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Abstract
The recent empirical success of unsupervised cross-domain mapping algorithms, in mapping between
two domains that share common characteristics, is not well-supported by theoretical justifications.
This lacuna is especially troubling, given the clear ambiguity in such mappings.
We work with adversarial training methods based on integral probability metrics (IPMs) and derive
a novel risk bound, which upper bounds the risk between the learned mapping h and the target
mapping y, by a sum of three terms: (i) the risk between h and the most distant alternative mapping
that was learned by the same cross-domain mapping algorithm, (ii) the minimal discrepancy between
the target domain and the domain obtained by applying a hypothesis h∗ on the samples of the source
domain, where h∗ is a hypothesis selectable by the same algorithm, and (iii) an approximation error
term that decreases as the capacity of the class of discriminators increases and is empirically shown
to be small. The bound is directly related to Occam’s razor and encourages the selection of the
minimal architecture that supports a small mapping discrepancy.
The bound leads to multiple algorithmic consequences, including a method for hyperparameter
selection and early stopping in cross-domain mapping.
Keywords: unsupervised learning, cross-domain alignment, integral probability metrics, adversarial
training, image to image translation.

1. Introduction

The recent literature contains many examples of unsupervised learning that are beyond the classical
work on clustering and density estimation, most of which revolve around generative models that are
trained to capture a certain distribution, D. In many cases, the generation is unconditioned, and the
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learned hypothesis takes the form of g(z) for a random vector z. It is obtained based on a training set
containing i.i.d. samples from D.

A large portion of the recent literature on this problem employs adversarial training, and specifically
a variant of generative adversarial networks (GANs), which were introduced by Goodfellow et al.
(2014). GAN-based schemes typically employ two functions that are learned jointly: a generator
g and a discriminator d. The discriminator is optimized to distinguish between “real” training
samples from the distribution D and “fake” samples that are generated as g(z), where z is distributed
according to a predefined latent distribution Dz (typically, a low-dimensional normal or uniform
distribution). The generator is optimized to generate adversarial samples, that is, samples g(z),
such that d would classify as real. This unconditional generation using GANs task is explored
theoretically (Arora et al., 2017), and since intuitive non-adversarial (interpolation-based) techniques
exist (Bojanowski et al., 2018), their success is also not surprising.

Much less understood is the ability to learn, in a completely unsupervised manner, in the conditioned
case, where the learned function h maps a sample from a source domain A to the analogous sample
in a target domain B. In this case, we have two distributions DA, DB and one aims at mapping
a sample a ∼ DA to an analogous sample h(a) ∼ DB . This computational problem is known as
“Unsupervised Cross-Domain Mapping” or “Image to Image Translation” when considering visual
domains. There are a few issues with this computational problem that cause concern. First, it is
unclear what analogous means, let alone to capture it in a formula. Second, as detailed in Section 4.2,
the mapping problem is inherently ambiguous.

Despite these theoretical challenges, the field of unsupervised cross-domain mapping, in which a
sample from domain A is translated to a sample in a second domain B, is enjoying a great deal of
empirical success, e.g, (He et al., 2016; Kim et al., 2017; Zhu et al., 2017; Yi et al., 2017; Benaim
and Wolf, 2017; Liu et al., 2017). Many of these contributions are based on what is called circularity
losses, in which one learns a mapping from one domain to another that is also approximately
invertible. However, as we discuss in Section 4.3 and as we show empirically, these constraints do
not eliminate the inherent ambiguity in these problems. This raises interesting questions, such as,
under what conditions (i.e., type of data, architecture, etc’) do these methods succeed in unsupervised
cross-domain mapping?

In this paper, we attribute this success to what we term, the “simplicity hypothesis”, which means
that these solutions learn the minimal complexity mapping, such that the discrepancy between the
fitted distribution and the target distribution is small. As we show empirically, training a neural
network of a small depth eliminates the ambiguity of the problem.

In addition to the empirical validation, we present an upper bound on the generalization risk that
supports the simplicity hypothesis. Bounding the error obtained with unsupervised methods is subject
to an inherent challenge: without the ability to directly evaluate the risk on the training set, it is not
clear on which grounds to build the bound. Specifically, typical generalization bounds of the form of
training risk plus a regularization term cannot be used.

The bound we construct has a different form. As one component, it has the success of the fitting
process. This is captured by the mapping discrepancy, measured by the integral probability metric
(IPM) (Müller, 1997) between the target distribution DB and the distribution of generated samples
h ◦ DA (that is, the distribution of h(a) for a ∼ DA), and is typically directly minimized by the
learner. Another component is the maximal risk within the hypothesis class to any other hypothesis
that also provides a good fit. This term is linked to the complexity of the hypothesis class, since it is
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expected to be small for hypothesis classes of small capacity, and it can be estimated empirically for
any hypothesis class.
In addition to explaining the plausibility of unsupervised cross-domain mapping despite the inherent
ambiguities, our analysis also directly leads to a set of new unsupervised cross-domain mapping
algorithms. By training pairs of networks that are distant from each other with both minimizing
the mapping discrepancy, we can obtain a measure of confidence on the mapping’s outcome. This
is surprising for two main reasons: first, in unsupervised settings, confidence estimation is almost
unheard of, since it typically requires a second set of supervised samples. Second, confidence is
hard to calibrate for multidimensional outputs. The confidence estimation is used as a criterion for
early stopping (Algorithm 1) and can be used for hyperparameter selection (Algorithm 2). These
algorithms serve as high-level improvements over pre-existing cross-domain mapping algorithms
and can be applied to a wide variety of methods.

2. Contributions

The work described here is part of the line of work on the role of minimal complexity in unsupervised
learning that we have been following in conference publications (Galanti et al., 2018; Benaim et al.,
2018). Our contributions in this line of work are as follows.

1. Theorem 1 provides a rigorous statement of a risk bound for unsupervised cross-domain mapping
with IPMs, which is the basis of this work. This bound sums three main terms: (a) The maximal
risk within the hypothesis class to any other hypothesis that also provides a good fit. (b) The error
of fitting between the two domains. This is captured by the IPM (Müller, 1997) which is typically
directly minimized by the learner. (c) An approximation error term that decreases as the capacity
of the class of discriminators increases and is empirically shown to be small.

2. Theorem 1 yields a concrete prediction that is verified experimentally in Section 8. Based on
this theorem, we also introduce Algorithms 1 and 2. The first serves as a method for early
stopping in unsupervised cross-domain mapping. The second algorithm provides a method for
hyperparameter selection for unsupervised cross-domain mapping.

3. Our line of work shows that unsupervised cross-domain mapping succeeds, when the architecture
of the learned generator is of minimal depth.

4. In Section 7, we extend our analysis to the non-unique case. In this case, there are multiple
possible target functions and we wish our algorithm to return a hypothesis that is close to one
of them. This extension leads to Algorithm 3 that extends Algorithm 1, which is then verified
experimentally.

The algorithms presented here, and the empirical results, are extensions of those in the conference
publications, except for Algorithm 3 that extends Algorithm 1 to the non-unique case, which is new.
The contributions in this manuscript over the previous conference publications include: (i) In this
paper, we employ integral probability metrics (IPMs), while previous work employed a different
measure of discrepancy (a specific type of IPM). (ii) We derive a precise bound for cross-domain
mapping (Theorem 1), which was missing in our previous work. While in (Benaim et al., 2018),
we provide bounds for unsupervised cross-domain mapping, it is mainly used for motivating the
methods and it strongly relies on their “Occam’s razor property” that does not necessarily hold in
practice. (iii) As mentioned, in Section 7, we extend our analysis for the non-unique case.
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3. Background

We briefly review IPMs and WGANs. All notations are listed in Table 1.

3.1 Terminology and Notations

We introduce some necessary terminology and notations. We denote by P and E the probability
and expectation operators. We denote by IdX : X → X the identity function. Throughout the
paper, we follow the convention of treating vectors x ∈ Rn as column vectors x ∈ Rn×1. For a
vector x ∈ Rn, ‖x‖2 denotes the Euclidean norm of x and for a matrix W ∈ Rm×n, ‖W‖2 :=
maxx 6=0(‖Wx‖2/‖x‖2) stands for the induced operator norm of W .
A hypothesis class H is a set of functions h : X → Y , where X is considered as the instances
space and Y is referred as the labels space. We let ` : Y × Y → [0,∞) be a loss function. For a
given hypothesis class H and loss function `, we denote, `H = {x 7→ `(h(x), h′(x))}h,h′∈H . For
simplicity, when X is clear from the context, instead of writing infx∈X and supx∈X , we will write
infx and supx.
Let f : X → Y be a function, such that, X ⊂ Rm and Y ⊂ Rn. If f is differentiable, we denote by
Jf (x) ∈ Rn×m the Jacobian matrix of f at x. Additionally, if n = 1, we denote by ∇f(x) ∈ Rm×1

(column vector) the gradient of f , and if f is twice differentiable, Hf (x) ∈ Rm×m stands for the
Hessian matrix of f at x. We denote f ∈ Cr if f is r-times continuously differentiable. We define,
‖f‖∞,X := sup

x∈X
‖f(x)‖2 and ‖f‖Lip = sup

x,y∈X
(‖f(x)− f(y)‖2/‖x− y‖2). For a twice differentiable

function f , we denote β(f) := ‖Hf‖∞,X . Given a set E and two functions F : E → R and
G : E → R, we denote, F . G if and only if ∃ C > 0 ∀ e ∈ E : F (e) ≤ C ·G(e).

3.2 IPMs and WGANs

In this section, we provide some general background on integral probability metrics (IPMs) and
Wasserstein GANs (WGANs).

3.2.1 INTEGRAL PROBABILITY METRICS

IPMs, first introduced by Müller (1997), is a family of pseudometric1 functions between distributions.
Formally, for a given Polish space S = (X , ‖ · ‖) (that is, separable and completely metrizable
topological space), two distributions D1 and D2 over X and a class C of discriminator functions
d : X → R, the C -IPM between D1 and D2 is defined as follows:

ρC (D1, D2) := sup
d∈C

{
Ex∼D1 [d(x)]− Ex∼D2 [d(x)]

}
. (1)

This family of functions includes a wide variety of pseudometric functions (Arjovsky et al., 2017;
Zhao et al., 2017; Berthelot et al., 2017; Li et al., 2015, 2017; Mroueh and Sercu, 2017; Mroueh
et al., 2018). In order to guarantee that ρC is non-negative throughout the paper, we assume that C is
symmetric, that is, if d ∈ C , then, −d ∈ C .

1. A pseudometric d : X2 → [0,∞) is a non-negative, symmetric function that satisfies the triangle inequality and
d(x, x) = 0 for all x ∈ X .
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3.2.2 WGANS OPTIMIZATION

In this work, we give special attention to the WGAN algorithm (Arjovsky et al., 2017) and its
extensions (Zhao et al., 2017; Berthelot et al., 2017; Li et al., 2015, 2017; Mroueh and Sercu, 2017;
Mroueh et al., 2018). These are variants of GAN that use the IPM, instead of the original GAN loss.
In general, their aim is to find a mapping g : X 1 → X 2 (generator) that takes one distribution, D1

over X 1, and maps it into a second distribution D2, by minimizing the distance between g ◦D1 (the
distribution of g(z) for z ∼ D1) and D2. Hence, the goal is to select a mapping (generator) g from a
class, H , of neural networks of a fixed architecture, that minimizes the mapping discrepancy:

ρC (g ◦D1, D2) = sup
d∈C

{
Ez∼D1 [d(g(z))]− Ex∼D2 [d(x)]

}
, (2)

where g ◦ D is the distribution of g(x) for x ∼ D. For this purpose, these methods make use
of finite sets of i.i.d. samples S1 = {zi}m1

i=1 and S2 = {xj}m2
j=1 from D1 and D2 (resp.). The

optimization process iteratively minimizes
{

1
m1

∑m1
i=1[d(g(zi))]− 1

m2

∑m2
j=1[d(xj)]

}
with respect

to g and maximizes it with respect to d. In each iteration, the algorithm runs a few gradient based
optimization steps for g or d.
In the task of unconditional generation (Goodfellow et al., 2014; Arjovsky et al., 2017), the set
X 1 = X z is considered as a latent space and is typically a convex subset of a Euclidean space, such
as Rd, [−1, 1]d or the d-dimensional closed unit ball, Bd := {x ∈ Rd | ‖x‖2 ≤ 1}. Additionally, the
input distribution D1 = Dz is typically a normal distribution (for X z = Rd) or a uniform distribution
(for X z = [−1, 1]d or X z = Bd). As we see next, we focus on conditional generation (He et al., 2016;
Kim et al., 2017; Zhu et al., 2017; Yi et al., 2017; Benaim and Wolf, 2017; Liu et al., 2017), where
D1 = DA and D2 = DB are two distributions over analogous visual domains.
As a side note, to derive Equation (2), we used (cf. Varadhan, 2002, Theorem 1.9).

