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Abstract

We study a robust alternative to empirical risk minimization called distributionally robust
learning (DRL), in which one learns to perform against an adversary who can choose the
data distribution from a specified set of distributions. We illustrate a problem with current
DRL formulations, which rely on an overly broad definition of allowed distributions for
the adversary, leading to learned classifiers that are unable to predict with any confidence.
We propose a solution that incorporates unlabeled data into the DRL problem to further
constrain the adversary. We show that this new formulation is tractable for stochastic
gradient-based optimization and yields a computable guarantee on the future performance
of the learned classifier, analogous to—but tighter than—guarantees from conventional
DRL. We examine the performance of this new formulation on 14 real data sets and find
that it often yields effective classifiers with nontrivial performance guarantees in situations
where conventional DRL produces neither. Inspired by these results, we extend our DRL
formulation to active learning with a novel, distributionally-robust version of the standard
model-change heuristic. Our active learning algorithm often achieves superior learning
performance to the original heuristic on real data sets.

Keywords: Distributionally robust optimization, Wasserstein distance, optimal transport,
supervised learning, active learning

1. Introduction

Human learning is robust in ways that statistical learning struggles to replicate. Small changes
to image pixel values and audio waveforms, for example, can dramatically alter the outputs of
classifiers trained by conventional empirical risk minimization, while remaining imperceptible
to human observers (Szegedy et al., 2013; Carlini and Wagner, 2018). Robustness to artificial
and natural variations, however, is critical when learning systems are deployed “in the wild,”
such as in self-driving vehicles (Huval et al., 2015; Bojarski et al., 2016) and speech recognition
systems (Junqua and Haton, 2012; Hannun et al., 2014). Hence, the design of robust learning
techniques is a key focus of recent machine learning research (Eykholt et al., 2017; Madry
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et al., 2017; Raghunathan et al., 2018; Singh et al., 2018; Sinha et al., 2018; Cohen et al.,
2019; Yuan et al., 2019).

Distributionally robust learning (DRL) (Delage and Ye, 2010; Abadeh et al., 2015; Chen
and Paschalidis, 2018) offers an alternative to empirical risk minimization in which one
learns to perform against an adversary who chooses the data distribution from a specified
set of distributions. This approach offers several benefits, including robust performance
with respect to perturbations of the data distribution and computable guarantees on the
generalization of the learned model—provided the adversary’s decision set includes the true
data distribution.

The robustness guarantees offered by DRL rely on selection of the adversary’s decision
set; if the set does not include the true data distribution, the guarantees do not necessarily
hold.1 Most previous work has chosen the decision set to be a norm ball around the
empirical distribution of the training data (Abadeh et al., 2015; Chen and Paschalidis, 2018;
Esfahani and Kuhn, 2018; Sinha et al., 2018). As we show in Section 5.2, however, in many
cases this ball must be extremely large to contain the true data distribution. As a result,
the distributionally-robust learner attempts to be robust to an overly broad set of data
distributions, preventing it from making a prediction with any confidence. As a result, it can
do no better than assigning equal probability to all of the classes.

In this paper, we address the problem of overly-large decision sets by using unlabeled
data to further constrain the adversary. In essence, we can remove from the decision set
distributions that are unrealistic in the sense that their marginals in feature space do not
resemble the unlabeled data. With a smaller decision set, the distributionally-robust learner
can provide a tighter bound on the generalization performance, yielding nontrivial predictors
with non-vacuous performance guarantees in situations where conventional DRL offers neither.

Our mechanism for optimizing against an adversary constrained by unlabeled data is
general-purpose and applicable beyond supervised learning. We use this same mechanism to
formulate a novel distributionally-robust method for active learning; this method frequently
outperforms both uniform random sampling and standard methods for active learning.

2. Background

2.1 Notation

For any Polish space S, we use B(S) to denote the associated Borel σ-algebra andM(S) to
denote set of Radon measures on (S,B(S)). M+(S) is the set of nonnegative Radon measures
on (S,B(S)), and Q(S) is the set of probability measures: Q(S) = {π ∈M+(S) : π(S) = 1}.
Cb(S) is the set of continuous, bounded functions from S into R.

2.2 Statistical Learning

Let X be an input space and Y a label space, and let P be the true data distribution,
a probability measure over Z = X × Y. We focus on a classification setting, in which
Y = {yk}NYk=1 is a finite collection of discrete labels, while X can be any compact Polish space.

1. Here, the guarantee we refer to is the bound on expected loss in the objective of the DRL problem. If
the true data distribution is light-tailed, then generalization bounds can hold even for decision sets not
containing the true distribution, due to a regularization effect of DRL (Shafieezadeh-Abadeh et al., 2019).
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The learning problem chooses a hypothesis hθ : X → Q(Y), parameterized by θ ∈ Θ ⊆ Rq,
that minimizes the expected risk, EP `(hθ(X), Y ), where ` : Q(Y)×Y → R is a loss function
measuring deviation of the prediction hθ(X) from the true label Y .2

We cannot directly evaluate the expected risk, however, since P is unknown. We instead
have a labeled sample Ẑl = {(xil,yil)}

Nl
i=1 ⊂ X × Y consisting of Nl i.i.d. samples from P. If

P̂l = 1
Nl

∑Nl
i=1 δ(xil ,y

i
l)
is the empirical distribution of the labeled data, traditional empirical

risk minimization substitutes P̂l for P in the statistical learning problem, solving

minimize
θ∈Θ

EP̂l `(hθ(X), Y ) =
1

Nl

Nl∑
i=1

`(hθ(x
i
l),y

i
l). (1)

To reduce variance of this approximation and promote generalization, often a regularization
term (e.g., penalizing model complexity) is added to the loss.

2.3 Distributional Robustness

Distributionally-robust learning (DRL) (Delage and Ye, 2010; Abadeh et al., 2015; Chen and
Paschalidis, 2018) is an alternative to empirical risk minimization that attempts to learn
a predictor with minimal worst-case expected risk, against an adversary who chooses the
distribution of the data from a specified decision set P:

minimize
θ∈Θ

sup
µ∈P

Eµ `(hθ(X), Y ). (2)

P is typically a norm ball centered at the empirical distribution of the labeled data P̂l. If P
is chosen such that it contains the true data distribution P, the objective in (2) upper-bounds
the expected risk of the hypothesis.

In this paper, we focus on Wasserstein distributional robustness (Abadeh et al., 2015;
Chen and Paschalidis, 2018), in which the adversary’s decision set P is a norm ball with
respect to the Wasserstein distance:

Definition 1 (Wasserstein distance) Let c : Z × Z → R+ be a lower-semicontinuous
cost function. For any µ, ν ∈ Q(Z), the Wasserstein distance between µ and ν is

Wc(µ, ν) = inf
π∈Π(µ,ν)

∫
Z×Z

c(z, z′) dπ(z, z′), (3)

with Π(µ, ν) = {π ∈M+(Z ×Z) : π(A×Z) = µ(A), π(Z ×B) = ν(B), ∀A,B ∈ B(Z)}, i.e.,
the set of all joint distributions on Z × Z having marginals µ and ν. π is sometimes also
called a “transportation plan” for moving the mass in µ to match ν.

The Wasserstein distance differs from other common divergences on probability measures,
such as the KL divergence, in that it takes into account the geometry of the domain Z,
via the transport cost c. For this reason, it can compare measures with disjoint support,
for example. We derive our theoretical results for a general cost c, but in our experiment,
we choose c identically to the previous work on Wasserstein distributionally robust logistic
regression (Abadeh et al., 2015), setting c((x,y), (x′,y′)) = ‖x− x′‖p + κ|y − y′|.

2. We will always write (X,Y ) for the pair of random variables X : Ω→ X and Y : Ω→ Y over which we
are taking the expectation. Their distributions are to be understood from the context.
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2.4 Related Work

Distributionally robust optimization (Calafiore and El Ghaoui, 2006) has been explored
extensively beyond the learning setting, for a broad variety of objective functions and decision
sets. Often decision sets are defined by moment or support conditions (Delage and Ye, 2010;
Goh and Sim, 2010; Wiesemann et al., 2014) or divergences on probability measures such as
the Prokhorov metric (Erdoğan and Iyengar, 2006) or f -divergences (Ben-Tal et al., 2013;
Duchi et al., 2016; Namkoong and Duchi, 2016; Bertsimas et al., 2018; Miyato et al., 2015).
Directional deviation conditions have also been explored (Chen et al., 2007). Kuhn et al.
(2019) give a recent review of applications in machine learning.

Distributionally robust learning over a Wasserstein ball was proposed for logistic regression
(Abadeh et al., 2015), regularized linear regression (Chen and Paschalidis, 2018), and more
general losses (Gao and Kleywegt, 2016; Sinha et al., 2018; Dziugaite and Roy, 2017; Esfahani
and Kuhn, 2018; Blanchet et al., 2019). An equivalence to regularization, under various
assumptions on the loss, was shown by Gao et al. (2017); Shafieezadeh-Abadeh et al. (2019).
Blanchet et al. (2019) additionally discuss the limitation of Wasserstein DRL that we describe
in Sections 3 and 5, arising from the size of the Wasserstein ball required to encompass
the true data distribution, suggesting alternative robustness criteria that are sufficient for
generalization.

Several recent works have investigated the use of unlabeled data in training distributionally
robust models (Chen et al., 2019; Najafi et al., 2019; Blanchet and Kang, 2020). Carmon
et al. (2019) demonstrate that unlabeled data can bolster l∞-robustness greatly. None has
used unlabeled data to constrained the ambiguity set in the way that we propose. Blanchet
and Kang (2016) propose to use labeled data to constrain the ambiguity set, in a similar
spirit as the current work.

In Section 6, we discuss an application of the proposed method to active learning, which
is a well-studied topic that has inspired a wide variety of algorithms (Yang and Loog, 2018).
We focus on a class of heuristics that seek to maximize the change in the learned model
resulting from obtaining a labeled example (Settles et al., 2008; Freytag et al., 2014; Cai
et al., 2017).

3. Distributionally-Robust Learning with Unlabeled Data

3.1 A Problem with the Existing Approach

In the “medium-data” regime, where the labeled sample may be far from the true data
distribution P with respect to Wasserstein distance, Wasserstein distributionally-robust
learning suffers from imprecision of the decision set P , which is a Wasserstein ball centered at
the empirical distribution of the labeled sample. The volume of this ball grows rapidly in its
radius, requiring the learner to be robust to an enormous variety of data distributions. This
problem manifests as low confidence of the distributionally robust learner, even when the
radius ε is chosen to be much smaller than the true distance to the data distribution—thereby
foregoing the performance guarantee implied by (2).

Figure 1 shows an example; additional illustrations and model details are in Sec-
tion 5.2. We train a Wasserstein distributionally robust logistic regression model using
20 labeled samples from the Wisconsin breast cancer data set (Dua and Graff, 2019).
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Figure 1: Wasserstein distributionally robust
learning yields a no-confidence pre-
dictor at radius ε much smaller than
the distance to the true data distri-
bution.

We plot both the test set likelihood and the
maximum confidence of the learner over in-
put samples as the radius ε of the decision
set is varied.3 We see that the confidence
goes to 0.5—i.e., the classes are assigned
equal probability for all test set samples—
at a radius much smaller than the distance
to the empirical distribution of the test set.
Notably, the radius that maximizes the like-
lihood is approximately 1% of the distance
to the test distribution. This maximum is of-
ten suggested as an appropriate target when
choosing the radius ε in practice, as we will
discuss in Section 5.1.

