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Abstract

Efficient explorative data analysis systems must take into account both what a user knows
and wants to know. This paper proposes a principled framework for interactive visual
exploration of relations in data, through views most informative given the user’s current
knowledge and objectives. The user can input pre-existing knowledge of relations in the
data and also formulate specific exploration interests, which are then taken into account
in the exploration. The idea is to steer the exploration process towards the interests of the
user, instead of showing uninteresting or already known relations. The user’s knowledge
is modelled by a distribution over data sets parametrised by subsets of rows and columns
of data, called tile constraints. We provide a computationally efficient implementation
of this concept based on constrained randomisation. Furthermore, we describe a novel
dimensionality reduction method for finding the views most informative to the user, which
at the limit of no background knowledge and with generic objectives reduces to PCA. We
show that the method is suitable for interactive use and is robust to noise, outperforms
standard projection pursuit visualisation methods, and gives understandable and useful
results in analysis of real-world data. We provide an open-source implementation of the
framework.
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1. Introduction

Exploratory data analysis (Tukey, 1977), often performed interactively, is an established
approach for learning about patterns in a data set prior to more formal analyses. Humans
are able to easily identify patterns in the data visually, even when the patterns are complex
and difficult to model algorithmically. Visual data exploration is hence a powerful tool for
exploring patterns in the data and a multitude of visual exploration systems have been
designed for this purpose over the years. Let us now consider some general requirements for
an efficient visual exploration system.

(i) The system must take into account the user’s knowledge of the data, which iteratively
accumulates during exploration.

(ii) The user must be shown informative views of the data given the user’s current knowl-
edge.

(iii) The user must be able to steer the exploration in order to answer specific questions.

Despite the long history of visual exploration systems, they still lack a principled ap-
proach with respect to these general requirements. In this paper we address several short-
comings related to these requirements. Specifically, our goal and main contribution is to
devise a framework for human-guided data exploration by modelling the user’s background
knowledge and objectives, and using these to provide the user with the most informative
views of the data.

Our contribution consists of three main parts: (i) a framework for modelling and incor-
porating the user’s background knowledge of the data that can be iteratively updated, (ii)
finding the most informative views of the data, and (iii) a solution allowing the user to steer
the visual data exploration process so that specific hypotheses formulated by the user can be
answered. The first and third contribution are general, while the second one, that is, finding
the most informative views of the data, is specific to a particular data type. In this paper
we focus on data items that can be represented as real-valued vectors of attribute values.
This paper extends our earlier works: preprint (Puolamäki, Oikarinen, Atli, and Henelius,
2018) and (Henelius et al., 2018), the latter of which only considers axis-aligned projections
of the data and does not take advantage of the dimensionality reduction method presented
in this work.

We next discuss the relation of our present work to existing literature on exploratory
data analysis. Our first contribution is related to iterative data mining (Hanhijärvi et al.,
2009) which is a paradigm where patterns already discovered by the user are taken into
account as constraints during subsequent exploration. In brief, this works as follows. The
user explores the data and observes a pattern in a view. The user marks the observed
pattern as known in the exploration system. The system then takes this newly added
pattern, as well as all other previously added patterns, into account when constructing the
next view shown to the user. The goal is to prevent the system from showing already known
information to the user again. This concept of iterative pattern discovery is also central
to the data mining framework presented by De Bie (2011a; 2011b; 2013), where the user’s
current knowledge (or beliefs) of the data is modelled as a probability distribution over
data sets. This distribution is updated iteratively during the exploration phase as the user
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discovers new patterns. Our work has been motivated by Puolamäki et al. (2010, 2016);
Kang et al. (2016b) and Puolamäki, Oikarinen, Kang, Lijffijt, and Bie (2018), where these
concepts have been successfully applied in visual exploratory data analysis such that the
user is visually shown a view of the data which is maximally informative given the user’s
current knowledge. Visual interactive exploration has also been applied in different contexts,
for example, in item-set mining and subgroup discovery (Boley et al., 2013; Dzyuba and van
Leeuwen, 2013; van Leeuwen and Cardinaels, 2015; Paurat et al., 2014), information retrieval
(Ruotsalo et al., 2015), and network analysis (Chau et al., 2011).

Concerning our second contribution, solving the problem of determining which views of
the data are maximally informative to the user (and hence interesting) has been approached
in terms of, for example, different projections and measures of interestingness (De Bie et al.,
2016; Kang et al., 2016a; Vartak et al., 2015; Kang et al., 2020). Constraints have also been
used to assess the significance of data mining results, for example, in pattern mining (Lijffijt
et al., 2014) or in investigating spatio-temporal relations (Chirigati et al., 2016). We observe,
however, that a view maximally informative to the user, is a view that contrasts the most
with the user’s current knowledge. Hence, this kind of a view is maximally “surprising” to
the user with respect to his or her current knowledge.

However, always showing maximally informative views to the user leads to a problem,
which can be seen as one of the major shortcomings of previous work on iterative data mining
and applications to visual exploratory data analysis. By definition, maximally informative
views given the user’s existing knowledge will be surprising. Because the user is not able to
control the path that the exploration takes, it is difficult to investigate specific hypotheses
concerning the data or to steer the exploration process. Traditional iterative data mining
hence suffers from a navigational problem (Puolamäki et al., 2010). Our third contribution
is to solve this navigational problem by incorporating both the user’s knowledge of the
data, and different hypotheses concerning the data into the background distribution. It
often is the case that the user has some pre-existing exploration objectives before starting
the analysis, or the user develops specific hypotheses during the exploration phase. This
navigational aspect in the exploration process has, as far as we are aware of, not been
addressed previously, and we believe that the contribution we make in this area is highly
important for any real interactive iterative data analysis framework.

Our framework is sketched in Figure 1. More formally, as in Lijffijt et al. (2014), we
denote the original data set by X and the set of all possible data sets by Ω. We further
define a set of constraints C. A constraint t ∈ C is simply a subset of all possible data sets
which always also includes the original data set, that is, X ∈ t ⊆ Ω is satisfied for all t ∈ C.
Any set of constraints T ⊆ C can be used to define a subset of data sets ΩT ⊆ Ω that satisfy
all of the constraints in T by ΩT = ∩t∈T t, with Ω∅ defined as Ω∅ = Ω.

We assume that the user observes a set of relations such as correlations, cluster structures
etc. from the data, as later defined by Definition 3. A constraint—or a set of constraints—
can either preserve or break a relation. If the user observes that some relations are preserved
in the data the user can infer that the data obeys the constraints that preserve these relations.

In this paper we assume that the user’s knowledge can be parametrised by a set of
constraints Tu and by a uniform distribution over data sets in ΩTu , with the probability of
the data sets in the complement Ω \ ΩTu being zero. We call this uniform distribution a
background distribution, which describes the probabilities the user gives for different possible
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patterns
A B

patterns and/or hypotheses 
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3

Figure 1: Overview of the exploration framework. (1) The user inputs his or her current
knowledge and exploration objectives. (2) A background distribution, which cap-
tures what the user currently knows is constructed. (3) The most informative view
of the data with respect to the background distribution and the user’s objectives
is computed. (4) The user observes the data in the view, recognises relations and
inputs these into the background distribution. The iterative data analysis process
continues from (1).
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(a) (b) (c)

Figure 2: Modelling the user’s background knowledge. (a) Initially the user knows nothing
about the data except the marginals. (b) A possible data sample which adheres to
the user’s current knowledge of the data. In this case, the data sample corresponds
to a situation where all attributes have been permuted independently. (c) A
sample corresponding to what the user could potentially learn from the data (in
this case, this is the real data with all relations intact).

data sets. Intuitively, the constraints denote the relations (or patterns) in the data that the
user already is aware of. In the user’s mind, any data set that is not contradictory with any
of these constraints is equiprobable, while data sets contradicting with any of the constraints
have zero probability. In the absence of constraints, that is, when the user knows nothing, the
user’s knowledge is described by the background distribution corresponding to the situation
that the user considers all possible data sets equally likely, as shown in Figure 2. Our
objective is that the system would not show the user relations or patterns that the user is
already aware of, as parametrised by constraints in Tu.

