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Abstract

In this paper, we propose a novel algorithm for large-scale regression problems named
Histogram Transform Ensembles (HTE), composed of random rotations, stretchings, and
translations. Our HTE method first implements a histogram transformed partition to the
random affine mapped data, then adaptively leverages constant functions or SVMs to obtain
the individual regression estimates, and eventually builds the ensemble predictor through
an average strategy. First of all, in this paper, we investigate the theoretical properties
of HTE when the regression function lies in the Hölder space Ck,α, k ∈ N0, α ∈ (0, 1].
In the case that k = 0, 1, we adopt the constant regressors and develop the naïve his-
togram transforms (NHT). Within the space C0,α, although almost optimal convergence
rates can be derived for both single and ensemble NHT, we fail to show the benefits of
ensembles over single estimators theoretically. In contrast, in the subspace C1,α, we prove
that if d ≥ 2(1 + α)/α, the lower bound of the convergence rates for single NHT turns
out to be worse than the upper bound of the convergence rates for ensemble NHT. In the
other case when k ≥ 2, the NHT may no longer be appropriate in predicting smoother
regression functions. Instead, we circumvent this issue by applying kernel histogram trans-
forms (KHT) equipped with smoother regressors, such as support vector machines (SVMs).
Accordingly, it turns out that both single and ensemble KHT enjoy almost optimal con-
vergence rates. Then, we validate the above theoretical results with extensive numerical
experiments. On the one hand, simulations are conducted to elucidate that ensemble NHT
outperforms single NHT. On the other hand, the effects of bin sizes on the accuracy of both
NHT and KHT are also in accord with the theoretical analysis. Last but not least, in the
real-data experiments, comparisons between the ensemble KHT, equipped with adaptive
histogram transforms, and other state-of-the-art large-scale regression estimators verify the
effectiveness and precision of the proposed algorithm.
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1. Introduction

In the era of big data, with the rapid development of information technology, especially the
processing power and memory storage in automatic data generation and acquisition, the
size and complexity of data sets are constantly advancing to an unprecedented degree (Zhou
et al., 2014). In this context, from a real-world applicable perspective, learning algorithms
that not only maintain desirable prediction accuracy but also achieve high computational ef-
ficiency are urgently needed (Wen et al., 2018; Guo et al., 2018; Thomann et al., 2017; Hsieh
et al., 2014). Among common machine learning tasks, in this paper, we are interested in
the large-scale nonparametric regression problem aiming at inferring the functional relation-
ship between the input and the output. One major challenge, however, is the unsuitability
of the existing learning algorithms for dealing with the regression problems conducted on
large-volume data sets. To tackle this difficulty, some approaches for generating more satis-
factory algorithms have been introduced in the literature such as the efficient decomposition
algorithm SVMTorch proposed in Suisse et al. (2001) and the randomized sketching algo-
rithm for least-squares problems presented in Raskutti and Mahoney (2016). In particular,
the mainstream solutions fall into two categories, the horizontal methods and the vertical
methods. The former one, also known as a kind of distributed learning, consists of three
steps. To be specific, it partitions the data set into several disjoint subsets, implements a
certain learning algorithm to each data subset to obtain a local predictor, and finally syn-
thesizes a global output by utilizing some average of the individual functions. By taking
full advantage of the first step, horizontal methods gain their popularity on account of the
ability to significantly reduce computing time and to lower single-machine memory require-
ments. Unfortunately, although the effectiveness of distributed regression can be verified
to some degree through theoretical results, for example, optimal convergence rates under
certain restrictions (see e.g. Lin et al. (2017); Chang et al. (2017); Guo et al. (2017)), this
approach suffers from its own inherent disadvantages. Mathematically speaking, for a single
data block, the output function is obtained through a trade-off between bias and variance.
However, the variance of the averaged estimator in distributed learning actually shrinks as
the number of blocks increases while the bias keeps unchanging, leading to the undesirable
bias-denominating case. Therefore, distributed learning prefers algorithms in possession of
the function with small bias while the optimal choice for a single block is not necessarily
optimal for distributed learning. In this manner, the learning approach stands a good chance
of creating local predictors quite different from the desired global predictor, not to mention
the synthesized final predictor.

Other than partitioning the original data sets, another popular type of approach, named
vertical methods, instead chooses to divide the feature space into multiple non-overlapping
blocks, and to apply individual regression strategies on each resulting cell. In the literature,
efforts are made to propose innovative partition methods such as subsampling algorithms
(Espinoza et al., 2006), decision tree-based approaches (Bennett and Blue, 1998; Wu et al.,
1999; Chang et al., 2010). In addition, various kinds of embedded regressors are then applied
to train local predictors such as Gaussian process (GP) regression, support vector machines,
just to name a few. Although not suffering from the undesirable bias-denominating case,
vertical methods have their own drawbacks, for example, the long-standing boundary dis-
continuities. Since the discontinuity impacts greatly on the accuracy, literature has commit-
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ted to tackling this problem. Under the same condition on partitioned input domain and
GP regression, Park et al. (2011) firstly imposes equal boundary constraints merely at a
finite number of locations which actually cannot essentially solve the boundary discontinu-
ities. Following on, Park and Huang (2016) extends this predictive means restriction to all
neighboring regions. Nevertheless, the optimization-based formulations make this improved
method infeasible to derive the marginal likelihood and the predictive variances in closed
forms. In contrast, without imposing any further assumptions on the nature of the GPs,
Park and Apley (2018) presents a simple and natural way to enforce continuity by creating
additional pseudo-observations around the boundaries. However, this approach is defective
for not benefiting from the desirable global property of GPs as well as suffering from the
curse of dimensionality; on the other hand, the artificially determined decomposition pro-
cess brings a great impact on the final predictor, which inspires us to adopt more reasonable
partition-based learning methods to gain smoothness from the randomness of partition and
the nature of ensembles. Over past decades, a wealth of literature is pulled into exploring
desirable partitions such as dyadic partition polynomial estimators (Binev et al., 2005, 2007)
and the Voronoi partition support vector machine (Meister and Steinwart, 2016). Never-
theless, to the best of our knowledge, although satisfactory experimental performance and
optimal convergence rates are established, they fail to explain the benefits of ensembles for
asymptotic smoothness from the theoretical perspective.

In addition, the randomized ensemble category includes many algorithms, such as all
the variants of bagging, random forests, and random projection methods, which are suitable
for solving large-scale problems. As is discussed in Elghazel et al. (2011), if the individual
predictors are highly correlated, the benefits of ensemble are modest, however, injecting
randomness into the predictors reduces the correlation and promotes diversity. Recently,
a number of random techniques have been introduced in learning ensembles, in order to
improve accuracy by adding randomness. To be specific, a branch of methods transform the
training data, while others modify the internal structure of the predictors themselves. For
the first category, Rodríguez et al. (2006) proposed the rotation forest, which transformed the
training data by a subtly structured rotation matrix. However, Blaser and Fryzlewicz (2016)
noted that it was neither necessary nor desirable to define the rotation matrix in a structured
way because structured rotations reduce diversity. Therefore, it is proposed to rotate the
feature space randomly, rather than systematically, before constructing the individual base
learners. In addition to the rotation technique, random projections (Cannings, 2019) are
also studied to address the so-called curse of dimensionality, in which case we lose statistical
accuracy (Bickel et al., 2004) or suffer a prohibitive computational cost. In spite of simplicity
and efficiency of random projection, Blaser and Fryzlewicz (2016) indicated that a key
difference between random rotation and random projection is that rotations are reversible,
implying that there is no loss of information. For the second class, Cutler and Zhao (2001)
proposed the Perfect Random Tree Ensembles (PERT), where each individual classifier is a
perfectly-fit classification tree with random selections of splits. Fan et al. (2003) proposed a
multiple completely random decision tree algorithm, where the feature is randomly chosen
and all discretization of valid feature values being the splitting points. Armano and Tamponi
(2018) built forests of local trees, with each local tree trained with focuses on different
regions of the sample space to promote diversity. However, it is not advisable to blindly add
randomness to the algorithm. The Extremely randomized trees (ExtRa), proposed in Geurts
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et al. (2006), can control the random degree of the algorithm by adjusting the parameter
K. Liu et al. (2008) showed that a continuous spectrum of randomization exists, in which
most existing tree randomizations are only operating around the two ends of the spectrum.
In addition to so many randomized ensemble algorithms being proposed, widely used, and
some of them ranking top among the benchmarking ensemble methods, many efforts are also
paid to explore their algorithmic convergence. Among them, some studies are interested in
how the prediction error of these methods depends on the training sample size, others,
however, focus on the convergence bound in terms of the ensemble size. For example,
by focusing on the case when there are fewer training observations than data dimensions,
Durrant and Kabán (2015) firstly proved the equivalence between the random projected
ensemble and the regularized linear discriminant leaner, then gave the theoretical guarantees
linking the ensemble and single ones. Beside, Mukhopadhyay and Dunson (2019) provided
theoretical support for a Bayesian predictive algorithm based on the proposed TARP, a
strategy which combines positive aspects of both screening or projecting. For the second
category, Cannings and Samworth (2017) firstly elucidated the effect on the performance of
increasing the number of projections. Then Lopes et al. (2019) extended this research to all
randomized ensemble methods, proposed a bootstrap method to estimate the algorithmic
variance of the randomized ensemble methods, and proved that the bootstrap method can
consistently approximate the centered law of the prediction error. Furthermore, Lopes (2020)
obtained a theoretical sharp upper bound on that variance and gave an estimation for the
unknown value of the bound.

In this paper, we propose a randomized ensemble algorithm named histogram transform
ensembles (HTE) for large-scale regression problems. Motivated by the random rotation
ensemble algorithms proposed in Rodríguez et al. (2006); López-Rubio (2013); Blaser and
Fryzlewicz (2016), we investigate a regression estimator based on partitions, induced by
histogram transform ensembles, together with embedded individual regressors which take
full advantage of the histogram methods and ensemble learning. Specifically, our histogram
transform ensembles are constructed as follows: Firstly map the original data into the trans-
formed space via the affine matrix, then perform a data-independent histogram partition
with all integer points as grid nodes and fixed bin size 1, the partition of the original parti-
tion space is finally determined by the reverse transformation map. With the partition being
achieved, we can embed constant functions/SVMs adaptively and then get the ensemble es-
timate via a simple average. We note that the application of random histogram transforms
is effective and is equally applicable to higher-dimensional problems. Specifically, its merits
can be stated as threefold. First, the algorithm can be locally adaptive by applying adaptive
stretching with respect to samples of each dimension. Second, the global smoothness of our
obtained regression function is attributed to the randomness of different partitions together
with the ensemble learning. Thirdly, our histogram transform ensembles is a good ensemble
method because of the following desirable properties: (1) The individual base learner is easy
to create; (2) The models are straightforward to aggregate; (3) The individual base learners
are actually weak learners, maybe only slightly better or worse than histogram regressor,
depending on the choice of the rotation, stretching, translation; (4) Individual base learners
exhibit rich diversity, due to the randomness brought by histogram transform. The algo-
rithm starts with mapping the input space into transformed feature space under a certain
histogram transform. Then, the process is conducted by partitioning the transformed space
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into non-overlapping cells with the unit bin width, where the bin indices are chosen as the
round points. After obtaining the partition, we apply certain regression strategies such as
piecewise constant or SVM to formulate the naïve or kernel histogram transform estimator
according to the specific assumptions on the target conditional expectation function, respec-
tively. Last but not least, by integrating estimators generated by the above procedure, we
obtain a regressor ensemble with satisfactory asymptotic smoothness.

The contributions of this paper come from both the theoretical and experimental as-
pects. (i) Our regression estimator varies when the Bayes decision rule f∗L,P is assumed to
satisfy different Hölder continuity assumptions. To be specific, under the assumption that
f∗L,P resides in C0,α or C1,α, we adopt the naïve histogram transform (NHT) estimator. By
decomposing the error term into approximation error and estimation error, which correspond
to data-free and data-dependent error terms, respectively, we prove almost optimal conver-
gence rates for both single NHT and ensemble NHT in the space C0,α. In contrast, for the
subspace C1,α consisting of smoother functions, we show that the ensemble NHT can attain
the convergence rate O(n−(2(1+α))/(4(1+α)+d)) whereas the lower bound of the convergence
rates for a single NHT is merely of the order O(n−2/(2+d)) under certain conditions. As a
result, when d ≥ 2(1 + α)/α, the ensemble NHT actually outperforms the single estimator,
which illustrates the benefits of ensembles over single NHT. Furthermore, if f∗L,P ∈ Ck,α for
k ≥ 2, although taking full advantage of the nature of ensembles, constant-embedded regres-
sor is inadequate to achieve good performance. Thus, we turn to apply the kernel histogram
transform (KHT) which is verified to have almost optimal convergence rates. (ii) We high-
light that all theoretical results in this paper have their one to one corresponding experiment
analysis. We design several numerical experiments to verify the study on parameters h0,n

and T . Firstly, we show that, for NHT, there exists an optimal h0,n with regard to the test
error, whereas in contrast, KHT with fairly large cells has better performance. Note that
these experimental results coincide with the conclusions about the selection of parameter
bin width in order to obtain almost optimal convergence rates, as are shown in Theorems
3, 4, and 7. Besides, we carry out an ablation study, by maintaining only one element at a
time, to verify the sensitiveness of base learners to all three transformations, involving the
rotation, stretching, and translation. Moreover, in order to give a more comprehensive un-
derstanding of the significant benefits of ensemble NHT over single estimator, a simulation
corresponding to Theorem 5 is conducted on synthetic data with different parameter T , the
number of NHTs applied in the regression estimator. To be precise, the slope of MSE versus
n shows that ensemble NHT outperforms single estimator. (iii) Experiments conducted on
real-data, with the Mean Absolute Error (MAE ), the Mean Squared Error (MSE ), and the
Average Running Time (ART ) being employed as the performance metrics, indicate that our
approach can achieve both high precision and great efficiency. Its inherent advantages can
be specified as follows. Firstly, the additional advantage of computational efficiency of our
histogram transform ensembles mainly benefits from the parallel computation. Secondly, the
randomness of partitions coming from the histogram transform together with the nature of
ensembles allows us to better access to the unknown data structure as well as the desirable
asymptotic smoothness, which greatly improves the progress of prediction. These advan-
tages of our algorithm are fully evidenced by experiments conducted on real data, where
we adopt ensemble KHT, equipped with adaptive histogram transforms. Experiments show
that: On the one hand, our adaptive KHTE are either comparable to or better than the
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other state-of-the-art algorithms in terms of accuracy when T is large enough; on the other
hand, with much smaller T , it enjoys relatively high efficiency, although slightly inferior to
Random Forest (RF) and VP-SVM, by reducing average running time while maintaining
satisfactory precision.

This paper is organized as follows. Section 2 is a preliminary section covering some
required fundamental notations, definitions, and technical histogram transform which all
contribute to the formulation of both NHT and KHT. Section 3 is concerned with theoretical
results, that is, the convergence rates, under different hölder continuity assumptions on f∗L,P.
To be specific, under the condition on the Bayesian decision function f∗L,P ∈ C0,α, almost
optimal convergence rates for both single NHT and ensemble NHT are derived in Section
3.2. In the subspace C1,α, we firstly present the convergence rates for the ensemble NHT
in Section 3.3.1, then a more complete theory is obtained by establishing the lower bound
of single NHT to illustrate the exact benefits of ensembles in Section 3.3.2. In contrast, for
the case where the target function resides in the subspace containing smoother functions
Ck,α, Section 3.4 presents almost convergence rates for both single and ensemble KHT.
Some comments and discussions related to the main results will also be presented in this
section. Numerical experiments are conducted in Section 4 to verify our theoretical results
and to further witness the effectiveness and efficiency of our algorithm. More precisely,
Section 4.2 presents the study of parameters which verifies our theoretical results on the
parameter selection for bin width h0 and ensemble number T in order to achieve optimal
convergence rates; Section 4.3 provides an ablation study which verifies the sensitiveness of
base learners to all three transformations rotation, stretching and translation. In addition,
Section 4.4 then establishes a simulation on synthetic data to elucidate the exact benefits
of the ensemble estimators over the single one; finally, comparisons in terms of both the
accuracy and the running time between different regression methods on real data sets are
provided in Section 4.6. Finally, in Section 5, we close this paper with a conclusive summary,
a brief discussion, and additional remarks. For the sake of clarity, we place all the proofs of
Section 3 in the appendix.

2. Methodology

Recall that our study on histogram transform ensembles (HTE) in this paper initially aims
at addressing the large-scale regression problem. In this section, we explain how to link
our HTE algorithm to large-scale data analysis. First, in Section 2.1, we introduce some
preliminaries with mathematical notations used throughout this paper, important basics
for the least-square regression frameworks, as well as the definition of function space Ck,α

where the target regression function lies in. Then, in Section 2.2, we present the so-called
histogram transform approach by defining its crucial components, such as the rotation matrix
R, the stretching matrix S, and the translator vector b. Based on the partition of the input
space induced by the histogram transforms, we are able to formulate the HTE for regression
within the framework of regularized empirical risk minimization (RERM) in section 2.3. To
be more precise, taking the order of smoothness of the target function f∗L,P into account, we
establish the naïve histogram transform ensembles (NHTE) and kernel histogram transform
ensembles (KHTE) with f∗L,P residing in different Hölder spaces, respectively.
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2.1 Preliminaries

2.1.1 Notations

Throughout this paper, we assume that X ⊂ Rd and Y ⊂ R are both compact and non-
empty. The goal of a supervised learning problem is to predict the value of an unobserved
output variable Y after observing the value of an input variable X. To be exact, we need
to derive a predictor f , which maps the observed input value of X to f(X) as a prediction
of its unobserved output value of Y . The choice of predictor f is based on the training
data D := ((x1, y1), . . . , (xn, yn)) of i.i.d observations, which are with the same distribution
as the generic pair (X,Y ), drawn from an unknown probability measure P on X × Y. In
addition, we denote PX ,PY |X as the marginal and conditional distributions, respectively.

For any fixed W > 0, we denote BW as the centered ball of Rd with radius W , that is,

BW := [−W,W ]d := {x = (x1, . . . , xd) ∈ Rd : xi ∈ [−W,W ], i = 1, . . . , d},

and for any r ∈ (0,W/2), we write

B+
W,r := [r,W − r]d.

We further assume that X ⊂ BW for some W > 0 and Y := [−M,M ] for some M > 0. In
addition, for a Banach space (E, ‖ · ‖E), we denote BE as its unit ball, i.e.,

BE := {f ∈ E : ‖f‖E ≤ 1}.

Recall that for 1 ≤ p < ∞, the Lp-norm of x = (x1, . . . , xd) is defined as ‖x‖p := (|x1|p +
. . .+ |xd|p)1/p, and the L∞-norm is defined as ‖x‖∞ := maxi=1,...,d |xi|.

In the sequel, the notation an ' bn means that there exists some positive constant
c ∈ (0, 1), such that an ≥ cbn and an ≤ c−1bn, for all n ∈ N. Similarly, the notation
an . bn denotes that there exists some positive constant c ∈ (0, 1), such that an ≤ cbn and
an & bn denotes that there exists some positive constant c ∈ (0, 1), such that an ≥ c−1bn.
Moreover, throughout this paper, we shall make frequent use of the following multi-index
notations. For any vector x = (xi)

d
i=1 ∈ Rd, we write bxc := (bxic)di=1, x

−1 := (x−1
i )di=1,

log(x) := (log xi)
d
i=1, x := maxi=1,...,d xi, and x := mini=1,...,d xi.

2.1.2 Least Squares Regression

For a regression problem, it is legitimate to consider the least squares loss L = LLS :
X ×Y×R→ [0,∞) defined by L(x, y, f(x)) := (y− f(x))2. Then, for a measurable decision
function f : X → Y, the expected risk is defined by

RL,P(f) :=

∫
X×Y

L(x, y, f(x)) dP(x, y),

and the empirical risk is defined by

RL,D(f) :=
1

n

n∑
i=1

L(Xi, Yi, f(Xi)),
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where D := 1
n

∑n
i=1 δ(Xi,Yi) is the empirical measure associated to data, and δ(Xi,Yi) is the

Dirac measure at (Xi, Yi). The Bayes risk is the minimal risk with respect to P and L as:

R∗L,P := inf
f :X→Y

measuarable

RL,P(f).

In addition, a measurable function f∗L,P : X → Y with RL,P(f∗L,P) = R∗L,P is called a Bayes
decision function. By minimizing the risk, we can obtain the Bayes decision function as

f∗L,P = EP(Y |X), (1)

which is a PX -almost surely [−M,M ]-valued function. Finally, a well-known characterization
for Bayes decision is:

RL,P(f)−R∗L,P =
∥∥f − f∗L,P∥∥2

L2(PX)
. (2)

Note that it is sufficient to consider estimators with values in [−M,M ] on X . To this
end, in what follows, we introduce the concept of clipping the decision function (also see
Definition 2.22 in Steinwart and Christmann (2008)). Let Ût be the clipped value of t ∈ R at
±M defined by Ût :=


−M if t < −M,

t if t ∈ [−M,M ],

M if t > M.

Then, a loss is called clippable atM > 0 if, for all (y, t) ∈ Y×R, the following relation holds

L(x, y,Ût) ≤ L(x, y, t).

According to Example 2.26 in Steinwart and Christmann (2008), the least square loss L
here can be clipped at M , i.e.,

RL,P( Ûf) ≤ RL,P(f)

for all f : X → R. In other words, restricting the decision function to the interval [−M,M ]
will not worsen the risk any further. In fact, the clipping typically reduces the risk. Hence,
later in this paper, we only consider the clipped version ÛfD of the decision function as well
as the risk RL,P( ÛfD) instead of the risk RL,P(fD) of the unclipped decision function.

2.1.3 Hölder Continuous Function Spaces

In this paper, we mainly focus on the general function space Ck,α consisting of (k, α)-Hölder
continuous functions of different smoothness.

Definition 1 Let k ∈ N0 := N ∪ {0}, α ∈ (0, 1], and W > 0. A function f : BW → R is
said (k, α)-Hölder continuous, if there exists a finite constant cL > 0 such that

(i) ‖∇`f‖ ≤ cL for all ` ∈ {1, . . . , k};
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(ii) ‖∇kf(x)−∇kf(x′)‖ ≤ cL‖x− x′‖α for all x, x′ ∈ BW .

The set of functions that satisfies these conditions is denoted by Ck,α(BW ).

It can be seen from the above definition that functions contained in the space Ck,α with
larger k enjoy higher level of smoothness. Note that for the special case k = 0, the resulting
function space C0,α(BW ) coincides with the commonly used α-Hölder continuous function
space Cα(BW ).

2.2 Histogram Transform

To give a clear description of one possible construction procedure for histogram transforms,
we introduce a random vector (R,S, b) where each element represents the rotation matrix,
stretching matrix and translation vector, respectively. To be specific,

R denotes the rotation matrix which is a real-valued d×d orthogonal square matrix with
unit determinant, that is,

R> = R−1 and det(R) = 1. (3)

S stands for the stretching matrix which is a positive real-valued d× d diagonal scaling
matrix with diagonal elements (si)

d
i=1, which are certain random variables. Obviously,

there holds

det(S) =
d∏
i=1

si. (4)

Moreover, we denote

s = (si)
d
i=1, (5)

and the bin width vector measured on the input space is given by

h = s−1, (6)

where the operations on vectors are defined in Section 2.1.1.

b ∈ [0, 1]d is a d dimensional vector called translation vector.

Here, we describe a practical method for the construction of the above elements used in
this study. We start with a d× d square matrix G, consisting of d2 independent univariate
standard normal random variates. A Householder QR decomposition Householder (1958)
is applied to obtain a factorization as G = R · W , with orthogonal matrix R and upper
triangular matrix W with positive diagonal elements. The resulting matrix R is orthogonal
by construction and can be shown to be uniformly distributed. Unfortunately, if R does
not feature a positive determinant, it is not a proper rotation matrix according to definition
(3). Nevertheless, if this is the case, we can flip the sign on one of the column vectors
of G arbitrarily to obtain G+, and then perform the Householder decomposition. The
resulting matrix R+ is identical to the one obtained earlier but with a change in sign in
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the corresponding column, thus satisfies det(R+) = 1, as required for a proper rotation
matrix. Please see Blaser and Fryzlewicz (2016) for a brief review of the existed algorithms
to generate random orthogonal matrices.

Accordingly, we build a diagonal scaling matrix with the signs of the diagonal of S,
where the elements sk are the well-known Jeffreys prior, that is, log(si) is drawn from the
uniform distribution over certain interval of real numbers [log(s0), log(s0)] for fixed constants
s0 and s0 with 0 < s0 < s0 < ∞. By (6), it holds that hi ∈ [s−1

0 , s−1
0 ], i = 1, . . . , d. For

simplicity and uniformity of notations, in the sequel, we denote h0 = s−1
0 and h0 = s−1

0 ,
thus hi ∈ [h0, h0], i = 1, . . . , d. Moreover, the translation vector b is drawn from the uniform
distribution over the hypercube [0, 1]d.

Based on the above notations, we define the histogram transform H : X → X by

H(x) := R · S · x+ b, (7)

which can be seen in Figure 1, and the corresponding distribution by PH := PR ⊗PS ⊗Pb,
where PR, PS and Pb represent the distribution for rotation matrix R, stretching matrix S,
and translation vector b, respectively.

Figure 1: Illustration of two-dimensional examples of histogram transforms. The left subfigure is
the original data and the other two subfigures are its two possible histogram transforms,
with different rotating orientations and scales of stretching.

