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Abstract

Edge sampling is an important topic in network analysis. It provides a natural way to
reduce network size while retaining desired features of the original network. Sampling
methods that only use local information are common in practice as they do not require
access to the entire network and can be easily parallelized. Despite promising empirical
performances, most of these methods are derived from heuristic considerations and lack
theoretical justification. In this paper, we study a simple and efficient edge sampling
method that uses local network information. We show that when the local connectivity is
sufficiently strong, the sampled network satisfies a strong spectral property. We measure
the strength of local connectivity by a global parameter and relate it to more common
network statistics such as the clustering coefficient and network curvature. Based on this
result, we also provide sufficient conditions under which random networks and hypergraphs
can be efficiently sampled.

Keywords: Network analysis, edge sampling, local information, network curvature, clus-
tering coefficient.

1. Introduction

Network analysis has become an important area in many research domains. It provides a
natural way to model and analyze data with a complex interdependence among entities. A
network typically consists of nodes representing the entities of interest and edges between
nodes encoding the relations between the nodes. For example, in a social network such
as Facebook or Twitter, nodes are users, and there is an edge between two users if they
are friends. Studying the structure of a network provides valuable information about how
entities interact and may help predict the formation of different groups Goldenberg et al.
(2010); Fortunato (2010).

As real-world networks are often very large, it is difficult and often impossible to store
or even access the entire data set. Therefore, it is desirable to preprocess the data to
reduce the network size before performing any analysis. A natural method for this task is
graph sparsification, a well-known edge sampling method in network literature Benczúr and
Karger (1996); Spielman and Teng (2004); Spielman and Srivastava (2011). For a network of
n nodes, one samples edges independently with probabilities proportional to their effective
resistances, that is, the electrical resistances between the same nodes in the resistor network
obtained from the original network by replacing edges with resistors of unit conductance
Ghosh et al. (2008). It has been shown that sampling and storing O(n log n) weighted
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edges is sufficient for approximately preserving the important topological structure of the
original network Spielman and Srivastava (2011). Specifically, for an undirected network
G = (V,E) with the set of nodes V = {1, 2, ..., n} and the set of edges E ⊆ V × V , let A
be the adjacency matrix with Aij = 1 if (i, j) ∈ E and Aij = 0 otherwise. Let LG = D−A
be the Laplacian, where D is the diagonal matrix with node degrees di =

∑
j∈V Aij on

the diagonal, and define the Laplacian LH for the weighted network H output by graph
sparsification in a similar way. Then H satisfies the following inequality for every x ∈ Rn,
known as the strong spectral property:

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx. (1.1)

Although this method has a strong theoretical guarantee, a severe drawback it suffers from,
especially when applied to very large networks, is that it requires access to the entire
network for computing effective resistances of all edges. Also, the computation involves a
complicated linear system solver of Spielman and Teng, not easy to implement in practice.
Although some improvements of Spielman and Srivastava (2011) have been proposed, they
still rely on complicated linear system solvers Kelner and Levin (2013); Kapralov et al.
(2014).

To avoid this problem, several fast and simple edge sampling methods have been de-
veloped with more emphasis on preserving certain network features such as the number of
connected components, network diameter, homophily, node centrality measures, or commu-
nity structure Newman (2010). One of the simplest sampling methods is uniform sampling,
which samples edges independently and uniformly at random Sadhanala et al. (2016); Li
et al. (2020). More adaptive methods leverage the strong local connectivity of networks
widely observed in practice: the network neighborhoods of most of the nodes are surpris-
ingly dense Watts and Strogatz (1998); Ugander et al. (2011). They sample edges according
to certain edge scores that can be calculated locally without access to the entire network,
such as the Jaccard similarity score Satuluri et al. (2011), the number of triangles Hamann
et al. (2016), or the number of quadrangles containing the edges under consideration Nocaj
et al. (2014); see also Hamann et al. (2016) for methods based on other local measures. Al-
though these methods have been empirically shown to perform well and can be parallelized
easily, to our best knowledge, there is still no theoretical guarantee for their performances.
It is also unclear if other features of networks (besides the targeting features considered)
are preserved.

In an attempt to understand the theoretical properties of these methods, in this paper,
we study a fast and simple edge sampling scheme similar to methods that use Jaccard
similarity, or numbers of triangles Satuluri et al. (2011); Hamann et al. (2016). Specifically,
for an undirected network G = (V,E), we sample each edge (i, j) ∈ E with probability
inversely proportional to the number of common neighbors of i and j (those nodes that are
connected to both i and j). The numbers of common neighbors have been used in network
literature, for example, in the context of community detection Rohe and Qin (2013) and
network embedding Papadopoulos et al. (2015).

We observe that when the numbers of common neighbors are sufficiently large compared
to node degrees, our sampling method satisfies the same strong spectral property (1.1)
that the graph sparsification does while avoiding the complicated calculation of effective
resistances. This result also provides theoretical evidence supporting edge sampling methods
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based on local statistics Satuluri et al. (2011); Nocaj et al. (2014); Hamann et al. (2016).
Qualitatively, as the number of common neighbors increases, the local network connectivity
gets stronger, and our sampling method becomes more similar to graph sparsification using
effective resistances. In contrast, as the numbers of common neighbors decrease, the method
becomes more similar to uniform sampling. We measure the strength of the local network
connectivity by the following parameter

α =
1

n

∑
(i,j)∈E

2

tij + 2
, (1.2)

where tij denotes the number of common neighbors of node i and node j. As we will
show, α is closely related to other well-known and similar in nature statistics such as the
clustering coefficient Watts and Strogatz (1998) and network curvature Bauer et al. (2012);
see Section 3 for the definition. More importantly, it determines the sample size (the number
of sampled edges) needed for the strong spectral property to hold.

1.1 Our Contributions

We make the following contributions in this paper. First, in Section 2 we propose a sim-
ple sampling method by leveraging the strong local connectivity widely observed for real-
world networks and show that it satisfies the strong spectral property (1.1) if we sample
O(αn log n) edges, where α is defined by (1.2). Consequently, we show that uniform sam-
pling with replacement also satisfies (1.1) if the sample size is sufficiently large; the exact
value is given by (2.4). This requirement can be relaxed if a hybrid sampling method that
combines uniform sampling and sampling according to the number of common neighbors
is used. Second, we provide lower and upper bounds on α for generic networks in terms
of the clustering coefficient and network curvature (Section 3). Since α directly determines
the sample size required for the strong spectral property, these bounds provide useful in-
formation about when our sampling method can be efficiently used. They also show a
connection with other sampling methods that use different local statistics Satuluri et al.
(2011); Nocaj et al. (2014); Hamann et al. (2016) for which the theory developed in this
paper may potentially be applied. Third, in Section 4 we provide an upper bound on α for
the general inhomogeneous Erdős-Rényi random graph model Bollobas et al. (2007). Since
this model is very popular in network literature, the bound provides a rich class of examples
for which our sampling method can be used for reducing the network size. We discuss in
Section 5 another natural class of examples, the hypergraphs, for which our method can be
found useful. Lastly, in Section 7 we show that α is small for many real-world networks and
perform a thorough numerical study to evaluate our sampling method.

