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Abstract

In mixed multi-view data, multiple sets of diverse features are measured on the same
set of samples. By integrating all available data sources, we seek to discover common group
structure among the samples that may be hidden in individualistic cluster analyses of a
single data view. While several techniques for such integrative clustering have been explored,
we propose and develop a convex formalization that enjoys strong empirical performance
and inherits the mathematical properties of increasingly popular convex clustering methods.
Specifically, our Integrative Generalized Convex Clustering Optimization (iGecco) method
employs different convex distances, losses, or divergences for each of the different data views
with a joint convex fusion penalty that leads to common groups. Additionally, integrating
mixed multi-view data is often challenging when each data source is high-dimensional.
To perform feature selection in such scenarios, we develop an adaptive shifted group-
lasso penalty that selects features by shrinking them towards their loss-specific centers.
Our so-called iGecco+ approach selects features from each data view that are best for
determining the groups, often leading to improved integrative clustering. To solve our
problem, we develop a new type of generalized multi-block ADMM algorithm using sub-
problem approximations that more efficiently fits our model for big data sets. Through a
series of numerical experiments and real data examples on text mining and genomics, we
show that iGecco+ achieves superior empirical performance for high-dimensional mixed
multi-view data.

Keywords: Integrative clustering, convex clustering, feature selection, convex optimization,
sparse clustering, GLM deviance, Bregman divergences

1. Introduction

As the volume and complexity of data grows, statistical data integration has gained increasing
attention as it can lead to discoveries which are not evident in analyses of a single data set.
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We study a specific data-integration problem where we seek to leverage common samples
measured across multiple diverse sets of features that are of different types (e.g., continuous,
count-valued, categorical, skewed continuous and etc.). This type of data is often called
mixed, multi-view data (Hall and Llinas, 1997; Acar et al., 2011; Lock et al., 2013; Tang and
Allen, 2018; Baker et al., 2019). While many techniques have been developed to analyze each
individual data type separately, there are currently few methods that can directly analyze
mixed multi-view data jointly. Yet, such data is common in many areas such as electronic
health records, integrative genomics, multi-modal imaging, remote sensing, national security,
online advertising, and environmental studies. For example in genomics, scientists often
study gene regulation by exploring only gene expression data, but other data types, such as
short RNA expression and DNA methylation, are all part of the same gene regulatory system.
Joint analysis of such data can give scientists a more holistic view of the problem they study.
But, this presents a major challenge as each individual data type is high-dimensional (i.e., a
larger number of features than samples) with many uninformative features. Further, each
data view can be of a different data type: expression of genes or short RNAs measured via
sequencing is typically count-valued or zero-inflated plus skewed continuous data whereas
DNA methylation data is typically proportion-valued. In this paper, we seek to leverage
multiple sources of mixed data to better cluster the common samples as well as select relevant
features that distinguish the inherent group structure.

We propose a convex formulation which integrates mixed types of data with different data-
specific losses, clusters common samples with a joint fusion penalty and selects informative
features that separate groups. Due to the convex formulation, our methods enjoy strong
mathematical and empirical properties. We make several methodological contributions.
First, we consider employing different types of losses for better handling non-Gaussian
data with Generalized Convex Clustering Optimization (Gecco), which replaces Euclidean
distances in convex clustering with more general convex losses. We show that for different
losses, Gecco’s fusion penalty forms different types of centroids which we call loss-specific
centers. To integrate mixed multi-view data and perform clustering, we incorporate different
convex distances, losses, or divergences for each of the different data views with a joint
convex fusion penalty that leads to common groups; this gives rise to Integrative Generalized
Convex Clustering (iGecco). Further, when dealing with high-dimensional data, practitioners
seek interpretability by identifying important features which can separate the groups. To
facilitate feature selection in Gecco and iGecco, we develop an adaptive shifted group-lasso
penalty that selects features by shrinking them towards their loss-specific centers, leading
to Gecco+ and iGecco+ which performs clustering and variable selection simultaneously.
To solve our problems in a computationally efficient manner, we develop a new general
multi-block ADMM algorithm using sub-problem approximations, and make an optimization
contribution by proving that this new class of algorithms converge to the global solution.

1.1 Related Literature

Our goal is to develop a unified, convex formulation of integrative clustering with feature
selection based on increasingly popular convex clustering methods. Pelckmans et al. (2005);
Lindsten et al. (2011); Hocking et al. (2011) proposed convex clustering which uses a
fusion penalty to achieve agglomerative clustering like hierarchical clustering. This convex
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formulation guarantees a global optimal solution, enjoys strong statistical and mathematical
theoretical properties, and often demonstrates superior empirical performance to competing
approaches. Specifically, in literature, Pelckmans et al. (2005); Chi et al. (2017) showed it
yields stable solutions to small perturbations on the data or tuning parameters; Radchenko
and Mukherjee (2017) established clustering consistency by proving the clustering tree
produced by convex clustering consistently estimates the clustering tree produced by the
population procedure for the `1 penalty case; Tan and Witten (2015) established its link to
hierarchical clustering as well as prediction consistency (finite sample bound for the prediction
error); the perfect recovery properties of convex clustering with uniform weights have been
proved by Zhu et al. (2014) for the two-clusters case and Panahi et al. (2017) for the general
k-clusters case while Sun et al. (2021) proved results for general weighted convex clustering
model; and many others have studied other appealing theoretical properties (Wu et al., 2016;
Chi and Steinerberger, 2019). Despite these advantages, convex clustering has not yet gained
widespread popularity due to its intensive computation. Recently, some proposed fast and
efficient algorithms to solve convex clustering and estimate its regularization paths (Chi and
Lange, 2015; Weylandt et al., 2020). Meanwhile, convex clustering has been extended to
biclustering (Chi et al., 2017) and many other applications (Chi et al., 2018; Choi et al.,
2019).

One potential drawback to convex clustering however, is that thus far, it has only been
well-studied employing Euclidean distances between data points and their corresponding
cluster centers. As is well known, the Euclidean metric suffers from poor performance with
data that is highly non-Gaussian such as binary, count-valued, skewed data, or with data that
has outliers. To alleviate the impact of outliers, Wang et al. (2016) studied robust convex
clustering, Sui et al. (2018) investigated convex clustering with metric learning and Wu et al.
(2016) mentioned replacing `2-norm with `1-norm loss function as extensions. Despite these,
however, no one has conducted a general investigation of convex clustering for non-Gaussian
data, let alone studied data integration on mixed data, to the best of our knowledge. But,
many others have proposed clustering methods for non-Gaussian data in other contexts. One
approach is to perform standard clustering procedures on transformed data (Anders and
Huber, 2010; Bullard et al., 2010; Marioni et al., 2008; Robinson and Oshlack, 2010). But,
choosing an appropriate transformation that retains the original cluster signal is a challenging
problem. Another popular approach is to use hierarchical clustering with specified distance
metrics for non-Gaussian data (Choi et al., 2010; Fowlkes and Mallows, 1983). Closely
related to this, Banerjee et al. (2005) studied different clustering algorithms utilizing a large
class of loss functions via Bregman divergences. Yet, the proposed methods are all extensions
of existing clustering approaches and hence inherit both good and bad properties of those
approaches. There has also been work on model-based clustering, which assumes that data
are generated by a finite mixture model; for example Banfield and Raftery (1993); Si et al.
(2013) proposed such a model for the Poisson and negative binomial distributions. Still these
methods have a non-convex formulation and local solutions like all model-based clustering
methods. We propose to adopt the method similar to Banerjee et al. (2005) and study
convex clustering using different loss functions; hence our method inherits the desirable
properties of convex clustering and handles non-Gaussian data as well. More importantly,
there is currently no literature on data integration using convex clustering and we achieve
this by integrating different types of general convex losses with a joint fusion penalty.
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Integrative clustering, however, has been well-studied in the literature. The most popular
approach is to use latent variables to capture the inherent structure of multiple types of data.
This achieves a joint dimension reduction and then clustering is performed on the joint latent
variables (Shen et al., 2009, 2012, 2013; Mo et al., 2013, 2017; Meng et al., 2015). Similar in
nature to the latent variables approach, matrix factorization methods assume that the data
has an intrinsic low-dimensional representation, with the dimension often corresponding to
the number of clusters (Lock et al., 2013; Hellton and Thoresen, 2016; Zhang et al., 2012;
Chalise and Fridley, 2017; Zhang et al., 2011; Yang and Michailidis, 2015). There are a few
major drawbacks of latent variable or dimension reduction approaches, however. First it is
often hard to directly interpret latent factors or low-dimensional projections. Second, many
of these approaches are based on non-convex formulations yielding local solutions. And third,
choosing the rank of factors or projections is known to be very challenging in practice and
will often impact resulting clustering solutions. Another approach to integrative clustering
is clustering of clusters (COC) which performs cluster analysis on every single data set and
then integrates the primary clustering results into final group assignments using consensus
clustering (Hoadley et al., 2014; Lock and Dunson, 2013; Kirk et al., 2012; Savage et al.,
2013; Wang et al., 2014). This, however, has several potential limitations as each individual
data set might not have enough signal to discern joint clusters or the individual cluster
assignments are too disparate to reach a meaningful consensus. Finally, others have proposed
to use distance-based clustering for mixed types of data by first defining an appropriate
distance metric for mixed data (for example, the Gower distance by Gower, 1971) and
then applying an existing distance-based clustering algorithm such as hierarchical clustering
(Ahmad and Dey, 2007; Ji et al., 2012). Consequently, this method inherits both good and
bad properties of distance-based clustering approaches. Notice that all of these approaches
are either two-step approaches or are algorithmic or non-convex problems that yield local
solutions. In practice, such approaches often lead to unreliable and unstable results.

Clustering is known to perform poorly for high-dimensional data as most techniques
are highly sensitive to uninformative features. One common approach is to reduce the
dimensionality of the data via PCA, NMF, or t-SNE before clustering (Ghosh and Chinnaiyan,
2002; Bernardo et al., 2003; Tamayo et al., 2007). A major limitation of such approaches
is that the resulting clusters are not directly interpretable in terms of feature importance.
To address this, several have proposed sparse clustering for high-dimensional data. This
performs clustering and feature selection simultaneously by iteratively applying clustering
techniques to subsets of features selected via regularization (Witten and Tibshirani, 2010;
Sun et al., 2012; Chang et al., 2014). The approach, however, is non-convex and is highly
susceptible to poor local solutions. Others have proposed penalized model-based clustering
that selects features (Raftery and Dean, 2006; Wang and Zhu, 2008; Pan and Shen, 2007).
Still, these methods inherit several advantages and disadvantages of model-based clustering
approaches. Moreover, sparse integrative clustering is relatively under-studied. Shen et al.
(2013); Mo et al. (2013) extended iCluster using a penalized latent variable approach to
jointly model multiple omics data types. They induced sparsity on the latent variable
coefficients via regularization. As feature selection is performed on the latent variables,
however, this is less interpretable in terms of selecting features directly responsible for
distinguishing clusters. Recently, and most closely related to our own work, Wang et al.
(2018) proposed sparse convex clustering which adds a group-lasso penalty term on the
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cluster centers to shrink them towards zero, thus selecting relevant features. This penalty,
however, is only appropriate for Euclidean distances when the data is centered; otherwise,
the penalty term shrinks towards the incorrect cluster centers. For feature selection using
different distances and losses, we propose an adaptive shifted group-lasso penalty that will
select features by shrinking them towards their appropriate centroid.

2. Integrative Generalized Convex Clustering with Feature Selection

In this section, we introduce our new methods, beginning with the Gecco and iGecco and
then show how to achieve feature selection via regularization. We also discuss some practical
considerations for applying our methods and develop an adaptive version of our approaches.

2.1 Generalized Convex Clustering Optimization (Gecco)

In many applications, we seek to cluster data that is non-Gaussian. In the literature, most
do this using different distance metrics other than Euclidean distances (Choi et al., 2010;
Fowlkes and Mallows, 1983; de Souza and De Carvalho, 2004). Some use losses based on
exponential family or deviances closely related to Bregman divergences (Banerjee et al.,
2005).

To account for different types of losses for non-Gaussian data, we propose to replace the
Euclidean distances in convex clustering with more general convex losses; this gives rise to
Generalized Convex Clustering Optimization (Gecco):

minimize
U

n∑
i=1

`(Xi.,Ui.) + γ
∑
i<i′

wii′‖Ui. −Ui′.‖q .

Here, our data X is an n × p matrix consisting of n observations and p features; U is an
n× p centroid matrix with the ith row, Ui., the cluster centroid attached to point Xi.. The
general loss `(Xi.,Ui.) refers to a general loss metric that measures dissimilarity between the
data point Xi. and assigned centroids Ui.. We choose one loss type as ` that is appropriate
based on the data type of X. For example, we use `1 loss in the presence of outliers. ‖ · ‖q is
the `q-norm of a vector and usually q ∈ {1, 2,∞} is considered (Hocking et al., 2011). Here
we prefer using the `2-norm in the fusion penalty (q = 2) as it encourages the entire rows of
similar observations to be fused together simultaneously and is also rotation-invariant; but
one could use `1 or `∞-norm as well. γ is a positive tuning constant and wij is a nonnegative
weight. When γ equals zero, each data point occupies a unique cluster. As γ increases,
the fusion penalty encourages some of the rows of the cluster center U to be exactly fused,
forming clusters. When γ becomes sufficiently large, all centroids eventually coalesce to
a single cluster centroid, which we define as the loss-specific center associated with `(·).
Hence γ regulates both the cluster assignment and number of clusters, providing a family of
clustering solutions. The weight wij should be specified by the user in advance and is not a
tuning parameter; we discuss choices of weights for various convex losses in Section 2.5.

Going beyond Euclidean distances, we propose to employ convex distance metrics as
well as deviances associated with exponential family distributions and Bregman divergences,
which are always convex. Interestingly, we show that each of these possible loss functions
shrinks the cluster centers, U, to different loss-specific centers, instead of the mean-based
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centroid as in convex clustering with Euclidean distances. For example, one may want
to use least absolute deviations (`1-norm or Manhattan distances) for skewed data or for
data with outliers; with this loss, we show that all observations fuse to the median when
γ is sufficiently large. We emphasize loss-specific centers here as they will be important
in feature selection in the next section. For completeness, we list common distances and
deviance-based losses, as well as their loss-specific centers x̃j respectively in Table 1. (See
Appendix F for all calculations associated with loss-specific centers, and we provide a formal
proof when studying the properties of our approaches in Section 2.4.)

Data Type Loss Type Loss Function Loss-specific Center x̃
Continuous Euclidean (`2) 1

2‖xi−ui ‖22 x̄

Skewed continuous

Manhattan (`1)
∑
j=1 |xij − uij | median(x)

Minkowski (`q) q

√∑
j=1 |xij − uij |q no closed form

Mahalanobis (weighted `2) (xi−ui)
TC−1(xi−ui) no closed form

Chebychev (`∞) maxj{|xij − uij |} no closed form

Canberra (weighted `1)
∑
j=1

|xij−uij |
|xij |+|uij | no closed form

Binary

Bernoulli log-likelihood −xijuij + log(1 + euij ) logit(x̄)
Binomial deviance −xij log uij − (1− xij) log(1− uij) x̄
Hinge loss max(0, 1− uijxij) mode(x)
KL divergence −xij log2 uij no closed form
Hamming (`0)

∑
j #(xij 6= uij)/n mode (x)

Count

Poisson log-likelihood −xijuij + exp(uij) log(x̄)
Poisson deviance −xij log uij + uij x̄
Negative binomial log-likelihood −xijuij + (xij + 1

α ) log( 1
α + euij ) log(x̄)

Negative binomial deviance xij log(
xij

uij
)− (xij + 1

α ) log(
1+αxij

1+αuij
) x̄

Manhattan (`1)
∑
j=1 |xij − uij | median(x)

Canberra (weighted `1)
∑
j=1

|xij−uij |
|xij |+|uij | no closed form

Categorical
Multinomial log-likelihood

{∑K
k=1−xijkuijk + log(

∑K
k=1 e

uijk)
}

mlogit(x̄)

Multinomial deviance
{∑K

k=1−xijk log(uijk)
}

,
K∑
k=1

uijk = 1 x̄

Table 1: Different losses and their loss-specific centers. We provide all calculations associated
with loss-specific centers in Appendix F. Note the Gecco problem with Hamming or
Canberra distances is not convex. Though we discuss general convex losses in this
paper, we list these non-convex losses for reference. For multinomial log-likelihood
and multinomial deviance, we change Gecco formulation slightly to accommodate
three indices; we provide a detailed formulation in Appendix E.

2.2 Integrative Generalized Convex Clustering (iGecco)

In data integration problems, we observe data from multiple sources and would like to
get a holistic understanding of the problem by analyzing all the data simultaneously. In
our framework, we integrate mixed multi-view data and perform clustering by employing
different convex losses for each of the different data views with a joint convex fusion penalty
that leads to common groups. Hence we propose Integrative Generalized Convex Clustering
(iGecco) which can be formulated as follows:

minimize
U(k)

K∑
k=1

πk`k(X
(k),U(k)) + γ

∑
i<i′

wii′

√√√√ K∑
k=1

‖U(k)
i. −U

(k)
i′. ‖22 .
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Here, we have K data sources. The kth data view X(k) is an n × pk matrix consisting of

n observations and pk features; U(k) is also an n × pk matrix and the ith row, U
(k)
i. , is

the cluster center associated with the point X
(k)
i. . And, `k(X

(k)
i. ,U

(k)
i. ) is the loss function

associated with the kth data view. Still, we choose one loss type as `k that is appropriate
based on the data type of each view. Each loss function is weighted by πk, which is fixed
by the user in advance. We have found that setting πk to be inversely proportional to
the null deviance evaluated at the loss-specific center, i.e., πk = 1

`k(X(k),X̃(k))
, performs

well in practice. The null deviance, `k(X
(k), X̃(k)) refers to the loss function evaluated

at X̃(k) where each jth column of X̃(k) denotes the loss-specific center x̃
(k)
j . We employ

this loss function weighting scheme to ensure equal scaling across data sets of different
types. Recall that in generalized linear model (GLM), the likelihood-ratio test statistic,

or the difference between the log-likelihoods, 2
(
`k(X

(k), Û(k))− `k(X(k),U
(k)
0 )
)

, follows a

χ2-distribution. Here Û(k) is our iGecco estimate while U
(k)
0 is the loss-specific center X̃(k)

(cluster centroid when there is only one cluster). Therefore, the ratio of the two quantities,

i.e., `k(X(k),U(k))

`k(X(k),X̃(k))
= πk`k(X

(k),U(k)) should be the same scale for each data view k. Finally,

notice that we employ a joint convex fusion penalty on all of the U(k)’s; this incorporates
information from each of the data sources and enforces the same group structure amongst the
shared observations. Similar to convex clustering, our joint convex fusion penalty encourages
the differences in the rows of concatenated centroids

(
U(1) · · ·U(K)

)
to be shrunk towards

zero, inducing a clustering behavior. Specifically, it forces the group structure of the ith row
of U(k) to be the same for all k data views. Note the joint convex fusion penalty can be also

written as

∥∥∥∥
U

(1)
i.
...

U
(K)
i.

−
U

(1)
i′.
...

U
(K)
i′.

∥∥∥∥
2

. We say that subject i and i′ belong to the same cluster

if U
(k)
i. = U

(k)
i′. for all k. Hence, due to this joint convex fusion penalty, the common group

structure property always holds. We study our methods further and prove some properties
in Section 2.4.

2.3 Feature Selection: Gecco+ and iGecco+

In high dimensions, it is important to perform feature selection both for clustering purity
and interpretability. Recently, Wang et al. (2018) proposed sparse convex clustering by
imposing a group-lasso-type penalty on the cluster centers which achieves feature selection
by shrinking noise features towards zero. This penalty, however, is only appropriate for
Euclidean distances when the data is centered; otherwise, the penalty term shrinks towards
the incorrect cluster centers. For example, the median is the cluster center with the `1 or
Manhattan distances. Thus, to select features in this scenario, we need to shrink them
towards the median, and we should enforce “sparsity” with respect to the median and
not the origin. To address this, we propose adding a shifted group-lasso-type penalty
which forces cluster center U·j to shrink towards the appropriate loss-specific center x̃j for
each feature. Both the cluster fusion penalty and this new shifted-group-lasso-type feature
selection penalty will shrink towards the same loss-specific center.
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To facilitate feature selection with the adaptive shifted group-lasso penalty for one data
type, our Generalized Convex Clustering Optimization with Feature Selection (Gecco+) is
formulated as follows:

minimize
U

n∑
i=1

`(Xi.,Ui.) + γ

n∑
i<i′

wii′‖Ui. −Ui′.‖2 + α

p∑
j=1

ζj‖U.j − x̃j · 1n‖2 .