3.2 Constraining
the Adversary Using Unlabeled Data

We propose to deal with the overwhelming size of the decision set by constraining it further,
pruning unrealistic potential data distributions while still allowing the set to contain the true
data distribution. Specifically, we intersect two additional constraints with the Wasserstein
ball.

The first constraint uses unlabeled data to constrain the marginal in X of the data
distribution. As is common in many learning settings, we assume that unlabeled data are
acquired much more readily than labeled data, giving the learner access to large set of
unlabeled examples. Let PX be the X -marginal, defined by PX (A) = P(A×Y) for all Borel
subsets A ∈ B(X ). Then our unlabeled data is a set X̂u ⊂ X drawn i.i.d. from PX .

The second constraint restricts the Y-marginal of the data distribution, by defining
intervals on the individual label probabilities. Let PY be the Y-marginal, which in a
classification setting is discrete PY =

∑NY
k=1 p

k
Yδyk for Y = {yk}NYk=1 the set of labels and

pkY the corresponding label probabilities. The interval for each label is [pkY ,p
k
Y ]. These

interval constraints might come from prior knowledge, another data set as in the ecological
inference setting (King, 2013; Frogner and Poggio, 2019), or directly from the training data,
as described in Section 5.2.

3.3 Problem Formulation and Duality

If we restrict the decision set as described in Section 3.2, we need to establish that the
distributionally robust learning problem is still tractable, particularly since one of the
constraints we have added is infinite-dimensional. Recall that PX is the marginal of the
unlabeled data on the feature space, and that pY and pY are the lower and upper bounds on
the marginal on the label.

3. The confidence of a hypothesis hθ at a point x ∈ X we define by max{hθ(x), 1− hθ(x)}.
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X Feature space
Y = {yk}NYk=1 Label space

Z X × Y
hθ Hypothesis function, parameterized by θ
` Loss function
P True data distribution (over Z)

PX X -marginal of P
PY Y-marginal of P
P̂l Labeled data distribution (over Z)

Bε(P̂l) Wasserstein ball of radius ε about P̂l
pkY (pkY) Upper (lower) bound on marginal probability of yk

U(PX ,pY ,pY) Set of probability measures π ∈ Q(Z × Z) whose first
X -marginal is PX and first Y-marginal satisfies
π((X × {yk})×Z) ∈ [pkY ,p

k
Y ], ∀k

Table 1: Notation.

We can define a set of possible joint distributions on X × Y that are consistent with this
data,

U(PX ,pY ,pY) =
{
P ∈M+(X × Y) : P(A× Y) = PX (A),

P(X ×B) ∈ [PY(B),PY(B)],

∀A ∈ B(X ), B ⊆ Y
}
,

(4)

with PY =
∑NY

k=1 p
k
Yδyk and PY =

∑NY
k=1 p

k
Yδyk .

Suppose in addition we observe labeled data Ẑl = {zi`}
Nl
i=1 ⊂ X × Y, with zi` = (xil,y

i
`),

that define the empirical distribution P̂l = 1
Nl

∑Nl
i=1 δzi`

. We define the adversary’s decision
set to be the intersection of the set of distributions U(PX ,pY ,pY) with a Wasserstein ball of
radius ε around the empirical distribution P̂l:

P = U(PX ,pY ,pY) ∩ Bε(P̂l), (5)

where Bε(P̂l) = {µ : Wc(µ, P̂l) ≤ ε}. Thus, our feasible set contains all distributions that
have the correct data and label marginals (and are thus in U(PX ,pY ,pY)), but which are
also close to the known labeled distribution (and thus contained in Bε(P̂l)).

The resulting distributionally-robust problem is defined identically to (2), using this
decision set P . The inner problem with fixed θ is that of evaluating a worst-case expected
loss

f(θ) = sup
µ∈P

Eµ `(hθ(X), Y ). (6)

For marginals PX with infinite support this an infinite-dimensional linear program as the
marginal on X of the solution µ must contain the support of PX .
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We can rewrite (6) by casting it as an optimal transportation problem over the space
Z = X × Y between our unknown distribution µ and the given data distribution such that
the transport plan π satisfies the marginal constraints on µ:

f(θ) =



supπ∈M(Z×Z)

∫
(X×Y)×Z `(hθ(x),y) dπ((x,y), z′)

s.t.
∫
Z×Z c(z, z

′) dπ(z, z′) ≤ ε
π(Z, zi`) = 1

Nl
∀i ∈ {1, . . . , Nl},

π((A× Y)×Z) = PX (A) ∀A ∈ B(X ),
π((X ,yk),Z) ≤ pkY ∀k ∈ {1, . . . , NY},
π((X ,yk),Z) ≥ pkY ∀k ∈ {1, . . . , NY},
π(A) ≥ 0 ∀A ∈ B(Z × Z).

(7)

Here the variable z = (x,y) indexes the support of the worst-case measure while z′ indexes
the support of P̂l. π is a transport plan that joins these two measures. Observe that only
the constraint on the X marginal is infinite dimensional. We will show that this constraint
corresponds in the dual problem to an expectation under PX of a finite dimensional cost.

While the program (6) is infinite dimensional, its dual is a problem in finite dimensions:

g(θ)=



inf
α,β,λ,λ

αε+ 1
Nl

∑Nl
i=1 β

i +
∑NY

k=1

(
λ
k
pkY − λ

kpkY

)
+EPX

[
max

k∈{1,...,NY}
i∈{1,...,Nl}

`(hθ, (X,y
k))−

(
αc
(
(X,yk), zi`

)
+ βi

)
− (λ

k − λk)
]

s.t. α, λk, λk ≥ 0 ∀k ∈ {1, . . . , NY}.

(8)

Here α ∈ R, β ∈ RN` , and λ, λ ∈ RNY . Each of these dual variables corresponds to a primal
constraint: α corresponds to the constraint on the transport cost, β the constraint that
the second marginal be P̂l, λ the lower bound on the worst-case label probabilities, and λ
the upper bound. The infinite-dimensional constraint that the first marginal of the primal
transport plan have X -marginal PX corresponds here to the expectation in the objective.
This correspondence is established in much more detail in the proof of Theorem 2 (Appendix
A), which shows that the two problems g(θ) and f(θ) are in fact equivalent.

We state our main theoretical result, whose proof is deferred to Appendix A:

Theorem 2 (Strong duality) Let X be a compact Polish space and Y = {yk}NYk=1 any
finite set. Let PX be a probability measure over X and P̂l = 1

Nl

∑Nl
i=1 δzi`

an empirical
probability measure over Z = X × Y, and define intervals [pkY ,p

k
Y ] ⊆ [0, 1], k ∈ {1, . . . , NY}.

Let the transportation cost c : Z ×Z → [0,+∞) be nonnegative and upper semicontinuous
with c(z, z′) = 0⇔ z = z′. Assume `(hθ(·), ·) : Z → R is upper semicontinuous. Define f as
in (6) and g as in (8). If U(PX ,pY ,pY) ∩ Bε(P̂l) 6= ∅, then

f(θ) = g(θ), ∀θ ∈ Θ. (9)

Furthermore, if relint(U(PX ,pY ,pY)∩Bε(P̂l)) 6= ∅, then there exists a minimizer (α∗, β∗, λ∗, λ∗) ∈
R+ × RNl × RNY+ × RNY+ attaining the infimum in (8).
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The take-away message of Theorem 2 is that distributionally-robust learning under the model
proposed here amounts to minimizing g with respect to θ, a finite dimensional problem that
can be tackled with stochastic gradient approaches.

We make three comments regarding Theorem 2. First, the Theorem assumes compact
X , convenient in several steps of the proof. The theorem remains practically relevant in
the sense that truly unbounded data distributions are rare, due to physical constraints. We
nevertheless expect the theorem continues to hold even with a noncompact X ; this is an
area for future work. Second, existence of the minimizer in Theorem 2 requires the relative
interior of the ambiguity set to be nonempty. This condition is well-defined with respect to
the weak topology on the space of measures.

Third, it is common in DRL literature to use a cost c((x,y), (x′,y′)) = ‖x−x′‖p+κ|y−y′|,
setting κ = +∞ to restrict the underlying optimal transport to move mass in X while leaving
the corresponding labels fixed. Our strong duality result, however, in proving existence of a
dual minimizer relies on boundedness of c on a compact domain X × Y , which precludes the
κ = +∞ setting. This is as far as we know an artifact of the proof and not a fundamental
limitation. We note also that κ can be arbitrarily large and Theorem 2 will still hold.

3.3.1 Relationship to Conventional DRL

The problem (6) is distinct from Wasserstein DRL in that we assume access to additional
information: the marginal PX and bounds on PY . We note two properties of our formulation:

1. We will show in Section 4.1 that it suffices to access only samples from the marginal PX .
This is unlabeled data, meaning that our formulation in fact applies in a semi-supervised
setting, rather than fully-supervised like conventional DRL.

2. This additional information constrains the ambiguity set further than in regular DRL,
entirely explaining any performance difference. We will find in Section 5 that the
performance guarantees obtained with the additional information are stronger than
those obtained without it.

4. Algorithm and Analysis

4.1 Optimization by SGD

Problem (8) is a convex, finite dimensional optimization problem in α, β, λ, λ that is the sum
of a linear term and an expectation under PX . To apply stochastic gradient descent, we first
need to compute derivatives under the variables α, β, λ, λ.

We first compute derivatives of the term under the expectation. Define Φi,k(·; θ, α, β, λ, λ)
as the function

Φi,k(x; θ, α, β, λ, λ) = `(hθ, (X,y
k))−

(
αc
(

(X,yk), zi`

)
+ βi

)
− (λ

k − λk).

The dual objective can be expressed as a function of θ, α, β, λ, λ as

αε+
1

Nl

Nl∑
i=1

βi +

NY∑
k=1

(
λ
k
pkY − λkpkY

)
+ EPX

[
maxk∈{1,...,NY}

i∈{1,...,Nl}
Φi,k(x; θ, α, β, λ, λ)

]
.
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For a given choice of i = i0 and k = k0, there is a set of points x for which Φi,k(x; θ, α, β, λ, λ)
is maximized at (i, k) = (i0, k0). These points define a subset V ik ⊆ X ,

V ik =
{
x ∈ X : Φi,k(x; θ, α, β, λ, λ) ≥ Φi′,k′(x; θ, α, β, λ, λ) ∀ i′, k′

}
. (10)

The sets V ik partition X , up to boundary points where the sets meet one another. We can
decompose the expectation above as a finite sum of integrals over domains V ik, i.e.

EPX
[
maxk∈{1,...,NY}

i∈{1,...,Nl}
Φi,k(x; θ, α, β, λ, λ)

]
=

Nl∑
i=1

NY∑
k=1

∫
V ik

Φi,k(x; θ, α, β, λ, λ) dPX (x). (11)

Note that V ik changes depending on the parameters (θ, α, β, λ, λ). To evaluate a derivative
with respect to one of these parameters, then, we need to differentiate under the integral
sign. Applying Reynolds’ Transport Theorem, we obtain that

∂

∂α

Nl∑
i=1

NY∑
k=1

∫
V ik

Φi,k(x; θ, α, β, λ, λ) dPX (x) =

Nl∑
i=1

NY∑
k=1

∫
V ik

∂

∂α
Φi,k(x; θ, α, β, λ, λ) dPX (x),

(12)
and the same holds for the other parameters θ, β, λ, λ. Reynolds’ Theorem also specifies
terms that are boundary integrals for the boundaries of the sets V ik. In our case, these terms
sum to zero, as almost every boundary point x ∈ intX is shared between exactly two sets
V ik, V i′k′ and the integrands at x for the corresponding boundary integrals exactly cancel.

