
Journal of Machine Learning Research 22 (2021) 1-30 Submitted 5/19; Revised 10/20; Published 1/21

Simple and Fast Algorithms for Interactive Machine
Learning with Random Counter-examples

Jagdeep Singh Bhatia jagdeep@mit.edu

Massachusetts Institute of Technology

Cambridge, MA 02139

Editor: Manfred Warmuth

Abstract

This work describes simple and efficient algorithms for interactively learning non-binary
concepts in the learning from random counter-examples (LRC) model. Here, learning takes
place from random counter-examples that the learner receives in response to their proper
equivalence queries, and the learning time is the number of counter-examples needed by
the learner to identify the target concept. Such learning is particularly suited for online
ranking, classification, clustering, etc., where machine learning models must be used before
they are fully trained.

We provide two simple LRC algorithms, deterministic and randomized, for exactly
learning concepts from any concept class H. We show that both these algorithms have
an O(log |H|) asymptotically optimal average learning time. This solves an open problem
on the existence of an efficient LRC randomized algorithm while also simplifying previous
results and improving their computational efficiency. We also show that the expected

learning time of any Arbitrary LRC algorithm can be upper bounded by O(1
ε log |H|

δ),
where ε and δ are the allowed learning error and failure probability respectively. This
shows that LRC interactive learning is at least as efficient as non-interactive Probably
Approximately Correct (PAC) learning. Our simulations also show that these algorithms
outperform their theoretical bounds.

Keywords: interactive learning, active learning, online learning, PAC learning, algo-
rithms, learning theory

1. Introduction

Machine learning has made great advances in fields such as image recognition and natural
language processing. However, it currently requires large sets of training data upfront.
This is a problem because often the amount of data available is small or sometimes machine
learning models must be used before they are fully trained. In these cases, interactive
learning, which involves training machine learning models through interaction between a
learner and a teacher can be very beneficial. For example, in personalized learning with one-
on-one interaction, teachers are better able to assess their students’ strength and weakness
and provide individualized instruction. Companies such as Netflix and Amazon also use
these kinds of interactive algorithms to learn the preferences of their customers and provide
them with engaging content.

There are numerous types of interactive learning frameworks, such as that of active
learning (Settles, 2012). Our work, however, uses the recently proposed framework of exact

c©2021 Jagdeep Singh Bhatia.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/19-372.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/19-372.html

Bhatia

learning through random counter-examples (LRC) presented by Angluin and Dohrn (An-
gluin and Dohrn, 2017). In this environment, the learning process may be viewed as a game
between a teacher and a learner, where the goal of the learner is to identify a target concept
chosen by the teacher from a set of hypotheses H called a concept class. The learner learns
through proper equivalence queries (Angluin and Dohrn, 2017), which means that in every
round of the learning process, the learner queries the teacher by selecting a hypothesis from
their concept class. The teacher either indicates that the learner has identified the target
concept or randomly reveals one of the mistakes the learner’s hypothesis makes, called a
counter-example. This process continues until the learner correctly identifies the target
concept. The learner’s goal is to minimize the number of rounds needed to do this.

In interactive learning, it is known that a learner can always identify the target concept
in O(log |H|) rounds even if counter-examples are adversarial (Littlestone, 1988). However,
this is only true if the learning is improper, meaning that the learner’s queries may involve
hypotheses from outside the concept class. By contrast, efficient proper learning with
adversarial counter-examples is not possible (i.e. it may take up to |H| rounds) and is
the reason random counter-examples are crucial. In the Discussion Section (Section 6) we
show that for some concept classes, an adversarial teacher can choose counter examples in
a way that requires a proper learner query almost every single hypothesis before correctly
identifying the target concept.

While other interactive learning models assume adversarial teachers and do worst-case
analysis (Angluin, 1988; Barzdin and Freivald, 1972; Emamjomeh-Zadeh and Kempe, 2017;
Littlestone, 1988), the LRC framework proposes a more helpful teacher for which average
case analysis can be done. This is more realistic because in most practical applications,
the teacher is not trying to hinder the learning process. Additionally, learning in the LRC
model is proper, meaning that the learner picks their hypotheses from their concept class.
This is also more realistic because in applications such as personalized learning, learners
with different concept classes can represent learners with different levels of skill and prior
knowledge. With improper learning, however, learners cannot be distinguished in this way.

The main contribution of our work is the improved computational efficiency, simplifica-
tion, and solution to an open problem from previous research in the LRC model (Angluin
and Dohrn, 2017). We also provide a mathematical proof that interactive LRC learning is at
least as efficient as non-interactive Probably Approximately Correct (PAC) learning (Kearns
and Vazirani, 1994) regardless of the learning algorithm used by the interactive learner. In
particular, our results are as follows:

• Majority learning algorithm: We provide a simple interactive learning algorithm
based on majority vote which learns in the asymptotically optimal O(log |H|) ex-
pected number of rounds. This algorithm works by simply picking, in each round,
a hypothesis in the concept class that has the highest “majority” score among the
hypotheses that are consistent with, or do not contradict, the counter-examples seen
so far. Thus, this algorithm can be seen as a generalization of the well known halv-
ing algorithm based on majority voting (Angluin, 1988; Barzdin and Freivald, 1972;
Littlestone, 1988) to the LRC setting. The Majority algorithm requires lower com-
putation time and is a significant simplification over the previously known Max-Min
algorithm (Angluin and Dohrn, 2017) for learning binary hypotheses, which was also
shown to be asymptotically optimal in the LRC setting, but is much more complex.

2

Simple Algorithms for Interactive Machine Learning

• Randomized learning algorithm: We solve the open problem posed by Angluin
and Dohrn (Angluin and Dohrn, 2017) that asks if a randomized learning algorithm
exists with the same asymptotically optimal O(log |H|) bound on expected number
of rounds, specifically when the teacher draws the target concept from a known prob-
ability distribution over all hypothesis in H at the beginning of the learning process.
We show that such an algorithm does exist, and that the bound is achieved when
the learner also draws consistent hypotheses from the same probability distribution
conditioned on the sequence of previous learner’s hypotheses and teacher’s counter-
examples. This algorithm also requires lower computation time than the Max-Min
algorithm.

• Upper bound on the learning time of an Arbitrary learning algorithm: We
prove that with probability greater than 1−δ and with error less than ε, the expected
number of rounds for an Arbitrary LRC algorithm is upper bounded by O(1ε log |H|δ).
This result holds for any arbitrary small ε and δ values. It also establishes that LRC
learning, regardless of the learning algorithm, is at least as efficient as non-interactive
Probably Approximately Correct (PAC) learning (Kearns and Vazirani, 1994).

• Generalization to non-binary hypotheses: Our algorithms not only apply to
binary concept classes, but extend more generally to concept classes with arbitrary
values.

• Performance evaluation: We show with simulations that, in practice, the Majority
and Arbitrary learning algorithms outperform their worst case bounds for one class
of hypothesis spaces.

Our work mainly focuses on the number of rounds it takes for the learner to identify the
target concept. However, another important consideration is the learner’s computational
complexity, or the time it takes for the learner to compute the next hypothesis to query. In
the algorithms that we present, although the computational complexity is typically linear
in |H|, it can still be exponential in the number of examples. As H is part of the input, this
is inevitable. However, in some scenarios better computational complexity may be possible
when H is, for instance, represented implicitly.

2. Related Work

Interactive learning is typically characterized by learning that takes place through query and
response. One of the most common models of interactive learning is active learning (Settles,
2012), where the learner queries the teacher for the labels of sample points. Active learning
is commonly used in settings where labeling costs are high and therefore it is more cost-
effective to selectively label the samples as opposed to labeling them all upfront.

Our work, however, pertains to the interactive learning setting of learning with random
counter-examples (Angluin and Dohrn, 2017) using equivalence queries. In this setting, the
learner is not allowed to query the teacher directly for sample points. Instead, the teacher
randomly selects which sample points to label (i.e. gives random counter-examples) based
on where the learner’s hypothesis is incorrect. Interactive learning involving more general

3

Bhatia

membership, equivalence, and related queries was initially proposed in the seminal work of
Angluin (Angluin, 1988).

In a related setting, Littlestone (Littlestone, 1988) developed efficient learning algo-
rithms for minimizing the number of mistakes when learning certain boolean functions
including k-DNF. Additionally, there has been significant work on interactive learning with
equivalence queries involving specific geometric classes such as hyperplanes or axis-aligned
boxes (Maass and Turán, 1994). The work of Maass and Turán (Maass and Turán, 1990,
1992) is on the complexity of interactive learning including lower bounds on the number of
membership and equivalence queries required for exact learning. Many complexity results
can be found in the work of Angluin (Angluin, 2004).

Recent work in interactive learning with equivalence queries pertains to clustering, rank-
ing, and classification (Emamjomeh-Zadeh and Kempe, 2017). For instance, one of the goals
is to quickly learn the preferred ranking of a list of items in an online setting (Joachims,
2002; Emamjomeh-Zadeh and Kempe, 2017). This is motivated by applications in person-
alized web search and information retrieval systems where the learning algorithms learn
their users’ preferences through online feedback in the form of click behavior. Another goal,
involving interactive learning for clustering, is to learn a user’s preferred clustering of a set
of objects in an online fashion (Awasthi et al., 2017; Balcan and Blum, 2008; Emamjomeh-
Zadeh and Kempe, 2017). An application of this work includes identifying communities in
social networks.