1.2 Related Work

The simplest sampling method is bond percolation, which independently selects edges with
a fixed probability ε Alon et al. (2004); Nachmias (2010); Bollobás et al. (2010). If ε
is sufficiently large so that Ω(n log n) edges are selected, then with high probability, the
adjacency matrix of the sparsified network concentrates around εA by a standard matrix
concentration result Oliveira (2010). The advantage of this method is that it is fast and only
requires the total number of edges in the network as a global input parameter. However,
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it satisfies a much weaker property than the strong spectral property Spielman and Teng
(2004). A closely related method is uniform sampling, for which Sadhanala et al. (2016)
shows that (1.1) holds with high probability, but only for smooth vectors x.

In semi-streaming setting, Benczúr and Karger (1996) and Goel et al. (2010) show
that local network structure can be used to design sampling methods that approximately
preserve all cuts of the original network; here, the cut of a set of nodes is the number of
edges between that set and its complement in V . However, this property is strictly weaker
than the strong spectral property that our method satisfies Kelner and Levin (2013).

2. Edge Sampling

For an undirected network G = (V,E) and (i, j) ∈ E, let tij be the number of common
neighbors of i and j. For simplicity of presentation, we first discuss the case when tij are
known for all edges. In practice, they can be either exactly calculated in a parallel manner
or approximated by neighbor sampling; see Section 6 for a more detailed discussion. To
form a sparsifier H, we sample m edges of G independently according to a multinomial
distribution with probabilities

pij =

2
tij+2∑

(i,j)∈E
2

tij+2

. (2.1)

If an edge (i, j) ∈ E is selected k ≥ 1 times then we add it to H and assign the weight
k(mpij)

−1 to it.
Note that 2/(tij +2) is the effective resistance of the edge between i and j in a subgraph

of G consisting of the edge (i, j) and tij paths of length two between i and j. Therefore, it
is an upper bound of the effective resistance of the edge between i and j in G; for a detailed
explanation, see the proof of Theorem 2 in Appendix A.

The following theorem shows that our sampling method satisfies the strong spectral
property.

Theorem 1 (Exact numbers of common neighbors) Consider an undirected and con-
nected network G = (V,E). Let ε ∈ (0, 1) and α be the parameter of G defined by (1.2).
Form a weighted network H by sampling 8αn log n/ε2 edges of G as described above. Then
H satisfies the strong spectral property (1.1) with probability at least 1− 1/n.

Parameter α measures the average strength of local network connectivity. To better
understand α, consider a special case when di = d for all vertices i and tij = t for all edges
(i, j) ∈ E. Then α ≈ 2|E|/(nt) = d/t, where here and after we use |M| to denote the
number of elements of the setM. Thus, if (i, j) ∈ E then the number of common neighbors
of i and j is approximately d/α. In other words, i and j share a fraction of 1/α of their
neighbors.

When the local connectivity is strong, that is, α = O(1), Theorem 1 shows that we
can approximately preserve the network topology if we locally sample and retain O(n log n)
edges. In contrast, if the local connectivity is weak (for example, when tij = O(1)), then pij
are of the same order, resulting in a sampling scheme similar to uniform sampling. Table 2
shows the value of α and the clustering coefficient (see Section 3.1 for the definition) for
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several well-known real-world networks. Note that while these networks are relatively sparse,
the values of α are quite small, which suggests that real-world networks have strong local
connectivity.

The above sampling method requires access to the number of common neighbors tij for
all pairs of incident nodes. If tij are readily available, which is the case for some social
networks such as Facebook, then the computational complexity of this sampling method is
linear in the total number of edges |E|. When tij are not available, we can calculate them in
parallel fashion or estimate them by neighbor sampling; see Section 6 for more detail. The
following theorem shows that the strong spectral property still holds if we use estimates of
tij and increase the sample size by a factor depending on the accuracy of the estimates.

Theorem 2 (Estimated numbers of common neighbors) Consider an undirected and
connected network G = (V,E) and let t̂ij be nonnegative estimates of tij such that

t̂ij + 2 ≤ C(tij + 2) (2.2)

for all edges (i, j) ∈ E and some constant C. Let ε ∈ (0, 1) and denote

α̂ =
1

n

∑
(i,j)∈EG

2

t̂ij + 2
. (2.3)

Form a weighted graph H by sampling 8Cα̂n log n/ε2 edges of G as described in Theorem 1
but using t̂ij instead of tij. Then H satisfies the spectral property (1.1) with probability at
least 1− 1/n.

The proof of Theorem 2 depends crucially on condition (2.2). It implies that 2/(tij +
2) ≤ 2C/(t̂ij + 2) and consequently the effective resistance of the edge (i, j) is bounded by
2C/(t̂ij + 2). This observation allows us to express the Laplacian of the sparsified network
as a sum of independent matrices with spectral norms bounded by Cα̂n up to a scaling
matrix factor. A standard matrix concentration result is then used to show the strong
spectral property; see the proof in Appendix A for more detail. Note that Theorem 1
follows directly from Theorem 2 by setting t̂ij = tij and C = 1.

One may wonder how many edges must be sampled so that the uniform sampling (which
samples edges with probabilities pij = 1/|E|) satisfies the spectral property (1.1). The
uniform sampling is obtained by setting t̂ij = t for all edges of G in Theorem 2. The
constant C can be taken to be

C =
t+ 2

min(i,j)∈E tij + 2
and α̂ =

2|E|
n(t+ 2)

.

Therefore by Theorem 2, the uniform sampling satisfies (1.1) with high probability if the
sample size is

m =
16ε−2|E| log n

min(i,j)∈E tij + 2
. (2.4)

If min(i,j)∈E tij is of order |E|/n, that is, the numbers of common neighbors are at least a
constant fraction of the average degree, then m = O(n log n).
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In general, the sample size requirement (2.4) is optimal up to the logarithm and constant
factors. That is, (1.1) needs not hold if m = o(|E|/(min(i,j)∈E tij +2)). To see this, consider
an example of a graph G consisting of a complete graph of n − 1 nodes and a node i of
degree k = o(n). Then min(i,j)∈E tij = k − 1. If m = o(|E|/(k + 1)) and edges of G are
sampled uniformly then the probability that no edges incident to i is selected is(

1− k

|E|

)m
=

(
1− k

|E|

) |E|
k
·mk
|E|
≈ exp

(
−mk
|E|

)
≈ 1.