The exact forms for the derivatives of the dual objective are given in Appendix B.
Although existence of subgradients is not required for Theorem 2, subgradients of Φi,k exist
so long as ` ◦ hθ is subdifferentiable in θ. To simplify notation further, we define

Φ(x; θ, α, β, λ, λ) = max
k∈{1,...,NY}
i∈{1,...,Nl}

Φi,k(x; θ, α, β, λ, λ). (13)

We can optimize for the optimal dual parameters θ, α, β, λ, λ by sampling x1, . . . ,xNb from
PX and computing gradients of Φ(xj ; θ, α, β, λ, λ) with respect to the dual variables. These
gradients define a stochastic gradient descent, subject to nonnegativity constraints on α, λ,
and λ. This approach is summarized in Algorithm 1.

4.2 Approximating the Performance Bound

An attractive feature of traditional Wasserstein DRL is that the optimal value of the objective
upper-bounds the true expected risk EP `(hθ(X), Y ), provided that the adversary’s decision
set contains the true data distribution P.

The proposed formulation using unlabeled data provides a similar guarantee. By weak
duality (Theorem 2), so long as P ∈ P , we have the following bound for all θ ∈ Θ, (α, β, λ, λ) ∈
R+ × RN` × RNY+ × RNY+ .

EP `(hθ(X), Y ) ≤ αε+
1

Nl

Nl∑
i=1

βi +

NY∑
k=1

(
λ
k
pkY − λkpkY

)
+ EPX [Φ(X)] , (14)
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Algorithm 1 SGD for distributionally robust learning with unlabeled data

Given: ε ≥ 0, pY ,pY ∈ [0, 1]NY , θ0 ∈ Θ, step size γ > 0, batch size Nb.
θ ← θ0, α, β, λ, λ← 0.
while not converged do
# {Computation of subgradients of Φ is described in Appendix B.}
Sample x1, . . . ,xNb ∼ PX .
θ ← ProjΘ

[
θ − γ

Nb

∑Nb
j=1∇θΦ(xj ; θ, α, β, λ, λ)

]
.

α← max
(

0, α− γ
[
ε+ 1

Nb

∑Nb
j=1∇αΦ(xj ; θ, α, β, λ, λ)

])
.

β ← β − γ
[

1
Nl

+ 1
Nb

∑Nb
j=1∇βΦ(xj ; θ, α, β, λ, λ)

]
.

λ← max
(
0, λ− γ

[
pY + 1

Nb

∑Nb
j=1∇λΦ(xj ; θ, α, β, λ, λ)

])
.

λ← max
(
0, λ− γ

[
−pY + 1

Nb

∑Nb
j=1∇λΦ(xj ; θ, α, β, λ, λ)

])
.

end while

with Φ(x) , Φ(x; θ, α, β, λ, λ) from Section 4.1. For any fixed θ, α, β, λ, λ we can approximate
this bound by sampling from PX and replacing the expectation EPX Φ(X) with a sample mean.
When (α, β, λ, λ) are optimal, this gives a concrete numerical estimate of the worst-case
performance of hθ. This error of this approximation can be bounded with high probability
under a variety of assumptions. Assuming the random variable Φ(X) has finite variance (for
instance in linear logistic regression with c the Euclidean distance in X and PX sub-Gaussian),
for example, Chebyshev’s inequality gives a tail bound that decreases with the number of
unlabeled samples,

Pr
(
EPX Φ(X) ≥ EP̂X Φ(X) + ε

)
≤ VarPX Φ(X)

Nuε2
, (15)

with VarPX Φ(X) the variance, P̂u the empirical distribution of the Nu unlabeled samples,
and ε > 0 the error. Equivalently, with probability 1− δ we have EPX Φ(X) ≤ EP̂X Φ(X) +√

VarPX Φ(X)
Nuδ

.
In some settings we can obtain tighter bounds on the error of the computed guarantee.

Specifically, in many modelling scenarios, we have that `(hθ(·), ·) and c(·, ·) are bounded,
implying that Φ(·) is bounded (for fixed values of θ, α, β, λ, λ). If Φ(X) ∈ [a, b], Hoeffding’s
inequality (Hoeffding, 1963) states that

P
(
EPX Φ(X) ≥ EP̂X Φ(X) + ε

)
≤ exp

(
− 2Nuε

2

(b− a)2

)
,

Equivalently, with probability 1− δ we have EPX Φ(X) ≤ EP̂X Φ(X) + (b− a)
√

log(1/δ)
2Nu

.

Substituting EP̂X for EPX in (14), then, we can approximate the guarantee on the
expected loss provided by weak duality, with the error of the approximation improving
with the square root of the number Nu of unlabeled samples. This differs from standard
generalization bounds in that here the approximation error only appears when we attempt

10
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to numerically compute the bound, and does not characterize the robustness guarantee itself,
stated in (14). It differs also in that it relies only on the number of unlabeled (rather than
labeled) data, which we assume to be abundant.

In Section 5.2, we compute this bound for a number of data sets and compare it to
the equivalent bound from traditional DRL (Figure 5). Since the bound relies on the true
distribution P being included in the adversary’s decision set, the choice of the radius ε of the
Wasserstein ball around the labeled data distribution P̂l is very important. We comment on
the impact of ε in Section 5.1.

5. Empirical Results

In this section, we investigate the empirical performance of our proposed formulation of
distributionally robust learning in the particular case of logistic regression. First, we
demonstrate an important limitation of the previously-proposed distributionally robust
logistic regression (Abadeh et al., 2015): Namely, there is often no choice of the radius ε of
the adversary’s decision set that yields a classifier that is both robust and non-trivial, in
the sense that it makes predictions with nonzero confidence. We then demonstrate that the
formulation proposed here, which uses unlabeled data to restrict the adversary, can yield
non-trivial classifiers with non-vacuous bounds on the generalization error.

5.1 How Important is the Choice of ε?

In practice, we do not know the radius necessary to include the true data distribution P in
the Wasserstein ball Bε(P̂l). Standard practice for DRL is to choose ε by cross-validation,
attempting to maximize a proxy for the out-of-sample performance. Implicitly, however,
doing so relies on a regularization effect of traditional DRL, documented by Gao et al. (2017)
and Shafieezadeh-Abadeh et al. (2019), which generates an inverted U-shaped out-of-sample
performance curve with respect to ε. Maximizing cross-validation performance does not
necessarily yield a robust classifier in the DRL sense: As we demonstrate in Section 5.2, for
some data sets there is no choice of ε that both includes P in the adversary’s decision set
and yields a non-trivial classifier using traditional DRL. As a consequence, ε that maximizes
generalization performance is much smaller than the distance between the labeled data P̂l
and the true data distribution P.

Here, we verify that the choice of ε matters critically for robustness in the sense of
traditional DRL, meaning that a learned classifier that is robust to distributions within an
ε-ball Bε(P̂l) is not robust to distributions even slightly outside the ε-ball. In this sense,
choosing ε by cross-validation in traditional DRL can yield a classifier that is not robust to
perturbations on the order of the distance between the labeled data P̂l and the true data
distribution P.

Figure 2 shows in blue the generalization performance (the average probability assigned
by the learned model to the correct class, on an out-of-sample test set) as a function of the
radius of robustness ε used during training the model, using the traditional distributionally
robust logistic regression model of Abadeh et al. (2015). The figure also shows in orange the
median confidence (the maximum of the predicted probabilities hθ(x) and 1− hθ(x)) of the
learned model evaluated on the test set. Further details are in Appendix D.2.
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Figure 3 shows the performance of the learned model evaluated on the worst data
distribution taken from the Wasserstein ball of radius ε + ∆ around the distribution of
training data. This ball is exactly the ambiguity set of traditional DRL for radius ε + ∆,
meaning that the performance shown in the figure measures robustness in the sense of
traditional DRL—it is the worst we might perform if the data distribution is allowed to lie at
a distance at most ε+ ∆ from the training data. Further details can be found in Appendix
D.3.

We make three empirical observations:

1. The generalization performance curve for traditional DRL has an inverted U shape,
with a maximum at a much smaller radius ε than is required to include the true data
distribution P in the adversary’s decision set. This is shown for several data sets in
Figure 2 and further in Appendix D.2.

2. The confidence of the model in every case drops quickly as the radius ε increased, for
radii much smaller than the distance required for the robustness guarantee to hold
(which has log-value 0.0 in the figure), in most cases reaching zero confidence (i.e.,
assigning equal probability to the classes) for ε smaller than this distance.

3. Wasserstein distributional robustness up to radius ε does not confer robustness to
distributions even slightly outside Bε(P̂l), at distance ε+ ∆, in the sense that there
exists a data distribution in the ball Bε+∆(P̂l) that yields poor performance for the
traditional Wasserstein DRL predictor trained with radius of robustness ε. This is
shown for several data sets in Figure 3 and further in Appendix D.3.

5.1.1 Choosing ε in the Proposed Method

The choice of ε for the proposed method is constrained by the fact that the feasible set is
empty for ε below a threshold, as there might be no distribution in the ball Bε(P̂l) having
the desired marginals PX and PY . This situation is easily detected in practice, as the value
of the dual g(θ) becomes unbounded below.

Empirically, with the proposed method, we find no evidence of a bias-variance tradeoff
as the radius ε is varied, unlike traditional Wasserstein DRL. Figure 4 shows out-of-sample
performance as we vary the difference between the radius ε and the minimal such radius for
which the feasible set is nonempty. The performance is flat out to a radius beyond which the
confidence of the learner decreases quickly. Appendix D.4 contains further examples.

This last observation suggests a criterion for choosing ε under the proposed DRL model:
One chooses the maximum ε such that the confidence of the learned classifier is above a
threshold. This is the as-robust-as-possible selection, as opposed to the maximum-cross-
validation-performance selection often used in traditional DRL. So long as the learned
hypothesis has high confidence, the proposed DRL sees no tradeoff between out-of-sample
performance and robustness so there’s no cost to choosing ε solely according to the confidence.
There are multiple possible implementations of this criterion. In our experiments, for example,
thresholding the median confidence on the unlabeled set at 0.7 often suffices to ensure that ε
is large enough to ensure P ∈ Bε(P̂l), for reasonable values of Nl (Figure 6).
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Figure 2: Traditional Wasserstein DRL. Out-of-sample performance (likelihood) and maxi-
mum confidence vs. radius of robustness ε as a percentage of the distance to the
true data distribution P. Performance shows a bias-variance tradeoff with peak at
ε much smaller than the distance to P. Confidence often drops sharply at a radius
much smaller than the distance to P.
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Figure 3: Traditional Wasserstein DRL. Worst-case performance (likelihood) vs. radius of
robustness ε and test-time data radius ε+ ∆. Yellow indicates perfectly correct
prediction (likelihood 1), blue perfectly incorrect (likelihood 0), and green perfectly
indecisive prediction (likelihood 0.5). Training with radius ε confers little robustness
beyond ε.
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Figure 4: DRL with unlabeled data. Out-of-sample performance (likelihood) and maximum
confidence vs. difference between the radius of robustness ε and the minimal radius
necessary for the decision set to be nonempty. Unlike with traditional Wasserstein
DRL, here there is no apparent bias-variance tradeoff. Performance is flat out to a
radius at which the confidence drops sharply.
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5.2 Empirical Performance of Learning with Unlabeled Data

In this section, we demonstrate the impact of the proposed method for constraining the
adversary’s decision set using unlabeled data. We evaluate the performance guarantee offered
by the previously-proposed distributionally robust logistic regression model (Abadeh et al.,
2015) on several binary classification data sets,4 and we compare it to the guarantee offered
by our model under the assumption that the radius ε of the Wasserstein ball Bε(P̂l) defining
the adversary’s decision set is chosen to include the true data distribution P.