Learning in the LRC framework (Angluin and Dohrn, 2017), on which our work is based,
is proper since the learner’s equivalence queries are required to be from their concept class
H. This makes LRC different from other recent work (Emamjomeh-Zadeh and Kempe,
2017) because in other settings the learner’s hypotheses are not necessarily drawn from the
concept class H. This is also what makes our work different from the previous work on
halving algorithms based on majority vote (Littlestone, 1988; Barzdin and Freivald, 1972;
Angluin, 1988). The LRC model (Angluin and Dohrn, 2017) that we use is also unique in
that the teacher’s counter-examples are not given arbitrarily, but are randomly drawn from
a fixed probability distribution conditioned on the set of all possible counter-examples.

3. Learning Models

The primary learning model used in this work is that of learning through random counter-
examples (LRC) (Angluin and Dohrn, 2017). As LRC is only defined for exact learning,
we propose a new learning model called PAC-LRC for approximate learning in the LRC
setting.

In LRC, the learner’s concept class can be viewed as a n × m matrix H, whose rows
(denoted by h) represent the set of learner’s hypotheses and whose columns (denoted by
X) represent the set of examples (samples). The target concept is one of the rows of the
matrix, h∗ ∈ H. Additionally, the entries of matrix H represent the values assigned by each
hypothesis h ∈ H to each example x ∈ X (denoted by function h(x)). In this framework, the
learner learns through proper equivalence queries (Angluin and Dohrn, 2017). This means
that in every round of the learning process, the learner queries the teacher by selecting a
hypothesis h ∈ H. The teacher either indicates that h is the target concept (and hence
the learning is complete), or reveals a counter-example on x for x ∈ X and the value of

4

Simple Algorithms for Interactive Machine Learning

h∗(x) on which the target concept differs with h, i.e. h(x) 6= h∗(x). Moreover, there is a
known probability distribution P over X. The teacher’s counter-example x is drawn from
the probability distribution P(h, h∗), which is defined as P conditioned on the event h(x) 6=
h∗(x). Upon receiving the counter-example, the learner selects another hypothesis h ∈ H
for the next round until h = h∗. The learner’s goal is to minimize the number of rounds
needed for learning the target concept h∗. In this work, the LRC learning model is used
for both the Majority and Randomized learning algorithms. However, for the Randomized
learning algorithm it is additionally assumed that the target concept is randomly drawn by
the teacher at the beginning of the learning process using a known probability distribution.

We also define the PAC-LRC model, an extension of LRC, for approximate learning with
random counter-examples. For this we introduce two additional parameters: ε, the allowed
error, and δ, the allowed failure probability. In PAC-LRC, the goal is to approximately learn
the target concept with probability at least 1 − δ and with error no more than ε. We call
hypotheses that differ with the target concept in a region with total probability at least ε,
ε-bad hypotheses. As in LRC, learning in PAC-LRC proceeds in rounds. In each round that
the learner presents a ε-bad hypothesis, a randomly drawn counter-example is returned to
the learner and the learning continues. Otherwise, the learner’s hypothesis is accepted and
the learning ends. Learning in PAC-LRC model may also end when all ε-bad hypotheses
in concept class H have been eliminated with probability at least 1 − δ. The PAC-LRC
model is inspired by the well known non-interactive Probably Approximately Correct or
PAC learning model (Kearns and Vazirani, 1994), where generally δ, ε � 1

2 . However,
unlike in the LRC and PAC-LRC models, in the PAC model the probability distribution on
examples is unknown to the learner.

4. Algorithmic Results

In Section 4.1, some definitions used throughout the paper are explained. In Section 4.2,
the Majority learning algorithm is presented and shown to be asymptotically optimal in
the LRC model. In Section 4.3, the Randomized learning algorithm is presented and is also
shown to be asymptotically optimal in the LRC model. In Section 4.4, an upper bound is
derived for the learning time of an Arbitrary learning algorithm in the PAC-LRC setting.

4.1 Preliminaries

Definition 1 The learner’s concept class H is a n×m matrix, for positive integers n and
m, with no duplicated rows or columns. The entries of H are non-negative integers. H can
also be thought of as a set of hypotheses where |H| denotes the number of hypotheses in H.

Definition 2 X denotes the set of columns of matrix H.

Definition 3 h ∈ H denotes a hypothesis or row in matrix H. For x ∈ X, the function
h(x) denotes the value of row h at column x in H.

Definition 4 P denotes a probability distribution over X. For x ∈ X, P[x] denotes the
probability that x is drawn from P, or x ∼ P, and P[S] =

∑
x∈S P[x]. P[x] > 0 for all

x ∈ X.

5

Bhatia

Definition 5 Define D(h1, h2) to be the set of all columns on which h1 ∈ H and h2 ∈ H
have different values. More formally, D(h1, h2) = {x ∈ X | h1(x) 6= h2(x)}.

Definition 6 For h1 6= h2, P(h1, h2) is defined as a probability distribution over D(h1, h2),
and is the result of conditioning P on the event h1(x) 6= h2(x). P[x | h1(x) 6= h2(x)] is
defined as the individual probability of drawing element x ∈ D(h1, h2) from distribution
P(h1, h2). For x /∈ D(h1, h2), P[x | h1(x) 6= h2(x)] = 0. Let P[S | h1(x) 6= h2(x)] =∑

x∈S P[x | h1(x) 6= h2(x)].

4.2 Majority Learning Algorithm

In this section, the Majority learning algorithm is proposed and mathematically analyzed.
It is shown that the Majority learning algorithm has an expected learning time of O(log |H|)
and is asymptotically optimal in the LRC learning model.

Definition 7 MAJH is a hypothesis constructed by setting the value in each of its columns
to the most frequent element in the corresponding column of matrix H. Ties are broken in
favor of the smaller element. Note that it is possible that MAJH /∈ H.

Definition 8 The best majority hypothesis ĥ of H is any hypothesis in H that maximizes
P[h(x) = MAJH(x)]. Ties are broken in favor of the smallest h in a lexicographic sort by
the values of h(x). We consider h1 ∈ H lexicographically smaller than h2 ∈ H, if there
exists a column i such that h1(xi) < h2(xi) and h1(xj) = h2(xj) for all columns j < i.

while true do

Pick ĥ to be a best majority hypothesis in H.
Let x be the counter-example returned by the teacher for ĥ.
if there is no such counter-example then

Output ĥ.
end
else

Eliminate the set of hypotheses {h ∈ H | h(x) 6= h∗(x)} from H.
end

end
Algorithm 1: Majority Learning Algorithm

The analysis for the Majority learning algorithm (Algorithm 1) is as follows. Lemma 9
and Lemma 10 establish the performance of the algorithm for any particular round. In these
lemmas, H denotes the set of consistent hypotheses (that do not contradict the counter-
examples seen so far) and ĥ denotes the learner’s choice of hypothesis for the round being
considered. Lemma 9 shows that the probability that the teacher’s counter-example x is
a majority element in ĥ, or ĥ(x) = MAJH(x), is at least 1

2 . Lemma 10 shows that a
counter-example drawn by the teacher will eliminate at least 1

4 of the remaining hypotheses
in expectation. Through an example we show that 1

4 is the best possible per round fraction
that can be guaranteed for the Majority algorithm in general. Theorem 11 shows that the

6

Simple Algorithms for Interactive Machine Learning

Majority learning algorithm has an O(log |H|) expected learning time which is asymptoti-
cally the best possible in the LRC model (Angluin and Dohrn, 2017). Finally, Theorem 14
bounds the algorithm’s per round computation time.

Lemma 9 Let ĥ be the best majority hypothesis selected by the Majority algorithm, the
teacher’s hypothesis h∗ 6= ĥ be any hypothesis in H, and A be the event the teacher returns
counter example x from the set {x : ĥ(x) 6= h∗(x) ∧ x ∈ X}. Then, P[h∗(x) 6= MAJH(x) |
A] ≥ 1

2 .

Proof Assume for sake of contradiction that the lemma is not true. Then,

P[h∗(x) 6= MAJH(x) | A] <
1

2
which implies P[h∗(x) = MAJH(x) | A] >

1

2
.

By definition of A we have ĥ(x) 6= h∗(x) for all x ∈ A. Thus given event A, for any x for
which h∗(x) = MAJH(x), we must have ĥ(x) 6= MAJH(x). Thus,

P[ĥ(x) 6= MAJH(x) | A] ≥ P[h∗(x) = MAJH(x) | A] >
1

2
.

However,

P[ĥ(x) 6= MAJH(x) | A] >
1

2
implies P[ĥ(x) = MAJH(x) | A] <

1

2
.

From P[h∗(x) = MAJH(x) | A] > 1
2 and P[ĥ(x) = MAJH(x) | A] < 1

2 , it follows that

P[h∗(x) = MAJH(x) | A] > P[ĥ(x) = MAJH(x) | A].

Since ĥ(x) = h∗(x) for any x ∈ X not in A, we have

P[h∗(x) = MAJH(x)] > P[ĥ(x) = MAJH(x)].

Since h∗ ∈ H, it follows that

max
h∈H

P[h(x) = MAJH(x)] > P[ĥ(x) = MAJH(x)].