4. Problem Setup

In this paper, we consider the unsupervised cross-domain mapping problem. In this setting, there
are two domains A = (XA, DA) and B = (XB, DB), where DA and DB are distributions over the
sample spaces XA ⊂ RN and XB ⊂ RM respectively (formally, we assume that both spaces are
equipped with σ-algebras). In addition, there is a hypothesis class H of functions h : XA → XB
from which candidate hypotheses are being selected and a loss function ` : RM × RM → [0,∞).
Our results are shown for the L2-loss `(x1, x2) = ‖x1 − x2‖22.
In this setting, there is an unknown target function y that maps the first domain to the second
domain, that is, y : XA → XB and DB = y ◦ DA. The function y will also be referred as the

“semantic alignment” between DA and DB , as opposed to non-semantic alignments f 6= y that map
f ◦ DA = DB . In Section 7, we extend the framework and the results to include multiple target
functions.
As an example that is often used in the literature, XA is a set of images of shoes, and XB is a set
of images of shoe edges, see Figure 1(a). Here, DA is a distribution of images of shoes and DB a
distribution of images of shoe edges. The function y takes an image of a shoe and maps it to an image
of the edges of the shoe. The assumption that y ◦DA = DB simply means that the target function,
y, takes a sampled image of a shoe x ∼ DA and maps it to a sample y(x) from the distribution of
images of edges.
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P, E The probability and expectation operators
` The L2 loss function, that is, `(a, b) = ‖a− b‖22

IdX The identity function
A,B Two domains A = (XA, DA) and B = (XB, DB)

RD, RS The generalization and empirical risk functions
H , h A hypothesis class and a specific hypothesis
C , d A class of discriminators and a specific discriminator
T , y A set of target functions and a specific target function
ρC The C -IPM (integral probability metric, see Equation 1)

Ω, ω A set of vectors of hyperparamers and a specific vector of hyperparameters
Aω A cross-domain mapping algorithm with hyperparameters ω

Pω/Pω(SA, SB) The set of possible outputs of Aω provided with inputs (SA, SB)
H k A hypothesis class of functions of depth ≤ k
Ak A cross-domain mapping algorithm of generators from H k

Pk/Pk(SA, SB) The set of possible outputs of Ak provided with input (SA, SB)
‖x‖2, ‖W‖2 The Euclidean and induced operator norms

Jf , ∇f , Hf The Jacobian, gradient and Hessian operators
‖f‖∞,X The infinity norm of f : X → Rn

‖f‖Lip The Lipschitz norm f : X → Rn

β(f) The maximal operator norm of the Hessian of f : X → R

Cr The set of r-times continuously differentiable functions
F . G ∃ C > 0 ∀ e ∈ E : F (e) ≤ C ·G(e)

Table 1: Summary of Notation

In contrast to the supervised case, where the learning algorithm is provided with a data set of labeled
samples (x, y(x)) for x ∼ D and y is the target function, in the unsupervised case that we study, the
only inputs of the learning algorithm A are i.i.d. samples from the two distributions DA and DB

independently,

SA
i.i.d.∼ Dm1

A and SB
i.i.d.∼ Dm2

B .

The set SA consists of instances from XA and the set SB consists of instances from XB . We also do
not assume that for any a ∈ SA there is a corresponding b ∈ SB , such that, b = y(a).
The goal of the learning algorithm A is to fit a function h ∈ H that minimizes RDA

[h, y]. Here,
RD[f1, f2] is the generalization risk function between f1 and f2 with respect to a distribution D, that
is defined in the following manner:

RD[f1, f2] := Ex∼D [`(f1(x), f2(x))] .

In supervised learning, the algorithm is provided with the labels of the target function y on the
training set SA and estimates the generalization risk RDA

[h, y] using the empirical risk RSA [h, y] :=
1
|SA|

∑
x∈SA `(h(x), y(x)). In the proposed unsupervised setting, one cannot estimate this risk on the

training samples, since the algorithm is not provided with the labeled samples (x, y(x)). Instead, the
learner must rely on the two independent sets SA and SB .
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(a) (b) (c)

Figure 1: The alignment problem. Domain A consists of shoes and domain B consists of edges
of shoes. (a) The correct alignment y between the two domains. (b) A wrong alignment
ĥ between the two domains. The algorithm is provided with independent samples from
domain A and from domain B. It is not obvious what makes the algorithm return the
mapping (a) instead of any other mapping between the two domains. (c) A permutation
function Π that gives (b) when applied on (a), that is, ĥ = Π ◦ y.

With regards to the example above, the learning algorithm is provided with a set of m1 images of
shoes and m2 images of shoe edges. The two sets are independent and unmatched. The goal of the
learning algorithm is to provide a hypothesis h that approximates y. Informally, we want to have
h(a) ≈ y(a) in expectation over a ∼ DA, that is, h and y map the same image of a shoe to the same
image of shoe edges.
Two modes of failure Even if the algorithm is provided with an infinite amount of samples, it
can fail in two different ways. (i) h can fail to produce the output domain, that is, h ◦ DA will
diverge from DB . This is typically a result of limited expressivity. (ii) Even if h ◦DA = DB , h
could be distant from y, that is, there would be a high probability for samples a ∼ DA, such that,
`(h(a), y(a)) is large, which is discussed in Section 4.2.

4.1 Assumptions

Several assumptions were made to obtain the theoretical results.

Assumption 1 (Setting and data) The sets XA ⊂ RN and XB ⊂ RM are convex, bounded and
equipped with σ-algebras. DA and DB are two distributions over (but not necessarily supported
by) XA and XB (resp.). The data sets SA and SB consist of m1 and m2 i.i.d. samples from the two
distributions DA and DB (resp.). We use the L2-loss function `(x1, x2) = ‖x1 − x2‖22. In Section 5,
the target function y is assumed to be unique and to satisfy y ◦DA = DB . In Section 7, we consider
the case where there are multiple target functions T .

Assumption 2 (Architectures) The hypothesis class H consists of functions h : XA → XB . The
class of discriminators C (see Section 4.4) is a subset of C2 and satisfies that supd∈C ‖d‖∞,XB <∞.

The second assumption is a technical assumption that holds, for example, when XB is the closed ball
of some radius r ≥ 1 around 0, H is a class of neural networks that output vectors of norm ≤ 1 and
C is a class of bounded neural networks with twice-continuously differentiable activation functions.

4.2 The Unsupervised Alignment Problem

We next address that the proposed unsupervised learning setting suffers from what we term as the
“alignment problem”. The problem arises from the fact that when observing samples SA and SB only
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from the marginal distributions DA and DB , one cannot uniquely link the samples in the source
domain to those of the target domain, see Figure 1(b).
As a simple example, let DA and DB be two discrete distributions, such that, there are two points
a, a′ ∈ XA that satisfy Px∼DA

[x = a] = Px∼DA
[x = a′]. Assuming that the mapping y is one-to-

one, then y(a) and y(a′) have the same likelihood in the density function Px∼DB
[x = ·]. Therefore,

a-priori it is unclear if the target mapping takes a and maps it to y(a) or to y(a′).
More generally, given the target function y between the two domains, in many cases it is possible
to define many alternative mappings of the form ĥ = Π ◦ y, where Π is a mapping that satisfies
Π ◦DB = DB . For such functions, we have, ĥ ◦DA = Π ◦ y ◦DA = Π ◦DB = DB , and therefore,
they satisfy the same assumptions we had regarding the target function y.
Thus, a-priori it is unclear why a cross-domain mapping algorithm that only observes samples from
DA and DB would recover the target mapping y instead of any arbitrary mapping ĥ 6= y, such that,
ĥ ◦DA = DB . In Figure 1(b), the mapping can be represented as ĥ = Π ◦ y, where Π is the mapping
illustrated in Figure 1(c).

4.3 Circularity Constraints do not Eliminate All of the Inherent Ambiguity

In the field of unsupervised cross-domain mapping, most contributions learn the mapping h between
the two domains A and B by employing two main constraints. Firstly, h is restricted to minimize a
GAN loss. In this work, in order to support a more straightforward analysis, we employ IPMs and h
minimizes ρC (h ◦ SA, SB) (Equation 1). In (Lucic et al., 2018), it has been shown that many of the
GAN methods in the literature perform similarly.
A large portion of the cross-domain mapping algorithms also employ what is called the circularity
constraint (He et al., 2016; Kim et al., 2017; Zhu et al., 2017; Yi et al., 2017). Circularity requires
learning a second mapping h′ that maps between B and A (the opposite direction of h) and serves
as an inverse function to h. Similar to h, h′ is trained to minimize a GAN loss but in the other
direction, that is, ρC (h′ ◦ SB, SA). The circularity terms, which are minimized by h and h′ take the
form RSA [h′ ◦ h, IdXA ] and RSB [h ◦ h′, IdXB ], where IdX : X → X is the identity function, that is,
∀x ∈ X : IdX (x) = x. In other words, for a sample a ∈ SA, we expect to have, h′(h(a)) ≈ a and
for a random sample b ∈ SB , we expect to have, h(h′(b)) ≈ b.
Therefore, the complete minimization objective of both h and h′ is as follows:

inf
h,h′∈H

ρC (h ◦ SA, SB) + ρC (h′ ◦ SB, SA) (3a)

+RSA [h′ ◦ h, IdXA ] +RSB [h ◦ h′, IdXB ]. (3b)

The terms in Equation (3a) ensure that the samples generated by mapping domain A to domain B
follow the distribution of samples in domain B and vice versa. The terms in Equation (3b) ensure
that mapping a sample from one domain to the second and back, results in the original sample. Note
that the first two terms match distributions (via the IPM scores) and the last two match individual
samples (via the loss ` in the risk).
The circularity terms are shown empirically to improve the obtained results. However, these terms
do not eliminate all of the inherent ambiguity, as shown in the following observation. For instance,
consider the favorable case where the algorithm has full access to DA and DB , that is, SA = DA

and SB = DB . Let Π be an invertible permutation of DB , that is, Π : XB → XB is an invertible
mapping and Π ◦DB = DB . Then, the pair h = Π ◦ y and h′ = y−1 ◦Π−1 achieves:

ρC (h ◦DA, DB) + ρC (h′ ◦DB, DA) +RDA
[h′ ◦ h, IdXA ] +RDB

[h ◦ h′, IdXB ] = 0.
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Informally, if Π is an invertible permutation of the samples in domain B (not a permutation of the
vector elements of the representation of samples in B), then, if y is the target function and y−1 is its
inverse function, the pair of functions h = Π◦y and h′ = y−1 ◦Π−1 achieves zero losses. Therefore,
even though the function h = Π ◦ y might correspond to an incorrect alignment between the two
domains A and B (that is, the function h is very different from y), the pair h and h′ can still achieve
a zero value on each of the losses proposed by He et al. (2016); Kim et al. (2017); Zhu et al. (2017);
Yi et al. (2017).
Since both low discrepancy and circularity cannot, separately or jointly, eliminate the ambiguity of
the mapping problem, a complete explanation of the success of unsupervised cross-domain mapping
must consider the hypothesis classes H and C . This is what we intend to do in Section 5.

4.4 Cross-Domain Mapping Algorithms

A central goal in this work is the derivation of risk bounds that can be used to compare different
cross-domain mapping algorithms. The set of cross-domain mapping algorithms {Aω}ω∈Ω that are
compared, are indexed by a vector of hyperparameters ω ∈ Ω. The vector of hyperparameters ω
can include the architecture of the hypothesis class from which Aω selects candidates, the learning
rate, batch size, etc’. To compare the performance of the algorithms, an upper bound on the term
RDA

[h, y] is provided. Fortunately, this bound can be estimated without the need for supervised
data, that is, without paired matches (x, y(x)). Here, h is the selected hypothesis by a cross-domain
mapping algorithm Aω provided with access to the distributions DA and DB .
The outcome of every deep learning algorithm often depends on the random initialization of its
parameters and the order in which the samples are presented. Such non-deterministic algorithm Aω

can be seen as a mapping from the training data (SA, SB) to a subset of the hypothesis space H . This
subset, which is denoted as Pω(SA, SB), contains all the hypotheses that the algorithm may return for
the given training data. Typically, the set Pω(SA, SB) is much sparser than the original hypothesis
class. Since the algorithm is not assumed to be deterministic, to measure the performance of a cross-
domain mapping algorithm Aω, an upper bound on RDA

[h, y] is derived for any h ∈ Pω(SA, SB).
For simplicity, we will sometimes simply write Pω as a reference to Pω(SA, SB).
In this paper, special attention is given to IPM minimization algorithms applied to unsupervised
cross-domain mapping. The algorithm, Aω, given access to two data sets SA and SB , a hypothesis
class Hω and a class of discriminators C , returns a hypothesis h ∈ Hω (see Equation (1)), that
minimizes ρC (h ◦ SA, SB).
The following are concrete examples of the proposed framework. We specify, ω, H , Hω and
Pω(SA, SB) for different settings:

1. The hyperparameters are the learning rate and batch size: in this case, each ω = (µ, s, T )
includes a different learning rate µ > 0, batch size s ∈ N and number of iterations T ∈ N.
The hypothesis class Hω from which Aω selects candidates is H itself. The set Pω(SA, SB)
consists of the minimizers h ∈ H of ρC (h ◦ SA, SB) trained using the procedure in Section 3.2
with a learning rate µ, a batch size s and the number of epochs T .