For each data set, we sample a small number Nl of labeled examples and compute the
radius ε that is required to include the true (empirical) data distribution P in the Wasserstein
ball Bε(P̂l). This is the smallest ε for which the performance guarantee from DRL holds. We
use the labeled examples to compute the distributionally robust logistic regression under the
traditional model (Abadeh et al., 2015) and additionally use the set of unlabeled examples
to compute the same regression under the proposed model. We compare the performance
guarantee (i.e. the dual objective value) computed under each DRL model. Identical values
of ε are used for both methods, but a different value of ε is computed for each sampled set
of labeled examples Ẑl.

We examine two settings for the proposed method. The first assumes a strong prior
that specifies the exact (true) label probabilities, such that pY = pY . In practice such a
strong prior might come from auxiliary data, such as in ecological inference or with domain
knowledge. The second setting assumes a weak prior that specifies only 95% confidence
intervals for the label probabilities, estimated directly from the from labeled data Ẑl (Clopper
and Pearson, 1934). Unlike the strong prior, the weak prior requires no information about
labels outside the training set.

We vary the number of labeled examples and examine the computed performance guar-
antee, shown in Figure 5, as well as the median confidence of the learned predictor, shown
in Figure 6. The former is the worst-case guarantee (6) and not the actual generalization
performance of the learned classifier. We make three observations:

1. For all but one of the data sets, the performance bound computed by traditional DRL
is vacuous (guaranteeing only likelihood greater than or equal to 0.5), while the learned
classifier is trivial (assigning equal probability to both classes), for all tested numbers
of labeled examples (maximum Nl = 1000).

2. For all data sets, the proposed DRL using unlabeled data and either a strong prior
and a weak prior on the label probabilities yields a non-vacuous performance bound
and a non-trivial classifier, for Nl at which traditional DRL is vacuous.

3. The strong prior on label probabilities can yield highly non-trivial performance bounds,
for smaller numbers of labeled examples Nl than the weak prior. The weak prior yields
a looser performance guarantee as it specifies only the 95% intervals computed from
the training data, allowing a broader range of data distributions in the ambiguity set.

4. For 3 of the 14 data sets (see Figures 8 and 9 in the appendix) both regular DRL and
the weak prior yield vacuous performance guarantees for all training set sizes. This
occurs for the “difficult” data sets, in which even an non-robust linear logistic regression

4. Data sets are from the UCI machine learning repository (Dua and Graff, 2019).
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model struggles to achieve high out-of-sample performance. This can be seen in the
out-of-sample performance curves in Figure 10 for very small radius of robustness ε.
The strong prior nevertheless recovers a non-vacuous guarantee in all cases.

We have chosen ε as small as possible while ensuring the computed performance guarantee
holds, and the performance bound computed by either algorithm gets monotonically worse
as ε increases.

We emphasize that the results in Figures 5 and 6 do not address the generalization error
for either algorithm but rather involve the guaranteed performance over a specific set of
possible data distributions; this is the “robustness” in distributional robustness. Regular DRL
attempts to be robust over a very large set of possible data distributions; this set can be made
smaller using unlabeled data and prior bounds on label proportions. Our empirical results
show that often this smaller set is small enough that the resulting performance guarantee is
non-vacuous. The smaller set is obtained using additional information—from unlabeled data
and prior bounds on label proportions—that is unavailable to regular DRL, placing it in a
semi-supervised setting while the previous DRL is fully-supervised.

5.3 Discussion

The overwhelming size of an adversary’s decision set is a weakness of Wasserstein DRL that
prevents a reasonable tradeoff between robustness and confidence of the learned predictor.
To circumvent this problem, we use unlabeled data to further constrain the decision set.
Empirically, the proposed DRL problem produces non-trivial predictors having non-vacuous
performance guarantees in cases where traditional Wasserstein DRL fails to do so.

One topic we have not addressed is computational complexity. The proposed DRL is
computed via stochastic gradient descent. Each gradient computation scales linearly in the
number of labeled examples Nl and this scaling might prohibit application to large labeled
data sets. The key bottleneck is computing membership in the sets V ik in (10), which relies
on a maximization over labeled examples. This computation might be a fruitful target for
performance improvement, possibly via parallelization or by leveraging the fact that the cost
function c is a power of a metric. To give a sense of the overall complexity of the stochastic
gradient descent procedure, in Figure 7 we show the progress of the dual objective value
and `2 norm of the parameter gradient during the optimization, along with the average
per-iteration wallclock time, for a single data set. The setting is the same as in Figure 5 and
implementation details are given in Appendix D.1. Periodic rescaling of the step size plays
an important role in the optimization, suggesting that the number of iterations required
before convergence might significantly be reduced by using a smarter adaptation rule for the
step size.

In addition, our model implicitly assumes access to unlabeled data that are uncorrupted
by noise, as it constrains the data distribution to have marginal exactly equal to PX . One
can imagine a noise-tolerant version of the current model that replaces the exact marginal
constraint defined by PX with another Wasserstein- (or other norm)-ball constraint. In
the case of the additional Wasserstein ball constraint, the resulting problem is still a linear
program, but it is no longer apparent that there is a dual problem having finitely many
parameters. This problem will be interesting to study in future work.
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Figure 5: Worst-case performance bound (likelihood) vs. number of labeled data, setting
ε to include the true test distribution. The regular DRL bound is often vacuous
through Nl = 1000 while both DRL methods with unlabeled data yield non-vacuous
bounds.
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Figure 6: Median confidence vs. number of labeled data, setting ε to include the true test
distribution. The regular DRL predictor often has confidence close to 0.5 in settings
where both DRL methods using unlabeled data yield non-trivial predictors.
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Figure 7: Progress versus number of iterations for stochastic gradient descent optimization
of the dual objective. Average wall clock time per iteration is 0.022 seconds on a
Xeon E5-2690.

The dimensionality of the feature space X influences the performance guarantees obtained
by both traditional DRL and the current method. In particular, empirical distributions of
i.i.d. samples are known to converge to their continuous counterparts with their Wasserstein
distance going as O(N−1/q), q being the dimension of the domain (Kloeckner, 2012; Claici
et al., 2018). This scaling implies that the Wasserstein ball in the definition of both traditional
DRL and in the currently proposed model gets “larger” as the dimension increases, likely
diminishing the performance guarantee. This effect, of course, balances with the other
factors that typically determine learning performance, such as the degree to which the chosen
hypothesis class is well-tailored to the data set. In our experiments, we have explored data
sets up to 617 dimensions (documented in Table 3).

6. Application: Distributionally-Robust Active Learning

Key to the learning algorithm of Section 4.1 is a mechanism for optimizing an objective over
the intersection of a Wasserstein ball Bε(P̂l) with the set of distributions U(PX ,pY ,pY) that
have prescribed marginals in X and Y. Learning a classifier is just one possible application
of this mechanism, however. In this section, we demonstrate another application, to active
learning.

6.1 Model Change Heuristics

Given a set Ẑl of labeled data and a set X̂u of unlabeled data, an active learner attempts to
choose the most beneficial example from X̂u for which to acquire a label. The goal of the
active learner is to reduce the out-of-sample error of the predictor trained on Ẑl as rapidly as
possible. Many active learning methods assign a score to each unlabeled example, indicating
its predicted impact on the learned classifier if we choose to acquire its label. This score
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might represent various properties, such as model uncertainty, expected error reduction, or
expected model change. In the current work we focus on model change criteria (Settles
et al., 2008; Freytag et al., 2014; Cai et al., 2017), which are popular and often effective in
practice (Yang and Loog, 2018).

In model change criteria, we define an impact function f : X × Y → R, which is large
when acquiring the label y for point x ∈ X̂u leads to a large change in the model parameters.
Most often this is a norm of the parameter gradient (Yang and Loog, 2018),

f(x,y) = ‖∇θ`(hθ(x),y)‖,

for ‖ · ‖ a norm and hθ the hypothesis trained on Ẑl. The active learning heuristic selects
x∗ ∈ X̂u that maximizes an estimate of the anticipated impact across possible labels at point
x. This might be the conditional expectation according to the model distribution at x, the
minimum over labels, or the maximum over labels:

• Expected impact: x∗ = argmaxx∈X̂u
∑NY

k=1 hθ(x)kf(x,yk), with hθ trained on Ẑl.

• Optimistic: x∗ = argmaxx∈X̂u maxy∈Y f(x,y).

• Conservative: x∗ = argmaxx∈X̂u miny∈Y f(x,y).

A potential problem with the expected model change criterion, which it shares with a
number of other standard heuristics (Yang and Loog, 2018), is that it relies on the current
hypothesis hθ when predicting the impact of choosing a new point x ∈ X̂u to label. Specifically,
hθ(x) is used in place of the conditional distribution over labels at the point x. This is
prone to error when the hypothesis is far from the true conditional distribution, incorrectly
weighting the impact of obtaining labels at the points where the hypothesis is in error.

The “optimistic” and “conservative” estimates above are simple attempts to eliminate the
hypothesis hθ from the estimated impact. Notably, these ignore the labeled data Z` entirely.

6.2 A Distributionally-Robust Approach

The machinery presented in Section 3 provides an alternative way to eliminate the hy-
pothesis hθ from our estimate of the impact of labeling point x ∈ Xu. We can formulate
a distributionally-robust estimate of the impact, which computes a lower bound on the
expected impact with respect to an entire set of plausible data distributions, rather than
just the model distribution. This lower bound can be closer to the true expected impact
(under P) than the naïve conservative estimate, as our set of plausible distributions need not
include those that are unreasonably far from the training set.

More precisely, we can formulate the problem of choosing the next sample to label as

maximize
x∗∈X̂u

inf
µ∈P

EµY |X=x∗
f(X,Y ), (16)

with P = Bε(P̂l) ∩ U(PX ,pY ,pY) as in Section 3, the intersection of a Wasserstein ball
centered at the labeled data and the set of distributions having the prescribed marginals.
The conditional expectation in (16) is linear in µ, since the X -marginal of µ is exactly PX ,
for all µ ∈ P. In practice, given the unlabeled data X̂u, we can approximate this marginal
by density estimation. We will use the notation ϕ̂(x∗) for the approximate marginal density.
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The inner problem in (16) estimates the impact of labeling the point x∗ ∈ Xu. Just as in
the DRL problem formulated in Section 3, this is the optimization of a linear objective—here
Eµ 1x∗(X)f(x∗, Y )—with respect to a probability measure constrained to the feasible set
P = Bε(P̂l) ∩ U(PX ,pY ,pY).5 Just as in Section 3, we can solve this via its dual,

g(x∗) =

{
− infα,β,λ,λ αε+ 1

Nl

∑Nl
i=1 β

i +
∑NY

k=1

(
λ
k
pkY − λ

kpkY

)
+ EPX Ψ(X;x∗, α, β, λ, λ)

s.t. α, λk, λ
k ≥ 0, ∀k ∈ {1, . . . , NY}

(17)
with

Ψ(x;x∗, α, β, λ, λ) = max
k∈{1,...,NY},
i∈{1,...,Nl}

−1x∗(x)f(x,yk)

ϕ̂(x∗)
− αc((x,yk), zi`)− βi − (λ

k − λk) (18)

and f the impact function from Section 6.1.
The infimum in (17) corresponds exactly to (8) in Section 3.3 and we can likewise

solve (17) via SGD, as shown in Algorithm 2, with Ψ(·;x∗, α, β, λ, λ) here corresponding
to Φ(·; θ, α, β, λ, λ) from Section 4.1, replacing `(hθ, (x,y)) with −1x∗ (x)f(x,y)

ϕ̂(x) . The relevant
gradient computations for Ψ(x;x∗, α, β, λ, λ) are identical to those for Φ(x; θ, α, β, λ, λ) and
are included in Appendix B.