This contradicts the definition of ĥ (Definition 8).

Lemma 10 Fix any hypothesis h∗ ∈ H, and let ĥ be a best majority hypothesis selected
by the Majority algorithm. For counter-example x ∼ P(ĥ, h∗), the expected number of
hypotheses h ∈ H with h(x) 6= h∗(x) is at least |H|/4. Thus, in expectation at least |H|/4
hypotheses are eliminated by the counter-example.

Proof Consider counter-example x ∼ P(ĥ, h∗) chosen in response to ĥ. By definition of
MAJH (Definition 7) it follows that

|{h | h(x) = MAJH(x)}| ≥ |{h | h(x) = h∗(x)}|.

7

Bhatia

Consider a counter-example for which h∗(x) 6= MAJH(x). For such an x we have that

{h | h(x) = MAJH(x)} ⊆ {h | h(x) 6= h∗(x)}

and therefore

|{h | h(x) 6= h∗(x)}| ≥ |{h | h(x) = MAJH(x)}| ≥ |{h | h(x) = h∗(x)}|.

Since, H = {h | h(x) 6= h∗(x)}
⋃
{h | h(x) = h∗(x)} it follows that

|{h | h(x) 6= h∗(x)}| ≥ |H|
2
.

Note that {h | h(x) 6= h∗(x)} are exactly the hypotheses in H that get eliminated by
counter-example x. We conclude that a counter-example x for which h∗(x) 6= MAJH(x)
eliminates |H|/2 of the hypotheses in H.

Let A be the event the teacher returns counter example x from the set {x : ĥ(x) 6=
h∗(x) ∧ x ∈ X}. By Lemma 9, P[h∗(x) 6= MAJH(x) | A] ≥ 1

2 . Thus, with probability

at least 1/2, the counter-example chosen in response to ĥ satisfies h∗(x) 6= MAJH(x). It
follows that, in expectation, at least 1/2 · |H|/2 = |H|/4 hypotheses are eliminated by a
counter-example chosen in response to ĥ.

Theorem 11 The Majority learning algorithm (Algorithm 1) only needs to see an expected
log 4

3
|H| or O(log |H|) counter-examples to learn h∗ in the general case.

Proof This proof by induction follows along the line of the proof of Theorem 21 in (Angluin
and Dohrn, 2017). Define T (n) for the Majority algorithm to be the worst case expected
number of queries required to learn any any concept class H with |H| = n hypotheses. We
re-define predicate P (n) : T (n) ≤ log 4

3
n. Note that the base case P (1) : T (1) ≤ 0 trivially

holds since no queries are needed when the learner’s concept class has only one hypothesis.
Also, P (2) : T (2) ≤ log 4

3
2 since at most one query is needed when the learner’s concept class

has two hypotheses and therefore T (2) ≤ 1 < log 4
3

2. Assume P (r) is true for all positive

integers r ≤ n and for some n ≥ 2. Let H be any concept class with |H| = n+1 hypotheses.
Let R be the number of remaining consistent hypotheses that do not get eliminated by the
teacher’s counter-example in a round of the Majority algorithm applied to H. Then,

T (n+ 1) ≤ 1 +
n∑
r=1

(Pr(R = r) · T (r)) .

Applying the inductive hypothesis,

T (n+ 1) ≤ 1 +
n∑
r=1

(
Pr(R = r) · log 4

3
r
)
.

Applying Jensen’s Inequality,

T (n+ 1) ≤ 1 + log 4
3
E[R].

8

Simple Algorithms for Interactive Machine Learning

Here E[R] is the expected number of remaining hypotheses in H that are consistent with the
teacher’s counter-example. By Lemma 10, the counter-example that is chosen eliminates at
least 1

4 of the hypotheses in expectation. Thus, E[R] ≤ 3
4(n+ 1). Thus,

T (n+ 1) ≤ 1 + log 4
3

3

4
(n+ 1) = log 4

3
(n+ 1),

concluding the inductive step. It follows that Majority learning algorithm can learn the
target concept in log 4

3
|H| = O(log |H|) expected rounds.

Theorem 11 establishes that the expected learning time of the Majority algorithm is
asymptotically optimal. However its expected learning time is log 4

3
2 = 2.41 times more

than the log2 |H| expected learning time of the Max-Min algorithm (Angluin and Dohrn,
2017). In addition there is a gap between the learning time of the Majority algorithm and
the log2 |H|−1 lower bound on the expected learning time for any LRC algorithm (Angluin
and Dohrn, 2017). Whether the analysis in Theorem 11 for the Majority algorithm can
be improved remains an interesting open question. One key difficulty for answering this
question, as we show with Lemma 13, is that the bound in Lemma 10 is tight.

Theorem 12 Given a δ such that 0 < δ < 1, the Majority learning algorithm will terminate
in O(log |H|δ) rounds with probability at least 1− δ.

Proof We follow the same line of reasoning given in (Angluin and Dohrn, 2017). Let Ri
be the number of consistent hypotheses remaining after i rounds of the Majority algorithm.

We first show by induction that E[Ri] ≤
(
3
4

)i · |H|. By Lemma 10, the counter-example in
a round of the Majority algorithm eliminates at least 1

4 of the hypotheses in expectation.
Thus E[R1] ≤ 3

4 · |H| and the base case holds. Applying the inductive step for i we get:

E[Ri+1] = E[E[Ri+1 | Ri]] ≤
3

4
· E[Ri] ≤

(
3

4

)i+1

· |H|,

thus completing the induction. The inequality E[Ri+1 | Ri] ≤ 3
4 ·Ri used above follows from

Lemma 10.
After the i-th round the identity of the target concept is still unknown iff there are

two or more remaining consistent hypotheses or Ri ≥ 2. As Ri is a non-negative random
variable, we can apply Markov inequality to bound the probability of this event.

Pr(Ri ≥ 2) ≤ E[Ri]

2
≤ 1

2
·
(

3

4

)i
· |H|.

Thus, for i ≥ log 4
3

|H|
δ we have Pr(Ri ≥ 2) < δ or Pr(Ri ≤ 1) ≥ 1− δ. Hence with proba-

bility ≥ 1− δ, by round log 4
3

|H|
δ , there is at most one consistent hypotheses remaining and

the Majority algorithm, having identified the target concept, must terminate.

Lemma 13 The bound in Lemma 10 on the fraction of hypotheses eliminated by the teacher’s
counter-example in one round of the Majority algorithm is tight.

9

Bhatia

Figure 1: Structure of concept class H ′

Figure 2: Structure of concept class H

Proof We present an example to show that the per round bound is tight. Consider a binary
matrix H ′ over 2n+ 1 columns in which the last column has only zeros while the values in
the first 2n columns represent all possible combinations of an equal number of zeros and
ones. In other word, H ′ has

(
2n
n

)
distinct rows each consisting of a unique combination of n

zeros and n ones in the first 2n columns and a zero in the last column. Note that H ′ also
has an equal number of zeros and ones in each of the first 2n columns as seen in Figure 1.

Consider the row r of H ′ that has all zeros in the first n columns and has all ones in
the next n columns. We construct a new matrix H from H ′ by modifying the values in row
r of H ′ as follows: toggle the value in the n+ 1-th column from one to zero and toggle the
value in the last column from zero to one. Note that this new matrix H has n + 1 zeros
and n ones in every row as seen in Figure 2.

Let H be the learner’s concept class. Let P be the uniform probability distribution over
X, the columns of H. Let h′ denote the hypothesis in H that corresponds to the modified
row r of H ′. Consider the first round of the Majority algorithm. By Definition 7, the
majority hypothesis MAJH has all zeros. This is because in each column of H either the
number of zeros and ones is the same and the tie breaking rule favors zeros over ones, or there
are more zeros (i.e. in n+ 1-th column and last column) in which case the column majority
is zero. Therefore, all hypotheses h ∈ H have the same probability P[h(x) = MAJH(x)] as

10

Simple Algorithms for Interactive Machine Learning

Figure 3: Majority, Learner’s, and Teacher’s Hypotheses

they all have n + 1 zeros. For this reason, by Definition 8, the majority hypothesis ĥ ∈ H
is h′. This is because ties for the majority hypothesis are broken in favor of the smallest
one in a lexicographic sort. h′ has all zeros in its first n + 1 columns while every other
hypothesis h ∈ H has at least one one in the first n + 1 columns. Therefore, h′ is smaller
than every other hypotheses in a lexicographic sort. Let the teacher’s hypothesis h∗ ∈ H
be the hypothesis that differs from ĥ = h′ in two columns: the first column (where it has
a one) and the last column (where it has a zero). Note that such h∗ is in H since H was
constructed from all possible

(
2n
n

)
combinations of equal number of ones and zeros.

Note that the teacher’s counter-example will either be returned on the first column or
the last column, each with probability 1/2. If it is the former, half the hypothesis in H
will be eliminated, since there is an equal number of ones and zeros in the first column. If
it is the latter, only one hypothesis will be eliminated—the learner’s hypothesis ĥ. Thus
the expected fraction of hypotheses that get eliminated in the first round by the teacher’s
counter-example is

1

|H|

(
1

2
· |H|

2
+

1

2
· 1
)

=
1

4
+

1

2|H|
,

which approaches 1/4 as |H| becomes large.