Furthermore, denote H ′ as the affine matrix R · S, clearly, we have

det(H ′) = det(R) · det(S) =
d∏
i=1

si. (8)

The histogram probability p(x|H ′, b) is defined by considering the bin width h = 1 in the
transformed space. It is of great importance to note that we only consider h = 1, since the
same effect can be achieved by scaling the transformation matrix H ′ when h 6= 1. Therefore,
let bH(x)c be the transformed bin indices, then the transformed bin is given by

A′H(x) := {H(x′) | bH(x′)c = bH(x)c}. (9)

Indeed, (9) defines the partition rule in transformed space, that is, all transformed samples
with the same integer bH(x)c obtained by rounding down are in the same bin with H(x).
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In other words, we perform a histogram partition, with all integer points as grid nodes, as
well as a fixed bin size 1, in the transformed space. Hence, the corresponding histogram bin
containing x ∈ X is

AH(x) := {x′ | H(x′) ∈ A′H(x)} (10)

whose volume is µ(AH(x)) = (det(H ′))−1.
For a fixed histogram transform H, since the input space X may be irregular, for the

convenience of further analysis, we specify the partition of Br induced by the histogram rule
(10). Let (A′j) be the set of all cells generated by H, and denote IH as the index set for H
such that A′j ∩Br 6= ∅ for all j ∈ IH . As a result, the set

πH := (Aj)j∈IH := (A′j ∩Br)j∈IH (11)

forms a partition of Br. For notational convenience, if we substitute A0 for Bc
r, then

π′H := (Aj)j∈IH∪{0}

builds a partition of Rd.

2.3 Histogram Transform Ensembles (HTE) for Regression

After developing the partition process induced by the histogram transforms, in this section,
we formulate our histogram transform regressors, namely, the Naïve histogram transform
ensembles (NHTE) and kernel histogram transform ensembles (KHTE), using support vector
machines.

In order to find an appropriate regressor under histogram transform H, we conduct our
analysis under the framework of regularized empirical risk minimization (RERM). To be
specific, let L : X × Y × R → [0,∞) be a loss, and F ⊂ L0(X ) be a non-empty set, where
L0 is the set of measurable functions on X , and Ω : F → [0,∞) be a penalty function. We
further denote regularized empirical risk minimization (RERM) as the learning principle
with the decision function fD satisfying

fD = arg min
f∈F

RL,D(f) + Ω(f)

for all n ≥ 1 and D ∈ (X × Y)n.

2.3.1 Naïve Histogram Transform Ensembles (NHTE)

In this section, we define two ways to formulate NHTE, where the latter, with all single
estimators sharing the same bin width h0, can be regarded as a special case of the former
one. With the Bayesian decision function f∗L,P lying in the space C0,α, we adopt the former
one, for its generality, whereas for f∗L,P in C0,α, we adopt the latter formulation, for the
convenience of proving.

First, we illustrate the former and more general formulation. We define a function set
FH induced by histogram transform H, and then construct each single estimator by solving
an optimization problem, with respect to bin width and this function set. Finally, the NHTE
fD,T is obtained by performing the average of all single estimators.

11
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To be specific, recall that for a given histogram transform H, the set πH = (Aj)j∈IH
forms a partition of BW . We consider the function set FH defined by

FH :=

{∑
j∈IH

cj1Aj : cj ∈ [−M,M ],M > 0

}
. (12)

Moreover, the bin width h of the partition πH defined by (6) is the objective that we should
penalize on. By penalizing on h, we are able to impose some constraints on the complexity
of the function set so that the set has a finite VC dimension (Vapnik and Chervonenkis,
1971), and therefore make the algorithm PAC learnable (Valiant, 1984). In addition, it can
also refrain the learning results from overfitting by avoiding too small histogram bin size.
With data set D, the above RERM problem with respect to each function set FH turns into

(fD,H , h0) := arg min
h0

arg min
f∈FH

λh−2d
0 +RL,D(f), (13)

and its population version is presented by

(fP,H , h
∗
0) := arg min

h0

arg min
f∈FH

λh−2d
0 +RL,P(f). (14)

It is worth mentioning that the regularization term λh−2d
0 is chosen from the following two

aspects. Firstly, for simplicity of computation, we adopt the isotropic penalty for each
dimension, that is to say, we penalize h0 rather than each elements h1, . . . , hd. Secondly,
taking C0,α as an example, as long as the peeling method (see Theorem 7.7 in Steinwart
and Christmann (2008)) holds, the exponent of h−1

0 will not influence on the performance
of convergence rate. Therefore, we penalize on h−2d

0 which ensures the peeling method.
Particularly, for regions with no training samples, the learner returns 0 naturally.

Let {Ht}Tt=1 be T histogram transform independently drawn from distribution PH , and
{fD,Ht}Tt=1 be the corresponding optimization solutions given by (13). We perform average
of fD,Ht to obtain the naïve histogram transform ensembles

fD,T :=
1

T

T∑
t=1

fD,Ht . (15)

Next, we turn to the second formulation of NHTE, to be used in the theoretical analysis
in the space C1,α. Herein we directly consider the algorithm in the sense of ensembles. To
this end, let {Ht}Tt=1 be T histogram transforms induced by the same bin width h, and the
function set FTh be defined by

FTh :=

{
1

T

T∑
t=1

ft : ft ∈ FHt , t = 1, . . . , T

}
,

where the function sets {FHt}Tt=1 are defined in the same way as (12). Consequently, the
naïve histogram transform ensembles are obtained within the RERM framework with respect
to the function set FTh as

(fD,E, hE) := arg min
h0

arg min
f∈FTh

λh−2d
0 +RL,D(f). (16)

12
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Moreover, its population version is given by

(fP,E, h
∗
E) := arg min

h0

arg min
f∈FTh

λh−2d
0 +RL,P(f). (17)

2.3.2 Kernel Histogram Transform Ensembles (KHTE)

Recall that H is a histogram transform defined as in Section 2.2, and πH = (Aj)j∈IH forms
a partition of BW induced by the transform H under the histogram rule (10). The basic
idea of our KHT approach is to consider an individual kernel regressor for each bin Aj of the
partition. To describe this approach in a rigorously mathematical way, we have to introduce
more notations. Let the index set

Ij := {i ∈ {1, . . . , n} : xi ∈ Aj}, j ∈ IH ,

indicates the samples of D contained in Aj , as well as the corresponding data set

Dj := {(xi, yi) ∈ D : i ∈ Ij}, j ∈ IH .

Moreover, for every j ∈ IH , we define a local loss Lj : X × Y × R→ [0,∞) by

Lj(x, y, t) := 1Aj (x)L(x, y, t)

where L : X × Y × R → [0,∞)] is the least square loss that corresponds to our learning
problem at hand. We further assume that Hj is a Reproducing Kernel Hilbert Space(RKHS)
over Aj with kernel kj : Aj ×Aj → R. Here, every function f ∈ Hj is solely defined on Aj .
To this end, for f ∈ Hj , we define the zero-extension f̂ : X → R by

f̂(x) :=

{
f(x), if x ∈ Aj ,
0, if x /∈ Aj .

Then, the extended space

Ĥj := {f̂ : f ∈ Hj} (18)

equipped with the norm

‖f̂‖Ĥj := ‖f‖Hj , f̂ ∈ Ĥj

is an RKHS on X , which is isometrically isomorphic to Hj (see e.g., Lemma 2 in Meister
and Steinwart (2016)).

Based on the preparations above, we are now able to construct an RKHS by a direct
sum. To be specific, for A,B ⊂ X such that A ∩ B = ∅ and A ∪ B ⊂ X , let HA and HB
be RKHSs of the kernels kA and kB over A and B, respectively. Furthermore, let ĤA and
ĤB be the RKHSs of all functions of HA and HB extended to X in the sense of (18). Then,
ĤA ∩ ĤB = {0} and hence the direct sum

H := ĤA + ĤB (19)
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exists. For λA, λB > 0 and f ∈ H, let f̂A ∈ ĤA and f̂B ∈ ĤB be the unique functions such
that f = f̂A + f̂B. Then, we define the norm ‖ · ‖H by

‖f‖2H := λA‖f̂A‖2ĤA + λB‖f̂B‖2ĤB , (20)

and H equipped with the norm ‖ · ‖H is again an RKHS for which

k(x, x′) := λ−1
A k̂A(x, x′) + λ−1

B k̂B(x, x′), x, x′ ∈ X

is the reproducing kernel.
Note that in this paper, we only consider RKHSs of Gaussian RBF kernels. For this

purpose, we summarize some notions and notations for the Gaussian case of RKHSs. For
every j ∈ IH , let kγj : Aj ×Aj → R be the Gaussian kernel with width γj > 0, defined by

kγj (x, x
′) := exp(−γ−2

j ‖x− x
′‖22), (21)

with corresponding RKHS Hγj over Aj . According to the the discussion above, we define
the extended RKHS by Ĥγj , and the joint extended RKHS over X by H :=

⊕
j∈IH Ĥγj . We

now formulate our kernel histogram transform ensembles in Gaussian RKHSs. To this end,
we firstly consider the function space

H :=

{ ∑
j∈IH

fDj ,γj : fDj ,γj ∈ Ĥγj
}
,

and the KHT by solving the following optimization problem

(fD,γ,H , h
∗
0) := arg min

h0

arg min
f∈H

λ1h
q
0 + λ2‖f‖2H +

1

n

n∑
i=1

L(xi, yi, f(xi))

= arg min
h0

arg min
fj∈Ĥγj

λ1h
q
0 +

∑
j∈IH

λ2,j‖f‖2Ĥγj
+

1

n

n∑
i=1

∑
j∈IH

Lj(xi, yi, f(xi)), (22)

where λ1 > 0, λ2,j > 0, and γj > 0. Particularly, for regions with no training samples,
the learner returns 0 naturally. Moreover, let {Ht, t = 1, . . . , T} be T histogram transforms
and fD,λ,γ,Ht be the t-th corresponding regularized histogram rule derived by (22), then we
perform average to obtain the kernel histogram transform ensembles as

fD,γ,E :=
1

T

T∑
t=1

fD,γ,Ht . (23)

2.3.3 Main Algorithm

Our NHTE and KHTE can fit into the same algorithm, for they both share the basic
structure of ensemble learning.

Note that for NHTE, we adopt a so-called best-scored method, in the consideration of
empirical performances. That is, for each single estimator, a certain number of candidate
histogram transforms are generated under various hyper-parameters h0 and h0, only the
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best one participates in constructing the final predictor. For KHTE, on the other hand, we
skip the best-scored operation. However, we can still exert the full use of them by means of
parameter selections. Only the optimal h0 and h0 are universal for all component regressors
of the ensemble estimator.

In Algorithm 1, we show a general form of algorithm for HTE. Specifically, for kernel
HTE, i.e., HTE using support vector machines as local regressors, we simply choose L = 1.

Algorithm 1: Histogram Transform Ensembles (HTE)
Input: Training data D := ((X1, Y1), . . . , (Xn, Yn));

Number of histogram transforms T ;
Bandwidth parameters {hi0}Li=1, {h

i
0}Li=1.

for t = 1→ T do
for i = 1→ L do

Generate random affine transform matrix H i
t = Rt · Sit ;

Apply data independent splitting to the transformed sample space;
Apply constant functions or support vector machines to each cell;
Compute the histogram regression mapping fD,Hi

t
(x) induced by H i

t .
end
Select the best mapping fD,Ht(x) with the minimal error.

end
Output: The histogram transform ensemble for regression is

fD,E(x) =
1

T

T∑
t=1

fD,Ht(x).

3. Theoretical Results and Statements

As mentioned above, our study on HTE in this paper differs when the Bayes decision rule
f∗L,P is assumed to have different smoothness. Mathematically speaking, the target function
f∗L,P resides in some generalized function set Ck,α, which is defined by Definition 1. In
this section, we present main results on the convergence rates of our empirical decision
function fD,H and fD,E or fD,γ,H and fD,γ,E to the Bayes decision function f∗L,P of different
smoothness.

This section is organized as follows. In Section 3.1, we firstly introduce some fundamental
assumptions to be utilized in the theoretical analysis. Then, under the assumption that
f∗L,P ∈ C0,α, we prove almost optimal convergence rates for both single and ensemble NHTs
in Section 3.2. Nonetheless, in Section 3.3, for the subspace C1,α consisting of smoother
functions, almost optimal convergence rates can be only established for the NHT ensembles,
and the lower bound of the single estimator illustrates the benefits of ensembles over single
NHT. Moreover, if k ≥ 2, despite taking full advantage of the nature of ensembles, as
a constant-embedded regressor, NHT ensembles fail to attain almost optimal convergence
rates. To address this problem, considering both theoretical and experimental performance,
we propose to explore the kernel-embedded regressor KHT ensemble, which is then verified
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to have almost optimal convergence rates in Section 3.4. We also present some comments
and discussions on the obtained main results in Section 3.5.

3.1 Fundamental Assumptions

To demonstrate theoretical results concerning convergence rates, fundamental assumptions
are required for the Bayesian decision function f∗L,P and the bin width h of stretching matrix
S, respectively. First of all, we assume that the Bayesian decision function f∗L,P lies in the
function space Ck,α.

Assumption 1 Let the Bayesian decision function f∗L,P be defined in (1), assume that
f∗L,P ∈ Ck,α, where α ∈ (0, 1] and k ≥ 0. To be specific, we assume that

(i) for NHTs, f∗L,P ∈ Ck,α, where α ∈ (0, 1] and k = 0;

(ii) for NHTs, f∗L,P ∈ Ck,α, where α ∈ (0, 1] and k = 1;

(iii) for KHTs, f∗L,P ∈ Ck,α, where α ∈ (0, 1] and k ≥ 2.

Then we assume the upper and lower bounds of the bin width h are of the same order,
that is, in a specific partition, the extent of stretching in each dimension cannot vary too
much. Mathematically, we assume that the stretching matrix S is confined into the class
with width satisfying the following conditions.

Assumption 2 Let the bin width h ∈ [h0, h0] be defined as in (6), assume that there exists
some constant c0 ∈ (0, 1), such that

c0h0 ≤ h0 ≤ c−1
0 h0.

In the case that the bin width h depends on the sample size n, that is, hn ∈ [h0,n, h0,n],
assume that there exist constants c0,n ∈ (0, 1), such that

c0,nh0,n ≤ h0,n ≤ c−1
0,nh0,n.

3.2 Results for NHTs in the space C0,α

This section delves into proving almost optimal convergence rate for both single and ensemble
NHTs under the assumption that the Bayes decision function f∗L,P ∈ C0,α. Note that for
the sake of the simplicity and uniformity of notations, we omit the index t for a fixed
t ∈ {1, . . . , T} and substitute fD,Hn for fD,Ht,n . Moreover, for the sake of convenience, we
write νn := Pn ⊗ PH .

3.2.1 Convergence Rates for Single NHT

We now state our main result on the learning rates for single naïve histogram transform
regressor fD,Hn based on the established oracle inequality.
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Theorem 2 Let the histogram transform Hn be defined as in (7) with bin width hn satisfying
Assumption 2, and fD,Hn be defined in (13). Furthermore, suppose that the Bayes decision
function f∗L,P ∈ C0,α. Moreover, for all δ ∈ (0, 1) let (λn) and (h0,n) be defined by

λn ' n
− 2(α+d)

2α(1+δ)+d , h0,n ' n
− 1

2α(1+δ)+d

Then for all τ > 0 and any ξ > 0, we have

RL,P(fD,Hn)−R∗L,P ≤ c · n
− 2α

2α+d
+ξ,

holds with probability νn at least 1− 3e−τ , where c is some constant depending on δ, d, M ,
and W .

It is worth pointing out that our single NHT attains almost optimal convergence rate
when h0,n = n−1/(d+2α(1+δ)), which means that there exists an optimal h0,n with regard
to convergence rates. Note that the conclusion about h0,n will be further verified by the
numerical experiments in Section 4.2.

3.2.2 Convergence Rates for Ensemble NHTs

The following theorem establishes the convergence rate for histogram transform ensembles
fD,T based on (15).

Theorem 3 Let the histogram transform Hn be defined as in (7) with bin width hn satisfying
Assumption 2, and fD,T be defined in (15). Furthermore, suppose that the Bayes decision
function f∗L,P ∈ C0,α. Moreover, for all δ ∈ (0, 1), let (λn) and (h0,n) be defined by

λn ' n
− 2(α+d)

2α(1+δ)+d , h0,n ' n
− 1

2α(1+δ)+d

Then for all τ > 0 and any ξ > 0, we have

RL,P(fD,T )−R∗L,P ≤ c · n
− 2α

2α+d
+ξ,

holds with probability νn at least 1− 3e−τ , where c is some constant depending on δ, d, M ,
W , and T .

As shown in Theorem 3, we mention that the parameter analysis for h0,n of single NHT also
applies to the ensemble NHTs. In addition, note that when the Bayesian decision function
f∗L,P lying in the space C0,α, the single and ensemble NHTs both attain almost optimal
learning rate. However, we fail to show the benefits of ensembles over single estimators.
Therefore, to study the advantage of ensemble NHTs in a learning rate point of view, we
turn to the subspace C1,α.

3.3 Results for NHTs in the space C1,α

In this subsection, we provide a result that illustrates the benefits of histogram transform
ensembles over single histogram transform regressor by assuming that the Bayes decision
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function f ∈ C1,α. To this end, we firstly shows that almost optimal convergence rate of
ensemble NHTs can be obtained when Tn, λn, and h0,n are chosen appropriately in Theorem
4. Then, we obtain the lower bound of the single NHT to show that single histogram
transform regressor does not benefit the additional smoothness assumption and fails to
achieve the almost optimal convergence rate. We underline that the following theorem is
conducted under certain conditions on the partial derivative of the decision function f∗L,P.
Also, all theoretical results including both parameter selection for h0,n and the lower bound,
which establishes the exact difference of the convergence rate between the ensemble and
single NHTs, will be verified experimentally in Section 4.2 and 4.4.

3.3.1 Upper Bound of Convergence Rates for Ensemble NHT

Theorem 4 Let the histogram transform Hn be defined as in (7) with bin width hn sat-
isfying Assumption 2 and Tn be the number of single estimators contained in the ensem-
bles. Furthermore, let fD,E be defined in (16) and suppose that the Bayes decision function
f∗L,P ∈ C1,α and PX is the uniform distribution. Moreover, let Lh0(x, y, t) be the least squares
loss function restricted to B+

W,
√
d·h0

, that is,

Lh0(x, y, t) := LB+

W,
√
d·h0

(x, y, t) := 1B+

W,
√
d·h0

(x)L(x, y, t), (24)

where L(x, y, t) is the least squares loss. Let the sequences (Tn), (λn), and (h0,n) be chosen
as

λn ' n
− 1

2(1+α)+2d , h0,n ' n
− 1

2(1+α)(2−δ)+d , Tn ' n
2α

2(1+α)(2−δ)+d , (25)

where δ := 1/(8(cdW/h0,n)d + 1). Then, for all τ > 0, the naïve histogram transform
ensemble regressor satisfies

RLh0 ,P(fD,E)−R∗Lh0 ,P . n
− 2(1+α)

2(1+α)(2−δ)+d (26)

with probability Pn no less than 1− 4e−τ in expectation with respect to PH .

Note that as n → ∞, we have h0,n → 0, and thus δ → 0. Therefore, the upper bound
(26) of our ensemble NHT asymptotically attains a convergence rate which is slightly faster
than

n
− 2(1+α)

4(1+α)+d ,

if we choose

h0,n = n
− 1

4(1+α)+d .

In other words, there exists an optimal h0,n with regard to convergence rates. That is to
say, when the bin width is larger or smaller than the optimal h0,n, our NHTE have inferior
empirical performance. In contrast, the excess risk decreases as Tn increases at the beginning.
However, when Tn achieves a certain level, the learning rate ceases to improve and attains
the optimal. Finally, we mention that the theoretical results (25) on the parameter selection
of h0,n and Tn will be experimentally verified in Section 4.2.
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3.3.2 Lower Bound of Convergence Rates for Single NHT

As mentioned at the beginning of this subsection, we now present the lower bound of the
single NHT to illustrate the benefit of ensembles. To make it clear, the following theorem
establishes a worse convergence rate in contrast to the one shown in Theorem 4.

Theorem 5 Let the histogram transform H be defined as in (7) with bin width h satisfying
Assumption 2 with h0 ≤ 1. Moreover, let the regression model be defined by

Y := f(X) + ε, (27)

where ε is independent to X, such that E(ε|X) = 0 and Var(ε|X) =: σ2 ≤ 4M2 hold almost
surely for some M > 0. Assume that f ∈ C1,α and for a fixed constant cf ∈ (0,∞), let Af
denote the set

Af :=
{
x ∈ Rd : ‖∇f‖∞ ≥ c′f

}
. (28)

Then, for all n > N ′ with

N ′ := min

{
n ∈ N : h0,n ≤

W

4
√
d

}
, (29)

by choosing

h0,n ' n−
1

2+d ,

there holds

RL,P(fD,Hn)−R∗L,P & n−
2

2+d (30)

in expectation with respect to νn.

Note that for any α ∈ (0, 1], if d ≥ 2(1 +α)/α, then the upper bound of the convergence
rate of ensemble NHT (26) will be smaller than the lower bound of single NHT (30). This
exactly illustrates the benefits of ensemble NHT over single estimators. Moreover, the
assumption (28) on the derivative of f is quite reasonable and intuitive, if P(Af ) = 0, then
the decision function degenerates into a constant, which can be fitted perfectly by single
NHT, and the ensemble procedure is no longer meaningful.

3.4 Results for KHT in the Space Ck,α

When the regression function resides in the Hölder space Ck,α with large k, which contains
smoother functions, the NHTEmay not be appropriate anymore. Thus, we consider applying
kernel regressors such as support vector machines to achieve kernel HTE. Similar to what we
obtain for NHTs before, in this section, we aim to develop the learning theory analysis for
KHTE in the space Ck,α, which explores the convergence rates of this estimator resulted from
the RERM approach formulated in (22). Throughout this section, let P be a distribution
on Rd × Y, denote the marginal distribution of P onto Rd by PX , write X := supp(PX),
and assume PX(∂X ) = 0. Different from the aforementioned conclusion that there exists an
optimal parameter h0,n with respect to almost optimal convergence rate, in this section, the
theoretical results for KHTs show that smoother Bayesian decision functions require larger
cells. Note that this result is also verified later by the numerical experiments in Section 4.6.
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3.4.1 Convergence Rates for Single KHT

Firstly, we state our main result on the learning rates for single KHT fD,γn,Hn .

Theorem 6 Let the histogram transform Hn be defined as in (7) with bin width hn satisfying
Assumption 2, and fD,γn,Hn be defined in (22). Moreover, let the Bayes decision function
satisfy f∗L,P ∈ Ck,α. Choosing

λ1,n ' n
− 1

2(k+α)+d , λ2,n,j ' n−1, γn,j ' n
− 1

2(k+α)+d , h0,n ' n0,

for every j ∈ IHn. Then, for all n ≥ 1 and ξ > 0, there holds

RL,P( ÛfD,γn,Hn)−R∗L,P ≤ c · n
− 2(k+α)

2(k+α)+d
+ξ

with probability νn not less than 1− 3e−τ , where c is some constant depending on M , k, α,
and p, which will be specified in the proof.

It is worthy of pointing out that the above theorem reveals the fact that: In order to
achieve the almost optimal convergence rates, h0 should be selected to be the order of a
constant.

3.4.2 Convergence Rates for Ensemble KHTs

We now present the convergence rates for ensemble KHTs defined as in (23).

Theorem 7 Let the histogram transform Hn be defined as in (7) with bin width hn satisfying
Assumption 2, and fD,γn,E be defined in (23). Moreover, let the Bayes decision function
satisfy f∗L,P ∈ Ck,α. Choosing

λ1,n ' n
− 1

2(k+α)+d , λ2,n,j ' n−1, γn,j ' n
− 1

2(k+α)+d , h0,n ' n0,

for every j ∈ IHn. Then, for all n ≥ 1 and ξ > 0, there holds

RL,P( ÛfD,γn,E)−R∗L,P ≤ c · n
− 2(k+α)

2(k+α)+d
+ξ

with probability νn not less than 1− 3e−τ , where c is some constant depending on M , k, α,
p, and T , which will be specified in the proof.

As shown in Theorem 6, we mention that the parameter analysis for h0,n of single KHT
can be also applied to the ensemble KHTs.

3.5 Comments and Discussions

From the above learning theory analysis, it becomes clear that our study provides an effective
solution to large-scale regression problems, i.e., a nonparametric vertical method, built upon
the partition induced by histogram transforms together with embedded regressors. We now
go further to compare our work with the existing studies.
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Recall that the histogram transform estimator varies when the Bayes decision function
f∗L,P satisfies different (k, α)-Hölder continuous assumptions, and theoretical analysis on
convergence rates is conducted for different estimators in these spaces, respectively. For
the space C0,α, almost optimal convergence rates O(n−2α/(2α+d)+ξ) for both single NHT
and ensemble NHT are derived in Theorem 2 and Theorem 3. However, to the best of
our knowledge, till now there is no existing literature successfully illustrating the exact
benefits of ensembles over single estimators due to the same convergence rates for fD,H and
fD,T in the space C0,α. Therefore, we turn to the subspace C1,α consisting of a class of
smoother functions and verify that ensemble NHT converges faster than single NHT. More
precisely, Theorem 4 establishes convergence rates n−(2(1+α))/(2(1+α)(2−δ)+d). In contrast,
Theorem 5 shows that single NHT fails to achieve this rate whose lower bound is of order
O(n−2/(d+2)). For the smoother space Ck,α with k ≥ 2, constant regressors are no longer
adequate for obtaining satisfactory theoretical results, so that kernel regression strategy
is adopted. We then establish almost optimal convergence rates O(n−2(k+α)/(2(k+α)+d)+ξ)
for both single KHT and ensemble KHT in Theorem 6 and 7, thanks to the use of some
convolution technique to help bounding the approximation error.