Again, U is an n× p matrix and x̃j is the loss-specific center for the jth feature introduced
in Table 1. The tuning parameter α controls the number of informative features and the
feature weight ζj is a user input which plays an important role to adaptively penalize the
features. (We discuss choices of ζj in Section 2.5.2 when we introduce the adaptive version
of our method.) When α is small, all features are selected and contribute to defining the
cluster centers. When α grows sufficiently large, all features coalesce at the same value, the
loss-specific center x̃j , and hence no features are selected and contribute towards determining
the clusters. Another way of interpreting this is that the fusion penalty exactly fuses some of
the rows of the cluster center U, hence determining groups of rows. On the other hand, the
shifted group-lasso penalty shrinks whole columns of U towards their loss-specific centers,
thereby essentially removing the effect of uninformative features. Selected features are then
columns of U that are not shrunken to their loss-specific centers, U.j 6= x̃j · 1n. These
selected features, then, exhibit differences across the clusters determined by the fusion
penalty. Clearly, sparse convex clustering of Wang et al. (2018) is a special case of Gecco+
using Euclidean distances with centered data. Our approach using both a row and column
penalty is also reminiscent of convex biclustering (Chi et al., 2017) which uses fusion penalties
on both the rows and columns to achieve checker-board-like biclusters.

Building upon integrative generalized convex clustering in Section 2.2 and our proposed
feature selection penalty above, our Integrative Generalized Convex Clustering Optimization
with Feature Selection (iGecco+) is formulated as follows:

minimize
U(k)

K∑
k=1

πk`k(X
(k),U(k)) + γ

∑
i<i′

wii′

√√√√ K∑
k=1

‖U(k)
i. −U

(k)
i′. ‖22

+ α
K∑
k=1

pk∑
j=1

ζ
(k)
j ‖U

(k)
.j − x̃

(k)
j · 1n‖2 . (1)

Again, U(k) is an n× pk matrix and x̃
(k)
j is the loss-specific center for the jth feature for kth

data view. By construction, iGecco+ directly clusters mixed multi-view data and selects

features from each data view simultaneously. Similarly, adaptive choice of ζ
(k)
j gives rise to

adaptive iGecco+ which will be discussed in Section 2.5.2. Detailed discussions on practical
choices of tuning parameters and weights can be also found in Section 2.5.

2.4 Properties

In this section, we develop some properties of our methods, highlighting several advantages
of our convex formulation. Corresponding proofs can be found in Section A of the Appendix.

Define the objective function in (1) as Fγ,α(U) where U =
(
U(1) · · ·U(K)

)
. Then due to

convexity, we have the following properties. First, any minimizer achieves a global solution.
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Proposition 1 (Global solution) If `k is convex for all k, then any minimizer of Fγ,α(U),
U∗, is a global minimizer. If `k is strictly convex for all k, then U∗ is unique.

Our method is continuous with respect to data, tuning parameters and input parameters.

Proposition 2 (Continuity with respect to data, tuning and input parameters) The global
minimizer U∗w,π,ζ,X(γ, α) of iGecco+ exists and depends continuously on the data, X, tuning

parameters γ and α, the weight matrix w, the loss weight πk, and the feature weight ζ
(k)
j .

When tuning parameters are sufficiently large, all U’s coalesce to the loss-specific centers.

Proposition 3 (Loss-specific center) Define X̃ =
(
X̃(1) · · · X̃(K)

)
where each jth column of

X̃(k) equals the loss-specific center x̃
(k)
j . Suppose each observation corresponds to a node in a

graph with an edge between nodes i and j whenever wij > 0. If this graph is fully connected,
then Fγ,α(U) is minimized by the loss-specific center X̃ when γ is sufficiently large or α is
sufficiently large.

Remark. As Gecco, Gecco+ and iGecco are special cases of iGecco+, it is easy to show
that all of our properties hold for these methods as well.

These properties illustrate some important advantages of our convex clustering approaches.
Specifically, many other widely used clustering methods are known to suffer from poor local
solutions, but any minimizer of our problem will achieve a global solution. Additionally,
we show that iGecco+ is continuous with respect to the data, tuning parameters, and
other input parameters. Together, these two properties are very important in practice and
illustrate that the global solution of our method remains stable to small perturbations in
the data and input parameters. Stability is a desirable property in practice as one would
question the validity of a clustering result that can change dramatically with small changes
to the data or parameters. Importantly, most popular clustering methods such as k-means,
hierarchical clustering, model-based clustering, or low-rank based clustering, do not enjoy
these same stability properties.

Finally in Proposition 3, we verify that when the tuning parameters are sufficiently large,
full fusion of all observations to the loss-specific centers is achieved. Hence, our methods
indeed behave as intended, achieving joint clustering of observations. We illustrate this
property in Figure 1 where we apply Gecco+ to the authors data set (described fully in
Section 4). Here, we illustrate how our solution, Û(γ, α), changes as a function of γ and α.
This so-called “cluster solution path” begins with each observation as its own cluster center
when γ is small and stops when all observations are fused to the loss-specific center when γ
is sufficiently large. In between, we see that observations are fusing together as γ increases.
Similarly, when α is small, all features are selected and as α increases, some of the features
get fused to their loss-specific center.

2.5 Practical Considerations and Adaptive iGecco+

In this section, we discuss some practical considerations for applying our method to real
data. In the iGecco+ problem, πk, w and ζj are user-specific fixed inputs while γ and α are
tuning parameters; γ controls the number of clusters while α controls the number of features
selected. We discuss choosing user-specific inputs such as weights as well as how to select
tuning parameters. In doing so, we introduce an adaptive version of our method as well.
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Figure 1: Regularization path of Gecco+ solutions Û(γ, α) for authors data. From left to
right, we increase the parameter for fusion penalty γ. From top to bottom, we
increase the parameter for feature penalty α. The interpretation of regularization
path is discussed in more detail in Section 2.4.

2.5.1 Choice of Weights and Tuning Parameters

In practice, a good choice of fusion weights wij has been shown to enhance both computational
efficiency and clustering quality of convex clustering (Chi and Lange, 2015). It has been
empirically demonstrated that using weights inversely proportional to the distances yields
superior clustering performance; this approach is widely adopted in practice. Further, setting
many of the weights to zero helps reduce computation cost. Considering these two, the
most common weights choice for convex clustering is to use K-nearest-neighbors method
with a Gaussian kernel. Specifically, the weight between the sample pair (i, j) is set as
wij = Iκij exp (−φd(Xi.,Xj.)), where Iκij equals 1 if observation j is among observation i’s κ
nearest neighbors or vice versa, and 0 otherwise. However, this choice of weights based on
Euclidean distances may not work well for non-Gaussian data in Gecco(+) or for mixed data
in iGecco(+). To account for different data types and better measure the similarity between
observations, we still adopt K-nearest-neighbors method with an exponential kernel, but
further extend this by employing appropriate distance metrics for specific data types in
the exponential kernel. In particular, for weights in Gecco and Gecco+, we suggest using
the same distance functions or deviances in the loss function of Gecco and Gecco+. For
weights in iGecco and iGecco+, the challenge is that we need to employ a distance metric
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which measures mixed types of data. In this case, the Gower distance, which is a distance
metric used to measure the dissimilarity of two observations measured in different data
types (Gower, 1971), can address our problem. To be specific, the Gower distance between

observation i and i′ overall is defined as d(Xi.,Xi′.) =
∑K

k=1

∑pk
j=1 d

(k)
ii′j

/∑K
k=1 pk where

d
(k)
ii′j =

|X(k)
ij −X

(k)

i′j |

R
(k)
j

refers to the Gower distance between observation i and i′ for feature j in

data view k and R
(k)
j = maxi,i′ |X

(k)
ij −X

(k)
i′j | is the range of feature j in data view k. In the

literature, Gower distance has been commonly used as distance metrics for clustering mixed
types of data (Wangchamhan et al., 2017; Hummel et al., 2017; Akay and Yüksel, 2018) and
shown to yield superior performance than other distance metrics (Ali and Massmoudi, 2013;
dos Santos and Zárate, 2015).

Alternatively, we also propose and explore using stochastic neighbor embedding weights
based on symmetrized conditional probabilities (Maaten and Hinton, 2008). These have
been shown to yield superior performance in high-dimensions and if there are potential

outliers. Specifically, the symmetrized conditional probabilities are defined as pij =
pj|i+pi|j

2n ,

where pj|i =
exp(−φd(Xi.,Xj.))∑
k 6=i exp(−φd(Xi.,Xk.))

. We propose to use the weights wij = Iκij · pij where Iκij
still equals 1 if observation j is among observation i’s κ nearest neighbors or vice versa,
and 0 otherwise. Again, we suggest using distance metrics appropriate for specific data
types or the Gower distance for mixed data. In empirical studies, we experimented with
both weight choices and found that stochastic neighbor embedding weights tend to work
better in high-dimensional settings and if there are outliers. Hence, we recommend these
and employed them in our empirical investigations in Section 4 and 5.

Estimating the number of clusters in a data set is always challenging. Going beyond, we
have two tuning parameters in our iGecco+ problem; γ controls the number of clusters while
α controls the number of features selected. Current literature for tuning parameter selection
for convex clustering mainly focuses on stability selection (Wang, 2010; Fang and Wang,
2012), hold-out validation (Chi et al., 2017) and information criterion (Tan and Witten,
2015). We first adopt the stability selection based approach for tuning parameter selection
and follow closely the approach described in the work of Wang (2010); Fang and Wang
(2012). We choose stability selection based approach because i) its selection consistency has
been established and ii) Wang et al. (2018) adopted similar approach for tuning parameter
selection and demonstrated strong empirical performance. However, stability selection is
often computationally intensive in practice. To address this, we further explore information
criterion based approaches like the Bayesian information criterion (BIC). We explain full
details of both approaches in Appendix J and demonstrate empirical results when the number
of clusters and features are not fixed but estimated based on the data.

2.5.2 Adaptive Gecco+ and iGecco+ to Weight Features

Finally, we consider how to specify the feature weights, ζj used in the shifted group-lasso
penalty. While employing these weights are not strictly necessary, we have found, as
did Wang et al. (2018), that like the fusion weights, well-specified ζj ’s can both improve
performance and speed up computation. But unlike the fusion weights where we can use the
pairwise distances, we don’t have prior information on which features may be relevant in
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clustering. Thus, we propose to use an adaptive scheme that first fits the iGecco+ with no
feature weights and uses this initial estimate to define feature importance for use in weights.
This is similar to many adaptive approaches in the literature (Zou, 2006; Wang et al., 2018).

Our adaptive iGecco+ approach is given in Algorithm 1; this applies to adaptive Gecco+
as a special case as well. We assume that the number of clusters (or a range of the number
of clusters) is known a priori. We begin by fitting iGecco+ with α = 1 and uniform feature

weights ζ
(k)
j = 1. We then find the γ which gives the desired number of clusters, yielding

the initial estimate, Û(k). (We provide alternative adaptive iGecco+ Algorithm 17 when the
number of clusters is not known in Appendix J.) Next, similar to the adaptive approaches by
Zou (2006); Wang et al. (2018), we use this initial estimate to adaptively weight features by

proposing the following weights: ζ
(k)
j = 1/‖Û(k)

.j − x̃
(k)
j · 1n‖2. (To avoid numerical issues, we

add ε = 0.01 to the denominator.) These weights place a large penalty on noise features as

‖Û(k)
.j − x̃

(k)
j ·1n‖2 is close to zero in this case. Note, compared with sparse convex clustering

where the authors defined feature weights ζj by solving a convex clustering problem with
feature penalty α = 0, we propose to fit iGecco+ with feature penalty α = 1 first and
then update the feature weights adaptively. We find this weighting scheme works well in
practice as it shrinks noise features more and hence penalizes more on those features. Such
with-penalty initialization for adaptive weights has also been proposed in literature (Zhou
et al., 2009; Fan et al., 2009; van de Geer et al., 2011). We also notice that noise features
impact the distances used in the fusion weights as well. Hence, we suggest updating the
distances adaptively by using the selected features to better measure the similarities between
observations. To this end, we propose a new scheme to compute weighted Gower distances.
First, we scale the features within each data view so that informative features in different
data views contribute equally and on the same scale. Then, we employ the inverse of πk,
i.e., the null deviance, to weight the distances from different data types, resulting in an
aggregated and weighted Gower distance, d̂(Xi.,Xi′.) as further detailed in Algorithm 1.
Note that if the clustering signal from one particular data type is weak and there are few
informative features for this data type, then our weighting scheme will down-weight this
entire data type in the weighted Gower distance. In practice, our adaptive iGecco+ scheme
works well as evidenced in our empirical investigations in the next sections.

Algorithm 1 Adaptive iGecco+

1. Fit iGecco+ with α = 1, ζ
(k)
j = 1 and a sequence of γ.

2. Find γ which gives desired number of clusters; Get the estimate Û(k).

3. Update the feature weights ζ̂
(k)
j = 1/‖Û(k)

.j − x̃
(k)
j · 1n‖2 and fusion weights ŵij =

Iκij exp(−φd̂(Xi.,Xi′.)), where d̂(Xi.,Xi′.) =
∑K

k=1

∑pk
j=1

‖Û(k)
.j −x̃

(k)
j ·1n‖2

maxj ‖Û
(k)
.j −x̃

(k)
j ·1n‖2

· 1
πk
· d(k)

ii′j .

4. Fit adaptive iGecco+ with ζ̂, ŵ and a sequence of γ and α; Find optimal γ and α
which give desired number of clusters and features.

Note that Algorithm 1 for adaptive iGecco+ assumes desired number of clusters and
features. (Panahi et al. (2017); Sun et al. (2021) proved that perfect recovery can be
guaranteed for the general case of q-clusters for convex clustering. To yield exact q desired
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number of clusters, Weylandt et al. (2020) suggested back-tracking in practice.) We provide
the alternative adaptive iGecco+ (Algorithm 17) in Appendix J when the number of clusters
or features are not known a priori but estimated from the data.

3. iGecco+ Algorithm

In this section, we introduce our algorithm to solve iGecco+, which can be easily extended
to Gecco, Gecco+ and iGecco. We first propose a simple, but rather slow ADMM algorithm
as a baseline approach. To save computation cost, we further develop a new multi-block
ADMM-type procedure using inexact one-step approximation of the sub-problems. Our
algorithm is novel from optimization perspective as we extend the multi-block ADMM to a
higher number of blocks and combine it with the literature related to inexact-solve ADMM
with sub-problem approximations, which often results in major computational savings.

3.1 Full ADMM to Solve iGecco+ (Naive Algorithm)

Given the shifted group-lasso and fusion penalties along with general losses, developing an
optimization routine for iGecco+ method is less straight-forward than convex clustering or
sparse convex clustering. In this section, we propose a simple ADMM algorithm to solve
iGecco+ as a baseline algorithm and point out its drawbacks.

The most common approach to solve problems with more than two non-smooth functions
is via multi-block ADMM (Lin et al., 2015; Deng et al., 2017), which decomposes the original
problem into several smaller sub-problems and solves them in parallel at each iteration. Chen
et al. (2016) established a sufficient condition for the convergence of three-block ADMM.
We develop a multi-block ADMM approach to fit our problem for certain types of losses and
prove its convergence.

We first recast iGecco+ problem (1) as the equivalent constrained optimization problem:

minimize
U(k),V

K∑
k=1

πk`k(X
(k),U(k)) + γ

(∑
l∈E

wl‖Vl.‖2
)

︸ ︷︷ ︸
P1(V;w)

+α

K∑
k=1

pk∑
j=1

ζ
(k)
j ‖U

(k)
.j − x̃

(k)
j · 1n‖2

subject to D
[
U(1) · · · U(K)

]
−V = 0 .

Recently, Weylandt et al. (2020) derived the ADMM for convex clustering in matrix form and
we adopt similar approach. We index a centroid pair by l = (l1, l2) with l1 < l2, define the set
of edges over the non-zero weights E = {l = (l1, l2) : wl > 0}, and introduce a new variable

V =
[
V(1) · · · V(K)

]
∈ R|E|×

∑
pk where V

(k)
l. = U

(k)
l1.
−U

(k)
l2.

to account for the difference

between the two centroids. Hence V(k) is a matrix containing the pairwise differences
between connected rows of U(k) and the constraint is equivalent to DU(k) −V(k) = 0 for
all k; D ∈ R|E|×n is the directed difference matrix corresponding to the non-zero fusion
weights. We give general-form multi-block ADMM (Algorithm 2) to solve iGecco+. Here
proxh(·)(x) = argminz

1
2‖x− z ‖22 + h(z) is the proximal mapping of function h. Also, the

superscript in U(k) in Algorithm 2 refers to the kth data view; we omit iteration counter
indices in all iGecco+ algorithm for notation purposes and use the most recent values of the
updates. The dual variable is denoted by Λ(k).
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Algorithm 2 General multi-block algorithm for iGecco+

while not converged do
for all k = 1, · · · ,K do

U(k) = argmin
U

πk`k(X(k),U)+ ρ
2‖DU−V(k) +Λ(k) ‖2F +α

∑pk
j=1 ζ

(k)
j ‖U.j−x̃(k)

j ·1n‖2
end for
V = proxγ/ρP1(·;w)

([
DU(1) + Λ(1) · · · DU(K) + Λ(K)

])
Λ(k) = Λ(k) +(DU(k) −V(k)) for all k

end while

Notice that, in Algorithm 2, there is no closed-form analytical solution for the U(k)

sub-problem for general losses. Typically, at each iteration of Algorithm 2, we need to apply
an inner optimization routine, which requires a nested iterative solver, to solve the U(k)

sub-problem until full convergence. In the next section, we seek to speed up this algorithm
by using U(k) sub-problem approximations. But, first we propose two different approaches
to fully solve the U(k) sub-problem based on specific loss types and then use these to develop
a one-step update to solve the sub-problem approximately with guaranteed convergence.
For the V sub-problem, one can easily show that it has a closed-form analytical solution for
each iteration, as given in Algorithm 2.

3.2 iGecco+ Algorithm

We have introduced Algorithm 2, a simple baseline ADMM approach to solve iGecco+. In
this section, we consider different ways to solve the U(k) sub-problem in Algorithm 2. First,
based on specific loss types (differentiable or non-differentiable), we propose two different
algorithms to solve the U(k) sub-problem to full convergence. These approaches, however,
are rather slow for general losses as there is no closed-form solution which requires another
nested iterative solver. To address this and in connection with current literature on variants
of ADMM with sub-problem approximations, we propose iGecco+ algorithm, a multi-block
ADMM algorithm which solves the sub-problems approximately by taking a single one-step
update. We prove convergence of this general class of algorithms, a novel result in the
optimization literature.