Theorem 14 Each round of the majority algorithm can be implemented in time O(|H||X|)

Proof By Definition 7, computation of MAJH(x) requires finding maximum values in
each column of matrix H, which can be done in time O(|H|) per column. Since there are
O(|X|) columns in H, MAJH(x) can be computed in time O(|H||X|). The computation
of P[h(x) = MAJH(x)] for any h ∈ H takes time O(|X|). Therefore, by Definition 8, the
learner’s hypothesis ĥ can be computed in time O(|H||X|).

One of the primary advantages of the Majority algorithm (and also the Randomized
algorithm described in the next section) over the Max-Min algorithm is the per round
running time for computing the next hypothesis. In the case of the Max-Min algorithm, the
computation of the weights of all the edges in the elimination graph (Angluin and Dohrn,
2017) entails a computation time of O(|H|2|X|). Compared to this, the O(|H||X|) per
round computation time requirement of the Majority algorithm is a significant improvement,
particularly when |H| is large.

11

Bhatia

4.3 Randomized Learning Algorithm

In this section, an open problem posed by Angluin and Dohrn (Angluin and Dohrn, 2017)
regarding the existence of an efficient randomized algorithm is solved. In this version of
the LRC model, the teacher’s target concept h∗ is drawn from the learner’s concept class
H according to a known probability distribution Q. A Randomized learning algorithm is
presented and mathematically analyzed. It is shown that the Randomized learning algo-
rithm has an expected learning time of O(log |H|) and is asymptotically optimal in the LRC
learning model.

Definition 15 Q denotes a known teacher’s probability distribution of drawing the target
concept h∗ from H.

This learning algorithm works as follows. In the first round of the Randomized learning
algorithm (Algorithm 2), the learner draws a hypothesis randomly from H according to
the distribution Q. When presented with a counter-example, the learner updates H by
removing the hypotheses that disagree with the counter-example. The learner also updates
the teacher’s distribution Q to match the new H. The learner draws the hypothesis for
the next round from the updated H according to the updated distribution Q. This process
continues until the learner correctly learns the target concept.

Definition 16 In the Randomized learning algorithm (Algorithm 2), the set of consistent
hypotheses evolves over time by the sequence denoted by H1, H2, H3, Here H1 = H and
H1 ⊃ H2 ⊃ H3 The corresponding evolution of the teacher’s probability distribution
Q by the learner over this set is denoted by the sequence Q1,Q2,Q3, . . ., where Qi is a
distribution on the hypothesis set Hi. Furthermore, the sequence of learner’s hypotheses is
denoted by h1, h2, h3, . . . and the corresponding sequence of counter-examples is denoted by
x1, x2, x3,

Definition 17 For i ≥ 1, the pair (hi, xi) denotes that for the learner’s hypothesis hi,
the counter-example xi is returned in round i of the Randomized algorithm. For i ≥ 1,
Ri = {(h1, x1), (h2, x2) . . . (hi, xi)} denotes the sequence of these pairs in the first i rounds
of the Randomized algorithm. R0 = {} denotes the empty sequence of pairs. For i ≥ 1, the
notation Ri = Ri−1 + {(hi, xi)} is used to indicate that in the sequence Ri is made up of
the set of pairs in the sequence Ri−1 followed by the pair (hi, xi).

The probability distributions Qi are defined as follows. Q1 = Q is set to the known teacher’s
distribution over H. For i ≥ 1, Qi+1 is set to the teacher’s posterior distribution over Hi+1

given Ri. Specifically, for i ≥ 1, denote qij to be the probability the learner draws hj ∼ Qi.
Then for hj ∈ Hi+1,

qi+1
j = Pr(h∗ = hj | Ri).

We now show how these probabilities can be recursively computed.

Lemma 18 For i ≥ 1, the teacher’s posterior distribution over Hi+1 given Ri, or probability
distribution Qi+1, can be recursively computed as

qi+1
j =

qij · P[xi | hj(x) 6= hi(x)]∑
hk∈Hi+1

qik · P[xi | hk(x) 6= hi(x)]
. (1)

12

Simple Algorithms for Interactive Machine Learning

Proof

Applying Bayes’ theorem:

qi+1
j = Pr(h∗ = hj | Ri) =

Pr(Ri | h∗ = hj) · Pr(h∗ = hj)

Pr(Ri)
. (2)

Consider Pr(Ri | h∗ = hj) for i ≥ 1. This can be written as

Pr(Ri−1 + {(hi, xi)} | h∗ = hj) = Pr(Ri−1 | h∗ = hj) · Pr({(hi, xi)} | Ri−1 ∧ h∗ = hj). (3)

In other words it is the product of 1) the conditional probability that Ri−1 is the sequence of
pairs in the first i− 1 rounds of the Randomized algorithm given that teacher’s hypothesis
is hj and 2) the conditional probability that for learner’s hypothesis hi in round i the
counter-example returned is xi given teacher’s hypothesis hj and the sequence of pairs
Ri−1 in the first i − 1 rounds of the Randomized algorithm. Applying Bayes’ theorem to
Pr(Ri−1 | h∗ = hj) we get

Pr(Ri−1 | h∗ = hj) =
Pr(h∗ = hj | Ri−1) · Pr(Ri−1)

Pr(h∗ = hj)
=
qij · Pr(Ri−1)
Pr(h∗ = hj)

.

The last equality follows from the definition of qij . By substituting in Equation (3) we get

Pr(Ri | h∗ = hj) =
qij · Pr(Ri−1) · Pr({(hi, xi)} | Ri−1 ∧ h∗ = hj)

Pr(h∗ = hj)
. (4)

Substituting in Equation (2) we get:

qi+1
j =

qij · Pr({(hi, xi)} | Ri−1 ∧ h∗ = hj) · Pr(Ri−1)
Pr(Ri)

. (5)

Note that

Pr(Ri) =
∑

hk∈Hi+1

Pr(Ri ∧ h∗ = hk) =
∑

hk∈Hi+1

Pr(Ri | h∗ = hk) · Pr(h∗ = hk).

Substituting in Equation (5) and applying Equation (4) we get:

qi+1
j =

qij · Pr({(hi, xi)} | Ri−1 ∧ h∗ = hj) · Pr(Ri−1)∑
hk∈Hi+1

qik · Pr({(hi, xi)} | Ri−1 ∧ h∗ = hk) · Pr(Ri−1)
.

By simplifying we get

qi+1
j =

qij · Pr({(hi, xi)} | Ri−1 ∧ h∗ = hj)∑
hk∈Hi+1

qik · Pr({(hi, xi)} | Ri−1 ∧ h∗ = hk)
. (6)

Note that Pr({(hi, xi)} | Ri−1 ∧ h∗ = hk) is independent of Ri−1 as the probability of
getting a counter-example xi in round i only depends on the learner’s hypothesis hi in round

13

Bhatia

i and the teacher’s hypothesis h∗ = hk. In particular these probabilities are distributed as
P(hi, hk) (as defined in Definition 6). That is

Pr({(hi, xi)} | Ri−1 ∧ h∗ = hk) = P[xi | hk(x) 6= hi(x)].

Substituting in Equation (6), the result follows. Thus, the teacher’s posterior distri-
bution over Hi+1 given Ri, which is also the probability distribution Qi+1 used by the
Randomized algorithm, can be recursively computed from the prior probability distribution
Qi and the probability distributions P(hi, hk) for all hypotheses hk ∈ Hi+1.

r = 1, H1 = H, Q1 = Q
while true do

Draw the learner’s hypothesis hr ∈ Hr randomly from Qr.
Let xr be the counter-example returned by the teacher.
if there is no such counter-example then

Output hr.
end
else

Hr+1 = Hr − {h ∈ Hr | h(xr) 6= h∗(xr)}.
Calculate Qr+1 as described in Lemma 18.
r = r + 1.

end

end
Algorithm 2: Randomized Learning Algorithm

The analysis for Algorithm 2 works as follows. A fact is proven in Lemma 22 using
which Lemma 23 proves that the expected fraction of hypotheses eliminated by the counter-
example given in any round is at least 1

2 . In other words, E [|Hi+1|] ≤ |Hi|/2. Using this
result, Theorem 24 proves that the expected learning time of Algorithm 2 is at most log2 |H|.
The following analysis is for the i-th round of the algorithm and omits the index i wherever
possible.

Definition 19 For h ∈ Hi, define V (h, x) as the fraction of hypotheses in Hi that disagree
with h on example x. More formally,

V (h, x) =
|{h′ ∈ Hi | h′(x) 6= h(x)}|

|Hi|
.

Lemma 20 In any i-th round of the algorithm (i ≥ 1), for any two hypotheses h1, h2 ∈ Hi

where h1(x) 6= h2(x), V (h1, x) + V (h2, x) ≥ 1.

Proof Note that V (h1, x) =

|{h′ ∈ Hi | h′(x) 6= h1(x)}|
|Hi|

=

|{h′ ∈ Hi | h′(x) 6= h1(x) ∧ h′(x) = h2(x)}|
|Hi|

+
|{h′ ∈ Hi | h′(x) 6= h1(x) ∧ h′(x) 6= h2(x)}|

|Hi|
.