Algorithm 2 SGD for distributionally robust active learning

Given: θ ∈ Θ, ε ≥ 0, pY ,pY ∈ [0, 1]NY , θ0 ∈ Θ, step size γ > 0, batch size Nb.
for x∗ ∈ X̂u do
α, β, λ, λ← 0.
while not converged do
x1, . . . ,xNb ∼ PX .
α← max

(
0, α− γ

[
ε+ 1

Nb

∑Nb
j=1∇αΨ(xj ;x∗, α, β, λ, λ)

])
.

β ← β − γ
[

1
Nl

+ 1
Nb

∑Nb
j=1∇βψ(xj ;x∗, α, β, λ, λ)

]
.

λ← max
(
0, λ− γ

[
pY + 1

Nb

∑Nb
j=1∇λψ(xj ;x∗, α, β, λ, λ)

])
.

λ← max
(
0, λ− γ

[
−pY + 1

Nb

∑Nb
j=1∇λψ(xj ;x∗, α, β, λ, λ)

])
.

end while
ĝ[x∗]← −

(
αε+ 1

Nl

∑Nl
i=1 β

i +
∑NY

k=1

(
λ
k
pkY − λ

kpkY

)
+ 1

Nu

∑Nu
j=1 Ψ(xju;x∗, α, β, λ, λ)

)
.

end for
Choose argmaxx∗∈X̂u ĝ[x∗].

5. Note that the objective here, −1x∗(x)f(x,y), is lower semicontinuous in x, whereas Theorem 2 requires
upper semicontinuity of `(hθ(x),y) in x. We nevertheless use the duality proved in Theorem 2, as one
can approximate our lower semicontinuous objective here arbitrarily well by a combination of continuous
bump functions centered at (x∗,y

k), for all k, and the strong duality holds for any such approximation.
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6.3 Empirical Results

We evaluate active learning performance on the set of 14 binary classification data sets used
in Section 3. Given a set of labeled examples, a linear classifier is trained by `2-regularized
logistic regression, with the weight on the regularizer fixed a priori. Given this classifier and
a set of unlabeled examples, the active learning algorithm selects the next example for which
to acquire a label. The process is iterated, beginning with 20 examples chosen uniformly
at random (the same initial examples for all active learning methods, but different initial
examples between trials), and terminating after 100 labeled examples have been acquired.

After training the classifier at each step, we evaluate the error (the likelihood) on the
combination of labeled and unlabeled data, to provide a score that is comparable between
steps. This score has previously been proposed as a proxy for out-of-sample error in both
the semi-supervised (Grandvalet and Bengio, 2005) and active (Guo and Schuurmans, 2008)
learning settings. We use this score for consistency with (Yang and Loog, 2018), which
surveys and benchmarks a number of standard algorithms.

We compare the proposed distributionally-robust active learning method to both random
sampling and the existing model-change heuristics (described in Section 6.1) Specifically, we
test five methods:

1. Random: We choose the next example uniformly at random.

2. EMC: We choose the example that maximizes the expected norm of the parameter
gradient, under the hypothesis distribution (Settles et al., 2008).

3. Min. MC: We choose the example that maximizes the minimum (over possible labels)
norm of the parameter gradient (“conservative” in Section 6.1).

4. Max. MC: We choose the example that maximizes the maximum (over possible labels)
norm of the parameter gradient (“optimistic” in Section 6.1).

5. DR (strong): We choose the example that maximizes the proposed distributionally-
robust lower bound on the expected norm of the parameter gradient (Section 6.2). We
use a strong prior on the label probabilities, being the true label probabilities.

6. DR (weak): We choose the example that maximizes the proposed distributionally-
robust lower bound on the expected norm of the parameter gradient (Section 6.2). We
use a weak prior on the label probabilities, being 95% confidence bounds estimated
from the labeled data.

Table 2 shows the area under the likelihood curve (from samples 20 through 100) for each
method and data set, using the median likelihood over trials (i.e., initial training samples).
We make several observations:

1. The existing model change heuristics yield inconsistent performance, with EMC, Min.
MC, and Max. MC underperforming random sampling on 10 of 14 data sets.

2. The proposed distributionally-robust heuristics only underperformed random sampling
on 5 of 14 data sets.
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Table 2: Active learning: 100× area under the likelihood curve (median over trials).
Data set Random EMC Min MC Max MC DR (strong) DR (weak)

Abalone 68.7 66.6 66.0 64.2 69.8 69.8
Bank 92.6 94.5 94.5 86.0 95.3 95.4

Cover (2/3) 79.9 78.0 79.4 74.0 78.4 78.4
Cover (5/6) 72.7 72.3 71.4 66.3 73.0 72.9

Isolet 60.8 58.2 60.0 54.8 63.3 63.8
Letter (C/E) 71.6 67.6 67.6 64.4 73.2 73.6
Letter (U/V) 77.8 73.2 73.1 67.1 82.3 82.1

Magic 52.2 46.0 46.3 46.0 43.1 43.1
Mushroom 86.3 91.0 90.6 77.9 92.2 92.2

Pulsar 76.9 79.7 79.4 75.0 79.6 79.6
Spam 68.4 68.0 67.3 63.1 69.9 69.9

Thyroid 79.1 80.7 80.6 78.8 78.4 78.6
Wine 56.7 53.0 51.9 51.3 50.4 50.5
Yeast 54.7 47.8 47.3 53.2 46.6 46.8

3. The proposed distributionally-robust heuristics outperform the other model change-
based heuristics (EMC, Min. MC, and Max. MC) on 8 of 14 data sets.

4. The distributionally-robust heuristics performed similarly to one another, using a strong
prior and a weak prior.

6.4 Discussion

The mechanism used to solve the Wasserstein DRL problem with unlabeled data (Section 3),
which relies on the duality result in 3.3, can have broader applications. We have demonstrated
an application to the problem of active learning that yields a distributionally-robust model
change heuristic that empirically often outperforms the existing model change heuristics.

Computational complexity is a potential impediment to deploying the proposed active
learning method. For each unlabeled example that might be selected for labeling, the method
requires solving a distributionally robust problem (Equation 17) by an iterative method (such
as in Algorithm 2). This in our experiments required on the order of 50000 iterations per
example considered, with the complexity of each iteration scaling linearly with the number
of training example Nl (identically to the DRL method in Section 3). As in Section 3, this
complexity might be a productive target for future work.

7. Conclusion

We have explored an alternative to Wasserstein distributionally robust learning that incor-
porates unlabeled data to restrict the adversary’s decision set. In particular, we proposed
to intersect the standard Wasserstein ball constraint with the set of probability measures
having specified marginals in both feature space and label space. This latter constraint adds
some complexity to the derivation of a tractable algorithm (Section 3.3), which follows the
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standard DRL framework of dualizing the problem, but requires some care as the dual is now
infinite-dimensional due to specifying the feature-space marginal in the primal. We prove a
strong duality theorem (Theorem 2) that guarantees we can solve our proposed Wasserstein
DRL problem via a dual formulation. This dual problem we can treat as the minimization of
an expectation with respect to the pre-specified feature-space marginal, which is amenable to
stochastic gradient methods (Algorithm 1). Critically, such methods rely only on sampling
unlabeled data from the feature-space marginal of the data distribution. Therefore, the
resulting SGD algorithm is tractable whenever we have access to plentiful unlabeled data,
which is frequently the case in machine learning settings.

The motivation for exploring this alternative approach is an empirical observation that
in standard Wasserstein DRL the adversary’s decision set grows overly large very quickly as
the radius of robustness ε is increased. As a result, choosing any radius sufficiently large for
the adversary’s decision set to contain the true data distribution will yield a trivial classifier
(predicting equal probability for every class). Moreover, the generalization performance
guarantee implied by distributionally robust methods only holds when the decision set
contains the true data distribution. This performance guarantee is one major motivation for
using DRL methods and here we have shown that there is a gap between theory and practice.

Restricting the adversary’s decision set even more than we have done here might be
a profitable avenue for further research. There are likely other ways to incorporate side
information into the problem that can be applicable in a variety of practical settings. Moreover,
the practical application of the method proposed here is currently somewhat constrained
by the computational complexity of the SGD iterations, which scale linearly in the number
of labeled examples used. It is possible there are significant speedups to be obtained via
parallelization and further assumptions about the structure of the transport cost c.

Finally, we have proved the strong duality theorem (Theorem 2) only for feature spaces
X that are compact. This is a reasonable assumption from a pragmatic standpoint, as no
data distribution in practice will have unbounded support, but we also expect an equivalent
theorem to hold for non-compact X . Proof techniques from duality theorems for optimal
transport, as in (Villani, 2003, Theorem 1.3) and (Rachev and Rüschendorf, 1998, Theorem
4.6.14), and distributional model risk assessment (Blanchet and Murthy, 2019, Theorem 1)
might be applicable here.
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Appendix A. Proof of strong duality

To show strong duality, we will make use of a fundamental convex analysis result: the Fenchel
duality theorem (Borwein and Zhu, 2005, Theorem 4.4.3).

Theorem 3 (Fenchel duality) Let Ξ,Γ be Banach spaces, with convex functions γ : Ξ→
R ∪ {+∞} and χ : Γ→ R ∪ {+∞}, and a continuous linear map A : Ξ→ Γ. Then

inf
ξ∈Ξ

γ(ξ) + χ(Aξ) ≥ sup
u∈Γ∗

−γ∗(A∗u)− χ∗(−u).

If γ and χ are lower semicontinuous and A dom γ ∩ cont χ 6= ∅, then equality holds above
and the supremum on the right-hand side is attained.

Theorem 2 (Strong duality) Let X be a compact Polish space and Y = {yk}NYk=1 any
finite set. Let PX be a probability measure over X and P̂l = 1

Nl

∑Nl
i=1 δzi`

an empirical
probability measure over Z = X × Y, and define intervals [pkY ,p

k
Y ] ⊆ [0, 1], k ∈ {1, . . . , NY}.

Let the transportation cost c : Z ×Z → [0,+∞) be nonnegative and upper semicontinuous
with c(z, z′) = 0⇔ z = z′. Assume `(hθ(·), ·) : Z → R is upper semicontinuous. Define f as
in (6) and g as in (8). If U(PX ,pY ,pY) ∩ Bε(P̂l) 6= ∅, then

f(θ) = g(θ), ∀θ ∈ Θ. (19)

If relint(U(PX ,pY ,pY) ∩ Bε(P̂l)) 6= ∅, then there exists a minimizer (α∗, β∗, λ∗, λ∗) ∈ R+ ×
RNl × RNY+ × RNY+ attaining the infimum in (8).