For vertical methods, Meister and Steinwart (2016) establishes almost optimal conver-
gence rates O(n−2α/(2α+d)+ξ) for VP-SVM, when the Bayes decision function is assumed to
reside in a Besov space with α-degrees of smoothness, which coincides with our theoretical
results for the Hölder continuous function spaces.

For horizontal methods, Zhang et al. (2015) randomly partitions a dataset containing n
samples into several subsets of equal size, followed by providing an independent kernel ridge
regression estimator for each subset with a careful choice of the regularization parameter,
and then synthesize them by performing simple average. With the restriction that the Bayes
decision function lies in the corresponding reproducing kernel Hilbert space, convergence
rates are then presented with respect to different kernels in the sense of mean-squared error.
For example, if the kernel has finite rank r, they obtain the optimal convergence rates of
type O(r/n); for the kernel with ν-polynomial eigendecay, the convergence rates of Fast-
KRR algorithms turns out to be O(n−2ν/2ν+1) which is also optimal, while for a kernel
with sub-Gaussian eigendecay, the result turns out to be optimal up to a logarithm term
O(
√

log n/n). In a similar way, Lin et al. (2017) constructs random partition with equal
sample size and obtains independent kernel ridge regression, but synthesize them by taking a
weighted average rather than simple average. Then, under the smoothness assumption with
respect to the r-th power of the integral operator Lk and an α-related capacity assumption,
the convergence rate O(n−2αr/(4αr+1)) is verified to be almost optimal. Guo et al. (2017)
focuses on the distributed regression with bias-corrected regularization kernel network and
derives the learning rates of order O(n−2r/(2r+β)), where β is the capacity related parameter.

Furthermore, other than the aforementioned two methods, there exists a flurry of stud-
ies for localized learning algorithms in the literature, aiming at the large-scale regression
problem. For example, KNN based methods are trained on k samples, which are closest to
the testing point. Under some additional assumptions on the loss function, Hable (2013)
establishes the universal consistency for SVM-KNN considering metrics w.r.t. the feature
space. In addition, training data is split into clusters, and then an individual SVM is applied
to each cluster in Cheng et al. (2007, 2010). However, the presented results are mainly of
experimental character.
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4. Numerical Experiments

In this section, we present the computational experiments to demonstrate our theoretical
results. In Section 4.1, we firstly give a brief setup that accounts for the generation process
of our histogram transforms, followed by the introduction of two commonly used measures of
estimation accuracy, named Mean Squared Error (MSE ) and Mean Absolute Error (MAE ),
and one ubiquitous measure of efficiency, called Average Running Time (ART ). We study
the behavior of our histogram transform ensembles depending on the values of tunable pa-
rameters in Section 4.2. Besides, in order to clarify that not only the random rotation,
other transformations, including stretching and translation, also contribute to the perfor-
mance of base learners, we conduct an ablation study to evaluate the sensitiveness of the
rotation matrix R, the stretching matrix S, and the translation vector b by maintaining only
one element at a time. Then, in Section 4.4, we perform a simulation for synthetic data gen-
erated from a regression model to validate the exact difference of convergence rate between
ensembles and single estimators. Finally, we compare our approach with other regression
estimation methods for real data in terms of MSE, MAE, and ART in Section 4.6.

4.1 Experimental Setup

4.1.1 Generation Process for Histogram Transforms

Firstly, note that the random rotation matrix R is generated in the manner coinciding with
Section 2.2. For the elements of the scaling matrix S, applying the well-known Jeffreys
prior for scale parameters referred to Jeffreys (1946), we draw log(si) from the uniform
distribution over certain real-valued interval [log(s0), log(s0)] with

log(s0) := smin + log(ŝ),

log(s0) := smax + log(ŝ),

where smin, smax ∈ R are tunable parameters with smin < smax, and the scale parameter ŝ
is the inverse of the bin width ĥ measured on the input space, which is defined by

ŝ := (ĥ)−1 = (3.5σ)−1n
1

2+d .

Here, the standard deviation σ :=
√

trace(V )/d with V := 1
n−1

∑n
i=1(xi − x̄)(xi − x̄)> and

x̄ := 1
n

∑n
i=1 xi combines the information from all the dimensions of the input space.

4.1.2 Performance Evaluation Criterion

When it comes to the empirical performances for different regression estimators f̂ , two top
concerns are accuracy and efficiency, where appropriate measurements are in demand.

On the one hand, in order to evaluate accuracy of a regression estimator, we adopt both
the ubiquitous Mean Squared Error (MSE ) and the commonly unsed Mean Absolute Error
(MAE ) conducted over m test samples {xj}mj=1:

MSE (f̂) =
1

m

m∑
j=1

(yj − f̂(xj))
2, (31)
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and

MAE (f̂) =
1

m

m∑
j=1

|yj − f̂(xj)|. (32)

Obviously, lower MSE and MAE both imply a better performance of regression function f̂ .

In addition, we take the Average Running Time (ART ) of m repeated experiments as
the measure of efficiency, that is,

ART (f̂) =
1

m

m∑
j=1

tj(f̂), (33)

where tj(f̂) denotes the training time of the j-th experiment.

Criterion only measuring the accuracy, such asMSE orMAE, or measuring the efficiency,
such as ART, is insufficient to be a comprehensive evaluation criterion of an algorithm. For
relatively small-scale data sets or synthetic data, the training speed of an algorithm is often
fast enough. Therefore, we mainly focus on the precision in following simulations in Section
4.2 and 4.4. However, for moderate sized or large-scale real data sets, this training time
discrepancy among algorithms is no longer negligible. That is, a good algorithm should not
only have desirable predicting accuracy, but also is comparable in training time with other
state-of-the-art regression methods. Therefore, in Section 4.6, we consider the trade-off
between accuracy (MSE and MAE ) and efficiency (ART ) in the real data analysis.

4.2 Study of the Parameters

In this subsection, taking NHTE as an instance, we perform an experiment dealing with the
parameters of our HTE algorithm, namely the number of histogram transform estimators
T and the lower and upper scale parameters smin, smax ∈ R. In what follows, we consider a
synthetic data set following the regression model

Y = sin(16X) + ε, (34)

where ε ∼ N(0, 0.12).

We firstly explore the influence of parameter T on the experimental results of our algo-
rithm. For each experiment, the empirical performance will be compared by average MSE
introduced in (31). We have carried out experiments with n = 2000, 3000, 4000, 5000, and
the number of test samples in each case is m = 2000. For every n and T we have made 300
runs of experiments, with fixed (smin, smax) = (0, 1). The results are shown in Figure 2.
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Figure 2: Average MSE for different values of T applied for the synthetic dataset.
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Figure 3: Average MAE for different values of T applied for the synthetic dataset.

As is shown, the performance of our histogram transform estimator enhances as n grows,
which can be seen from the downward average MSE of each line. On the other hand, the
results improve dramatically when we go from T = 1 to T = 20, but then a steady state is
reached, no matter how many larger ensembles are considered. This behavior is extremely
convenient, since it means that increasing the number of components in an ensemble by
raising T does not have any significant effect beyond certain limit. Consequently, we have
decided to use T = 10 in the subsequent experiment.

We then examine the dependency of our method with respect to the choice of the lower
and upper scale parameters smin, smax. We recall that the scale parameters smin, smax in
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the distribution of stretching matrix S actually control the size of histograms. If the local
structure of the input data set is very detailed, we need high values of both of them to attain
smaller histogram bins, and vice versa. On the other hand, if the local structure is finer in
some regions of data set and coarser in other regions, we need that both parameters have
very different values to cope with the varying scales, while an homogeneous structure can
be accommodated with a narrower range of histogram bin sizes. In order to illustrate this,
we obtain our ensemble NHTs with n = 500 training data, and then conduct the experiment
with 1000 test observations, for the following values the scale parameters: smin = 0, smax = 2;
smin = 1, smax = 3; and smin = 2, smax = 4. The results are shown in Figure 4.

The result indicates that lower values of these parameters yield a coarser approximation
of the input distribution, leading to the loss of precision (see the top left subfigure). Con-
versely, if the parameters are too high, there are zones where no training samples exist. On
this occasion, chances that more predictive points tend to be close to zero are high (see the
lower subfigure). Therefore an optimization procedure is needed to obtain good values for
smin and smax, given an input data set.

Figure 4: Blue points represent the true sample and green ones are predictive values. Upper Left:
smin = 0, smax = 2. Upper Right: smin = 1, smax = 3. Lower: smin = 2, smax = 4.

To further explore the effect of two scale parameters smin and smax with regard to
accuracy, we generate n = 1, 000 synthetic data points with the generating model (34)
for training, and 10, 000 points for testing, as well as varying the scale parameters smin ∈
{−3,−2,−1, 0, 1, 2, 3} and the scale parameters difference smax−smin ∈ {0.5, 1, 1.5, 2, 2.5, 3}.
In order to ensure the stability of this experimental result, we carry out 50 runs with each
(smin, smax−smin)-pair, and utilize the average of MSE and MAE for the final testing error.
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Two clear trends can be seen from Figure 5 and Figure 6: On the one hand, fixing
smax−smin, when smin is relatively small, i.e., the bin width is relatively large, the average
MSE and MAE for NHTE decreases with smin increasing. That is to say, the empirical
performance gets better with the bin width decreasing. However, MSE and MAE then
attain the minimum, and further increase of smin leads to the deterioration of testing error.
This exactly verifies the theoretical result in Section 3.3.1 that there exists an optimal bin
width with regard to the convergence rate. On the other hand, fixing smin and varying
smax−smin, tendency varies among different smin. When smin is small, i.e., the bin width is
relatively large, higher smax−smin means the bin width can be more varied from relatively
large bins to smaller bins, and thus increasing smax− smin leads to better performance.
However, when smin is large, i.e., the bin width is relatively small, higher smax−smin means
the bin width can be more varied from relatively small bins to much smaller bins, and thus
increasing smax−smin with large smin will deteriorate performance. This illustrates that the
range of bin width should be close to the optimal bin width to produce good regression
performance.
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Figure 5: Average MSE for different values of (smin, smax−smin) applied for the synthetic dataset.
Note that the x-axis represents for smin, y-axis represents for smax−smin, and different
color represents varying MSE for each (smin, smax−smin)-setting, red color means higher
MSE and blue color means lower MSE.
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Figure 6: Average MAE for different values of (smin, smax−smin) applied for the synthetic dataset.
Note that the x-axis represents for smin, y-axis represents for smax−smin, and different
color represents varying MAE for each (smin, smax−smin)-setting, red color means higher
MAE and blue color means lower MAE.

4.3 Ablation Study

In this subsection, we carry out an ablation study to evaluate the effectiveness of randomness
brought by rotation matrix R, stretching matrix S, and translation vector b in Equation (7),
respectively. In detail, the randomness of stretching matrix S is brought by the difference
of smin and smax.

As experiments of parameter analysis, we also generate 1, 000 points for training, 10, 000
points for testing with the generative model (34). However, to better analyze the effective-
ness of rotation matrix R, here we consider X with 2-dimensional feature space. We fix
T = 100, and select best smin and smax which performances best with respect to MSE and
MAE. Experiments in this subsection are repeated 50 times.

We conduct the following ablation studies of our NHTE: (a) baseline, i.e., without
randomness of R, S, and b, that is, to set rotation matrix R as an identity matrix, let
smin = smax, and set translation vector b as zero vector. Here, smin = smax = 1; (b) ran-
domness only from rotation matrix R, i.e., instead of (a), rotation matrix R is randomly
generated. Here, smin =smax =1; (c) randomness only from stretching matrix S, i.e., instead
of (a), smin 6= smax. Here, smin = 1, smax = 1.5; (d) randomness only from translation vector
b, i.e., instead of (a), translation vector b is randomly generated. Here, smin = smax = 1;
(e) Our NHTE, i.e., containing randomness of R, S and b. Here, smin = 0, smax = 1.5. In
addition, for sake of prudence, we conduct paired t-tests of differences between models with
significance level α=0.05.
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Table 1: Results of Ablation Study on Synthetic Dataset

Ablation baseline only R only S only b Ours

MSE 0.2975 0.2312 0.2246 0.2250 0.2160
(0.0283) (0.0290) (0.0252) (0.0332) (0.0253)

MAE 0.4247 0.3819 0.3711 0.3764 0.3756
(0.0183) (0.0226) (0.0218) (0.0261) (0.0230)

* The standard deviation is reported in the parenthesis under each value.

From Table 1, we can draw the following conclusions. (a) The comparison between
“baseline” and cases (b), (c), and (d), indicates that the randomness of R, S or b all helps to
significantly improve the effectiveness of the regression model. (b) The comparison between
cases (b), (c), (d) and our NHTE, shows that adding randomness from R, S or b at the same
time does not improve the model significantly, which implies that introducing randomness
from multiple sources together is not guaranteed for better performance.

4.4 Counter Example

In order to give a more comprehensive understanding of this section, we will remind the
reader of the significance to illustrate the benefits of our histogram transform ensembles
over a single estimator. Therefore, we start with the simulation by constructing the above
mentioned counterexample as the synthetic data. To be specific, the synthetic experiments
are based on a more complicated synthetic dataset: We implement the simulations on one
particular distribution construction approach to generate a toy example with dimension
d = 3. Assume that the regression model for random vector X = (X1, X2, X3)> ∈ R3, and

Y =

3∑
i=1

10Xi · sin(2Xi − 3) + ε, (35)

where ε ∼ N(0, 0.12).

It is obvious that this example is based on all the three dimensions. We perform the
synthetic data experiment with m = 1, 000 and parameter pair (smin, smax) = (0, 1). For
every T and n, we repeat the experiment 30 times, and show the resulting average MSE and
MAE versus T in Figure 7 and 8, respectively.
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Figure 7: Average MSE for different values of T applied for the artificial counterexample dataset.
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Figure 8: Average MAE for different values of T applied for the artificial counterexample dataset.

In particular, Figure 7 and 8 capture the MSE and MAE performance of our model for
T = 1, 2, 5, 10, 30, respectively. The result is twofold: First of all, the lower MSE of the
steady state for T > 1 states that ensembles behave better than single estimator in terms of
accuracy. Moreover, the difference of slope before the curves reach flat illustrates the lower
bound of the convergence rate of single estimator to some extent.

4.5 Adaptive Splitting Technique

In this subsection, we introduce the adaptive splitting technique for HTE to improve the
splitting efficiency in real-data experiments. Then, we demonstrate the effectiveness of this
technique through extensive parameter analysis.
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4.5.1 Adaptive Splitting Technique

Recall that from the viewpoint of algorithm architecture, the essence of our HTE lies in the
following facts: firstly, the large diversity of random histogram transform and the inherent
nature of ensembles help the algorithm overcome the long-standing boundary discontinu-
ity; on the other hand, taking full advantage of the data-independent partition process,
this vertical method successfully achieves high efficiency via parallel computing. Until now,
the partition processes considered have only performed in an equal-size histogram man-
ner. However, in real-data computational implementations, it is less efficient to perform
the data-independent partition. To be specific, sample dense areas require more splits to
promote learning the local properties of the target function, whereas there is no need to
split too much on the sample sparse areas or split on the vacant areas. Especially in the
high dimensional situation, the samples are often dense in some areas but sparse in others,
the data-independent partition is severely lack of splitting efficiency. Therefore, in order to
bring more resistance and take the local adaptivity into account, we propose the adaptive
splitting technique to significantly improve the balance property of splits.

The adaptive splitting technique helps to formulate a data-dependent partition. Instead
of selecting the bin indices as the round points, where each cell shares the same size, this
adaptive method creates more splits on fractions where sample points are densely resided,
while it splits less on sample-sparse areas. Therefore, every cell in the partition contains
roughly the same number of sample points. A concrete description of the construction
process of adaptive splitting is shown in the following Algorithm 2.

Algorithm 2: Adaptive Splitting
Input: Transformed sample space D> ;

Minimal number of samples required to split m;
Number of splits p initiated as 1.

repeat
kpt is the number of cells before the p-th split for the t-th partition;
for j = 1→ kpt do

if number of samples in the j-th cell > m then
Select out the dimension with the largest variance;
Select the split point as the median of samples in this dimension;

end
end
p+ +.

until max(number of samples in all cells) ≤ m;
Output: Adaptive partition of the transformed sample space D>.

To avoid a cell having too few samples or even no sample at all, we impose a stopping
criterion when a cell contains less than m samples. Then we focus on every qualified cell
with enough sample points, and select the to-be-split dimension as the one with the largest
variance. Moreover, we choose the split point as the median of samples in the d-th dimension.
By this means, we are able to make full use of the potential information contained in samples.
On one hand, we reckon that the most varied dimension contains the most information. On
the other hand, by splitting on the median, we are able to obtain two newly generated cells
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with even number of samples. Then, we repeat this splitting method until all cells meet the
stopping criterion.

With the help of adaptive splittings and the improved stopping criterion, we are now
ready to present our adaptive KHTE algorithm.

Algorithm 3: Adaptive Kernel Histogram Transform Ensembles (Adaptive KHTE)
Input: Training data D := ((X1, Y1), . . . , (Xn, Yn)); ;

Number of histogram transforms T ;
Regularization parameter λ and bandwidth parameter of Gaussian kernel γ.

for t = 1→ T do
Generate random affine transform matrix Ht = Rt;
Apply adaptive splitting to the transformed sample space;
Apply SVM to each cell & compute global regression mapping fD,λ,γ,Ht(x) .

end
Output: The kernel histogram transform ensemble for regression is

fD,λ,γ,E(x) =
1

T

T∑
t=1

fD,λ,γ,Ht(x).

The fact that can be observed is: Since the bin widths are depending on the density of
the training samples, the adaptive splitting is a data-driven method and therefore naturally
takes longer than the original data-independent histogram transform ensembles algorithm.
However, although the motivation of the adaptive splitting algorithm essentially comes from
the density of the training samples (that is, there are more cuts where the density is high and
fewer cuts where the density is low), there is no need to calculate the exact density estimate.
Instead, the to-be-split dimensions and split points are selected according to the variance and
median, with additional computational complexity being O(n log n) and O(n), respectively.
Besides, we would like to illustrate the effectiveness of the proposed adaptive algorithm from
the perspective of the efficiency of each splitting and the total number of divisions required.
The original histogram transform ensembles, in spite of the data-independent partition rules
being highly efficient, actually suffer from the curse of dimensionality, and need much more
total divisions, which of course hurts the algorithm efficiency. Our adaptive splitting rule
cuts more where there are more points, and controls the minimum number of samples for
each cell. Therefore, a much less total number of cuts is required, which improves the
efficiency of the adaptive method.

4.5.2 Study of Parameters

In this subsection, we delve into the study of parameters T and m in Algorithm 2, that is,
the number of partitions in an ensemble, and the minimum number of samples required to
split an internal node.
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Figure 9: Average MSE, MAE and ART for different values of T and m.

We carry out experiments based on a real data set PTS, the Physicochemical Proper-
ties of Protein Tertiary Structure Data Set, available on UCI. It contains totally 45, 730
samples of 9 dimensions, with 70% samples randomly selected as the training set, and the
remaining 30% as the testing set. The parameter grids of T and m are {1, 2, 5, 10} and
{200, 400, 1000, 1500, 2000}, respectively. Both the Mean Squared Error (MSE ) and the
Mean Absolute Error (MAE ) are employed as the accuracy performance error, the Aver-
age Running Time (ART ) is adopted as the efficiency performance error. In addition, all
experiments are repeated for 50 times.

As can be seen from Figure 9, on the one hand, for a fixed m, when the number of
partitions T increases, the training error, in terms of MSE and MAE, decreases while the
corresponding running time increases. This indicates that ensemble learning helps to
improve the experimental performance of HTE under the adaptive splitting technique. On
the other hand, with T fixed, we can see MSE and MAE decrease as m, the minimum
number of samples required to split, increasing, with a sacrifice of training time.

4.6 Real Data Analysis

In this subsection, we conduct experiments with real data to provide the comparison with
other state-of-the-art regression algorithms, in order to demonstrate the accuracy and effi-
ciency of the proposed algorithm.
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4.6.1 Introduction to Other Large-scale Regressors

In our experiments, the comparisons are conducted among our HTE, Patchwork Kriging
(PK), Voronoi partition SVM (VP-SVM), Random forest (RF), Random rotation forest
(RRF), and Random projection forest (RPE).

• PK: Patchwork kriging (PK) proposed by Park and Apley (2018) is an approach for
Gaussian process (GP) regression for large datasets. This method involves partitioning
the regression input domain into multiple local regions via spacial tree, and applying a
different local GP model fitted in each region. Different from previous Gaussian process
vertical methods put forward in Park et al. (2011) and Park and Huang (2016), which
tried to join up the boundaries of the adjacent local GP models by imposing various equal
boundary constraints, PK presents a simple and natural way to enforce continuity by cre-
ating additional pseudo-observations around the boundaries. However, there stands some
challenges. Firstly, although the employed spatial tree generates data partitioning of uni-
form sizes when data is unevenly distributed, artificially determined decomposition process
brings a great impact on the final predictor. Secondly, this approach loses its competitive
edge possessing the desirable global property of GPs, as well as suffers from the curse
of dimensionality. Last but not least, when encountering data with high dimensions and
large volumes, in order to achieve better prediction accuracy, more pseudo-observations
need to be added to the boundaries, which leads to significant growth in computational
complexity.

• VP-SVM: Support vector machines (SVM) for regression being a global algorithm is
impeded by super-linear computational requirements in terms of the number of training
samples in large-scale applications. To address this, Meister and Steinwart (2016) employs
a spatially oriented method to generate the chunks in feature space, and fits LS-SVMs for
each local region using training data belonging to the region. This is called the Voronoi
partition support vector machine (VP-SVM). However, the boundaries are artificially
selected and the boundary discontinuities do exist.

• RF: Random forest (RF) is one of the most successful ensemble learning methods for
regression that operated by constructing a multitude of decision trees at training time and
outputting the mean prediction of the individual trees. An extension of RF, defined in
Breiman (2001), builds a forest of decision trees using a CART like procedure, combined
with randomized node optimization, Breiman’s bagging idea, and random selection of
features. In this paper, we implement the random forest regressor through the package
sklearn.ensemble for python, and more details on the parameter selection of RF can be
found in Section 4.6.2.

• RRF: Random rotation forest (RRF), proposed by Blaser and Fryzlewicz (2016), is a
tree-based approach for regression problems. The method first transforms the predictors
by a random rotation map, and then constructs the individual base learners by the empir-
ical risk minimization. The individual trees for different random rotations are built, and
are ensemble by the model averaging. The randomness, brought by the random rotation
transform, reduces the correlation between individual trees and thus promotes diversity,
which is considered to be able to improve the performance of ensemble learners. In this pa-
per, we generate the rotation matrix R by Householder QR decomposition (Householder,
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1958), and the split points in individual trees are chosen based on the MSE criterion.
More details on the parameter selection of RRF can be found in section 4.6.2.

• RPE: Random projection ensemble (RPE) classifier, proposed by Cannings and Samworth
(2017), offers an appealing and flexible approach to a wide range of large-scale statistical
problems. RPE first applies different random Gaussian projections to the training data
on which the decision trees are built based on the MSE criterion. Here we modify the
method in order to deal with the regression problem, where we build regression trees
instead of decision trees in the original paper. After achieving a certain number of tree
regressors, we select the best performance tree regressor with the minimum validation
error. By repeating the above procedure, we aggregate the selected base learners, and
achieve RPE. This study is particularly useful in high-dimensional settings, and alleviates
the curse of dimensionality problem, which hurts the statistical accuracy and computa-
tional efficiency. Although this random projection forest was originally proposed to solve
the classification problem, it is built as a plug-in classifier, that is, we first estimate the
conditional probability function via a regression method, then plug-it into the form of the
Bayes classifier. Therefore, RPE is fully applicable to regression problems. More details
on the parameter selection of RPE can be found in section 4.6.2.

4.6.2 Real world Data Set Analysis

We design three sets of real-world experiments over our kernel histogram transform ensem-
bles (KHTE), PK, VP-SVM, RF, RRF, and RPE. All experiments are conducted on the
PTS data set introduced in Section 4.5.2 and other data sets presented as follows. Details of
these 8 data sets, including size and dimension, are summarized in Table 2.

Table 2: Description over Real Data Sets

datasets size dimension

EGS 10000 12

SCD 21263 81

ONP 39644 58

CAD 20640 8

PTS 45730 9

AEP 19735 27

HPP 22784 8

MSD 515345 90

• AEP: The Appliances energy prediction (AEP) data set, available on UCI, contains
19, 735 samples of dimension 27 with attribute “date” removed from the original data
set. The data is used to predict the appliances’ energy use in a low-energy building.

• HPP: This data set House-Price-8H prototask (HPP) is originally from DELVE dataset.
It consists of 22, 784 observations of dimension 8. Note that for the sake of clarity, all
house prices in the original data set has been modified to be counted in thousands.
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• CAD: This spacial data can be traced back to Pace and Barry (1997). It consists
20, 640 observations on housing prices with 9 economic covariates. Similar to the data
preprocessing for HPP, all house prices in the original data set has been modified to be
counted in thousands.