Now, out of all possible views of the data (such as scatter plots over different coordinate
axes) the most informative view should be the one that—according to some measure—shows
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Informative view Uninformative view

C

D

C

D vs

A

B

A

B vs

Figure 3: Two data samples (shown in orange and purple) in two projections. A view
is informative if the data samples differ, which means that the user can learn
something new about the data. In the left view the data samples differ with
respect to the attributes C and D and the view is informative. In contrast, in the
right view the data samples are essentially the same and the user learns nothing
new about the relation between attributes A and B, and consequently the view
is uninformative.

the maximal difference between the data set X and a data set sampled from the background
distribution as in Figure 3. When looking at this view, the user may learn more about the
relations in the data and can add the gained knowledge as new constraints in Tu, after which
a new maximally informative view can be produced. This iterative process continues until
the user has learned all he or she wants to know about the data; this is the approach taken,
for example, in Puolamäki et al. (2016) and Puolamäki, Oikarinen, Kang, Lijffijt, and Bie
(2018). As already mentioned, the drawback of the approach is that each new view is by
definition also maximally surprising to the user and there is no way to guide the exploration
towards the user’s interests.

In this paper we complement this framework by using the constraints to parametrise,
in addition to the user’s knowledge, what the user wants to know about the data. We do
this by defining a new set of constraints, denoted by TH ⊆ C which defines the relations
that are of the interest to the user. We further define a set of constraints TH′ ⊆ C which
defines the relations that are of no interest to the user. Instead of comparing the data and the
background distribution, as earlier, we find a view that shows the maximal difference between
samples from the uniform distributions from ΩTu∪TH′ and ΩTu∪TH′∪TH , respectively. Notice
that if we are interested in all constraints, i.e., TH = C and TH′ = ∅, this new formulation
reduces to the earlier approach of Puolamäki et al. (2016) and Puolamäki, Oikarinen, Kang,
Lijffijt, and Bie (2018), at least if all of the constraints together allow only the original data
set, or ΩC = {X}.

The advantage of the new formulation is that by expressing the user’s knowledge and
the user’s objectives using the same parametrisation we can in an elegant way formalise the
data exploration process as finding views that show differences between two distributions,
or between samples from two distributions.

The above discussion is generic for all classes of data sets and constraints. However,
in the remainder of the paper we assume that the data set X is a data table with rows
corresponding to data items and columns to attributes, and the set Ω consists of all data
sets that can be obtained by randomly permuting the columns of X. The constraints in C
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are parametrised by tiles containing subsets of rows and columns, respectively. Samples from
the constrained distribution can then be obtained efficiently by permutations, as described
later in Section 2, which also gives the exact definitions for the concepts mentioned above.
The views considered in this paper are scatterplots of the data obtained by linear projections
that show the maximal differences of the distributions described above.

Contributions In summary, our contributions are:

(1) a computationally efficient formulation and implementation of the user’s background
knowledge of the data and objectives (which we here call hypotheses) using constrained
randomisation,

(2) a dimensionality reduction method for finding the view most informative to the user,
and

(3) an experimental evaluation that supports that our approach is fast, robust, and pro-
duces easily understandable results.

Outline The rest of this paper is organised as follows. Our framework is formalised in
Section 2, where we describe how to model the user’s background knowledge of the data,
how data exploration objectives are formulated and updated, and how maximally informative
views are determined. In Section 3 we empirically evaluate our framework, by considering
both computational efficiency and robustness against noise, as well as provide use cases of
user-guided exploration. We conclude the paper with a discussion in Section 4.

2. Methods

Let X be an n×m data matrix (data set). Here X(i, j) denotes the ith element in column
j. Each column X(·, j), j ∈ [m], is an attribute in the data set, where we use the shorthand
[m] = {1, . . . ,m}. Let D be a finite set of domains (for example, continuous or categorical)
and let D(j) denote the domain of X(·, j). Also let X(i, j) ∈ D(j) for all i ∈ [n] and
j ∈ [m], that is, all elements in a column belong to the same domain but different columns
can have different domains. The derivations in Sections 2.1 and 2.2 are generic with respect
to domains, but in Section 2.3 we consider only real numbers, that is, D(j) ⊆ R for all
j ∈ [m].

2.1 Permutations and Tile Constraints

We proceed to introduce the permutation-based sampling method and tile constraints which
are used to constrain the sampled distributions as well as to express the user’s background
knowledge and objectives (hypotheses). The distributions are constructed so that in the
absence of constraints (tiles) the marginal distributions of the attributes are preserved.

We define a permutation of the data matrix X as follows.

Definition 1 (Permutation) Let Pn denote the set of permutation functions of length n
such that π : [n] → [n] is a bijection for all π ∈ Pn, and denote by Π = (π1, . . . , πm) ∈ Pm

n

the vector of column-specific permutations. A permutation Π(X) = X̂ of a n×m data matrix
X is then given as X̂(i, j) = X(πj(i), j).
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Unconstrained permutation
All attributes A, . . . ,D are permuted in-
dependently. This breaks all relations be-
tween the attributes, but the marginals
are preserved.

A1
A2
A3
A4
A5

B1
B2
B3
B4
B5

C1
C2
C3
C4
C5

D1
D2
D3
D4
D5

A2
A3
A5
A1
A4

B3
B5
B1
B4
B2

C1
C3
C5
C4
C2

D5
D2
D4
D3
D1

Constrained permutation
The permutation is constrained with a
tile, that is, attributes in the tile are per-
muted together. The marginals are also
preserved.

A1
A2
A3
A4
A5

B1
B2
B3
B4
B5

C1
C2
C3
C4
C5

D1
D2
D3
D4
D5

A4
A2
A5
A3
A1

B1
B3
B2
B4
B5

C5
C3
C2
C4
C1

D3
D4
D1
D5
D2

Figure 4: An unconstrained permutation (top) and a permutation constrained with a tile
(bottom, tile shown with a solid border). The data has four attributes (A,B,C,
and D) and there are five data items (rows) in the data set.

When permutation functions are sampled uniformly at random, we obtain a uniform sam-
ple from the distribution of data sets where each of the attributes has the same marginal
distribution as the original data. Hence, given a data set X, the set of possible data sets is
Ω = {Π(X) | Π ∈ Pm

n }.
A tile is a tuple t = (R,C), where R ⊆ [n] and C ⊆ [m]. The tiles considered here

are combinatorial (in contrast to geometric), meaning that rows and columns in the tile do
not need to be consecutive. In the unconstrained case, there are (n!)m allowed vectors of
permutations. We parametrise distributions using tile constraints preserving the relations
in a data matrix X for subsets of rows and columns. The tiles constrain the set of allowed
permutations as follows.

Definition 2 (Tile constraint) Given a tile t = (R,C) where R ⊆ [n] and C ⊆ [m], a
vector of permutations Π = (π1, . . . , πm) ∈ Pm

n is allowed by t iff the following condition is
true for all i ∈ [n], j ∈ [m], and j′ ∈ [m]:

i ∈ R and j, j′ ∈ C =⇒ πj(i) ∈ R and πj(i) = πj′(i).

Given a set of tiles T , a vector of permutations Π is allowed iff Π is allowed by all t ∈ T .
For an empty set of tiles T = ∅, all permutations in Pm

n are allowed.

A tile defines a subset of rows and columns, and the rows in this subset are permuted by the
same permutation function in each column in the tile. In other words, the relations between
the columns inside the tile are preserved. Thus, given a data set X and a set of tiles T , the
subset of data sets in Ω that satisfy all of the tile constraints in T is given by

ΩT = {Π(X) | Π ∈ Pm
n and Π is allowed by T}.

Notice that the identity permutation is always an allowed permutation. Figure 4 shows an
example of both unconstrained permutation and permutation constrained with a tile.

We proceed to define formally what we mean by relations in this paper.
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Definition 3 (Relation) A relation is a real-valued function f over n×m data matrices X.
Given a set of tiles T , we say that that T preserves the relation f , if f(X) = f(Π(X)) is
satisfied for all permutations Π allowed by T . Otherwise, we say that T breaks the relation f .

Thus, we use the term relation to denote any structure in the data which can be controlled
(that is, essentially broken if need be) in the permutation scheme parametrised by the tile
constraints. In practise, some tolerance could be included in the above definition for the
condition f(X) = f(Π(X)) instead of exact equivalence. Examples of relations conforming
to the above definition include correlations between attributes, and cluster structures. For
example, for a real valued data matrix a relation could be defined as a covariance between
columns a and b, i.e., f(X) =

∑n
i=1X(i, a)X(i, b)/n. A set of tiles containing a tile t =

([n], {a, b}) preserves this relation. On the other hand, a set of tiles allowing some of the
rows in columns a and b to be permuted independently breaks the relation f . Another
example of a possible relation are the scagnostics for a scatterplot visualisation (Wilkinson
et al., 2005).