2. The hyperparameter is the number of layers: in this case, H is a class of neural networks
of varying number of layers, each of size ∈ [r1, r2], for some predefined r1, r2 ∈ N. The
hyperparameter is the maximal number of layers ω = k ∈ N of the trained neural network
h ∈ H . The hypothesis class H k is the set of neural networks in H that have a depth ≤ k.

9
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The algorithm Ak returns a hypothesis h ∈ H k that minimizes ρC (h ◦ SA, SB). More formally,
Pk(SA, SB) = {h ∈ H k | ρC (h ◦ SA, SB) ≤ c infh∗∈Hk

ρC (h∗ ◦ SA, SB)} for some predefined
multiplicative tolerance parameter c ≥ 1 of our choice.

3. The hyperparameters are the weights of the first layers: in this case, H = {hθ,ω =
gθ ◦ fω | θ ∈ Θ, ω ∈ Ω} is a set of neural networks, each parameterized by two sets
of parameters θ ∈ Θ and ω ∈ Ω. We can think of fω as the first l1 layers of hθ,ω and
gθ as the last l2 layers of it. For instance, fω can be an encoder and gθ a decoder. Here,
Hω = {hθ,ω | θ ∈ Θ} is the set of neural networks hθ,ω ∈ H with fixed ω. In this setting,
Pω(SA, SB) consists of the set of the possible minimizers h ∈ Hω of ρC (h ◦ SA, SB). More
formally, Pω(SA, SB) = {h ∈ Hω | ρC (h ◦ SA, SB) ≤ c infh∗∈H ρC (h∗ ◦ SA, SB)} for some
predefined multiplicative tolerance parameter c ≥ 1 of our choice.

In general, our bounds hold for any set of classes {Pω(SA, SB)}ω∈Ω (not even minimizers of the
mapping discrepancy). However, to obtain the simplified analysis in Section 5.1, we consider sets
Pω(SA, SB), such that, the hypotheses h ∈ Pω(SA, SB) achieve a fairly similar degree of success
at minimizing ρC (h ◦ SA, SB), that is, there is a multiplicative tolerance constant c ≥ 1, such that,
for all h ∈ Pω(SA, SB), we have: ρC (h ◦ SA, SB) ≤ c infh∗∈Pω ρC (h∗ ◦ SA, SB). We note that this
assumption is not necessary to our analysis and one can obtain a more general version of Theorem 1
without it (see Lemma 8 in Appendix A). Specifically, this condition is met for examples (2) and (3)
above. We note that Pk(SA, SB) and ∪ωPω(SA, SB) are always non-empty.

5. Risk Bounds for Unsupervised Cross-Domain Mapping

In this section, we discuss sufficient conditions for overcoming the alignment problem. For the sake
of simplicity, we focus on the unique case, where there is only one target function y. The results are
then extended, in Section 7, to the non-unique case, where there are multiple target functions.

5.1 Risk Bounds

We derive risk bounds for unsupervised cross-domain mapping, comparing alternative hyperparam-
eters ω ∈ Ω. As discussed in Section 4, our goal is to select ω that provides the best performing
algorithm Aω, in terms of minimizing RDA

[h1, y] for an output h1 of Aω provided with access to
DA and DB . For this purpose, Theorem 1 will provide us with an upper bound (for every ω ∈ Ω) on
the generalization risk RDA

[h1, y], for an arbitrary hypothesis h1 selected by the algorithm Aω, that
is, h1 ∈ Pω(SA, SB). The terms of the bound can be estimated in an unsupervised manner, except
one term that is empirically shown to be small. See Section 6 for the derived algorithms.
Our risk bounds take into account the transition between the population distribution and an empirical
set of samples from it. This analysis is based on the following data-dependent measure of the
complexity of a class of functions.

Definition 1 (Rademacher Complexity) Let H be a set of real-valued functions f : X → R defined
over a set X . Given a fixed sample S ∈ X m, the empirical Rademacher complexity of H is defined
as follows:

R̂S(H ) :=
2

m
Eσ

[
sup
h∈H

∣∣∣ m∑
i=1

σih(xi)
∣∣∣] .

10



RISK BOUNDS FOR UNSUPERVISED CROSS-DOMAIN MAPPING WITH IPMS

The expectation is taken over σ = (σ1, . . . , σm), where, σi ∈ {±1} are i.i.d. and uniformly
distributed samples.

The Rademacher complexity measures the ability of a class of functions to fit noise. The empirical
Rademacher complexity has the added advantage that it is data-dependent and can be measured from
finite samples. It can lead to tighter bounds than those based on other measures of complexity, such
as the VC-dimension (Koltchinskii and Panchenko, 2000).
The following theorem introduces a risk bound for unsupervised cross-domain mapping.

Theorem 1 (Cross-Domain Mapping with IPMs) Assume that XA ⊂ RN and XB ⊂ RM are
convex and bounded sets. Let H be the hypothesis class and C the class of discriminators. Assume
that C ⊂ C2 and supd∈C ‖d‖∞,XB < ∞. Then, for any δ ∈ (0, 1), with probability at least 1 − δ
over the selection of SA ∼ Dm1

A and SB ∼ Dm2
B , for every ω ∈ Ω and h1 ∈ Pω := Pω(SA, SB), we

have:

RDA
[h1, y] . sup

h2∈Pω

RSA [h1, h2] + c inf
h∈Pω

ρC (h ◦ SA, SB) + inf
h∈Pω

inf
d∈C

β(d)≤1

K (h, d; y)

+ R̂SA(`H ) + R̂SA(C ◦H ) + R̂SB (C ) +

√
log(1/δ)

min(m1,m2)
.

(4)

Here, K (h, d; y) := Ex∼DA

[
‖∇y(x)d(y(x))− (h(x)− y(x))‖2

]
.

The proof of this theorem can be found in Section A of the Appendix.

5.2 Analyzing the Bound

Theorem 1 provides an upper bound on the generalization risk, RDA
[h1, y], of a hypothesis h1 that

was selected by an algorithm Aω, which is the argument that we would like to minimize.
This bound is decomposed into four parts. The first term, suph2∈Pω

RSA [h1, h2], measures the
maximal distance between h1 and a second candidate h2 ∈ Pω(SA, SB). The second and third
terms behave as approximation errors. The second term, c · infh∈Pω ρC (h ◦ SA, SB), measures the
discrepancy between the distributions h ◦ SA and SB for the best fitting hypothesis h ∈ Pω(SA, SB).
This is captured by the C -IPM between h ◦ SA and SB . The coefficient c ≥ 1 is the tolerance constant
defined in Section 4.4. In Section 6.1, we show how these terms are being estimated.
The fourth part (including three Rademacher complexities and the square root) is a result of the
transition from empirical to expected quantities. It consists of the empirical Rademacher complex-

ities of the classes `H , C ◦ H and C and the term
√

log(1/δ)
min(m1,m2) . These terms are standard when

considering generalization bounds. When these classes have a finite pseudo-dimension, which is
the typical case of neural networks, their corresponding Rademacher complexities are of order
O
(√

log(mi)/mi

)
(Mohri et al., 2018). Several publications, for example, (Bartlett et al., 2017;

Golowich et al., 2018), have shown that the Rademacher complexity of neural networks is propor-
tional to the spectral norm of the neural networks. For simplicity, we neglect these terms since we
focus on the conditions for solving the unsupervised learning task, rather than on the generalization
capabilities of the algorithm.
The third term, K := infh,dK (h, d; y), serves as a mutual approximation error of the classes
Pω(SA, SB) and ∇C := {∇d | d ∈ C }. We note that if the zero function d0 ≡ 0 is a member of C ,
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then, K (h, d0; y) ≤ Ex∼DA
[‖h(x) − y(x)‖2] and when considering setting (2) in Section 4.4, we

have:

RDA
[h1, y] . sup

h2∈Pk

RSA [h1, h2] + inf
h∈Pk

ρC (h ◦ SA, SB) + inf
h∈Pk

Ex∼DA
[‖h(x)− y(x)‖2]

+ R̂SA(`H ) + R̂SA(C ◦H ) + R̂SB (C ) +

√
log(1/δ)

min(m1,m2)
,

(5)

which is essentially the bound in (Benaim et al., 2018). The main disadvantage of Equation (5)
follows from the fact that the bound is tight only when infh∈Pk

Ex∼DA
[‖h(x) − y(x)‖2] is small,

that is, there is a good approximator h of y. We note that for a large enough depth k, we expect
infh∈Pk

Ex∼DA
[‖h(x) − y(x)‖2] to be small. However, for larger values of k, we also expect

suph2∈Pk
RSA [h1, h2] to be larger. This is especially crucial, as it indicates that the bound in (Benaim

et al., 2018) is effective only when the term infh∈Pk
Ex∼DA

[‖h(x)−y(x)‖2] is small for small values
of k. This property is termed “Occam’s razor property” by Benaim et al. (2018). On the other hand,
in general, the term K in Theorem 1 decreases when increasing the capacity of C . In particular,
for a wide class of discriminators C , we do not have to assume the existence of a particularly good
approximator h ∈ Pk(SA, SB) of y in order to guarantee that the value of K is small, in contrast to
the analysis in (Benaim et al., 2018). Therefore, our bound does not rely on the assumption that y
can be approximated by small depth networks. In Section 8.3, we empirically compare between the
two terms.
Finally, when assuming that infh,dK (h, d; y) is small and neglecting the generalization gap terms,
we informally have:

RDA
[h1, y] . sup

h2∈Pω

RSA [h1, h2] + c inf
h∈Pω

ρC (h ◦ SA, SB). (6)

This inequality is a cornerstone in the derivation of the predictions and algorithms for cross-domain
mapping presented in Section 6.

6. Consequences of the Bound

Theorem 1 leads to a concrete prediction, when applied to setting (2) in Section 4.4. The prediction
is verified in Section 8.
We believe that a crucial part in the success of the recent methods results from selecting the
architecture used in an appropriate way. For example, DiscoGAN (Kim et al., 2017) employs
either eight or ten layers, depending on the data set. We make the following prediction:

Prediction 1 The term infh∈Pk
ρC (h ◦ SA, SB) decreases as k increases and suph2∈Pk

RSA [h1, h2]
increases as k increases. Therefore, to make both of the terms small, it is preferable to select the
minimal depth k ∈ N that provides a hypothesis h ∈ H k that has a small ρC (h ◦ SA, SB).

According to this prediction, the strongest clue that helps identify the alignment of the semantic
mapping from the other mappings, is the suitable depth of the network that is learned. A network of
depth that is too low cannot replicate the target distribution, when taking inputs in the source domain
(high mapping discrepancy). A network that is too deep, would not learn the target mapping, since
it could be distracted by other alignment solutions. As shown in Section 4.2, this ambiguity exists
regardless of the size of the training data.

12
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This is surprising because in supervised learning, extra depth is not as detrimental, as long as the
training data set is large enough. As far as we know, this is the first time that this clear distinction
between supervised and unsupervised learning is made2.

