ max

{
‖Ão∗1‖∞
σ̂2

1

,
‖Ão∗2‖∞
σ̂2

2

}
≤ 9

4σ2
max

{
‖Ão∗1‖∞, ‖Ão∗2‖∞

}
(using σ̂i ≥ 2σ/3)

≤ 9

4σ2
(‖Z2u1‖∞ + ‖Z2u2‖∞).

D.3 Proof of Lemma 17

Proof

1. For a fixed i, consider
∑n

j=1 Ziju1j which is a sum of independent random variables.

From the definition of Zij , we can see that |Ziju1j | ≤ 2M√
n

for each j. Moreover,

E[(Ziju1j)
2] = 1

nE[Z2
ij ] ≤

10pM2

3n where the last inequality was shown in the proof

of Lemma 12 (see (C.1)). Hence
∑n

i=1 E[(Ziju1j)
2] ≤ 10pM2

3 and it follows from
Bernstein’s inequality (see Theorem B.2) and the union bound that

P(‖Zu1‖∞ ≥ t) ≤ 2n exp

(
− 3t2

20pM2 + 4tM√
n

)
. (D.8)

We want to choose t such that

3t2 ≥ 2 log n

(
20pM2 +

4tM√
n

)
⇔ 3t2 − 40pM2 log n− 8tM log n√

n
≥ 0. (D.9)

Since t ≥ 0, the above inequality is achieved iff

t ≥
8M logn√

n
+

√
64M2 log2 n

n + 480pM2 log n

6
. (D.10)
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Hence if

64M2 log2 n

n
≤ 480pM2 log n⇔ p ≥ 2 log n

15n

holds, then the RHS of (D.10) is upper bounded by

8M logn√
n

+
√

960pM2 log n

6
≤

8M logn√
2 logn

√
15p+ 8M

√
15p log n

6
=

2
√

2 + 4

3
M
√

15p log n.

Therefore if t ≥ 2
√

2+4
3 M

√
15p log n is satisfied, then it implies that (D.9) holds. Hence

plugging t = 2
√

2+4
3 M

√
15p log n in (D.8) leads to the statement of the Lemma.

2. For a fixed i, consider now
∑n

j=1 Ziju2j which is also a sum of independent random

variables. One can verify that |Ziju2j | ≤ 2M
√
B for each j, with B as defined in

the Lemma. Moreover, E[(Ziju2j)
2] ≤ BE[Z2

ij ] ≤
10pM2B

3 (see (C.1)) and hence,∑n
i=1 E[(Ziju2j)

2] ≤ 10pM2Bn
3 and it follows from Bernstein’s inequality (see Theorem

B.2) and the union bound that

P(‖Zu2‖∞ ≥ t) ≤ 2n exp

(
− 3t2

20pM2Bn+ 4t
√
BM

)
. (D.11)

Proceeding identically as before, the reader is invited to verify that if p ≥ 2 logn
15n , then

the stated bound on ‖Zu2‖∞ is obtained by plugging t = 2
√

2+4
3 M

√
15pBn log n in

(D.11).

D.4 Proof of Lemma 18

Proof

1. For a given l ∈ [n], we can write

∣∣(Z2u1)l
∣∣ = ‖u1‖∞

∣∣∣∣∣∣∣∣∣(Z
2 u1

‖u1‖∞︸ ︷︷ ︸
ũ1

)l

∣∣∣∣∣∣∣∣∣
=

1√
n

∣∣(Z2ũ1)l
∣∣ (with ‖ũ1‖∞ = 1)

=
φ2

√
n

∣∣((Z/φ)2ũ1

)
l

∣∣ (D.12)
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for any φ > 0. For any integer m ≥ 2, and 1 ≤ i, j ≤ n, we have that

E
[(
|Zij |
φ

)m]
=

1

φm
[ηp |ri − rj |m (1− ηp)m + (1− η)pE[|Nij − ηp(ri − rj)|m] + (1− p) |ηp(ri − rj)|m]

≤ 1

φm
[ηpMm + p(2M)m + (ηp)mMm]

≤ 1

φm
[2m+1pMm].

Setting φ = 23/2√pnM leads to

E
[(
|Zij |
φ

)m]
≤ 2m+1pMm

(2)3m/2pm/2Mmnm/2
=

1

2
m
2
−1

1

p
m
2
−1

1

n
m
2

.

It is easy to check that p ≥ 1
2n implies E

[(
|Zij |
φ

)m]
≤ 1/n. Therefore invoking

Theorem 25 for k = 2, we obtain for the stated choices of ξ, µ, κ that
∣∣((Z/φ)2ũ1

)
l

∣∣ ≤
(log n)2ξ holds with probability at least 1 − n−

1
4

(logµ n)ξ−1(logµ e)
−ξ

. Plugging this in
(D.12) with the expression for φ, and using the union bound, we obtain the statement
of the Lemma.

2. The steps are identical to those above, with the only difference being ‖u2‖∞ = M−α
‖r−αe‖2 .

Appendix E. Proofs of Lemmas from Section 5.5

E.1 Proof of Lemma 19

Note that D̄ii =
∑n

j=1 |Hij | is the sum of independent random variables, where |Hij | ≤ M
∀i, j. Moreover,

n∑
j=1

E[|Hij |2] = ηp

n∑
j=1

(ri − rj)2 + (1− η)
npM

2
≤ ηpnM2 + (1− η)np

M

2
= npA(η,M).

Invoking Bernstein’s inequality, it follows for any given i and t ≥ 0 that

P(
∣∣D̄ii − E[D̄ii]

∣∣ ≥ t) ≤ 2 exp

(
− t2

2(npA(η,M) + Mt
3 )

)
.

In order to get a high probability bound, we require t2 ≥ 4 log n(npA(η,M) + Mt
3 ). Since

t ≥ 0, this is equivalent to saying that

t ≥
4M
3 log n+

√
(4M

3 log n)2 + 16pn log nA(η,M)

2
. (E.1)
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If (4M
3 log n)2 ≤ 6pn log nA(η,M) or equivalently p ≥ M2

9A(η,M)
logn
n , then the RHS of (E.1)

is bounded by

√
16pn log nA(η,M)

√
2 + 1

2
= 2(
√

2 + 1)
√
pn log n

√
A(η,M).

Hence taking t = 2(
√

2 + 1)
√
pn log n

√
A(η,M) and applying the union bound, we obtain

the statement of the Lemma.
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