Proof For convenience, in what follows we will write `(hθ, z) , `(hθ(x),y) for z = (x,y) ∈ Z.
We first recall the primal problem (7) and the dual problem (8) from the main text:

f(θ) =



supπ
∫
Z×Z `(hθ, z) dπ(z, z′)

s.t.
∫
Z×Z c(z, z

′) dπ(z, z′) ≤ ε∫
Z×Z δzi`

(z′)dπ(z, z′) = 1
Nl

∀i ∈ {1, . . . , Nl},
π((A× Y)×Z) = PX (A) ∀A ∈ B(X ),∫

(X×Y)×Z δyk(y) dπ((x,y), z′) ≤ pkY ∀k ∈ {1, . . . , NY},∫
(X×Y)×Z δyk(y) dπ((x,y), z′) ≥ pkY ∀k ∈ {1, . . . , NY},
π(A) ≥ 0 ∀A ∈ B(Z × Z).

(20)

More succinctly, we may write the primal problem as:

f(θ) = sup
π∈Φ

Fθ(π). (21)

with Fθ the objective above and Φ the feasible set.
The Lagrangian dual to (21) is

inf
(α,β,φ,λ,λ)∈Λθ

G(α, β, φ, λ, λ), (22)
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with

G(α, β, φ, λ, λ) = αε+
1

Nl

Nl∑
i=1

βi +

∫
X
φ(x) dPX (x) +

NY∑
k=1

(
λ
k
pkY − λkpkY

)
,

Λθ =
{

(α, β, φ, λ, λ) ∈ R× RNl × Cb(X )× RNY × RNY :

φ(x) ≥ `(hθ, (x,yk))− αc((x,yk), zi`)− βi − (λ
k − λk),

α, λ
k
, λk ≥ 0,

∀x ∈ X , k ∈ {1, . . . , NY}, i ∈ {1, . . . , Nl}
}
.

(23)

We make two claims:

1. supπ∈Φ Fθ(π) = inf(α,β,φ,λ,λ)∈Λθ
G(α, β, φ, λ, λ).

2. There exists a dual optimizer (α, β, φθ,α,β,λ,λ, λ, λ) ∈ R×RNl×L0(X ,PX )×RNY ×RNY
with

φθ,α,β,λ,λ(x) = max
k∈{1,...,NY}

`(hθ, (x,y
k))− min

i∈{1,...,Nl}

(
αc((x,yk), zi`) + βi

)
− (λ

k − λk).

(24)
If `(hθ, ·) and c(·, zi`) are continuous, for all i, then (α, β, φθ,α,β,λ,λ, λ, λ) ∈ Λθ.

We start with the first claim, and apply Fenchel duality to the proposed dual problem
(23) to show the desired equality. This strategy of dualizing the proposed dual mirrors the
arguments of Villani (2003) in proving strong duality for regular optimal transport. On a
compact Polish space, the dual of the space of finite, signed measures is larger than the space
of continuous, bounded functions, necessitating this approach. On the other hand, the Riesz
representation theorem allows us to move from the proposed dual to the primal in a rigorous
manner. It tells us that the space of finite, signed measures is isomorphic to the dual of the
space of continuous, bounded functions (on a compact Polish space).

We will actually show the first claim holds for a slight generalization of the dual problem
(22). Consider the spaces Ξ = R × Cb(Z) × Cb(X ) × Cb(Y) × Cb(Y) and Γ = Cb(Z × Z),
which are Banach spaces. The norm on Ξ is given by ‖(α, β, φ, λ, λ)‖ , |α|+ ‖β‖∞+ ‖φ‖∞+
‖λ‖∞ + ‖λ‖∞, while the norm on Γ is ‖ · ‖∞.

Let νZ ∈ M(Z), νX ∈ M(X ), νY ∈ M(Y), νY ∈ M(Y). The dual problem we will
rewrite as

inf
ξ∈Ξ

G̃(ξ) + χ(Aξ), (25)

with

G̃ : ξ = (α, β, φ, λ, λ) ∈ Ξ 7→
{
αε+ 〈νZ , β〉+ 〈νX , φ〉+ 〈νY , λ〉 − 〈νY , λ〉 α, λ, λ ≥ 0
+∞ otherwise

,

χ : u ∈ Γ 7→
{

0 u(z, z′) ≥ `(hθ, z) ∀z, z′ ∈ Z
+∞ otherwise ,

(26)
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and A : Ξ→ Γ a linear operator defined by

(Aξ)(z, z′) = αc(z, z′) + β(z′) + φ(x) + λ(y)− λ(y), (27)

where z = (x,y). Optimization problem (25) is identical to the dual problem (22) when
νZ = P̂l, νX = PX , νY = PY , and νY = PY .

G̃ is convex and lower semi-continuous as a function of (α, β, φ, λ, λ), because it is linear
on a closed, convex domain. A is clearly continuous and χ is convex and lower semi-continuous
as the indicator of a closed, convex domain. Note also that Adom G̃ ∩ contχ is nonempty
as `(hθ, ·) is an upper semi-continuous function on a compact domain and is bounded. In
particular, `(hθ, ·) < M for some M ∈ R, so by choosing β = M with α = φ = λ = λ = 0 we
have that A(α, β, φ, λ, λ) ∈ contχ.

As the underlying domain is compact, the topological duals of Ξ and Γ are Ξ′ =
R×M(Z)×M(X )×M(Y)×M(Y) and Γ′ =M(Z ×Z). This duality allows us to define
an adjoint for the operator A, given by A∗ : Γ′ → Ξ′, with

A∗(π) =

(∫
cdπ, πZ′ , πX , πY ,−πY

)
,

such that

A∗(π)(α, β, φ, λ, λ) =

∫
Z×Z

(αc((x,y), z′) + β(z′) + φ(x) + λ(y)− λ(y))dπ((x,y), z′)

=

∫
Z×Z

A(α, β, φ, λ, λ) dπ.

(28)

Here, πX , πY denote X - and Y-marginals of the first marginal of π, while πZ′ is the second
marginal of π.

We can compute the convex conjugates of G̃ and χ.

G̃∗(a, σ, τ, ζ, ω) = sup
(α,β,φ,λ,λ)∈Ξ

〈(a, σ, τ, ζ, ω), (α, β, φ, λ, λ)〉 − G̃(α, β, φ, λ, λ)

= sup
(α,β,φ,λ,λ)∈Ξ


(a− ε)α+

∫
Z β (dσ − dνZ) +

∫
X φ (dτ − dνX )

+
∫
Y λ (dζ − dνY) +

∫
Y λ (dω + dνY)

if α, λ, λ ≥ 0
−∞ otherwise

=

{
0 if a ≤ ε, dσ = dνZ ,dτ = dνX , dζ ≤ dνY , dω ≤ −dνY
+∞ otherwise.

χ∗(π) = sup
u∈Γ
〈π, u〉 − χ(u)

= sup
u≥l(hθ(·),·)

∫
Z×Z

u dπ

=

{∫
Z l(hθ, z) dπ(z) if dπ ≤ 0

+∞ otherwise.

Above we have again used the fact that l(hθ, ·) is bounded as an upper-semicontinuous
function on a compact set. The resulting optimization problem, given by supπ∈Γ∗ −G̃∗(A∗π)−
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ξ∗(−π), is the primal problem (21) with −G̃∗(A∗π) expressing the Wasserstein and marginal
constraints, and −χ∗(−π) expressing the objective and the positivity constraints on π. Strong
duality follows from direct application of Theorem 3, which also gives us existence of a primal
maximizer π∗ to (21).

The second claim states that there exists a dual minimizer (α, β, φθ,α,β,λ,λ, λ, λ) ∈ R×
RNl × L0(X ,PX )× RNY × RNY to (23) with

φθ,α,β,λ,λ(x) = max
k∈{1,...,NY},i∈{1,...,Nl}

`(hθ, (x,y
k))− αc((x,yk), zi`)− βi − (λ

k − λk).

We start by noting that the function φθ,α,β,λ,λ is a pointwise maximum over a finite collection
of functions `(hθ, ·)− αc(·, zi`), plus a constant term. If both `(hθ, (·,yk)) and c((·,yk), zi`),
for all k, i, are measurable with respect to PX , then φθ,α,β,λ,λ ∈ L

0(X ,PX ) as well. Moreover,
if `(hθ, ·) and c(·, zi`) are continuous, then they are bounded (under the assumption that
X is compact) and so φθ,α,β,λ,λ ∈ Cb(X ). In that case, for any finite (α, β, λ, λ) satisfying
α, λ, λ ≥ 0, the element (α, β, φθ,α,β,λ,λ, λ, λ) is in Λθ.

For any probability measure π ∈ Q(Z×Z) whose first marginal satisfies π((A×Y)×Z) =
PX (A), ∀A ∈ B(X ), and whose second marginal satisfies suppπ ⊆ Z × Ẑl, the following
holds:

EPX φθ,α,β,λ,λ(X) ≥ Eπ[`(hθ, Z)− αc(Z,Z ′)− β(Z ′)− (λ(Y )− λ(Y ))], (29)

with (Z,Z ′) ∼ π and Z = (X,Y ). Here we abuse notation slightly and write β as a function
on Z, with β(zi`) , βi, and λ, λ as functions on Y, with λ(yk) , λ

k and λ(yk) , λk. The
inequality holds necessarily because EPX φθ,α,β,λ,λ(x) is exactly the maximal value of the
righthand side of the inequality, over π satisfying the above constraints.

Define Λθ,∗ = {(α, β, λ, λ) ∈ R× RNl × RNY × RNY : α, λ, λ ≥ 0} and

Gθ : (α, β, λ, λ) ∈ Λθ,∗ 7→ G(α, β, φθ,α,β,λ,λ, λ, λ). (30)

It is clear from statement of the dual problem in (23) that for any (α, β, φ, λ, λ) ∈ Λθ,
Gθ(α, β, λ, λ) ≤ G(α, β, φ, λ, λ). This is because φθ,α,β,λ,λ is the smallest function that
satisfies the constraints in (23). Moreover, Gθ(α, β, λ, λ) ≥ supπ∈Φ Fθ(π) (i.e. the optimal
value of the primal), as Fenchel duality guarantees existence of a primal optimizer π∗ and
the above fact bounding EPX φθ,α,β,λ,λ guarantees

Gθ(α, β, λ, λ)

≥ Eπ∗

[
α(ε− c(Z,Z ′)) +

Nl∑
i=1

(
1

Nl
− δzi`(Z

′)

)
β(zi`)

+ `(hθ, Z) +

NY∑
k=1

(pkY − δyk(Y ))λ(yk) + (δyk(Y )− pkY)λ(yk)

]
≥ Eπ∗ `(hθ, Z)

= Fθ(π∗).

(31)
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The second inequality follows from feasibility of π∗, meaning that it satisfies the constraints
(20). As we have shown, though, supπ∈Φ Fθ(π) = inf(α,β,φ,λ,λ)∈Λθ

G(α, β, φ, λ, λ), so it must
be that supπ∈Φ Fθ(π) = inf(α,β,λ,λ)∈Λθ,∗

Gθ(α, β, λ, λ).
The claim therefore reduces to existence of a finite minimizer of Gθ. Suppose pkY > pkY

for all k and choose any π ∈ relint Φ, meaning that

Eπ c(Z,Z ′) < ε,

Eπ δzi`
(Z ′) =

1

Nl
, ∀i ∈ {1, . . . , Nl},

Eπ δyk(Y ) ∈ (pkY ,p
k
Y), ∀k ∈ {1, . . . , NY .

(32)

Substituting π for π∗, the bound in (31) still holds. Strict feasibility of π therefore implies
that Gθ is lower bounded by a function linear in (α, β, λ, λ) that is increasing in α, λ, λ. Since
these variables are constrained to be nonnegative, Gθ is therefore coercive in α, λ, and λ.