With probability close to one, i is an isolated node in the (weighted) sparsified graph.
Therefore the degree of i cannot be approximately preserved, which implies that the spectral
property (1.1) does not hold.

For graphs with a small value of min(i,j)∈E tij , the sample size m in (2.4) for the uniform
sampling scheme may get as large as the total number of edges |E|, which defies the purpose
of graph sparsification. By choosing t̂ij = t only if tij > t for some large threshold t and
t̂ij = tij if tij ≤ t, we obtain a hybrid of uniform sampling and sampling using common
neighbors that may require smaller sample size than (2.4). Indeed, in Theorem 2, we can
choose C = 1 and

α̂ =
1

n

∑
(i,j)∈E:tij≤t

2

tij + 2
+

1

n

∑
(i,j)∈E:tij>t

2

t+ 2
≤ α+

2|E|
n(t+ 2)

.

The required sample size for the hybrid method to obtain the spectral property (1.1) with
high probability is then

8ε−2Cα̂n log n ≤ 8ε−2

(
α+

2|E|
n(t+ 2)

)
n log n = 8ε−2αn log n+

16|E| log n

ε2(t+ 2)
,

which is smaller than the sample size in (2.4) if αn = o(|E|/(min(i,j)∈E tij + 2)) and
min(i,j)∈E tij = o(t). This hybrid method illustrates an interesting application of Theorem 2
and may also be useful when uniform sampling is desirable, for example for controlling the
variance of the sparsified graph.

3. Local Network Statistics

In this section, we draw the connection between α and two of the most common local
network statistics, the clustering coefficient Watts and Strogatz (1998) and the network
curvature Bauer et al. (2012).

3.1 Clustering Coefficient

It has been observed that for many real-world networks, the neighborhoods of most of the
nodes are surprisingly dense Watts and Strogatz (1998); Ugander et al. (2011). This reflects
the belief that incident nodes exhibit the transitivity property: if i and j are connected and
j and k are connected then it is likely that i and k are also connected. One way to measure
the transitivity is via the clustering coefficient Watts and Strogatz (1998). For an undirected
network G = (V,E), the local clustering coefficient of node i ∈ V is defined as the ratio
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between the number of triangles containing i and the maximum number of triangles it can
form with incident nodes

ci =
|{(j, k) ∈ E : (i, j) ∈ E, (i, k) ∈ E}|

di(di − 1)/2
.

The clustering coefficient of a network G is the average of all local clustering coefficients

c =
1

n

n∑
i=1

ci.

The following theorem provides a lower bound on parameter α in terms of the clustering
coefficient c and node degrees di. It shows that if node degrees are large and c is small,
then α is large, and therefore a large sample size is required for our method to obtain the
spectral property (1.1). On the other hand, Table 2 suggests that α is small when c is large.
Since the clustering coefficient is a very popular statistic and has been calculated for most
available real-world networks, the connection to the clustering coefficient provides valuable
information about α before the sampling procedure is performed.

Theorem 3 (Lower bound on α) For any undirected and connected network we have

α ≥ 1

4c+ 2
n

∑n
i=1

1
di

. (3.1)

According to Theorem 3, if c & 1/n
∑

i∈V 1/di then α satisfies α & 1/c (for two sequences
an and bn, we write an & bn if an ≥ Cbn for some constant C and sufficiently large n).
The geometric random graph model described in Corollary 6 below provides examples for
which the upper bound α . 1/c also holds; for more detail, see the discussion following
Corollary 6. In addition, Table 2 gives examples of real networks for which α and 1/c are
of similar order.

There exist graphs for which the two sides of (3.1) are of different orders. For example,
let G = Kn ∪ En be the union of a complete graph Kn of size n and an Erdős-Rényi
random graph En, also of size n, for which edges are formed independently between each
pair of nodes with probability d/n; we connect Kn and En by an arbitrary edge to make
G a connected graph. If

√
n . d = o(n) then an easy calculation shows that with high

probability, the left hand-side of (3.1) is of order n/d while the right hand-side is bounded.

3.2 Network Curvature

Another measure of network transitivity that has recently attracted much attention is the
network curvature Bauer et al. (2012); Jost and Liu (2014); Lin et al. (2014); Bhattacharya
and Mukherjee (2015). In this section, we recall the definition of network curvature and
show that if it is bounded from below by some constant κ0 > 0 then α ≤ 1/κ0.

Denote by d(i, j) the length of a shortest path connecting nodes i and j. For each node
i, consider a uniform measure mi with support being the set Ni of neighbors of i:

mi(k) =

{ 1
di
, if k ∈ Ni

0, otherwise.
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The optimal transportation distance between mi and mj is defined as follows:

W1(mi,mj) = inf
ξ∈Π(mi,mj)

∑
(k,k′)∈V×V

d(k, k′)ξ(k, k′),

where Π(mi,mj) is the set of all probability measures on V × V with marginals mi and
mj . Intuitively, ξ(k, k′) represents the mass transported from k to k′, and W1(mi,mj) is the
optimal cost for moving a unit mass distributed evenly among neighbors of i to neighbors of
j. With this notion of distance between probability measures on G, the curvature κ defined
for every pair of nodes i and j is

κ(i, j) = 1− W1(mi,mj)

d(i, j)
.

To illustrate, in Figure 1 we show Zachary’s karate club network Zachary (1977) together
with the information of its curvatures for incident nodes. In particular, edges with negative
curvatures are in blue, positive curvatures – in red and zero curvatures – in black; widths
of edges are proportional to magnitudes of curvatures.

Figure 1: Zachary’s karate club network Zachary (1977). The edges with negative curvatures
are in blue, with positive curvatures – in red and with zero curvatures – in black; the widths
of the edges are proportional to the magnitudes of their curvatures.

We say κ ≥ κ0 for some constant κ0 if κ(i, j) ≥ κ0 for every pair of nodes i and j. If
κ ≥ κ0 then by definition W1(mi,mj) ≤ (1− κ0)d(i, j) for all (i, j) ∈ V × V . In particular,
if i and j are connected then W1(mi,mj) ≤ 1 − κ0. Note that if G is a connected graph
then the inverse is also true: If W1(mi,mj) ≤ 1−κ0 holds for all pairs of connected nodes i
and j then W1(mi,mj) ≤ (1−κ0)d(i, j) holds for all (i, j) ∈ V ×V by a triangle inequality.