3.2.1 Differentiable Case

When the loss `k is differentiable, we consider solving the U(k) sub-problem with proximal
gradient descent, which is often used when the objective function can be decomposed into
a differentiable and a non-differentiable function. While there are many other possible
optimization routines to solve the U(k) sub-problem, we choose proximal gradient descent
as there is existing literature proving convergence of ADMM algorithms with approximately
solved sub-problems using proximal gradient descent (Liu et al., 2013; Lu et al., 2016). We
will discuss in detail how to approximately solve the sub-problem by taking a one-step
approximation in Section 3.2.3. Based upon this, we propose Algorithm 3, which solves the
U(k) sub-problem by running full iterative proximal gradient descent to convergence. Here

P2(Ũ(k); ζ(k)) =
∑pk

j=1 ζ
(k)
j ‖Ũ

(k)
.j ‖2.
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Algorithm 3 U(k) sub-problem for differentiable loss `k (proximal gradient):

while not converged do
U(k) = prox

sk·αP2(·;ζ
(k)

)

(
U(k) − X̃(k) − sk · [πk∇`k(X(k),U(k)) + ρDT (DU(k) −V(k) + Λ(k))]

)
+ X̃(k)

end while

In Algorithm 3 and typically in general (proximal gradient) descent algorithms, we need
to choose an appropriate step size sk to ensure convergence. Usually we employ a fixed
step size by computing the Lipschitz constant as in the squared error loss case; but in
our method, it is hard to compute the Lipschitz constant for most of our general losses.
Instead, we suggest using backtracking line search procedure proposed by Beck and Teboulle
(2009); Parikh et al. (2014), which is a common way to determine step size with guaranteed
convergence in optimization. Further, we find decomposing the U(k) sub-problem to pk
separate U

(k)
.j sub-problems brings several advantages such as i) better convergence property

(than updating U(k)’s all together) due to adaptive step size for each U
(k)
.j sub-problem and

ii) less computation cost by solving each in parallel. Hence, in this case, we propose to use

proximal gradient for each separate U
(k)
.j sub-problem. To achieve this, we assume that the

loss is elementwise, which is satisfied by every deviance-based loss. Last, as mentioned, there
are many other possible ways to solve the U(k) sub-problem than proximal gradient, such
as ADMM. We find that when the loss function is squared Euclidean distances or the loss
function has a Hessian matrix that can be upper bounded by a fixed matrix, using ADMM
approach saves more computation. We provide all implementation details discussed above
in Section C of the Appendix.

3.2.2 Non-differentiable Case

When the loss `k is non-differentiable, we can no longer adopt the proximal gradient method
to solve the U(k) sub-problem as the objective is now a sum of more than one separable
non-smooth function. To address this, as mentioned, we can use multi-block ADMM; in
this case, we introduce new blocks for the non-smooth functions and hence develop a full
three-block ADMM approach to fit our problem.

To augment the non-differentiable term, we assume that our loss function can be written as
`k(X(k),U(k)) = fk(gk(X(k),U(k))) where fk is convex but non-differentiable and gk is affine.
This condition is satisfied by all distance-based losses with gk(X

(k),U(k)) = X(k) −U(k);
for example, for Manhattan distances, we have fk(Z) =

∑p
j=1 ‖ zj ‖1 = ‖vec(Z)‖1, and

gk(X,U) = X − U. The benefit of doing this is that now the U(k) sub-problem has a
closed-form solution. Particularly, we can rewrite the U(k) sub-problem as:

minimize
U(k),V

K∑
k=1

πkfk(Z
(k)) +

ρ

2
‖DU−V(k) + Λ(k) ‖2F + α

K∑
k=1

( pk∑
j=1

ζ
(k)
j ‖r

(k)
j ‖2︸ ︷︷ ︸

P2(R(k);ζ(k))

)

subject to X(k) −U(k) = Z(k), U(k) − X̃(k) = R(k) ,

where X̃(k) is an n× pk matrix with the jth column equal to scalar x̃
(k)
j .
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It is clear that we can use multi-block ADMM to solve the problem above and each
primal variable has a simple update with a closed-form solution. We propose Algorithm 4,
a full, iterative multi-block ADMM, to solve the U(k) sub-problem when the loss is a
non-differentiable distance-based function. Algorithm 4 applies to iGecco+ with various
distances such as Manhattan, Minkowski and Chebychev distances and details are given in
Section D of the Appendix.

Algorithm 4 U(k) sub-problem for non-differentiable distance-based loss `k (multi-block
ADMM):

Precompute: Difference matrix D, M = (DTD + 2I)−1.
while not converged do

U(k) = M(DT (V(k) −Λ(k)) + X̃(k) + R(k) −N(k) + X(k) − Z(k) + Ψ(k))
Z(k) = proxπkfk/ρ(X

(k) −U(k) + Ψ(k))

R(k) = proxα/ρP2(·;ζ(k))(U
(k) − X̃(k) + N(k))

Ψ(k) = Ψ(k) + (X(k) −U(k) − Z(k))
N(k) = N(k) + (U(k) − X̃(k) −R(k))

end while

3.2.3 iGecco+ Algorithm: Fast ADMM with Inexact One-step Approximation
to the Sub-problem

Notice that for both Algorithm 3 and 4, we need to run them iteratively to full convergence in
order to solve the U(k) sub-problem in Algorithm 2 for each iteration, which is dramatically
slow in practice. To address this, in literature, many have proposed variants of ADMM
with guaranteed convergence that find an inexact, one-step, approximate solution to the
sub-problem (without fully solving it); these include the generalized ADMM (Deng and
Yin, 2016), proximal ADMM (Shefi and Teboulle, 2014; Banert et al., 2016) and proximal
linearized ADMM (Liu et al., 2013; Lu et al., 2016). Thus, we propose to solve the U(k)

sub-problem approximately by taking a single one-step update of the algorithm (Algorithm 3
or 4) for both types of losses and prove convergence. For the differentiable loss case, we
propose to apply the proximal linearized ADMM approach while for the non-differentiable
case, we show that taking a one-step update of Algorithm 4, along with V and Λ update
in Algorithm 2, is equivalent to applying a four-block ADMM to the original iGecco+
problem and we provide a sufficient condition for the convergence of four-block ADMM. Our
algorithm, to the best of our knowledge, is the first to incorporate higher-order multi-block
ADMM and inexact ADMM with a one-step update to solve sub-problems for general loss
functions.

When the loss is differentiable, as mentioned in Algorithm 3, one can use full iterative

proximal gradient to solve the U
(k)
.j sub-problem, which however, is computationally burden-

some. To avoid this, many proposed variants of ADMM which find approximate solutions
to the sub-problems. Specifically, closely related to our problem here, Liu et al. (2013); Lu
et al. (2016) proposed proximal linearized ADMM which solves the sub-problems efficiently
by linearizing the differentiable part and then applying proximal gradient due to the non-
differentiable part. We find their approach fits into our problem and hence develop a proximal
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linearized 2-block ADMM to solve iGecco+ when the loss `k is differentiable and gradient is
Lipschitz continuous. It can be shown that applying proximal linearized 2-block ADMM to
Algorithm 2 is equivalent to taking a one-step update of Algorithm 3 along with V and Λ
update in Algorithm 2. In this way, we avoid running full iterative proximal gradient updates
to convergence for the U(k) sub-problem as in Algorithm 3 and hence save computation cost.

When the loss is non-differentiable, we still seek to take an one-step update to solve the
U(k) sub-problem. We achieve this by noticing that taking a one-step update of Algorithm 4
along with V and Λ update in Algorithm 2 is equivalent to applying multi-block ADMM to
the original iGecco+ problem recast as follows (for non-differentiable distance-based loss):

minimize
U(k),V

K∑
k=1

πkfk(Z
(k)) + γ

(∑
l∈E

wl‖Vl.‖2
)

︸ ︷︷ ︸
P1(V;w)

+α
K∑
k=1

( pk∑
j=1

ζ
(k)
j ‖r

(k)
j ‖2︸ ︷︷ ︸

P2(R(k);ζ(k))

)

subject to X(k) −U(k) = Z(k), D
[
U(1) · · · U(K)

]
−V = 0, U(k) − X̃(k) = R(k) .

Typically, general higher-order multi-block ADMM algorithms do not always converge,
even for convex functions (Chen et al., 2016). We prove convergence of our algorithm and
establish a novel convergence result by casting the iGecco+ with non-differentiable losses
as a four-block ADMM, proposing a sufficient condition for convergence of higher-order
multi-block ADMMs, and finally showing that our problem satisfies this condition. (Details
are given in the proof of Theorem 4 in Appendix B.) Therefore, taking a one-step update of
Algorithm 4 converges for iGecco+ with non-differentiable losses.

So far, we have proposed inexact-solve one-step update approach for both differentiable
loss and non-differentiable loss case. For mixed type of losses, we combine these two
algorithms and this gives Algorithm 5, a multi-block ADMM algorithm with inexact one-step
approximation to the U(k) sub-problem to solve iGecco+. We also establish the following
convergence result.

Algorithm 5 iGecco+ algorithm

while not converged do
for all k = 1, · · · ,K do

Update U(k):
if `k is differentiable then

Take a one-step update of Algorithm 3
else if `k is non-differentiable then

Take a one-step update of Algorithm 4
end if

end for
V = proxγ/ρP1(·;w)

([
DU(1) + Λ(1) · · · DU(K) + Λ(K)

])
Λ(k) = Λ(k) +(DU(k) −V(k)) for all k

end while
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Theorem 4 (iGecco+ convergence) Consider the iGecco+ problem (1) with fixed inputs πk,
w and ζj. If `k is convex for all k, Algorithm 5 converges to a global solution. In addition,
if each `k is strictly convex, it converges to the unique global solution.

Remark. Our corresponding Theorem 4 establishes a novel convergence result as it is the
first to show the convergence of four-block or higher ADMM using approximate sub-problems
for both differentiable and non-differentiable losses.

It is easy to see that Algorithm 5 can be applied to solve other Gecco-related methods as
special cases. When K = 1, Algorithm 5 gives the algorithm to solve Gecco+. When α = 0,
Algorithm 5 gives the algorithm to solve iGecco+. When K = 1 and α = 0, Algorithm 5
gives the algorithm to solve Gecco.

To conclude this section, we compare the convergence results of using both full ADMM
and inexact ADMM with one-step update in the sub-problem to solve Gecco+ (n = 120 and
p = 210) in Figure 2. The left plots show the number of iterations needed to yield optimization
convergence while the right plots show computation time. We see that Algorithm 5 (one-step
update to solve the sub-problem) saves much more computational time than Algorithm 2
(full updates to solve the sub-problem). It should be pointed out that though Algorithm 5
takes more iterations to converge due to inexact approximation for each iteration, we still
reduce computation time dramatically as the computation time per iteration is much less
than the full-solve approach.

Figure 2: Comparisons of full ADMM and one-step ADMM to solve Gecco+ with Poisson
log-likelihood (top panel, differentiable loss) and Gecco+ with Manhattan distances
(bottom panel, non-differentiable loss). Left plots show the number of iterations
needed to converge while right plots show computation time. Algorithm with
one-step update to solve the sub-problem saves much more computational time.
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4. Simulation Studies

In this section, we first evaluate the performance of Gecco+ against existing methods on
non-Gaussian data. Next we compare iGecco+ with other methods on mixed multi-view
data.

4.1 Non-Gaussian Data

In this subsection, we evaluate the performance of Gecco and (adaptive) Gecco+ by comparing
it with k-means, hierarchical clustering and sparse convex clustering. For simplicity, we have
the following naming convention for all methods: loss type name + Gecco(+). For example,
Poisson Deviance Gecco+ refers to Generalized Convex Clustering with Feature Selection
using Poisson deviance. Sparse CC refers to sparse convex clustering using Euclidean
distances where each feature is centered first. We measure the accuracy of clustering results
using adjusted Rand index (Hubert and Arabie, 1985). The adjusted Rand index is the
corrected-for-chance version of the Rand index, which is used to measure the agreement
between the estimated clustering assignment and the true group label. A larger adjusted
Rand index implies a better clustering result. For all methods we consider, we assume oracle
number of clusters for fair comparisons.

Each simulated data set is comprised of n = 120 observations with 3 clusters. Each
cluster has an equal number of observations. Only the first 10 features are informative while
the rest are noise. We consider the following simulation scenarios.

• S1: Spherical data with outliers

The first 10 informative features in each group are generated from a Gaussian distribu-
tion with different µk’s for each class. Specifically, the first 10 features are generated
from N(µk, I10) where µ1 = (−2.5 ·1T5 ,0T5 )T , µ2 = (0T5 , 2.5 ·1T5 )T , µ3 = (2.5 ·1T5 ,0T5 )T .
The outliers in each class are generated from a Gaussian distribution with the same
mean centroid µk but with higher variance, i.e., N(µk, 25 · I10). The remaining noise
features are generated from N(0, 1).

In the first setting (S1A), number of noise features ranges in 25, 50, 75, · · · up to 225
with the proportion of number of outliers fixed ( = 5%). We also consider the setting
when the variance of noise features increases with number of features fixed p = 200
and number of outliers fixed (S1B) and high-dimensional setting where p ranges from
250, 500, 750 to 1000 (S1C).

• S2: Non-spherical data with three half moons

Here we consider the standard simulated data of three interlocking half moons as
suggested by Chi and Lange (2015) and Wang et al. (2018). The first 10 features
are informative in which each pair makes up two-dimensional three interlocking half
moons. We randomly select 5% of the observations in each group and make them
outliers. The remaining noise features are generated from N(0, 1). The number of
noise features ranges from 25, 50, 75, · · · up to 225. In both S1 and S2, we compare
Manhattan Gecco+ with other existing methods.

• S3: Count-valued data
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The first 10 informative features in each group are generated from a Poisson distribution
with different µk’s (i = 1, 2, 3) for each class. Specifically, µ1 = 1 · 110, µ2 = 4 · 110,
µ3 = 7 · 110. The remaining noise features are generated from a Poisson distribution
with the same µ’s which are randomly generated integers from 1 to 10. The number of
noise features ranges from 25, 50, 75, · · · up to 225.
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Figure 3: Simulation results of non-Gaussian data: (S1A) We increase number of noise
features for spherical data with outliers; (S2) We increase number of noise features
for non-spherical data with outliers; (S3) We increase number of noise features for
count-valued data; (S1B) We increase noise level for spherical data with outliers;
(S1C) We further increase number of noise features for spherical data with outliers
in high dimensions. The adaptive Gecco+ outperforms existing methods in high
dimensions.

We summarize simulation results in Figure 3. We find that for spherical data with
outliers, adaptive Manhattan Gecco+ performs the best in high dimensions. Manhattan
Gecco performs well in low dimensions but poorly as the number of noisy features increases.
Manhattan Gecco+ performs well as the dimension increases, but adaptive Manhattan
Gecco+ outperforms the former as it adaptively penalizes the features, meaning that noisy
features quickly get zeroed out in the clustering path and that only the informative features
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perform important roles in clustering. We see that, without adaptive methods, we do not
achieve the full benefit of performing feature selection. As we perform adaptive Gecco+, we
show vast improvement in clustering purity as the number of noise features grows where
regular Gecco performs poorly. Sparse convex clustering performs the worst as it tends to
pick outliers as singleton clusters. In the presence of outliers, Manhattan Gecco+ performs
much better than sparse convex clustering as we choose a loss function that is more robust to
outliers. Interestingly, k-means performs better than sparse convex clustering. This is mainly
because sparse convex clustering calculates pairwise distance in the weights, placing outliers
in singleton clusters more likely than k-means which calculates within-cluster variances
(where outliers could be closer to the cluster centroids than to other data points). Our
simulation results also show that adaptive Manhattan Gecco+ works well for non-spherical
data by selecting the correct features. For count data, all three adaptive Gecco+ methods
perform better than k-means, hierarchical clustering and sparse convex clustering. We should
point out that there are several linkage options for hierarchical clustering. For visualization
purposes, we only show the linkage with the best and worst performance instead of all the
linkages. Also we use the appropriate data-specific distance metrics in hierarchical clustering.
For k-means, we use k-means++ (Arthur and Vassilvitskii, 2006) for initialization.

Table 2 shows the variable selection accuracy of sparse convex clustering and adaptive
Gecco+ in terms of F1 score. In all scenarios, we fix p = 225. We see that adaptive Gecco+
selects the correct features, whereas sparse convex clustering performs poorly.

Method Scenario 1 (A) Scenario 2 Scenario 3

Sparse Convex Clustering 0.37 (3.1e-2) 0.25 (2.4e-2) 0.14 (7.2e-3)
Adaptive Gecco+ 0.97 (1.9e-2) 0.99 (1.0e-2) 0.81 (8.0e-2)

Table 2: Comparisons of F1 score for adaptive Gecco+ and sparse convex clustering

4.2 Multi-View Data

In this subsection, we evaluate the performance of iGecco and (adaptive) iGecco+ on mixed
multi-view data by comparing it with hierarchical clustering, iClusterPlus (Mo et al., 2013)
and Bayesian Consensus Clustering (Lock and Dunson, 2013). Again, we measure the
accuracy of clustering results using the adjusted Rand index (Hubert and Arabie, 1985).

As before, each simulated data set is comprised of n = 120 observations with 3 clusters.
Each cluster has an equal number of observations. Only the first 10 features are informative
while the rest are noise. We have three data views consisting of continuous data, count-valued
data and binary/proportion-valued data. We investigate different scenarios with different
dimensions for each data view and consider the following simulation scenarios:

• S1: Spherical data with p1 = p2 = p3 = 10

• S2: Three half-moon data with p1 = p2 = p3 = 10

• S3: Spherical data with p1 = 200, p2 = 100, p3 = 50
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• S4: Spherical data with p1 = 50, p2 = 200, p3 = 100

• S5: Three half-moon data with p1 = 200, p2 = 100, p3 = 50

• S6: Three half-moon data with p1 = 50, p2 = 200, p3 = 100

We employ a similar simulation setup as in Section 4.1 to generate each data view. The
difference is that here for informative features, we increase the within-cluster variance for
Gaussian data and decrease difference of cluster mean centroids µk’s for binary and count
data so that there is overlap between different clusters. Specifically, for spherical cases,
Gaussian data is generated from N(µk, 3 · I10); count data is generated from Poisson with
different µk’s (µ1 = 2, µ2 = 4, µ3 = 6, etc); binary data is generated from Bernoulli with
different µk’s (µ1 = 0.5, µ2 = 0.2, µ3 = 0.8, etc). For half-moon cases, continuous data is
simulated with larger noise and the count and proportion-valued data is generated via a
copula transform. In this manner, we have created a challenging simulation scenario where
accurate clustering results cannot be achieved by considering only a single data view.

Again, for fair comparisons across methods, we assume oracle number of clusters. When
applying iGecco(+) methods, we employ Euclidean distances for continuous data, Manhattan
distances for count-valued data and Bernoulli log-likelihood for binary or proportion-valued
data. We use the latter two losses as they perform well compared with counterpart losses in
Gecco+ and demonstrate faster computation speed.

Simulation results in Table 3 and Table 4 show that our methods perform better than
existing methods. In low dimensions, iGecco performs comparably with iCluster and Bayesian
Consensus Clustering for spherical data. For non-spherical data, iGecco performs much
better. For high dimensions, iGecco+ performs better than iGecco while adaptive iGecco+
performs the best as it achieves the full benefit of feature selection. We also applied k-means
to the simulated data. The results of k-means are close to (or in some cases worse than)
hierarchical clustering with the best-performing linkage; hence we only show the results of
hierarchical clustering here for comparison.

Method Scenario 1 Scenario 2

Hclust: X1 0.35 (2.9e-2) 0.53 (2.3e-2)
Hclust: X2 0.53 (4.6e-2) 0.65 (1.8e-2)
Hclust: X3 0.52 (2.2e-2) 0.70 (2.4e-2)
Hclust: [X1X2X3] - Euclidean 0.68 (4.7e-2) 0.63 (3.3e-2)
Hclust: [X1X2X3] - Gower 0.86 (1.5e-2) 0.83 (7.3e-2)
iCluster+ with λ = 0 0.90 (1.6e-2) 0.71 (1.6e-2)
Bayesian Consensus Clustering 0.95 (1.2e-2) 0.63 (1.1e-2)
iGecco 0.93 (5.0e-3) 0.98 (2.2e-2)

Table 3: Comparisons of adjusted Rand index for mixed multi-view data

Also we show the variable selection results in Table 5 and compare our method to that
of iClusterPlus. For fair comparisons, we assume oracle number of features. For our method,
we choose α that gives oracle number of features; for iClusterPlus, we select top features
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Method Scenario 3 Scenario 4 Scenario 5 Scenario 6
Hclust: X1 0.42 (2.3e-2) 0.56 (2.5e-2) 0.43 (2.5e-2) 0.51 (2.7e-2)
Hclust: X2 0.23 (2.8e-2) 0.29 (3.4e-2) 0.51 (2.6e-2) 0.49 (2.1e-2)
Hclust: X3 0.25 (3.1e-2) 0.27 (3.1e-2) 0.55 (2.6e-2) 0.48 (1.9e-2)
Hclust: [X1X2X3] - Euclidean 0.40 (3.7e-2) 0.57 (3.3e-2) 0.55 (2.5e-2) 0.52 (2.1e-2)
Hclust: [X1X2X3] - Gower 0.68 (3.4e-2) 0.58 (6.3e-2) 0.58 (3.2e-2) 0.58 (3.0e-2)
iCluster+ 0.57 (6.5e-2) 0.77 (2.7e-2) 0.61 (2.4e-2) 0.62 (1.6e-2)
Bayesian Consensus Clustering 0.35 (1.1e-1) 0.64 (1.0e-1) 0.59 (1.2e-2) 0.63 (6.6e-3)
iGecco 0.00 (6.7e-4) 0.06 (5.0e-2) 0.39 (4.5e-2) 0.23 (6.9e-2)
iGecco+ 0.12 (3.3e-2) 0.16 (7.1e-2) 0.44 (3.6e-2) 0.39 (3.8e-2)
Adaptive iGecco+ 0.97 (7.8e-3) 0.99 (7.5e-3) 1.00 (0.0e-0) 1.00 (0.0e-0)

Table 4: Comparisons of adjusted Rand index for high-dimensional mixed multi-view data

based on Lasso coefficient estimates. Our adaptive iGecco+ outperforms iClusterPlus for all
scenarios.