We make an implicit assumption that if the user observes in the data that certain (visual)
relations are preserved, then the user can conclude that the data also obeys constraints that
preserve those same relations. The user can then add these constraints to the background
distribution. Note that the relations f correspond to visual patterns (correlations, cluster
structures, outliers etc.) which the user possibly observes. The relations f are not evaluated
by the computer, but they are part of the user’s cognitive processing of the visualisations.
Therefore, in practical applications, there is usually no need—nor would it be possible—to
define all of the relations f explicitly. For our purposes it suffices that the user can to a
reasonable accuracy match the observed visual relations in the data to the corresponding
constraints.

We use tile constraints to describe the user’s knowledge concerning relations in the
data. As the user views the data he or she can observe relations and represent these as
tile constraints. For example, the user can mark an observed cluster structure with a
tile involving the data points in the cluster and the relevant attributes. We denote the
set of user-defined tiles by Tu. Then, a uniform distribution from ΩTu = {Π(X) | Π ∈
Pm
n and Π is allowed by Tu} is the background distribution, which describes the probabili-

ties the user gives for different possible data sets.
We can now formulate our sampling problem as follows.

Problem 4 (Sampling problem) Given a set of tiles T , draw samples uniformly at ran-
dom from vectors of permutations Π ∈ Pm

n allowed by T .

The sampling problem is trivial when the tiles are non-overlapping, since permutations can
be done independently within each non-overlapping tile. However, in the case of overlapping
tiles, multiple constraints can affect the permutation of the same subset of rows and columns
and this issue must be resolved. To this end, we need to define the equivalence of two sets
of tiles, which means that the same constraints are enforced on the permutations.

Definition 5 (Equivalence of sets of tiles) Let T and T ′ be two sets of tiles. T is equiv-
alent to T ′, if for all vectors of permutations Π ⊆ Pm

n it holds:

Π is allowed by T iff Π is allowed by T ′.
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A1
A3
A2
A5
A4

B1
B3
B2
B4
B5

C5
C3
C2
C4
C1

D3
D4
D1
D5
D2

A1
A3
A2
A5
A4

B1
B3
B2
B4
B5

C5
C3
C2
C4
C1

D3
D4
D1
D5
D2

Figure 5: Merging the two overlapping purple (solid border) and orange (dashed border)
tiles leads to three non-overlapping tiles. Data as in Figure 4.

We use the term tiling for a set of tiles T where no tiles overlap. Next, we show that
there always exists a tiling equivalent to a set of tiles.

Theorem 6 Given a set of (possibly overlapping) tiles T , there exists a tiling T that is
equivalent to T .

Proof Let t1 = (R1, C1) and t2 = (R2, C2) be two overlapping tiles. Each tile describes a
set of constraints on the allowed permutations of the rows in their respective column sets
C1 and C2. A tiling {t′1, t′2, t′3} equivalent to {t1, t2} is given by:

t′1 = (R1 \R2, C1),
t′2 = (R1 ∩R2, C1 ∪ C2),
t′3 = (R2 \R1, C2).

Tiles t′1 and t′3 represent the non-overlapping parts of t1 and t2 and the permutation con-
straints by these parts can be directly met. Tile t′2 takes into account the combined effect of
t1 and t2 on their intersecting row set, in which case the same permutation constraints must
apply to the union of their column sets. It follows that these three tiles are non-overlapping
and enforce the combined constraints of tiles t1 and t2. Hence, a tiling can be constructed
by iteratively resolving overlap in a set of tiles until no tiles overlap.

Notice that merging overlapping tiles leads to wider (larger column set) and lower (smaller
row set) tiles. An example is shown in Figure 5. The limiting case is a fully-constrained
situation where each row is a separate tile and only the identity permutation is allowed.
We provide an efficient algorithm with the time complexity O(nm) for merging tiles in
Appendix A.

2.2 Formulating Hypotheses

As discussed in the introduction, in order to model what the user wants to know about the
data, we define two sets of constraints: TH (the relations that are of the interest for the user)
and TH′ (the relations that are of no interest for the user). We then find a view that shows
the maximal difference between the uniform distributions from ΩTu∪TH′ and ΩTu∪TH′∪TH ,
respectively. We now formalise this idea by formulating a pair of hypotheses, concisely
represented using the tilings defined in the previous section. This provides a flexible method
for the user to specify the relations in which he or she is interested.

Definition 7 (Hypothesis tilings) Given a subset of rows R ⊆ [n], a subset of columns
C ⊆ [m], and a k-partition of the columns given by C1, . . . , Ck, such that C = ∪ki=1Ck

9
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Case 1: Are there relations between any
of the attributes?

vs

A2
A5
A1
A6
A4

B2
B5
B1
B6
B4

C2
C5
C1
C6
C4

D2
D5
D1
D6
D4

A3
A5
A4
A6
A2

B6
B4
B2
B3
B1

C1
C4
C2
C3
C5

D4
D1
D5
D6
D3

A1 B5 C6 D2A3 B3 C3 D3

Case 2: Are there relations between any
of the attributes other than those con-
strained by the tile shown with an orange
dashed border?

vs

Case 3: Are there relations between the
attribute groups {A} and {B,C} for items
{3, 4, 5, 6} other than those constrained by
the tile with an orange dashed border?

vs

Figure 6: Modelling hypotheses using sets of tiles. Tilings corresponding to hypotheses are
shown with solid purple borders: Hypothesis 1 on the left and Hypothesis 2
on the right. The user’s knowledge is represented by the tile with a dashed orange
border. The data set has four attributes A,B,C and D, and six data items. See
Section 2.5 for an interpretation of these operations in terms of the iris flower
data.

and Ci ∩ Cj = ∅ if i 6= j, a pair of hypothesis tilings is given by TH1 = {(R,C)} and
TH2 = ∪ki=1{(R,Ci)}.

The hypothesis tilings define the items R and attributes C of interest, and, through the
partition of C, the relations between the attributes in which the user is interested. Hy-
pothesis 1 (TH1) corresponds to a uniform distribution from the data sets in which all
relations in (R,C) are preserved, and hypothesis 2 (TH2) to a uniform distribution from
the data sets in which the relations between attributes in the partitions C1, . . . , Ck of C are
broken while the relations between attributes inside each Ci are preserved. In terms of the
constraints, as discussed in Section 1, relations preserved by TH2 correspond to the relations
which the user is not interested in (that is, TH′ in Section 1), while relations preserved by
TH1 but broken by TH2 correspond to relations which user is interested in (that is, TH in
Section 1).

Now, for example, if the columns are partitioned into two groups C1 and C2 the user
is interested in relations between the attributes in C1 and C2, but not in relations within
C1 or C2. On the other hand, if the partition is full, that is, k = |C| and |Ci| = 1 for all
i ∈ [k], then the user is interested in all relations between the attributes inside (R,C). The
special case of R = [n] and C = [m] indeed reduces to unguided data exploration, where all
inter-attribute relations in the data are of interest to the user.

10
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Having defined both the user’s knowledge (background distribution) and the pair of
hypotheses formalising the user’s objectives with tile constraints, we can now easily combine
these to formalise the uniform distributions from the data sets we want to compare. I.e., we
want to compare the uniform distributions from ΩTu+TH1

and ΩTu+TH2
, where ‘+’ is used

with a slight abuse of notation to denote the operation of merging two tilings (with possible
overlaps between their tiles) into an equivalent tiling. Notice here that, by Definition 7, it
holds that

ΩTu+TH1
⊆ ΩTu+TH2

,

and hence the comparison becomes equivalent to the formulation provided in the introduc-
tion. Recall that we can draw samples from these distributions as described in Section 2.1.
From now on, we use the term hypothesis pair H to denote

H = 〈Tu + TH1 , Tu + TH2〉,

where Tu is the tiling formalising the (current) background distribution, and TH1 and TH2

form a pair of hypothesis tilings as defined in Definition 7. See Figure 6 for examples of
different cases in which a pair of hypothesis tilings and the user’s knowledge are used to
explore relations between attributes. Here, the first case demonstrates a scenario in which
the user is interested in all relations, and hence the set of relations that are of no interest to
the user TH′ is empty. Furthermore, the user has no prior knowledge, that is, Tu = ∅. The
second case is similar, but here the tile shown with an orange dashed border represents the
user’s knowledge Tu 6= ∅. Finally, the third case shows a scenario in which TH′ 6= ∅. The
relations preserved between attributes B and C for items {3, 4, 5, 6} are of no interest to the
user, while the relations between the attribute groups {A} and {B,C} are.

2.3 Finding Views

We are now ready to formulate our second main problem, that is, given the uniform dis-
tributions from the two data sets characterised by the hypothesis pair H, how can we find
an informative view of the data maximally contrasting these? The answer to this question
depends both on the type of data and the selected visualisation. For example, visualisations
or measures of difference are different for categorical and real-valued data. The real-valued
data discussed in this paper allows us to use projections (such as principal components) that
mix attributes.