Unfortunately, any feasible π yields a lower bound that is independent of β. We can
remedy this, however, as follows. Let {α, β, λ, λ} ∈ Λθ,∗. Note that Gθ is invariant under
shifts of β by a constant, so we can assume

∑Nl
i=1 β

i = 0. Therefore for any β 6= 0 there
exists at least one pair of indices i, i′ such that sgnβi 6= sgnβi

′ .
We will define a set of probability measures π+ that have first marginal identical to that

of π but that have a very small amount of mass shifted so as to alter the second marginal.
Call this set Ψ[π],

Ψ[π] = Ba(π) ∩ {π+ ∈ Q(Z × Z) : π+(A×Z) = π(A×Z), ∀A ∈ B(X )}, (33)

with Ba(π) the total variation norm ball of radius a < ε−Eπ c(Z,Z′)
C , where C = maxz,z′∈Z c(z, z

′).
Note that C is finite due to compactness of X , as we assumed c is semicontinuous. And a
is a radius sufficiently small to guarantee Eπ+ c(Z,Z ′) < ε, for all π+ ∈ Ba(π), despite the
shifted mass. a is positive due to strict feasibility of π.

For any π+ ∈ Ψ[π], the lower bound stated in (31) still holds for π+ in place of π∗. This
means that

Gθ(α, β, λ, λ)

≥ sup
π+∈Ψ[π]

Eπ+

[
α(ε− c(Z,Z ′)) +

Nl∑
i=1

(
1

Nl
− δzi`(Z

′)

)
β(zi`)

+ `(hθ, Z) +

NY∑
k=1

(pkY − δyk(Y ))λ(yk) + (δyk(Y )− pkY)λ(yk)

]
,

(34)

for all (α, β, λ, λ) ∈ Λθ,∗. This lower bound is a pointwise supremum over linear functions
in (α, β, λ, λ), induced by measures π+ ∈ Ψ[π]. Importantly, the bound is still increasing
in α, λ, λ, by definition of Ψ[π]. And for any β, there exists π+ ∈ Ψ[π] such that sgn( 1

Nl
−

Eπ+ δzi`
(Z ′)) = sgnβi, for all i. This pointwise supremum is increasing in α, λ, λ, and

increasing in |βi| for all i. So the lower bound is coercive and therefore Gθ is coercive. This
suffices for existence of a finite (α, β, λ, λ) ∈ Λθ,∗ that optimizes Gθ.

The above holds when pkY > pkY for all k. Suppose now that there exists k such that
pkY = pkY . Then we face the same problem as we did with β, with the linear lower bound
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defined by substituting strictly feasible π for π∗ in (31) now independent of the λk and λk

terms. We will deal with this problem analogously to the approach above.
We again start with π ∈ relint Φ. Now, however, we relax the constraints defining Ψ[π],

to allow small shifts of mass that preserve only the first X -marginal. We define

ΨX [π] = Ba(π) ∩ {π+ ∈ Q(Z × Z) : π+((A× Y)×Z) = π(A) ∀A ∈ B(X )}, (35)

with ball Ba(π) having radius a < min
{
ε−Eπ c(Z,Z′)

C , (pkY −Eπ δyk(Y )), (Eπ δyk(Y )− pkY)
}

with k ranging over the indices such that pkY 6= pkY and C defined as above.
For any π+ ∈ ΨX [π], the lower bound in (31) still holds, when we substitute π+ for π∗. So

Gθ is lower bounded by a pointwise supremum over linear functions in (α, β, λ, λ), identically
to (34), substituting ΨX [π] for Ψ[π]. For each k with pkY = pkY , pkY , however, the linear

terms depending on λk, λk simplify slightly and each one becomes (pkY−E
π+ δyk(Y ))(λ

k−λk).

Although λk and λk are nonnegative, their difference is unconstrained. Gθ is independent
of shifts of λk, λk by a constant, so we will assume min{λk, λk} = 0 and discuss the single
unconstrained variable λk = λ

k − λk.
If there exists at least one k′ such that pk

′
Y 6= pk

′

Y then for any (α, β, λ, λ) ∈ Λθ,∗ it is
possible to choose π+ ∈ ΨX [π] such that sgn(pk − Eπ+ δyk(Y )) = sgnλk, for all k such
that pkY = pkY , by shifting mass between the set X × {yk′ : pk

′
Y 6= pk

′

Y } × Z and the set
X × {yk : pkY = pkY} × Z, such that the corresponding terms have the correct sign. The
radius a for ΨX [π] was chosen explicitly so that this movement of mass (combined with
that described above for β) will yield π+ ∈ ΨX [π] that is increasing in all of α, λk

′
, and

λk
′
, pk′Y 6= pk

′

Y , while possessing the correct sign for βi and λk, pkY = pkY . Therefore the
supremum over ΨX [π] lower bounds Gθ and is coercive in α, β, λ, λ.

If pkY = pkY for all k, then there is an additional symmetry: We can shift λk by a constant

without impacting Gθ. Therefore we can assume
∑NY

k=1 λ
k = 0. The rest of the proof proceeds

identically to that for β.
Note that this proof of the second claim relies on the existence of π ∈ relint Φ. Suppose

no such π exists, meaning that for all π ∈ Φ either Eπ c(Z,Z ′) = ε or Eπ δyk(Y ) ∈ {pkY ,pkY},
for some k (or both). Suppose the latter is the case. Assuming the pairs {(pkY ,pkY)}NYk=1 are
not degenerate in the sense that there exists only one probability vector pY ∈ ∆NY that
satisfies the constraints pkY ∈ [pkY ,p

k
Y ], for all k, we can shift any small amount of mass δ in

π between the set X × {yk : Eπ δyk(Y ) = pkY 6= pkY} ×Z and the set X × {yk : Eπ δyk(Y ) <

pkY 6= pkY} × Z and likewise between the set X × {yk : Eπ δyk(Y ) = pkY 6= pkY} × Z and the
set X × {yk : Eπ δyk(Y ) > pkY 6= pkY} × Z, with the resulting altered probability measure
now strictly feasible for radius ε increased by Cδ (C defined as above, the maximal value
of c). Moreover, if there is no such k with Eπ δyk(Y ) ∈ {pkY ,pkY}, then Eπ c(Z,Z ′) = ε
and π will be strictly feasible for any radius ε that is increased by δ > 0. So, assuming
nondegenerate {(pkY ,p

k
Y)}NYk=1, there exists at most one value of ε for which Φ 6= ∅ but there

is no π ∈ relint Φ.
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Appendix B. Subgradients of dual program

Recall that Φ(x; θ, α, β, λ, λ) is defined in (13) as

Φ(x; θ, α, β, λ, λ) = max
k∈{1,...,NY}
i∈{1,...,Nl}

`(hθ, (X,y
k))−

(
αc
(

(X,yk), zi`

)
+ βi

)
− (λ

k − λk).

For fixed x ∈ X , we can view Φ(x; θ, α, β, λ, λ) as a function of the dual variables. Algorithm
1 relies on computing a subderivative of Φ(x; θ, α, β, λ, λ) with respect to the variables
θ, α, β, λ, λ. Assuming that `(hθ, ·) admits a subderivative for any θ, we can use the following
expressions:

∂

∂θj
Φ(x; θ, α, β, λ, λ) ∈

Nl∑
i=1

NY∑
k=1

1V ik(x)
∂

∂θj
`(hθ, (x,y

k)),

∂

∂α
Φ(x; θ, α, β, λ, λ) = −

Nl∑
i=1

NY∑
k=1

1V ik(x)c((x,yk), zi`),

∂

∂βi
Φ(x; θ, α, β, λ, λ) = −

NY∑
k=1

1V ik(x),

∂

∂λ
k

Φ(x; θ, α, β, λ, λ) = −
Nl∑
i=1

1V ik(x),

∂

∂λk
Φ(x; θ, α, β, λ, λ) =

Nl∑
i=1

1V ik(x).

(36)

For x lying on the boundary between two of the sets V ik, we can obtain a subgradient
by arbitrarily selecting only one of these V ik to contain x when evaluating 1V ik(x). In
most practical settings, the boundaries should have lower dimension than X and therefore
PX -measure zero.

Appendix C. Data sets

In the experiments described in Sections 5.2, 5.1, and 6.3, we use 14 real data sets, taken
from the UCI repository (Dua and Graff, 2019). Data sets were chosen from amongst those
of “multivariate classification” type having more than 1000 examples. We attempted to select
frequently-downloaded data sets from a variety of domains. We excluded data sets on which
a `2-regularized linear logistic regression using 100 randomly selected training samples could
not achieve likelihood greater than 0.55. Table 3 shows the data sets along with the number
of examples and class balance in each data set.

In every experiment, the full data set was first standardized by subtracting out the mean
and dividing by the standard deviation, per-feature, then scaling the resulting data matrix
by dividing out the maximum absolute value over all entries.

Some caveats apply:

• Abalone: We excluded all examples from classes 9 and 10, to ensure non-trivial
classification performance was possible with a small number of labeled examples.
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Table 3: Data sets used in this paper. All are from the UCI repository (Dua and Graff,
2019).

Data set Full name N. features N. examples % positive

Abalone Abalone 10 2854 50.7
Bank Bank Marketing 53 10000 50.0

Cover (2/3) Cover Type 54 10000 11.2
Cover (5/6) Cover Type 54 10000 64.7

Isolet Isolet 617 7797 19.2
Letter (C/E) Letter Recognition 256 1504 48.9
Letter (U/V) Letter Recognition 256 1577 51.6

Magic MAGIC Gamma Telescope 10 13376 50.0
Mushroom Mushroom 117 8124 48.2

Pulsar HTRU2 8 3278 50.0
Spam Spambase 57 4601 39.4

Thyroid Thyroid Disease 21 7200 92.6
Wine Wine 11 2700 39.3
Yeast Yeast 8 1484 28.9

• Bank and Cover: We chose 10000 examples uniformly without replacement.

• Cover: We classified types 2 vs 3 and 5 vs. 6.

• Isolet: We classified vowels vs. the rest.

• Letter recognition: We classified “C” vs. “E” and “U” vs. “V.”

• Bank, Magic, and Pulsar: We chose examples uniformly without replacement from
the larger class to achieve exact balance.

• Thyroid: We classified “3” vs. the rest.

• Wine: We excluded all examples with rating 6, to ensure non-trivial classification
performance was possible with a small number of labeled examples.

• Yeast: We classified “nuclear” vs. the rest.

Appendix D. Description of experiments and additional empirical results

In all experiments we use the transport cost c((x,y), (x′,y′)) = ‖x− x′‖2 + κ
2 |y − y′| with

κ = 1 and y ∈ {+1,−1} ⊂ R.

D.1 Performance When the Decision Set Contains the True Data Distribution

The following describes Figures 5 and 6 in Section 5.2 as well as the supplementary Figures 8
and 9. Figure 5 shows the worst-case likelihood bound output by each algorithm, varying the
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number of training examples. Specifically, we choose ε to be the smallest radius such that the
Wasserstein ball Bε(P̂l) contains the true data distribution P (i.e. the empirical distribution
defined by the full data set), and compute a linear logistic regression under the traditional
Wasserstein DRL model (Equation (2), setting P = Bε(P̂l)) and under the proposed model
(with P = Bε(P̂l) ∩ U(PX ,pY ,pY)). In both cases the problem can be written

minimize
θ∈Rq+1

sup
µ∈P

Eµ Y log(1 + exp{−〈X, θ〉}) + (1− Y ) log(1 + exp{〈X, θ〉}), (37)

with X = Rq × {1} the feature space and Y = {0, 1} the label space. There are two settings
for the intervals [pkY ,p

k
Y ] constraining the label probabilities. The first is the “strong” prior,

in which we know the exact label marginal PY = 1
NY

∑NY
k=1 p

k
Yδyk and we set pkY = pkY = pkY

for all k. The second setting is the “weak” prior, in which we estimate a 95% confidence
interval for the label probability, directly from the labeled sample Ẑl, using the method of
Clopper and Pearson (1934).