6.1 Estimating the Ground Truth Error

As mentioned in Section 5.2, the expression in Equation (6) provides us with an approximate version
of the upper bound in Theorem 1,

sup
h2∈Pk

RSA [h1, h2] + c inf
h∈Pk

ρC (h ◦ SA, SB), (7)

where Pk = Pk(SA, SB) is chosen to be Pk := {h ∈ H k | ρC (h ◦ SA, SB) ≤ cρ∗k}, for some
predefined tolerance parameter c ≥ 1 (see Section 4.4) and ρ∗k := infh∈Hk

ρC (h ◦ SA, SB).
In this section, we would like to estimate an upper bound of the expression in Equation (7). For this
purpose, we will show how to estimate an upper bound of suph2∈Pk

RSA [h1, h2] and compute an
upper bound of infh∈Pk

ρC (h ◦ SA, SB).
To upper bound the second term, we note that for any fixed k ∈ N, by the definition of Pk, we have,

inf
h∈Pk

ρC (h ◦ SA, SB) = ρ∗k,

which is a constant. To estimate this term, we train a hypothesis h ∈ H k to minimize ρC (h ◦ SA, SB),
as discussed in Section 3.2. Since this is a non-convex optimization problem, there is no guarantee
to perfectly minimize ρC (h ◦ SA, SB). Therefore, this process only gives us an upper bound ρ̂∗k :=
ρC (h ◦ SA, SB) of the second term ρ∗k = infh∈Hk

ρC (h ◦ SA, SB).
Next, we would like to show how to estimate the first term. Namely, for each h1, we would like to
approximately solve the following objective:

max
h2

RSA [h1, h2] s.t: h2 ∈ Pk, (8)

or alternatively,
max
h2∈Hk

RSA [h1, h2] s.t: ρC (h2 ◦ SA, SB) ≤ cρ∗k. (9)

We do not know the value of the value of ρ∗k explicitly, instead, we consider the following relaxed
version of Equation (9):

max
h2∈Hk

RSA [h1, h2] s.t: ρC (h2 ◦ SA, SB) ≤ cρ̂∗k. (10)

We note that any h2 ∈ H k that satisfies the condition in Equation (9) also satisfies the condition in
Equation (10), since ρ∗k ≤ ρ̂∗k. Therefore, the value in Equation (10) is an upper bound on the value in
Equation (8). To summarize, if h∗2 is the solution to Equation (10), the expression RSA [h1, h

∗
2] + cρ̂∗k

upper bounds the RHS in Equation (7). Finally, in order to train h2, inspired by Lagrange relaxation,
we employ the following relaxed version of it:

min
h2∈Hk

{
ρC (h2 ◦ SA, SB)− λRSA [h1, h2]

}
. (11)

2. The minimum description length (MDL for short) literature was developed when people believed that small hypothesis
classes are desired for both supervised and unsupervised learning.
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Algorithm 1 Early stopping
Require: SA and SB: training samples; H : a hypothesis class; C : a class of discriminators; c: a

tolerance scale; k: maximal depth; λ: a trade-off parameter; T : a fixed number of epochs.
1: Initialize h0

1 ∈ H k and h0
2 ∈ H k at random.

2: Train a hypothesis h ∈ H k to minimize ρC (h ◦ SA, SB).
3: Define ρ̂∗k := ρC (h ◦ SA, SB) (upper bounds infh∈Hk

ρC (h ◦ SA, SB)).
4: for t = 1, . . . , T do
5: Train ht−1

1 ∈ H k for one epoch to minimize ρC (ht1 ◦ SA, SB), obtaining ht1 ∈ H k.
6: Train ht−1

2 ∈ H for one epoch to minimize ρC (ht2◦SA, SB)−λRSA [ht1, h
t
2], obtaining ht2 ∈ H k.

7: end for
8: return ht1 such that: t = arg min

i∈[T1]

{
RSA [hi1, h

i
2] | ∀j = 1, 2 : ρC (hij ◦ SA, SB) ≤ cρ̂∗k

}
.

To minimize the term ρC (h2 ◦ SA, SB) in Equation (11), we train h2 against a discriminator, as
discussed in Section 3.2. Throughout the optimization process of h2, we only keep instances of it if
ρC (h2◦SA, SB) ≤ cρ̂∗k is valid. We note that this process only gives us an estimation of Equation (10),
due to the relaxation in Equation (11) and its non-convex nature.
Based on the above analysis, we present a method for early stopping (Algorithm 1). In this algorithm,
we iteratively train the mapping h1 to minimize ρC (h1 ◦ SA, SB). This process generates a list of
T1 mappings {hi1}

T1
i=1, for each epoch i ∈ [T1] during training. In order to pick a well-performing

candidate hi1 from the list, we use the estimation above during training to measure the performance
of each hi1. For this purpose, we train a second network hi2 to minimize the objective in Equation (11)
(step 6). The two neural networks hi1 and hi2 are trained iteratively throughout each epoch. Finally,
we choose the candidate ht1 that minimizes the objective of Equation (10) among the set {hi1}

T1
i=1

and satisfies ∀j = 1, 2 : ρC (htj ◦ SA, SB) ≤ cρ̂∗k (step 8).
It is worth mentioning that the value of c is a matter of choice. In principle, we could select c = 1
and the bound would still be valid. However, in practice, it is advantageous to take c > 1 since it lets
us reject fewer candidates h2.

6.2 Deriving an Unsupervised Variant of Hyperband Using the Bound

In order to optimize multiple hyperparameters ω simultaneously, we create an unsupervised variant
of the Hyperband method (Li et al., 2018). In a nutshell, Hyperband is a high-level hyperparameter
selection method that searches for a configuration of hyperparameters ω that minimizes a certain
objective function L (ω). For this purpose, Hyperband requires the ability to evaluate the objective
function for every configuration of hyperparameters. This is done using a plug-in function, called
’run_then_return_val_val_loss’ (see Algorithm 1, Li et al. 2018), that evaluates the objective function
for a given configuration. In our case, the objective function is the risk function, RDA

[h1, y], where
h1 is a mapping that was trained to minimize ρC (h1 ◦ SA, SB) with the hyperparameters ω. Since we
cannot evaluate the actual risk, we replace it with an estimated value of the following expression:

sup
h2∈Pω

RSA [h1, h2] + ρC (h1 ◦ SA, SB), (12)

This expression differs from the original bound (Equation 4) in two ways. First, we neglect the term
K as we already explained in Section 5.2 that it tends to be small. In addition, the term infh∈Pω ρC (h◦
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Algorithm 2 Unsupervised run_then_return_val_loss for Hyperband
Require: SA and SB: training samples; λ: a trade-off parameter; T : number of epochs; ω: set of

hyperparameters.
1: [h1, h2, Tlast] = return_stored_functions(ω)
2: Train h1 ∈ H for T − Tlast epochs to minimize ρC (h1 ◦ SA, SB) with hyperparameters ω.
3: Train h2 ∈ H for T−Tlast epochs to minimize ρC (h2◦SA, SB)−λRSA [h1, h2] with hyperparameters
ω.

4: store_functions(ω, [h1, h2, T ])
5: return RSA [h1, h2] + ρC (h1 ◦ SA, SB).

SA, SB) is replaced with ρC (h1 ◦ SA, SB), which can be easily estimated using a discriminator (see
Section 3.2). This term can fit as a good replacement, since infh∈Pω ρC (h◦SA, SB) ≤ ρC (h1◦SA, SB).
Secondly, we neglect the terms that arise from the transition from a population distribution to finite
sample sets, as they are constant and small for large enough m1 and m2. In addition, we choose
ω to include: the depth of the trained network, batch size, learning rate, etc’. In order to estimate
suph2∈Pω

RSA [h1, h2], we train a second network h2 to minimize ρC (h2 ◦ SA, SB)− λRSA [h1, h2]
with the hyperparameters given by ω, using the analysis provided in Section 6.1.

In particular, the function ‘run_then_return_val_loss’ in the Hyperband algorithm (see Algorithm 1,
Li et al. 2018), is provided with our estimated value of the expression in Equation (12). Our variant of
this function is listed in Algorithm 2. It employs two additional procedures that are used to store the
learned models h1 and h2 at a certain point in the training process and to retrieve these to continue
the training for a large number of epochs. The retrieval function is simply a map between a vector
of hyperparameters and a tuple of the learned networks and the number of epochs T when stored.
For a new vector of hyperparameters, it returns T = 0 and two randomly initialized networks, with
architectures that are determined by the given set of hyperparameters. When a network is retrieved, it
is then trained for a number of epochs that is the difference between the required number of epochs T ,
which is given by the Hyperband method, and the number of epochs it was already trained, denoted
by Tlast.

7. The Non-Unique Case

In various cases, there are multiple unknown target functions from A to B, that is, there is a set T of
alternative target functions y. For example, the domain XA is a set of images of shoe edges and XB
is a set of images of shoes. There are multiple mappings that take edges of a shoe and return a pair
of shoes that fit these edges (each mapping colors the shoes in a different way). It is important to
note that T contains only a subset of the alternative mappings between A and B. For instance, in the
edges to shoes example, there are mappings that take edges and return a shoe that does not fit these
edges.

As before, the cross-domain mapping algorithm is provided with access to the distributions DA and
DB . In this case, the goal of the algorithm is to return a hypothesis h1 ∈ H that is close to one of
the target functions y ∈ T , i.e., minimizes infy∈T RDA

[h1, y].

The bound in Theorem 1 can be readily extended to the non-unique case, by simply taking infy∈T
on both sides of the inequality in Theorem 1. This results in an upper bound on infy∈T RDA

[h1, y],
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instead of RDA
[h1, y] for a specific target function y. In addition, similar to Section 5.2, we can

extend the assumption that infh,dK (h, d; y) is small for the term infy∈T infh,dK (h, d; y).
However, in the non-unique case, this bound might not be tight, even for successful cross-domain
mapping algorithms. For instance, since there are multiple possible target functions y ∈ T and
the term suph2∈Pω

RSA [h1, h2] can be large, if h1 ≈ y1 and h2 ≈ y2, where y1, y2 ∈ T , such that,
y1 6= y2 and h1, h2 ∈ Pω. On the other hand, in this case we have: infy∈T RDA

[hi, y] ≈ 0 (for
i = 1, 2). A tighter bound would result, if we are able to select ω ∈ Ω that minimizes the bound, as
we show next.

7.1 Equivalence Classes According to a Fixed Encoder

To deal with the problem discussed above, we take an encoder-decoder perspective of each target
function y ∈ T , such that, by fixing the first layers of the mapping y, the ambiguity between these
functions vanishes, and only one possible mapping remains, e.g., the function is determined by the
encoder part.
To formalize this idea, we take a hypothesis class H := {hθ,ω = gθ ◦ fω | θ ∈ Θ, ω ∈ Ω} consisting
of hypotheses that are parameterized by two sets of parameters θ ∈ Θ and ω ∈ Ω. In addition,
we denote Hω := {hθ,ω | θ ∈ Θ}. Specifically, H serves as a set of neural networks of a fixed
architecture with l1 + l2 layers. Each hypothesis hθ,ω is a neural network of an encoder-decoder
architecture. The encoder, fω, consists of the first l1 layers and the decoder, gθ, consists of the last l2
layers. In addition, ω and θ denote the sets of weights of fω and gθ (resp.). We take Aω that returns a
hypothesis h from Hω that achieves ρC (h ◦ SA, SB) ≤ c infh∗∈H ρC (h∗ ◦ SA, SB) and Pω(SA, SB) is
defined accordingly (see Section 4.4).
This leads to an extended version of Algorithm 1 for the non-unique case. Similar to Section 6.1, as
a first step, we produce an upper bound estimation ρ̂∗ of ρ∗ := infh∈H ρC (h ◦ SA, SB) by training
a hypothesis h ∈ H to minimize ρC (h ◦ SA, SB), as detailed in Section 3.2. We use the class
P̂ω := {h | ρC (h ◦ SA, SB) ≤ cρ̂∗} as an approximation of the set Pω.
We let h1 = gθ1 ◦ fω and h2 = gθ2 ◦ fω be two neural networks with the same encoder-decoder
architecture with shared parameters ω (encoder) and un-shared parameters θ1 and θ2 (decoder). The
decoder of h1 (parameterized by θ1) is trained to minimize ρC (h1◦SA, SB) (step 7). The decoder of h2

(parameterized by θ2) is trained to maximize RSA [h1, h2] and to minimize ρC (h2 ◦ SA, SB), since we
would like to find a function h2 ∈ P̂ω that maximizes RSA [h1, h2] (step 8). In order to guarantee that
h1, h2 ∈ P̂ω, we reject instances of h1 and h2, for which, ∀i = 1, 2 : ρC (hi◦SA, SB) ≤ cρ̂∗ is invalid
(step 10). Finally, we would like to train a shared encoder fω, such that, the decoders would be able to
map between the two distributions and will yield a low maximal risk between them. For this purpose,
the parameters ω are trained to minimize the following objective RSA [h1, h2] +ρC (h1 ◦ SA, SB) (step
6). Since θ2 is trained to maximize RSA [h1, h2] for h2 ∈ P̂ω, we can think of the optimization of ω
as a method for minimizing the expression suph2∈P̂ω

RSA [h1, h2] + ρC (h1 ◦ SA, SB).

8. Experiments

The first group of experiments is intended to test the validity of the prediction made in Section 6.
The next group of experiments is dedicated to Algorithms 1, 2 and 3.
We note that our algorithms (Algorithms 1, 2 and 3) are widely applicable, since they can be
seen as high-level improvements over pre-existing cross-domain mapping algorithms. In order to
demonstrate this, we run our experiments using a wide variety of GAN-based unsupervised cross-
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Algorithm 3 Early stopping (non-unique case)
Require: SA and SB: training samples; H : a hypothesis class; λ: a trade-off parameter; T0: a fixed

number of epochs for ω; T : a fixed number of epochs for θ1 and θ2.
1: Train a hypothesis h ∈ H to minimize ρC (h ◦ SA, SB).
2: Define ρ̂∗ := ρC (h ◦ SA, SB) (upper bounds infh∈H ρC (h ◦ SA, SB)).
3: Initialize the shared parameters ω0 ∈ Ω at random.
4: Initialize the parameters θ1,0, θ2,0 ∈ Θ of h1 and h2 (resp.) at random.
5: for t = 1, . . . , T0 do
6: Train ωt−1 for one epoch to minimize RSA [ht−11 , ht−12 ] + ρC (ht−11 ◦ SA, SB), obtaining ωt ∈ Ω.
7: Train θ1,t−1 ∈ Θ for T epochs to minimize ρC (ht1 ◦ SA, SB), obtaining θ1,t ∈ Θ.
8: Train θ2,t−1 ∈ Θ for T epochs to minimize ρC (ht2◦SA, SB)−λRSA [ht1, h

t
2], obtaining θ2,t ∈ Θ.