This notion of curvature is closely related to the simple random walk on a network.
If κ ≥ κ0 > 0 then Ollivier (2009) shows that the spectral gap between the two largest
eigenvalues of the transition matrix D−1A is bounded from below by κ0 (see also Bauer
et al. (2012) for an improvement of the bound). Thus, the curvature of a graph controls
how fast a simple random walk on that network mixes.

The following theorem provides a simple upper bound on α in terms of the curvature.

8



Edge Sampling Using Local Network Information

Theorem 4 (Upper bound on α) Let G be an undirected and connected network. As-
sume there exist constants κ0 > 0 and C > 0 such that κ(i, j) ≥ κ0 for all but at most Cn
edges of G. Then α ≤ 1/κ0 + C.

4. Random Networks

In this section, we provide a high probability bound on α for inhomogeneous Erdős-Rényi
random networks Bollobas et al. (2007) satisfying some mild conditions. As a corollary, we
give an example of a geometric random network model for which α is bounded.

Theorem 5 (Inhomogeneous Erdős-Rényi networks) Consider a random graph with
adjacency matrix A such that the upper diagonal elements of A are independent Bernoulli
random variables. Denote P = EA and ∆ = maxi

∑n
j=1 Pij. Assume that there exists a

sufficiently large constant C such that

∆ ≥ C log n and ∆ ·
[
1 + max

i,j

(
P 2
)
ij

]
≤ 1

C log n

∑
i<j

Pij . (4.1)

Then with probability at least 1− 1/n,

α ≤ 1

n

∑
i<j

10Pij
E tij + 2

. (4.2)

In particular, if the right-hand side of (4.2) is bounded, then α is also bounded.

The first inequality of (4.1) requires that the maximal expected node degree grow at
least as log n; this is a natural condition because otherwise, the network would already be
sparse, and no sampling would be needed. The second inequality of (4.1) is a condition
on the maximal expected degree ∆, the maximal expected number of common neighbors
maxij(P

2)ij and the expected number of edges 1/2
∑

i<j Pij . If all nodes in the graph are of

similar expected degree then
∑

i<j Pij ≈ n∆. Therefore, using the crude bound (P 2)ij ≤ ∆,
the second inequality of (4.1) is satisfied if ∆ is at most of order n/ log n.

By Jensen’s inequality and the independence between Aij and tij , we have

Eα =
1

n

∑
i<j

E
2Aij
tij + 2

=
1

n

∑
i<j

E
2Pij
tij + 2

≥ 1

n

∑
i<j

2Pij
E tij + 2

.

It then follows from (4.2) that α ≤ 5Eα with probability at least 1 − 1/n, while naively
applying Markov’s inequality gives the same inequality with probability at least 4/5. Note,
however, that the upper bound of (4.2) is much easier to calculate than Eα.

As a direct consequence of Theorem 5, the following corollary shows that α is bounded
for a simple geometric random network model.

Corollary 6 (Geometric random networks) Let X = {x1, x2, ..., xn} ⊆ K be a set of
points in a bounded set K ⊆ Rd with unit volume. For each pair of nodes (i, j), let

Pij =

{
δ, if ‖xi − xj‖ ≤ rn,
0, otherwise.
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Denote by ni the number of points of X of distance at most Rn from xi; similarly, denote
by nij the number of points of X of distance at most Rn from xi and xj. Assume that there
exists a constant C = C(d,K) depending only on d and K such that for every node i and
every node j with ‖xj − xi‖ ≤ rn,

C−1nrdn ≤ ni, nij ≤ Cnrdn and C2δ−1 log n ≤ nrdn ≤
n

4C3δ2 log n
. (4.3)

Then α ≤ 5C2/δ with probability at least 1− 1/n.

The first condition of (4.3) holds with high probability if x1, ..., xn are independently
drawn from a uniform distribution on K. Indeed, for every node i, ni/n is approximately
the volume of the ball of radius rn and center xi, which is proportional to rdn up to a constant
depending on d and K; a similar argument holds for nij with ‖xj − xi‖ ≤ rn. The second
condition of (4.3) requires that the average degree of the graph be roughly between log n
and n/ log n. If these conditions are satisfied then α is bounded with high probability.

Theorem 3 shows that α & 1/c if the clustering coefficient c is at least of the same order
as 1/n

∑
i∈V 1/di. Corollary 6 provides examples for which the reverse bound also holds.

Indeed, since α . 1/δ with high probability by Corollary 6, the bound α . 1/c holds if
c & δ with high probability. To see why that is the case, for every node i let Ni be the
set of all neighbors of i. Then conditioned on Ni, the probability that two neighbors of i
are connected is at most δ. Therefore the number of triangles containing i is stochastically
bounded by a sum of di(di − 1)/2 independent Bernoulli random variables with success
probability δ. Using a standard concentration result and union bounds, we see that the
local clustering coefficients satisfy ci . δ for all i with high probability. Since c is the
average of ci, this implies c & δ with high probability.

5. Sampling Hypergraphs

Theorem 3 shows that α & 1/c if the clustering coefficient c is at least of the same order as
Strong local connectivity of a network is often caused by the fact that each node belongs to
one or several tightly connected small groups Gupta et al. (2014). To simplify the analysis,
we assume that within each small group, all nodes are connected. Under this assumption,
a network can be modeled by a hypergraph G = (V, E) which consists of a set of nodes V
and a set of hyperedges E where each hyperedge is a subset of V . In this section, we derive
a condition under which a hypergraph can be sampled and reduced to a weighted network.
This provides another example for which our sampling scheme works well and may be useful
in practice as a computational acceleration technique.

The Laplacian previously defined for networks can be naturally extended to hypergraphs
through clique expansion Rodŕıguez (2002); Agarwal et al. (2006). For a hypergraph G =
(V, E), the evaluation of the Laplacian LG at a vector x is defined by

LG(x) =
∑
e∈E

∑
i,j∈e

(xi − xj)2.

If we view x as a function from V to R then LG(x) measures the smoothness of x and
it occurs naturally in many problems of estimating smooth functions Smola and Kondor
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(2003); Belkin et al. (2004); Huang et al. (2011); Kirichenko and van Zanten (2017); Li et al.
(2020); Le and Li (2020).

Let G = (V,E,W ) be a weighted network such that (i, j) ∈ E if and only if both i
and j belong to at least one hyperedge of G, and W denotes the weight matrix with entries
Wij being the number of hyperedges that both i and j belong to. It is easy to see that
LG(x) = xTLGx for every x, where LG is the Laplacian of the weighted network G defined
by

xTLGx =
∑

(i,j)∈E

Wij(xi − xj)2.

Thus, if we are mainly interested in the smoothness of functions determined by G, we can
replace G with G. We call G the weighted network induced by G.