Problem 8 (Comparing hypotheses) Given the two uniform distributions characterised
by the hypothesis pair H = 〈Tu+TH1 , Tu+TH2〉, find the projection in which the distributions
differ the most.

To solve this problem, we devise a linear projection pursuit method which finds the
direction in which the two distributions differ the most in terms of variance. In principle some
other difference measure could be used instead. However, a variance-based measure can be
implemented efficiently, which is one essential requirement for interactive use. Furthermore,
using variance leads to the convenient property that our projection pursuit method reduces to
standard principal component analysis (PCA) when the user has no background knowledge
and when the hypotheses are most general, as shown in Theorem 11 below.

11
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Thus, we formalise the optimisation criterion in Problem 8 by defining a measure using
variance. Specifically, we choose the following form for our gain function:

G(v,H) =
vTΣ1v

vTΣ2v
, (1)

where v is a vector in Rm and Σ1 and Σ2 are the covariance matrices of the uniform distribu-
tions from the data sets in ΩTu+TH1

and ΩTu+TH2
, respectively. Then, the direction in which

the distributions differ most in terms of the variance, that is, the solution to Problem 8, is
given by

vH = arg max
v∈Rm

G(v,H). (2)

In order to solve Problem 8, we first show that the covariance matrix Σ for a distri-
bution defined using the permutation-based scheme with tile constraints can be computed
analytically.

Theorem 9 Given j, j′ ∈ [m], the covariance of attributes cov(j, j′) from the uniform dis-
tribution of data sets ΩT defined by a tiling T is given by cov(j, j′) =

∑n
i=1 aj(i)aj′(i)/n,

where

al(i) =

{
Y (i, l), i ∈ Rj,j′∑

k∈R(i,l) Y (k, l)/|R(i, l)|, i /∈ Rj,j′

and l ∈ {j, j′}. Here, Rj,j′ = {i ∈ [n] | ∃(R,C) ∈ T where i ∈ R and j, j′ ∈ C} denotes the
set of rows permuted together, Y (i, l) = X(i, l) −

∑n
i=1X(i, l)/n denotes the centred data

matrix, and R(i, l) ⊆ [n] denotes a set satisfying ∃C ⊆ [m] where (R(i, l), C) ∈ T , i ∈ R(i, l)
and l ∈ C, that is, the rows in a tile that the data point X(i, l) belongs to.

Proof The covariance is defined by

cov(j, j′) = E
[∑n

i=1
Y (πj(i), j)Y (πj′(i), j

′)/n
]
,

where the expectation E[·] is defined over the permutations πj ∈ Pn and πj′ ∈ Pn of columns
j and j′ allowed by the tiling T , respectively. The part of the sum for rows permuted together
Rj,j′ reads ∑

i∈Rj,j′
E
[
Y (πj(i), j)Y (πj′(i), j

′)
]
/n =

∑
i∈Rj,j′

Y (i, j)Y (i, j′)/n,

where we have used πj(i) = πj′(i) and reordered the sum for i ∈ Rj,j′ . The remainder of
the sum reads∑

i∈Rc
j,j′
E
[
Y (πj(i), j)Y (πj′(i), j

′)
]
/n =

∑
i∈Rc

j,j′
E [Y (πj(i), j)]E

[
Y (πj′(i), j

′)
]
/n,

where Rc
j,j′ = [n] \ Rj,j′ and the expectations have been taken independently, because the

rows in Rc
j,j are permuted independently at random. The result then follows from the ob-

servation that E [Y (πl(i), l)] = al(i) for any i ∈ Rc
j,j′ .

1

1. We have also verified experimentally that the analytically derived covariance matrix matches the covari-
ance matrix estimated from a sample from the distribution.
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The direction in which the ratio of the variances is the largest can now be found by
applying a whitening operation (Kessy et al., 2018) on Σ2. The idea of whitening is to find
a whitening matrix W such that W TΣ2W = I. Using this transformation in Equation (1)
makes the denominator constant, and we hence obtain the solution to the optimisation in
Equation (2) by finding the principal components of Σ1 transformed using W .

Theorem 10 The solution to the optimisation problem of Equation (2) is given by vH =
Ww, where w is the first principal component of W TΣ1W and W ∈ Rm×m is a whitening
matrix such that W TΣ2W = I.

Proof Using v = Ww the gain in Equation (1) can be rewritten as

G(Ww,H) =
wTW TΣ1Ww

wTW TΣ2Ww
=
wTW TΣ1Ww

wTw
. (3)

Equation (3) is maximised when w is the maximal variance direction of W TΣ1W , from
which it follows that the solution to the optimisation problem of Equation (2) is given by
vH = Ww, where w is the first principal component of W TΣ1W .

Note In visualisations (that is, when making two-dimensional scatterplots), we project the
data onto the first two principal components, instead of considering only the first component
as above.

Finally, we are ready to show that at the limit of no background knowledge and with
the most general hypotheses, our method reduces to PCA of the correlation matrix.

Theorem 11 In the special case of the first step in unguided data exploration, that is,
comparing distributions from a hypotheses pair specified by H = 〈∅ + TH1 , ∅ + TH2〉, where
TH1 = {([n], [m])} and TH2 = ∪mj=1{([n], {j})}, the solution to Equation (2) is given by the
first principal component of the correlation matrix of the data, when the data attributes have
been scaled to unit variance.

Proof The proof follows from the observations that for TH2 the covariance matrix Σ2 is a
diagonal matrix (here a unit matrix), resulting in the whitening matrix W = I. For this
pair of hypothesis, Σ1 denotes the covariance matrix of the original data. The result then
follows from Theorem 10.

Once we have defined the most informative projection, which displays the directions
in which the distributions parametrised by the hypothesis pair H differ the most, we can
show the original data in this projection. This allows the user to observe different patterns,
for example, a clustered set of points, a linear relationship, or a set of outlier points. We
note that it would also be possible to show and compare samples from the two distributions
characterised by the hypothesis pair H in the most informative view. In Henelius et al.
(2018) we presented a proof-of-concept tool using which the user can, in fact, toggle between

13
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Figure 7: (a) Scatterplot matrix of the toy data set. (b) Fully randomised data (orange
circles) modelling the user’s knowledge and data (purple squares) where only
the relation between attributes C and D has been preserved modelling what the
user could learn of the relations between attributes C and D. (c) As in (b),
but additionally the relation between attributes A and C, as well as between
attributes B and D, has been preserved, modelling the user’s knowledge of the
relations between A and C as well as B and D, respectively.

showing the data and samples from the two distributions representing the hypotheses. This
can potentially shed some further light into why this particular view is interesting, but as
we are mostly interested in the relations present in the actual data, we have chosen for
simplicity to consider only the data in the most informative projection in this work.

2.4 Selecting Attributes for a Tile Constraint

After observing a pattern, the user can define a tile (R,C) to be added to Tu. The set
of data points R included in the pattern can be easily selected from the projection shown.
For selecting the attributes characterising the pattern, we use a procedure where for each
attribute the ratio between the standard deviation of the attribute for the selection and the
standard deviation of all data points is computed. If this ratio is below a threshold value τ
(for example, τ = 0.5), then the attribute is included in the set of attributes C characterising
the pattern. The intuition here is that we are looking for attributes in which the selection
of points are more similar to each other than is expected based on the whole data. Thus,
the set of attributes for which the user’s knowledge of dependencies is included, is affected
by the choice of τ . A smaller value of τ will only include attributes for which the selection
of points is very similar, whereas a larger value of τ will include a larger set of attributes
to the tile constraint. A parallel coordinates plot ordered according to the ratio of standard
deviations can be useful in deciding a suitable value for τ , see Section 3.3 for examples in
which we use parallel coordinate plots.
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2.5 Example: Iris Data

The iris flower dataset is a well-known machine learning dataset. It consists of four mea-
surements on 150 iris flowers from three species (Fisher, 1936). In this section we discuss,
for illustration, what the operations shown in Figure 6 could mean in terms of the iris data.

Assume that the four attributes A–D in Figure 6 are the four measurements: petal length
(A), petal width (B), sepal length (C), and sepal width (D). Further assume that rows 1–2
correspond to the species setosa, rows 3–4 to the species versicolor, and rows 5–6 to the
species virginica,2 and that the attributes have been scaled to zero mean and unit variance.