We solve (37) via its dual (Section 3.3), using the Adam optimizer (Kingma and Ba, 2014)
with β1 = 0.9, β2 = 0.999, ε = 10−8, and a batch size of 100 and decreasing the learning rate
by a factor of 8 every 10000 steps. The resulting dual objective value is used as the negative
log of the worst-case likelihood bound shown in Figure 5.

Figure 6 shows the median over unlabeled input examples of the confidence of the
learned predictor evaluated on those examples. For example x ∈ X the confidence is
max{hθ(x), 1− hθ(x)}.

In both figures, the solid line is the median over 40 independent trials and the shaded
region is the 95% interval of the median. Each trial represents a single independent sample
of Nl labeled examples from the given data set, taken uniformly without replacement.

Figure 8 shows the worst-case likelihood bound for additional data sets and Figure 9 the
median confidence.

D.2 Traditional Wasserstein DRL Performance as We Vary ε

The following describes Figure 2 in Section 5.1 and Figure 10 in the appendix. The figures
show out-of-sample generalization performance as well as confidence of predictors trained
using traditional Wasserstein DRL, as we vary the radius of robustness ε. In particular, for
each trial, we sample a data set of Nl = 100 labeled examples, which we use to compute
the Wasserstein distributionally robust logistic regression (Abadeh et al., 2015), setting the
radius ε to be a fixed percentage of the distance to the data distribution P, i.e., the empirical
distribution of the full data set. The log of this percentage is shown on the horizontal axis of
the figure.

The figures show both the test set likelihood and the maximum over input examples of
the confidence of the learned predictor, defined by max{hθ(x), 1− hθ(x)} for each x ∈ X .
The solid line is the median over 100 trials while the shaded region shows the 95% interval
of the median.

D.3 Traditional Wasserstein DRL Robustness Beyond the Decision Set

The following describes Figure 3 in Section 5.1 and 11 in the appendix. The figures show
the worst-case performance of a predictor trained by traditional Wasserstein DRL with
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Figure 8: Worst-case performance bound (likelihood) vs. number of labeled data, setting
ε to include the true test distribution. The regular DRL bound is often vacuous
through Nl = 1000 while both DRL methods with unlabeled data often yield
non-vacuous bounds.
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Figure 9: Median confidence vs. number of labeled data, setting ε to include the true test
distribution. The regular DRL predictor often has confidence close to 0.5 in settings
where both DRL methods using unlabeled data yield non-trivial predictors.
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Figure 10: Traditional Wasserstein DRL. Out-of-sample performance (likelihood) and maxi-
mum confidence vs. radius of robustness ε as a percentage of the distance to the
true data distribution P. Performance shows a bias-variance tradeoff with peak
at ε much smaller than the distance to P. Confidence often drops sharply at a
radius much smaller than the distance to P.
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a radius of robustness ε, when the test-time data distribution is allowed to come from a
Wasserstein ball having the same center and slightly larger radius ε+ ∆. Specifically, for
each trial, we sample a training set of Nl = 100 labeled examples, which we use to compute
the Wasserstein distributionally robust logistic regression (Abadeh et al., 2015), fixing the
radius ε of the underlying Wasserstein ball to a value between 10−3 and 100. For each radius
ε, we obtain a set of learned parameters θ̂ε ∈ Θ. We then evaluate the worst-case value
of the negative log-likelihood, fixing these parameters θ̂ε, but increasing the radius of the
underlying Wasserstein ball to ε + ∆, for ∆ ∈ [10−3, 100]. This worst-case value can be
written

f(θ̂ε,∆) = sup
µ∈Bε+∆(P̂l)

Eµ Y log(1 + exp{−〈X, θ̂ε〉}) + (1− Y ) log(1 + exp{〈X, θ̂ε〉}), (38)

with Bε+∆(P̂l) the Wasserstein ball of radius ε+ ∆ centered at the empirical distribution of
the labeled data P̂l. This is exactly the inner problem of traditional Wasserstein DRL and is
solved by the same mechanism, fixing the parameters θ̂ε.

Each figure shows the median over trials of the resulting worst-case likelihood value,
exp(−f(θ̂ε,∆)), as we vary ε (vertical axis) and ∆ (horizontal axis). Each axis shows
the base-10 log of the respective value. The color encodes the likelihood value, with blue
indicating value 0, green value 0.5, and yellow value 1.

D.4 DRL with Unlabeled Data, Lack of Bias-Variance Tradeoff

The following describes Figure 4 in Section 5.1 as well as Figure 12 in the appendix. The
figures show the out-of-sample performance of linear logistic regression models learned by
the proposed DRL method (Section 3). Specifically, for each trial we sample 100 examples
uniformly from the full data set, to form the training set Ẑl. We then find a minimal radius
ε0 such that the feasible set P = Bε0(P̂l) ∩ U(PX ,pY ,pY) is non-empty, by doing a binary
search for the minimal radius for which the value of the objective g(θ) (Section 3.3) is
nonnegative. Here, PX is the X -marginal of the true data distribution P, which is taken to
be the empirical distribution of the full data set. Given this radius ε0, then we select radius
ε = ε0 + ∆, for ∆ ∈ [10−4, 101], and solve the DRL problem

minimize
θ∈Θ

sup
µ∈Bε(P̂l)

Eµ Y log(1 + exp{−〈X, θ〉}) + (1− Y ) log(1 + exp{〈X, θ〉}), (39)

with X = Rq ×{1} the feature space and Y = {0, 1} the label space. Here, and when finding
ε0, we choose pY = pY = pY , the true label probabilities from P. This DRL problem is
solved as described in Appendix D.1.

The solid lines in Figure 4 in Section 5.1 and Figure 12 in the appendix show the median
over 100 trials of likelihood on the test set for the learned model as well as the median
confidence, defined as in Appendix D.1. The shaded regions are 95% confidence intervals for
the median. The horizontal axis shows the base-10 log of the excess radius ∆ beyond ε0.

D.5 Active Learning

The following describes Table 2 in Section 6.3. The table shows the area under the likelihood
curve for model-change active learning heuristics and a random baseline applied to 14 binary
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Figure 11: Traditional Wasserstein DRL. Worst-case performance (likelihood) vs. radius
of robustness ε and test-time data radius ε + ∆. Yellow indicates perfectly
correct prediction (likelihood 1), blue perfectly incorrect (likelihood 0), and green
perfectly indecisive prediction (likelihood 0.5). Training with radius ε confers
little robustness beyond ε.
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Figure 12: DRL with unlabeled data. Out-of-sample performance (likelihood) and maximum
confidence vs. difference between the radius of robustness ε and the minimal
radius necessary for the decision set to be nonempty. Unlike with traditional
Wasserstein DRL, here there is no apparent bias-variance tradeoff. Performance
is flat out to a radius at which the confidence drops sharply.
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classification data sets. For each data set and each trial, we sample an initial set Ẑl of 20
labeled examples, with the remaining samples forming the unlabeled set X̂u. We then use
this labeled set to learn a linear logistic regression model, solving

θ̂ = argmin
θ∈Θ

1

Nl

Nl∑
i=1

yi` log(1 + exp(−〈xil, θ〉)) + (1− yi`) log(1 + exp(〈xil, θ〉)) + γ‖θ‖22, (40)

where Ẑl = {(xil,yi`)}
Nl
i=1 and γ = 0.001. Given θ̂, then, we apply each of the given active

learning methods to select a new sample x∗ ∈ X̂u to label. Specifically,

1. Random. We sample x∗ uniformly from X̂u.

2. EMC. We compute for each xu ∈ X̂u

ĝ(xu) =
2‖xu‖2

(1 + exp(−〈θ̂,xu〉))(1 + exp(〈θ̂,xu〉))
, (41)

and select x∗ = argmaxxu∈X̂u ĝ(xu).

3. Min. MC. We compute for each xu ∈ X̂u

ĝ(xu) = min
{

(1 + exp(−〈xu, θ̂〉))−1, (1 + exp(〈xu, θ̂〉))−1
}
, (42)

and select x∗ = argmaxxu∈X̂u ĝ(xu).

4. Max. MC. We compute for each xu ∈ X̂u

ĝ(xu) = max
{

(1 + exp(−〈xu, θ̂〉))−1, (1 + exp(〈xu, θ̂〉))−1
}

(43)

and select x∗ = argmaxxu∈X̂u ĝ(xu).

5. DR (strong). We take 100 examples X̂ ′u uniformly at random from X̂u and compute
for each xu ∈ X̂ ′u

ĝ(xu) = inf
µ∈P

Eµ
δxu(X)‖X‖2

ϕ̂(X)(1 + exp(−Y 〈X, θ̂〉))
, (44)

with P = Bε(P̂l)∩U(PX ,pY ,pY), ϕ̂(xu) = 1
Nu

for all xu ∈ X̂u, and pY = pY = pY the
true label probabilities from P. We select ε via a binary search for the minimal radius
at which the feasible set P is non-empty, setting ε to be greater than this radius by a
fixed margin ∆ = 10−3. We select x∗ = argmaxxu∈X̂u ĝ(xu).

6. DR (weak). We take 100 examples X̂ ′u uniformly at random from X̂u and compute
for each xu ∈ X̂ ′u

ĝ(xu) = inf
µ∈P

Eµ
δxu(X)‖X‖2

ϕ̂(X)(1 + exp(−Y 〈X, θ̂〉))
, (45)
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with P = Bε(P̂l) ∩ U(PX ,pY ,pY), ϕ̂(xu) = 1
Nu

for all xu ∈ X̂u, and [pkY ,p
k
Y ] the

95% confidence intervals estimated from the original set of 20 labeled examples by
the method of Clopper and Pearson (1934). We select ε as follows. We estimate
ε` and εh via a binary search for the minimal radius at which the feasible set P is
non-empty, setting pkY = pkY , i.e. the lower bound of the interval, for ε`, and vice
versa, for εh. ε is then max{ε`, εh}+ ∆ with ∆ a fixed margin ∆ = 10−3. We select
x∗ = argmaxxu∈X̂u ĝ(xu).

We then acquire the true label y∗ corresponding to x∗, remove x∗ from X̂u, and add (x∗,y∗)
to the labeled set Ẑl. We repeat the process above (beginning by estimating θ̂) until Z`
contains 100 samples.

Each time we estimate θ̂, we evaluate the performance of the learned classifier via the
likelihood on the full data set (including Ẑl). Taking the median over 50 trials, we obtain a
likelihood curve (likelihood vs. number of labeled samples) for each active learning method,
with the number of samples ranging from 20 to 100. The area under this curve is computed
by the trapezoidal rule. The value shown in Table 2 is 100 times this area.

For the proposed distributionally robust heuristics, we solve the dual problem (Section 6.2)
using the Adam optimizer (Kingma and Ba, 2014), setting β1 = 0.9, β2 = 0.999, ε = 10−8,
and a batch size of 100 and decreasing the learning rate by a factor of 10 every 5000 steps.
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