To form a sparsifier H = (V,EH ,WH) of G, we sample with replacement m edges of G
with probability

Pij =
t̃−1
ij∑

(i,j)∈E t̃
−1
ij

, where t̃ij =
∑

e∈E:{i,j}∈e

|e|.

If an edge (i, j) ∈ E is selected k ≥ 1 times then we add (i, j) to EH and assign the weight
k(mPij)−1 to it. Similar to the parameter α for unweighted graphs, let

α̃ =
1

n

∑
(i,j)∈E

t̃−1
ij .

Lemma 7 (Upper bound on α̃) Let G = (V, E) be a hypergraph. If each node of G be-
longs to at most d hyperedges then α̃ ≤ d/2.

Without further assumptions on G, the bound α̃ ≤ d/2 is nearly optimal. To see this,
consider the following example. Let k > 0 be an integer, n = k2 and V1, ..., Vk be a
partition of V = {1, ..., n} such that each Vi contains exactly k elements Vi1, ..., Vik. For
each 1 ≤ i ≤ k, let σi be a permutation of {1, 2, ..., k} given by σi(j) = i + j (mode k).
Define the set of hyperedges of G as a collection of subsets of the form{

V1j , V2σi(j), ..., Vkσk−1
i (j)

}
, 1 ≤ i, j ≤ k.

It is easy to see that every node of G is contained in exactly d = k hyperedges and every
pair of nodes of G is contained in at most one hyperedge. A simple calculation shows that
α̃ = (d− 1)/2.

The following theorem shows that the sparsified network obtained from a hypergraph
satisfies the strong spectral property.

Theorem 8 (Sampling hypergraphs) Let G = (V, E) be a hypergraph and G = (V,E,W )
be the weighted network induced by G. Let ε ∈ (0, 1) and assume that each node of G belongs
to at most d hyperedges of G. Form a weighted graph H by sampling 4dn log n/ε2 edges of
G as described above. Then H satisfies the strong spectral property (1.1) with probability at
least 1− 1/n.
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6. Calculating the Numbers of Common Neighbors

In this section, we discuss the problem of calculating tij (either exactly or approximately),
especially when the network is too large to be stored in a single computer. Once tij are all
computed, the sampling method can be performed easily by sampling edges according to
tij and aggregating over all sampled edges.

6.1 Exact Calculation

The number of common neighbors tij can be calculated efficiently by using an MPI-based
distributed memory parallel algorithm in Arifuzzaman et al. (2019), with very little modifi-
cation. The algorithm first carefully partitions the graph into smaller overlapping subgraphs
and stores them separately in local machines. A sequential algorithm then finds all triangles
in every subgraph and counts the number of common neighbors for every connected pair
of nodes in that subgraph. Since an edge of the original graph may belong to different
overlapping subgraphs, the counts from all local machines are then aggregated before the
final result is output. The authors of Arifuzzaman et al. (2019) show that their algorithm
scales almost linearly in the number of local machines and can handle very large graphs
with billions of edges.

6.2 Estimation

Depending on the strength of the local connectivity of a graph, the computational com-
plexity of our sampling method can be further improved by approximating tij instead of
calculating them exactly. This section describes a simple method for estimating tij by sam-
pling the neighbors of either i or j. A similar idea has been used in minwise hashing, a
popular technique for efficiently estimating the Jaccard similarity between two sets Broder
(1997); Broder et al. (1997); Becchetti et al. (2008); Satuluri et al. (2011); Shrivastava and
Li (2014, 2015). Although the method described here is sequential, we can easily turn it
into a parallel algorithm by adapting the method of Arifuzzaman et al. (2019) discussed in
Section 6.1.

For each pair of connected nodes (i, j), denote by Ni the set of neighbors of i and by Nj

the set of neighbors of j. The asymmetric Jaccard similarity between Ni and Nj is defined
by

θij =
|Ni ∩Nj |

min{|Ni|, |Nj |}
=

tij
min{di, dj}

.

Fix a sample size k ≥ 1 and assume that di ≤ dj . If k ≥ di then simply counting the number
of neighbors of i that are also neighbors of j gives us exactly tij . If k < di, let Z1, ..., Zk be
k random neighbors of i drawn independently and uniformly from Ni. We estimate tij by

t̂ij =
di
k

k∑
`=1

1(Z` ∈ Nj),

where 1(Z` ∈ Nj) is the indicator of the event Z` ∈ Nj . It is easy to see that t̂ij is an
unbiased estimate of tij because 1(Z` ∈ Nj), 1 ≤ ` ≤ k, are Bernoulli random variables
with success probability θij .

12
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In order to apply Theorem 2, condition (2.2) must be satisfied for all edges (i, j) ∈ EG.
For those edges such that θij ≥ ε for some constant ε, we will show that (2.2) holds with high
probability if k is chosen to be of order log n. For those edges with θij = o(1), t̂ij may not

satisfy (2.2) if k = O(log n), therefore we calculate tij directly. We use 1
k

∑k
`=1 1(Z` ∈ Nj)

to check whether θij is sufficiently large. The estimation procedure is summarized in the
following algorithm.

Algorithm 1 (Estimating the numbers of common neighbors) Choose ε ∈ (0, 1) and k ≥ 1.
For each edge (i, j), let i be the node with di ≤ dj. If di ≤ k, calculate tij directly by
counting the number of elements of Ni ∩ Nj. If di > k, sample k neighbors Z1, ..., Zk of

i independently and uniformly from Ni, calculate θ̂ij = 1
k

∑k
`=1 1(Z` ∈ Nj) and proceed as

follows:

• If θ̂ij < ε, calculate tij directly by counting the number of elements of Ni ∩Nj.

• If θ̂ij ≥ ε, estimate tij by t̂ij = diθ̂ij.

The following theorem provides the spectral guarantee (1.1) for the sparsified network
when Algorithm 1 is used.

Theorem 9 (Minwise hashing) Let ε ∈ (0, 1), k = 100 log n/ε and estimate the num-
bers of common neighbors using Algorithm 1. Form a weighted graph H by sampling
24αn log n/ε2 edges of G according to Theorem 2. Then with probability at least 1 − 1/n,
H satisfies the spectral property (1.1) and the computational complexity of estimating the
number of common neighbors is at most∑

(i,j)∈EG:θij≤ε/2

min{di, dj}+ 100ε−1|EG| log n. (6.1)

The complexity of estimating the number of common neighbors in Theorem 9 is nearly
linear in the number of edges |EG| (up to the log n factor) and depends on the local structure
of the network via the first term of (6.1). If the local connectivity of G is sufficiently strong
so that θij ≥ ε/2 for all edges, then the first term disappears. However, for networks with
very weak local connectivity, such as Erdős-Rényi random networks, the first term of (6.1)
may be as large as d · |EG|, where d is the average node degree. In that case, it is not clear if
the computational complexity of the (sequential) estimation algorithm can be substantially
improved; we leave this problem for future study.