14

Simple Algorithms for Interactive Machine Learning

Likewise V (h2, x) =

|{h′ ∈ Hi | h′(x) 6= h2(x) ∧ h′(x) = h1(x)}|
|Hi|

+
|{h′ ∈ Hi | h′(x) 6= h2(x) ∧ h′(x) 6= h1(x)}|

|Hi|
.

Therefore V (h1, x) + V (h2, x) =

=
|{h′ ∈ Hi | h′(x) 6= h1(x) ∧ h′(x) = h2(x)}|

|Hi|
+
|{h′ ∈ Hi | h′(x) 6= h2(x) ∧ h′(x) = h1(x)}|

|Hi|

+
|{h′ ∈ Hi | h′(x) 6= h1(x) ∧ h′(x) 6= h2(x)}|

|Hi|
+
|{h′ ∈ Hi | h′(x) 6= h1(x) ∧ h′(x) 6= h2(x)}|

|Hi|
.

Note that the numerator of the first three fractions adds up to exactly |Hi|. Hence we have

V (h1, x) + V (h2, x) =
|Hi|
|Hi|

+
|{h′ ∈ Hi | h′(x) 6= h1(x) ∧ h′(x) 6= h2(x)}|

|Hi|
≥ 1.

Definition 21 Define E(h1, h2) to be the expected fraction of hypotheses that are eliminated
from Hi when the learner’s hypothesis is h1 ∈ Hi and the target concept is h2 ∈ Hi.

E(h1, h2) =
∑

x∈D(h1,h2)

V (h2, x) · P[x | h1(x) 6= h2(x)].

Lemma 22 In any i-th round of the algorithm (i ≥ 1), for any two hypotheses h1, h2 ∈ Hi

where h1 6= h2, E(h1, h2) + E(h2, h1) ≥ 1.

Proof Recall from Definition 5 that D(h1, h2) = {x ∈ X | h1(x) 6= h2(x)}. Therefore,
D(h1, h2) = D(h2, h1). We can write

E(h1, h2) + E(h2, h1)

=
∑

x∈D(h1,h2)

V (h2, x) · P[x | h1(x) 6= h2(x)] +
∑

x∈D(h2,h1)

V (h1, x) · P[x | h2(x) 6= h1(x)]

=
∑

x∈D(h1,h2)

(V (h2, x) · P[x | h1(x) 6= h2(x)] + V (h1, x) · P[x | h1(x) 6= h2(x)]). (7)

It follows from Lemma 20 that for any x ∈ D(h1, h2), since h1(x) 6= h2(x), V (h1, x) ≥
1− V (h2, x). Substituting in Equation (7) we get

E(h1, h2) + E(h2, h1) ≥
∑

x∈D(h1,h2)

(V (h2, x) + 1− V (h2, x)) · P[x | h1(x) 6= h2(x)]

=
∑

x∈D(h1,h2)

P[x | h1(x) 6= h2(x)] = 1.

The last equality follows from D(h1, h2) = {x ∈ X | h1(x) 6= h2(x)}.

15

Bhatia

Lemma 23 In any i-th round of the algorithm (i ≥ 1) the expected fraction of hypotheses
eliminated by the counter-example given is at least 1

2 . In other words, E [|Hi+1|] ≤ |Hi|/2.

Proof Note that in round i of the Randomized algorithm the learner draws a hypothesis
h ∼ Qi, for i ≥ 1. Note that Qi is also the teacher’s posterior distribution over Hi in round
i of the Randomized algorithm (Lemma 18). Let n = |Hi|, and let qj denote the probability
that hj ∼ Qi (we drop the superscript i in qij for ease of exposition). Thus, for hypotheses
hj , hk ∈ Hi, qj is the probability of learner drawing hypothesis hj and qk is the probability
of hk being the teacher’s hypothesis in round i of the Randomized algorithm. Therefore,
the expected fraction of hypotheses eliminated by the counter-example in round i of the
Randomized algorithm is

n∑
j=1

n∑
k=1

qjqkE(hj , hk).

By Lemma 22, and using the fact that E(h, h) = 1 for any h ∈ Hi the expected fraction of
hypotheses eliminated by the counter-example in round i of the Randomized algorithm,

≥
n∑
j=1

qj
2 +

n∑
j=1

n∑
k>j

qjqk = (q1 + q2 + q3 + ...+ qn)2 −
n∑
j=1

n∑
k>j

qjqk

≥ (q1 + q2 + q3 + ...+ qn)2 − (q1 + q2 + q3 + ...+ qn)2

2
= (1− 1

2
) =

1

2
.

Theorem 24 In the setting where the target concept is drawn from Q and the counter-
examples are drawn from P, Algorithm 2 only needs to see an expected log2 |H| counter-
examples to learn h∗.

Proof From Lemma 23 it follows that in any i-th round of the Randomized algorithm
(i ≥ 1), at least 1

2 of the remaining hypotheses get eliminated in expectation. Thus, by
Theorem 21 of Angluin and Dohrn (Angluin and Dohrn, 2017) it follows that the Random-
ized algorithm (Algorithm 2) can learn the teacher’s hypothesis in log2 |H| expected rounds.

Theorem 25 Each round of the Randomized learning algorithm can be implemented in
time O(|H||X|).

Proof The most expensive per-round operation in the Randomized learning algorithm
is the computation of posterior distribution Qi+1. In round i + 1, for each of the |Hi+1|
hypotheses hj , the quantity qi+1

j needs to be computed from Equation (1) in Lemma 18.
The numerator of Equation (1) requires calculating the conditional probability of xi with
respect to hj(x) 6= hi(x), which takes time O(|X|). The denominator of Equation (1) is
simply a normalization of the of qi+1

j values, which is achieved by dividing them by their
sum. Therefore, the overall per-round computation time of the Randomized learning algo-
rithm is O(|H||X|).

16

Simple Algorithms for Interactive Machine Learning

4.4 Upper Bound on the Learning Time of Arbitrary Learning Algorithm

In this section, an Arbitrary learning algorithm (Algorithm 3) is analyzed in the PAC-
LRC model where the learner is allowed to pick any consistent hypothesis in every round.
Similar to LRC, in the PAC-LRC model, a randomly drawn counter-example is returned to
the learner in each round. However, the two differ in their termination conditions. Recall
that in the PAC-LRC model with parameters ε and δ, learning ends if all ε-bad hypotheses
(hypothesis that differs with the target concept in a region with total probability at least
ε) in H have been eliminated with probability at least 1 − δ. The only exception is if the
learner presents a hypothesis that is not ε-bad in any round, in which case the teacher does
not return a counter-example and learning ends immediately.

The main result of this section is that with probability at least 1 − δ, the Arbitrary
learning algorithm terminates within O(1ε log |H|δ) rounds. In other words, the learning time

of the Arbitrary learning algorithm is O(1ε log |H|δ) with probability at least 1− δ.

i = 1.
while true do

Pick hi to be any arbitrary hypothesis in H.
Let xi be the counter-example returned by the teacher.
if there is no such counter-example then

Output hi.
end
else

Eliminate the set of hypotheses {h ∈ H | h(xi) 6= h∗(xi)} from H.
end
i = i+ 1.

end
Algorithm 3: Arbitrary Learning Algorithm

Definition 26 Let the target hypothesis be h∗. Let hi denote the learner’s hypotheses in
round i. In other words, the sequence of learner’s hypotheses is written as h1, h2 Let
the sequence of counter-examples received by the learner be denoted by x1, x2

Definition 27 Let the weight of a column x ∈ X at the start of any round i ≥ 1 be denoted
as Wi(x), and let Wi(S) =

∑
x∈SWi(x). For hypothesis h, Wi(h) = Wi(D(h, h∗)) denotes

the total weight on all the columns on which h differs from h∗ in round i. For all x ∈ X,
define W1(x) = 0, and allow the weight of a column to be incremented in each round by the
probability that the column is chosen as a counter-example. More formally for n ≥ 2,

Wn(x) = Wn−1(x) + P[x | hn−1(x) 6= h∗(x)].

Or

Wn(x) =
n−1∑
i=1

P[x | hi(x) 6= h∗(x)].

17

Bhatia

Note that P[x | hi(x) 6= h∗(x)] = 0 if x /∈ D(hi, h
∗).

Also note that in each round i ≥ 1, Wi+1(X) = Wi(X) + 1. This is because∑
x∈X

P[x | hi(x) 6= h∗(x)] = 1

Definition 28 For i ≥ 1, let Ei(h) be the probability that on counter-example xi, hypothesis
h contradicts h∗. More formally,

Ei(h) = P[h(x) 6= h∗(x) | hi(x) 6= h∗(x)].

Note that for any h ∈ H and any round n ≥ 1, by Definition 27 and Definition 28,

n∑
i=1

Ei(h) =

n∑
i=1

P[h(x) 6= h∗(x) | hi(x) 6= h∗(x)]

=
∑

x∈D(h,h∗)

n∑
i=1

P[x | hi(x) 6= h∗(x)] = Wn+1(D(h, h∗)) = Wn+1(h).

Lemma 29 Let θ = ln(|H|δ). At the beginning of any round n ≥ 1, consider a hypothesis
h ∈ H for which Wn(h) > θ. The probability that h has not already been eliminated, in
other words it does not contradict any of the counter-examples x1, x2, . . . , xn−1, is at most
δ
|H| .