Overall Gaussian Count Binary
iCluster+ A iGecco+ iCluster+ A iGecco+ iCluster+ A iGecco+ iCluster+ A iGecco+

S3 0.81 (3.1e-2) 0.94 (1.7e-2) 0.84 (5.7e-2) 0.99 (6.3e-3) 0.73 (3.3e-2) 0.88 (3.5e-2) 0.85 (1.5e-2) 0.93 (2.1e-2)
S4 0.95 (9.9e-3) 0.98 (1.3e-2) 0.99 (6.7e-3) 0.99 (7.3e-3) 0.92 (1.3e-2) 0.97 (1.8e-2) 0.94 (1.9e-2) 0.97 (1.8e-2)
S5 0.94 (3.5e-2) 1.00 (0.0e-0) 0.95 (3.3e-2) 1.00 (0.0e-0) 0.91 (4.2e-2) 1.00 (0.0e-0) 0.95 (3.3e-2) 1.00 (0.0e-0)
S6 0.92 (3.3e-2) 1.00 (3.3e-3) 0.97 (2.1e-2) 1.00 (0.0e-0) 0.84 (4.5e-2) 0.99 (1.0e-2) 0.95 (3.3e-2) 1.00 (0.0e-0)

Table 5: Comparisons of F1 score for adaptive iGecco+ and iClusterPlus

Note in this section, we assume that the oracle number of clusters and features are
known a priori for fair comparisons. Results when the number of clusters and features are
not fixed but estimated based on the data using tuning parameter selection, are given in
Appendix J.3.

5. Real Data Examples

In this section, we apply our methods to various real data sets and evaluate our methods
against existing ones. We first evaluate the performance of Gecco+ for several real data sets
and investigate the features selected by various Gecco+ methods.

5.1 Authors Data

The authors data set consists of word counts from n = 841 chapters written by four famous
English-language authors (Austen, London, Shakespeare, and Milton). Each class contains
an unbalanced number of observations with 69 features. The features are common “stop
words” like “a”, “be” and “the” which are typically removed before text mining analysis.
We use Gecco+ not only to cluster book chapters and compare the clustering assignments
with true labels of authors, but also to identify which key words help distinguish the authors.
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We choose tuning parameters using BIC based approach; results for stability selection based
approach are given in Table 15, Appendix J.3.

Method Adjusted Rand Index

K-means 0.74
Hierarchical Clustering 0.73
Sparse Convex Clustering 0.50
Manhattan Gecco+ 0.96
Poisson LL Gecco+ 0.96
Poisson Deviance Gecco+ 0.96

Table 6: Adjusted Rand index of different methods for authors data set

In Table 6, we compare Gecco+ with existing methods in terms of clustering quality. For
hierarchical clustering, we only show the linkage with the best performance (in this whole
section). Our method outperforms k-means and the best hierarchical clustering method.
Secondly, we look at the word texts selected by Gecco+. As shown in Table 7, Jane Austen
tended to use the word “her” more frequently than the other authors; this is expected as the
subjects of her novels are typically females. The word “was” seems to separate Shakespeare
and Jack London well. Shakespeare preferred to use present tense more while Jack London
preferred to use past tense more. To summarize, our Gecco+ not only has superior clustering
performance but also selects interpretable features.

Method Features

Manhattan Gecco+
“be” ,“had” ,“her”,
“the” ,“to”, “was”

Poisson LL Gecco+ “an” , “her” , “our”, “your”

Poisson Deviance Gecco+
“an”, “be” , “had”, “her”,
“is”, “my” , “the”, “was”

Table 7: Features selected by different Gecco+ methods for authors data set

5.2 TCGA Breast Cancer Data

The TCGA data set consists of log-transformed Level III RPKM gene expression levels for
445 breast-cancer patients with 353 features from The Cancer Genome Atlas Network (The
Cancer Genome Atlas Network, 2012). Five PAM50 breast cancer subtypes are included,
i.e., Basal-like, Luminal A, Luminal B, HER2-enriched, and Normal-like. Only 353 genes
out of 50,000 with somatic mutations from COSMIC (Forbes et al., 2010) are retained. The
data is Level III TCGA BRCA RNA-Sequencing gene expression data that have already
been pre-processed according to the following steps: i) reads normalized by RPKM, and ii)
corrected for overdispersion by a log-transformation. We remove 7 patients, who belong to
the normal-like group and the number of subjects n becomes 438. We also combine Luminal
A with Luminal B as they are often considered one aggregate group (Choi et al., 2014).
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Method Adjusted Rand Index

K-means 0.40
Hierarchical Clustering 0.37
Sparse Convex Clustering 0.01
Manhattan Gecco+ 0.76
Poisson LL Gecco+ 0.72
Poisson Deviance Gecco+ 0.72

Table 8: Adjusted Rand index of different methods for TCGA data set

From Table 8, our method outperforms k-means and the best hierarchical clustering
method. Next, we look at the genes selected by Gecco+ in Table 9. FOXA1 is known to be
a key gene that characterizes luminal subtypes in DNA microarray analyses (Badve et al.,
2007). GATA binding protein 3 (GATA3) is a transcriptional activator highly expressed
by the luminal epithelial cells in the breast (Mehra et al., 2005). ERBB2 is known to be
associated with HER2 subtype and has been well studied in breast cancer (Harari and
Yarden, 2000). Hence our Gecco+ not only outperforms existing methods but also selects
genes which are relevant to biology and have been implicated in previous scientific studies.

Method Features

Manhattan Gecco+
“BCL2” , “ERBB2” ,“GATA3”

“HMGA1”, “IL6ST”
Poisson LL Gecco+ “ERBB2” “FOXA1” “GATA3”

Poisson Deviance Gecco+
“ERBB2” , “FOXA1”, “GATA3”

“RET”, “SLC34A2”

Table 9: Features selected by different Gecco+ methods for TCGA data set

Next we evaluate the performance of iGecco+ for mixed multi-view data sets and
investigate the features selected by iGecco+.

5.3 Multi-omics Data

One promising application for integrative clustering for multi-view data lies in integrative
cancer genomics. Biologists seek to integrate data from multiple platforms of high-throughput
genomic data to gain a more thorough understanding of disease mechanisms and detect
cancer subtypes. In this case study, we seek to integrate four different types of genomic data
to study how epigenetics and short RNAs influence the gene regulatory system in breast
cancer.

We use the data set from The Cancer Genome Atlas Network (2012). Lock and Dunson
(2013) analyzed this data set using integrative methods and we follow the same data pre-
processing procedure: i) filter out genes in expression data whose standard deviation is less
than 1.5, ii) take square root of methylation data, and iii) take log of miRNA data. We end
up with a data set of 348 tumor samples including:
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• RNAseq gene expression (GE) data for 645 genes,

• DNA methylation (ME) data for 574 probes,

• miRNA expression (miRNA) data for 423 miRNAs,

• Reverse phase protein array (RPPA) data for 171 proteins.

The data set contains samples used on each platform with associated subtype calls from
each technology platform as well as integrated cluster labels from biologists. We use the
integrated labels from biologists as true label to compare different methods. Also we merged
the subtypes 3 and 4 in the integrated labels as those two subtypes correspond to Luminal A
and Luminal B respectively from the predicted label given by gene expression data (PAM50
mRNA).

Figure 6 in Appendix H gives the distribution of data from different platforms. For our
iGecco+ methods, we use Euclidean distances for gene expression data and protein data as
the distributions of these two data sets appear Gaussian; binomial deviances for methylation
data as the value is between [0, 1]; Manhattan distances for miRNA data as the data is
highly-skewed.

We compare our adaptive iGecco+ with other existing methods. From Table 10, we see
that our method outperforms all the existing methods.

Method Adjusted Rand Index

Hclust: X1 GE 0.51
Hclust: X2 Meth 0.39
Hclust: X3 miRNA 0.21
Hclust: X4 Protein 0.24
Hclust: [X1X2X3X4] - Euclidean 0.51
Hclust: [X1X2X3X4] - Gower 0.40
iCluster+ 0.36
Bayesian Consensus Clustering 0.35
Adaptive iGecco+ 0.71

Table 10: Adjusted Rand index of different methods for multi-omics TCGA data set

We also investigate the features selected by adaptive iGecco+, shown in Table 11, and
find that our method is validated as most are known in the breast cancer literature. For
example, FOXA1 is known to segregate the luminal subtypes from the others (Badve et al.,
2007), and AGR3 is a known biomarker for breast cancer prognosis and early breast cancer
detection from blood (Garczyk et al., 2015). Several well-known miRNAs were selected
including MIR-135b, which is upregulated in breast cancer and promotes cell growth (Hua
et al., 2016) as well as MIR-190 which suppresses breast cancer metastasis (Yu et al., 2018).
Several known proteins were also selected including ERalpha, which is overexpressed in early
stages of breast cancer (Hayashi et al., 2003) and GATA3 which plays an integral role in
breast luminal cell differentiation and breast cancer progression (Cimino-Mathews et al.,
2013).

We also visualize the resulting clusters from adaptive iGecco+. Figure 4 shows the cluster
heatmap of multi-omics TCGA data with row orders determined by cluster assignments
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Data view Features

Gene Expression
“AGR3”, “FOXA1”, “AGR2”, “ROPN1”,

“ROPN1B”, “ESR1”, “C1orf64”, “ART3”,“FSIP1”
miRNA “hsa-mir-135b”, “hsa-mir-190b”, “hsa-mir-577”, “hsa-mir-934”
Methylation “cg08047457”, “cg08097882”, “cg00117172”, “cg12265829”
Protein “ER.alpha”, “GATA3”, “AR”, “Cyclin E1”

Table 11: Features selected by adaptive iGecco+ methods for multi-omics TCGA data set

from iGecco+ and left bar corresponding to the integrated cluster labels from biologists.
We see that there is a clear separation between groups and adaptive iGecco+ identifies
meaningful subtypes. The black bars at the bottom of each data view correspond to the
selected features in Table 11.
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Figure 4: Cluster heatmap of multi-omics TCGA data with row orders determined by cluster
assignments from iGecco+. The left bar refers to the integrated cluster labels
from biologists. The black bars at the bottom of each data view correspond to
the selected features. Our adaptive iGecco+ identifies meaningful subtypes.

6. Discussion

In this paper, we develop a convex formulation of integrative clustering for high-dimensional
mixed multi-view data. We propose a unified, elegant methodological solution to two critical
issues for clustering and data integration: i) dealing with mixed types of data and ii)
selecting sparse, interpretable features in high-dimensional settings. Specifically, we show
that clustering for mixed, multi-view data can be achieved using different data-specific
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convex losses with a joint fusion penalty. We also introduce a shifted group-lasso penalty
that shrinks noise features to their loss-specific centers, hence selecting features that play
important roles in separating groups. In addition, we make an optimization contribution by
proposing and proving the convergence of a new general multi-block ADMM algorithm with
sub-problem approximations that efficiently solves our problem. Empirical studies show that
iGecco+ outperforms existing clustering methods and selects sparse, interpretable features
in separating clusters.

This paper focuses on the methodological development for integrative clustering and
feature selection, but there are many possible avenues for future research related to this
work. For example, we expect in future work to be able to show that our methods inherit
the strong statistical and theoretical properties of other convex clustering approaches such
as clustering consistency and prediction consistency. An important problem in practice
is choosing which loss function is appropriate for a given data set. While this is beyond
the scope of this paper, an interesting direction for future research would be to learn the
appropriate convex loss function in a data-driven manner. Additionally, many have shown
block missing structure is common in mixed data (Yu et al., 2019; Xiang et al., 2013). A
potentially interesting direction for future work would be to develop an extension of iGecco+
that can appropriately handle block-missing multi-view data. Moreover, Weylandt et al.
(2020) developed a fast algorithm to compute the entire convex clustering solution path and
used this to visualize the results via a dendrogram and pathwise plot. In future work, we
expect that algorithmic regularization path approaches can also be applied to our method to
be able to represent our solution as a dendrogram and employ other dynamic visualizations.
Finally, while we develop an efficient multi-block ADMM algorithm, there may be further
room to speed up computation of iGecco+, potentially by using distributed optimization
approaches.

In this paper, we demonstrate that our method can be applied to integrative genomics,
yet it can be applied to other fields such as multi-modal imaging, national security, online
advertising, and environmental studies where practitioners aim to find meaningful clusters
and features at the same time. In conclusion, we introduce a principled, unified approach
to a challenging problem that demonstrates strong empirical performance and opens many
directions for future research.

Our method is implemented in MATLAB and available at https://github.com/DataS
lingers/iGecco.
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Appendix A. Proof of Propositions

Proposition 1 and 2 are direct extensions from Proposition 2.1 of Chi and Lange (2015).
Notice they proved the solution path depends continuously on the tuning parameter γ and
the weight matrix w. It follows that the argument can be also applied to tuning parameter α,

the loss weight πk, and feature weight ζ
(k)
j . Also it is obvious that the loss `(·) is continuous

with respect to the data, X.
We show in detail how to prove Proposition 3 in the following. First we rewrite the

objective Fγ,α(U) as:
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By definition, loss-specific cluster center is x̃(k) = argmin
u

∑n
i=1 `k(X

(k)
i. ,u). Since `k is

convex, it is equivalent to u such that ∂
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We use the similar proof approach of Chi and Lange (2015). A point X furnishes a

global minimum of the convex function F (X) if and only if all forward directional derivatives
dΘF (X) at X are nonnegative. Here Θ = {Θ(1), · · · ,Θ(K)} represents a direction in the
space of possible concatenated centroids, where Θ(k) ∈ Rn×pk . We calculate the directional
derivatives:
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〈∂`k(X
(k)
i. , x̃

(k)),Θ
(k)
i. 〉

=
1

n

n∑
i=1

n∑
i′=1

〈∂`k(X
(k)
i. , x̃

(k)),Θ
(k)
i. −Θ

(k)
i′. 〉

≥ − 2

n

∑
i<i′

‖∂`k(X
(k)
i. , x̃

(k))‖2 · ‖Θ(k)
i. −Θ

(k)
i′. ‖2

≥ − 2

n

∑
i<i′

‖∂`k(X
(k)
i. , x̃

(k))‖2 ·

√√√√ K∑
k=1

‖Θ(k)
i. −Θ

(k)
i′. ‖22 .
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Hence, we have:

K∑
k=1

n∑
i=1

πk〈∂`k(X
(k)
i. , x̃

(k)),Θ
(k)
i. 〉 ≥ −

2

n

K∑
k=1

∑
i<i′

πk‖∂`k(X
(k)
i. , x̃

(k))‖2 ·

√√√√ K∑
k=1

‖Θ(k)
i. −Θ

(k)
i′. ‖22 .

Take γ sufficiently large such that:

γ
∑
i<i′

wii′

√√√√ K∑
k=1

‖Θ(k)
i. −Θ

(k)
i′. ‖22 ≥ −

2

n

K∑
k=1

∑
i<i′

πk‖∂`k(X
(k)
i. , x̃

(k))‖2 ·

√√√√ K∑
k=1

‖Θ(k)
i. −Θ

(k)
i′. ‖22 .

When all wii′ > 0, one can take any γ that exceeds

K · 2

n
max
i,i′,k

πk‖∂`k(X
(k)
i. , x̃

(k))‖2
wii′

.

In general set

β = K · 2

nminwii′>0wii′
max
i,i′,k

πk‖∂`k(X
(k)
i. , x̃

(k))‖2 .

For any pair i and i′ there exists a path i→ k → · · · → l→ i′ along which the weights are
positive. It follows that

2

n

K∑
k=1

πk‖∂`k(X
(k)
i. , x̃

(k))‖2 ·

√√√√ K∑
k=1

‖Θ(k)
i. −Θ

(k)
i′. ‖22 ≤ β

∑
i<i′

wii′

√√√√ K∑
k=1

‖Θ(k)
i. −Θ

(k)
i′. ‖22 .

We have

2

n

K∑
k=1

∑
i<i′

πk‖∂`k(X
(k)
i. , x̃

(k))‖2 ·

√√√√ K∑
k=1

‖Θ(k)
i. −Θ

(k)
i′. ‖22 ≤

(
n

2

)
β
∑
i<i′

wii′

√√√√ K∑
k=1

‖Θ(k)
i. −Θ

(k)
i′. ‖22 .

Hence the forward directional derivative test is satisfied for any γ ≥
(
n
2

)
β.

On the other hand, for fixed γ, the generalized Cauchy-Schwartz inequality implies:

n∑
i=1

〈∂`k(X
(k)
i. , x̃

(k)),Θ
(k)
i. 〉 =

n∑
i=1

〈∂`k(X
(k)
i. , x̃

(k)),Θ
(k)
i. − x̃(k)〉

=

pk∑
j=1

〈∂`k(X
(k)
.j , x̃

(k)
j · 1n),Θ

(k)
.j − x̃

(k)
j · 1n〉

≥ −
pk∑
j=1

‖∂`k(X
(k)
.j , x̃

(k)
j · 1n)‖2 · ‖Θ(k)

.j − x̃
(k)
j · 1n‖2 .

Hence, we have:

K∑
k=1

n∑
i=1

πk〈∂`k(X
(k)
i. , x̃

(k)),Θ
(k)
i. 〉 ≥ −

K∑
k=1

pk∑
j=1

πk‖∂`k(X
(k)
.j , x̃

(k)
j · 1n)‖2 · ‖Θ(k)

.j − x̃
(k)
j · 1n‖2 .

30



Integrative Generalized Convex Clustering Optimization and Feature Selection

Take α sufficiently large so that

α
K∑
k=1

pk∑
j=1

ζ
(k)
j ‖Θ

(k)
.j − x̃

(k)
j · 1n‖2 ≥ −

K∑
k=1

pk∑
j=1

πk‖∂`k(X
(k)
.j , x̃

(k)
j · 1n)‖2 · ‖Θ(k)

.j − x̃
(k)
j · 1n‖2 .

When all ζ
(k)
j > 0, one can take any α that exceeds

max
j,k

πk‖∂`k(X
(k)
.j , x̃

(k)
j · 1n)‖2

ζ
(k)
j

.

In general, set α ≥ 1

min
ζ
(k)
j

>0
ζ
(k)
j

· maxj,k πk‖∂`k(X
(k)
.j , x̃

(k)
j · 1n)‖2. It is easy to check the

forward directional derivative test is satisfied. �

Appendix B. Proof of Theorem 4

Recall the iGecco+ problem is:

min
U(k)

K∑
k=1

πk`k(X
(k),U(k)) + γ

∑
i<i′

wii′

√√√√ K∑
k=1

‖U(k)
i. −U

(k)
i′. ‖22

+ α
K∑
k=1

pk∑
j=1

ζ
(k)
j ‖U

(k)
.j − x̃

(k)
j · 1n‖2 .