Section 7.2 shows the performance of the proposed sampling method using both exact
and estimated numbers of common neighbors.

7. Numerical Study

In this section, we empirically analyze the behavior of parameter α and the accuracy of the
proposed sampling methods.

7.1 Local Connectivity

According to Theorem 1, α directly controls the accuracy of our sampling method. This
section shows that α is relatively small for many simulated and real-world networks.
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Network size 100 500 1000 2000 4000

Parameter α 1.84 2.34 2.49 2.59 2.65

Clustering coefficient 0.59 0.53 0.52 0.52 0.52

Average degree 27.64 36.42 38.89 40.89 42.57

Table 1: Statistics of networks generated from the GIRG with δ = γ = 2, r = 3 and β = 2.5,
averaged over 20 replications.

7.1.1 Simulated Networks

We consider geometric inhomogeneous random networks (GIRG) generated from a latent
space model that exhibits several properties of real-world networks, such as the strong
transitivity and the power-law distribution of node degrees Bringmann et al. (2017). To
model the power law, each node i is assigned a weight wi = δ · (n/i)1/(β−1), where δ > 0 and
2 ≤ β ≤ 3 are parameters. The latent positions xi are drawn uniformly at random from an
r-dimensional torus Tr = Rr/Zr equipped with the distance

d(u, v) = max
1≤k≤r

min{|uk − vk|, 1− |uk − vk|}.

For a parameter γ > 1 and w =
∑n

i=1wi, an edge is independently drawn between each
pair of nodes i, j with probability

pij = min

{
1

‖xi − xj‖γr
(wiwj

w

)γ
, 1

}
.

We report in Table 1 the value of α, the clustering coefficient and the average node degree
(averaged over 20 replications) of networks generated from GIRG with parameter δ = γ = 2,
r = 3, β = 2.5 and n = 100, 500, 1000, 2000, 4000. Table 1 shows that while the network
size and average node degree increase, the value of α increases mildly from 1.84 to 2.65 and
the clustering coefficient decreases from 0.59 to 0.52.

7.1.2 Real-world Networks

We further report in Table 2 the value of α, the clustering coefficient and the average degree
of several well-known real-world networks: karate club network Zachary (1977), dolphins
network Lusseau et al. (2003), political blogs network Adamic and Glance (2005), Facebook
ego network McAuley and Leskovec (2012), Astrophysics collaboration network Leskovec
et al. (2007), Enron email network Klimt and Yang (2004), Twitter Social circles Yang and
Leskovec (2012), Google+ social circles Yang and Leskovec (2012), DBLP collaboration
network Yang and Leskovec (2012) and LiveJournal social network Yang and Leskovec
(2012). Again, we observe that while the network size and average node degree vary, α and
the clustering coefficient are very stable, with the value of α between 1.40 and 4.38 and the
value of the clustering coefficient between 0.26 and 0.63, respectively.
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Data n Average degree c α

Karate club 34 4.59 0.57 1.46

Dolphins 62 5.13 0.26 1.65

Political blogs 1490 22.44 0.32 3.04

Facebook ego 4039 43.69 0.61 1.96

Astrophysics collaboration 18771 21.10 0.63 1.96

Enron email 36692 10.02 0.50 1.59

Twitter 81306 33.02 0.57 2.33

Google+ 107614 227.45 0.49 4.38

DBLP collaboration 317080 6.62 0.63 1.40

LiveJournal 3997962 17.35 0.28 3.65

Table 2: Statistics of some real-world networks.

7.2 Accuracy of Network Sampling

In this section, we compare the performance of our sampling method that uses the num-
ber of common neighbors (CN), the uniform sampling (UN), and a version of CN that
uses t̂ij defined in (6.2) to approximate the number of common neighbors (CNA). We use
these methods to sparsify networks, both simulated and real-world, and then measure the
accuracy of the resulting sparsified networks by comparing their Laplacians with those of
the original networks. Motivated naturally by the strong spectral property (1.1), for a
connected network G and its sparsification H, we report the following relative error

Relative error = max
x:LGx 6=0

xT(LH − LG)x

xTLGx
= ‖L−1/2

G (LH − LG)L
−1/2
G ‖, (7.1)

where L
−1/2
G is the square root of the Moore–Penrose pseudo-inverse L−1

G of LG. This error
reflects the accuracy of H in preserving the structure of G. Since calculating the relative
error involves inverting the Laplacian, we consider in this section only networks of relatively
small sizes.

7.2.1 Simulated Networks

We first analyze the performance of CN, CNA, and UN on random networks generated from
the latent space stochastic block model Ng et al. (2018), which has been shown to capture
important characteristics of real-world networks. Specifically, we assume that nodes are
partitioned into three disjoint groups or communities, and conditioning on the community
labels, subnetworks corresponding to the communities follow the GIRG model defined in
Section 7.1 with γ = δ = 1, β = 3 and r = 10. Edges between nodes in different communities
are independently drawn with the same probability adjusted so that the ratio of the expected
numbers of edges between communities and within communities equals ρ ∈ {0.01, 0.1},
which measures the strength of the community structure.
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For each ρ ∈ {0.01, 0.1}, we consider three settings corresponding to different community
size ratios (1/20, 9/20, 1/2), (1/10, 2/5, 1/2) and (1/3, 1/3, 1/3). In the first two settings,
network communities are of very different sizes, while in the last setting, all communities
are of the same size n/3. The networks generated in these settings are relatively dense for
the sampling purpose, with expected degrees ranging from 300 to 500. We vary the sample
size m by setting m = τn, where τ is the sample size factor taking values from 10 to 210.
To approximate the number of common neighbors for CNA, we sample k = 50 neighbors
using Algorithm 1.

Figure 2 shows the relative error averaged over ten repetitions of CN, CNA, and UN in
three settings and different values of ρ. We observe that as the sample size m increases,
all methods perform better, with CN slightly better than CNA, and both methods are
more accurate than UN when the communities are of different sizes and especially when
ρ = 0.01. This is because when ρ is small, and one community is of much smaller size
than the others, UN focuses on sampling edges within large communities, mostly ignoring
edges between communities and within the smallest community. In contrast, CN and CNA
sample more edges within the smallest community and between communities because they
have fewer common neighbors, resulting in better estimates of the Laplacian. However,
when all communities are of the same size, UN tends to perform better than CN and CNA.
This is perhaps because no part of any balanced and dense network needs to be sampled
much more frequently than others, and UN often performs well in this case Sadhanala et al.
(2016). However, real networks are usually far from balanced, and UN may be much less
accurate than CN and CNA when they are applied to these networks, as we will show next.
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Figure 2: Accuracy of different sampling methods on random networks.