• EGS: The Electrical Grid Stability Simulated Data (EGS) Data Set, belonging to the
field of physics, is available on UCI. It contains 10, 000 samples of dimension 14 with
one of them being non-predictive.

• SCD: The Superconducting Material Database (SCD), available on UCI, is supported by
the NIMS, a public institution based in Japan. This database has 21, 263 samples of
dimension 81, containing a large list of superconductors, their critical temperatures,
and the source references mostly from journal articles. The goal is to predict the
critical temperature based on the features extracted.

• ONP: The Online News Popularity Data Set (ONP), available on UCI, is a database that
does not share the identical content but some statistics associated with the original
data set. It contains 39, 797 observations of dimension 61 with two of them being
non-predictive. This data set is used to predict the number of shares of online news.

• MSD: The Year Prediction MSD Data Set (MSD) is available on UCI. It contains 463, 715
training samples and 51, 630 testing samples with 90 attributes, depicting the timbre
average and timbre covariance of songs released between the year 1922 and 2011. The
main task is to learn the audio features of a song and to predict its release year.

Samples in data sets AEP, HPP, PTS, CAD, EGS, SCD, and ONP are scaled to zero mean
and unit variance, and experiments carried on such data sets are repeated for 50 times.
In addition, we randomly split each data set into training, with 70% of the observations,
and testing, containing the remaining 30%. Whereas for the MSD data set, we adopt the
following train/test split that the first 463, 715 examples are treated as training set and the
last 51, 630 are treated as testing set. In addition, because VP-SVM cannot run MSD data
set with the above standardization for some reason, we rescale the data so that all feature
values are in range [0, 1]. Moreover, we repeat the experiments for MSD data set 20 times
to obtain a relatively stable result, with acceptable training time on such a large-scale data
set.

In the experiments, we set the pair (T,m) to be (5, 1000) and (20, 1000) except for MSD
data set, where we select (5, 2000) and (20, 3000), for the trade off between accuracy and
running time. We adopt grid search method for other hyper-parameter selections. To be
specific, for data sets HPP, CAD, PTS and AEP, EGS, SCD and ONP, the regularization parameter
λ and the kernel bin width γ are selected from 7 and 8 values, from 10−3 to 103 and from
0.05 to 10, respectively, spaced evenly on a log scale with a geometric progression. For MSD
data set, we choose λ in {0.01, 1, 100}, and γ in {0.001, 0.1, 10}.

As for hyper-parameter selection of other methods, we tune regularization parameter λ
and kernel bin width γ in each cell of voronoi partition for VP-SVM, K ∈ {32, 64, 128},
and B ∈ {2, 3, 5} for PK, fix ensemble size T = 100 and tune min_samples_split ∈
{2, 5, 10, 20, 50, 100, 200} for RF and RRF. For RPE, we set the number of base learners
B1 = 100, the data dimension after projection p = 5, and the number of trials B2 = 50,
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which is recommended in Cannings and Samworth (2017). In other words, we randomly
split 30% samples from training sets for validation in hyper-parameter selection.

Now we summarize the comparison results, in aspect of both accuracy and efficiency, for
6 algorithms: KHTE, VP-SVM, PK, RF, RRF, and RPE, over 8 data sets: AEP, HPP, PTS,
CAD, EGS, SCD, and ONP in Table 3, Table 4 and Table 5, respectively. We point out that the
paired t-tests with significance level α = 0.05 are applied, and statistical significance of the
difference holds for all models.

Table 3: Average MSE over real data sets

Datasets KHTE (T=5) KHTE (T=20) RRF RPE RF PK VP-SVM

EGS
1.28E − 03 1.28E − 03 2.47E − 04 4.06E − 04 1.45E − 04 6.99E− 05 7.38E − 05
(4.44E − 05) (2.59E − 05) (8.56E − 06) (1.12E − 05) (5.23E − 06) (3.89E− 06) (3.73E − 06)

SCD
99.95 96.37 96.50 109.03 91.51 152.97 110.02
(4.16) (3.77) (3.26) (3.41) (3.65) (7.59) (5.89)

ONP
125.48 125.18 126.24 126.40 126.46 126.98 125.65
(48.00) (48.01) (47.84) (47.84) (47.21) (48.12) (47.64)

CAD
2984.67 2942.52 3340.61 3204.75 2459.38 2857.69 2996.90
(95.08) (97.20) (115.85) (99.20) (74.25) (88.89) (91.70)

PTS
12.86 12.46 13.63 14.25 12.73 16.58 13.73
(0.20) (0.20) (0.19) (0.18) (0.18) (0.98) (0.23)

AEP
6435.66 6292.15 7037.08 7401.58 5242.59 6801.24 6728.02
(388.71) (392.27) (386.29) (409.60) (306.04) (601.17) (398.06)

HPP
1245.39 1220.89 1337.50 1398.47 1136.78 1343.88 1262.78
(85.61) (81.84) (75.13) (80.72) (74.21) (81.93) (81.57)

MSD
82.82 80.98 84.66 93.55 86.59 – 85.33
(0.12) (0.11) (0.10) (0.18) (0.12) – (0.73)

* The best results are marked in bold, and the standard deviation is reported in the parenthesis
under each value. Note that, since PK does not fit in the parallel computing framework, its training
time exceeds a 36 hour-limit, and thus no average MSE reported.

Table 4: Average MAE over real data sets

Datasets KHTE (T=5) KHTE (T=20) RRF RPE RF PK VP-SVM

EGS
3.02E − 02 3.03E − 02 1.23E − 02 1.63E − 02 9.26E − 03 5.68E− 03 5.98E − 03
(5.69E − 04) (3.83E − 04) (2.16E − 04) (2.45E − 04) (1.53E − 04) (1.44E− 04) (1.67E − 04)

SCD
5.34 5.25 5.63 6.22 5.35 7.65 6.09
(0.10) (0.09) (0.07) (0.08) (0.08) (0.20) (0.18)

ONP
2.87 2.85 3.18 3.18 3.10 3.18 3.18
(0.08) (0.08) (0.07) (0.09) (0.07) (0.07) (0.06)

CAD
35.77 35.42 39.59 39.29 32.30 36.22 37.33
(0.42) (0.44) (0.56) (0.43) (0.43) (0.54) (0.47)

PTS
2.36 2.32 2.62 2.77 2.42 2.69 2.59
(0.02) (0.02) (0.02) (0.02) (0.02) (0.08) (0.02)

AEP
35.97 35.15 44.57 46.95 34.65 35.85 42.69
(0.96) (0.89) (0.79) (0.77) (0.81) (1.44) (0.85)

HPP
17.13 16.87 19.76 20.31 17.19 19.12 18.90
(0.33) (0.34) (0.31) (0.31) (0.28) (0.40) (0.36)

MSD
6.05 5.95 6.57 6.96 6.62 – 6.47
(0.01) (0.00) (0.01) (0.02) (0.01) – (0.02)

* The best results are marked in bold, and the standard deviation is reported in the parenthesis
under each value. Note that, since PK does not fit in the parallel computing framework, its training
time exceeds a 36 hour-limit, and thus no average MAE reported.
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Table 5: Average ART over real data sets

Datasets KHTE (T=5) KHTE (T=20) RRF RPE RF PK VP-SVM

EGS
1.36 2.97 8.32 225.35 3.14 8111.49 6.45
(0.06) (0.13) (0.57) (4.69) (0.08) (2921.90) (0.27)

SCD
43.21 145.77 40.55 275.22 20.29 2625.71 15.03
(0.76) (0.89) (0.66) (3.92) (0.30) (567.36) (0.53)

ONP
49.71 181.53 128.58 384.68 34.32 46482.75 15.18
(0.56) (0.72) (3.01) (7.62) (0.86) (19629.81) (0.37)

CAD
15.44 50.81 9.89 278.23 3.87 1159.02 19.44
(0.22) (0.50) (0.46) (3.57) (0.10) (265.43) (0.90)

PTS
29.57 104.73 16.99 378.47 9.34 1877.29 52.81
(1.79) (1.71) (0.39) (4.51) (0.14) (681.98) (1.57)

AEP
21.36 71.12 22.19 288.15 10.44 1747.85 11.44
(0.19) (0.33) (0.49) (4.84) (0.26) (445.84) (0.52)

HPP
23.05 77.85 10.93 293.24 4.82 2081.27 14.63
(0.86) (1.40) (0.50) (4.04) (0.10) (661.21) (0.75)

MSD
453.52 1682.35 1759.36 3949.36 1684.83 – 380.99
(15.26) (44.11) (17.57) (39.65) (19.79) – (6.99)

* The best results are marked in bold, and the standard deviation is reported in the parenthesis
under each value. Note that, since PK does not fit in the parallel computing framework, its training
time exceeds a 36 hour-limit, and thus no average ART reported.

We briefly discuss the experimental results. First of all, it can be observed from Table 3
and Table 4 that our adaptive KHTE method with T = 20 is either comparable to or better
than the other 5 state-of-the-art algorithms in terms of both MSE and MAE measurement,
due to high level of smoothness brought about by a relatively large T , which, however, leads
to more training time. Therefore, we turn to the less time-consuming case T = 5. While
maintaining desirable accuracy, Table 5 tells us that in spite of being inferior to random forest
and SVM in efficiency, our algorithm still demonstrates strong competitiveness compared
with other effective random algorithms. In addition, we emphasize that the experimental
results presented so far are with temporarily hyper-parameters tuned. More accurate results
can be obtained if we spend more training time to conduct a thorough search, which is
different from other methods: They can hardly improve their accuracy. Readers interested
in these experiments are encouraged to try more hyper-parameters to further investigate the
possibility of even lower testing errors.

5. Conclusion

By conducting a statistical learning treatment, this paper studies the large-scale regression
problem with histogram transform estimators. Based on partition induced by random his-
togram transform and various different kinds of embedded regressors, this nonparametric
strategy provides an effective solution by taking full advantage of the large diversity of the
random histogram transform, the nature of ensemble learning, and the efficiency of vertical
methods. By decomposing the error term into approximation error and estimation error,
the insights from the theoretical perspective are threefold: First, different regression esti-
mators NHTs and KHTs are applied, when the Bayes decision function f∗L,P is assumed to
satisfy different Hölder continuity assumptions. Secondly, almost optimal convergence rates
are verified within the regularized empirical risk minimization framework for our histogram
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transform estimators in the sense of different space Ck,α. Thirdly, for the space C1,α, al-
most optimal convergence rates can be only established for the ensemble NHTs, and the
lower bound established in Theorem 4 illustrates the exact benefits of ensembles over single
estimator. Last but not least, several numerical simulations are conducted to offer evidence
to support our theoretical results and comparative real-data experiments with other state-
of-the-art regression estimators demonstrate the accuracy of our algorithm. In this study,
we explain the phenomenon that ensemble estimators outperform single ones in the space
C1,α with respect to constant embedded regressors, from the perspective of learning rate. In
addition, we are now exploring more possible interpretations, which applies to more general
function space such as Ck,α and smoother regressors such as SVMs, for this phenomenon
from other aspects, information theory, for instance.
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Appendix A.

In this section, we present related error analysis and proofs for the single and ensemble
estimators fD,H and fD,E in the Hölder spaces Ck,α with α ∈ (0, 1], k=0, k=1, and k≥2.

A.1 Error Analysis for NHTs in the space C0,α

In this subsection, we investigate the convergence property of fD,H and fD,E when the Bayes
decision function f∗L,P ∈ C0,α. Recall that fP,H and fP,E are the population version of single
NHT and NHTE estimators, derived as in (14) and (17) within the RERM framework,
respectively. To this end, we start with considering the single estimator. More precisely, the
convergence analysis is conducted with the help of the following error decomposition. As
usual, we define hf := L ◦ f−L ◦ f∗L,P for all f ∈ L0(X ). By the definition of fD,H , we have

Ω(fD,H) + EDh ÛfD,H ≤ Ω(fP,H) + EDhfP,H ,

and consequently, for all D ∈ (X × Y)n, there holds

Ω(fD,H) +RL,P( ÛfD,H)−R∗L,P
= Ω(fD,H) + EPh ÛfD,H
≤ Ω(fP,H) + EDhfP,H − EDh ÛfD,H + EPh ÛfD,H
= (Ω(fP,H) + EPhfP,H ) + (EDhfP,H − EPhfP,H ) + (EPh ÛfD,H − EDh ÛfD,H ). (36)
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Note that the first term Ω(fP,H) + EPhfP,H in the above inequality (36) represents the
approximation error, which is data independent. In contrast, both of the remaining terms
(EDhfP,H−EPhfP,H ) and (EPh ÛfD,H−EDh ÛfD,H ) are sample errors depending on the data D.

A.1.1 Bounding the Approximation Error Term

Our first theoretical result on bounding the approximation error term in the sense of least
squared loss shows: The L2 distance between fP,H and f∗L,P behaves polynomial in the
regularization parameter λ, by choosing the bin width h0 appropriately.

Proposition 8 Let the histogram transform H be defined as in (7) with bin width h satisfy-
ing Assumption 2. Moreover, suppose that the Bayes decision function f∗L,P ∈ C0,α. Then,
for any fixed λ > 0, there holds

λ(h∗0)−2d +RL,P(fP,H)−R∗L,P ≤ c · λ
α
α+d ,

where c is some constant depending on α, d, and c0 as in Assumption 2.

A.1.2 Bounding the Sample Error Term

In order to bound the sample error term, we give four descriptions of the capacity of the
function set in Definition 9, Definition 11, Definition 14, and Definition 16.

Firstly, we need to impose some constraints on the complexity of the function set so
that the set has a finite VC dimension (Vapnik and Chervonenkis, 1971), thus making the
algorithm PAC learnable (Valiant, 1984), see e.g., (Giné and Nickl, 2016, Definition 3.6.1).

Definition 9 (VC dimension) Let B be a class of subsets of X and A ⊂ X be a finite set.
The trace of B on A is defined by {B∩A : B ∈ B}. Its cardinality is denoted by ∆B(A). We
say that B shatters A if ∆B(A) = 2#(A), that is, if for every Ã ⊂ A, there exists a B ⊂ B
such that Ã = B ∩A. For k ∈ N, let

mB(k) := sup
A⊂X ,#(A)=k

∆B(A).

Then, the set B is a Vapnik-Chervonenkis class if there exists k <∞ such that mB(k) < 2k

and the minimal of such k is called the VC dimension of B, and abbreviated as VC(B).

Recall that H is a histogram transform, πH := (Aj)j∈IH is a partition of Br with the
index set IH induced by H. In addition, let ΠH be the gathering of all partitions πH , that
is, ΠH := {πH : H ∼ PH}. To bound the estimation error, we need to introduce some more
notations. To this end, let πh denote the collection of all cells in πH , that is,

πh := {Aj : Aj ∈ πH ∈ ΠH}. (37)

Moreover, we define

Πh :=

{
B : B =

⋃
j∈I

Aj , I ⊂ IH , Aj ∈ πH ∈ ΠH

}
. (38)

The following lemma presents the upper bound of VC dimension for the interested sets
πh and Πh.
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Lemma 10 Let the histogram transform H be defined as in (7) with bin width h satisfying
Assumption 2. Moreover, let πh and Πh be defined as in (37) and (38), respectively. Then
we have

VC(πh) ≤ 2d + 2

and

VC(Πh) ≤
(
d(2d − 1) + 2

)(
2W
√
d/h0 + 1

)d
. (39)

To bound the capacity of an infinite function set, we need to introduce the following fun-
damental descriptions which enables an approximation by finite subsets, see e.g. (Steinwart
and Christmann (2008), Definition 6.19).

Definition 11 (Covering Numbers) Let (X, d) be a metric space, A ⊂ X and ε > 0.
We call A′ ⊂ A an ε-net of A if for all x ∈ A there exists an x′ ∈ A′ such that d(x, x′) ≤ ε.
Moreover, the ε-covering number of A is defined as

N (A, d, ε) = inf

{
n ≥ 1 : ∃x1, . . . , xn ∈ X such that A ⊂

n⋃
i=1

Bd(xi, ε)

}
,

where Bd(x, ε) denotes the closed ball in X centered at x with radius ε.

Let B be a class of subsets of X , denote 1B as the collection of the indicator functions
of all B ∈ B, that is, 1B := {1B : B ∈ B}. Moreover, as usual, for any probability measure
Q, L2(Q) is denoted as the L2 space with respect to Q equipped with the norm ‖ · ‖L2(Q).

Lemma 12 Let πh and Πh be defined as in (37) and (38), respectively. Then, for all
0<ε<1, there exists a universal constant K, such that for any probability measure Q, there
holds

N (1πh , ‖ · ‖L2(Q), ε) ≤ K(2d + 2)(4e)2d+2(1/ε)2(2d+1) (40)

and

N (1Πh , ‖ · ‖L2(Q), ε) ≤ K(cdW/h0)d(4e)(cdW/h0)d(1/ε)2((cdW/h0)d−1), (41)

where the constant cd := 3 · 21+ 1
d · d

1
d

+ 1
2 .

Let us first consider the complexity of the function set of binary value assignment case.
To this end, we define

FbH :=

{∑
j∈IH

cj1Aj : cj ∈ {−1, 1}, Aj ∈ πH ∈ ΠH

}
. (42)

Note that for all g ∈ FbH , there exists some B ∈ ΠH ∈ Πh, such that g can be expressed as
g = 1B − 1Bc . Therefore, FbH can be equivalently formulated as

FbH := {1B − 1Bc : B ∈ Πh}. (43)

The following lemma gives a upper bound for the covering number of FbH .
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Lemma 13 Let FbH be defined as in (42) or (43). Then for all ε ∈ (0, 1), there exists a
universal constant c <∞ such that

N (FbH , ‖ · ‖L2(PX), ε) ≤ c(cdW/h0 + 1)d(4e)(cdW/h0+1)d(2/ε)2((cdW/h0+1)d−1),

where the constant cd := 3 · 21+ 1
d · d

1
d

+ 1
2 .

We further need the following concept of entropy numbers to illustrate the capacity of
an infinite function set, for more details, please refer to A.5.6 in Steinwart and Christmann
(2008).

Definition 14 (Entropy Numbers) Let (X, d) be a metric space, A ⊂ X and n ≥ 1 be
an integer. The n-th entropy number of (A, d) is defined as

en(A, d) = inf

{
ε > 0 : ∃x1, . . . , x2n−1 ∈ X such that A ⊂

2n−1⋃
i=1

Bd(xi, ε)

}
.

Before we proceed, there is a need to introduce an important conclusion establishing the
equivalence of covering number and entropy number. To be specific, entropy and covering
numbers are in some sense inverse to each other. For all constants a > 0 and q > 0, the
implication

ei(T, d) ≤ ai−1/q, ∀i ≥ 1 =⇒ lnN (T, d, ε) ≤ ln(4)(a/ε)q, ∀ε > 0 (44)

holds by Lemma 6.21 in Steinwart and Christmann (2008). Additionally, Exercise 6.8 in
Steinwart and Christmann (2008) yields the opposite implication, namely

lnN (T, d, ε) < (a/ε)q, ∀ε > 0 =⇒ ei(T, d) ≤ 31/qai−1/q, ∀i ≥ 1. (45)

Now we introduce some notations of the oracle inequality for general ε-CR-ERMs (see
also Definition 7.18 in Steinwart and Christmann (2008)). First, denote

r∗b := inf
f∈FbH

λh−2d
0 +RL,P(f)−R∗L,P. (46)

Then, for r > r∗b , we write

Fbr :=
{
g ∈ FbH : λh−2d

0 +RL,P(g)−R∗L,P ≤ r
}
, (47)

Hbr := {L ◦ g − L ◦ f∗L,P : g ∈ Fbr}, (48)

where L ◦ g denotes the least squares loss of g. Moreover, in a similar way, let

r∗ := inf
f∈FH

λh−2d
0 +RL,P(f)−R∗L,P, (49)

and for r > r∗, write

Fr :=
{
g ∈ FH : λh−2d

0 +RL,P(g)−R∗L,P ≤ r
}
, (50)

Hr := {L ◦ g − L ◦ f∗L,P : g ∈ Fr}, (51)

where L ◦ g denotes the least squares loss of g.
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Lemma 15 Let Hbr be defined as in (48). Then for all δ ∈ (0, 1), the i-th entropy number
of Hbr satisfies

ED∼Pnei(Hbr, ‖ · ‖L2(D)) ≤
(
33/(2eδ)(2cdW (r/λ)1/(2d))d

) 1
2δ i−

1
2δ .

The following definition uses Rademacher sequences to introduce a new type of expec-
tation of suprema, see e.g., Definition 7.9 in Steinwart and Christmann (2008). This expec-
tation will be used to bound the capacity of function set Hr with the help of the capacity
estimate of the binary-valued function set Hbr.

Definition 16 (Empirical Rademacher Average) Let {εi}mi=1 be a Rademacher sequence
with respect to some distribution ν, that is, a sequence of i.i.d. random variables, such that
ν(εi = 1) = ν(εi = −1) = 1/2. The n-th empirical Rademacher average of F is defined as

RadD(F , n) := Eν sup
h∈F

∣∣∣∣ 1n
n∑
i=1

εih(xi)

∣∣∣∣.
Lemma 17 Let Hbr and Hr be defined as in (48) and (51), respectively. Then for all δ ∈
(0, 1), there exist constants c′1(δ), c′2(δ), c′′1(δ), and c′′2(δ) depending on δ such that

ED∼PnRadD(Hbr, n) ≤ max
{
c′1(δ)λ−

1
4 r

3−2δ
4 n−

1
2 , c′2(δ)λ

− 1
2(1+δ) r

1
2(1+δ)n−

1
1+δ

}
and

ED∼PnRadD(Hr, n) ≤ max
{
c′′1(δ)λ−

1
4 r

3−2δ
4 n−

1
2 , c′′2(δ)λ

− 1
2(1+δ) r

1
2(1+δ)n−

1
1+δ

}
.

A.1.3 Oracle Inequality for Single NHT

Now we are able to establish an oracle inequality for the single naïve histogram transform
regressor fD,Hn based on the least squares loss and determining rule (13).

Theorem 18 Let the histogram transform Hn be defined as in (7) with bin width hn sat-
isfying Assumption 2, and fD,Hn be defined in (13). Then for all τ > 0 and δ ∈ (0, 1), the
single naïve histogram transform regressor satisfies

λnh
−2d
0,n +RL,P(fD,Hn)−R∗L,P

≤ 9
(
λ(h∗0,n)−2d +RL,P(fP,Hn)−R∗L,P

)
+ 3cλ

− 1
1+2δ

n n−
2

1+2δ + 3456M2τ/n

with probability Pn not less than 1− 3e−τ , where c is some constant depending on δ, d, M ,
and W which will be later specified in the proof.

Note that the above oracle inequality shows: The excess error can be bounded by ap-
proximation error, which is a crucial step in proving the convergence rate.
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A.2 Error Analysis for NHTs in the space C1,α

A drawback to the analysis in C0,α, as shown in Section A.1 is, the usual Taylor expansion
involved techniques for error estimation may not be applied directly. As a result, we fail to
prove the exact benefits of our ensemble estimators over the single one. Therefore, in this
part, we turn to the function space C1,α consisting of smoother functions. To be specific,
we study the convergence rates of fD,E and fD,H to the Bayes decision function f∗L,P ∈ C1,α.
To this end, there is a point in introducing some notations. First of all, for any fixed
t ∈ {1, . . . , T}, we define

f∗P,Ht(x) = EP

(
f∗L,P(X)|AHt(x)

)
, x ∈ supp(PX), (52)

where EP(·|AHt(x)) denotes the conditional expectation with respect to P on AHt(x). With
the ensembles of the population version

f∗P,E(x) :=
1

T

T∑
t=1

f∗P,Ht(x), (53)

we make the error decomposition

Eνn
(
RL,P(fD,E)−R∗L,P

)
= EνnEPX

(
fD,E(X)− f∗L,P(X)

)2
= EνnEPX

(
fD,E(X)− f∗P,E(X)

)2
+ EνnEPX

(
f∗P,E(X)− f∗L,P(X)

)2
. (54)

In our study, the consistency and convergence analysis of the histogram transform ensembles
fD,E in the space C1,α will be mainly conducted with the help of the decomposition (54).

In particular, in the case that T = 1, i.e., when there is only single naïve histogram
transform regressor, we are concerned with the lower bound of fD,H to f∗L,P. With the
population version

f∗P,H(x) := EP(f∗L,P(X)|AH(x)), x ∈ supp(PX), (55)

we make the error decomposition

Eνn
(
RL,P(fD,H)−R∗L,P

)
= EνnEPX

(
fD,H(X)− f∗L,P(X)

)2
= EνnEPX

(
fD,H(X)− f∗P,H(X)

)2
+ EνnEPX

(
f∗P,H(X)− f∗L,P(X)

)2
. (56)

It is important to note that both of the two terms on the right-hand side of (54) and (56) are
data- and partition-independent, due to the expectation with respect to D and H. Loosely
speaking, the first error term corresponds to the expected estimation error of the estimators
fD,E or fD,H , while the second one demonstrates the expected approximation error.

A.2.1 Bounding the Approximation Error for Ensemble NHTs

In this subsection, we firstly establish the upper bound for the approximation error term of
histogram transform ensembles fP,E, and further find a lower bound of this error for single
estimator fP,H .

43



Hang, Lin, Liu, and Wen

Proposition 19 Let the histogram transform H be defined as in (7) with bin width h sat-
isfying Assumption 2, and T be the number of single estimators contained in the ensem-
bles. Furthermore, let PX be the uniform distribution, and Lh0(x, y, t) be the restricted least
squares loss defined as in (24). Moreover, let the Bayes decision function satisfy f∗L,P ∈ C1,α.
Then, for all τ > 0, there holds

RLh0 ,P(f∗P,E)−R∗Lh0 ,P ≤ c
2
Lh

2(1+α)
0 +

1

T
· dc2

Lh
2
0 (57)

in expectation with respect to PH .