Case 1 of Figure 6 corresponds to the PCA projection of the iris data, as stated by
Theorem 11. The first PCA component, given by Equation (2), is vH = −0.58×A− 0.56×
B−0.52×C+0.26×D, implying that the overall correlations of the data are best described
by (roughly) the average petal length (A), petal width (B), and sepal length (C).

In Case 2 we assume that the user is aware of the high correlation of petal length (A) and
petal width (B) for the species setosa and versicolor, which is expressed by the tile with the
orange dashed border in Figure 6. With this constraint, the direction provided by Equation
(2) is given by vH = −0.73×A+ 0.11×B − 0.58× C + 0.34×D. The weight of the petal
width is reduced—the user already knows about its correlation with petal length—and the
weight of the other measurements is increased.

In Case 3 the user is interested only in the species versicolor and virginica and the
correlation between petal length (A) and petal width and sepal length (B–C). In this case
the most informative direction given by Equation (2) is vH = 0.50×A− 0.77×B + 0.39×
C + 0 × D. Sepal width (D) is no longer informative, because it is not connected to the
hypothesis pair H, and it appears in the projection with a zero weight.

Summarising, the projection therefore tends to emphasize more the directions that are
most informative to the user, of which we show more examples in Section 3.

2.6 Example: Analysing Partitions of Data Items

Partitioning of data items or subsets of data items can be found, e.g., by clustering al-
gorithms, by using known categorical attributes, or by visual inspection, as we will later
demonstrate in Sections 3.3 and 3.4. Our approach is suitable for probing such subsets of
data items and finding relations in data that are not explained by the given data subset.

At the simplest, if we are given a subset of data items of interest, we can use the hypoth-
esis tiling of Definition 7 to probe the subset of rows R of interest. Another straightforward
to include a subset of data items R into the user’s background information would be to add
a tile (R, [m]) to Tu, after which the system would ignore the data items in R. More nuanced
examples of adding subsets of data points into background information are given in Section
3.

2.7 Example: Subsetting Loses Information

We conclude this section with a simple example illustrating how subsetting the data in order
to focus on a specific objective can lead to loss of information. With this example we wish

2. Notice that we actually have 50 (not 2) specimen per species! We compute the projections on the full
iris data.
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to highlight two aspects: (i) how the user’s background knowledge and objectives affect the
views that are most informative, and (ii) how it can be advantageous to investigate relations
in the data as a whole instead of using a subset of the data for the analysis.

We construct a toy data set with four attributes A, B, C, and D as follows. We first
generate two strongly correlated attributes A and B, after which we generate attribute C
by adding noise to A, and attribute D by adding noise to B. This data set, visualised in
Figure 7(a), is very simple and here it is possible to investigate all pairwise relations in the
data in one view. This is in general not possible in any real analysis scenarios. Furthermore,
we assume that the user is interested in the relation between attributes C and D. Our goal
is then to find a maximally informative 1-dimensional projection of the data that takes both
this objective and the user’s background knowledge into account.

First, let us assume that the user only knows the marginal distribution of each attribute
but is unaware of the relations between the attributes. Using the approach in this paper we
formulate this by means of the hypothesis pair H0 = 〈Tu0 + TH1 , Tu0 + TH2〉, where Tu0 = ∅,
TH1 = {(R, {C,D})}, TH2 = {(R, {C}), (R, {D})}, and R = [n] (all rows in the data). A
sample from ΩTu0+TH1

is shown in Figure 7(b) using purple squares, and a sample from
ΩTu0+TH2

is shown using orange circles. The orange distribution hence models what the
user currently knows and the purple what the user could optimally learn about the relation
between C and D from the data. The orange and purple distributions differ the most in
the plot CD, as expected, and indeed the maximally informative 1-dimensional projection
satisfying Equation (2), is given by v = 0.7C + 0.7D.

Secondly, assume that, unlike above, the user is already aware of the relationship between
the attribute pairs A and C as well as B and D, but does not know that attributes A and
B are almost identical. We proceed as above with the difference that we now add the
user’s knowledge as a constraint to both the distributions. This is achieved by updating
the hypothesis pair to H1 = 〈Tu1 + TH1 , Tu1 + TH2〉, where Tu1 = {(R, {A,C}), (R, {B,D})}
captures the user’s knowledge.

Samples from the uniform distributions on the data sets conforming to this hypothesis
pair are shown in Figure 7(c). Again, the orange distribution models the user’s knowledge
(that is, ΩTu1+TH2

) and the purple what the user could learn from the relation between C and
D from the data, given that the user already knows about the relationships of the attribute
pairs A and C as well as B and D (that is, ΩTu1+TH1

). The orange and purple distributions
differ the most in the plot AB and therefore the user would gain most information if shown
this view. Indeed, the most informative 1-dimensional projection satisfying Equation (2) is
v = −0.7A− 0.7B. In other words, the knowledge of the relation of A and B gives maximal
information about the relation of C and D. This makes sense, because the variables C and
D are really connected via A and B through their generative process.

This example hence shows how the background knowledge affects the views. Also, if
we had chosen a subset of the data containing, for example, just attributes C and D we
would not have observed the connection of C and D through A and B, even if we knew
the relation between A and C as well as B and D. Thus, we have demonstrated with this
simple example that using hypothesis tilings as above allows us to explore the entire data
set at once while still focusing on particular relations of interest.
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3. Experiments

In this section we first consider the stability and scalability of the framework presented
in this paper. After this, we present examples of how the proposed method is used to
explore relations in a data set and to focus on investigating a hypothesis concerning relations
in a subset of the data. An open source library implementing the proposed framework,
including the code for the experiments presented in this paper, is available from https:
//github.com/edahelsinki/corand/.

All the experiments were run on a MacBook Pro laptop with a 3.1GHz Intel Core i5
processor using R version 3.5.2 (R Core Team, 2018).

3.1 Data Sets

We use synthetic data in the scalability experiment. We also use two real-world data sets
to showcase the applicability of our framework in human-guided data exploration.

The german socioeconomic data set (Boley et al., 2013; Kang et al., 2016a)3 contains
records from 412 German administrative districts. Each district is represented by 46 at-
tributes describing socioeconomic and political aspects in addition to attributes such as the
type of the district (rural/urban), area name/code, state, region (East/West/North/South)
and the geographic coordinates of each district center. The socioecologic attributes include,
for example, population density, age and education structure, economic indicators (for exam-
ple, GDP growth, unemployment, income), and the proportion of the workforce in different
sectors. The political attributes include election results of the five major political parties
(CDU/CSU, SPD, FDP, Green, and Left) in the German federal elections in 2005 and 2009,
as well as the voter turnout. For our experiments we exclude the election results from
2005 (which are highly correlated with the 2009 election results), all non-numeric variables,
and the area code and coordinates of the districts, resulting in 32 real-valued attributes
(although we use the full data set when interpreting the results). Finally, we scale the
real-valued variables to zero mean and unit variance.

The accident data set4 is a random sample of 3000 accidents from a large data set
containing all occupational accidents in Finnish enterprises during the period 2003–2014 re-
ported to the Finnish Workers’ Compensation Center. In the original data set, the accidents
are described by 37 variables, the majority of which are categorical, including details about
the victim (occupation, age, sex, nationality) and the accident (geographical location, cause,
type, working process). We use one-hot encoding to transform the categorical variables into
real-valued variables, creating a column for every label of every variable in which the pres-
ence (absence) of a label is indicated by 1 (0, respectively). To restrict the dimensionality
of the resulting encoding, we drop variables with a very high number of labels; for example,
the variable for the municipality in which the accident happened has more than 300 labels
and would result in equally many columns in the data. Variables with many labels are
implicitly given more weight in the one-hot encoding as well. For instance, the attribute
sukup (gender) has 2 labels, while the attribute ruumis (injured body part) has 68 labels.
In the transformed data there are 2 columns for sukup and 68 columns for ruumis, making
the latter more strongly represented in the data. This could impact further analysis, and to

3. Available from http://users.ugent.be/~bkang/software/sica/sica.zip
4. Proprietary data obtained from the Finnish Workers’ Compensation Center https://www.tvk.fi/
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σ ∆n = 0 ∆n = 100 ∆n = 200

0 0.000 0.008 0.021
1 0.049 0.058 0.096
2 0.111 0.144 0.170
5 0.280 0.230 0.293
10 0.358 0.302 0.308

Table 1: The mean relative error as a function of perturbance of the data. Here σ is the
variance of the noise added and ∆n denotes the number of rows randomly removed.
The relative error is the difference in gain of Equation (1) between the optimal
solution vH and the solution v∗H found on perturbed data divided by the gain in
the optimal solution.

overcome this effect, we scaled the binary data in groups, that is, all columns that originate
from the same variable are scaled to have a total variance of 1. The resulting data set
contains 3000 rows and 220 attributes.