Proof Note that for n = 1 the lemma holds trivially because W1(h) = 0 for all h ∈ H.
Therefore, in the following we assume n > 1.

In each i-th round of the algorithm i ≥ 1, the counter-example xi is drawn with the
probability distribution P[x | hi(x) 6= h∗(x)]. The probability that on this counter-example
hypothesis h is inconsistent with h∗ is therefore P[h(x) 6= h∗(x) | hi(x) 6= h∗(x)], which by
Definition 28 equals Ei(h). Therefore, with probability 1 − Ei(h), hypothesis h is not
eliminated in round i. Thus, the probability that hypothesis h ∈ H with Wn(h) > θ has
not been eliminated in the first n− 1 rounds is:

n−1∏
i=1

(1− Ei(h)) ≤
n−1∏
i=1

(1−
∑n−1

i=1 Ei(h)

n− 1
) =

n−1∏
i=1

(1− Wn(h)

n− 1
) ≤ e−Wn(h) < e− ln(

|H|
δ

) =
δ

|H|
.

Definition 30 Let a threshold θ∗(x) = ln(|H|δ) · 2P[x]ε be defined over every x ∈ X based on
the probability distribution P. A column is considered light at the start of any round i if
Wi(x) ≤ θ∗(x) and heavy otherwise. Let Li ⊂ X denote the set of light columns and Bi ⊂ X
denote the set of heavy (or bulky) columns at the start of round i.

18

Simple Algorithms for Interactive Machine Learning

Lemma 31 Let the learner’s hypothesis hi in round i ≥ 1 be ε-bad. That is, P[hi(x) 6=
h∗(x)] ≥ ε. Let hi also satisfy that at the start of round i its total weight Wi(hi) ≤ ln(|H|δ).
Then, the weight of light columns Li should increase by at least half in round i. In other
words

Wi+1(Li) ≥Wi(Li) +
1

2
.

Proof Assume for the sake of contradiction that

Wi+1(Li) < Wi(Li) +
1

2
.

Wi+1(X) = Wi(X) + 1 and Bi + Li = X together imply that

Wi+1(Bi) > Wi(Bi) +
1

2
. (8)

Note that only the weights of the columns in the set D(hi, h
∗) change in this round as

the counter-example xi is drawn from the probability distribution P[x | hi(x) 6= h∗(x)].
Additionally, all heavy columns whose weights change in this round therefore belong to the
set D(hi, h

∗) ∩Bi. Applying Definition 27 we therefore have,

Wi+1(Bi)−Wi(Bi) =
∑

x∈D(hi,h∗)∩Bi

P[x | hi(x) 6= h∗(x)]. (9)

From Equations (8) and (9) we get,∑
x∈D(hi,h∗)∩Bi

P[x | hi(x) 6= h∗(x)] = P[D(hi, h
∗) ∩Bi | hi(x) 6= h∗(x)] >

1

2
. (10)

The total weight on hi at the beginning of round i satisfies

Wi(hi) = Wi(D(hi, h
∗)) ≥Wi(D(hi, h

∗) ∩Bi).

Since the weights of all x ∈ Bi, at the beginning of round i, is at least θ∗(x) = ln(|H|δ) · 2P[x]ε
(Definition 30), the total weight on hi at the beginning of round i satisfies

Wi(hi) ≥Wi(D(hi, h
∗) ∩Bi) > ln(

|H|
δ

) · 2 · P[D(hi, h
∗) ∩Bi]

ε
. (11)

Since P[hi(x) 6= h∗(x)] ≥ ε, and since P[D(hi, h
∗) ∩ Bi | hi(x) 6= h∗(x)] > 1

2 (Equation 10)
we have

P[D(hi, h
∗) ∩Bi)] >

ε

2
.

Combining with Equation (11) we get, the total weight on hi at the beginning of round i
satisfies

Wi(hi) > ln(
|H|
δ

) · 2 · P[D(hi, h
∗) ∩Bi]

ε
> ln(

|H|
δ

) · 2 · ε
ε · 2

= ln(
|H|
δ

).

This is a contradiction because we assumed Wi(hi) ≤ ln(|H|δ).

19

Bhatia

Lemma 32 If for all i ≥ 1 the learner’s hypotheses hi satisfy Wi(hi) ≤ ln(|H|δ), then within

O(1ε log |H|δ) rounds either all x ∈ X become heavy, or the algorithm terminates because the
learner presents a hypothesis that is not ε-bad.

Proof Note that it is enough to bound the number of rounds it takes for all x ∈ X to
become heavy under the assumption that in every round the learner’s hypothesis is ε-bad.
Thus, in each round i we assume the learner’s hypothesis is ε-bad and has weight at most
ln(|H|δ). Therefore, by Lemma 31, the total weight of light columns increases by at least 1

2
in each round i ≥ 1. We assume this in the proof below.

Additionally, we assume the number of rounds is at least 2, because otherwise the result
trivially holds.

Note that in each round i ≥ 1, since hi is ε-bad, P[hi(x) 6= h∗(x)] ≥ ε and therefore

P[x | hi(x) 6= h∗(x)] ≤ P[x]
ε . Thus, we can write

Wi+1(x)−Wi(x) ≤ P[x]

ε
. (12)

We now provide some intuition motivating the rest of the proof. We know that each column
x ∈ X has threshold θ∗(x) = ln(|H|δ) · 2P[x]ε . After acquiring θ∗(x) weight, x transitions from
light to heavy. However, in the round j that x transitions from a light to a heavy column,
its final weight Wj+1(x) exceeds threshold θ∗(x) by the amount s(x) = Wj+1(x) − θ∗(x).
Call this difference s(x) spillover weight. Note that s(x) ≤ Wj+1(x) −Wj(x). Accounting
for spillover weight, the total weight that a column can accumulate while it is light is at
most θ∗(x) + s(x). At the same time, the weight of light columns increases by at least 1

2
in each round. Therefore, during any arbitrary round i where light columns remain, we
can see that the total weight accumulated on the light columns, which is at least i

2 , cannot
exceed the sum of θ∗(x) + s(x) over all columns x ∈ X. In other words,

i

2
≤
∑
x∈X

[θ∗(x) + s(x)]

By Equation (12), it follows that s(x) ≤Wj+1(x)−Wj(x) ≤ P[x]
ε . This in conjunction with

the definition of θ∗(x) yields

i

2
≤
∑
x∈X

[
ln(
|H|
δ

) · 2P[x]

ε
+

P[x]

ε

]
i

2
≤ ln(

|H|
δ

) · 2

ε
+

1

ε

i ≤ O(
log |H|δ
ε

).

Thus the number of rounds i where light columns remain is bounded by O(
log
|H|
δ

ε). A formal
argument follows below.

For any particular x ∈ X, and round i ≥ 1 we define values fi(x) as follows. Note that
all columns start out being light initially (since W1(x) = 0). Let j be the round in which

20

Simple Algorithms for Interactive Machine Learning

x turns from light to heavy. If, i > j, which happens when x ∈ Bi, then fi(x) = j + 1.
Otherwise if i ≤ j, which happens when x ∈ Li, then fi(x) = i.

Let i ≥ 1 be any round in which the set Li is not empty. We claim that∑
x∈X

Wfi(x)(x) ≥ i− 1

2
.

We continue by induction on i. The base case, i = 1, holds because all columns are initially
light. Therefore, for all x ∈ X, f1(x) = 1 and W1(x) = Wf1(x)(x) = 1−1

2 = 0. Assume (for
the sake of induction), the induction hypothesis that∑

x∈X
Wfk(x)(x) ≥ k − 1

2
.

for some round k ≥ 1 where the set Lk is not empty. We want to prove that∑
x∈X

Wfk+1(x)(x) ≥ k

2
.

We know that for all x ∈ Lk, fk+1(x) = k + 1 and fk(x) = k. Therefore,∑
x∈Lk

[Wk+1(x)−Wk(x)] =
∑
x∈Lk

[
Wfk+1(x)(x)−Wfk(x)(x)

]
. (13)

We also know by Lemma 31, that the total weight of light columns increases by at least 1
2

in round k. Thus, ∑
x∈Lk

[Wk+1(x)−Wk(x)] ≥ 1

2
. (14)

Combining Equations (13) and (14) we see that,∑
x∈Lk

Wfk+1(x)(x) ≥
∑
x∈Lk

Wfk(x)(x) +
1

2
.

Also, because both Wk(x) and fk(x) are non-decreasing functions,∑
x∈Bk

Wfk+1(x)(x) ≥
∑
x∈Bk

Wfk(x)(x).

Adding the last two inequalities we get∑
x∈X

Wfk+1(x)(x) ≥
∑
x∈X

Wfk(x)(x) +
1

2
.

Using the induction hypothesis we arrive at∑
x∈X

Wfk+1(x)(x) ≥ k − 1

2
+

1

2
≥ k

2
.

21

Bhatia

This concludes the proof that ∑
x∈X

Wfi(x)(x) ≥ i− 1

2
. (15)

In any particular round i ≥ 2, let x ∈ Bi be a heavy column. By definition of fi(x),
x ∈ Lfi(x)−1. In other words, x must have been a light column in round fi(x) − 1. By

definition 30, when a column x is light its weight is at most θ∗(x) = ln(|H|δ) · 2P[x]ε . Thus,

Wfi(x)−1(x) ≤ ln(
|H|
δ

) · 2P[x]

ε
.