A.2.2 Bounding the Sample Error for Ensemble NHTs

Lemma 20 Let the function space FH be defined as in (12). The VC dimension of FH can
be upper bounded by

VC(FH) ≤ (2(d+ 1)(2d − 1) + 2)

(⌊
2W
√
d

h0

⌋
+ 1

)d
.

Moreover, for any probability measure Q on X, there holds

N (FH , L2(Q),Mε) ≤ 2K(cdW/h0)d(16e)2(cdW/h0)d(1/ε)4(cdW/h0)d .

Lemma 21 Let Co(FH) be the convex hull of FH , then for any probability measure Q on
X, there holds

logN (Co(FH), L2(Q),Mε) ≤ K
(
1/ε)2−1/(4(cdW/h0)d+1).

A.2.3 Oracle Inequality for Ensemble NHT

Proposition 22 Let the histogram transform Hn be defined as in (7) with bin width hn < 1
satisfying Assumption 2. Let fD,E and fP,E be defined in (16) and (17), respectively. Then,
for all τ > 0 and δ ∈ (0, 1), the single naïve histogram transform regressor satisfies

λnh
−2d
0,n +RL,P(fD,E)−R∗L,P

≤ 9
(
λ(h∗0,n)−2d +RL,P(fP,E)−R∗L,P

)
+ 3cλ

− 1
1+2δ

n n−
2

1+2δ + 3456M2τ/n

with probability Pn not less than 1− 3e−τ , where c is some constant depending on δ, d, M ,
and W which will be later specified in the proof.

A.2.4 Lower Bound of the Approximation Error for Single NHT

Proposition 23 Let the histogram transform H be defined as in (7) with bin width h sat-
isfying Assumption 2 with h0 ≤ 1. Moreover, let the regression model defined by (27) with
f ∈ C1,α. For a fixed constant cf ∈ (0,∞), let Af be defined as in (28) and N ′ be defined
as in (29). Then for all n > N ′, there holds

RL,P(f∗P,H)−R∗L,P ≥
d

12

(
W

2

)d
c2

0PX(Af )c2
f · h

2
0

in expectation with respect to PH .
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A.2.5 Lower Bound of the Sample Error for Single NHT

Proposition 24 Let the histogram transform H be defined as in (7) with bin width h satis-
fying Assumption 2. Let the the regression model be defined as in (27) with f ∈ C1,α. More-
over, assume that ε is independent of X such that E(ε|X) = 0 and Var(ε|X) =: σ2 ≤ 4M2

hold almost surely for some M > 0. Then there holds

RL,P(fD,H)−RL,P(f∗P,H) ≥ 4W dσ2(1− 2e−1)cd0 · h
−d
0 · n−1

in expectation with respect to Pn, where the constant c0 is as in Assumption 2.

A.3 Error Analysis for KHTs in the space Ck,α

A.3.1 Bounding the Approximation Error Term

Recall that the target function f∗L,P is assumed to satisfy (k, α)-Hölder continuity condition.
To derive the bound for approximation error of KHTs, there is a need to introduce another
device to measure the smoothness of functions, that is, the modulus of smoothness (see
e.g., DeVore and Lorentz (1993), p.44; Sprengel (2000), p.398; as well as Berens and DeVore
(1978), p.360). Denote ‖ · ‖2 as the Euclidean norm and let X ⊂ BW ⊂ Rd be a subset
with non-empty interior, ν be an arbitrary measure on X , p ∈ (0,∞], and f : X → R be
contained in Lp(ν). Then, for q ∈ N, the q-th modulus of smoothness of f is defined by

ωq,Lp(ν)(f, t) := sup
‖h‖2≤t

‖4q
h(f, ·)‖Lp(ν), t ≥ 0, (58)

where 4q
h(f, ·) denotes the q-th difference of f given by

4q
h(f, x) =

{∑q
j=0

(
q
j

)
(−1)q−jf(x+ jh) if x ∈ Xq,h

0 if x /∈ Xq,h
(59)

for h = (h1, . . . , hd) ∈ Rd and Xq,h := {x ∈ X : x + th ∈ X f.a. t ∈ [0, q]}. Moreover, for
fixed γj > 0, we define the function Kj : Rd → R by

Kj(x) :=
k+1∑
`=1

(
k + 1

`

)
(−1)1−`

(
2

`2γ2
j π

)d/2
exp

(
−2‖x‖22
`2γ2

j

)
. (60)

Then, we use the convolution with the kernel Kj to approximate the target function f∗L,P ∈
Ck,α(BW ) in terms of L∞-norm.

Proposition 25 Assume that PX is a finite measure on Rd with supp(PX) =: X ⊂ BW .
Let (A′j)j=1,...,m be a partition of BW . Then, Aj := A′j ∩ X for all j ∈ {1, . . . ,m} defines a
partition (Aj)j=1,...,m of X . Furthermore, suppose that f ∈ Ck,α(X ). For the functions Kj,
j ∈ {1, . . . ,m}, defined by (60), where γ1, . . . , γm > 0, we then have∥∥∥∥ m∑

j=1

1Aj · (Kj ∗ f)− f
∥∥∥∥
L∞(ν)

≤ ck,α
(
γ

γ

) d
2

γs,

where the constant ck,α := cLπ
− 1

4 2−
k+α
2
− 1

2d
k+α
2

+1Γ
1
2 (k + α+ 1

2).
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A.3.2 Bounding the Sample Error Term

In this section, in order to bound the sample error, we derive some results related to the
capacity of the function spaces. First of all, Lemma 26 shows that the covering number of
the direct sum of subspaces can be upper bounded by the product of the covering number
of these subspaces. Then, Lemma 27 establishes the upper bound of the covering number
of the composition of two function subspaces of interest, that is, BH and 1πh . Finally, in
Proposition 28, we give the upper bound on the capacity of the composed function space
λ
−1/2
2,j BĤj ◦ 1Aj by means of the entropy number in expectation w.r.t. Pn.

Lemma 26 Let PX be a distribution on X and A,B ⊂ X with A ∩ B = ∅. Moreover,
let HA and HB be RKHSs on A and B that are embedded into L2(PX|A) and L2(PX|B),
respectively. Let the extended RKHSs ĤA and ĤB be defined as in (18) and denote their
direct sum by H as in (19), where the norm is given by (20) with λA, λB > 0. Then, for the
ε-covering number of H w.r.t. ‖ · ‖L2(PX), there holds

N (BH, ‖ · ‖L2(PX), ε) ≤ N
(
λ
−1/2
A BĤA , ‖ · ‖L2(PX|A), εA

)
· N
(
λ
−1/2
B BĤB , ‖ · ‖L2(PX|B), εB

)
,

where εA, εB > 0 and ε := (ε2
A + ε2

B)1/2.

Recall from (37) that πh is defined as the collection of all cells in πH . Therefore, for any
H∼PH , we have Aj∈πh for all j ∈ IH . In what follows, we aim at bounding the complexity
of BH◦1πh , that is, the composed space of the partition space 1πh and RKHS BH.

Lemma 27 Let BH be the unit ball of the RKHS H over X with the Gaussian kernel.
Concerning with the joint space of BH ◦ 1πh, where BH ◦ 1πh = {f ◦ g : f ∈ BH, g ∈ 1πh},
there holds

N (BH ◦ 1πh , ‖ · ‖L2(PX), 2ε) ≤ N (1πh , ‖ · ‖L2(PX), ε) · N (BH, ‖ · ‖L2(PX), ε).

The following proposition gives the upper bound for the localized RKHS Hγ(A) over A
of the Gaussian RBF kernel kγ on A ⊂ Rd defined in (21).

Proposition 28 Let Aj ⊂ X , j ∈ IH be pairwise disjoint partitions induced by the histogram
transform H. For j ∈ IH , let Hj be a separable RKHS of a measurable kernel kγj over Aj
such that ‖kγj‖2L2(PX|Aj ) <∞. Moreover, define the zero-extended RKHSs (Ĥj)j∈IH by (18)

and the joined RKHS H by (19) with the norm (20). Then, there exists constants p ∈ (0, 1)
and a′j such that

ED∼Pnei(λ
−1/2
2,j BĤj ◦ 1Aj , ‖ · ‖L2(PX)) ≤ a′ji

− 1
2p i ≥ 1,

where a′j satisfies(∑
j∈IH

max{a′j , B}
)2p

≤ 22p3 ln(4)42pc2p
p (
√
d · h0)d|IH |1−p

(∑
j∈IH

λ−1
2,jPX(Aj)γ

− d+2p
p

j

)p
+ 22p|IH |2p

2d+6

2pe
+ 22p|IH |2p

(
B

2

)2p

. (61)
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A.3.3 Oracle Inequality for Single KHT

Now we are able to establish an oracle inequality to bound the excess risk for the single
KHT fD,γ,Hn based on the least squares loss and determining rule (22).

Proposition 29 For all j = 1, . . . ,m, let L : X × Y × R → [0,∞) be a locally Lipschitz
continuous loss that can be clipped at M > 0 and satisfies the supremum bound for a B > 0.
Moreover, let H = ⊕mj=1Ĥγj be the direct sum of separable RKHSs of related measurable
kernels kγj over Aj, and P be a distribution on X × Y such that the variance bound is
satisfied for constants ϑ ∈ [0, 1], V ≥ B2−ϑ, and all f ∈ H. Assume that for fixed n ≥ 1
there exist constants p ∈ (0, 1), and a′j ≥ B such that

E
Dj∼P|Dj |

ei(id : Ĥγj → L2(Dj)) ≤ a′ji
− 1

2p i ≥ 1.

Finally, fix an f0 ∈ H and a constant B0 ≥ B such that ‖L ◦ f0‖∞ ≤ B0. Then, for all fixed
τ > 0, the SVM derived by (22) satisfies

λ1(h∗0)q + λ2‖fD,γ‖2H +RL,P(fD,γ)−R∗L,P
≤ 9(λ1h

q
0 + λ2‖f0‖2H +RL,P(f0)−R∗L,P)

+K

((∑m
j=1 a

′
j

)2p
λp2m

p−1n

) 1
2−p−ϑ−ϑp

+ 3

(
72V τ

n

) 1
2−ϑ

+
15B0τ

n

with probability Pn not less than 1− 3e−τ , where K ≥ 1 is a constant only depending on p,
M , B, ϑ and V .

A.4 Proofs

A.4.1 Proofs Related to Section A.1.1

Proof [of Proposition 8] For a fixed h0, we write

fP,H := arg min
f∈FH

RL,P(f)−R∗L,P.

In other words, fP,H is the function that minimizes the excess risk RL,P(f)−R∗L,P over the
function set FH with bin width h ∈ [h0, h0]. Then, elementary calculation yields

fP,H =
∑
j∈IH

∫
Aj

E(Y |X) dPX

PX(Aj)
1Aj =

∑
j∈IH

∫
Aj
f∗L,P dPX

PX(Aj)
1Aj .

The assumption f∗L,P ∈ C0,α implies

RL,P(fP,H)−R∗L,P = ‖fP,H − f∗L,P‖2L2(PX)

=

∥∥∥∥ ∑
j∈IH

∫
Aj
f∗L,P(x′) dPX(x′)

PX(Aj)
1Aj (x)−

∑
j∈IH

f∗L,P(x)1Aj (x)

∥∥∥∥2

L2(PX)

=

∥∥∥∥ ∑
j∈IH

1Aj (x)

PX(Aj)

∫
Aj

f∗L,P(x′)− f∗L,P(x) dPX(x′)

∥∥∥∥2

L2(PX)
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≤
∥∥∥∥ ∑
j∈IH

1Aj (x)

PX(Aj)

∫
Aj

∣∣f∗L,P(x′)− f∗L,P(x)
∣∣ dPX(x′)

∥∥∥∥2

L2(PX)

≤
∥∥∥∥ ∑
j∈IH

1Aj (x)

PX(Aj)

∫
Aj

‖x′ − x‖α dPX(x′)

∥∥∥∥2

L2(PX)

≤
∥∥∥∥ ∑
j∈IH

1Aj (x)

PX(Aj)
(
√
d · h0)αPX(Aj)

∥∥∥∥2

L2(PX)

≤ (
√
d · h0)2α

≤ dαc−2α
0 h2α

0 ,

where the last inequality follows from Assumption 2. Consequently we obtain

λh−2d
0 +RL,P(fP,h)−R∗L,P ≤ λh−2d

0 + dαc−2α
0 h2α

0

≤
(
(h∗0)−2d + dαc−2α

0 (h∗0)2α
)
λ

α
α+d

:= cλ
α
α+d

with h∗0 := (d1−αc2α
0 α)

1
2α+2d , where c = (h∗0)−2d + dαc−2α

0 (h∗0)2α is a constant depending on
c0, d, and α. This proves the desired assertion.

A.4.2 Proofs Related to Section A.1.2

To prove Lemma 10, we need the following fundamental lemma concerning with the VC
dimension of purely random partitions which follows the idea put forward by Bremain (2000)
of the construction of purely random forest. To this end, let p ∈ N be fixed and πp be a
partition of X with number of splits p and π(p) denote the collection of all partitions πp.

Lemma 30 Let Bp be defined by

Bp :=

{
B : B =

⋃
j∈J

Aj , J ⊂ {0, 1, . . . , p}, Aj ∈ πp ⊂ π(p)

}
. (62)

Then the VC dimension of Bp can be upper bounded by dp+ 2.

Proof [of Lemma 30] The proof will be conducted by dint of geometric constructions, and
we proceed by induction.

We begin by observing a partition with number of splits p = 1. On account that the
dimension of the feature space is d, the smallest number of points that cannot be divided
by p = 1 split is d + 2. Specifically, considering the fact that d points can be used to form
d− 1 independent vectors and thus a hyperplane of a d-dimensional space, we now focus on
the case where there is a hyperplane consisting of d points all from the same class labeled
as A, and there are two points from the other class B on either side of the hyperplane. We
denote the hyperplane by HA

1 for brevity. In this case, points from two classes cannot be
separated by one split, i.e., one hyperplane, which means that VC(B(π1)) ≤ d+ 2.
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p = 1 p = 2 p = 2k

Figure 10: We take one case with d = 3 as an example to illustrate the geometric interpretation
of the VC dimension. The yellow balls represent samples from class A, blue ones are
from class B and slices denote the hyperplanes formed by samples.

We next turn to consider the partition with number of splits p = 2, which is an extension
of the above case. Once we pick one point out of the two located on either side of the above
hyperplane HA

1 , a new hyperplane HB
2 parallel to HA

1 can be constructed by combining the
selected point with d− 1 newly-added points from class B. Subsequently, a new point from
class A is added to the side of the newly constructed hyperplane HB

2 . Notice that the newly
added point should be located on the opposite side to HA

1 . Under this situation, p = 2 splits
cannot separate those 2d + 2 points from two different classes. As a result, we prove that
VC(B(π2)) ≤ 2d+ 2.

If we apply induction to the above cases, the analysis of VC index can be extended to
the general case where p ∈ N. What we need to do is to add new points continuously to
form p mutually parallel hyperplanes with any two adjacent hyperplanes being built from
different classes. Without loss of generality, we assume that p = 2k + 1, k ∈ N, and there
are two points denoted by pB1 , pB2 from class B separated by 2k + 1 alternately appearing
hyperplanes. Their locations can be represented by pB1 , HA

1 , H
B
2 , H

A
3 , H

B
4 , . . . ,H

A
(2k+1), p

B
2 .

According to this construction, we demonstrate that the smallest number of points that
cannot be divided by p splits is dp+ 2, which leads to VC(B(πp)) ≤ dp+ 2.

It should be noted that our hyperplanes can be generated both vertically and obliquely,
which is in line with our splitting criteria for random partitions. This completes the proof.

Proof [of Lemma 10] Again, the proof will be conducted by dint of geometric constructions.
Let us choose a data set A ⊂ Rd with #(A) = 2d + 2 and consider firstly the general

case that there exists x ∈ A such that x ∈ C(A \ {x}), that is, x lies in the convex hull of
the set A \ {x}. Then, there exists a set A1 ⊂ (A \ {x}), such that

#(A1) = #(A)− 2 and x ∈ C(A1).

Then, for a fixed B ∈ πh with A1 ⊂ A ∩B, there always holds

A1 ∪ {x} ⊂ A ∩B.

Clearly, there exists no B ∈ πh such that A ∩B = A1. Therefore, πh cannot shatter A.
It remains to consider the case when x 6∈ C(A \ {x}) holds for all x ∈ A. Obviously, the

convex hull of A forms a hyperpolyhedron whose vertices are the points of A. Note that the
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hyperpolyhedron can be regarded as an undirected graph, therefore as usual, we define the
distance d(x1, x2) between a pair of samples x1 and x2 on the graph by the shortest path
between them. Clearly, there exists a starting point x0 ∈ A such that deg(x) = 2d−1. Then,
we construct another data set A2 6= A1 by

A2 = {y : d(x0, y) mod 2 = 1, y ∈ A}.

Again, for a fixed B ∈ πh such that A2 ⊂ A∩B, we deduce that there exists no B ∈ πh, such
that A ∩B = A2. Therefore, πh cannot shatter A as well. By Definition 9, we immediately
obtain

VC(πh) ≤ 2d + 2.

Next, we turn to prove the second assertion. The choice k := b2W
√
d

h0
c + 1 leads to the

partition of BW of the form πk := {Ai1,...,id}ij=1,...,k with

Ai1,...,id :=
d∏
j=1

Aij :=
d∏
j=1

[
−W +

2W (ij − 1)

k
,−W +

2W · ij
k

)
. (63)

Obviously, we have |Aij | ≤
h0√
d
. Let D be a data set with

#(D) = (d(2d − 1) + 2)

(⌊
2W
√
d

h0

⌋
+ 1

)d
.

Then, there exists at least one cell A with

#(D ∩A) ≥ d(2d − 1) + 2. (64)

Moreover, for any x, x′ ∈ A, the construction of the partition (63) implies ‖x − x′‖ ≤ h0.
Consequently, at most one vertex of Aj induced by histogram transform H lies in A, since
the bin width of Aj is larger than h0. Therefore,

Πh|A := {B ∩A : B ∈ Πh}

forms a partition of A with #(Πh|A) ≤ 2d. It is easily seen that this partition can be
generated by 2d − 1 splitting hyperplanes. In this way, Lemma 30 implies that Πh|A can
only shatter a dataset with at most d(2d − 1) + 1 elements. Thus, (64) indicates that Πh|A
fails to shatter D∩A. Accordingly, Πh cannot shatter the data set D as well. By Definition
9, we immediately get

VC(Πh) ≤ (d(2d − 1) + 2)

(⌊
2W
√
d

h0

⌋
+ 1

)d
,

and the assertion is proved.
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Proof [of Lemma 12] The first assertion concerning covering numbers of πh follows directly
from Theorem 9.2 in Kosorok (2008). For the second estimate, we find the upper bound
(39) of VC(Πh) satisfies(

d(2d − 1) + 2
)
(2W
√
d/h0 + 1)d ≤

(
(d+ 1)2d

)
(3W
√
d/h0)d

≤ 2d · 2d(3W
√
d/h0)d

=: (cdW/h0)d,

where the constant cd := 3 · 21+ 1
d · d

1
d

+ 1
2 . Again, Theorem 9.2 in Kosorok (2008) yields the

second assertion, thus completes the proof.

Proof [of Lemma 13] Denote the covering number of 1Πh with respect to L2(PX) as N (ε) :=
N (1Πh , ‖ · ‖L2(PX), ε). Then, there exists B1, . . . , BN (ε) ∈ Πh such that the function set
{1B1 , . . . ,1BN (ε)

} is an ε-net of 1Πh in the sense of L2(PX). That is, for any 1B ∈ 1Πh ,
there exists a j ∈ {1, . . . ,N (ε)} such that ‖1B − 1Bj‖L2(PX) ≤ ε. Now, for all g ∈ FbH , the
equivalent definition (43) implies that g can be written as g = 1B −1Bc = 21B − 1 for some
B ∈ ΠH ∈ Πh. The above discussion yields that there exists a j ∈ {1, . . . ,N (ε)} such that
for gj := 21Bj − 1, there holds

‖g − gj‖L2(PX) = ‖(21B − 1)− (21Bj − 1)‖L2(PX)

= ‖21B − 21Bj‖L2(PX)

= 2‖1B − 1Bj‖L2(PX)

≤ 2ε.

This implies that {g1, . . . , gN (ε)} is a 2ε-net of FbH with respect to ‖ ·‖L2(PX). Consequently,
we obtain

N (FbH , ‖ · ‖L2(PX), ε) ≤ N (1Πh , ‖ · ‖L2(PX), ε/2)

≤ K(cdW/h0 + 1)d(4e)(cdW/h0+1)d(2/ε)2(cdW/h0+1)d−2.

This proves the assertion.

Proof [of Lemma 15] For any hi ∈ Hbr with hi = L ◦ gi − L ◦ f∗L,P, i = 1, 2, there holds

‖h1 − h2‖L2(D) =

(
1

n

n∑
i=1

(h1(xi, yi)− h2(xi, yi))
2

)1/2

= 2

(
1

n

n∑
i=1

(g1(xi)− g2(xi))
2

)1/2

= 2‖g1 − g2‖L2(D).

This together with Lemma 13 yields

N (Hbr, ‖ · ‖L2(D), ε) ≤ N (Fbr , ‖ · ‖L2(D), ε/2)
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≤ N (FbH , ‖ · ‖L2(D), ε/2)

≤ K(cdW/h0 + 1)d(4e)(cdW/h0+1)d(4/ε)2(cdW/h0+1)d−2.

Elementary calculations show that for any ε ∈ (0, 1/max{e,K}), there holds

logN (Hr, ‖ · ‖L2(D), ε)

≤ log
(
K(cdW/h0 + 1)d(4e)(cdW/h0+1)d(4/ε)2(cdW/h0+1)d−2

)
= logK + d log(cdW/h0 + 1) + (cdW/h0 + 1)d log(4e) + 2(cdW/h0 + 1)d log(4/ε)

≤ 11(2cdW/h0)d log(1/ε),

where the last inequality is based on the following basic inequalities:

logK ≤ log(1/ε) ≤ (cdW/h0 + 1)d log(1/ε) ≤ (2cdW/h0)d log(1/ε),

d log(cdW/h0 + 1) ≤ (cdW/h0 + 1)d ≤ (cdW/h0 + 1)d log(1/ε) ≤ (2cdW/h0)d log(1/ε),

(cdW/h0 + 1)d log(4e) ≤ (cdW/h0 + 1)d log(e3) ≤ 3(cdW/h0 + 1)d ≤ 3(2cdW/h0)d log(1/ε),

2(cdW/h0 + 1)d log(4/ε) = 2(cdW/h0 + 1)d(log 4 + log(1/ε)) ≤ 2(2cdW/h0)d(log e2 + log(1/ε))

= 2(2cdW/h0)d(2 + log(1/ε)) ≤ 6(2cdW/h0)d log(1/ε).

Consequently, for all δ ∈ (0, 1), we have

sup
ε∈(0,1/max{e,K})

ε2δ logN (Hr, ‖ · ‖L2(D), ε) ≤ 11(2cdW/h0)d sup
ε∈(0,1)

ε2δ log(1/ε). (65)

Simple analysis shows that the right hand side of (65) is maximized at ε∗ = e−1/(2δ), and
we obtain

logN (Hr, ‖ · ‖L2(D), ε) ≤ 11/(2eδ)(2cdW/h0)dε−2δ.

Next, we shall use r to bound h0 in the space Fbr . For all g ∈ Fbr , there holds

λh−2d
0 ≤ λh−2d

0 +RL,P(g)−R∗L,P ≤ r,

and consequently we have

h−1
0 ≤ (r/λ)1/(2d).

Then Exercise 6.8 in Steinwart and Christmann (2008) implies that the entropy number of
Hbr with respect to L2(D) satisfies

ei(Hbr, ‖ · ‖L2(D)) ≤
(
33/(2eδ)(2cdW/h0)d

) 1
2δ i−

1
2δ ≤

(
33/(2eδ)(2cdW (r/λ)

1
2d )d

) 1
2δ i−

1
2δ .

Taking expectation on both sides of the above inequality, we get

ED∼Pei(Hbr, ‖ · ‖L2(D)) ≤
(
33/(2eδ)(2cdW (r/λ)

1
2d )d

) 1
2δ i−

1
2δ .

Therefore, we finished the proof.
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Proof [of Lemma 17] First of all, we notice that for all h ∈ Hbr, there holds

‖h‖∞ ≤ 4 =: B1, EPh
2 ≤ 16r =: σ2.

Then a := ( 33
2eδ (2cdW ( rλ)1/2)d)

1
2δ ≥ B1 in Lemma 15 together with Theorem 7.16 in Stein-

wart and Christmann (2008) yields that there exist constants c1(δ) > 0 and c2(δ) > 0
depending only on δ such that

ED∼PRadD(Hbr, n) ≤ max
{
c1(δ)

(
33/(2eδ)(2cdW (r/λ)

1
2d )d

) 1
2 (16r)

1−δ
2 n−

1
2 ,

c2(δ)
(
33/(2eδ)(2cdW (r/λ)

1
2d )d

) 1
1+δ 4

1−δ
1+δ n−

1
1+δ

}
= max

{
c′1(δ)λ−

1
4 r

3−2δ
4 n−

1
2 , c′2(δ)λ

− 1
2(1+δ) r

1
2(1+δ)n−

1
1+δ

}
,

where the constants are

c′1(δ) := c1(δ)(33/(2eδ)
1
2 16

1−δ
2 (2cdW )

d
2 ,

c′2(δ) := c2(δ)(33/(2eδ)
1

1+δ 4
1−δ
1+δ (2cdW )

d
1+δ .