7.2.2 Real-world Networks

We further compare the performance of CN, CNA, and UN on the political blogs network
Adamic and Glance (2005) and the Facebook ego network McAuley and Leskovec (2012), the
two largest networks in Table 2 for which inverting the Laplacian can be done reasonably
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fast. (Note that the matrix inversion is only needed for calculating the relative error in
(7.1) while our proposed methods can easily handle all networks in Table 2.) Similar to
the analysis in the previous section, we vary the sample size m by setting m = τn with
τ ∈ [10, 50]. To approximate the number of common neighbors for CNA, we sample k = 20
neighbors according to Algorithm 1. Figure 3 shows that as τ increases, all three methods
perform better, with CN slightly better than CNA, both having much smaller errors than
UN.
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Figure 3: Accuracy of different sampling methods on real networks.

Note that the performance gap between UN and the proposed methods is much more
visible on the real networks than on simulated networks shown in the previous section.
This is probably due to the significant difference between the distributions of the number of
common neighbors of simulated and real networks. As shown in Figure 4, most of the edges
of the simulated networks have very large numbers of common neighbors, and for such nodes,
the uniform sampling performs well (this is partially explained in the discussion following
Theorem 2). In contrast, edges of the real networks considered here have relatively smaller
numbers of common neighbors, resulting in the much worse performance of the uniform
sampling. The numerical results on real networks show that sampling using the number of
common neighbors may be very useful in practice.
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Figure 4: Distributions of the number of common neighbors for the political blogs network,
the Facebook ego network, and a network generated from a latent space stochastic block
model described in Section 7.2.1 with community size ratios (1/3, 1/3, 1/3) and ρ = 0.1.
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8. Discussion

In this paper, we study an edge sampling algorithm that uses only the number of common
neighbors. This simple statistic provides an easy way to measure the strength of network
local connectivity through parameter α, which directly controls the accuracy of the sampling
method. However, in practice, we often have access to the numbers of common neighbors
and neighborhood networks around edges. In that case, we should use the information from
these local networks, provided that it is available or easily computed because it contains
more structural information of the network than just the numbers of common neighbors.
Measuring the strength of local connectivity through local networks is more challenging,
and we leave it for future work.
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Appendix A. Proofs of Results in Section 2

Theorem 1 directly follows from Theorem 2 with t̂ij = tij for all edges (i, j) ∈ EG and
C = 1. To prove Theorem 2, we use the following result about the concentration of the sum
of random matrices Vershynin (2009).

Theorem 10 (Concentration of sum of matrices) Let Y1, ..., Ym be independent n×n
random positive semidefinite matrices such that ‖Yk‖ ≤ M for all 1 ≤ k ≤ m. Let Sm =∑m

k=1 Yk and E =
∑m

k=1 ‖EYk‖. Then for every ε ∈ (0, 1) we have

P {‖Sm − ESm‖ > εE} ≤ n · exp

(
−ε2E

4M

)
.

Proof [Proof of Theorem 2] Let X be a random matrix such that

X =
1

pij
(ei − ej)(ei − ej)T with probability p̂ij ,

where (i, j) ∈ EG, {ei, 1 ≤ i ≤ n} are standard basis vectors (the ith entry of ei is one and
all other entries are zero), and

p̂ij =

2
t̂ij+2∑

(i,j)∈EG

2
t̂ij+2

. (A.1)

Then

EX =
∑

(i,j)∈EG

p̂ij ×
1

p̂ij
(ei − ej)(ei − ej)T = LG. (A.2)

Let Xk be m independent copies of X. By the sampling scheme we have

LH =
1

m

m∑
k=1

Xk, ELH = LG.
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Denote by L−1
G the Moore-Penrose pseudoinverse of LG and by L

−1/2
G the squared root of

L−1
G . Note that the kernel of the map LG is a one-dimensional vector space spanned by

the all-one vector 1 and it is contained in the kernel of LH . Therefore the strong spectral
property (1.1) is equivalent to

(1− ε)I1 �
1

m

m∑
k=1

L
−1/2
G XkL

−1/2
G � (1 + ε)I1, (A.3)

where I1 = I−(1/n)11T is the identity map on the (n−1)-dimensional subspace orthogonal
to the all-one vector 1. Here, we write U � V if V − U is positive semidefinite.

To prove (A.3), we apply Theorem 10 to Yk := L
−1/2
G XkL

−1/2
G . Since Xk � 0 and

EXk = LG by (A.2), it follows that Yk � 0 and ‖EYk‖ = ‖I1‖ = 1. To bound ‖Yk‖, note
that Yk takes one of the following matrix values

1

p̂ij

(
L
−1/2
G (ei − ej)

)(
L
−1/2
G (ei − ej)

)T
, (i, j) ∈ EG.

By (A.1) and (2.3) we have 1/p̂ij = nα̂(t̂ij + 2)/2. Therefore

‖Yk‖ ≤ max
(i,j)∈EG

nα̂(t̂ij + 2)

2
· (ei − ej)TL−1

G (ei − ej). (A.4)

Note that (ei−ej)TL−1
G (ei−ej) is the effective resistance of the edge between i and j Ghosh

et al. (2008). We claim that it is upper bounded by 2/(tij + 2). To show that, let Nij be
the set of common neighbors of i and j. Denote by Gij = (Vij , Eij) the subgraph of G such
that

Vij = {i, j} ∪Nij , Eij = {(i, j), (i, k), (j, k) : k ∈ Nij}.
Thus, Gij consists of an edge and tij paths of length two between i and j. It is easy to see
that the effective resistance (ei − ej)TL−1

Gij
(ei − ej) of the edge between i and j in Gij is

2/(tij + 2). Indeed, let x = L−1
Gij

(ei − ej). Then LGijx = ei − ej and by comparing the i-th
and j-th components of LGijx and ei − ej , we have

(tij + 1)xi − xj −
∑
k∈Nij

xk = 1, xi − (tij + 1)xj +
∑
k∈Nij

xk = 1.

Adding these equalities, we obtain that the effective resistance of the edge between i and
j in Gij is (ei − ej)Tx = xi − xj = 2/(tij + 2). Since Gij is a subgraph of G and adding
edges does not increase the effective resistance (see e.g. Corollary 9.13 in Levin and Peres
(2017)), it follows that

(ei − ej)TL−1
G (ei − ej) ≤ (ei − ej)TL−1

Gij
(ei − ej) =

2

tij + 2
.