Summing over all columns x ∈ Bi we get:∑
x∈Bi

Wfi(x)−1(x) ≤
∑
x∈Bi

ln(
|H|
δ

) · 2P[x]

ε
. (16)

From Equation (12), it follows that in any round i ≥ 2:

(Wfi(x)(x)−Wfi(x)−1(x)) ≤ P[x]

ε
.

Considering all x ∈ Bi, it follows that in any round i ≥ 2,∑
x∈Bi

(Wfi(x)(x)−Wfi(x)−1(x)) ≤
∑
x∈Bi

P[x]

ε
≤
∑
x∈X

P[x]

ε
=

1

ε
. (17)

Therefore, ∑
x∈Bi

Wfi(x)(x) ≤
∑
x∈Bi

Wfi(x)−1(x) +
1

ε
.

Combining with Equation (16) it follows:∑
x∈Bi

Wfi(x)(x) ≤
∑
x∈Bi

ln(
|H|
δ

) · 2P[x]

ε
+

1

ε
. (18)

In round i ≥ 2, consider a light column x ∈ Li. By definition, fi(x) = i. Therefore,

Wfi(x)(x) ≤ ln(
|H|
δ

) · 2P[x]

ε
.

Summing over all such light columns and combining with Equation (18) we get∑
x∈X

Wfi(x)(x) =
∑
x∈Bi

Wfi(x)(x) +
∑
x∈Li

Wfi(x)(x) ≤
∑
x∈X

ln(
|H|
δ

) · 2P[x]

ε
+

1

ε
. (19)

Thus it follows that∑
x∈X

Wfi(x)(x) ≤
∑
x∈X

ln(
|H|
δ

) · 2P[x]

ε
+

1

ε
≤ ln(

|H|
δ

) · 2

ε
+

1

ε
. (20)

22

Simple Algorithms for Interactive Machine Learning

Combining with Equation (15) we get that

i− 1

2
≤
∑
x∈X

Wfi(x)(x) ≤ ln(
|H|
δ

) · 2

ε
+

1

ε
. (21)

It follows that

i ≤
4 · log |H|δ + 2

ε
+ 1.

Thus, at the end of i rounds if all learner’s hypotheses hi are ε-bad and satisfy Wi(hi) ≤
ln(|H|δ), every column must be heavy. Here

i =
4 · log |H|δ + 2

ε
+ 1 = O(

1

ε
log
|H|
δ

).

This establishes the Lemma.

Theorem 33 With probability at least 1− δ the Arbitrary learning algorithm terminates in
O(1ε log |H|δ) rounds.

Proof Let

N =
4 · log |H|δ + 2

ε
+ 1.

We first show that the Arbitrary algorithm cannot run for more than N + 1 rounds
assuming that in every round i except the last, Wi(hi) ≤ ln(|H|δ). We then show with

probability at least 1−δ that in every round i except the last, Wi(hi) ≤ ln(|H|δ), completing
the proof.

Assume for the sake of contradiction that the algorithm runs for m+ 1 > N + 1 rounds,
where in rounds 1 ≤ i ≤ m, Wi(hi) ≤ ln(|H|δ). Note that in rounds 1 ≤ i ≤ m the learner’s
hypotheses hi are all ε-bad. Otherwise, the algorithm would have terminated before round
m+ 1. Consider the N + 1-th round (because N + 1 ≤ m). By our assumptions, Lemma 32
applies and it follows that all the columns must be heavy both by the end of the N -th round
and in the beginning of round N + 1.

By Definition 27,

WN+1(hN+1) = WN+1(D(hN+1, h
∗)).

Since every column in the beginning of round N + 1 is heavy, by Definition 30,

WN+1(D(hN+1, h
∗)) > ln(

|H|
δ

) · 2 · P[D(hN+1, h
∗)]

ε
.

Also, since hN+1 must be ε-bad, we have P[D(hN+1, h
∗)] ≥ ε. Thus,

WN+1(hN+1) > ln(
|H|
δ

) · 2 · P[D(hN+1, h
∗)]

ε
≥ ln(

|H|
δ

) · 2 · ε
ε

> ln(
|H|
δ

).

23

Bhatia

This is a contradiction because WN+1(hN+1) ≤ ln(|H|δ) (since N + 1 ≤ m). Thus, we
must have that the number of rounds, m + 1, cannot exceed N + 1 and the Arbitrary
algorithm must terminate in m+ 1 ≤ N + 1 = O(1ε log |H|δ) rounds.

We now show with probability at least 1 − δ, our previous assumption holds. That is,
in every round 1 ≤ i ≤ m, Wi(hi) ≤ ln(|H|δ).

Each of the learner’s hypotheses h1, h2 . . . hm has to be ε-bad and is consistent in the
beginning of the i-th round in which it got selected by the algorithm. From Lemma 29 it
follows for any of these learner’s hypothesis hi:

Pr([Wi(hi) > ln(
|H|
δ

)]) <
δ

|H|
.

By applying the union bound we get:

Pr(

m∨
i=1

[Wi(hi) > ln(
|H|
δ

)]) < m · δ

|H|
≤ δ.

Here we used the fact that m ≤ |H|, as any PAC-LRC learning algorithm must always
terminate within |H| rounds. Thus:

Pr(
m∧
i=1

[Wi(hi) ≤ ln(
|H|
δ

)]) > 1− δ. (22)

Thus with probability at least 1−δ, each of the learner’s hypotheses hi satisfy Wi(hi) ≤
ln(|H|δ). This concludes the proof.

5. Simulation Results

In this section we present the results of testing the performance of our interactive LRC
algorithms on randomly generated learner’s concept classes H which are chosen to be binary
matrices.

We generate H with a particular structure—with g distinct groups of 100 rows each, for
some integer g—so that |H| = 100g. The groups are generated so that two hypotheses from
the same group only differ in a few places. At the same time, hypotheses from different
groups differ a lot. The process for generating |H| is described in detail below.

To generate H, we first generate g random rows, one for each group. From each of these
g rows we derive 99 additional random rows. H consists of these 99g rows plus the original
g rows for a total of 100g rows. Figure 4 illustrates this structure of the learner’s concept
class.

The generation of the g rows in the first step is as follows. We construct a binary matrix
H ′ with g rows and the same set of columns X as H. For each column xj of matrix H ′,
1 ≤ j ≤ |X|, we draw a real number pj independently and uniformly from the interval
[0, 1]. For each row hi ∈ H ′ and j-th column xj ∈ X, we independently set hi(xj) to 1 with
probability pj and 0 with probability 1− pj . Note that in H ′ the expected number of ones
in column j is pj · g.

24

Simple Algorithms for Interactive Machine Learning

Figure 4: Structure of learner’s concept class H

Note that the probability that any two rows of H ′ differ on column j is 2pj(1 − pj).
Since pj is uniformly distributed in the interval [0, 1], the expected value of 2pj(1 − pj) is
1/3. This implies that any two rows of H ′ are likely to differ in |X|/3 columns. We use the
rows of H ′ as the g rows of H in the first step.

Let h ∈ H ′ be the row generated for a group in the first step. In the second step, the
additional 99 rows for this group are generated as follows. Let q1, q2, . . . q99 be 99 different,
equally spaced, values that span the range [0.01, 0.04]. The i-th row hi for the group is
generated by toggling each value in row h independently with probability qi. In other
words, Pr(h(x) 6= hi(x)) = qi for all x ∈ X. Assuming a uniform distribution over the
samples X, in expectation, rows h and hi differ on qi|X| columns.

Some additional details regarding our implementation are as follows. The teacher’s
concept is randomly drawn from H. In each of our tests, the performance of a learning
algorithm is computed by taking an average over at least 100 randomly generated binary
matrices H of a given size. We also make some simplifications in our implementation.
We assume a uniform distribution over the samples X. Thus P[x] is the same for all
columns x ∈ X. Our implementation of the Arbitrary learning algorithm, called the Anti-
majority learning algorithm, chooses in each round the hypothesis that has the lowest
majority score. Ideally we would want to implement an adversarial learning algorithm that
would maximize the expected number of counterexamples needed for learning. However,
as such an algorithm can be hard to design, we approximate it by following the opposite
of the Majority strategy as that can can be beneficial to the adversary. The Anti-majority
learning algorithm terminates when there are no more ε-bad hypotheses left in H or when
the learner proposes a hypothesis that is not ε-bad. In other words, we set δ = 0 for ease

25

Bhatia

Figure 5: Performance of Majority versus Anti-majority Learning Algorithm

of implementation. It is worth noting however that for higher values of δ, the algorithms’
performance would not be any worse as they would have a higher chance of terminating
earlier.

5.1 Majority versus Anti-majority Algorithm Performance Analysis

When comparing the performance of the Majority and the Anti-majority LRC algorithms,
we generated random binary matrices H with 500 columns using the previously described
procedure.

For these matrices the number of rows (|H|) ranged from 20000 to 400000, in increments
of 20000. We also set ε = 0.0, requiring the Anti-majority learning algorithm to exactly
learn the target concept in order to compare the algorithms on equal terms. Figure 5 shows
the performance of these algorithms.