Consequently we obtain

ED∼PRadD(Hr, n) ≤MED∼PRadD(Hbr, n)

≤ max
{
c′′1(δ)λ−

1
4 r

3−2δ
4 n−

1
2 , c′′2(δ)λ

− 1
2(1+δ) r

1
2(1+δ)n−

1
1+δ
}
,

where c′′1(δ) := Mc′1(δ) and c′′2(δ) := Mc′2(δ). This proves the assertion.

A.4.3 Proofs Related to Section A.1.3

Proof [of Theorem 18] For the least square loss L, the supremum bound

L(x, y, t) ≤ 4M2 =: B, ∀(x, y) ∈ X × Y, t ∈ [−M,M ]

and the variance bound

E(L ◦ g − L ◦ f∗L,P)2 ≤ V (E(L ◦ g − L ◦ f∗L,P))ϑ

holds for V = 16M2 and ϑ = 1. Moreover, Lemma 17 implies that the expected empirical
Rademacher average of Hr can be bounded by the function ϕn(r) as

ϕn(r) := max
{
c′′1(δ)λ−

1
4 r

3−2δ
4 n−

1
2 , c′′2(δ)λ

− 1
2(1+δ) r

1
2(1+δ)n−

1
1+δ
}
,

where c′′1(δ) and c′′2(δ) are some constants depending on δ. Simple algebra shows that the
condition ϕn(4r)≤ 2

√
2ϕn(r) is satisfied. Since 2

√
2< 4, similar arguments show that the

statements of the Peeling Theorem 7.7 in Steinwart and Christmann (2008) still hold. There-
fore, Theorem 7.20 in Steinwart and Christmann (2008) can also be applied, if the assump-
tions on ϕn and r are modified to ϕn(4r)≤2

√
2ϕn(r) and r≥max{75ϕn(r), 1152M2τ/n, r∗},
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respectively. Some elementary calculations show that the condition r>75ϕn(r) is satisfied
if

r ≥ max
{

(75c′′1(δ)λ−
1
4n−

1
2 )

4
1+2δ , (75c′′2(δ)λ

− 1
2(1+δ)n−

1
1+δ )

2(1+δ)
1+2δ

}
= max

{
(75c′′1(δ))

4
1+2δ , (75c′′2(δ))

2(1+δ)
1+2δ

}
· λ−

1
1+2δn−

2
1+2δ ,

which yields the assertion.

A.4.4 Proofs Related to Section 3.2

Proof [of Theorem 2] Theorem 18 and Proposition 8 imply that with probability νn at least
1− 3e−τ , there holds

λh−2d
0,n +RL,P(fD,Hn)−R∗L,P ≤ 9cλ

α
α+d + 3cδλ

− 1
1+2δn−

2
1+2δ + 3456M2τ/n, (66)

where c and cδ are the constants defined as in Proposition 8 and Theorem 18, respectively.
Minimizing the right hand side of (66) with respect to λ, by choosing

λ := n
− 2(α+d)
d+2α(1+δ) ,

we get

λh−2d
0,n +RL,P(fD,Hn)−R∗L,P ≤ cn

− 2α
d+2α(1+δ) ,

where c is some constant depending on c0, δ, d, M , and W . Moreover, there holds

n
− 2α
d+2α(1+δ) = n

− 2α
d+2α

· d+2α
d+2α(1+δ) = n

− 2α
d+2α

·(1− 2αδ
d+2α(1+δ)

)
= n−

2α
d+2α

+ξ

where ξ := 4α2δ
(d+2α)(d+2α(1+δ)) > 0 can be arbitrarily small. Thus, the assertion is proved.

Proof [of Theorem 3] According to Jensen’s inequality, there holds( T∑
t=1

fD,Ht − f∗L,P
)2

≤ T
T∑
t=1

(fD,Ht − f∗L,P)2,

and consequently we have

RL,P(fD,T )−R∗L,P =

∫
X

(
1

T

T∑
t=1

fD,Ht − f∗L,P
)2

dPX

≤ 1

T

T∑
t=1

∫
X

(fD,Ht − f∗L,P)2 dPX

=
1

T

T∑
t=1

(RL,P(fD,Ht)−R∗L,P).
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Then, the union bound together with Theorem 2 implies

νn

(
RL,P(fD,T )−R∗L,P ≤ cn

− 2α
2α+d

+ξ
)

≥ 1−
T∑
t=1

P⊗ PH

(
RL,P(fD,Ht)−R∗L,P > cn−

2α
2α+d

+ξ
)

≥ 1− 3Te−τ .

As a result, we obtain

RL,P(fD,T )−R∗L,P ≤ cn
− 2α

2α+d
+ξ

with probability νn at least 1 − 3e−τ , where c is some constant depending on c0, δ, d, M ,
W , and T .

The following Lemma presents the explicit representation of AH(x), which will play a
key role later in the proofs of subsequent sections.

Lemma 31 Let the histogram transform H be defined as in (7) and A′H , AH be as in (9)
and (10) respectively. Then for any x ∈ Rd, the set AH(x) can be represented as

AH(x) =
{
x+ (R · S)−1z : z ∈ [−b′, 1− b′]

}
,

where b′ ∼ Unif(0, 1)d.

Proof [of lemma 31] For any x ∈ Rd, we define b′ := H(x)− bH(x)c ∈ Rd. Then, we have
b′ ∼ Unif(0, 1)d according to the definition of H. For any x′ ∈ A′H(x), we define

z := H(x′)−H(x) = (R · S)(x′ − x).

Then, we have

x′ = x+ (R · S)−1z.

Moreover, since bH(x′)c = bH(x)c, we have z ∈ [−b′, 1− b′].

A.4.5 Proofs Related to Section A.2.1

Proof [of Proposition 19] According to the generation process, the histogram transforms
{Ht}Tt=1 are independent and identically distributed. Therefore, for any x ∈ BW , the ex-
pected approximation error term can be decomposed as follows:

EPH

(
f∗P,E(x)− f∗L,P(x)

)2
= EPH

(
(f∗P,E(x)− EPH (f∗P,E(x))) + (EPH (f∗P,E(x))− f∗L,P(x))

)2
= Var(f∗P,E(x)) + (EPH (f∗P,E(x))− f∗L,P(x))2
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=
1

T
·VarPH (f∗P,H1

(x)) +
(
EPH (f∗P,H1

(x))− f∗L,P(x)
)2
. (67)

In the following, for the simplicity of notations, we drop the subscript of H1 and write H
instead of H1 when there is no confusion.

For the first term in (67), the assumption f∗L,P ∈ C1,α implies

VarPH

(
f∗P,H(x)

)
= EPH (f∗P,H(x)− EPH (f∗P,H(x)))2

≤ EPH

(
f∗P,H(x)− f∗L,P(x)

)2
= EPH

(∫
AH(x) f

∗
L,P(x′) dx′

µ(AH(x))
− f∗L,P(x)

)2

= EPH

(∫
AH(x) f

∗
L,P(x′)− f∗L,P(x) dx′

µ(AH(x))

)2

≤ EPH

(
cLdiam

(
AH(x)

))2
≤ c2

Ldh
2
0. (68)

We now consider the second term in (67). Lemma 31 implies that for any x′ ∈ AH(x),
there exist a random vector u ∼ Unif[0, 1]d and a vector v ∈ [0, 1]d such that

x′ = x+ S−1R>(−u+ v). (69)

Therefore, we have

dx′ = det

(
dx′

dv

)
dv = det

(
d(x+ S−1R>(−u+ v))

dv

)
dv

= det(RS−1)dv =

( d∏
i=1

hi

)
dv. (70)

Taking the first-order Taylor expansion of f∗L,P(x′) at x, we get

f∗L,P(x′)− f∗L,P(x) =

∫ 1

0

(
∇f∗L,P(x+ t(x′ − x))

)>
(x′ − x) dt. (71)

Moreover, we obviously have

∇f∗L,P(x)>(x′ − x) =

∫ 1

0
∇f∗L,P(x)>(x′ − x) dt. (72)

Thus, (71) and (72) imply that for any f∗L,P ∈ C1,α, there holds∣∣f∗L,P(x′)− f∗L,P(x)−∇f∗L,P(x)>(x′ − x)
∣∣

=

∣∣∣∣∫ 1

0

(
∇f∗L,P(x+ t(x′ − x))−∇f∗L,P(x)

)>
(x′ − x) dt

∣∣∣∣
≤
∫ 1

0
cL(t‖x′ − x‖2)α‖x′ − x‖2 dt
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≤ cL‖x′ − x‖1+α.

This together with (69) yields∣∣f∗L,P(x′)− f∗L,P(x)−∇f∗L,P(x)>S−1R>(−u+ v)
∣∣ ≤ cLh1+α

0

and consequently there exists a constant cα ∈ [−cL, cL] such that

f∗L,P(x′)− f∗L,P(x) = ∇f∗L,P(x)>S−1R>(−u+ v) + cαh
1+α
0 . (73)

Therefore, there holds

f∗P,H(x) =
1

PX(AH(x))

∫
AH(x)

f∗L,P(x′) dx′ =
1

µ(AH(x))

∫
AH(x)

f∗L,P(x′) dx′.

This together with (73) and (70) yields

f∗P,H(x)− f∗L,P(x) =
1

µ(AH(x))

∫
AH(x)

f∗L,P(x′) dx′ − f∗L,P(x)

=
1

µ(AH(x))

∫
AH(x)

(
f∗L,P(x′)− f∗L,P(x)

)
dx′

=

∏d
i=1 hi

µ(AH(x))

∫
[0,1]d

(
∇f∗L,P(x)>S−1R>(−u+ v) + cαh

1+α
0

)
dv

=

(∫
[0,1]d

(−u+ v)> dv

)
RS−1∇f∗L,P(x) + cαh

1+α
0

=

(
1

2
− u
)>

RS−1∇f∗L,P(x) + cαh
1+α
0 . (74)

Since the random variables (ui)
d
i=1 are independent and identically distributed as Unif[0, 1],

we have

EPH

(
1

2
− ui

)
= 0, i = 1, . . . , d. (75)

Combining (74) with (75), we obtain

EPH (f∗P,H(x)− f∗L,P(x)) = 0 + cαh
1+α
0 = cαh

1+α
0 . (76)

and consequently (
EPH (f∗P,H1

(x))− f∗L,P(x)
)2 ≤ c2

Lh
2(1+α)
0 . (77)

Combining (67) with (77) and (68), we obtain

EPH

(
f∗P,E(x)− f∗L,P(x)

)2 ≤ c2
Lh

2(1+α)
0 +

1

T
· dc2

Lh
2
0,

which completes the proof.
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A.4.6 Proofs Related to Section A.2.2

Proof [of Lemma 20] The choice k := b2W
√
d

h0
c+ 1 leads to the partition of BW of the form

πk := {Ai1,...,id}ij=1,...,k with

Ai1,...,id :=
d∏
j=1

Aij :=
d∏
j=1

[
−W +

2W (ij − 1)

k
,−W +

2W · ij
k

)
. (78)

Obviously, we have |Aij | ≤
h0√
d
. Let D be a data set of the form

D := {(xi, ti) : xi ∈ BW , ti ∈ [−M,M ], i = 1, · · · ,#(D)}

and

#(D) =
(
2(d+ 1)(2d − 1) + 2)

(⌊
2W
√
d

h0

⌋
+ 1

)d
.

Then there exists at least one cell A with

#(D ∩ (A× [−M,M ])) ≥ 2(d+ 1)(2d − 1) + 2. (79)

Moreover, for any x, x′ ∈ A, the construction of the partition (78) implies ‖x − x′‖ ≤ h0.
Consequently, at most one vertex of Aj induced by histogram transform H lies in A, since
the bin width of Aj is larger than h0. The VC dimension of FH represents the largest
number of points can be shattered by{

{(x, t) : t ≤ f(x)}, f ∈ FH
}
,

which is the subset of the collection

Π′h :=

{ ⋃
j∈IH

{(x, t) : x ∈ Aj , aj(cj − t) ≤ 0} : (aj)j∈IH ∈ {−1, 1}IH , πH ∈ Πh

}
.

Obviously, the restriction of Π′h on the set A× [−M,M ], that is,

Π′h|A×[−M,M ] := {B ∩ (A× [−M,M ]) : B ∈ Π′h}

forms a partition of A×[−M,M ] with cardinality #(Π′h|A×[−M,M ]) ≤ 2d+1, which can be gen-
erated by 2(2d − 1) splitting hyperplanes. In this way, Lemma 30 implies that Πh|A×[−M,M ]

can only shatter a dataset with at most 2(d+ 1)(2d − 1) + 1 elements.
However, (64) indicates that D∩(A× [−M,M ]) has at least 2(d+1)(2d−1)+2 elements

and consequently Π′h|A×[−M,M ] fails to shatter D ∩ (A× [−M,M ]). Therefore, the data set
D cannot be shattered by Π′h. By Definition 9, we then have

VC(Π′h) ≤ (2(d+ 1)(2d − 1) + 2)

(⌊
2W
√
d

h0

⌋
+ 1

)d
and thus the first assertion is proved.
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For the second assertion, we find

(2(d+ 1)(2d − 1) + 2)

(⌊
2W
√
d

h0

⌋
+ 1

)d
≤
(
2(d+ 1)(2d − 1) + 2

)
(2W
√
d/h0 + 1)d

≤
(
(d+ 1)2d+1

)
(3W
√
d/h0)d

≤ 2d · 2d+1(3W
√
d/h0)d

=: 2(cdW/h0)d,

where the constant cd := 3 · 21+ 1
d · d

1
d

+ 1
2 . Then, Theorem 2.6.7 in Quessy and Bahraoui

(2014) yields

N (FH , L2(Q),Mε) ≤ 2K(cdW/h0)d(16e)2(cdW/h0)d(1/ε)4(cdW/h0)d ,

which proves the second assertion and thus completes the proof.

The following lemma follows directly from Theorem 2.6.9 in Quessy and Bahraoui (2014).
For the sake of completeness, we present the proof.

Lemma 32 Let Q be a probability measure on X and

F :=
{
f : X → R : f ∈ [−M,M ] and ‖f‖L2(Q) <∞

}
.

Assume that for some fixed ε > 0 and v > 0, the covering number of F satisfies

N (F , L2(Q),Mε) ≤ c(1/ε)v. (80)

Then there exists a universal constant c such that

logN (Co(F), L2(Q),Mε) ≤ c′ c−2/(v+2)ε−2v/(v+2).

Proof [of Lemma 32] Let Fε be an ε-net over F . Then, for any f ∈ Co(F), there exists
an fε ∈ Co(Fε) such that ‖f − fε‖L2(Q) ≤ ε. Therefore, we can assume without loss of
generality that F is finite.

Obviously, (80) holds for 1 ≤ ε ≤ c1/v. Let v′ := 1/2 + 1/v and M ′ := c1/vM . Then
(80) implies that for any n ∈ N, there exists f1, . . . , fn ∈ F such that for any f ∈ F , there
exists an fi such that

‖f − fi‖L2(Q) ≤M ′n−1/v.

Therefore, for each n ∈ N, we can find sets F1 ⊂ F2 ⊂ · · · ⊂ F such that the set Fn is a
M ′n−1/v-net over F and #(Fn) ≤ n.

In the following, we show by induction that for q ≥ 3 + v, there holds

logN
(
Co(Fnkq), L2(Q), ckM

′n−v
′) ≤ c′kn, n, k ≥ 1, (81)

where ck and c′k are constants depending only on c and v such that supk max{ck, c′k} <∞.
The proof of (81) will be conducted by a nested induction argument.
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Let us first consider the case k = 1. For a fixed n0, let n ≤ n0. Then for c1 satisfying
c1M

′n−v
′

0 ≥M , there holds

logN
(
Co(Fnkq), L2(Q), ckM

′n−v
′)

= 0,

which immediately implies (81). For a general n ∈ N, let m := n/` for large enough ` to be
chosen later. Then for any f ∈ Fn \ Fm, there exists an f (m) ∈ Fm such that

‖f − f (m)‖L2(Q) ≤M ′m−1/v.

Let πm : Fn \ Fm → Fm be the projection operator. Then for any f ∈ Fn \ Fm, there holds

‖f − πmf‖L2(Q) ≤M ′m−1/v

and consequently for λi, µj ≥ 0 and
∑n

i=1 λi =
∑m

j=1 µj = 1, we have

n∑
i=1

λif
(n)
i =

m∑
j=1

µjf
(m)
j +

n∑
k=m+1

λk
(
f

(n)
k − πmf (n)

k

)
.

Let Gn be the set

Gn := {0} ∪ {f − πmf : f ∈ Fn \ Fm}.

Then we have #(Gn) ≤ n and for any g ∈ Gn, there holds

‖g‖L2(Q) ≤M ′m−1/v.

Moreover, we have

Co(Fn) ⊂ Co(Fm) + Co(Gn). (82)

Applying Lemma 2.6.11 in Quessy and Bahraoui (2014) with ε := 1
2c1m

1/vn−v
′ to Gn,

we can find a 1
2c1M

′n−v
′-net over Co(Gn) consisting of at most

(e+ enε2)2/ε2 ≤
(
e+

ec2
1

`2/v

)8`2/vc−2
1 n

(83)

elements.
Suppose that (81) holds for k = 1 and n = m. In other words, there exists a c1M

′m−v
′-

net over Co(Fm) consisting of at most em elements, which partitions Co(Fm) into m-
dimensional cells of diameter at most 2c1M

′m−v
′ . Each of these cells can be isometrically

identified with a subset of a ball of radius c1M
′m−v

′ in Rm and can be therefore further
partitioned into (

3c1M
′m−v

′

1
2c1M ′n−v

′

)m
= (6`v

′
)n/`
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cells of diameter 1
2c1M

′n−v
′ . As a result, we get a 1

2c1M
′n−v

′-net of Co(Fm) containing at
most

em · (6`v′)n/` (84)

elements.
Now, (82) together with (83) and (84) yields that there exists a c1M

′n−v
′-net of Co(Fn)

whose cardinality can be bounded by

en/`
(
6`v
′)n/`(

e+
ec2

1

`2/v

)8`2/vc−2
1 n

≤ en,

for suitable choices of c1 and ` depending only on v. This concludes the proof of (81) for
k = 1 and every n ∈ N.

Let us consider a general k ∈ N. Similarly as above, there holds

Co(Fnkq) ⊂ Co(Fn(k−1)q) + Co(Gn,k), (85)

where the set Gn,k contains at most nkq elements with norm smaller thanM ′(n(k−1)q)−1/v.
Applying Lemma 2.6.11 in Quessy and Bahraoui (2014) to Gn,k, we can find an M ′k−2n−v

′-
net over Co(Gn,k) consisting of at most(

e+ ek2q/v−4+q
)22q/v+1k4−2q/vn (86)

elements. Moreover, by the induction hypothesis, we have a ck−1M
′n−v

′-net over Co(Fn(k−1)q)
consisting of at most

ec
′
k−1n (87)

elements. Using (85), (86), and (87), we obtain a ckM ′n−v
′-net over Co(Fnkq) consisting of

at most ec′kn elements, where

ck = ck−1 +
1

k2
,

c′k = c′k−1 + 22q/v+1 1 + log(1 + k2q/v−4+q)

k2q/v−4
.

Form the elementary analysis we know that if 2q/v − 5 = 2, then there exist constants c′′1,
c′′2, and c′′3 such that

lim
k→∞

ck = c−1/vn
(v+2)/2v
0 +

∞∑
i=2

1/i2 ≤ c′′1c−1/v + c′′2,

lim
k→∞

c′k = 1 + c
∞∑
i=1

2(2/i)2q/vi5 ≤ c′′3.

Thus (81) is proved. Taking ε := ckM
′n−v

′
/M in (81), we get

logN (Co(Fnkq), L2(Q),Mε) ≤ c′kc
1/v′

k (M ′)1/v′M−1/v′ε−1/v′ .
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This together with (M ′)1/v′ = c2v/(v+2)M ≤ c2M yields

logN (Co(F), L2(Q),Mε) ≤ c′c−2/(v+2)ε−2v/(v+2),

where the constant c′ depends on the constants c′′1, c′′2 and c′′3. This completes the proof.

Proof [of Lemma 21] Lemma 20 tells us that for any probability measure Q, there holds

N (FH , L2(Q),Mε) ≤ 2K(cdW/h0)d(16e)2(cdW/h0)d(1/ε)4(cdW/h0)d .

Consequently, for any ε ∈ (0, 1/max{e, 2K}), we have

logN (FH , ‖ · ‖L2(D),Mε)

≤ log
(

2K(cdW/h0)d(16e)2(cdW/h0)d(1/ε)4(cdW/h0)d
)

= log 2K + d log(cdW/h0) + 2(cdW/h0)d log(16e) + 4(cdW/h0)d log(1/ε)

≤ 16(cdW/h0)d log(1/ε),

where the last inequality is based on the following basic inequalities:

log 2K ≤ log(1/ε) ≤ (cdW/h0)d log(1/ε),

d log(cdW/h0) ≤ (cdW/h0)d ≤ (cdW/h0)d log(1/ε),

(cdW/h0)d log(16e) ≤ (cdW/h0)d log(e5) ≤ 5(cdW/h0)d ≤ 5(cdW/h0)d log(1/ε).

Consequently, for all δ ∈ (0, 1), we have

N (FH , ‖ · ‖L2(D), ε) ≤ (1/ε)16(cdW/h0)d . (88)

Applying Lemma 32 with v = VC(Co(FH)), we then have

logN
(
Co(FH), L2(Q),Mε

)
≤ K(1/ε)2v/(v+2)

≤ K(1/ε)2−4/(16(cdW/h0)d+2)

= K(1/ε)2−1/(4(cdW/h0)d+1), (89)

which proves the assertion.

Proof [of Proposition 22] Denote

r∗c := inf
f∈Co(FH)

λh−2d
0 +RL,P(f)−R∗L,P,

and for r > r∗c , we write

Fcr := {f ∈ Co(FH) : λh−2d
0 +RL,P(f)−R∗L,P ≤ r},

Hcr := {L ◦ f − L ◦ f∗L,P : f ∈ Fcr}.
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Let δ := 1/(8(cdR/h0)d + 1), δ′ := 1− δ, and a := K1/(2δ′)M . Then (89) implies

logN (Hcr, L2(Q), ε) ≤ logN (Co(FH), L2(Q), ε)

≤ K
(
M/ε)2−1/(4(cdR/h0)d+1) = (a/ε)2δ′ .

This together with (46) yields

ei(Hcr, ‖ · ‖L2(Q)) ≤ 31/(2δ′)ai−1/(2δ′) = (3K)1/(2δ′)Mi−1/(2δ′).

Taking expectation with respect to Pn, we get

ED∼Pnei(Hcr, ‖ · ‖L2(Q)) ≤ (3K)1/(2δ′)Mi−1/(2δ′). (90)

From the definition of Fcr we easily find

λh−2d
0 ≤ λh−2d

0 +RL,P(g)−R∗L,P ≤ r,

which yields

h−1
0 ≤ (r/λ)1/(2d).

Therefore, if h0 ≤ 1, then we have r/λ ≥ 1 and (90) can be further estimated by

ED∼Pnei(Hcr, ‖ · ‖L2(Q)) ≤ (3K)1/(2δ′)Mi−1/(2δ′)

≤ (3K)1/(2δ′)M(r/λ)1/(4δ′)i−1/(2δ′).

From the definition of Hcr we easily see that for all h ∈ Hcr, there holds

‖h‖∞ ≤ 4 =: B1, EPh
2 ≤ 16r =: σ2.

Then Theorem 7.16 in Steinwart and Christmann (2008) with a := (3K)1/(2δ′)M(r/λ)1/(4δ′) ≥
B1 yields that there exist constants c1(δ) > 0 and c2(δ) > 0 depending only on δ such that

ED∼PnRadD(Hcr, n) ≤ max
{
c1(δ)(3K)1/2M δ′r1/4λ−1/4(16r)

1−δ′
2 n−

1
2 ,

c2(δ)(3K)
1

1+δ′M
2δ′
1+δ′ r

1
2(1+δ′)λ

− 1
2(1+δ′) 4

1−δ′
1+δ′ n

− 1
1+δ′
}

= max
{
c′1(δ)λ−

1
4n−

1
2 · r

3−2δ′
4 , c′2(δ)λ

− 1
2(1+δ′)n

− 1
1+δ′ · r

1
2(1+δ′)

}
:= ϕn(r)

with the constants c′1(δ) := c1(δ)(3K)1/2M δ′16
1−δ′

2 and c′2(δ) := c2(δ)(3K)
1

1+δ′M
2δ′
1+δ′ 4

1−δ′
1+δ′ .