3.2 Stability and Scalability

We first study the sensitivity of the results with respect to noise or missing data rows. In
this experiment we use the 32 real-valued variables from the german data together with
three (non-trivial) factors, namely Type (2 values), State (16 values), and Region (4 values)
to create synthetic data sets. A synthetic data set, parametrised by the noise term σ and
an integer ∆n is constructed as follows. First, we randomly remove ∆n rows from the
data, after which Gaussian noise with variance σ2 is added to the remaining variables, and
finally all variables are rescaled to zero mean and unit variance. We create a random tile
by randomly picking a factor that defines the rows in a tile and then randomly sample 2 to
32 attributes as the columns. The background knowledge Tu consists of three such random
tiles. The hypothesis tiles are constructed using one such random tile (R,C) as a basis:
TH1 = {(R,C)} and TH2 = ∪j∈C{(R, {j})}.

The results are shown in Table 1. We notice that the method is relatively insensitive
with respect to the gain in terms of noise and removal of rows. Even removing about half
of the rows (∆n = 200) does not change the results meaningfully. Only a very high degree
of noise, corresponding to σ ≥ 5 (that is, circa 5–10% signal-to-noise ratio) substantially
degrades the results.

Table 2 shows the running time of the algorithm as a function of the size of the data
for Gaussian random data with a similar tiling setup as used for the german data. We
make two observations. First, the tile operations scale linearly with the size of the data nm
and they are relatively fast. Most of the time is spent on finding the views, that is, solving
Equation (2). Even our unoptimised pure R implementation runs in seconds for data sets
that are visualisable (having thousands of rows and hundreds of attributes); any larger data
set should in any case be downsampled for visualisation purposes.
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n m tmodel (s) tview (s)

500 10 0.02 0.01
1000 10 0.04 0.01
5000 10 0.22 0.04

10000 10 0.53 0.10

500 50 0.06 0.14
1000 50 0.10 0.20
5000 50 0.41 0.81

10000 50 2.01 1.65

500 100 0.09 0.48
1000 100 0.14 0.75
5000 100 0.92 3.32

10000 100 3.40 6.68

500 150 0.13 1.02
1000 150 0.28 1.65
5000 150 1.58 7.26

10000 150 2.22 15.20

500 200 0.25 1.74
1000 200 0.40 3.05
5000 200 0.84 13.08

10000 200 6.67 26.37

Table 2: Median wall clock running time for random data with varying number of rows (n)
and columns (m) for a data set consisting of Gaussian random numbers. We give
the time to add three random tiles plus hypothesis tiles (tmodel) and the time to
find the most informative view (tview), that is, to solve Equation (2).

3.3 Exploration of the German Data Set

Next, we demonstrate our framework by exploring the german data set under different
objectives.

Exploration without prior background knowledge We start with unguided data ex-
ploration where we have no prior knowledge about the data and our interest is as generic
as possible. In this case Tu = ∅ and as the hypothesis tilings we use TE1 , where all
rows and columns belong to the same tile (fully-constrained tiling), and TE2 , where all
columns form a tile of their own (fully unconstrained tiling). Our hypothesis pair is then
HE,∅ = 〈∅+ TE1 , ∅+ TE2〉.

We then consider the view of the data (Figure 8) which is maximally informative, that
is, in which the two distributions parametrised by the hypothesis pair HE,∅ differ the most.
We observe that there is some structure visible in this view. In order to investigate the
characteristics of the data points corresponding to different patterns in the german data,
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Figure 8: The most informative view of the german data set with respect to the hypothesis
pair HE,∅. Black filled circles show the data points; the selected points (Selection
1) are marked with purple. The x and y axis labels show the five attributes with
the largest absolute values in each projection vector.

Region Type

Selection North South West East Urban Rural

Selection 1 0 0 0 54 0 54
Selection 2 10 7 21 22 60 0

Table 3: Distribution of the Region and Type attributes for Selection 1 and Selection 2 in
the german data set.

we first choose to focus on the set of points in the upper right corner, marked with purple
in Figure 8. Our selection, denoted by Selection 1, corresponds to rural districts in Eastern
Germany (see Table 3). We also consider the parallel coordinates plot of the data, shown in
Figure 9. This plot shows the 32 real-valued attributes in the data. The currently selected
points (Selection 1) are shown in purple while the rest of the data is shown in black. The
number in parentheses following each variable name is the ratio of the standard deviation
of the selection and the standard deviation of all data. If this number is small we can
conclude that the values for a particular attribute are homogeneous inside the selection
(behave similarly). Based on the parallel coordinates plot in Figure 9 we observe that there
is little support for the Green party and a high support for the Left party in these districts.
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GDP.growth.2008 (1.05)
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Figure 9: Parallel coordinates plot of the german data set with Selection 1 of Figure 8
highlighted in purple. Here each of the jigged vertical lines corresponds to one
of the data items; the colours are as in Figure 8. Each of the horizontal lines
corresponds to a data attribute. The values of the attributes have been shifted
and scaled so that the minimum value of each attribute is at the left and the
maximum value is at the right. The intersection of a horizontal line and a jigged
vertical line (data item) corresponds to the value of the attribute for the particular
data item. In the parenthesis we show the ratio between the standard deviation of
the attribute for the selection (purple data items) and the standard deviation of
the attribute for all data items, i.e., the parameter τ as defined Section 2.4. The
attributes have been ordered by decreasing τ , after which the attributes that are
most homogeneous for data items in this particular selection are at the bottom.

We next add a tile constraint t for the items in the observed pattern where the columns
(attributes) are chosen as described in Section 2.4 using a threshold value τ = 2/3. Thus,
we select those attributes for which the standard deviation ratio, that is, the number in
parentheses in Figure 9, is below the threshold. The hypothesis pair is then updated to take
into account the newly added tile, that is, we consider HE,{t} = 〈{t}+ TE1 , {t}+ TE2〉.

The most informative view displaying differences of the distributions parametrised by
HE,{t} is shown in Figure 10. Now, Selection 1 (shown in purple for illustration purposes)
is no longer as clearly visible in Figure 10 as it is in the first view. This is expected, since
this pattern has been accounted for in the distributions parametrised using HE,{t}. We now
focus on investigating the sparse region of points shown in orange in Figure 10 (Selection 2 ).
By inspecting the class attributes of this selection we learn that these items correspond to
urban districts (see Table 3) in all regions. Based on the parallel coordinates plot shown in
Figure 11 we conclude that these districts are characterised by a low fraction of agricultural
workforce and a high amount of service workforce, both expected in urban districts. We
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Figure 10: The most informative view of the german data set with respect to HE,{t}. Black
filled circles show the data points; the selected points, that is, Selection 2 are
shown in orange. The points corresponding to Selection 1 from the previous
exploration step are shown in purple. The x and y axis labels show the five
attributes with the largest absolute values in each projection vector.

also notice that these districts have had a higher GDP growth in 2009 and that it appears
that the amount of votes for the CDU party in these districts was quite low.

Exploration with a specific hypothesis Next, we focus on a more specific hypothesis
involving only a subset of rows and attributes. In particular, we want to investigate a hy-
pothesis concerning the relations between certain attribute groups in rural areas. We hence
define our hypothesis pair as follows. As the subset of rows R we choose all 298 districts
that are of the type rural. We then consider a subset of the attributes C = C1∪C2∪C3∪C4

partitioned into four groups. The first attribute group (C1) consists of the voting results
for the political parties in 2009. The second attribute group (C2) describes demographic
properties such as the fraction of elderly people, old people, middle aged people, young peo-
ple, and children in the population. The third group (C3) contains attributes describing the
workforce in terms of the fraction of the different professions such as agriculture, produc-
tion, or service. The fourth group (C4) contains attributes describing the level of education,
unemployment and income. The attribute groupings are listed in Table 4. Thus, we here
want to investigate relations between different attribute groups, ignoring the relations inside
the groups.

We form the hypothesis pair HF,∅ = 〈∅ + TF1 , ∅ + TF2〉, where TF1 consists of a tile
spanning the rows in R and the columns in C whereas TF2 consists of four tiles: ti = (R,Ci),
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Figure 11: Parallel coordinates plot of the german data set with Selection 2 of Figure 10
highlighted in orange. See the caption of Figure 9 for an explanation of the
semantics of the plot.