. Here, hti := gθi,t−1
◦ fωt−1 for i = 1, 2.

9: end for
10: Define t := arg min

i∈[T0]

{
RSA [hi1, h

i
2] + ρC (hi1 ◦ SA, SB) | ∀j = 1, 2 : ρC (hij ◦ SA, SB) ≤ cρ̂∗

}
.

11: return ht1.

domain mapping algorithms, including CycleGAN (Zhu et al., 2017), DiscoGAN (Kim et al., 2017),
DistanceGAN (Benaim and Wolf, 2017), UNIT (Liu et al., 2017) and WGAN (Arjovsky et al., 2017).

8.1 Empirical Validation of Prediction 1

In this prediction, we claim that the selection of the number of layers k is crucial in unsupervised
learning. Using fewer layers than needed, will not support a small mapping discrepancy, that is,
infh∈Pk

ρC (h ◦ SA, SB) is large. In contrast, adding superfluous layers would mean that there exist
many alternative functions in H k that map between the two domains, that is, suph2∈Pk

RSA [h1, h2] is
large.
To see the influence of the number of layers of the generator h1 on the results, we employed the
DiscoGAN (Kim et al., 2017) official public implementation and added or removed layers from the
generator. The experiment was done on the CelebA data set, where 8 layers are employed in the
experiments of Kim et al. (2017).
The results for male to female conversion are visually illustrated in Figure 3. Note that since the
encoder and the decoder parts of the learned network are symmetrical, the number of layers is always
even. As can be seen visually, changing the number of layers has a dramatic effect on the results.
The best results are obtained at 6 or 8 layers, with 6 having the best alignment and 8 having better
discrepancy. The results degrade quickly, as one deviates from the optimal value. Using fewer
layers, the GAN fails to produce images of the desired class. Adding layers, the semantic alignment
is lost, just as expected. The experiment is repeated for both CycleGAN (Zhu et al., 2017) and
WGAN (Bojanowski et al., 2018) for other data sets in Figures 10-12 (Appendix B).
To quantitatively validate the prediction, we trained a mapping h from A to B using DiscoGAN
with and without circularity losses and measured the expected VGG similarity between its input and
output, that is, Ex∼DA

[cs(f(x), f(h(x)))]. The VGG descriptor similarity between two images x1

and x2 computes cs(f(x1), f(x2)), where cs is the cosine similarity function and f(x) is a deep
layer in the VGG network. Since the VGG network was trained to identify the content of a wide
variety of classes, these vector representations, f(x), are treated as compressed content descriptors
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of the images and cs(f(x1), f(x2)) ∈ [−1, 1] as the degree of content similarity between the images
x1 and x2. The higher cs(f(x1), f(x2)) is, the more similar we consider x1 and x2 to be. In
Table 4 (Appendix B), we report the best VGG similarity and discrepancy values among an extensive
parameter search, when trying to change the learning rate (between 10−5 to 1), the number of kernels
per layer (between 10 and 300), and the weight between circularity losses and the GANs (between
10−5 and 1).
As can be seen in Table 4 (Appendix B), when varying the number of layers, both the discrepancy
and the VGG similarity decrease (with or without the circularity losses). It is not surprising that
the discrepancy decreases, since when increasing the depth of the network, it can capture the target
distribution better. However, the decreasing value of the VGG similarity indicates that the alignment
is lost, as the mapping generates images that are not similar to the input images. This validates
Prediction 1, since we can see that the number of layers has a dramatic effect on the results.
While the depth seems to be highly related to the quality of the results, the norm of the weights do not
seem to point to a clear architecture, as shown in Table 5(a) (Appendix B). Since the table compares
the norms of architectures of different sizes, we also approximated the functions using networks
of a fixed depth k = 18 and then measured the norm. These results are presented in Table 5(b)
(Appendix B). In both cases, the optimal depth, which is 6 or 8, does not appear to have a be an
optimum in any of the measurements.

8.1.1 EXPERIMENTS WITHOUT THE CIRCULARITY LOSSES

To further demonstrate our observation, we conducted a series of experiments for comparing the
performance of circularity-based methods (Equation 3) with and without the circularity losses (that
is, by only minimizing ρC (h ◦ SA, SB)). We empirically observe that one can achieve comparable
results with and without the circularity losses.
This observation has been partially verified in (Zhu et al., 2017). In their ablation study (Tables 4-5),
it is shown that the performance of CycleGAN without the circularity losses is slightly worse than
the performance of CycleGAN on the Cityscapes data set (Cordts et al., 2016). The evaluation is
done using the the standard metrics from the Cityscapes benchmark (Cordts et al., 2016), including
per-pixel accuracy, per-class accuracy, and mean class Intersection-Over-Union (Class IOU) (Cordts
et al., 2016). In Figure 2(b) of (Liu et al., 2017), it is shown that the translation accuracy of UNIT is
slightly worse when training it without its cycle consistency losses on the Maps data set (Isola et al.,
2017).
As can be seen in Table 4 (Appendix B), the results (e.g., discrepancy and VGG similarity scores)
of DiscoGAN with and without the circularity losses are fairly similar when varying the number
of layers. The results for hair color conversions are shown in Figure 2. It is evident that the output
image is closely related to the input images, despite the fact that circularity loss terms were not used.
As an additional experiment, we compared the performance of three variations of the CycleGAN
method: with the circularity and GAN losses, without the circularity losses and without the GAN
losses. We also compare them with the identity mapping h(x) = x. We used the official public
implementation with the standard ResNet generator with the default hyperparameters. In this
experiment, we trained the models on two data sets: (i) aerial photographs to maps, using data
scraped from Google Maps (Isola et al., 2017) and (ii) architectural photographs to their labels from
the CMP Facades data set (Radim Tyleček, 2013). We used a 6-block ResNet generator on the Maps
dataset and a 4-block ResNet on the Facades dataset. These data sets are unimodal, meaning, that
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Figure 2: Results for the celebA data set for converting blond to black hair and vice versa, when the
mapping is obtained by the GAN loss without additional losses.

paired matches (x, y(x)) exist in the data set, even though the learning algorithm is not provided
with them.
We measure the performance of each generator h using three different scores. The first score is
the expected VGG similarity between h(x) and y(x), that is, Ex∼DA

[cs(f(h(x)), f(y(x)))]. The
second and third scores are based on the expected Learned Perceptual Image Patch Similarity (LPIPS)
metric (Zhang et al., 2018) between h(x) and y(x). For a given pretrained neural network F of depth
L, the LPIPS of two images x1 and x2 is computed as the average over the cosine distance of the
activations of F across various layers, that is, LPIPS(x1, x2) := 1

L

∑L
l=1 cd(Fl(x1), Fl(x2)), where

cd is the cosine distance function and Fl is the l’th layer of F . We measured the LPIPS once using a
pretrained VGG network and once with a pretrained AlexNet. The lower LPIPS(x1, x2) is, the more
similar we consider x1 and x2 to be. We used the official public implementation of LPIPS and the
networks were pretrained on ILSVRC2012 (Russakovsky et al., 2015).
The scores are averaged over 20 trials and the expectations Ex∼DA

are estimated using the test data.
As can be seen in Table 2 (Appendix B), the performance of CycleGAN without the circularity
losses are comparable to those of CycleGAN with the circularity losses (are slightly worse on the
Maps data set and are slightly better on the Facades data set). On the other hand, the results of
CycleGAN without the GAN losses and the identity function are significantly worse than the results
of CycleGAN with or without the circularity losses. In Figure 13 (Appendix B), we observe that
CycleGAN without the circularity losses learns an approximation of the target function in both
directions.

8.2 Results for Algorithms 1, 2 and 3

We test the three algorithms on three unsupervised alignment methods: DiscoGAN (Kim et al., 2017),
CycleGAN (Zhu et al., 2017), and DistanceGAN (Benaim and Wolf, 2017). In DiscoGAN and
CycleGAN, we train h1 (and h2), using two GANs with two circularity constraints; in DistanceGAN,
to train h1 (and h2), one GAN and one distance correlation loss are used. The published hyperparam-
eters for each data set are used, except when using Hyperband, where we vary the number of layers,
the learning rate and the batch size.
Five data sets were used in the experiments: (i) aerial photographs to maps, using data scraped from
Google Maps (Isola et al., 2017), (ii) the mapping between photographs from the cityscapes data
set and their per-pixel semantic labels (Cordts et al., 2016), (iii) architectural photographs to their
labels from the CMP Facades data set (Radim Tyleček, 2013), (iv) handbag images (Zhu et al., 2016)
to their binary edge images, as obtained from the HED edge detector (Xie and Tu, 2015), and (v) a
similar data set for the shoe images from (Yu and Grauman, 2014).
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Figure 3: Varying the number of layers of the generator. Results of DiscoGAN on CelebA Male
to Female transfer. The best results are obtained for 6 or 8 layers. For more than 6 layers,
the alignment is lost.

Throughout the experiments of Algorithm 1, fixed values are used as the tolerance hyperparameter
(c = 2).

8.2.1 EARLY STOPPING CRITERION (ALGORITHM 1)

For testing the early stopping criterion suggested in Algorithm 1, we ran DiscoGAN (Kim et al.,
2017), DistanceGAN (Benaim and Wolf, 2017) and CycleGAN (Zhu et al., 2017) with the default
hyperparameters in the papers and compared, three scores, at each time point. The first is an estimated
value of suph2∈Pk

RSA [h1, h2] + cρ̂∗k + infh∈Pk
infd∈C , β(d)≤1 K (h, d; y), which is our bound in

Theorem 1, when neglecting the generalization gap terms. Here, ρ∗k := infh∈Pk
ρC (h ◦ SA, SB) is

replaced with its upper bound ρ̂∗k (see Section 6.1), suph2∈Pk
RSA [h1, h2] is estimated according

to Section 6.1 and the estimation of infh,dK (h, d; y) is described in Section 8.3. The second
is an estimated value of suph2∈Pk

RSA [h1, h2] + cρ̂∗k, which is our bound, excluding the term
infh,dK (h, d; y) and the generalization gap terms. The third is the ground-truth error, RDA

[h1, y] =
Ex∼DA

[`(h(x), y(x))], where y is the ground-truth mapping and the expected value is taken with
respect to the test data set.
The results are depicted in the main results table (Table 3) as well as in Figure 4 for DiscoGAN,
DistanceGAN and CycleGAN.
Table 3 presents the correlation and p-value between the ground-truth error, as a function of the
training iteration, and the estimated value of the bound. A high correlation (low p-value) between the
estimated value of the bound and the ground-truth error, as a function of the iteration, indicates the
validity of the bound and the utility of the algorithm. Similar correlations are shown with the GAN
losses and the reconstruction losses (DiscoGAN and CycleGAN) or the distance correlation loss
(DistanceGAN), in order to demonstrate that these are much less correlated with the ground-truth
error. In Figure 4, we omit the other scores in order to reduce clutter.
As can be seen, there is an excellent match between the mean ground-truth error of the learned
mapping h1 and the predicted error. No such level of correlation is present when considering the
GAN losses or the reconstruction losses (for DiscoGAN and CycleGAN), or the distance correlation
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Figure 4: Results of Algorithm 1. Ground-truth errors RDA
[ht1, y] are in red, the estimated values

ofRSA [ht1, h
t
2]+cρ̂∗k andRSA [ht1, h

t
2]+cρ̂∗k+K are in black and blue respectively (c = 2).

x-axis is the iteration. y-axis is the expected risk/estimation of the bound. It takes a few
epochs for ht1 to have a small enough discrepancy, until which the bound is ineffective.
We ran the algorithms using the default hyperparameters in their papers.

loss of DistanceGAN. Specifically, the very low p-values in the first column of Table 3 shows that
there is a clear correlation between the ground-truth error and our bound for all data sets and methods.
For the other columns, the values in question are chosen to be the losses used for h1. The lower
scores in these columns show that none of these values are as correlated with the ground-truth error,
and so cannot be used to estimate this error.

In the experiment of Algorithm 1 for DiscoGAN, which has a large number of sample points, the
cycle from B to A and back to B is significantly correlated with the ground-truth error with very low
p-values in four out of five data sets. However, its correlation is significantly lower than that of the
estimation of our bound.