We can recast the original iGecco+ problem as the equivalent constrained problem:

minimize
U(k),V

K∑
k=1

πk`k(X
(k),U(k)) + γ

(∑
l∈E

wl‖Vl.‖2
)

︸ ︷︷ ︸
P1(V;w)

+ α

K∑
k=1

pk∑
j=1

ζ
(k)
j ‖U

(k)
.j − x̃

(k)
j · 1n‖2 +

K∑
k′=1

πk′fk′(Z
(k′)) + α

K∑
k′=1

( p′k∑
j=1

ζ
(k′)
j ‖r(k′)

j ‖2︸ ︷︷ ︸
P2(R(k′);ζ(k

′))

)

subject to DU(k) −V(k) = 0, DU(k′) −V(k′) = 0, X(k′) −U(k′) = Z(k′), U(k′) − X̃(k′) = R(k′) ,
(2)

where `k refers to the differentiable losses and `k′ refers to the non-differentiable losses. We
use multi-block ADMM algorithm (Algorithm 6) to solve the problem above.

To prove convergence of Algorithm 5, we first show that multi-block ADMM Algorithm 6
converges to a global minimum. Then we show that we can proximal-linearize the sub-
problems in the primal updates of Algorithm 6 with proved convergence and this is equivalent
to Algorithm 5. Without loss of generality, we assume we have one differentiable loss `1(·)
and one non-differentiable distance-based loss `2(·).
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Algorithm 6 Multi-block ADMM to solve iGecco+

while not converged do
for all k = 1, · · · ,K do

U(k) = argmin
U

πk`k(X(k),U)+ ρ
2‖DU−V(k) +Λ(k) ‖2F +α

∑pk
j=1 ζ

(k)
j ‖U.j−x̃(k)

j ·1n‖2

U(k′) = argmin
U

ρ
2‖X

(k′) −U − Z(k′) + Ψ(k′)‖2F + ρ
2‖U − X̃(k′) − R(k′) + N(k′)‖2F +

ρ
2‖DU−V(k′) + Λ(k′) ‖2F
Z(k′) = argmin

Z
πk′fk′(Z) + ρ

2‖X
(k′) −U(k′) − Z + Ψ(k′)‖2F

R(k′) = argmin
R

α
∑pk′

j=1 ζ
(k′)
j ‖U(k′)

.j − x̃
(k′)
j · 1n‖2 + ρ

2‖U
(k′) − X̃(k′) −R + N(k′)‖2F

Ψ(k′) = Ψ(k′) + (X(k′) −U(k′) − Z(k′))
N(k′) = N(k′) + (U(k′) − X̃(k′) −R(k′))

end for
V = argmin

V

ρ
2‖DU(k) − V(k) + Λ(k) ‖2F + ρ

2‖DU(k′) − V(k′) + Λ(k′) ‖2F +

γ

(∑
l∈E wl‖Vl.‖2

)
Λ(k) = Λ(k) +(DU(k) −V(k)) for all k and k′

end while

To prove convergence of Algorithm 6, we first propose a sufficient condition for the
convergence of four-block ADMM and prove it holds true. This is an extension of the
convergence results in Section 2 of the work by Chen et al. (2016). Suppose the convex
optimization problem with linear constraints we want to minimize is

min θ1(x1) + θ2(x2) + θ3(x3) + θ4(x4)

s.t A1 x1 +A2 x2 +A3 x3 +A4 x4 = b . (3)

The multi-block ADMM has the following form. Note here, the superscript in x
(k+1)
i

refers to the (k + 1)th iteration in the ADMM updates. We have:

x
(k+1)
1 = argmin {LA(x1,x

(k)
2 ,x

(k)
3 ,x

(k)
4 ,λ(k))}

x
(k+1)
2 = argmin {LA(x

(k+1)
1 ,x2,x

(k)
3 ,x

(k)
4 ,λ(k))}

x
(k+1)
3 = argmin {LA(x

(k+1)
1 ,x

(k+1)
2 ,x3,x

(k)
4 ,λ(k))}

x
(k+1)
4 = argmin {LA(x

(k+1)
1 ,x

(k+1)
2 ,x

(k+1)
3 ,x4,λ

(k))}
λ(k+1) = λ(k)−(A1 x

(k+1)
1 +A2 x

(k+1)
2 +A3 x

(k+1)
3 +A4 x

(k+1)
4 −b) ,

(4)

where

LA =

4∑
i=1

θi(xi)− λT (A1 x1 +A2 x2 +A3 x3 +A4 x4−b)

+
1

2
‖A1 x1 +A2 x2 +A3 x3 +A4 x4−b ‖22 .

We establish Lemma 5, a sufficient condition for convergence of four-block ADMM:
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Lemma 5 (Sufficient Condition for Convergence of Four-block ADMM) A sufficient condi-
tion ensuring the convergence of (4) to a global solution of (3) is: AT

2 A3 = 0, AT
2 A4 = 0,

AT
3 A4 = 0.

We prove Lemma 5 at the end of this section. Note that Lemma 5 is stated in vector
form and therefore we need to transform the constraints in the original iGecco+ problem (2)
from matrix form to vector form in order to apply Lemma 5. Note that DU(k) = V(k) ⇔
U(k)TDT = V(k)T ⇔ (D⊗Ipk)vec(U(k)T ) = vec(V(k)T ). Hence we can write the constraints
in (2) as: 

A1 0
0 I
0 A2

0 I

u +


0
I
0
0

 z +


0
0
0
−I

 r +


−I 0
0 0
0 −I
0 0

v = b ,

where u =

(
u1

u2

)
=

(
vec(U(1)T )

vec(U(2)T )

)
, A1 = D⊗ Ip1 , A2 = D⊗ Ip2 , z = vec(ZT ), r = vec(RT ),

v = vec(VT ) =

(
vec(V(1)T )

vec(V(2)T )

)
, b =



0p1×|E|

vec(X(2)T )
0p2×|E|
x̃(2)

...

x̃(2)


. x̃ ∈ Rp2 is a column vector consisting

of all x̃
(2)
j and is repeated n times in b.

Next we show that the constraints in (2) for our problem satisfy the condition in Lemma
5 and hence the multi-block ADMM Algorithm 6 converges.

By construction, E2 =


0
I
0
0

, E3 =


0
0
0
−I

 and E4 =


−I 0
0 0
0 −I
0 0

. It is easy to verify

that: ET
2 E3 = 0, ET

2 E4 = 0, ET
3 E4 = 0. Hence our setup satisfies the sufficient condition in

Lemma 5 and the multi-block ADMM Algorithm 6 converges.
Next, we see that each primal update in Algorithm 5 is equivalent to the primal update

by applying proximal linearized ADMM to the sub-problems in Algorithm 6. (We will
show this in detail in Theorem 6.) It is easy to show that these updates with closed-form
solutions are special cases of proximal-linearizing the sub-problems. Meanwhile, Lu et al.
(2016); Liu et al. (2013) showed the convergence of proximal linearized multi-block ADMM.
Hence Algorithm 5 converges to a global minimum if `k is convex for all k and has Lipschitz
gradient when it is differentiable. Further, if each `k is strictly convex, it converges to the
unique global solution. �
Proof of Lemma 5:

33



Wang and Allen

According to the first-order optimality conditions of the minimization problems in (4),
we have:
θ1(x1)− θ1(x(k+1)

1 ) + (x1−x
(k+1)
1 )T

{
−AT

1 [λ
(k)−(A1 x

(k+1)
1 +A2 x

(k)
2 +A3 x

(k)
3 +A4 x

(k)
4 −b)]

}
≥ 0

θ2(x2)− θ2(x(k+1)
2 ) + (x2−x

(k+1)
2 )T

{
−AT

2 [λ
(k)−(A1 x

(k+1)
1 +A2 x

(k+1)
2 +A3 x

(k)
3 +A4 x

(k)
4 −b)]

}
≥ 0

θ3(x3)− θ3(x(k+1)
3 ) + (x3−x

(k+1)
3 )T

{
−AT

3 [λ
(k)−(A1 x

(k+1)
1 +A2 x

(k+1)
2 +A3 x

(k+1)
3 +A4 x

(k)
4 −b)]

}
≥ 0

θ4(x4)− θ4(x(k+1)
4 ) + (x4−x

(k+1)
4 )T

{
−AT

4 [λ
(k)−(A1 x

(k+1)
1 +A2 x

(k+1)
2 +A3 x

(k+1)
3 +A4 x

(k+1)
4 −b)]

}
≥ 0 .

Since AT
2 A3 = 0, AT

2 A4 = 0, AT
3 A4 = 0, we have:

θ1(x1)− θ1(x
(k+1)
1 ) + (x1−x

(k+1)
1 )T

{
−AT

1 [λ(k)−(A1 x
(k+1)
1 +A2 x

(k)
2 +A3 x

(k)
3 +A4 x

(k)
4 −b)]

}
≥ 0

θ2(x2)− θ2(x
(k+1)
2 ) + (x2−x

(k+1)
2 )T

{
−AT

2 [λ(k)−(A1 x
(k+1)
1 +A2 x

(k+1)
2 −b)]

}
≥ 0

θ3(x3)− θ3(x
(k+1)
3 ) + (x3−x

(k+1)
3 )T

{
−AT

3 [λ(k)−(A1 x
(k+1)
1 +A3 x

(k+1)
3 −b)]

}
≥ 0

θ4(x4)− θ4(x
(k+1)
4 ) + (x4−x

(k+1)
4 )T

{
−AT

4 [λ(k)−(A1 x
(k+1)
1 +A4 x

(k+1)
4 −b)]

}
≥ 0 ,

which is also the first-order optimality condition of the scheme:
x

(k+1)
1 = argmin {θ1(x1)− (λ(k))T (A1 x1) + 1

2‖A1 x1 +A2 x
(k)
2 +A3 x

(k)
3 +A4 x

(k)
4 −b ‖22}

(x
(k+1)
2 ,x

(k+1)
3 ,x

(k+1)
4 ) = argmin {θ2(x2) + θ3(x3) + θ4(x4)− (λ(k))T (A2 x2 +A3 x3 +A4 x4)

+1
2‖A1 x

(k+1)
1 +A2 x2 +A3 x3 +A4 x4−b ‖22}

λ(k+1) = λ(k)−(A1 x
(k+1)
1 +A2 x

(k+1)
2 +A3 x

(k+1)
3 +A4 x

(k+1)
4 −b) .

(5)

Clearly, (5) is a specific application of the original two-block ADMM to (3) by regarding
(x2,x3,x4) as one variable, [A2,A3,A4] as one matrix and θ2(x2) + θ3(x3) + θ4(x4) as one
function. �

Appendix C. Gecco+ for Differentiable Losses

In this section, we propose algorithms to solve Gecco+ when the loss ` is differentiable and
gradient is Lipschitz continuous. In this case, we develop a fast two-block ADMM algorithm
without fully solving the U sub-problem. Our result is closely related to the proximal
linearized ADMM literature (Liu et al., 2013; Lu et al., 2016). Also solving the sub-problem
approximately is closely connected with the generalized ADMM literature (Deng and Yin,
2016).

In the following sections, we discuss algorithms to solve Gecco+ instead of iGecco+ for
notation purposes as we would like to include iteration counter indices in the algorithm
for illustrating backtracking; but we can easily extend the algorithm to solve iGecco+. To
begin with, we clarify different notations in Gecco+ and iGecco+: the superscript in U(k) in
iGecco+ refers to the kth data view while U(k) in Gecco+ refers to the kth iteration counter
in the ADMM updates. We omit iteration counter indices in all iGecco+ algorithm for
notation purposes and use the most recent values of the updates.
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C.1 Two-block ADMM in Matrix Form

Suppose the loss `(X,U) is differentiable. Similar to the formulation in convex clustering,
we can recast the Gecco+ problem as the equivalent constrained problem:

minimize
U,V

`(X,U) + γ

(∑
l∈E

wl‖Vl.‖2
)

︸ ︷︷ ︸
P1(V;w)

+α

p∑
j=1

ζj‖U.j − x̃j · 1n‖2

subject to DU−V = 0 .

Like in convex clustering (Chi and Lange, 2015; Weylandt et al., 2020), we index a
centroid pair by l = (l1, l2) with l1 < l2, define the set of edges over the non-zero weights
E = {l = (l1, l2) : wl > 0}, and introduce a new variable Vl. = Ul1. −Ul2. to account for the
difference between the two centroids. Hence V is a matrix containing the pairwise differences
between connected rows of U. Also D is the directed difference matrix corresponding to the
non-zero fusion weights defined in the work of Weylandt et al. (2020).

We can show that the augmented Lagrangian in scaled form is equal to:

L(U,V,Λ) = `(X,U) +
ρ

2
‖DU−V + Λ ‖2F + α

p∑
j=1

ζj‖U.j − x̃j · 1n‖2 + γ
∑
l∈E

wl‖Vl.‖2 ,

where the dual variable is denoted by Λ.
To update U, we need to solve the following sub-problem:

minimize
U

`(X,U) +
ρ

2
‖DU−V + Λ ‖22 + α

p∑
j=1

ζj‖U.j − x̃j · 1n‖2 .

Let Ũ = U− X̃. The sub-problem becomes:

minimize
Ũ

`(X, Ũ + X̃) +
ρ

2
‖D(Ũ + X̃)−V + Λ ‖22 + α

p∑
j=1

ζj‖ũj‖2 ,

where ũj is the jth column of Ũ. For each ADMM iterate, we have:

Ũ(k) = argmin
Ũ

`(X, Ũ + X̃) +
ρ

2
‖D(Ũ + X̃)−V(k−1) + Λ(k−1) ‖22 + α

p∑
j=1

ζj‖ũj‖2︸ ︷︷ ︸
P2(Ũ;ζ)

.

This can be solved by running iterative proximal gradient to full convergence:

Ũ(k,m) = prox
sk·αP2(·;ζ)

(
Ũ(k,m−1) − sk · [∇`(X, Ũ(k,m−1) + X̃) + ρDT (D(Ũ(k,m−1) + X̃)−V(k−1) + Λ(k−1))]

)
,

which is equivalent to:

U(k,m) = prox
sk·αP2(·;ζ)

(
U(k,m−1) − X̃− sk · [∇`(X,U(k,m−1)) + ρDT (DU(k,m−1) −V(k−1) + Λ(k−1))]

)
+ X̃ .
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Here U(k,m) refers to the mth inner iteration counter in the U sub-problem out of the kth outer
iteration counter of the ADMM update. It is straightforward that this is computationally
expensive. To address this, we propose to solve the U sub-problem approximately using
just a one-step proximal gradient update and prove convergence in the next section. This
approach is based on proximal linearized ADMM (Liu et al., 2013; Lu et al., 2016), which
solves the sub-problems efficiently by linearizing the differentiable part and then applying
proximal gradient due to the non-differentiable part. To ensure convergence, the algorithm
requires that gradient should be Lipschitz continuous. The V and Λ updates are just the
same as in regular convex clustering.

We adopt such an approach and develop the proximal linearized 2-block ADMM (Algo-
rithm 7) to solve Gecco+ when the loss is differentiable and gradient is Lipschitz continuous.

Algorithm 7 Proximal linearized 2-block ADMM when the loss is differentiable and gradient
is Lipschitz continuous — matrix form

while not converged do
U(k) = proxsk·αP2(·;ζ)

(
U(k−1) − X̃− sk · [∇`(X,U(k−1)) + ρDT (DU(k−1) −V(k−1) + Λ(k−1))]

)
+ X̃

V(k) = proxγ/ρP1(·;w)(DU(k) + Λ(k−1))

Λ(k) = Λ(k−1) +(DU(k) −V(k))
end while

Further, if the U sub-problem can be decomposed to p separate U.j sub-problems where
the augmented Lagrangian for each now is a sum of a differentiable loss, a quadratic term and
a sparse group-lasso penalty, we propose to use proximal gradient descent for each separate
U.j sub-problem. In this way, we yield adaptive step size for each U.j sub-problem and
hence our algorithm enjoys better convergence property than updating U’s all together. (In
the latter case, the step size becomes fairly small as we are moving all U to some magnitude
in the direction of negative gradient.) To achieve this, we assume that the loss is elementwise,
which means we can write the loss function as a sum of p terms. (The loss can be written as∑

i `(Xi.,Ui.) =
∑

j `(X.j ,U.j) =
∑

i

∑
j q(xij , uij) where q(·) is the element-wise version

of the loss while `(·) is the vector-wise version of the loss.) We see that every deviance-based
loss satisfies this assumption. Moreover, by decomposing to p sub-problems, we can solve
each in parallel which saves computation cost. We describe in detail how to solve each U.j

sub-problem in the next subsection.

C.2 Two-block ADMM in Vector Form in Parallel

Suppose the U sub-problem can be decomposed to p separate U.j sub-problems mentioned
above. The augmented Lagrangian now becomes:

L(U,V,Λ) =

p∑
j=1

`(X.j ,U.j) +
ρ

2

p∑
j=1

‖DU.j −V.j + Λ.j ‖22

+ α

p∑
j=1

ζj‖U.j − x̃j · 1n‖2 + γ
∑
l∈E

wl‖Vl.‖2 .
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In this way we can perform block-wise minimization. Now minimizing the augmented
Lagrangian over U is equivalent to minimizing over each U.j , j = 1, · · · , p:

minimize
U.j

`(X.j ,U.j) +
ρ

2
‖DU.j −V.j + Λ.j ‖22 + αζj‖U.j − x̃j · 1n‖2 .

Let ũj = U.j − x̃j · 1n. The problem above becomes:

minimize
ũj

`(X.j , ũj + x̃j · 1n) +
ρ

2
‖D(ũj + x̃j · 1n)−V.j + Λ.j ‖22 + αζj‖ũj‖2 .

Similarly, this can be solved by running iterative proximal gradient to full convergence.
However, as mentioned above, we propose to solve the U sub-problem approximately by
taking just a one-step proximal gradient update and prove convergence. Still this approach
is based on proximal linearized ADMM (Liu et al., 2013; Lu et al., 2016), which solves the
sub-problems efficiently by linearizing the differentiable part and then applying proximal
gradient due to the non-differentiable part. To ensure convergence, the algorithm requires
that gradient should be Lipschitz continuous.

We propose Algorithm 8 to solve Gecco+ when ` is differentiable and gradient is Lipschitz
continuous in vector form. Note the U-update in Algorithm 8 is a just a vectorized version
of that in Algorithm 7 if we use fixed step size sk for each feature j. We use the vector form
update here since it enjoys better convergence property mentioned above and we use this
form to prove convergence. Next we prove the convergence of Algorithm 8.

Algorithm 8 Proximal linearized 2-block ADMM when the loss is differentiable and gradient
is Lipschitz continuous — vector form in parallel

Input: X, γ, w, α, ζ
Initialize: U(0),V(0),Λ(0)

Precompute: Difference matrix D, x̃j
while not converged do

for j = 1 to p do

U
(k)
.j = proxsk·αζj‖·‖2

(
U

(k−1)
.j −x̃j ·1n−sk ·[∇`(X.j ,U

(k−1)
.j )+ρDT (DU

(k−1)
.j −V

(k−1)
.j +

Λ
(k−1)
.j )]

)
+ x̃j · 1n

end for
V(k) = proxγ/ρP1(·;w)(DU(k) + Λ(k−1))

Λ(k) = Λ(k−1) +(DU(k) −V(k))
end while
Output: U(k).

C.3 Proof of Convergence

Theorem 6 If ` is convex and differrentiable and ∇` is Lipschitz continuous, then Algo-
rithm 8 converges to a global solution. Further, if ` is strictly convex, it converges to the
unique global solution.

Proof: We will show that the U-update in Algorithm 8 is equivalent to linearizing the U
sub-problem and then applying a proximal operator, which is proximal linearized ADMM.
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Note that each U.j sub-problem is:

U
(k+1)
.j = argmin

U.j

`(X.j ,U.j) +
ρ

2
‖DU.j −V

(k)
.j + Λ

(k)
.j ‖

2
2 + αζj‖U.j − x̃j · 1n‖2 .

For simplicity of notation, we replace U.j with uj in the following:

u
(k+1)
j = argmin

uj
`(X.j ,uj) +

ρ

2
‖D uj −V

(k)
.j + Λ

(k)
.j ‖

2
2 + αζj‖uj −x̃j · 1n‖2 .