Group Attributes

C1 LEFT.2009, CDU.2009, SPD.2009, FDP.2009, GREEN.2009
C2 Elderly.pop., Old.Pop., Mid.aged.Pop., Young.Pop., Children.Pop.
C3 Agricult..workf., Prod..workf., Manufac..Workf., Constr..workf.,

Service.workf., Trade.workf., Finance.workf., Pub..serv..workf.
C4 Highschool.degree, No.school.degree, Unemploy., Unempl..Youth, Income

Table 4: Column groups in the focus tile in the exploration of the german data set.

i ∈ {1, 2, 3, 4}. Looking at the view in which the distributions parametrised by the pair HF,∅
differ the most, shown in Figure 12(a), we find two clear clusters corresponding to a division
of the districts into those located in the East, and those located elsewhere. We could
also have used our already observed background knowledge of Selection 1, by considering
the hypothesis pair HF,{t} = 〈{t} + TF1 , {t} + TF2〉, where t is the tile defined earlier for
Selection 1. For this hypothesis pair, the most informative view is shown in Figure 12(b),
which clearly is different to Figure 12(a), since we already were aware of the relations
concerning the rural districts in the East and this was included in our background knowledge.

Comparison to PCA and ICA To demonstrate the utility of the views shown, we
compute values of the gain function as follows. We consider our four hypothesis pairs
HE,∅, HE,{t}, HF,∅, and HF,{t}. For each of these pairs, we denote the direction in which
the two distributions differ most in terms of the variance (solutions to Equation (2)) by
vE,∅, vE,{t}, vF,∅, and vF,{t}, respectively. We then compute the gain G(v,H) for each
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Figure 12: Views of the german data set corresponding to the hypothesis pairs (a) HF,∅
and (b) HF,{t}. Data points inside the focus area are shown using filled circles
(•) and points outside the focus area are shown using hollow circles (◦). The x
and y axis labels show the five attributes with the largest absolute values in each
projection vector.

HE,∅ HE,{t} HF,∅ HF,{t}

vE,∅ 8.831 4.211 1.921 1.195
vE,{t} 8.105 8.875 1.198 1.133
vF,∅ 4.879 2.241 2.958 1.193
vF,{t} 1.759 1.973 1.663 1.762
vpca 8.831 4.211 1.921 1.195
vica 0.005 0.005 1.000 0.999

Table 5: The value of the gain G(v,H) for different projection vectors v and hypothesis
pairs H.

v ∈ {vE,∅, vE,{t}, vF,∅, vF,{t}} and H ∈ {HE,∅,HE,{t},HF,∅,HF,{t}}. For comparison, we also
compute the first principal component analysis (PCA) and independent component analysis
(ICA) (Hyvärinen, 1999) projection vectors, denoted by vpca and vica, respectively, and
calculate the gain for different hypothesis pairs using these. For ICA, we use the log-cosh G
function and default parameters of the R package fastICA. The results are presented in
Table 5. We find that the gain is always the highest when the projection vector matches
the hypothesis pair (highlighted in the table), as expected. This shows that the views
presented are indeed the most informative ones given the current background knowledge
and the hypothesis pair being investigated. We also notice that the gain for PCA is equal
to that of unguided data exploration, as expected by Theorem 11. When some background
knowledge is used or if we investigate a particular hypothesis, the views with PCA or ICA
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Group Attribute # Values Interpretation

C1 AM1LK 14 Occupation of victim
C2 EUSEUR 8 Days lost (severity of the accident)
C3 IKAL 12 Age of victim (5-year bins, except 0–14 and

>65 years)
C4 NUORET 4 Age of victim (0–15, 16–17, 18–19, and >19 years)
C5 RUUMIS 33 Injured body part
C6 POIKKEA 10 Deviation before accident
C7 SATK 12 Month of accident
C8 SUKUP 2 Gender
C9 TOLP 22 Main industry category
C10 TPISTE 4 Workstation
C11 TYOSUOR 9 Specific physical activity
C12 TYOTEHT 31 Work done at the time of accident
C13 VAHITAP 16 Contact-mode of injury
C14 VAHTY 2 Accident class
C15 VAMMAL 13 Type of injury
C16 VPAIVA 7 Week day of accident
C17 VUOSI 12 Year of accident

Table 6: Column groups in the focus tile in the exploration of the accident data set. For
each attribute there are ‘# Values’ columns in the data set which are grouped
together in the hypothesis tilings

objectives are less informative than the one obtained using our framework. The gains close
to zero for the ICA objective are directions in which the variance of the more constrained
distribution is small due to, for example, linear dependencies in the data.

3.4 Exploration of the Accident Data Set

Due to the preprocessing, several columns in the accident data set are used to encode
the distinct categorical values in the original data. If we now want to explore relationships
between the original variables, we can define a hypothesis pair, in which columns corre-
sponding to the same categorical attribute are grouped together. We can thus investigate
relations between attribute groups, ignoring relations inside the groups.

We define the hypothesis pair as follows. As the subset of rows R we choose all the
3000 rows in the accident data set. We then consider a subset of the attributes C =
C1 ∪ C2 ∪ · · · ∪ C17, where a summary of the attribute groupings C1, . . . , C17 is provided
in Table 6. The hypothesis pair is then HA,∅ = 〈∅ + TA1 , ∅ + TA2〉, where TA1 consists of a
tile spanning all rows in R and all columns in C whereas TA2 consists of tiles: ti = (R,Ci),
i ∈ {1, . . . , 17}. The view in which the distributions parametrised by HA,∅ differ the most
is shown in Figure 13(a). Here we observe two clear clusters. We select the points shown
in purple and observe that these data points correspond to accidents happening during

25



Puolamäki, Oikarinen and Henelius

−2e−05 0e+00 2e−05 4e−05

−
1e

−
04

−
5e

−
05

0e
+

00
5e

−
05

1e
−

04

+0.29 (EUSEUR.5) +0.29 (EUSEUR.4) +0.29 (EUSEUR.3) +0.29 (EUSEUR.6) +0.29 (EUSEUR.9)

−
0.

28
 (

V
A

H
T

Y.
P

) 
−

0.
28

 (
V

A
H

T
Y.

M
) 

−
0.

25
 (

T
P

IS
T

E
.1

) 
−

0.
25

 (
T

P
IS

T
E

.2
) 

−
0.

25
 (

T
P

IS
T

E
.9

)

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●
●

●
●

●

●
●●
●

●

●

●
● ●

●

●

●
●

● ●

● ●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●
●●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●
●

●
●

● ●●
●

●
●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●● ●

●

●

●

●
●

● ●

●
● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●
●

●
●●

●

●

●
●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●●

−0.00010 −0.00005 0.00000 0.00005 0.00010 0.00015

−
6e

−
04

−
2e

−
04

2e
−

04

+0.43 (NUORET.2) +0.43 (NUORET.3) +0.43 (NUORET.4) +0.43 (NUORET.1) −0.11 (TPISTE.9)

−
0.

23
 (

E
U

S
E

U
R

.9
) 

−
0.

23
 (

E
U

S
E

U
R

.8
) 

−
0.

23
 (

E
U

S
E

U
R

.6
) 

−
0.

23
 (

E
U

S
E

U
R

.4
) 

−
0.

23
 (

E
U

S
E

U
R

.5
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

● ●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●

●

●

●
●

●
●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

● ●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●
●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●●
●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

● ●

●
●

●

●

●●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●
● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●●
●

●

●
● ●

●

● ●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●
●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●
● ●

●

●

●

●

●

●●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●
●● ●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●● ●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

● ●
●

●

●

●
●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

● ●● ●

●
●

●

●

●

●
●

●
●

●

● ●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●

● ●

●
●

●

●

●

●

●●
● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●
●

●

●●
●

●
●

●
●

●●

●

●

●

●

● ●●

●

●

●
●●

●

●

●

●

● ●

●

●

●● ●
●●

●

●
●

●
●●

●
●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●
●● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

● ●

●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●●●

●

●

●
●

●

●

●
●

●

●●

●

●

●●●

●
●

●

●

●

●

●

●●
● ●●

●●

●●
●

●

● ●●

●

●

●
●●

●

●
●

●

●
●

●

● ● ●●
●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

● ●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

(a) (b)

Figure 13: Views of the accident data set corresponding to the hypothesis pairs (a) HA,∅
and (b) HA,{tA}. Filled circles show the data points; the selected points are
marked with purple/orange, see description in the text. The x and y axis labels
show the five attributes with the largest absolute values in each projection vector.

travel to work (vahty.m). Also, the attributes tpiste, tyoteht, tyosuor, poikkea,
and vahitap (all related to the type of work or the place of work in which the accident
occurred) have missing values (–) here, which is natural when an accident happens during
travelling to work. The points in the complement of the purple selection on the other hand
correspond to accidents happening in the workplace (vahty.p).