These results also demonstrate the tightness of the bound. As can be seen, the bound is always highly
correlated with the test error and in most cases, it is tight as well (close to the test error). Bounds that
are highly correlated with the test error are very useful, since they faithfully indicate when the test
error is smaller.
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(a) (b)

Figure 5: Applying unsupervised Hyperband for selecting the best configuration for UNIT for
the Maps data set. The x-axis is the epoch count and the y-axis is the error/estimated
value of Equation (12) of the selected configuration. (a) Blue and orange lines are the
estimated value of Equation (12) and the ground-truth error, as in Figure 6. (b) Images
produced for three different configurations, as indicated on the plot in (a).

8.2.2 HYPERPARAMETER SELECTION WITH THE MODIFIED HYPERBAND ALGORITHM

(ALGORITHM 2)

Our bound is used in Section 6.2 to create an unsupervised variant of the Hyperband method. In
addition to selecting the architecture, this allows for the optimization of multiple hyperparameters at
once, while enjoying the efficient search strategy of the Hyperband method (Li et al., 2018).

Figure 6 demonstrates the applicability of our unsupervised Hyperband-based method for different
data sets, employing both DiscoGAN and DistanceGAN. The graphs show the error and the estimated
value of Equation (12) obtained for the selected configuration after up to 35 Hyperband iterations.
As can be seen, in all cases, the method is able to recover a configuration that is significantly better
than what is recovered when only optimizing for the number of layers. To further demonstrate the
generality of our method, we applied it on the UNIT (Liu et al., 2017) architecture. Specifically, for
DiscoGAN and DistanceGAN, we optimize over the number of encoder and decoder layers, batch
size and learning rate, while for UNIT, we optimize over the number of encoder and decoder layers,
number of resnet layers and learning rate. Figure 5 and Figure 6(b) show the convergence on the
Hyperband method.

8.2.3 STOPPING CRITERION FOR THE NON-UNIQUE CASE (ALGORITHM 3)

For testing the stopping criterion suggested in Algorithm 3, we plotted the value of the estimated
value of the bound and attached a specific sample for a few epochs. For this purpose, we employed
DiscoGAN for both h1 and h2, such that the encoder part is shared between them. As we can see in
Figures 7– 8, for smaller values of the bound, we obtain more realistic images and the alignment also
improves.
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8.3 Estimating the Approximation Error Term

We conducted an experiment for validating that the term K = infh∈Pω infd∈C , β(d)≤1 K (h, d; y)
is small, in comparison with R = infh∈Pω Ex∼DA

[‖h(x) − y(x)‖2]. In order to estimate K , we
trained a generator h and a discriminator d to minimize K (h, d; y) = Ex∼DA

[‖∇y(x)d(y(x)) −
(h(x) − y(x))‖2] given supervised data {(xi, y(xi))}mi=1 and similarly we trained a generator h
to minimize E[‖h(x) − y(y)‖2]. In this experiment, the generator’s architecture is the standard
4-layer generator of DiscoGAN/ DistanceGAN/ CycleGAN and is trained to minimize K (h, d; y) or
E[‖h(x)− y(y)‖2] along with its standard losses (that is, GAN and circularity/distance correlation
losses). The discriminator d is trained to minimize K (h, d; y) along with a constraint to minimize the
loss 1

m

∑m
i=1 ‖Hd(y(xi))‖2, where Hd(x) is the Hessian matrix of d at x (see Section 3.1 for details).

We plot the values of the term K (h, d; y) only for d’s that satisfy 1
m

∑m
i=1 ‖Hd(y(xi))‖2 ≤ 1. Finally,

the values of K (h, d; y) and E[‖h(x)− y(y)‖2] at the last iteration of the optimization process are
used as the estimations of K and R . The architecture of d consists of four convolutional layers, each
one has w channels, kernel size 4, stride size 2 and a padding value 1. The activation function in
each layer is Leaky ReLU with slope 0.2. The number of channels is treated as the width of d.
In order to investigate the effect of the size of d on the value of K (h, d; y), we ran the experiment of
discriminators with w ∈ {10, 200, 500}. Figure 9 depicts the results of the comparison of the values
of the two terms on test data as a function of the number of iterations. As can be seen, the value of K
is significantly smaller than R for all values of w, and it also significantly decreases as w increases.
This behavior is consistent over all iterations.

9. Conclusions

The recent success in mapping between two domains in an unsupervised way and without any
existing knowledge, other than network hyperparameters, is nothing less than extraordinary and has
far reaching consequences. As far as we know, nothing in the existing machine learning or cognitive
science literature suggests that this would be possible.
In Section 5, we derived a novel risk bound for the unsupervised learning of mappings between
domains. The bound takes into account the ability of the hypothesis classes (including both the
generator and the discriminator) to model the cross-domain mapping task and the ability to generalize
from a finite set of samples.
This bound leads directly to a method for estimating the success of the learned mapping between the
two domains without relying on a validation set. By training pairs of networks that are distant from
each other, we are able to obtain a confidence measure on the mapping’s outcome. The confidence
estimation has application to hyperparameter selection and for performing early stopping. The bound
is extended to the non-unique case mapping case in Section 7.
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CycleGAN w.o circ w.o GAN losses Identity

Metric Maps Facades Maps Facades Maps Facades Maps Facades

VGG similarity ↑ 0.601 0.319 0.585 0.363 0.391 0.275 0.358 0.242
LPIPS (AlexNet) ↓ 0.213 0.561 0.235 0.530 0.542 0.696 0.711 0.725
LPIPS (VGG) ↓ 0.399 0.654 0.421 0.601 0.594 0.749 0.623 0.804

Table 2: Comparing the performance of CycleGAN with different loss functions. We report the
classification accuracy, VGG descriptor similarity and LPIPS (with a pretrained AlexNet
and VGG network) between h(x) and y(x) for the trained generators h. The generators
h are trained using the CycleGAN method with its standard losses (first column), without
the circularity losses (second column) and without the GAN losses (third column). The
last column specifies the performance of the identity mapping h(x) = x. A down arrow
indicates that a higher score means more similar (and vice versa). The scores are averaged
over the test data.

Method Data set Estimated value GANA GANB CycleA/Dist CycleB
of the bound

Disco- Shoes2Edges 1.00 (<1E-16) -0.15 (3E-03) -0.28 (1E-08) 0.76(<1E-16) 0.79(<1E-16)
GAN (Kim et al., 2017)

Bags2Edges 1.00 (<1E-16) -0.26 (6E-11) -0.57 (<1E-16) 0.85 (<1E-16) 0.84 (<1E-16)
Cityscapes 0.94 (<1E-16) -0.66 (<1E-16) -0.69 (<1E-16) -0.26 (1E-07) 0.80 (<1E-16)
Facades 0.85 (<1E-16) -0.46 (<1E-16) 0.66 (<1E-16) 0.92 (<1E-16) 0.66 (<1E-16)
Maps 1.00 (<1E-16) -0.81 (<1E-16) 0.58 (<1E-16) 0.20 (9E-05) -0.14 (5E-03)

Distance- Shoes2Edges 0.98 (<1E-16) - -0.25 (2E-16) -0.14 (1E-05) -
GAN (Benaim and Wolf, 2017)

Bags2Edges 0.93 (<1E-16) - -0.08 (2E-02) 0.34 (<1E-16) -
Cityscapes 0.59 (<1E-16) - 0.22 (1E-11) -0.41 (<1E-16) -
Facades 0.48 (<1E-16) - 0.03 (5E-01) -0.01 (9E-01) -
Maps 1.00 (<1E-16) - -0.73 (<1E-16) 0.39 (4E-16) -

Cycle- Shoes2Edges 0.99 (<1E-16) 0.44 (5E-10) 0.038 (3E-12) -0.44 (5E-13) -0.40 (3E-11)
GAN (Zhu et al., 2017)

Bags2Edges 0.99 (<1E-16) -0.23 (<1E-16) 0.21 (<2E-14) -0.20 (5E-15) -0.34 (4E-10)
Cityscapes 0.91 (<1E-16) 0.30 (6E-11) 0.024 (4E-11) 0.37 (3E-05) 0.42 (2E-14)
Facades 0.73 (<1E-16) -0.02 (<1E-16) -0.1 (<1E-16) -0.14 (4E-10) 0.2 (3E-11)
Maps 0.85 (<1E-16) 0.01 (5E-16) 0.26 (3E-16) -0.39 (1E-15) -0.32 (4E-10)

Table 3: Pearson correlations and the corresponding p-values (in parentheses) of the ground-truth
error with: (i) the estimated value of the bound, (ii) the GAN losses, and (iii) the circularity
losses/distance similarity loss.
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Data set Number Batch Learning
Layers Size Rate

DiscoGAN (Kim et al., 2017)
Shoes2Edges 3 24 0.0008
Bags2Edges 2 59 0.0010
Cityscapes 3 27 0.0009
Facades 3 20 0.0008
Maps 3 20 0.0005

DistanceGAN (Benaim and Wolf, 2017)
Shoes2Edges 3 15 0.0007
Bags2Edges 3 33 0.0007
Cityscapes 4 21 0.0006
Facades 3 8 0.0006
Maps 3 20 0.0005

Data set #Layers #Res L.Rate

UNIT (Liu et al., 2017)
Maps 3 1 0.0003

(b)

default unsupervised
parameters Hyperband

x h1(x) h1(x)

(c)

Figure 6: Applying unsupervised Hyperband for selecting a well-performing configuration. For Disco-
GAN (left) and DistanceGAN (right), we optimize over the number of encoder and decoder
layers, batch size and learning rate, while for UNIT, we optimize over the number of encoder and
decoder layers, number of residual layers and learning rate. (a) Each graph shows the error of
the best configuration selected by Hyperband, as a function the number of Hyperband iterations,
when optimizing the estimated value of Equation (12) (blue). The corresponding ground-truth
errors are shown in orange. Dotted lines represent the best configuration errors, when varying
only the number of layers without Hyperband.(b) The corresponding hyperparameters of the best
configuration as selected by Hyperband. (c) Images produced for DiscoGAN’s shoes2edges: 1st
column is the input, the 2nd is the result of DiscoGAN’s default configuration, 3rd is the result of
the configuration selected by our method.
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Figure 7: Results for Algorithm 3 for non-unique
translation of Edges to Handbags. The
black line stands for the estimated value
of the bound. The images correspond to
different values of the estimated bound.

Figure 8: Results for Algorithm 3 for non-unique
translation of Edges to Shoes. The black
line stands for the estimated value of
the bound. The images correspond to
different values of the estimated bound.
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Figure 9: Comparing K with R . The x-axis is the training iteration. The blue curve stands for the
value of Ex∼DA

[‖h(x) − y(y)‖2], the red, yellow and green curves stand for the values
of K (h, d; y) = Ex∼DA

[
‖∇y(x)d(y(x))− (h(x)− y(x))‖2

]
for d of widths 10, 200, 500

(resp.). The expectations Ex∼DA
are estimated using the test data.
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Appendix A. Proofs of the Main Results

In this section, we prove Theorem 1.

A.1 Useful Lemmas

Lemma 2 Let C be a symmetric class of functions d : X → R and D1, D2, D3, D4 be four distribu-
tions over X , then, ∣∣∣ρC (D1, D2)− ρC (D3, D4)

∣∣∣ ≤ ρC (D1, D3) + ρC (D2, D4).

Proof We consider that:∣∣∣∣∣ρC (D1, D2)− ρC (D3, D4)

∣∣∣∣∣
=

∣∣∣∣∣ sup
d∈C

{
Ex∼D1 [d(x)]− Ex∼D2 [d(x)]

}
− sup

d∈C

{
Ex∼D3 [d(x)]− Ex∼D4 [d(x)]

}∣∣∣∣∣
≤

∣∣∣∣∣ sup
d∈C

{
Ex∼D1 [d(x)]− Ex∼D2 [d(x)]− Ex∼D3 [d(x)] + Ex∼D4 [d(x)]

}∣∣∣∣∣
≤

∣∣∣∣∣ sup
d∈C

{
Ex∼D1 [d(x)]− Ex∼D3 [d(x)]

}
+ sup

d∈C

{
Ex∼D2 [d(x)]− Ex∼D4 [d(x)]

}∣∣∣∣∣
= sup
d∈C

{
Ex∼D1 [d(x)]− Ex∼D3 [d(x)]

}
+ sup

d∈C

{
Ex∼D2 [d(x)]− Ex∼D4 [d(x)]

}
=ρC (D1, D3) + ρC (D2, D4).

The last two equations follow from the definition of ρC and the assumption that C is symmetric.

The following lemma is a variation of the Occam’s Razor theorem from (Benaim et al., 2018).