Simple algebra shows that the condition ϕn(4r) ≤ 2
√

2ϕn(r) is satisfied. Since 2
√

2 < 4,
similar arguments show that the statements of the peeling Theorem 7.7 in Steinwart and
Christmann (2008) still hold. Therefore, Theorem 7.20 in Steinwart and Christmann (2008)
can be applied, if the assumptions on ϕn and r are modified to ϕn(4r) ≤ 2

√
2ϕn(r) and

r ≥ max{75ϕn(r), 1152M2τ/n, r∗}, respectively. Some elementary calculations show that
the condition r ≥ 75ϕn(r) is satisfied if

r ≥ max

{
(75c′1(δ)λ−1/4n−

1
2 )

4
1+2δ′ , (75c′2(δ)λ

− 1
2(1+δ′)n

− 1
1+δ′ )

2(1+δ′)
1+2δ′

}
= max

{
(75c′1(δ))

4
1+2δ′ , (75c′2(δ))

2(1+δ′)
1+2δ′

}
λ
− 1

1+2δ′ n
− 2

1+2δ′ ,

which yields the assertion.
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A.4.7 Proofs Related to Section A.2.4

Proof [of Proposition 23] Recall that the regression model is defined as Y = f(X) + ε.
Considering the case when X follows the uniform distribution, for any x = (x1, . . . , xd) ∈ X ,
we have

f∗P,H(x) =
1

PX(AH(x))

∫
AH(x)

f(x′) dx′ =
1

µ(AH(x))

∫
AH(x)

f(x′) dx′.

Then we get

(f∗P,H(x)− f(x))2 =

(
f(x)− 1

µ(AH(x))

∫
AH(x)

f(x′) dx′
)2

=
1

µ(AH(x))2

(∫
AH(x)

f(x′)− f(x) dx′
)2

.

Lemma 31 implies that for any x′ ∈ AH(x), there exist a random vector u ∼ Unif[0, 1]d and
a vector v ∈ [0, 1]d such that

x′ = x+ S−1R>(−u+ v). (91)

Therefore, we have

dx′ = det

(
dx′

dv

)
dv = det

(
d(x+ S−1R>(−u+ v))

dv

)
dv

= det(RS−1)dv =

( d∏
i=1

hi

)
dv. (92)

Moreover, (73) yields that there exists a constant cα ∈ [−cL, cL] such that

f(x′)− f(x) = ∇f(x)>S−1R>(−u+ v) + cαh
1+α
0 . (93)

Taking expectation with regard to PH and PX , we get

EPX (f∗P,H(X)− f(X))2

≥ EPX (f∗P,H(X)− f∗L,P(X))21B+

R,
√
d·h0

(X)

=

∫
B+

R,
√
d·h0

(f∗P,H(x)− f∗L,P(x))2 dPX

=

∫
B+

R,
√
d·h0

1

µ(AH(x))2

(∫
AH(x)

∇f(x)>S−1R>(−u+ v) + cαh
1+α
0 dy

)2

dPX

=

∫
B+

R,
√
d·h0

(
∏d
i=1 hi)

2

µ(AH(x))2

(∫
[0,1]d

(−u+ v)T dvRS−1∇f(x) + cαh
1+α
0

)2

dPX

=

∫
B+

R,
√
d·h0

((
1

2
− u
)T

RS−1∇f(x) + cαh
1+α
0

)2

dPX
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=

∫
B+

R,
√
d·h0

( d∑
i=1

(
1

2
− ui

) d∑
j=1

Rijhj
∂f

∂xj
+ cαh

1+α
0

)2

dPX . (94)

Since the random variables (ui)
d
i=1 are independent and identically distributed as Unif[0, 1],

we have

EPH

(
1

2
− ui

)
= 0, i = 1, . . . , d, (95)

and

EPH

(
1

2
− ui

)2

=
1

12
, i = 1, . . . , d. (96)

Therefore, we have

EPH

∫
B+

R,
√
d·h0

( d∑
i=1

(
1

2
− ui

) d∑
j=1

Rijhj
∂f

∂xj
+ cαh

1+α
0

)2

dPX

=

∫
B+

R,
√
d·h0

EPH

d∑
i=1

(
1

2
− ui

)2( d∑
j=1

Rijhj
∂f

∂xj

)2

dPX .

Moreover, the orthogonality (3) of the rotation matrix R tells us that

d∑
i=1

RijRik =

{
1, if j = k,

0, if j 6= k
(97)

and consequently we have

d∑
i=1

∑
j 6=k

RijRikhjhk ·
∂f(x)

∂xj
· ∂f(x)

∂xk
=
∑
j 6=k

hjhk ·
∂f(x)

∂xj
· ∂f(x)

∂xk

d∑
i=1

RijRik = 0. (98)

For any n > N ′, we have

(W − 2
√
d · h0)d ≥ (W/2)d.

Consequently, (97) and (98) imply that∫
B+

W,
√
d·h0

EPH

d∑
i=1

(
1

2
− ui

)2( d∑
j=1

Rijhj
∂f

∂xj

)2

dPX

=

∫
B+

W,
√
d·h0

d∑
i=1

1

12
EPR

d∑
j=1

R2
ijh

2
j

(
∂f

∂xj

)2

dPX

≥
∫
B+

W,
√
d·h0
∩Af

1

12
h2

0c
2
f dPX ≥

1

12

(
W

2

)d
c2

0PX(Af )c2
f · h

2
0. (99)

Thus, the assertion is proved.
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A.4.8 Proofs Related to Section A.2.5

Proof [of Proposition 24] For any fixed j ∈ IH , we define the random variable Zj by

Zj :=
n∑
i=1

1Aj (Xi).

Since the random variables {1Aj (Xi)}ni=1 are i.i.d. Bernoulli distributed with parameter
P(X ∈ Aj), elementary probability theory implies that the random variable Zj is Binomial
distributed with parameters n and P(X ∈ Aj). Therefore, for any j ∈ IH , we have

E(Zj) = n · P(X ∈ Aj).

Moreover, the single NHT regressor fD,H can be defined by

fD,H(x) =


∑n

i=1 Yi1Aj (Xi)∑n
i=1 1Aj (Xi)

1Aj (x) if Zj > 0,

0 if Zj = 0.

By the law of total probability, we get

EPX

(
fD,H(X)− f∗P,H(X)

)2
=
∑
j∈IH

EPX

((
fD,H(X)− f∗P,H(X)

)2∣∣X ∈ Aj) · P(X ∈ Aj)

=
∑
j∈IH

EPX

((
fD,H(X)− f∗P,H(X)

)2∣∣X ∈ Aj , Zj > 0
)
· P(Zj > 0) · P(X ∈ Aj) (100)

+
∑
j∈IH

EPX

((
fD,H(X)− f∗P,H(X)

)2∣∣X ∈ Aj , Zj = 0
)
· P(Zj = 0) · P(X ∈ Aj). (101)

For the term (100), we have∑
j∈IH

EPX ((fD,H(X)− f∗P,H(X))2|X ∈ Aj , Zj > 0)P(Zj > 0)P(X ∈ Aj)

=
∑
j∈IH

(∑n
i=1 Yi1Aj (Xi)∑n
i=1 1Aj (Xi)

− E(f∗L,P(X)|X ∈ Aj)
)2

P(Zj > 0)P(X ∈ Aj)

=
∑
j∈IH

P(X ∈ Aj)
(
∑n

i=1 1Aj (Xi))2

( n∑
i=1

1Aj (Xi)(Yi − E(f∗L,P(X)|X ∈ Aj))
)2

P(Zj > 0),

which yields that for a fixed j ∈ IH , there holds

E
(∑
j∈IH

P(X ∈ Aj)
(
∑n

i=1 1Aj (Xi))2

( n∑
i=1

1Aj (Xi)
(
Yi − E(f∗L,P(X)|X ∈ Aj)

))2∣∣∣∣Xi ∈ Aj
)

=
∑
j∈IH

P(X ∈ Aj)
(
∑n

i=1 1Aj (Xi))2

n∑
i=1

12
Aj (Xi)E

((
Y − f∗P,H(X)

)2∣∣X ∈ Aj)
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=
∑
j∈IH

P(X ∈ Aj)∑n
i=1 1Aj (Xi)

E
((
Y − f∗P,H(X))2

∣∣X ∈ Aj). (102)

Obviously, for any fixed j ∈ IH , there holds

E(f∗P,H(X)|X ∈ Aj) = E(f∗L,P(X)|X ∈ Aj)

and consequently we obtain

E((Y − f∗P,H(X))2|X ∈ Aj)
= E((Y − f∗L,P(X))2|X ∈ Aj) + E((f∗L,P(X)− f∗P,H(X))2|X ∈ Aj)
= σ2 + E((f∗L,P(X)− f∗P,H(X))2|X ∈ Aj).

Taking expectation over both sides of (102) with respect to Pn, we get

ED∼PnEPX

(
fD,H(X)− f∗P,H(X))2 · P(Zj > 0)

= ED∼Pn
(
E
(
EPX

(
fD,H(X)− f∗P,H(X))2

∣∣Xi ∈ Aj
))
· P(Zj > 0)

=
(
σ2 + E(f∗L,P(X)− f∗P,H(X))2

)
·
∑
j∈IH

(
P(X ∈ Aj)ED∼Pn

(( n∑
i=1

1Aj (Xi)

)−1∣∣∣∣Zj > 0

))
P(Zj > 0)

=
(
σ2 + E(f∗L,P(X)− f∗P,H(X))2

)
·
∑
j∈IH

(
n−1 · n · P(X ∈ Aj)ED∼Pn(Z−1

j |Zj > 0)
)
P(Zj > 0)

= n−1
(
σ2 + E(f∗L,P(X)− f∗P,H(X))2

)
·
∑
j∈IH

(
E(Zj) · E(Z−1

j |Zj > 0)
)
P(Zj > 0).

Clearly, x−1 is convex for x > 0. Therefore, by Jensen’s inequality, we have

E(Zj) · E(Z−1
j |Z > 0)P(Zj > 0) ≥ E(Zj) · E(Zj |Zj > 0)−1P(Zj > 0)

= E(Z) · E(Z1{Z>0})
−1P(Z > 0)P(Z > 0)

= P(Z > 0)2 = (1− P(Z = 0))2

= (1− (1− P(X ∈ Aj))n)2

≥ 1− 2e−nP(X∈Aj),

where the last inequality follows from (1− x)n ≤ e−nx, x ∈ (0, 1).
We now turn to estimate the term (101). By the definition of fD,H , there holds∑

j∈IH

EPX

((
fD,H(X)− f∗P,H(X))2

∣∣X ∈ Aj , Zj = 0
)
· P(Zj = 0) · P(X ∈ Aj)

=
∑
j∈IH

EPX

((
f∗P,H(X)

)2∣∣X ∈ Aj) · P(Zj = 0) · P(X ∈ Aj) ≥ 0.
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Let us denote

I(1)
H := {j ∈ IH : Aj ∩BW = Aj}

and

I(2)
H := IH \ I(1)

H .

Then we obviously have P(X ∈ Aj) = µ(Aj) ≥ hd0 for all j ∈ I(1)
H . Combing the above

results, we obtain

ED∼PnEPX

(
fD,H(X)− f∗P,H(X))2

=
∑
j∈IH

EPX ((fD,H(X)− f∗P,H(X))2|X ∈ Aj , Zj > 0) · P(Zj > 0) · P(X ∈ Aj)

+
∑
j∈IH

EPX ((fD,H(X)− f∗P,H(X))2|X ∈ Aj , Zj = 0) · P(Zj = 0) · P(X ∈ Aj)

≥
∑
j∈IH

EPX ((fD,H(X)− f∗P,H(X))2|X ∈ Aj , Zj > 0) · P(Zj > 0) · P(X ∈ Aj)

=
∑
j∈I(1)H

EPX ((fD,H(X)− f∗P,H(X))2|X ∈ Aj , Zj > 0) · P(Zj > 0) · P(X ∈ Aj)

+
∑
j∈I(2)H

EPX ((fD,H(X)− f∗P,H(X))2|X ∈ Aj , Zj > 0) · P(Zj > 0) · P(X ∈ Aj)

≥
∑
j∈I(1)H

EPX ((fD,H(X)− f∗P,H(X))2|X ∈ Aj , Zj > 0) · P(Zj > 0) · P(X ∈ Aj)

≥ 1

n

∑
j∈I(1)H

(
1− 2e−nP(X∈Aj)

)(
σ2 + E(f∗L,P(X)− f∗P,H(X))2

)
≥ σ2

n

(
|I(1)
H | −

∑
j∈I(1)H

2e−nP(X∈Aj)
)
.

Therefore, we have

ED∼PnEPX

(
fD,H(X)− f∗P,H(X))2 ≥ σ2

n

(
|I(1)
H | −

∑
j∈I(1)H

2e−nP(X∈Aj)
)

=
σ2

n

(
|I(1)
H | − 2|I(1)

H | exp
(
−nhd0

))
≥ σ2

n

(
2W −

√
d · h0

h0

)d(
1− 2

e

)
≥ 4W dσ2(1− 2e−1)h

−d
0 n−1, (103)

where the last inequality follows from Assumption 2.
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A.4.9 Proofs Related to Section 3.3

Proof [of Theorem 4] Proposition 22 together with Proposition 19 implies

RLh0 ,P(fD,E)−R∗Lh0 ,P . λn(h0,n)−2d + h
2(1+α)
0,n + T−1

n h
2
0,n + λ

− 1
1+2δ′

n n
− 2

1+2δ′ ,

where δ′ := 1− δ and δ := 1/(7(cdW/h0)d + 1). Choosing

λn := n
− 1

2(1+α)+2d , h0,n := n
− 1

2(1+α)(2−δ)+d , Tn := n
2α

2(1+α)(2−δ)+d ,

we obtain

RLh0 ,P(fD,E)−R∗Lh0 ,P . n
− 2(1+α)

2(1+α)(2−δ)+d .

This completes the proof.

Proof [of Theorem 5] Recall the error decomposition (56). Using the estimates (99) and
(103) and choosing h0,n := n−

1
d+2 , we get

EPH⊗Pn(RL,P(fD,Hn)−R∗L,P)

= EPH⊗PnEPX (fD,Hn(X)− f∗L,P(X))2

≥ d

12

(
W

2

)d
c2

0PX(Af )c2
f · h

2
0,n + 4W 2σ2(1− 2e−1)h

−d
0,nn

−1 & n−
2

2+d ,

which proves the assertion.

A.4.10 Proofs Related to Section A.3.1

To prove Proposition 25, we need to establish the following lemmas.

Lemma 33 Let f ∈ Ck,α(R) and the q-th difference of f be defined by (59). Moreover,
for r ∈ N with r ≤ k, let Drf = f (r) denote the r-th differentiation of f and Nr,h be the
r − 1-times convolution of 1[0,1] with itself and Nr,h(u) = 1

hNr(
u
h). Then we have

4r
h(f, x) =

∫
R
hrDrf(u)Nr,h(u− x) du. (104)

Proof [of Lemma 33] The proof is by induction on r. For any x ∈ Rd, there holds

41
h(f, x) = f(x+ h)− f(x)

=

∫ x+h

x
Df(u) du

=

∫
R
Df(u)1[x,x+h](u) du
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=

∫
R
Df(u)1[0,1]

(
u− x
h

)
du

=

∫
R
hDf(u)N1,h(u− x) du.

Therefore, (104) holds when r = 1. Now let r ≥ 1 be given and suppose (104) is true for r.
Then we have

4r+1
h (f, x) = 41

h(4r
h(f(x, ·), x)

= 4r
h(f, x+ h)−4r

h(f, x)

=

∫ x+h

x
D(4r

h(f))(v) dv

=

∫ x+h

x
D

(∫
R
hrDrf(u)Nr,h(u− v) du

)
dv

=

∫
R
D

(∫
R
hrDrf(u)Nr,h(u− v) du

)
1[0,1]

(
v − x
h

)
dv

= −
∫
R
hr
(∫

R
Drf(u)Nr,h(u− v) du

)
1′[0,1]

(
v − x
h

)
1

h
dv

= −hr−1

∫
R
Drf(u)

(∫
R
Nr,h(t)1′[0,1]

(
u− x− t

h

)
dt

)
du,

= −hr−1

∫
R
Drf(u)

(∫
R
Nr,h(t)1′[0,1]

(
u− x− t

h

)
dt

)
du

= −hr−1

∫
R
Drf(u)

(
−1[0,1]

(
u− x− t

h

)
hNr,h(t)

∣∣∣∣∞
−∞

+ h

∫ ∞
−∞

1[0,1]

(
u− x− t

h

)
N ′r,h(t) dt

)
du

= −hr
∫
R
Drf(u)

(∫ ∞
−∞

1[0,1]

(
u− x− t

h

)
N ′r,h(t) dt

)
du

= −hr
∫
R
Drf(u)

(∫ ∞
−∞

1[0,1]

(
u− x− t

h

)
1

h2
N ′r

(
t

h

)
dt

)
du

= −hr−1

∫
R
Drf(u)

(∫ ∞
−∞

1[0,1](s)N
′
r

(
u− x
h
− s
)
ds

)
du,

where 1′[0,1](u) denotes the derivative of 1[0,1] with respect to u. Since f ∗ (∂g) = ∂(f ∗ g),
we have

(1[0,1] ∗N ′r)(u) = (1[0,1] ∗Nr)
′(u) = N ′r+1(u)

and consequently

4r+1
h (f, x) = −hr−1

∫
R
Drf(u)N ′r+1

(
u− x
h

)
du

= hr
∫
R
Dr+1f(u)Nr+1

(
u− x
h

)
du

70



Histogram Transform Ensembles for Large-scale Regression

=

∫
R
hr+1Dr+1f(u)Nr+1,h(u− x) du.

Thus, (104) holds for r+1, and the proof of the induction step is complete. By the principle
of induction, (104) is thus true for all r ≥ 1.

Lemma 34 Let f : Rd → R be a function and the q-th difference of f be defined by (59).
Moreover, for any i = 1, . . . , d, let gi : R→ R be defined by

gi(y) := f(x1 + h1, . . . , xi−1 + hi−1, y, xi+1, . . . , xd).

Then we have

4r
h(f, x) =

r∑
k=0

(
r

k

)
(−1)r−k

d∑
i=1

gi(xi + khi) =

d∑
i=1

4r
hi

(gi, xi). (105)

Proof [of Lemma 34] The proof is by induction on r. For any x ∈ Rd, there holds

41
h(f, x) = f(x+ h)− f(x)

= f(x1 + h1, . . . , xd + hd)− f(x1 + h1, . . . , xd−1 + hd−1, xd)

+ · · ·+ f(x1 + h1, x2, . . . , xd)− f(x1, x2, . . . , xd)

=

d∑
i=1

(gi(xi + hi)− gi(xi)).

Therefore, (105) holds when r = 1. Now let r ≥ 1 be given and suppose (105) is true for r.
Then we have

4r+1
h (f, x)

= 41
h(4r

h(f, x)) = 41
h

( r∑
k=0

(
r

k

)
(−1)r−k

d∑
i=1

gi(xi + khi)

)

=
r∑

k=0

(
r

k

)
(−1)r−k

d∑
i=1

(
gi(xi + (k + 1)hi)− gi(xi + khi)

)
=

d∑
i=1

r+1∑
`=1

(
r

`− 1

)
(−1)r−`+1gi(xi + `hi) +

d∑
i=1

r∑
k=0

(
r

k

)
(−1)r−k+1gi(xi + khi)

=

d∑
i=1

(
(−1)r+1gi(xi) + gi(xi + (r + 1)hi) +

r∑
`=1

((
r

`− 1

)
+

(
r

`

))
(−1)r−`+1gi(xi + `hi)

)

=
d∑
i=1

(
(−1)r+1gi(xi) + gi(xi + (r + 1)hi) +

r∑
`=1

(
r + 1

`

)
(−1)r+1−`gi(xi + `hi)

)

=
d∑
i=1

r+1∑
`=0

(−1)r+1−`
(
r + 1

`

)
gi(xi + `hi)
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=

d∑
i=1

4r+1
hi

(gi, xi).

Thus, (105) holds for r+1, and the proof of the induction step is complete. By the principle
of induction, (105) is thus true for all r ≥ 1.

Lemma 35 Let f ∈ Ck,α(Rd) and the modulus of smoothness of f be defined by (58). Then
for any t > 0, there holds

ωk+1,L∞(Rd)(f, t) ≤ cLd tk+α,

where cL is the constant as in Definition 1.

Proof [of Lemma 35] By (105), we have

4k+1
h (f, x) =

d∑
i=1

4k+1
hi

(gi, xi).

Using the triangle inequality, we get

‖4k+1
h (f, x)‖∞ ≤

d∑
i=1

‖4k+1
hi

(gi, xi)‖∞. (106)

Since f ∈ Ck,α(Rd), we have gi ∈ Ck,α(R) for all i = 1, . . . , d. Thus, for any i = 1, . . . , d
and r ≤ k − 1, there holds

g
(r)
i (xi + hi)− g(r)

i (xi) =

∫ xi+hi

xi

g
(r+1)
i (u) du.

Then (104) implies that for any i = 1, . . . , d, we have

4k
hi

(gi, xi) =

∫
R
hki g

(k)
i (u)Nk,hi(u− xi) du

and consequently

4k+1
hi

(gi, xi) = 41
hi

(4k
hi

(gi, ·), xi)

= 41
hi

(∫
R
hki g

(k)
i (u)Nk,hi(u− xi) du

)
=

∫
R
hki g

(k)
i (u)Nk,hi(u− xi − hi) du−

∫
R
hki g

(k)
i (u)Nk,hi(u− xi) du

=

∫
R
hki g

(k)
i (t+ xi + hi)Nk,hi(t) dt−

∫
R
hki g

(k)
i (t+ xi)Nk,hi(t) dt

=

∫
R
hki (g

(k)
i (t+ xi + hi)− g(k)

i (t+ xi))Nk,hi(t) dt.
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Since f ∈ Ck,α and ‖Nr,hi‖1 = 1, we have

|4k+1
hi

(gi, xi)| ≤
∫
R
hki |g

(k)
i (t+ xi + hi)− g(k)

i (t+ xi)|Nk,hi(t) dt

≤
∫
R
hki cLh

α
i Nk,hi(t) dt

= cLh
k+α
i

∫
R
Nk,hi(t) dt

= cLh
k+α
i .

This together with (106) yields

‖4k+1
h (f, x)‖∞ ≤

d∑
i=1

‖4k+1
hi

(gi, xi)‖∞ ≤
d∑
i=1

cLh
k+α
i .

Taking the supremum over both sides of the above inequality with respect to ‖h‖2 ≤ t, we
get

ωk+1,L∞(Rd)(f, t) ≤ cLd tk+α,

which completes the proof.

Proof [of Proposition 25] For any x ∈ Rd, there holds

Kj ∗ f(x) =

∫
Rd

k+1∑
`=1

(
k + 1

`

)
(−1)1−` 1

`d

(
2

γ2
j π

)d/2
exp

(
−2‖x− t‖22

`2γ2
j

)
f(t) dt

=

∫
Rd

(
2

γ2
j π

)d/2
exp

(
−2‖h‖22

γ2
j

)(k+1∑
`=1

(
k + 1

`

)
(−1)1−`f(x+ `h)

)
dh.

Let Sν := {A ∈ Rd : ν(Rd \A) = 0}, then we have∥∥∥∥∑
j∈J

1Aj · (Kj ∗ f)− f
∥∥∥∥
L∞(ν)

= sup
A∈Sν

sup
x∈A

∣∣∣∣∑
j∈J

1Aj (x)(Kj ∗ f)(x)− f(x)

∣∣∣∣.
Using the equality ∫

Rd
exp

(
−2‖h‖22

γ2
j

)
dh =

(
γ2
j π

2

)d/2
,

we obtain

f(x) =

∫
Rd

(
2

γ2
j π

)d/2
exp

(
−2‖h‖22

γ2
j

)
f(x) dh
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and consequently∣∣∣∣∑
j∈J

1Aj (x)Kj ∗ f(x)− f(x)

∣∣∣∣
=

∣∣∣∣∑
j∈J

1Aj (x)

∫
Rd

(
2

γ2
j π

) d
2

exp

(
−2‖h‖22

γ2
j

)(k+1∑
`=0

(
k + 1

`

)
(−1)2(k+1)+1−`f(x+ `h)

)
dh

∣∣∣∣
=

∣∣∣∣∑
j∈J

1Aj (x)(−1)k+1+1

∫
Rd

(
2

γ2
j π

) d
2

exp

(
−2‖h‖22

γ2
j

)
4k+1
h (f, x) dh

∣∣∣∣
=
∑
j∈J

1Aj (x)

∣∣∣∣∫
Rd

(
2

γ2
j π

) d
2

exp

(
−2‖h‖22

γ2
j

)
4k+1
h (f, x) dh

∣∣∣∣
≤
∑
j∈J

1Aj (x)

∫
Rd

(
2

γ2
j π

) d
2

exp

(
−2‖h‖22

γ2
j

)
|4k+1

h (f, x)| dh

≤
∫
Rd

(
2

γ2π

) d
2

exp

(
−2‖h‖22

γ2

)∑
j∈J

1Aj (x)|4k+1
h (f, x)| dh.

Since A ∈ Sν , we have∥∥∥∥∑
j∈J

1Aj · (Kj ∗ f)− f
∥∥∥∥
L∞(ν)

=

∫
Rd

(
2

γ2π

) d
2

exp

(
−2‖h‖22

γ2

)
‖4k+1

h (f, ·)‖L∞(ν) dh

≤
∫
Rd

(
2

γ2π

) d
2

exp

(
−2‖h‖22

γ2

)
ωk+1,L∞(ν)(f, ‖h‖2) dh.