Next, we add a tile tA with the selection of purple points in Figure 13(a) as the set of rows
and all columns in the accident data as the set of columns to incorporate our knowledge
concerning these points into the exploration. We proceed to consider the updated hypothesis
pair HA,{tA} = 〈{tA}+TA1 , {tA}+TA2〉. The most informative view for this hypothesis pair
is shown in Figure 13(b). For illustration purposes we show in purple the same selection
of rows in data as in Figure 13(a). We can now select, for example, the data points shown
in orange in Figure 13(b) for further inspection. This selection corresponds to accidents in
the workplace (vahty.p) which happened mainly to women (sukup.n) over 19 years old
(nuoret.4), resulting in 31–90 days of absence from work (euseur.9).

4. Conclusions

In this paper we propose an interactive visual data exploration framework integrating the
user’s background knowledge (increasing iteratively during the exploration) and the user’s
current exploration interests in a principled way. We provide an efficient implementation of
this method using constrained randomisation. Furthermore, we also extended PCA to work
seamlessly with the framework in the case of real-valued data sets.

Typical real-world data sets, for instance those empirically investigated in this paper,
contain a vast number of interesting patterns. The goal of the data analyst is to find
interesting relations in the data. If automated analysis methods are used to extract patterns,
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it means that the patterns must be specified in advance to be used in conjunction with some
data mining algorithm. Specifying patterns in advance is clearly nontrivial when there is
a multitude of variable combinations that must be taken into account. Furthermore, if
patterns are only extracted based on a priori specifications it is not possible to use insights
obtained during the exploration to steer further exploration.

It is here where the power of human-guided data exploration lies. A non-interactive data
mining method is restricted to either show generic features of the data—which may already
be obvious to an expert—or output unusably many patterns, which is a typical problem,
for example, in frequent pattern mining (there are easily too many patterns for the user
to absorb). Our framework solves this problem: by integrating the human’s background
knowledge and focus—formulated as mathematically defined hypotheses—we can at the
same time guide the search towards topics interesting to the user at any particular moment
while taking the user’s prior knowledge into account in an understandable and efficient way.
Hence, the framework described in this paper makes it possible to interactively and efficiently
explore relations between attributes in the data through a conceptually simple paradigm
where the relations are encoded using tile constraints. This exploration framework allows
the data analyst to use his or her innate pattern recognition skills to spot complex patterns,
instead of having to specify them in advance. As demonstrated in our empirical evaluation
of two real-world data sets, the proposed interactive exploration framework allows us to find
interesting patterns and hence to make sense of the relations in the data.

Our work contains implicit assumptions about the human cognitive processing, such that
the user’s knowledge can be modelled using a background distribution. The validity of these
assumptions is an interesting topic for future research. For example, the order in which
different relations are observed probably matters to a real user, whereas our formulation is
invariant under ordering of the relations. Also, the user is probably not able to model very
fine-grained distributions, while our mathematical formulation of the background distribu-
tion can become extremely complex when the number of constraints grows.

As a potential direction for future work we consider the extension of the proposed method
to understand classifiers or regression functions in addition to static data. Extending the
ideas used here to different data types such as, for example, time series, is also worth inves-
tigating. Finding an efficient algorithm that could find a sparse solution to the optimisation
problem of Equation (2) would also be an interesting problem. To the best of our knowl-
edge, no such solution is readily available. We note that the solutions for sparse PCA are
not directly applicable here: sparse PCA would indeed give a sparse variant of the vector
w in Theorem 10. However, this would not result in a sparse vH = Ww. Furthermore, we
plan to study how to incorporate in our framework a scheme for evaluating the statistical
significance of the visually observed patterns.

In our work, we chose to use a linear projection and showed that our method reduces
to PCA at the limit of generic objectives and no background information. We showed that
linear projections can be computed efficiently for arbitrary background knowledge and ob-
jectives (expressed in our tile notation). We could, however, in principle replace the linear
projection by a non-linear embedding that would in the same way show differences between
the hypothesis pairs. In their recent work, Kang et al. (2020) presented a variant of t-SNE
that can be used to produce informative visualisations with the background information
parametrised by a partition of data points into known classes. Their method is not appli-
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cable to generic tile constraints, but it might be possible to use their ideas to develop a
non-linear embedding that would work with generic tile constraints, in which case the re-
sulting visualisation method could be used as a drop-in replacement for the linear projection
presented in this paper.

In this paper we have implicitly assumed that the exploration takes place in one explo-
ration session by a single user. In practical applications it might make sense to incorporate
data constraints learned on earlier exploration sessions or by other users into the model, and
to modify the hypotheses based on the insights gained.

Finally, we have implemented an open source R package that allows us to simulate
interactive visual data exploration using our framework. The framework is available under
an open source license from https://github.com/edahelsinki/corand/ and it includes, in
addition to the code needed to run the experiments in this paper, an interactive web-based
interface prototype. We have also earlier released a preliminary prototype called tiler
(Henelius et al., 2018), which includes the tile-based constrained randomisation approach,
but does not implement the dimensionality reduction method presented in this work.
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Appendix A. Algorithm for merging tiles

Merging a new tile into a tiling where all tiles are non-overlapping can be done efficiently
using Algorithm 1. We assume that the starting point is always a non-overlapping set of
tiles and hence we only need to consider the overlap that the new tile has with the tiles
in the tiling. This is similar to the merging of statements considered by Kalofolias et al.
(2016). The algorithm has two steps. Let T be the current tiling and t = (R,C) the new tile
to be added. In the first step (lines 1–11) we identify the tiles in T with which t overlaps,
and in the second step (lines 12–17) we resolve (merge) the overlap between t and the tiles
identified in the previous step.

The first step proceeds as follows. An empty hash map is initialised (line 1) to be used
to detect overlap between columns of the tiles in T and the new tile t. We proceed to
iterate over each row R in the new tile (lines 2–11). Since T is a tiling, all its tiles are
non-overlapping. We can thus store T in a matrix of the same size as the data matrix where
each element corresponds to the ID of the tile that covers that position. With a slight abuse
of notation, T in the algorithm refers to such a matrix. Now, given a row i ∈ R and a set of
columns C (line 3) we then get the IDs of the tiles on row i with which t overlaps. We store
this in K. The hash map is used to detect if this row has been seen before, that is, whether
K is a key in S (line 4). If this is the first time this row is seen, K is used as the key for a
new element in the hash map and S(K) is initialised to be a tuple (line 5). Elements in this
tuple are referred to by name, for instance, S(K)rows gives the set of rows associated with
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input : Tiling T as an n×m data matrix where an element is the ID of the tile to
which it belongs, and a tile t = (R,C).

output: T + {t} (the tiling in which T is merged with t).
1 S ← HashMap;
2 for i ∈ R do
3 K ← T (i, C);
4 if K /∈ keys(S) then
5 S(K)← Tuple;
6 S(K)rows ← {i};
7 S(K)id ← unique(T (i, C));
8 else
9 S(K)rows ← S(K)rows ∪ {i};

10 end
11 end
12 pmax ← max(T (R,C));
13 for K ∈ keys(S) do
14 C ′ = {c | T (S(K)rows, c) ∈ S(K)id} ;
15 T (S(K)rows, C

′)← pmax + 1 ;
16 pmax ← pmax + 1;
17 end

18 return T

Algorithm 1: Merging a tile t with the tiles in a tiling T . The function HashMap denotes
a hash map. The value in a hash map H associated with a key x is H(x) and keys(H)
gives the keys of H. The function Tuple creates a (named) tuple. An element a in a tuple
w = (a, b) is accessed as wa. The function unique returns the unique elements of an array.

the key K, while S(K)id gives the set of tile IDs. On lines 6 and 7 we store the current row
index S(K)rows and the unique tile IDs S(K)id in the tuple. If the row was seen before, the
row set associated with these tile IDs is updated (line 9). After this first step, the hash map
S contains tuples of the form (rows, id) where id specifies the IDs of the tiles with which t
overlaps at the rows specified by rows.

In the second step of the algorithm (lines 12–17), we first determine the currently largest
tile ID in use (line 12). After this we iterate over the tuples in the hash map S. For each
tuple we must update the tiles having IDs S(K)id and on line 14 we hence find the columns
associated with these tiles. After this, the IDs of the affected overlapping tiles are updated
(line 15), and the tile ID counter is incremented (line 16). Finally, the updated tiling is
returned on line 18. The time complexity of the tile merging algorithm is O(nm).
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