Lemma 3 Let y ∈ T be a target function and P a class of functions h : XA → RM . Then, for any
function h1 ∈ P , we have:

RDA
[h1, y] ≤ 3 sup

h2∈P
RDA

[h1, h2] + 3 inf
h∈P

RDA
[h, y]. (13)

Proof First, we prove Equation (13). We consider that

`(a, c) = ‖a− c‖22
= ‖a− b+ b− c‖22
≤ (‖a− b‖2 + ‖b− c‖2)2

= ‖a− b‖22 + ‖b− c‖22 + 2‖a− b‖2 · ‖b− c‖2
≤ ‖a− b‖22 + ‖b− c‖22 + 2 max(‖a− b‖22, ‖b− c‖22)

≤ 3(‖a− b‖22 + ‖b− c‖22)

= 3(`(a, b) + `(b, c)).
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Therefore, for any function h′ ∈ P , we have:

RDA
[h1, y] = Ex∼DA

[‖h1(x)− y(x)‖22]

≤ Ex∼DA

[
3‖h1(x)− h′(x)‖22 + 3‖h′(x)− y(x)‖22

]
= 3

[
RDA

[h1, h
′] +RDA

[h′, y]
]
.

Since h′ ∈ P , we have: RDA
[h1, h

′] ≤ suph2∈P RDA
[h1, h2]. Therefore, we have:

∀h′ ∈ P : RDA
[h1, y] ≤ 3

[
sup
h2∈P

RDA
[h1, h2] +RDA

[h′, y]

]
.

In particular, since the inequality holds uniformly for all h′ ∈ P , we can take infh′∈P in both sides of
the inequality and obtain the desired inequality:

RDA
[h1, y] ≤ 3

[
sup
h2∈P

RDA
[h1, h2] + inf

h′∈P
RDA

[h′, y]

]
.

The following lemma is a simple extension of (cf. Mohri et al., 2018, Theorem 3.3) for classes of
functions that are bounded in [0, L] instead of [0, 1].

Lemma 4 Let X ⊂ RN and G be a family of functions g : X → [0, L]. Let D be a distribution over
X . Then, for any δ > 0, with probability at least 1− δ over the draw of an i.i.d. sample S ∼ Dm, we
have:

∀g ∈ G : Ex∼D[g(x)] ≤ 1

m

∑
x∈S

g(x) + 2R̂S (G ) + 3L

√
log(2/δ)

2m
.

Proof Define F = {g/L | g ∈ F }. This class consists of functions from X to [0, 1]. By (cf. Mohri
et al., 2018, Theorem 3.3), with probability at least 1− δ over the selection of S ∼ Dm, we have:

∀f ∈ F : Ex∼D[f(x)] ≤ 1

m

∑
x∈S

f(x) + 2R̂S (F ) + 3

√
log(2/δ)

2m
.

We can rewrite the above inequality as follows:

∀g ∈ G : Ex∼D[g(x)/L] ≤ 1

m

∑
x∈S

g(x)/L+ 2R̂S (F ) + 3

√
log(2/δ)

2m
.

Hence, by multiplying both sides of the inequality by L, we have:

∀g ∈ G : Ex∼D[g(x)] ≤ 1

m

∑
x∈S

g(x) + 2LR̂S (F ) + 3L

√
log(2/δ)

2m
.

Finally, we recall that the Rademacher complexity is multiplicative, and therefore, LR̂S (F ) =
R̂S (G ), that completes the proof.
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A.2 Proof of Theorem 1

The following lemma bounds the generalization risk between a hypothesis h and a target function
y. The upper bound is a function of ρC (h ◦ DA, DB) = sup

d∈C
{Ex∼h◦DA

[d(x)]− Ex∼DB
[d(x)]},

which is the C -IPM between the distributions h ◦DA and DB . An additional term expresses the
approximation of h(x)− y(x) by the gradient of a function d ∈ C . Both terms are multiplied by a
term that depends on the smoothness of d.

Lemma 5 Assume the settings of Section 4 and Section 5. Assume that XA ⊂ RN and XB ⊂ RM
are convex and bounded sets. Assume that C ⊂ C2. Let y ∈ T be target function and d ∈ C such
that β(d) := ‖Hd‖∞,XB < 2. Then, for any function h ∈ H , we have:

RDA
[h, y] ≤ 2ρC (h ◦DA, DB)

2− β(d)
+

2 sup
u∈XA

‖h(u)− y(u)‖2

2− β(d)
·K (h, d; y).

Proof First, since each function f ∈ H ∪ T is measurable, by a change of variables (cf. Varadhan,
2002, Theorem 1.9), we can represent the C -IPM in the following manner:

ρC (h ◦DA, DB) = sup
d∈C

{
Eu∼h◦DA

[d(u)]− Ev∼DB
[d(v)]

}
= sup

d∈C

{
Eu∼h◦DA

[d(u)]− Ev∼y◦DA
[d(v)]

}
= sup

d∈C

{
Ex∼DA

[d ◦ h(x)]− Ex∼DA
[d ◦ y(x)]

}
= sup

d∈C

{
Ex∼DA

[d ◦ h(x)− d ◦ y(x)]
}
. (14)

For fixed d ∈ C and z ∈ XB , we can write the following Taylor expansion (possible since C ⊂ C2):

d(z + δ)− d(z) = (∇d(z))> · δ +
1

2
δ> · Hd(u

∗) · δ,

where u∗ is strictly between z and z + δ (on the line connecting z and z + δ). In particular, for each
d ∈ C and x ∈ XA, if z = y(x) and δ = h(x)− y(x), we have:

d(h(x))− d(y(x)) =(∇y(x)d(y(x)))> · (h(x)− y(x))

+
1

2
(h(x)− y(x))> · Hd(u

∗
d,x) · (h(x)− y(x)),

(15)

where u∗d,x is strictly between y(x) and h(x) (on the line connecting y(x) and h(x)). Therefore, by
combining Equations (14) and (15), we obtain that for every d ∈ C , we have:

ρC (h ◦DA, DB) ≥Ex∼DA
[d(h(x))− d(y(x))]

=Ex∼DA

[
(∇y(x)d(y(x)))> · (h(x)− y(x))

]
+

1

2
Ex∼DA

[
(h(x)− y(x))> · Hd(u

∗
d,x) · (h(x)− y(x))

]
=Ex∼DA

[
‖h(x)− y(x)‖22

]
+ Ex∼DA

[(
∇y(x)d(y(x))− (h(x)− y(x))

)> · (h(x)− y(x))
]

+
1

2
Ex∼DA

[
(h(x)− y(x))> · Hd(u

∗
d,x) · (h(x)− y(x))

]
.
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In particular, by |E[X]| ≤ E[|X|], we have:

ρC (h ◦DA, DB)

≥Ex∼DA

[
‖h(x)− y(x)‖22

]
−
∣∣∣Ex∼DA

[(
∇y(x)d(y(x))− (h(x)− y(x))

)> · (h(x)− y(x))
] ∣∣∣

− 1

2

∣∣∣Ex∼DA

[
(h(x)− y(x))> · Hd(u

∗
d,x) · (h(x)− y(x))

] ∣∣∣
≥Ex∼DA

[
‖h(x)− y(x)‖22

]
− Ex∼DA

[∣∣∣ (∇y(x)d(y(x))− (h(x)− y(x))
)> · (h(x)− y(x))

∣∣∣]
− 1

2
Ex∼DA

[∣∣∣(h(x)− y(x))> · Hd(u
∗
d,x) · (h(x)− y(x))

∣∣∣] .
(16)

By applying the Cauchy-Schwartz inequality,∣∣∣ (∇y(x)d(y(x))− (h(x)− y(x))
)> · (h(x)− y(x))

∣∣∣
≤ ‖∇y(x)d(y(x))− (h(x)− y(x))‖2 · ‖h(x)− y(x)‖2
≤ ‖∇y(x)d(y(x))− (h(x)− y(x))‖2 · sup

u∈XA

‖h(u)− y(u)‖2.
(17)

Again, by applying the Cauchy-Schwartz inequality,

♣ :=
∣∣∣(h(x)− y(x))> · Hd(u

∗
d,x) · (h(x)− y(x))

∣∣∣
≤‖(h(x)− y(x))> · Hd(u

∗
d,x)‖2 · ‖h(x)− y(x)‖2

≤‖Hd(u
∗
d,x)‖2 · ‖h(x)− y(x)‖22.

Since XB is convex, y(x), h(x) ∈ XB and u∗d,x is on the line connecting y(x) and h(x), we have:
u∗d,x ∈ XB . In particular,

♣ ≤ sup
z∈XB

‖Hd(z)‖2 · ‖h(x)− y(x)‖22

= β(d) · ‖h(x)− y(x)‖22.
(18)

Therefore, by combining Equations (16), (17) and (18), we have:

ρC (h ◦DA, DB) ≥Ex∼DA

[
‖h(x)− y(x)‖22

]
− 1

2
Ex∼DA

[
β(d) · ‖h(x)− y(x)‖22

]
− sup
u∈XA

‖h(u)− y(u)‖2 · Ex∼DA

[
‖∇y(x)d(y(x))− (h(x)− y(x))‖2

]
=

(
1− β(d)

2

)
RDA

[h, y]

− sup
u∈XA

‖h(u)− y(u)‖2 · Ex∼DA

[
‖∇y(x)d(y(x))− (h(x)− y(x))‖2

]
=

(
1− β(d)

2

)
RDA

[h, y]− sup
u∈XA

‖h(u)− y(u)‖2 ·K (h, d; y).

(19)

By combining Equation (19) and β(d) < 2, we obtain the desired bound.

The following result is obtained by combining Lemma 5 with Lemma 3.
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Lemma 6 Assume the setting of Section 4. Assume that XA ⊂ RN and XB ⊂ RM are convex and
bounded sets. Assume that C ⊂ C2. Let T be a class target functions and P ⊂ H be a class of
candidate functions. Then, for any y ∈ T , h ∈ P , d ∈ C , such that, β(d) < 2 and function h1 ∈ H ,
we have:

RDA
[h1, y] ≤3 sup

h2∈P
RDA

[h1, h2] +
6ρC (h ◦DA, DB)

2− β(d)

+

6 sup
u∈XA

‖h(u)− y(u)‖2

2− β(d)
·K (h, d; y).

Proof Let y ∈ T , h ∈ P and d ∈ C , such that, β(d) < 2. By Lemma 5:

RDA
[h, y] ≤ 2ρC (h ◦DA, DB)

2− β(d)
+

2 sup
u∈XA

‖h(u)− y(u)‖2

2− β(d)
·K (h, d; y). (20)

In particular, since h ∈ P , we have: inf
h′∈P

RDA
[h′, y] ≤ RDA

[h, y]. By combining Equation (13)

with Equation (20), we obtain the desired inequality.

Lemma 7 Assume that XA ⊂ RN and XB ⊂ RM are convex and bounded sets. Assume that
C ⊂ C2. Let T be a class target functions and P a class of candidate functions. Let α ∈ [0, 1). Then,
for any h1 ∈ H , we have:

inf
y∈T

RDA
[h1, y] . sup

h2∈P
RDA

[h1, h2] +
1

1− α
inf
h,d

{
ρC (h ◦DA, DB) + inf

y∈T
K (h, d; y)

}
,

where the infimum is taken over h ∈ P and d ∈ C , such that, β(d) ≤ 1 + α.

Proof Let h ∈ P , such that, h : XA → XB , d ∈ C , such that β(d) ≤ 1 and y ∈ T . Then, by
Lemma 6, for every h1 ∈ P , we have:

RDA
[h1, y] ≤3 sup

h2∈P
RDA

[h1, h2] + 6ρC (h ◦DA, DB)

+ 6 sup
u∈XA

‖h(u)− y(u)‖2 ·K (h, d; y).

In particular, since XB is bounded, there is a constant L > 0 such that sup
a,b∈XB

‖a− b‖2 ≤ L. Hence,

for every h, y : XA → XB , we have: sup
u∈XA

‖h(u)− y(u)‖2 ≤ L. Therefore,

RDA
[h1, y] . sup

h2∈P
RDA

[h1, h2] +
1

1− α
inf
h,d
{ρC (h ◦DA, DB) + K (h, d; y)} . (21)

Finally, by taking inf
y∈T

in both sides of Equation (21), we obtain the desired inequality.
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Lemma 8 (Cross-Domain Mapping with IPMs) Assume that XA ⊂ RN and XB ⊂ RM are con-
vex and bounded sets. Assume that C ⊂ C2 and supd∈C ‖d‖∞,XB < ∞. Let α ∈ [0, 1). Then, for
any δ ∈ (0, 1), with probability at least 1− δ over the selection of SA ∼ Dm1

A and SB ∼ Dm2
B , for

every ω ∈ Ω and h1 ∈ Pω(SA, SB), we have:

inf
y∈T

RDA
[h1, y] . sup

h2∈Pω(SA,SB)
RSA [h1, h2]

+
1

1− α
inf

h∈Pω(SA,SB)

ρC (h ◦ SA, SB) + inf
y∈T

inf
d∈C

β(d)≤1+α

K (h, d; y)


+ R̂SA(H ) +

1

1− α

(
R̂SA(C ◦H ) + R̂SB (C ) +

√
log(1/δ)

min(m1,m2)

)
.