Rearranging terms, we have:

u
(k+1)
j = argmin

uj
`(X.j ,uj) +

ρ

2
‖D uj −V

(k)
.j ‖

2
2 + ρΛ

(k)
.j

T (
D uj −V

(k)
.j

)
+ αζj‖uj −x̃j · 1n‖2 .

According to the proximal linearized ADMM with parallel splitting algorithm (see Algorithm
3 of Liu et al. (2013) and Equation (14) of Lu et al. (2016)), we can linearize the first two
terms and add a quadratic term in the objective:

u
(k+1)
j = argmin

uj
`(X.j ,u

(k)
j ) + 〈∇`(X.j ,u

(k)
j ),uj −u

(k)
j 〉

+ 〈ρDT
(
D u

(k)
j −V

(k)
.j

)
,uj −u

(k)
j 〉

+ ρΛ
(k)
.j

T (
D uj −V

(k)
.j

)
+ αζj‖uj −x̃j · 1n‖2 +

1

2sk
‖uj −u

(k)
j ‖

2
2 .

Rearranging terms and removing irrelevant terms, we have:

u
(k+1)
j = argmin

uj
(∇g(u

(k)
j ))T (uj −u

(k)
j ) +

1

2sk
‖uj −u

(k)
j ‖

2
2 + αζj‖uj −x̃j · 1n‖2 ,

where ∇g(u
(k)
j ) = ∇`(X.j ,u

(k)
j ) + ρDT (D u

(k)
j −V

(k)
.j + Λ

(k)
.j )).

Let ûj = uj −x̃j · 1n. We have:

û
(k+1)
j = argmin

ûj

(∇g(u
(k)
j ))T (ûj + x̃j · 1n − u

(k)
j ) +

1

2sk
‖ûj + x̃j · 1n − u

(k)
j ‖

2
2 + αζj‖ûj‖2 .

Recall the definition of proximal operator:

x(k+1) = prox
th

(x(k)−t∇g(x(k)))

= argmin
u

(
h(u) + g(x(k)) +∇g(x(k))T (u−x(k)) +

1

2t
‖u−x(k) ‖22

)
.

Therefore, the ûj update is just a proximal gradient descent update:

û
(k+1)
j = prox

sk·αζj‖·‖2

(
u

(k)
j −x̃j · 1n − sk · [∇`(X.j ,u

(k)
j ) + ρDT (D u

(k)
j −V

(k)
.j + Λ

(k)
.j )]

)
.

Now we plug back and get the uj , i.e., U.j update:

U
(k)
.j = prox

sk·αζj‖·‖2

(
U

(k−1)
.j − x̃j · 1n − sk · [∇`(X.j ,U

(k−1)
.j ) + ρDT (DU

(k−1)
.j −V

(k−1)
.j + Λ

(k−1)
.j )]

)
+ x̃j · 1n ,
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which is equivalent to the U.j update in Algorithm 8.
The V and Λ update is just the same as the one in convex clustering. Hence Algorithm 8

is equivalent to the form of proximal linearized ADMM by Liu et al. (2013); Lu et al. (2016)
and hence converges to a global solution as long as ∇` is Lipschitz continuous. Note that
Algorithm 7 is equivalent to Algorithm 8 with a fixed step size sk. (We can choose sk to
be the minimum step size sk over all features.) Therefore, Algorithm 7 also converges to a
global solution as long as ∇` is Lipschitz continuous. Further, if ` is strictly convex, the
optimization problem has unique minimum and hence Algorithm 7 and 8 converges to the
global solution. �

Note:

• In Liu et al. (2013); Lu et al. (2016), the algorithm requires that ∇` is Lipschitz
continuous to guarantee convergence. We know that ∇` being Lipschitz continuous
is equivalent to ` being strongly smooth. It is easy to show that the Hessian of
log-likelihood of exponential family and GLM deviance is upper bounded since in
(generalized) convex clustering, the value of U is bounded as it moves along the regular-
ization path from X to the loss-specific center; also to avoid numerical issues, we add
trivial constraint that uij > 0 when zero is not defined in the log-likelihood/deviance.
Hence the condition for convergence of proximal linearized ADMM is satisfied.

• To obtain a reasonable step size sk, we need to compute the Lipschitz constant.
However, it is non-trivial to calculate the Lipschitz constant for most of our general
losses. Instead, we suggest using backtracking line search procedure proposed by
Beck and Teboulle (2009); Parikh et al. (2014), which is a common way to determine
step size with guaranteed convergence in optimization. Empirical studies show that
choosing step size with backtracking in our framework also ensures convergence. The
details for backtracking procedure are discussed below.

• For proximal linearized ADMM, Liu et al. (2013); Lu et al. (2016) established conver-
gence rate of O(1/K). An interesting future direction might be establishing the linear
convergence rate of proximal linearized ADMM when the objective is strongly convex.

C.4 Backtracking Criterion

In this section we discuss how to choose the step size sk in Algorithm 8. As mentioned,
usually we employ a fixed step size by computing the Lipschitz constant as in the squared
error loss case; but in our method, it is hard to compute the Lipschitz constant for most of
our general losses. Instead, we propose using backtracking line search procedure proposed
by Beck and Teboulle (2009); Parikh et al. (2014), which is a common way to determine
step size with guaranteed convergence in optimization.

Recall the objective function we want to minimize in the U sub-problem is:

f(ũj) = `(X.j , ũj + x̃j · 1n) +
ρ

2
‖D(ũj + x̃j · 1n)−V.j + Λ.j ‖22 + αζj‖ũj‖2 ,

where ũj = U.j − x̃j · 1n.
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Define:

g(ũj) = `(X.j , ũj + x̃j · 1n) +
ρ

2
‖D(ũj + x̃j · 1n)−V.j + Λ.j ‖22

h(ũj) = αζj‖ũj‖2

Gt(ũj) =
ũj − proxt·αζj‖·‖2(ũj − t∇g(ũj))

t
.

We adopt the backtracking line search procedure proposed by Beck and Teboulle (2009);
Parikh et al. (2014). At each iteration, while

g(ũj − tGt(ũj)) > g(ũj)− t∇g(ũj)
TGt(ũj) +

t

2
‖Gt(ũj)‖22 i.e.,

g(prox
t

(ũj − t∇g(ũj))) > g(ũj)−∇g(ũj)
T (ũj − prox

t
(ũj − t∇g(ũj)))

+
1

2t
‖ũj − prox

t
(ũj − t∇g(ũj))‖22

shrink t = βt.
We still adopt the one-step approximation and hence suggest taking a one-step proximal

update with backtracking to solve the U sub-problem. To summarize, we propose Algo-
rithm 9, which uses proximal linearized 2-block ADMM with backtracking when the loss is
differentiable and gradient is Lipschitz continuous.

C.5 Alternative Algorithm for Differentiable Losses

It should be pointed out that there are many other methods to solve the U sub-problem
when the loss ` is differentiable. We choose to use proximal gradient descent algorithm as
there is existing literature on approximately solving the sub-problem using proximal gradient
under ADMM with proved convergence (Liu et al., 2013; Lu et al., 2016). But there are
many other optimization techniques to solve the U sub-problem such as ADMM.

In this subsection, we show how to apply ADMM to solve the U sub-problem and specify
under which conditions this method is more favorable. Recall to update U, we need to solve
the following sub-problem:

minimize
U

`(X,U) +
ρ

2
‖DU−V + Λ ‖2F + α

p∑
j=1

ζj‖U.j − x̃j · 1n‖2 .

We use ADMM to solve this minimization problem and can now recast the problem above
as the equivalent constrained problem:

minimize
U,V,Λ,R

p∑
j=1

`(X.j ,U.j) +
ρ

2
‖DU−V + Λ ‖2F + α

( p∑
j=1

ζj‖rj‖2
)

︸ ︷︷ ︸
P2(R;ζ)

subject to U− X̃ = R .
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Algorithm 9 Proximal linearized 2-block ADMM with backtracking when the loss is
differentiable and gradient is Lipschitz continuous

Input: X, γ, w, α, ζ
Initialize: U(0),V(0),Λ(0), t
Precompute: Difference matrix D, x̃j
while not converged do

for j = 1 to p do
t = 1
ũ

(k−1)
j = U

(k−1)
.j − x̃j · 1n

∇g(ũ
(k−1)
j ) = ∇`(X.j , ũ

(k−1)
j + x̃j ·1n) +ρDT

(
D(ũ

(k−1)
j + x̃j ·1n)−V

(k−1)
.j +Λ

(k−1)
.j

)
z = proxtαζj‖·‖2

(
ũ

(k−1)
j − t∇g(ũ

(k−1)
j )

)
while g(z) > g(ũ

(k−1)
j )−∇g(ũ

(k−1)
j )T (ũ

(k−1)
j − z) + 1

2t‖ z−ũ
(k−1)
j ‖22 do

t = βt

z = proxtαζj‖·‖2
(
ũ

(k−1)
j − t∇g(ũ

(k−1)
j )

)
end while
U

(k)
.j = z +x̃j · 1n

end for
V(k) = proxγ/ρP1(·;w)(DU(k) + Λ(k−1))

Λ(k) = Λ(k−1) +(DU(k) −V(k))
end while
Output: U(k).

The augmented Lagrangian in scaled form is:

L(U,V,R,Λ,N) =

p∑
j=1

`(X.j ,U.j) +
ρ

2
‖DU−V + Λ ‖2F +

ρ

2
‖(U− X̃)−R + N‖2F

+ α

p∑
j=1

ζj‖rj‖2 ,

where the dual variable for V is denoted by Λ; the dual variable for R is denoted by N.
The U.j sub-problem in the inner nested ADMM is:

U
(k)
.j = argmin

U.j

`(X.j ,U.j) +
ρ

2
‖DU.j −V

(k−1)
.j + Λ

(k−1)
.j ‖2F

+
ρ

2
‖(U.j − x̃j · 1n)− r

(k−1)
j + N

(k−1)
.j ‖2F .

Now, we are minimizing a sum of a differentiable loss ` and two quadratic terms which
are all smooth. Still the U.j sub-problem does not have a closed-form solution for general
convex losses and we need to run an iterative descent algorithm (such as gradient descent,
Newton method) to full convergence to solve the problem. Similarly, to reduce computation
cost, we take a one-step update by applying linearized ADMM (Lin et al., 2011) to the U.j
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Algorithm 10 Full-step multi-block algorithm for Gecco+ with Bernoulli log-likelihood `k:

Precompute: Difference matrix D, M1 = (1
4I + ρDTD + ρI)−1.

while not converged do
while not converged do

U(k) = U(k−1)−M1

[
∇`(X,U(k−1))+ρDT (DU(k−1)−V(k−1) +Λ(k−1))+ρ(U(k−1)−

X̃−R(k−1) + N(k−1))
]

R(k) = proxα/ρP2(·;ζ)(U
(k) − X̃ + N(k−1))

N(k) = N(k−1) + (U(k) − X̃−R(k))
end while
V(k) = proxγ/ρP1(·;w)(DU(k) + Λ(k−1))

Λ(k) = Λ(k−1) +(DU(k) −V(k))
end while

sub-problem. The U.j update in the inner ADMM now becomes:

U
(k)
.j = U

(k−1)
.j − sk

[
∇`(X.j ,U

(k−1)
.j ) + ρDT (DU

(k−1)
.j −V

(k−1)
.j + Λ

(k−1)
.j )

+ ρ(U
(k−1)
.j − x̃j · 1n − r

(k−1)
j + N

(k−1)
.j )

]
.

In this case, empirical studies show that taking a one-step Newton update is favored
than a one-step gradient descent update as the former enjoys better convergence properties
and generally avoids backtracking. However, inverting a Hessian matrix is computationally
burdensome at each iteration when n is large. Exceptions are for Euclidean distances case
where there is a closed-form solution for the U.j update and for Bernoulli log-likelihood case
where the Hessian of the loss can be upper bounded by a fixed matrix. In the latter case,
we propose to pre-compute the inverse of that fixed matrix instead of inverting a Hessian
matrix at each iteration. To illustrate this, we write out the U.j sub-problem of Gecco+
with Bernoulli log-likelihood:

U.j = argmin
U.j

( n∑
i=1

−xijuij + log(1 + euij )

)
+
ρ

2
‖DU.j −V.j + Λ.j ‖2F

+
ρ

2
‖(U.j − x̃j · 1n)− rj + N.j‖2F .

The Hessian is diag
{

euij

(1+euij )2

}
+ρDTD+ρI which can be upper bounded by 1

4I+ρDTD+ρI.

We propose to replace the Hessian with this fixed matrix in Newton method and use its
inverse. This is closely related to the approximate Hessian literature (Krishnapuram et al.,
2005; Simon et al., 2013). In this way, we just pre-compute this inverse matrix instead of
inverting the Hessian matrix at each iteration, which dramatically saves computation. We
give Algorithm 10 to solve Gecco+ for Bernoulli log-likelihood with a one-step update to
solve the U sub-problem. Empirical studies show that this is faster than taking the inner
nested proximal gradient approach as we generally don’t need to perform the backtracking
step.

Yet, Algorithm 10 is slow as we need to run iterative inner nested ADMM updates to
full convergence. To address this, as mentioned, we can take a one-step update of the inner
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nested iterative ADMM algorithm. To see this, we can recast the original Gecco+ problem
as:

minimize
U(k),V

`(X,U) + γ

(∑
l∈E

wl‖Vl.‖2
)

︸ ︷︷ ︸
P1(V;w)

+α

( p∑
j=1

ζj‖rj‖2︸ ︷︷ ︸
P2(R;ζ)

)

subject to DU−V = 0, U− X̃ = R .

We apply multi-block ADMM to solve this optimization problem and hence get Algorithm
11. As discussed above, we take a one-step update to solve the U sub-problem with linearized
ADMM and use the inverse of fixed approximate Hessian matrix, M1.

Algorithm 11 One-step inexact multi-block algorithm for Gecco+ with Bernoulli log-
likelihood `k:

Precompute: Difference matrix D, M1 = (1
4I + ρDTD + ρI)−1.

while not converged do
U(k) = U(k−1) −M1

[
∇`(X,U(k−1)) + ρDT (DU(k−1) −V(k−1) + Λ(k−1)) + ρ(U(k−1) −

X̃−R(k−1) + N(k−1))
]

R(k) = proxα/ρP2(·;ζ)(U
(k) − X̃ + N(k−1))

N(k) = N(k−1) + (U(k) − X̃−R(k))
V(k) = proxγ/ρP1(·;w)(DU(k) + Λ(k−1))

Λ(k) = Λ(k−1) +(DU(k) −V(k))
end while

Similarly, we adopt this approach to solve Gecco+ with Euclidean distances (sparse
convex clustering). We first recast the original problem as:

minimize
U(k),V

1

2
‖X−U‖22 + γ

(∑
l∈E

wl‖Vl.‖2
)

︸ ︷︷ ︸
P1(V;w)

+α

( p∑
j=1

ζj‖rj‖2︸ ︷︷ ︸
P2(R;ζ)

)

subject to DU−V = 0, U− X̃ = R .

Still, we use multi-block ADMM to solve this optimization problem and hence get Algorithm
12. Note that U sub-problem now has a closed-form solution. Typically, we do not have an
approximate Hessian matrix or a closed-form solution to the sub-problem for general losses
and we have to use one-step gradient descent with backtracking to solve the U sub-problem.
Empirical study shows that this approach converges slower than Algorithm 9 which uses
one-step proximal gradient descent with backtracking.

Appendix D. Gecco+ for Non-Differentiable Losses

In this section, we propose an algorithm to solve Gecco+ when the loss ` is non-differentiable.
In this case, we develop a multi-block ADMM algorithm to solve Gecco+ and prove its
algorithmic convergence.
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Algorithm 12 One-step inexact multi-block algorithm for Gecco+ with Euclidean distances
`k:

Precompute: Difference matrix D, M2 = (I + ρDTD + ρI)−1.
while not converged do

U(k) = M2

[
X + ρDT (V(k−1) −Λ(k−1)) + ρ(X̃ + R(k−1) −N(k−1))

]
R(k) = proxα/ρP2(·;ζ)(U

(k) − X̃ + N(k−1))

N(k) = N(k−1) + (U(k) − X̃−R(k))
V(k) = proxγ/ρP1(·;w)(DU(k) + Λ(k−1))

Λ(k) = Λ(k−1) +(DU(k) −V(k))
end while

D.1 Gecco+ Algorithm for Non-Differentiable Losses

Suppose the non-differentiable loss ` can be expressed as `(X,U) = f(g(X,U)) where f
is convex but non-differentiable and g is affine. This expression is reasonable as it satisfies
the affine composition of a convex function. For example, for the least absolute loss,
f(Z) =

∑p
j=1 ‖ zj ‖1 = ‖vec(Z)‖1 and g(X,U) = X−U. We specify the affine function g

as we want to augment the non-differentiable term in the loss function `.
We can rewrite the problem as:

minimize
U

f(g(X,U)) + γ
∑

1≤i<i′≤n
wii′‖Ui. −Ui′.‖2 + α

p∑
j=1

ζj‖U.j − x̃j · 1n‖2 .

We can now recast the problem above as the equivalent constrained problem:

minimize
U,V,Z,R

f(Z) + γ

(∑
l∈E

wl‖Vl.‖2
)

︸ ︷︷ ︸
P1(V;w)

+α

( p∑
j=1

ζj‖rj‖2
)

︸ ︷︷ ︸
P2(R;ζ)

subject to g(X,U) = Z

DU−V = 0

U− X̃ = R ,

where X̃ is an n× p matrix with the jth column equal to scalar x̃j .
The augmented Lagrangian in scaled form is:

L(U,V,Z,R,Λ,N,Ψ) =
ρ

2
‖DU−V + Λ ‖2F +

ρ

2
‖(U− X̃)−R + N‖2F

+
ρ

2
‖g(X,U)− Z + Ψ‖2F + f(Z) + γ

∑
l∈E

wl‖Vl.‖2 + α

p∑
j=1

ζj‖rj‖2 ,

where the dual variable for V is denoted by Λ; the dual variable for Z is denoted by Ψ; the
dual variable for R is denoted by N.
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Since we assume g to be affine, i.e., g(X,U) = AX+BU+C, the augmented Lagrangian
in scaled form can be written as:

L(U,V,Z,R,Λ,N,Ψ) =
ρ

2
‖DU−V + Λ ‖2F +

ρ

2
‖(U− X̃)−R + N‖2F

+
ρ

2
‖AX + BU + C− Z + Ψ‖2F + f(Z) + γ

∑
l∈E

wl‖Vl.‖2 + α

p∑
j=1

ζj‖rj‖2 .

It can be shown that the U sub-problem has a closed-form solution.
Note that, hinge loss is also non-differentiable and we can write g(X,U) = 1−U ◦X

where 1 is a matrix of all one and “◦” is the Hadamard product. In this case, the U
sub-problem does not have a closed-form solution and we will discuss how to solve this
problem in the next section.

For distance-based losses, the loss function can always be written as: `(X,U) = f(X−U),
which means g(X,U) = X −U. Then the augmented Lagrangian in scaled form can be
simplified as:

L(U,V,Z,R,Λ,N,Ψ) =
ρ

2
‖DU−V + Λ ‖2F +

ρ

2
‖(U− X̃)−R + N‖2F

+
ρ

2
‖X−U− Z + Ψ‖2F + f(Z) + γ

∑
l∈E

wl‖Vl.‖2 + α

p∑
j=1

ζj‖rj‖2 .

Now the U sub-problem has a closed-form solution:

U(k) = (DTD + 2I)−1(DT (V(k−1) −Λ(k−1)) + X̃ + R(k−1) −N(k−1) + X− Z(k−1) + Ψ(k−1)) .

This gives us Algorithm 13 to solve Gecco+ for non-differentiable distance-based loss.