Lemma 35 implies that for f ∈ Ck,α, there holds

ωk+1,L∞(ν)(f, ‖h‖2) ≤ cLd‖h‖k+α
2

and thus we obtain∥∥∥∥∑
j∈J

1Aj · (Kj ∗ f)− f
∥∥∥∥
L∞(ν)

≤
∫
Rd

(
2

γ2π

) d
2

exp

(
−2‖h‖22

γ2

)
cLd‖h‖k+α

2 dh

= cLd

(
2

γ2π

) d
2
∫
Rd

exp

(
−2‖h‖22

γ2

)
‖h‖k+α

2 dh

≤ cLd
(

2

γ2π

) d
2
(∫

Rd
exp

(
−2‖h‖22

γ2

)
dh

)1/2(∫
Rd

exp

(
−2‖h‖22

γ2

)
‖h‖2(k+α)

2 dh

)1/2

= cLd

(
2γ2

πγ4

) d
4
(∫

Rd
exp

(
−2‖h‖22

γ2

)
‖h‖2(k+α)

2 dh

)1/2

.
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For any x ∈ Rd, there holds

‖x‖2 ≤ d
k+α−1
2(k+α) ‖x‖2(k+α),

where d
k+α−1
2(k+α) is the embedding constant of `d2(k+α) to `d2. This together with the equality∫

R exp(−2x2

γ2
) dx = (γ

2π
2 )1/2 implies∥∥∥∥∑

j∈J
1Aj · (Kj ∗ f)− f

∥∥∥∥
L∞(ν)

≤ cLd
(

2γ2

πγ4

) d
4
(∫

Rd
dk+α−1

d∑
i=1

h
2(k+α)
i exp

(
−2‖h‖22

γ2

)
dh

)1/2

≤ cLd
(

2γ2

πγ4

) d
4
(
dk+α−1

∫
Rd

d∑
i=1

h
2(k+α)
i exp

(
−

2
∑d

i=1 h
2
i

γ2

)
dh

)1/2

≤ cLd
k+α+1

2

(
2γ2

πγ4

) d
4
(∫

Rd

d∑
i=1

h
2(k+α)
i

d∏
`=1

exp

(
−

2h2
`

γ2

)
d(h1, . . . , hd)

)1/2

= cLd
k+α+1

2

(
2γ2

πγ4

) d
4
( d∑
i=1

∫
Rd
h

2(k+α)
i

d∏
`=1

exp

(
−

2h2
`

γ2

)
dh1 · · · dhd

)1/2

≤ cLd
k+α+1

2

(
2γ2

πγ4

) d
4
( d∑
i=1

(γ2π

2

) d−1
2

∫
R
h

2(k+α)
i exp

(
−2h2

i

γ2

)
dhi

)1/2

= cLd
k+α+1

2

(
2γ2

πγ4

) d
4
(
γ2π

2

) d−1
4
( d∑
i=1

∫
R
h

2(k+α)
i exp

(
−2h2

i

γ2

)
dhi

)1/2

= cLd
k+α
2

+1

(
2

πγ2

) 1
4
(
γ

γ

) d
2
(∫

R
x2(k+α) exp

(
−2x2

γ2

)
dx

)1/2

.

With the substitution x := (1
2γ

2u)
1
2 we get dx = γ

2
√

2u
du and therefore∫

R
x2(k+α) exp

(
−2x2

γ2

)
dx =

∫
R

(
1

2
γ2u

)k+α

e−u
γ

2
√

2u
du

= 2−(k+α)− 3
2γ2(k+α)+1

∫
R
uk+α− 1

2 e−u du

= 2−(k+α)− 3
2γ2(k+α)+1Γ

(
k + α+

1

2

)
.

Consequently, we obtain∥∥∥∥∑
j∈J

1Aj · (Kj ∗ f)− f
∥∥∥∥
L∞(ν)

≤ cLd
k+α
2

+1

(
2

πγ2

) 1
4
(
γ

γ

) d
2

2−
k+α
2
− 3

4γk+α+ 1
2 Γ

1
2

(
k + α+

1

2

)
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= cLπ
− 1

4 2−
k+α
2
− 1

2d
k+α
2

+1Γ
1
2

(
k + α+

1

2

)(
γ

γ

) d
2

γk+α

=: ck,α

(
γ

γ

) d
2

γk+α,

where the constant ck,α := cLπ
− 1

4 2−
k+α
2
− 1

2d
k+α
2

+1Γ
1
2 (k+α+ 1

2). This completes the proof.

A.4.11 Proofs Related to Section A.3.2

Proof [of Lemma 26] Let us first denote

a := N
(
λ
−1/2
A BĤA , ‖ · ‖L2(PX|A), εA

)
∈ N,

b := N
(
λ
−1/2
B BĤB , ‖ · ‖L2(PX|B), εB

)
∈ N.

By the definition of covering numbers, there exists a functions f̂1, . . . , f̂a ∈ λ−1/2
A BĤA and

b functions ĥ1, . . . , ĥb ∈ λ
−1/2
B BĤB such that {f̂1, . . . , f̂a} is an εA-cover of λ

−1/2
A BĤA with

respect to ‖ · ‖L2(PX|A) and {ĥ1, . . . , ĥb} is an εB-cover of λ−1/2
B BĤB with respect to ‖ ·

‖L2(PX|B). Moreover, for every function ĝA ∈ λ−1/2
A BĤA , there exists an iA ∈ {1, . . . , a} such

that ∥∥ĝA − f̂iA∥∥L2(PX|A)
≤ εA, (107)

and for every function ĝB ∈ λ−1/2
B BĤB , there exists an iB ∈ {1, . . . , b} such that∥∥ĝB − ĥiB∥∥L2(PX|B)

≤ εB. (108)

Then, the definition of direct sums implies that for any g ∈ BH, there exists a function
ĝA ∈ λ−1/2

A BĤA and a function ĝB ∈ λ−1/2
B BĤB such that g = ĝA + ĝB. This together with

(107) and (108) yields∥∥g − (f̂iA + ĥiB )
∥∥2

L2(PX)
=
∥∥(ĝA − f̂iA) + (ĝB − ĥiB )

∥∥2

L2(PX)

=
∥∥ĝA − f̂iA∥∥2

L2(PX|A)
+
∥∥ĝB − ĥiB∥∥2

L2(PX|B)

≤ ε2
A + ε2

B =: ε2.

Consequently,
{
f̂iA + ĥiB : f̂iA ∈ {f̂1, . . . , f̂a} and ĥiB ∈ {ĥ1, . . . , ĥb}

}
is an ε-net of H with

respect to ‖ · ‖L2(PX). By the definition of covering numbers, we then get

N (BH, ‖ · ‖L2(PX), ε) ≤ N
(
λ
−1/2
A BĤA , ‖ · ‖L2(PX|A), εA

)
· N
(
λ
−1/2
B BĤB , ‖ · ‖L2(PX|B), εB

)
,

which proves the assertion.
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Proof [of Lemma 27] Let us first denote

a := N (1πh , ‖ · ‖L2(PX), ε) ∈ N,
b := N (BH, ‖ · ‖L2(PX), ε) ∈ N.

By the definition of covering numbers, there exists a functions f1, . . . , fa ∈ 1πh and b func-
tions g1, . . . , gb ∈ BH such that {f1, . . . , fa} is an ε-cover of 1πh with respect to L2(PX)
and {g1, . . . , gb} is an ε-cover of BH with respect to L2(PX). Moreover, for every function
h ∈ BH ◦ 1πh , there exists an f ∈ 1πh and a g ∈ BH such that h = g ◦ f . The definition of
covering numbers implies that for this function f , there exists an i ∈ {1, . . . , a} such that

‖f − fi‖L2(PX) ≤ ε,

and for this function g, there exists an j ∈ {1, . . . , b} such that

‖g − gj‖L2(PX) ≤ ε.

Consequently, we obtain

‖g ◦ f − gj ◦ fi‖L2(PX) = ‖g ◦ f − gj ◦ f‖L2(PX) + ‖gj ◦ f − gj ◦ fi‖L2(PX)

= ‖(g − gj) ◦ f‖L2(PX) + ‖gj ◦ (f − fi)‖L2(PX)

≤ ‖f‖∞‖g − gj‖L2(PX) + ‖gj‖∞‖f − fi‖L2(PX)

≤ (1 + ‖kγ‖∞)ε

≤ 2ε,

and thus the assertion is proved.

Note that the following lemma, which gives the entropy number for Gaussian kernels,
follows directly from Theorem 6.27 in Steinwart and Christmann (2008). However, for
completeness of exposition, we still establish the proof.

Lemma 36 Let X ⊂ Rd, PX be a distribution on X and A ⊂ X be such that Å 6= ∅ and
such that there exists an Euclidean ball B ⊂ Rd with radius rB > 0 containing A, i.e.,
A ⊂ B. Moreover, for 0 < γ ≤ rB, let Hγ(A) be the RKHS of the Gaussian RBF kernel kγ
over A. Then, for all m ∈ N+, there exists a constant cm,d > 0 such that

ei(BHγ(A), L2(PX|A)) ≤ cm,d
√

PX(A)rmB γ
−mi−

m
d , i > 1.

Proof [of Lemma 36] Let us consider the commutative diagram

Hγ(A)
id //

I−1
B ◦IA

��

L2(PX|A)

Hγ(B)
id

// `∞(B)

id

OO
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where the extension operator IA : Hγ(A) → Hγ(Rd) and the restriction operator I−1
B :

Hγ(Rd)→ Hγ(B) given by Corollary 4.43 in Steinwart and Christmann (2008) are isometric
isomorphisms such that ‖I−1

B ◦ IA : Hγ(A)→ Hγ(B)‖ = 1.
Let `∞(B) be the space of all bounded functions on B. Then for any f ∈ `∞(B), there

holds

‖f‖L2(PX|A) =

(∫
X
1A(x)|f(x)|2 dPX(x)

) 1
2

≤ ‖f‖∞
(∫
X
1A(x) dPX(x)

) 1
2

=
√

PX(A)

and consequently

‖id : `∞(B)→ L2(PX|A)‖ ≤
√

PX(A).

This together with (A.38), (A.39) and Theorem 6.27 in Steinwart and Christmann (2008)
implies that for all i ≥ 1 and m ≥ 1, there holds

ei(id : Hγ(A)→ L2(PX|A))

≤ ‖I−1
B ◦ IA : Hγ(A)→ Hγ(B)‖ · ei(id : Hγ(B)→ `∞(B)) · ‖id : `∞(B)→ L2(PX|A)‖

≤
√

PX(A)cm,dr
m
B γ
−mi−

m
d ,

where cm,d is the constant as in Theorem 6.27 in Steinwart and Christmann (2008).

Proof [of Proposition 28] First of all, note that the restriction operator I : BĤj → BHj

with I f̂ := f is an isometric isomorphism. Inequality (A.36) in Steinwart and Christmann
(2008) and Lemma 36 yield

ei
(
id : λ

−1/2
2,j BĤj → L2(PX|Aj )

)
= 2λ

−1/2
2,j ei

(
id : BĤj → L2(PX|Aj )

)
≤ 2λ

−1/2
2,j

∥∥I : B
Ĥj
→ BHj

∥∥ · ei(id : BHj → L2(PX|Aj )
)

≤ 2λ
−1/2
2,j aji

− 1
2p ,

where aj =
√

PX(Aj)cm,d(
√
d · h0)mγ−mj and p = d/(2m). Note that p can be arbitrarily

small because m ∈ N+ can be sufficiently large. Then (44) implies that for all ε > 0, there
holds

lnN
(
λ
−1/2
2,j BĤj , ‖ · ‖L2(PX|Aj ), ε

)
≤ ln(4)

(
2λ
−1/2
2,j aj

)2p
ε−2p.

For any Aj ∈ πH with H ∼ PH , obviously we have 1Aj ∈ 1πH ∈ 1πh , consequently we obtain

lnN
(
λ
−1/2
2,j BĤj ◦ 1Aj , ‖ · ‖L2(PX|Aj ), 2ε

)
≤ lnN

(
λ
−1/2
2,j BĤj ◦ 1πh , ‖ · ‖L2(PX|Aj ), 2ε

)
= lnN

(
λ
−1/2
2,j BĤj , ‖ · ‖L2(PX|Aj ), ε

)
+ lnN

(
1πh , ‖ · ‖L2(PX), ε

)
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≤ ln(4)
(
2λ
−1/2
2,j aj

)2p
ε−2p + ln(K(2d + 2)(4e)2d+2(1/ε)2(2d+1)).

Therefore, we have

lnN
(
λ
−1/2
2,j BĤj ◦ 1Aj , ‖ · ‖L2(PX|Aj ), ε

)
≤ ln(4)

(
4λ
−1/2
2,j aj

)2p
ε−2p + ln(K(2d + 2)(4e)2d+2(2/ε)2(2d+1))

≤ ln(4)
(
4λ
−1/2
2,j aj

)2p
ε−2p + 2d+4 ln(1/ε),

where in the last step we also used the estimate

ln
(
K(2d + 2)(4e)2d+2(2/ε)2d+1

)
≤ 8(2d + 2) ln(1/ε) ≤ 23 · 2d+1 ln(1/ε) ≤ 2d+4 ln(1/ε),

which is based on the following inequalities:

lnK ≤ ln(1/ε),

ln(2d + 2) ≤ 2d + 2 ≤ (2d + 2) ln(1/ε)

(2d + 2) ln(4e) ≤ (2d + 2) ln(e3) = 3(2d + 2) ≤ 3(2d + 2) ln(1/ε)

2(2d + 1) ln(2/ε) = 2(2d + 1)(ln(2) + ln(1/ε)) ≤ 4(2d + 1) ln(1/ε).

Therefore, there holds

sup
ε∈(0,1/max{e,K})

ε2p lnN (λ
−1/2
2,j BĤj ◦ 1Aj , ‖ · ‖L2(PX), ε)

≤ ln(4)
(
4λ
−1/2
2,j aj

)2p
+ 2d+4ε2p ln(1/ε). (109)

Simple analysis shows that the right hand side of (109) is maximized at ε∗ = e−1/(2p) and
consequently we obtain

lnN (λ
−1/2
2,j BĤj ◦ 1Aj , ‖ · ‖L2(PX), ε) ≤ (a/ε)2p

with the constant a is defined by

a :=

(
ln(4)

(
4λ
−1/2
2,j aj

)2p
+

2d+4

2pe

) 1
2p

.

By (Steinwart and Christmann, 2008, Exercise 6.8), we have

ei(λ
−1/2
2,j BĤj ◦ 1Aj , ‖ · ‖L2(PX))

≤ 3
1
2pai

− 1
2p ≤

(
3 ln(4)

(
4λ
−1/2
2,j aj

)2p
+

2d+6

2pe

) 1
2p

i
1
2p ,

which holds for ED∼Pei(λ
−1/2
2,j BĤj ◦ 1Aj , ‖ · ‖L2(PX)) as well. Thus, we have

ED∼Pei(λ
−1/2
2,j BĤj ◦ 1Aj , ‖ · ‖L2(PX))
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≤
(

3 ln(4)
(
4λ
−1/2
2,j aj

)2p
+

2d+6

2pe

) 1
2p

i
1
2p := a′ji

− 1
2p .

Using ‖ · ‖`mp ≤ m
1−p
p ‖ · ‖`m1 , we further get(∑

j∈IH

max{a′j , B}
)2p

=

(∑
j∈IH

max

{(
3 ln(4)

(
4λ
−1/2
2,j aj

)2p
+

2d+6

2pe

) 1
2p

, B

})2p

≤
(∑
j∈IH

(
3 ln(4)

(
4λ
−1/2
2,j aj

)2p
+

2d+6

2pe

) 1
2p

+ |IH |B
)2p

≤
( ∑
j∈IH

2

(
3 ln(4)

(
4λ
−1/2
2,j aj

)2p) 1
2p

+ 2|IH |
(

2d+6

2pe

) 1
2p

+ |IH |B
)2p

= 22p

( ∑
j∈IH

(
3 ln(4)

(
4λ
−1/2
2,j aj

)2p) 1
2p

+ |IH |
(

2d+6

2pe

) 1
2p

+ |IH |(B/2)

)2p

≤ 22p

( ∑
j∈IH

3 ln(4)
(
4λ
−1/2
2,j aj

)2p
+ |IH |2p

2d+6

2pe
+ |IH |2p

(
B

2

)2p)
≤ 22p3 ln(4)42pc2p

p (
√
d · h0)d

∑
j∈IH

λ−p2,jPX(Aj)
pγ
−(d+2p)
j

+ 22p|IH |2p
2d+6

2pe
+ 22p|IH |2p

(
B

2

)2p

≤ 22p3 ln(4)42pc2p
p (
√
d · h0)d|IH |1−p

( ∑
j∈IH

λ−1
2,jPX(Aj)γ

− d+2p
p

j

)p
+ 22p|IH |2p

2d+6

2pe
+ 22p|IH |2p

(
B

2

)2p

,

which proves the assertion.

A.4.12 Proofs Related to Section A.3.3

Proof [of Proposition 29] Let us denote

r∗ := inf
f∈H

λ1h
q
0 + λ2‖fD,γ‖2H +RL,P(fD,γ)−R∗L,P, (110)

and for r > r∗, define

Fr := {f ∈ H : λ1h
q
0 + λ2‖f‖2H +RL,P(f)−R∗L,P ≤ r},

F̂j,r := {f ∈ Ĥγj : λ1h
q
0/m+ λ2‖f‖2Ĥγj

+RLj ,P(f)−R∗L,P ≤ rj},
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Hr := {L ◦ Ûf − L ◦ f∗L,P : f ∈ Fr}.

Obviously, for all r > 0, there exists r1, . . . , rm such that
∑m

j=1 rj = r and Fr =
⊕m

j=1 F̂j,r.
Moreover, the definition (110) yields

λ2‖fD,γ‖2H ≤ λ1h
q
0 + λ2‖fD,γ‖2H +RL,P(fD,γ)−R∗L,P ≤ r

and consequently we have Fr ⊂ (r/λ2)1/2BH. Analogously, there holds λ2‖fDj ,γj‖2Ĥγj
≤ rj

and thus F̂j,r ⊂ (rj/λ2)1/2BĤγj
, which implies

ED∼Pnei(Hr, L2(D)) ≤ |L|M,1ED∼Pnei(Fr, L2(D))

= |L|M,1

m∑
j=1

E
Dj∼P|Dj |

ei/m
(
F̂j,r, L2(Dj)

)
≤ 2|L|M,1

m∑
j=1

(rj/λ2)1/2a′jm
1
2p i
− 1

2p

≤ 2|L|M,1

(
r

λ2

)1/2

m
1
2p

( m∑
j=1

a′j

)
· i−

1
2p .

Moreover, for f ∈ Fr, we have

EP(L ◦ Ûf − L ◦ f∗L,P)2 ≤ V rϑ.

Consequently, Theorem 7.16 in Steinwart and Christmann (2008) applied to Hr shows that
ED∼PnRadD(Hr, n) ≤ ϕn(r) holds with

ϕn(r) := max

{
C1(p)2p|L|pM,1

(
r

λ2

)p/2
m

1
2
(
V rϑ)

1−p
2

( m∑
j=1

a′j

)p
n−

1
2 ,

C2(p)
(
2p|L|pM,1

) 2
1+p

(
r

λ2

) p
1+p

m
1

1+p

( m∑
j=1

a′j

) 2p
1+p

B
1−p
1+pn

− 1
1+p

}
,

where C1(p) and C2(p) are the constants as in (Steinwart and Christmann, 2008, Theo-
rem 7.16). Simple calculations show that ϕn(r) satisfies the condition ϕn(4r) ≤ 2ϕn(r).
Moreover, using 2− p− ϑ+ ϑp ≥ 1, the condition r ≥ 30ϕn(r) is satisfied if

r ≥ Cp max

{(
(
∑m

j=1 a
′
j)

2pm

λp2n

) 1
2−p−ϑ−ϑp

,
(
∑m

j=1 a
′
j)

2pm

λp2n

}
,

where the constant Cp is given by

Cp := max
{(

30C1(p)2p|L|pM,1V
1−p
2

) 2
2−p−ϑ−ϑp

,
(

30C2(p)(2p|L|pM,1)
2

1+pB
1−p
1+p

)p+1}
.

If (
∑m

j=1 a
′
j)

2pm ≤ λp2n, then we have(
(
∑m

j=1 a
′
j)

2pm

λp2n

) 1
2−p−ϑ−ϑp

≥
(
∑m

j=1 a
′
j)

2pm

λp2n
,
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which implies that

r ≥ Cp
(

(
∑m

j=1 a
′
j)

2pm

λp2n

) 1
2−p−ϑ−ϑp

.

For the remaining case when
(∑m

j=1 a
′
j

)2p
m ≤ λp2n, there holds

λ1(h∗0)q + λ2‖fD,γ‖2H +RL,P(fD,γ)−R∗L,P ≤ λ1h
q
0 + λ2‖fD,γ‖2H +RL,D(fD,γ) +B

≤ λ1h
q
0 +RL,D(0) +B

≤ λ1h
q
0 + 2B

(
(
∑m

j=1 a
′
j)

2pm

λp2n

) 1
2−p−ϑ−ϑp

.

Using r∗ ≤ λ1h
q
0 + λ2‖f0‖2H + RL,P(f0) − R∗L,P, the assertion thus follows from Theorem

7.20 in Steinwart and Christmann (2008) with K := max{2B, 3Cp}.

A.4.13 Proofs Related to Section 3.4

Proof [of Theorem 6] First of all, we bound the approximation error by choosing an ap-
propriate function f0 ∈ H. Recall that for j ∈ IH , the functions Kj : Rd → R is defined
as in (60) with γj > 0. Then, f0 is defined by convolving each Kj with the Bayes decision
function f∗L,P, that is,

f0(x) :=
∑
j∈IH

1Aj (x) · (Kj ∗ f∗L,P)(x), x ∈ Rd.

To show that f0 is indeed a suitable function to bound the approximation error, we firstly
ensure that f0 is contained in Ĥk, and then derive bounds for both, the regularization term
and the excess risk of f0. By Proposition 4.46 in Steinwart and Christmann (2008), since
f∗L,P ∈ L2(Rd), we obtain that for every j ∈ IH , there holds

(Kj ∗ f∗L,P)|Aj ∈ Hγj (Aj)

with

‖1Ajf0‖Ĥγj (Aj)
= ‖1Aj (Kj ∗ f∗L,P)‖Ĥγj (Aj)

=
∥∥(Kj ∗ f∗L,P)|Aj

∥∥
Hγj (Aj)

≤ (γj
√
π)−

d
2 (2k+1 − 1)‖f∗L,P‖L2(Rd). (111)

This implies

f0 =
∑
j∈IH

1Aj (Kj ∗ f∗L,P) ∈ H.

Moreover, Theorem 25 yields

RL,P(f0)−R∗L,P = ‖f0 − f∗L,P‖2L2(PX)
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=

∥∥∥∥∑
j∈IH

1Aj (Kj ∗ f∗L,P)− f∗L,P
∥∥∥∥2

L2(PX)

≤ c2
k,α

(
γ

γ

)d
γ2(k+α), (112)

where ck,α is a constant only depending on k and α.
Next, we derive a bound for ‖L ◦ f0‖∞. Using Theorem 2.3 in Eberts and Steinwart

(2013), we obtain that for any x ∈ X , there holds

|f0(x)| =
∣∣∣∣∑
j∈IH

1Aj (x) · (Kj ∗ f∗L,P)(x)

∣∣∣∣
≤
∑
j∈IH

1Aj (x)|Kj ∗ f∗L,P(x)|

≤ (2k+1 − 1)‖f∗L,P‖L∞(Rd),

and consequently we have

‖L ◦ f0‖∞ = sup
(x,y)∈X×Y

|L(y, f0(x))|

≤ sup
(x,y)∈X×Y

(
M2 + 2M |f0(x)|+ |f0(x)|2

)
≤ 4k+1 max

{
M2, ‖f∗L,P‖2L∞(Rd)

}
=: B0. (113)

Proposition 28 together with Proposition 29 yields

λ1(h∗0)q + λ2‖fD,γ‖2H +RL,P(fD,γ)−R∗L,P
. λ1h

q
0 + h−d0 λ2,jγ

−d
j + γ2(k+α) + h

−d
0 λ−p2,jγ

−(d+2p)
j n−1 + n−1.

Choosing

h0,n := n0, γn,j := n
− 1

2(k+α)+d , λ1,n := n
− 1

2(k+α)+d , λ2,n,j := n−1,

we obtain

λ1(h∗0)q + λ2‖fD,γ,H‖2H +RL,P(fD,γ,H)−R∗L,P . n
− 2(k+α)

2(k+α)+d
+ξ
,

where ξ = p+ 2p
2(k+α)+d can be arbitrarily small. This proves the assertion.

Proof [of Theorem 7] Let fD,γ,E be the kernel histogram transform ensembles given by (23).
Using Jensen’s inequality, we have

RL,P(fD,γ,E)−R∗L,P =

∫
X

(
1

T

T∑
t=1

fD,γ,Ht − f∗L,P
)2

dPX

≤ 1

T

T∑
t=1

∫
X

(
fD,γ,Ht − f∗L,P

)2

dPX
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=
1

T

T∑
t=1

(
RL,P(fD,γ,Ht)−R∗L,P

)
.

Then, the union bound together with Theorem 6 yields

P
(
RL,P(fD,γ,E)−R∗L,P > c · n−

2α
2α+d

+ξ
)

≤
T∑
t=1

P
(
RL,P(fD,γ,Ht)−R∗L,P > c · n−

2(k+α)
2(k+α)+d

+ξ
)
≤ Te−τ

where the constant c is as in Theorem 6. As a result, there holds

RL,P(fD,γ,E)−R∗L,P ≤ c · n
− 2(k+α)

2(k+α)+d
+ξ

with probability Pνn at least 1−3e−τ , where c is a constant depending onM , k, α, p, and T .
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