Proof By Lemma 7, for any class P , we have:

inf
y∈T

RDA
[h1, y] . sup

h2∈P
RDA

[h1, h2]

+
1

1− α
inf
h,d

{
ρC (h ◦DA, DB) + inf

y∈T
K (h, d; y)

}
,

where the infimum is taken over h ∈ P and d ∈ C , such that, β(d) ≤ 1+α. In particular, for any two
data sets SA and SB and ω ∈ Ω, we have:

inf
y∈T

RDA
[h1, y] . sup

h2∈Pω(SA,SB)
RDA

[h1, h2]

+
1

1− α
inf
h,d

{
ρC (h ◦DA, DB) + inf

y∈T
K (h, d; y)

}
,

(22)

where the infimum is taken over h ∈ Pω(SA, SB) and d ∈ C , such that, β(d) ≤ 1 + α. Therefore,
we are left to replace the terms RDA

[h1, h2] and ρC (h ◦ DA, DB) with their empirical versions,
RSA [h1, h2] and ρC (h ◦ SA, SB).
Let L := maxa,b∈XB

‖a − b‖2 and let `H := {`(h1(x), h2(x)) | h1, h2 ∈ H }. We recall that
any h ∈ H is a mapping from XA to XB . Therefore, for any h1, h2 ∈ H and x ∈ XA, we have:
0 ≤ `(h1(x), h2(x)) = ‖h1(x)−h2(x)‖22 ≤ 3(‖h1(x)‖22 +‖h2(x)‖22) ≤ 3L2. Hence, each function
q ∈ `H is bounded within [0, 3L2]. By Lemma 4, with probability at least 1− δ/3 over the selection
of SA ∼ Dm, for any q ∈ `H , we have:

∀q ∈ `H : Ex∼DA
[q(x)] ≤ 1

m1

∑
x∈SA

q(x) + 2R̂SA(`H ) + 9L2

√
log(6/δ)

2m1
.

We can rewrite the above inequality as follows:

∀h1, h2 ∈ H : RDA
[h1, h2] =Ex∼DA

[`(h1(x), h2(x))]

≤ 1

m1

∑
x∈SA

`(h1(x), h2(x)) + 2R̂SA(`H ) + 9L2

√
log(6/δ)

2m1

=RSA [h1, h2] + 2R̂SA(`H ) + 9L2

√
log(6/δ)

2m1
.
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In particular, with probability at least 1− δ/3, for any h1 ∈ H , P ⊂ H and h2 ∈ P , we have:

RDA
[h1, h2] ≤RSA [h1, h2] + 2R̂SA(`H ) + 9L2

√
log(6/δ)

2m1
.

Since the inequality holds uniformly for all P ⊂ H and h2 ∈ P , we can take suph2∈P in both sides
of the inequality. Therefore, with probability at least 1− δ/3, we have:

∀h1 ∈ H ,P ⊂ H : sup
h2∈P

RDA
[h1, h2] ≤ sup

h2∈P
RSA [h1, h2] + 2R̂SA(`H ) + 9L2

√
log(6/δ)

2m1
.

Hence, by selecting P := Pω(SA, SB), we have:

sup
h2∈Pω(SA,SB)

RDA
[h1, h2] ≤ sup

h2∈Pω(SA,SB)
RSA [h1, h2] + 2R̂SA(`H ) + 9L2

√
log(1/δ)

m1

. sup
h2∈Pω(SA,SB)

RSA [h1, h2] + R̂SA(`H ) +

√
log(1/δ)

m1
,

(23)

where the last inequality follows from the fact that L is a constant. Next, we would like to replace
the C -IPM with its empirical counterpart. By Lemma 2, we have:∣∣∣ρC (h ◦DA, DB)− ρC (h ◦ SA, SB)

∣∣∣ ≤ ρC (h ◦DA, h ◦ SA) + ρC (DB, SB).

In particular, by the triangle inequality, we have:

ρC (h ◦DA, DB) ≤ ρC (h ◦ SA, SB) + ρC (h ◦DA, h ◦ SA) + ρC (DB, SB). (24)

Again, by Lemma 4, with probability at least 1− δ/3 over the selection of SB ∼ Dm2
B , we have:

∀d ∈ C : Ex∼DB
[d(x)]− 1

m2

∑
x∈SB

d(x)

≤ 2R̂SB (C ) + 3 sup
d∈C
‖d‖∞,XB

√
log(6/δ)

2m2
.

In particular, by taking supd∈C in both sides of the inequality, we have:

ρC (DB, SB) = sup
d∈C

{
Ex∼DB

[d(x)]− 1

m2

∑
x∈SB

d(x)

}

≤ 2R̂SB (C ) + 3 sup
d∈C
‖d‖∞,XB

√
log(6/δ)

2m2

. R̂SB (C ) +

√
log(1/δ)

m2
,

(25)
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where the last inequality follows from the fact that supd∈C ‖d‖∞,XB is a constant. Similarly, by
Lemma 4, with probability at least 1− δ/3 over the selection of SA ∼ Dm1

A , for all d ∈ C and h ∈ H ,
we have:

∀d ∈ C , ∀h ∈ H : Ex∼DA
[d(h(x))]− 1

m1

∑
x∈SA

d(h(x))

≤ 2R̂SA(C ◦H ) + 3 sup
d∈C
‖d‖∞,XB

√
log(6/δ)

2m1
.

By taking supd∈C in both sides of the inequality, we have:

∀h ∈ H : ρC (h ◦DA, h ◦ SA) = sup
d∈C

{
Ex∼DA

[d(h(x))]− 1

m1

∑
x∈SA

d(h(x))

}

≤ 2R̂SA(C ◦H ) + 3 sup
d∈C
‖d‖∞,XB

√
log(6/δ)

2m1

. R̂SA(C ◦H ) +

√
log(1/δ)

m1
,

(26)

where the last inequality follows from the fact that supd∈C ‖d‖∞,XB is a constant. Therefore, by
Equation (24) and union bound over Equations (25) and (26), with probability at least 1− 2δ/3 over
the selection of both SA and SB , for every h ∈ H , we have:

ρC (h ◦DA, DB) ≤ρC (h ◦ SA, SB) + 2R̂SB (C ) + 2R̂SA(C ◦H )

+ 3 sup
d∈C
‖d‖∞,XB

√ log(6/δ)

2m1
+

√
log(6/δ)

2m2

 .
(27)

Finally, by Equation (22) and union bound over Equations (23) and (27), with probability at least
1− δ over the selection of both SA and SB , for every h1, h2 ∈ H and d ∈ C , such that, β(d) ≤ 1 +α,
we have:

inf
y∈T

RDA
[h1, y] . sup

h2∈Pω(SA,SB)
RDA

[h1, h2] +
1

1− α
inf
h,d

{
ρC (h ◦DA, DB) + inf

y∈T
K (h, d; y)

}
. sup
h2∈Pω(SA,SB)

RSA [h1, h2] +
1

1− α
inf
h,d

{
ρC (h ◦ SA, SB) + inf

y∈T
K (h, d; y)

}

+ R̂SA(H ) +
1

1− α

(
R̂SA(C ◦H ) + R̂SB (C ) +

√
log(1/δ)

min(m1,m2)

)
.

Theorem 1 follows immediately from the above lemma, by taking α = 0 and T = {y}.

Appendix B. Additional Experiments

In this section, we provide additional figures, tables and plots for demonstrating the results in
Section 8.
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Figure 10: Varying the number of layers of the generator. Results of CycleGAN on Aerial View
Images to Maps transfer. The best results are obtained for 4 or 6 layers. For more than 6
layers, the target alignment is lost.

Figure 11: Varying the number of layers of the generator. Results of CycleGAN on Segmentation
to Image transfer.
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k = 4 k = 6 k = 8 k = 10 k = 12 k = 14

Male to Female Discrepancy (w circ) 0.521 0.203 0.091 0.094 0.080 0.084
VGG similarity (w circ) 0.301 0.269 0.103 0.106 0.096 0.110
Discrepancy (w.o circ) 0.501 0.213 0.102 0.091 0.079 0.82

VGG similarity (w.o circ) 0.332 0.292 0.110 0.115 0.132 0.117

Female to Male Discrepancy (w circ) 0.872 0.122 0.155 0.075 0.074 0.091
VGG similarity (w circ) 0.313 0.287 0.118 0.109 0.095 0.104
Discrepancy (w.o circ) 0.807 0.132 0.163 0.095 0.072 0.102

VGG similarity (w.o circ) 0.298 0.283 0.117 0.115 0.090 0.094

Blond to Black Hair Discrepancy (w circ) 0.447 0.204 0.092 0.082 0.084 0.081
VGG similarity (w circ) 0.395 0.293 0.260 0.136 0.101 0.097
Discrepancy (w.o circ) 0.431 0.212 0.087 0.092 0.098 0.078

VGG similarity (w.o circ) 0.415 0.313 0.254 0.113 0.121 0.109

Black to Blond Hair Discrepancy (w circ) 0.663 0.264 0.071 0.068 0.074 0.082
VGG similarity (w circ) 0.347 0.285 0.245 0.113 0.093 0.097
Discrepancy (w.o circ) 0.693 0.271 0.062 0.081 0.097 0.059

VGG similarity (w.o circ) 0.361 0.273 0.258 0.121 0.071 0.078

Eyeglasses Discrepancy (w circ) 0.311 0.144 0.065 0.062 0.058 0.051
to Non-Eyeglasses VGG similarity (w circ) 0.493 0.402 0.377 0.173 0.153 0.148

Discrepancy (w.o circ) 0.303 0.122 0.061 0.052 0.054 0.067
VGG similarity (w.o circ) 0.531 0.433 0.353 0.151 0.122 0.141

Non Eyeglasses Discrepancy (w circ) 0.542 0.528 0.226 0.243 0.097 0.085
to Eyeglasses VGG similarity (w circ) 0.481 0.382 0.377 0.131 0.138 0.137

Discrepancy (w.o circ) 0.512 0.502 0.193 0.186 0.084 0.065
VGG similarity (w.o circ) 0.499 0.363 0.341 0.195 0.171 0.146

Table 4: Comparing the performance of DiscoGAN with and without the circularity losses. We
compare the averaged VGG input-output descriptor similarity Ex∼DA

[cs(f(x), f(h(x)))]
and mapping discrepancy ρC (h ◦DA, DB) of a generator h, when varying its number of
layers k. “w/w.o circ” are short-hands that specify whether the generator was trained with
or without circularity losses. The expectations Ex∼DA

are estimated using the test data.
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Figure 12: Varying the number of layers of the generator. Results of WGAN on eyeglasses
removal.
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———– Number of layers ————
Norm 4 6 8 10 12

A→ B L1 norm 6382 23530 36920 44670 71930
Average L1 norm per layer 1064 2353 2637 2482 3270
L2 norm 18.25 29.24 28.44 31.72 36.57
Average L2 norm per layer 7.084 8.353 7.154 6.708 7.009

B → A L1 norm 6311 21240 31090 37380 64500
Average L1 norm per layer 1052 2124 2221 2077 2932
L2 norm 18.36 26.79 25.85 28.36 34.99
Average L2 norm per layer 7.161 7.757 6.552 6.058 6.771

(a)

———– Number of layers ————
Norm 4 6 8 10 12

A→ B L1 norm 317200 228700 356500 247200 164200
Average L1 norm per layer 9329 6726 10485 7271 4829
L2 norm 528.1 401.7 559.6 410.1 346.8
Average L2 norm per layer 3.031 2.284 3.242 2.257 1.890

B → A L1 norm 316900 194500 353900 171500 228900
Average L1 norm per layer 9323 5719 10410 5045 6733
L2 norm 523.2 375.9 555.7 346.5 373.3
Average L2 norm per layer 3.003 2.029 3.210 1.921 2.289

(b)

Table 5: (a) Norms of the various mappings h for mapping Males to Females using the DiscoGAN
architecture. (b) Norms of 18-layer networks that approximate the mappings obtained with
a varying number of layers.
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A

B

CycleGAN
(Zhu et al., 2017)

B → A

CycleGAN
(Zhu et al., 2017)

A→ B

CycleGAN
w.o circularity losses

B → A

CycleGAN
w.o circularity losses

A→ B

Figure 13: Results of CycleGAN with and without circularity losses on the Maps data set. The
first and second row stand for the ground-truth pairs from the data set. The third (/fourth)
row presents the results of CycleGAN for mapping the samples in the second (/first) row
to samples into A (/B). The fifth and sixth rows are the same as the third and fourth rows,
but for CycleGAN without the circularity losses.
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