Algorithm 13 Multi-block ADMM for non-differentiable distance-based loss

Precompute: Difference matrix D, M = (DTD + 2I)−1.
while not converged do

U(k) = M(DT (V(k−1) −Λ(k−1)) + X̃ + R(k−1) −N(k−1) + X− Z(k−1) + Ψ(k−1))
Z(k) = proxf/ρ(X−U(k) + Ψ(k−1))

R(k) = proxα/ρP2(·;ζ)(U
(k) − X̃ + N(k−1))

Ψ(k) = Ψ(k−1) + (X−U(k) − Z(k))
N(k) = N(k−1) + (U(k) − X̃−R(k))
V(k) = proxγ/ρP1(·;w)(DU(k) + Λ(k−1))

Λ(k) = Λ(k−1) +(DU(k) −V(k))
end while

Algorithm 13 can be used to solve Gecco+ problem with various distances such as
Manhattan, Minkowski and Chebychev distances by applying the corresponding proximal
operator in the Z-update. For example, for Gecco+ with Manhattan distances, the Z-update
is just applying element-wise soft-thresholding operator. For Gecco+ with Chebychev
distances, the proximal operator in the Z-update can be computed separately across the rows
of its argument and reduces to applying row-wise proximal operator of the infinity-norm.
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For Gecco+ with Minkowski distances, we similarly apply row-wise proximal operator of the
`q-norm.

Next we prove the convergence of Algorithm 13.

D.2 Proof of Convergence for Algorithm 13

Theorem 7 If ` is convex, Algorithm 13 converges to a global minimum.

Proof: Note we have provided a sufficient condition for the convergence of four-block
ADMM in Lemma 5. Next we show that the constraint set in our problem satisfies the
condition in Lemma 5 and hence the multi-block ADMM Algorithm 13 converges. Recall
our problem is:

minimize
U,V,Z,R

f(Z) + γ
∑
l∈E

wl‖Vl.‖2 + α

p∑
j=1

ζj‖rj‖2

subject to X−U = Z

DU−V = 0

U− X̃ = R .

Note that Lemma 5 is stated in vector form. Hence we transform the constraints above from
matrix form to vector form. Note that DU = V ⇔ UTDT = VT ⇔ (D ⊗ Ip)vec(UT ) =
vec(VT ). Hence we can write the constraints as: I

A
I

u +

I
0
0

 z +

 0
0
−I

 r +

 0
−I
0

v = b ,

where u = vec(UT ), A = D⊗Ip, z = vec(ZT ), r = vec(RT ), v = vec(VT ), b =


vec(XT )
0p×|E|

x̃
...
x̃

,

x̃ ∈ Rp is a column vector consisting of all x̃j and is repeated n times in b.

By construction, A2 =

I
0
0

, A3 =

 0
0
−I

 and A4 =

 0
−I
0

. It is easy to verify that:

AT
2 A3 = 0, AT

2 A4 = 0, AT
3 A4 = 0. Hence our setup satisfies the sufficient condition in

Lemma 5 and the multi-block ADMM Algorithm 13 converges. �

D.3 Special Case: Gecco+ with Hinge Losses

As mentioned, we cannot directly apply Algorithm 13 to solve Gecco+ with hinge losses as
the function g(X,U) in this case is not the same as the one in distance-based losses. Recall
Gecco+ with hinge losses is:

minimize
U

n∑
i=1

p∑
j=1

max(0, 1− uijxij) + γ
∑

1≤i<i′≤n
wii′‖Ui. −Ui′.‖2 + α

p∑
j=1

ζj‖U.j − x̃j · 1n‖2 .
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Like before, we can rewrite the problem as:

minimize
U

f(g(X,U)) + γ
∑

1≤i<i′≤n
wii′‖Ui. −Ui′.‖2 + α

p∑
j=1

ζj‖U.j − x̃j · 1n‖2 .

We can now recast the problem above as the equivalent constrained problem:

minimize
U,V,Z,R

f(Z) + γ

(∑
l∈E

wl‖Vl.‖2
)

︸ ︷︷ ︸
P1(V;w)

+α

( p∑
j=1

ζj‖rj‖2
)

︸ ︷︷ ︸
P2(R;ζ)

subject to 1−U ◦X = Z

DU−V = 0

U− X̃ = R .

Here, f(Z) = max(0,Z). With a slight abuse of notation, we refer f to applying element-wise
maximum to all entries in the matrix. We set g(X,U) = 1−U ◦X where 1 is a matrix of
all one and “◦” is the Hadamard product. X̃ is an n× p matrix with the jth column equal
to scalar x̃j .

The augmented Lagrangian in scaled form is:

L(U,V,Z,R,Λ,N,Ψ) =
ρ

2
‖DU−V + Λ ‖2F +

ρ

2
‖(U− X̃)−R + N‖2F

+
ρ

2
‖1−U ◦X− Z + Ψ‖2F + f(Z) + γ

∑
l∈E

wl‖Vl.‖2 + α

p∑
j=1

ζj‖rj‖2 .

The U sub-problem now becomes:

U(k+1) = argmin
U

‖DU−V(k) + Λ(k) ‖2F + ‖U− X̃−R(k) + N(k)‖2F

+ ‖1−U ◦X− Z(k) + Ψ(k)‖2F .

The first-order optimality condition is:

DT (DU−V(k) + Λ(k)) + U− X̃−R(k) + N(k) + X ◦ (U ◦X + Z(k) − 1−Ψ(k)) = 0 ,

which can be written as:

(X ◦X) ◦U + X ◦ (Z(k) − 1−Ψ(k)) + DTDU−DT (V(k) −Λ(k)) + U− X̃−R(k) + N(k) = 0

(X ◦X) ◦U + (DTD + I)U = DT (V(k) −Λ(k)) + X̃ + R(k) −N(k) + X ◦ (1 + Ψ(k) − Z(k)) .

To solve U from the above equation, one way is to first find the SVD of the leading coefficient:

X ◦X =
∑
k

σkũkṽk =
∑
k

w̃kṽk .
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From this decomposition we create two sets of diagonal matrices:

W̃k = Diag(w̃k)

Ṽk = Diag(ṽk) .

The Hadamard product can now be replaced by a sum∑
k

W̃kUṼk + (DTD + I)U = C ,

where C = DT (V(k) −Λ(k)) + X̃ + R(k) −N(k) + X ◦ (1 + Ψ(k) − Z(k)).
Now we can solve this equation via vectorization:

vec(C) =
(
I⊗ (DTD + I) +

∑
k

Ṽk ⊗ W̃k

)
vec(U)

vec(U) =
(
I⊗ (DTD + I) +

∑
k

Ṽk ⊗ W̃k

)+
vec(C)

U = Mat

((
I⊗ (DTD + I) +

∑
k

Ṽk ⊗ W̃k

)+
vec(C)

)
,

where B+ denotes the pseudo-inverse of B, and Mat() is the inverse of the vec() operation.
Here we have to compute the pseudo-inverse of a matrix which is computationally

expensive in practice. To avoid this, we adopt generalized ADMM approach proposed by
Deng and Yin (2016) where the U sub-problem is augmented by a positive semi-definite
quadratic operator. In our case, our modified U sub-problem becomes:

argmin
U

‖DU−V(k) + Λ(k) ‖2F + ‖(U− X̃)−R(k) + N(k)‖2F + ‖1−U ◦X− Z(k) + Ψ(k)‖2F

+ ‖
(
1−X ◦X

)
◦ (U−U(k))‖2F .

The first-order optimality condition now becomes:

DT (DU−V(k) + Λ(k)) + U− X̃−R(k) + N(k) + X ◦ (U ◦X + Z(k) − 1−Ψ(k))

+
(
1−X ◦X

)
◦ (U−U(k)) = 0 .

We have:

HU = DT (V(k) −Λ(k)) + X̃ + R(k) −N(k) −X ◦ (Z(k) − 1−Ψ(k)) + (1−X ◦X) ◦U(k) ,

where H = (DTD + I + 1). Hence we have analytical update:

U(k+1) = H−1
(
DT (V(k) −Λ(k)) + X̃ + R(k) −N(k) −X ◦ (Z(k) − 1−Ψ(k)) + (1−X ◦X) ◦U(k)

)
.

It is easy to see that the V, Z and R updates all have closed-form solutions.
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Appendix E. Multinomial Gecco+

In this section, we briefly demonstrate how Gecco+ with multinomial losses is formulated,
which is slightly different from the original Gecco+ problems. Suppose we observe categorical
data as follows (K = 3):

Xn×p =

1 1 1
2 2 2
3 3 3

 .

We can get the indicator matrix X(k) for each class k as:

X(1) =

1 1 1
0 0 0
0 0 0

 X(2) =

0 0 0
1 1 1
0 0 0

 X(3) =

0 0 0
0 0 0
1 1 1

 .

Then we concatenate X(1),X(2),X(3) and get X̂n×(p∗K) =
(
X(1) X(2) X(3)

)
. This is

equivalent to the dummy coding of the categorical matrix X̃ after some row/column shuffle:

X̃ =

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1


n×(p∗K)

.

It is obvious that measuring the difference of two observations by comparing rows of X̂
is better than simply comparing the Euclidean distances of rows of original data matrix
X. Also parameterizing in X̂ is beneficial for computing the multinomial log-likelihood or
deviance. Hence we concatenate all columns of X(k) as input data. Similarly, we concatenate
all columns of the corresponding U(k) and then fuse Û in a row-wise way.

E.1 Gecco with Multinomial Log-likelihood

Gecco with multinomial log-likelihood can be formulated as:

minimize
U

∑
i

∑
j

{ K∑
k=1

−xijkuijk + log(

K∑
k=1

euijk)

}
+ γ

∑
i<i′

wii′

∥∥∥∥
U

(1)
i.
...

U
(K)
i.

−
U

(1)
i′.
...

U
(K)
i′.

∥∥∥∥
2

,

where xijk refers to the elements of indicator matrix X
(k)
ij discussed previously and U

(k)
i. =

ui1k
ui2k

...
uipk

.
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E.2 Gecco+ with Multinomial Log-likelihood

Gecco+ with multinomial log-likelihood can be formulated as:

minimize
U

∑
i

∑
j

{ K∑
k=1

−xijkuijk + log(
K∑
k=1

euijk)

}
+ γ

∑
i<i′

wii′

∥∥∥∥
U

(1)
i.
...

U
(K)
i.

−
U

(1)
i′.
...

U
(K)
i′.

∥∥∥∥
2

+ α

p∑
j=1

K∑
k=1

‖U(k)
.j − x̃

(k)
j · 1n‖2 ,

where U
(k)
i. =


ui1k
ui2k

...
uipk

, U
(k)
.j =


u1jk

u2jk
...

unjk

 and x̃
(k)
j is the loss-specific center for j variable in kth

class.

Appendix F. Loss-specific Center Calculation

In this section, we show how to calculate the loss-specific center in Table 1.

F.1 Continuous Data

For continuous data, we consider Gecco with Euclidean distances.

F.1.1 Euclidean Distance

minimize
U

1

2

n∑
i=1

‖Xi. −Ui.‖22 + γ
∑
i<i′

wii′‖Ui. −Ui′.‖2

When total fusion occurs, Ui. = Ui′., ∀i 6= i′. Let Ui. = Ui′. = u. The problem above
becomes:

minimize
u

1

2

n∑
i=1

‖Xi. − u ‖22 .

Taking derivative, we get:

n∑
i=1

(Xi. − u) = 0⇒ u = x̄ .

F.2 Count Data

For count-valued data, we consider Gecco with Poisson log-likelihood/deviance, negative
binomial log-likelihood/deviance and Manhattan distances.
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F.2.1 Poisson log-likelihood

minimize
U

n∑
i

p∑
j

−xijuij + exp(uij) + γ
∑
i<i′

wii′‖Ui. −Ui′.‖2

When total fusion occurs, uij = ui′j , ∀i 6= i′. Let u be the fusion vector and u = (u1, · · · , up).
The problem above becomes:

minimize
U

n∑
i

p∑
j

−xijuj + exp(uj) .

Taking derivative, we get:

n∑
i=1

−xij + n exp(uj) = 0⇒ exp(uj) = x̄j ⇒ uj = log(x̄j)⇒ u = log(x̄) .

F.2.2 Poisson Deviance

minimize
U

n∑
i

p∑
j

−xij log uij + uij + γ
∑
i<i′

wii′‖Ui. −Ui′.‖2

Let u be the fusion vector and u = (u1, · · · , up). The problem above becomes:

minimize
U

n∑
i

p∑
j

−xij log uj + uj .

Taking derivative, we get:

n∑
i=1

−xij
uj

+ n = 0⇒ uj = x̄j ⇒ u = x̄ .

F.2.3 Negative Binomial log-likelihood

minimize
U

n∑
i

p∑
j

−xijuij + (xij +
1

α
) log(

1

α
+ euij ) + γ

∑
i<i′

wii′‖Ui. −Ui′.‖2

When total fusion occurs, uij = ui′j , ∀i 6= i′. Let u be the fusion vector and u = (u1, · · · , up).
The problem above becomes:

minimize
U

n∑
i

p∑
j

−xijuj + (xij +
1

α
) log(

1

α
+ euj ) .
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Taking derivative, we get:

n∑
i=1

−xij + (xij +
1

α
)

euj

1
α + euj

= 0

n∑
i=1

xij =
n∑
i=1

(xij +
1

α
)

euj

1
α + euj

n∑
i=1

xij ·
1

α
+

n∑
i=1

xij · euj =
n∑
i=1

xij · euj +
n

α
euj

euj =
n∑
i=1

xij/n

exp(uj) = x̄j ⇒ uj = log(x̄j)⇒ u = log(x̄) .

F.2.4 Negative Binomial Deviance

minimize
U

n∑
i

p∑
j

xij log(
xij
uij

)− (xij +
1

α
) log(

1 + αxij
1 + αuij

) + γ
∑
i<i′

wii′‖Ui. −Ui′.‖2

The formulation above is equivalent to:

minimize
U

n∑
i

p∑
j

−xij log uij + (xij +
1

α
) log(1 + αuij) + γ

∑
i<i′

wii′‖Ui. −Ui′.‖2 .

Let u be the fusion vector and u = (u1, · · · , up). The problem above becomes:

minimize
U

n∑
i

p∑
j

−xij log uj + (xij +
1

α
) log(1 + αuj) .

Taking derivative, we get:

n∑
i=1

−xij
uj

+
xij + 1

α

1 + αuj
· α = 0

n∑
i=1

xij + αuj

n∑
i=1

xij = nuj + αuj

n∑
i=1

xij

uj = x̄j ⇒ u = x̄ .

F.2.5 Manhattan Distance

minimize
U

n∑
i=1

‖xi−ui ‖1 + γ
∑
i<i′

wii′‖Ui. −Ui′.‖2

When total fusion occurs, Ui. = Ui′., ∀i 6= i′. Let Ui. = Ui′. = u. We have:

minimize
u

n∑
i=1

‖xi−u ‖1 .
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For each j, we have:

minimize
uj

n∑
i=1

‖xij − uj‖1 .

We know that the optimal uj is just the median of xij for each j.

F.3 Binary Data

For binary data, we consider Gecco with Bernoulli log-likelihood, binomial deviance and
hinge loss.

F.3.1 Bernoulli log-likelihood

minimize
U

n∑
i

p∑
j

−xijuij + log(1 + euij ) + γ
∑
i<i′

wii′‖Ui. −Ui′.‖2

When total fusion occurs, uij = ui′j , ∀i 6= i′. Let u be the fusion vector and u = (u1, · · · , up).
The problem above becomes:

minimize
U

n∑
i

p∑
j

−xijuj + log(1 + euj ) .

Taking derivative, we get:

n∑
i=1

−xij + n
exp(uj)

1 + exp(uj)
= 0⇒ exp(uj)

1 + exp(uj)
= x̄j

⇒ logit−1(uj) = x̄j ⇒ uj = logit(x̄j)⇒ u = logit(x) .

F.3.2 Binomial Deviance

minimize
U

n∑
i

p∑
j

−xij log uij − (1− xij) log(1− uij) + γ
∑
i<i′

wii′‖Ui. −Ui′.‖2

Let u be the fusion vector and u = (u1, · · · , up). The problem above becomes:

minimize
U

n∑
i

p∑
j

−xij log uj − (1− xij) log(1− uj) .

Taking derivative, we get:

n∑
i=1

−xij
uj

+
1− xij
1− uj

= 0⇒
n∑
i

−xij(1− uj) + (1− xij)uj = 0

⇒
n∑
i

−xij + uj = 0⇒ uj = x̄j ⇒ u = x̄ .
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F.3.3 Hinge Loss

minimize
U

n∑
i=1

p∑
j=1

max(0, 1− uijxij) + γ
∑
i<i′

wii′‖Ui. −Ui′.‖2

Let u be the fusion vector and u = (u1, · · · , up). The problem above becomes:

minimize
U

n∑
i=1

p∑
j=1

max(0, 1− ujxij) .

For each feature j, the problem becomes:

minimize
uj

n∑
i=1

max(0, 1− ujxij) .

Note in hinge loss, xij ∈ {−1, 1}. Suppose we have n1 observations for class “1” and n2

observations for class “−1”. The problem now becomes:

minimize
uj

n1 max(0, 1− uj) + n2 max(0, 1 + uj) .

Define h(t) = n1 max(0, 1− t) + n2 max(0, 1 + t). We have:

h(t) =


n1(1− t) if t ≤ −1

n1(1− t) + n2(1 + t) if − 1 < t < 1

n2(1 + t) if t ≥ 1 .

Clearly, if n2 > n1 (more “−1”), h(t) is minimized by t = −1; if n1 > n2 (more “1”), h(t) is
minimized by t = 1; if n1 = n2, h(t) is minimized by any t between [−1, 1]. Therefore, uj
should be the mode of all observations for feature j:

uj = modei(xij) .

F.4 Categorical Data

For categorical data, we consider Gecco with multinomial log-likelihood and deviance.

F.4.1 Multinomial log-likelihood

minimize
U

n∑
i

p∑
j

{ K∑
k=1

−xijkuijk + log(
K∑
k=1

euijk)
}

+ γ
∑
i<i′

wii′

∥∥∥∥
U

(1)
i.
...

U
(K)
i.

−
U

(1)
i′.
...

U
(K)
i′.

∥∥∥∥
2

When total fusion occurs, uijk = ui′jk, ∀i 6= i′. Let u be the fusion vector and uk =
(u1k, · · · , upk). The problem above becomes:

minimize
U

n∑
i

p∑
j

{ K∑
k

−xijkujk + log(

K∑
k

eujk)
}
.
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Taking derivative with respect to ujk, we get:

n∑
i=1

−xijk + n
exp(ujk)∑K
k exp(ujk)

= 0

ujk = log
x̄.jk∑
k x̄.jk

= mlogit(x̄.jk) .

F.4.2 Multinomial Deviance

minimize
U

n∑
i

p∑
j

{ K∑
k=1

−xijk log(uijk)
}

+ γ
∑
i<i′

wii′

∥∥∥∥
U

(1)
i.
...

U
(K)
i.

−
U

(1)
i′.
...

U
(K)
i′.

∥∥∥∥
2

subject to

K∑
k=1

uijk = 1

When total fusion occurs, uijk = ui′jk, ∀i 6= i′. Let u be the fusion vector and uk =
(u1k, · · · , upk). The problem above becomes:

minimize
U

n∑
i

p∑
j

K∑
k

−xijk log ujk

subject to
K∑
k=1

ujk = 1 .

We can write the constraint in Lagrangian form:

minimize
U

n∑
i

p∑
j

K∑
k

−xijk log ujk + λ(
K∑
k=1

ujk − 1) .

Taking derivative with respect to ujk, we get:

n∑
i=1

−xijk
ujk

+ λ = 0

n∑
i=1

xijk = λujk .

We have:

n =
n∑
i=1

K∑
k=1

xijk =
K∑
k=1

n∑
i=1

xijk =
K∑
k=1

λujk = λ .

Therefore,

ujk =
n∑
i=1

xijk/n .
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Appendix G. Visualization of Gecco+ for Authors Data

Figure 5 illustrates selected features and cluster assignment for authors data set with one
combination of α and γ. We select meaningful features and achieve satisfactory clustering
results. We have already discussed the results and interpretation in detail in Section 5.1.

Figure 5: Cluster heatmap of Gecco+ solution Û(γ, α) for authors data set with α = 15
and γ = 105. The left bar refers to the true author label. We highlight selected
features at the bottom. Gecco+ selects informative features that separate groups.

Appendix H. Multi-omics Data

In this section, we show the distribution of data from different platforms in Section 5.3. We
see that both gene expression data and protein data appear Gaussian; methylation data is
between [0, 1]; miRNA data is highly-skewed.
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Figure 6: Histograms of data from different platforms for multi-omics TCGA data set. Both
gene expression data and protein data appear Gaussian; methylation data is
proportion-valued; miRNA data is highly-skewed.