Here, the X-axis shows the number of hypotheses (|H|) in H and the Y-axis shows the
expected number of rounds or the number of mistakes made by the learner in learning the
target concept. In Figure 5 we also plot the function log 4

3
|H|, the theoretical upper bound

for the Majority algorithm.

As seen in Figure 5, on this data set the Majority learning algorithm outperforms its
Anti-majority counterpart. In addition, for all sizes of H tested, the learning time of the
Majority algorithm is approximately one third of its log 4

3
|H| theoretical bound.

5.2 Anti-majority LRC versus PAC Learning Performance Analysis

For the sake of performance analysis between interactive learning and non-interactive PAC
learning (Kearns and Vazirani, 1994), we implemented an equivalent interactive version of
the PAC algorithm. Just as in LRC, in each round, this PAC algorithm returns a random

26

Simple Algorithms for Interactive Machine Learning

Figure 6: Anti-majority Learning Algorithm versus PAC Learning

consistent hypothesis. However, instead of receiving a counter-example as is the case in
LRC, the PAC algorithm receives any random example, which eliminates all hypotheses in
H that disagree with it. The PAC algorithm terminates either when it returns a hypothesis
that is not ε-bad or when all the ε-bad hypotheses are eliminated from H. Note that just as
in our implementation of the Arbitrary algorithm, the parameter δ does not play any role
in this PAC algorithm.

In Figure 6, we compare the performance of the Anti-majority interactive learning algo-
rithm with the interactive PAC algorithm. For this evaluation, as shown on the X-axis, we
varied the error ε from 0.0 to 0.2 (0% to 20%). We used randomly generated binary concept
classes H with 500 columns and of two different sizes: |H| = 20000 and |H| = 200000. The
Y -axis plots the average number of rounds of interactions for these algorithms. As expected,
both the Anti-majority and PAC algorithms require less counter-examples (or examples)
when the error tolerance (ε) is increased. It can also be seen that the Anti-majority algo-
rithm outperforms the PAC learner particularly when the error tolerance (ε) is small. This

contrasts with the fact that the
4·log |H|

δ
+2

ε + 1 theoretical bound on the learning time of

any arbitrary interactive learning algorithm is approximately 4 times that that of the
log
|H|
δ

ε
theoretical bound of non-interactive PAC learning (Kearns and Vazirani, 1994). Note that
non-interactive PAC learning has even higher learning time than interactive PAC learning
used in our simulation.

5.3 Majority versus Max-Min Algorithm Performance Analysis

We also implemented the Max-Min algorithm (Angluin and Dohrn, 2017) and compared
its performance with the Majority algorithm. Figure 7 shows the results of comparing
the performance of the algorithms on randomly generated matrices H with 100 columns
and with rows (|H|) that ranged from 100 to 2000, in increments of 100. Since the per

27

Bhatia

Figure 7: Majority versus Max-Min Learning algorithm

round computation time of the Max-Min algorithm has a quadratic dependence on |H|,
we were only able to run our tests on these smaller matrices. As can be seen, both the
algorithms perform equally well. This contrasts with the fact that the theoretical bound
on the Majority algorithm’s expected learning time is log 4

3
|H| which is 2.41 times more

than the log2 |H| expected learning time theoretical bound for the Max-Min algorithm. It
suggests that the Majority algorithm’s theoretical upper bound may not be tight.

6. Discussion

These results demonstrate the potential benefits and limitations of using random counter-
examples as a form of feedback in interactive learning. When learners are intelligent, and
use the Majority learning algorithm (Algorithm 1), they can learn by seeing an expected
O(log |H|) counter-examples. As was previously shown (Angluin and Dohrn, 2017), when
counter-examples are not chosen randomly, it is difficult for the learner to learn some concept
classes. This happens, for instance, when H is simply the n × n identity matrix. In this
case, for any target concept h∗ and consistent hypothesis h 6= h∗, the teacher will have
a choice between exactly two counter-examples. One counter-example will eliminate all
hypothesis but h∗, and the other bad counter-example will just eliminate h. An adversarial
teacher could simply pick the bad counter-example every single round and thus it would
take Ω(|H|) time to learn h∗ without random counter-examples. While this problem of
needing random counter-examples was previously solved by a well known halving algorithm
based on majority vote (Littlestone, 1988; Barzdin and Freivald, 1972; Angluin, 1988),
that algorithm required that the learner be allowed to make improper queries. On the
other hand, our work shows that a teacher who gives random counter-examples solves this
problem without having to make any such sacrifices. The O(1ε log |H|δ) upper bound on
the adversarial learner shows that the interactive LRC learner performs no worse than,

28

Simple Algorithms for Interactive Machine Learning

and achieves the same asymptotic bound as, the non-interactive PAC learner (Kearns and
Vazirani, 1994). This is somewhat surprising because intuitively, providing specific feedback
in the form of counter-examples would seem more valuable to the learner than providing
randomly sampled examples as is done in the PAC model (Kearns and Vazirani, 1994). It
seems that the reason that the bound was not improved was that the learner’s ability to be
adversarial, or impede the learning process was much more pronounced in the LRC setting
than the PAC setting. The reason for this was that in the LRC setting, the learner could
choose specific hypothesis on which the teacher’s random counter-example would generally
make little progress in eliminating ε-bad hypotheses.

7. Conclusion and Future Work

In this work we provided simple and efficient algorithms for interactively learning non-
binary concepts in the recently proposed setting of exact learning from random counter-
examples (LRC). One such algorithm is based on majority vote and the other works by
randomly selecting hypotheses from a probability distribution over target concepts that is
evolved over time. Both these algorithms are shown to have the fastest possible O(log |H|)
expected learning time and entail significantly lower computation time than previously
known algorithms. We also provided an analysis that shows that interactive LRC learning,
regardless of the learning algorithm, is at least as efficient as non-interactive Probably
Approximately Correct (PAC) learning.

Our future goal is to improve the efficiency of these algorithms on other cost measures.
Throughout this paper, our focus has been on minimizing the learning complexity of the
algorithms, which is the number of counter-examples needed by the learner in order to
correctly identify the target concept. However, calculating the majority hypothesis or up-
dating the teacher’s distribution Q to match the new H, can require iterating over every
remaining consistent hypothesis in H, in every round. This can take time O(|H||X|), thus
making it computationally expensive, especially since the number of hypothesis in H may
grow exponentially in the number of examples (the set of columns X of H). To address the
high computational overhead of these tasks, we plan to explore alternative approaches for
carrying out these tasks such as by using sampling to trade accuracy for efficiency.

Acknowledgments

I would like to thank my mentor Professor Daniel Hsu who guided my research in the right
direction by providing me with background material in the field of computational machine
learning, validating the correctness of my proofs, and assisting me in using mathematical
notation when writing this paper. Professor Hsu also helped me formulate theoretical
models such as the PAC-LRC interactive learning model which served as the framework for
my analysis of the upper bound of an Arbitrary LRC algorithm.

References

Dana Angluin. Queries and concept learning. Machine learning, 2(4):319–342, 1988.

29

Bhatia

Dana Angluin. Queries revisited. Theoretical Computer Science, 313(2):175–194, 2004.

Dana Angluin and Tyler Dohrn. The power of random counterexamples. In International
Conference on Algorithmic Learning Theory, pages 452–465, 2017.

Pranjal Awasthi, Maria Florina Balcan, and Konstantin Voevodski. Local algorithms for
interactive clustering. J. Mach. Learn. Res., 18(1):75–109, January 2017. ISSN 1532-4435.

Maria-Florina Balcan and Avrim Blum. Clustering with interactive feedback. In Interna-
tional Conference on Algorithmic Learning Theory, pages 316–328. Springer, 2008.

J. M. Barzdin and R. V. Freivald. On the prediction of general recursive functions. Soviet
Math. Doklady, 13:1224–1228, 1972.

Ehsan Emamjomeh-Zadeh and David Kempe. A general framework for robust interactive
learning. In Advances in Neural Information Processing Systems, pages 7082–7091, 2017.

Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 133–142. ACM, 2002.

Michael J Kearns and Umesh Vazirani. An introduction to computational learning theory.
MIT press, 1994.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine learning, 2(4):285–318, 1988.

Wolfgang Maass and György Turán. On the complexity of learning from counterexamples
and membership queries. In Foundations of Computer Science, 1990. Proceedings., 31st
Annual Symposium on, pages 203–210. IEEE, 1990.

Wolfgang Maass and György Turán. Lower bound methods and separation results for on-line
learning models. Machine Learning, 9(2-3):107–145, 1992.

Wolfgang Maass and György Turán. Algorithms and lower bounds for on-line learning of
geometrical concepts. Machine Learning, 14(3):251–269, 1994.

Burr Settles. Active learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 6(1):1–114, 2012.

30

	Introduction
	Related Work
	Learning Models
	Algorithmic Results
	Preliminaries
	Majority Learning Algorithm
	Randomized Learning Algorithm
	Upper Bound on the Learning Time of Arbitrary Learning Algorithm

	Simulation Results
	Majority versus Anti-majority Algorithm Performance Analysis
	Anti-majority LRC versus PAC Learning Performance Analysis
	Majority versus Max-Min Algorithm Performance Analysis

	Discussion
	Conclusion and Future Work