Appendix I. Null Deviance

In this appendix, we list the null deviance D for some common losses used in iGecco. Recall
in the iGecco formulation, πk, which are set inversely proportional to the null deviance
evaluated at the loss-specific center, are scaling factors to ensure that the losses are measured
at the same scale in the objective function.

By definition, the null deviance D evaluated at the loss-specific center, refers to `(X, X̃)

where each jth column of X̃ is the loss-specific center x̃
(k)
j for that column/feature. Table 12

shows the null deviance D for some common losses.

Loss Function Null Deviance D

Euclidean distance ‖X− X̄‖22 =
∑

i

∑
j(xij − x̄j)2

Manhattan distance
∑

i

∑
j |xij −median(xj)|

Bernoulli log-likelihood 2
[∑

i

∑
j −xij logit(x̄j) + log

(
1 + elogit(x̄j)

)]
Binomial deviance 2

[∑
i

∑
j −xij log x̄j − (1− xij) log(1− x̄j)

]
Table 12: Null deviance for common losses used in iGecco
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Here x̄j refers to the mean for the jth column/feature while median(xj) refers to the
median for the jth column. Simple calculation shows that the Bernoulli log-likelihood is
equivalent to binomial deviance by noting logit(x̄j) = log

x̄j
1−x̄j .

Appendix J. Choice of Tuning Parameters

In this appendix, we propose two different approaches to select tuning parameters γ and α
in the iGecco+ problem; γ controls the number of clusters while α controls the number of
features selected. We first consider stability selection based approach, which has been shown
to enjoy nice statistical properties such as selection consistency (Wang, 2010; Fang and
Wang, 2012) and been adopted in practice with strong empirical performance (Wang et al.,
2018). Next, to reduce computation, we consider information criterion based approaches.
Finally, we demonstrate empirical results when the number of clusters and features are not
fixed but estimated based on the data.

J.1 Stability Selection Based Approach

We first adopt the stability selection based approach for tuning parameter selection and
follow closely the approach described in the work of Wang (2010); Fang and Wang (2012).
We choose the stability selection based approach because i) its selection consistency has
been established and ii) Wang et al. (2018) adopted similar approach for tuning parameter
selection and demonstrated strong empirical performance. The rationale behind stability
selection is that a good clustering algorithm with optimal tuning parameter should produce
clusterings that do not vary much with respect to a small perturbation to the training
samples.

By Wang (2010); Fang and Wang (2012), a clustering ψ(x) is defined as a mapping
ψ : Rp → {1, . . . , q} where q is the given number of clusters. Here, we use q as the number
of clusters since we have already used k to represent the kth data view X(k). A clustering
algorithm Ψ(·; q) with a given number of clusters q ≥ 2 yields a clustering mapping ψ(x)
when applied to a sample. Here, we choose the number of clusters q, which is equivalent to
choosing optimal γ since we can yield the cluster assignment and corresponding q for each γ.
To account for the tuning parameter α for feature selection, we further denote the clustering
algorithm as Ψ(·; q, α). Then, in our case, for any given pair of q and α, two clustering
results can be obtained from two sets of bootstrapped samples. Then the clustering distance
d, defined by Fang and Wang (2012), can be computed to measure the dissimilarity between
two clustering results. We repeat the procedure multiple times and the optimal tuning
parameter pair (q̂, α̂) is the one that minimizes the average clustering instability. This gives
Algorithm 14, which uses stability selection to choose tuning parameters.
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Algorithm 14 Choice of number of clusters q and feature penalty α in Gecco+/iGecco+
using stability selection

1. Generate B independent bootstrap sample-pairs
(
Xb, X̃b

)
, b = 1, · · · , B.

2. Construct ΨXb,q,α and ΨX̃b,q,α
based on (Xb, X̃b), b = 1, . . . , B.

3. For each pair, ΨXb,q,α and ΨX̃b,q,α
, calculate their clustering distance d(ΨXb,q,α,ΨX̃b,q,α

)
defined by Fang and Wang (2012). Then the clustering instability S(Ψ, q, α) can be
estimated by

ŜB(Ψ, q, α) =
1

B

B∑
b=1

d(ΨXb,q,α,ΨX̃b,q,α
) .

4. Finally, the optimal number of clusters q and feature penalty α can be estimated by

(q̂, α̂) = argmin
2≤q≤Q,α

ŜB(Ψ, q, α) .

J.2 Information Criterion Based Approach

While choosing number of clusters based on stability selection has been shown to enjoy nice
properties such as selection consistency (Wang, 2010), such methods are always computation-
ally burdensome. To address this, on the other hand, information criterion based approach
has been proposed for tuning parameter selection in convex clustering (Tan and Witten,
2015). We adopt the similar approach and propose the Bayesian information criterion (BIC)
based approach to choose optimal number of clusters and features; this gives Algorithm 15.

Algorithm 15 Choice of number of clusters q and feature penalty α in Gecco+/iGecco+
using BIC

Initialize: ŝ =
∑K

k=1 pk, Ŝk = {1, · · · , pk}, α̂ = 1.
1. Fit iGecco+ with a sequence of γ and fixed α̂. Choose the number of clusters q̂ using
BIC.

q̂ = argmin
q

n ·
K∑
k=1

πk,Ŝk`k(X
(k)

Ŝk
, Û

(k)

Ŝk
) + q log(ŝn) .

2. Fit iGecco+ with a sequence of α and fixed number of clusters q̂. Choose number of
features s using BIC. Get corresponding α̂, active set Ŝk and total number of selected
features ŝ =

∑K
k=1 |Ŝk|.

ŝ = argmin
s

n ·
K∑
k=1

pk∑
j=1

`k(X
(k)
.j , Û

(k)
.j )

`k(X
(k)
.j , X̃

(k)
.j )

+ sq̂ log(n) .

3. Repeat Step 1 and 2 until q̂ and α̂ stabilize.
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Here, the submatrix X
(k)

Ŝk
corresponds to the subset of features (columns) of X(k) that

are in the active set Ŝk selected by iGecco+. The quantity πk,Ŝk refers to πk calculated on

the set of selected features Ŝk, i.e., 1

`k(X
(k)

Ŝk
,X̃

(k)

Ŝk
)
.

In summary, in step 1, we choose number of clusters only based on the selected features;
in step 2, we choose number of features with the optimal number of clusters q̂ estimated

from the previous step. Note in step 1, Û
(k)

Ŝk
is a function of number of clusters q while in

step 2, Û
(k)
.j is a function of whether the feature is selected. Specifically, in step 1, since all

features in Ŝk are selected, Û
(k)

Ŝk
correspond to the cluster centroids for each cluster and

change with respect to the number of clusters. In step 2, by iGecco+, if the jth feature in

the kth data view is selected, Û
(k)
.j still correspond to the cluster centroids which are different

for observations across different clusters; if the jth feature is not selected, Û
(k)
.j corresponds

to the same constant, i.e., loss-specific center X̃
(k)
.j for that feature.

The criterion to minimize is inspired by the BIC approach for convex clustering proposed
by Tan and Witten (2015). Notice that we use different criterion in step 1 and 2 to choose
number of clusters and features respectively. When choosing the number of clusters, we use
the same loss function as in iGecco since all the features are selected. When choosing the
number of features, for the presence of noise features, we find that the weighted loss function
with respect to each feature in step 2 works better, as the criterion in step 1 downweights
the contribution of signal features by adding informative terms along with the noise terms

in the denominator. (When a feature is not selected, `k(X
(k)
.j , Û

(k)
.j ) equals `k(X

(k)
.j , X̃

(k)
.j );

when a feature is selected, `k(X
(k)
.j , Û

(k)
.j ) is less than `k(X

(k)
.j , X̃

(k)
.j ); if we use the unweighted

criterion in step 1, the noise terms will dominate this criterion given a large number of noise
features.) The degrees of freedom for choosing number of clusters in step 1 is q while in step
2, the degrees of freedom is sq̂ since we need to estimate q̂ number of cluster centroids for
each selected feature.

Stability selection is known to be more stable in terms of choosing number of clusters,
with selection consistency theoretically established in literature. Meanwhile, BIC works
better in choosing number of features in practice and saves much more computation compared
with stability selection. Hence, to take full advantage of both approaches, we propose a
sequential tuning parameter selection procedure, outlined in Algorithm 16. We demonstrate
the clustering and variable selection accuracy results in Appendix J.3 using the proposed
two tuning parameter selection approaches.

Algorithm 16 Choice of number of clusters q and feature penalty α in Gecco+/iGecco+
using stability selection + BIC

1. Choose the number of clusters q̂ using Algorithm 14 with α = 1 (stability selection).
2. Fit iGecco+ with a sequence of α and fixed number of clusters q̂. Choose α using BIC
based on Step 2 of Algorithm 15.

Based on the algorithms above for tuning parameter selection and the adaptive iGecco+
Algorithm 1 (with oracle number of clusters and features) to choose the feature weights, we
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propose Algorithm 17, the alternative adaptive iGecco+ when the number of clusters or
features are not known a priori. Notice that in step 2, we do not perform tuning parameter
selection for number of clusters q, as we are only interested in some type of adaptive feature
selection to weigh the features.

Algorithm 17 Adaptive iGecco+ when the number of clusters or features are not known a
priori

1. Fit iGecco+ with α = 1, ζ
(k)
j = 1 and a sequence of γ.

2. Find γ which gives non-trivial number of clusters, say q = 2; Get the estimate Û(k).

3. Update the feature weights ζ̂
(k)
j = 1/‖Û(k)

.j − x̃
(k)
j · 1n‖2 and fusion weights ŵij =

Iκij exp(−φd̂(Xi.,Xi′.)), where d̂(Xi.,Xi′.) =
∑K

k=1

∑pk
j=1

‖Û(k)
.j −x̃

(k)
j ·1n‖2

maxj ‖Û
(k)
.j −x̃

(k)
j ·1n‖2

· 1
πk
· d(k)

ii′j .

4. Fit adaptive iGecco+ with ζ̂, ŵ and a sequence of γ and α; Find optimal γ and α
using the tuning parameter selection procedure in Algorithm 15 or 16.

J.3 Empirical Results in Simulation and Real Data Example

In this section, we demonstrate the empirical results when the number of clusters and
features are not fixed but estimated based on the data. Specifically, we apply the two tuning
parameter selection schemes proposed above: i) BIC based approach (Algorithm 17 + 15)
and ii) stability selection + BIC based approach (Algorithm 17 + 16). We show the results
of the tables in Section 4 and 5 when the number of clusters and features are estimated
and not fixed to be the oracle. For simulation studies, we show the results of iGecco and
iGecco+; Gecco and Gecco+ are special cases of these two. Moreover, we apply the proposed
two tuning parameter selection approaches to the three real data examples in Section 5.

For iGecco, the stability selection based approach simplifies to choosing the number of
clusters q in Algorithm 14; the BIC based approach refers to using the criterion in step 1 of
Algorithm 15 to choose the number of clusters.

For iGecco+, we show the overall F1-score and number of selected features across all
three data views. Recall that each data view has 10 true features and hence there are 30
true features in total. Also, the optimal number of clusters is q = 3. We compare the results
with iClusterPlus when the number of clusters and features are not fixed. Note we only
include estimated number of clusters for iClusterPlus as there is no tuning parameter for
the number of selected features. (The authors mentioned feature selection could be achieved
by selecting the top features based on Lasso coefficient estimates.)

Table 13 and 14 show the results of Table 3, 4 and 5 in Section 4.2 when the number of
clusters (and features in iGecco+) is not fixed but estimated based on the data. Table 13
and 14 suggest that our proposed BIC based approach selects the correct number of clusters
and features most of the time. On the other hand, information criterion based approaches
save much more computation than stability selection. Hence, we recommend the BIC based
approach for choosing tuning parameters which demonstrates strong empirical performance
and saves computation. Yet, one might have their own justified choice of approach or
information criterion to select tuning parameters.
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S1 S2
ARI # of Clusters ARI # of Clusters

iGecco with BIC 0.93 (5.2e-3) 3.10 (1.0e-1) 0.98 (2.2e-2) 3.00 (0.0e-0)
iGecco with Stability Selection 0.92 (8.1e-3) 3.20 (2.0e-1) 0.89 (4.1e-2) 4.00 (3.9e-1)
iCluster+ with λ = 0 0.92 (4.1e-2) 3.20 (2.0e-1) 0.67 (1.9e-2) 3.40 (1.6e-1)

Table 13: Adjusted Rand index and estimated number of clusters of iGecco and iCluster for
mixed multi-view data of Table 3 in Section 4.2 when the number of clusters is
not fixed but estimated based on the data.

S3 S4 S5 S6
ARI # of Clusters ARI # of Clusters ARI # of Clusters ARI # of Clusters

Algorithm 17 + 15 (BIC) 0.97 (7.8e-3) 3.00 (0.0e-0) 0.97 (1.3e-2) 3.10 (1.0e-1) 1.00 (0.0e-0) 3.00 (0.0e-0) 1.00 (0.0e-0) 3.00 (0.0e-0)
Algorithm 17 + 16 (SS+BIC) 0.93 (4.1e-2) 2.90 (1.0e-1) 0.89 (5.5e-2) 2.80 (1.3e-1) 0.99 (1.2e-2) 3.10 (1.0e-1) 0.82 (8.1e-2) 4.90 (9.1e-1)
iCluster+ 0.53 (8.1e-2) 2.70 (3.0e-1) 0.72 (5.3e-2) 3.50 (3.1e-1) 0.63 (2.4e-2) 3.50 (2.2e-1) 0.60 (1.4e-2) 3.30 (1.5e-1)

S3 S4 S5 S6
F1-score # of Features F1-score # of Features F1-score # of Features F1-score # of Features

Algorithm 17 + 15 (BIC) 0.93 (1.1e-2) 30.00 (1.1e-0) 0.95 (1.9e-2) 31.60 (7.2e-1) 0.99 (6.3e-3) 30.50 (4.0e-1) 0.99 (6.5e-3) 30.90 (4.1e-1)
Algorithm 17 + 16 (SS+BIC) 0.93 (1.2e-2) 29.60 (1.2e-0) 0.96 (1.5e-2) 29.40 (6.5e-1) 0.99 (6.3e-3) 30.50 (4.0e-1) 0.99 (6.0e-3) 30.10 (3.8e-1)

Table 14: Adjusted Rand index, F1 score, along with estimated number of clusters and
features of adaptive iGecco+ and iClusterPlus for high-dimensional mixed multi-
view data of Table 4 and 5 in Section 4.2 when the number of clusters and features
are not fixed but estimated based on the data. We only include estimated number
of clusters for iClusterPlus as there is no tuning parameter for the number of
selected features.

Also, we apply the proposed two tuning parameter selection approaches to the real data
examples in Section 5. Table 15 shows the estimated number of clusters. Again, the BIC
based approach selects the correct number of clusters for all three cases.

Authors Data TCGA Data Multi-omics Data
ARI # of Clusters ARI # of Clusters ARI # of Clusters

Algorithm 17 + 15 (BIC) 0.96 4.00 0.76 3.00 0.71 3.00
Algorithm 17 + 16 (SS+BIC) 0.96 4.00 0.59 2.00 0.52 2.00

Table 15: Adjusted Rand index, along with estimated number of clusters using adaptive
(i)Gecco+ for real data of Table 6, 8 and 10 in Section 5 when the number of
clusters and features are not fixed but estimated based on the data. For the first
two data set, we show the results of Manhattan Gecco+.
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Appendix K. Stable to Perturbations of Data

In this appendix, we demonstrate that clustering assignments of iGecco+ are stable to
perturbations in the data as shown in Proposition 2 of Section 2.4.

To show this, we include a simulation study similar to the one by Chi et al. (2017). We
first apply adaptive iGecco+ on the original data to obtain baseline clustering. Then we add
i.i.d. noise to each data view to create a perturbed data set on which we apply the same
iGecco+ method. Specifically, for Gaussian data view, we add i.i.d. N(0, σ2) noise where
σ = 0.5, 1.0, 1.5; for count data view, we add i.i.d. Poisson noise; for binary data view, we
randomly shuffle a small proportion of the entries. We compute the adjusted Rand index
between the baseline clustering and the one obtained on the perturbed data. We adopt the
same approach for other existing methods. Table 16 shows the average adjusted Rand index
of 10 replicates. For all values of σ, we see that iGecco+ tends to produce the most stable
results.

σ A iGecco+ Hclust: Euclidean Hclust: Gower iCluster+ BCC

0.5 1.00 (0.0e-0) 0.85 (5.1e-2) 0.90 (1.4e-2) 0.69 (2.6e-2) 0.92 (1.6e-2)
1.0 1.00 (0.0e-0) 0.69 (8.3e-2) 0.89 (1.8e-2) 0.71 (3.0e-2) 0.90 (1.7e-2)
1.5 0.95 (3.4e-2) 0.66 (2.8e-2) 0.86 (2.0e-2) 0.70 (2.9e-2) 0.90 (2.0e-2)

Table 16: Stability and reproducibility of adaptive iGecco+ on simulated data. Adaptive
iGecco+ and other existing methods are applied to the simulated data to obtain
baseline clusterings. We then perturb the data by adding i.i.d. noise. Specifically,
for Gaussian data view, we add i.i.d. N(0, σ2) noise where σ = 0.5, 1.0, 1.5; for
count data view, we add i.i.d. Poisson noise; for binary data view, we randomly
shuffle a small proportion of the entries. We compute the adjusted Rand index
(ARI) between the baseline clustering and the one obtained on the perturbed
data.

Appendix L. Noisy Data Sources

In this appendix, we show the performance of iGecco+ when a purely noisy data view is
observed.

Often in real data, not all the data views observed contain clustering information, i.e., one
or more data views might be pure noise. Our iGecco+ is able to filter out noisy data views
by adaptively shrinking all the (noise) features in these data sets towards the loss-specific
centers. We include a simulation study to demonstrate the performance of iGecco+ in the
presence of some purely noisy data sets. Similar to the base simulation, each simulated data
set consists of n = 120 observations with 3 clusters. Each cluster has an equal number of
observations. Only the first data view contains clustering signal with the first 30 features
being informative while the rest features being noisy; the rest two data views are pure noise.

Table 17 shows that iGecco+ still performs well in the presence of noise data sources by
adaptively shrinking noise features.
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Method Adjusted Rand Index

Hclust: [X1X2X3] - Euclidean 0.40 (4.9e-2)
Hclust: [X1X2X3] - Gower 0.33 (4.8e-2)
iCluster+ 0.88 (5.8e-2)
Bayesian Consensus Clustering 0.00 (2.8e-4)
Adaptive iGecco+ 0.99 (5.6e-3)

Table 17: Adjusted Rand index of different methods in the presence of noisy data sources

Appendix M. Computation Time

In this section, we provide some computation run time results of iGecco(+) with different
sample sizes and dimensions. We include results for both run times per iteration of the
ADMM algorithm in Table 18 as well as the full training time for tuning parameter selection
in Table 19. All timing results are run on a Dell XPS 15 with a 2.4 GHz Intel i5 processor
and 8 GB of 2666 MHz DDR4 memory.

For training, we use BIC based approach to select tuning parameters for both iGecco
and iGecco+ as it works well in practice and saves computation. It takes more time to
train iGecco+ than iGecco as iGecco+ needs to select two tuning parameters (the number
of clusters and features). Yet, our BIC based approach selects optimal tuning parameters
in a reasonable amount of time. Note, for sample size n = 120 and feature size p1 = 200,
p2 = 100, p3 = 50, it takes iClusterPlus hours for tuning parameter selection (using
tune.iClusterPlus function in R).

Sample Size n p1 p2 p3 Computation Time (in seconds)

iGecco
120 10 10 10 0.0018
300 10 10 10 0.0044
120 30 30 30 0.0038

iGecco+
120 200 100 50 0.0041
300 200 100 50 0.0105
120 300 200 100 0.0055
120 400 200 100 0.0061

Table 18: Run time results per iteration of iGecco(+) with different sample sizes and
dimensions; the first three experiments use iGecco while the rest use iGecco+
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