Together with (A.4) this implies ‖Yk‖ ≤ nα̂(t̂ij + 2)/(tij + 2) ≤ nα̂C. Therefore by Theo-
rem 10 we have

P

{∥∥∥∥∥ 1

m

m∑
k=1

Yk − I1

∥∥∥∥∥ > ε

}
≤ n · exp

(
−ε2m

4Cα̂n

)
.

Inequality (A.3) then follows by choosing m = 8Cα̂n log n/ε2.
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Appendix B. Proofs of Results in Section 3

Proof [Proof of Theorem 4] Let (i, j) be an edge of G such that κ(i, j) ≥ κ0 or equivalently
W1(mi,mj) ≤ 1− κ0. Recall that

W1(mi,mj) = inf
ξ∈Π(mi,mj)

∑
(k,k′)∈V×V

d(k, k′)ξ(k, k′),

where Π(mi,mj) is the set of all probability measures on V ×V with marginals mi and mj .
For every ξ ∈ Π(mi,mj),

ξ(k, k) ≤ min

{∑
k′∈V

ξ(k′, k),
∑
k′∈V

ξ(k, k′)

}
= min{mj(k),mi(k)}.

Since mi and mj are uniform measures with supports being the sets of neighbors of i and
j, respectively, if k is not a common neighbor of i and j then min{mj(k),mi(k)} = 0; when
k is one of the tij common neighbors of i and j then min{mj(k),mi(k)} = min{1/di, 1/dj}.
Therefore ∑

k∈V
ξ(k, k) ≤ tij ·min{1/di, 1/dj},

which implies ∑
(k,k′)∈V×V

d(k, k′)ξ(k, k′) =
∑
k 6=k′

d(k, k′)ξ(k, k′)

≥
∑
k 6=k′

ξ(k, k′)

= 1−
∑
k∈V

ξ(k, k)

≥ 1− tij ·min{1/di, 1/dj}.

Taking the infimum over all ξ ∈ Π(mi,mj), we have

1− κ0 ≥W1(mi,mj) ≥ 1− tij ·min{1/di, 1/dj},

or tij ≥ κ0/min{1/di, 1/dj}. Denote by E the set of all edges of G such that κ(i, j) ≥ κ0

and by Ec its complement. Since |Ec| ≤ Cn by assumption,

α =
1

n

∑
(i,j)∈E

2

2 + tij
+

1

n

∑
(i,j)∈Ec

2

2 + tij

≤ 2

κ0n

∑
(i,j)∈E

min{1/di, 1/dj}+ C

≤ 1

κ0n

∑
i∈V

∑
j∈Ni

min{1/di, 1/dj}+ C

≤ 1

κ0
+ C.
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For the last inequality, we use the fact that
∑

j∈Ni
min{1/di, 1/dj} ≤ 1.

For proving Theorem 3, we need the following lemma.

Lemma 11 For positive numbers x1, x2, ..., xk the following inequality holds

(x1 + x2 + · · ·+ xk)

(
1

x1
+

1

x2
+ · · ·+ 1

xk

)
≥ k2.

The two sides are equal if and only if x1 = x2 = · · · = xn.

Proof [Proof of Lemma 11] Using the inequality of arithmetic and geometric means, we
have

x1 + x2 + · · ·+ xk ≥ k(x1x2 · · ·xk)1/k,
1

x1
+

1

x2
+ · · ·+ 1

xk
≥ k(x1x2 · · ·xk)−1/k.

Lemma 11 follows directly from these inequalities.

Proof [Proof of Theorem 3] For each node i, denote by Ni and ti the set of neighbors of i
and the number of triangles that contain i, respectively. Using Lemma 11, we have

∑
j∈Ni

2

tij + 2
≥ 2|Ni|2∑

j∈Ni
(tij + 2)

=
d2
i

ti + di
≥ 1

2ci + 1
di

.

Summing over all nodes i and applying Lemma 11 again, we obtain

∑
(i,j)∈E

4

tij + 2
≥
∑
i∈V

1

2ci + 1
di

≥ |V |2∑
i∈V

(
2ci + 1

di

) =
n

2c+ 1
n

∑
i∈V

1
di

.

The proof is complete by dividing both sides of this inequality by 2n.

Appendix C. Proofs of Results in Section 4

Proof [Proof of Theorem 5] We rewrite S := nα as follows:

S =
∑

(i,j)∈EG

2

tij + 2
=
∑
i<j

2Aij
tij + 2

=:
∑
i<j

Yij .

The proof consists of two parts: showing that S ≤ 2ES with high probability and upper
bounding ES. For the first part, note that S is a sum of n(n − 1)/2 weakly depdendent
random variables Yij = 2Aij/(tij + 2), where Yij and Yi′j′ are independent if i′ 6= i and
j′ 6= j. To deal with the dependence among Yij , we will use the moment method (see for
example Warnke (2017)).
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For notational simplicity, we denote γ = {i, j} as a set of two elements i, j and write
S =

∑
γ Yγ . With the new notation, Yγ and Yγ′ are independent if γ∩γ′ = ∅. For a positive

integer k, let

Mk =
∑

(γ1,...,γk)

k∏
i=1

Yγi ,

where the sum is over all k-tuples (γ1, ..., γk) such that γi ∩ γj = ∅ if i 6= j. Since
Yγ1 , Yγ2 , ..., Yγk are independent by construction,

EMk =
∑

(γ1,...,γk)

k∏
i=1

EYγi ≤

(∑
γ

EYγ

)k
= (ES)k . (C.1)

Denote by E the event that S > 2ES. When E occurs,

Mk+1 =
∑

(γ1,...,γk)

k∏
i=1

Yγi

∑
γ

Yγ −
∑

γ∩γi 6=∅ for some 1≤i≤k

Yγ


≥

∑
(γ1,...,γk)

k∏
i=1

Yγi

2ES −
∑

γ∩γi 6=∅ for some 1≤i≤k

Yγ

 .

For each (γ1, ..., γk) we have

∑
γ∩γi 6=∅ for some 1≤i≤k

Yγ ≤
k∑
i=1

∑
γ∩γi 6=∅

Yγ ≤ k ·max
γ′

∑
γ∩γ′ 6=∅

Yγ .

Let Z = maxi
∑n

j=1Aij be the maximal node degree. Since Yγ ≤ Aγ ,

max
γ′

∑
γ∩γ′ 6=∅

Yγ ≤ max
γ′

∑
γ∩γ′ 6=∅

Aγ ≤ 2Z.

Therefore if E occurs then

Mk+1 ≥
∑

(γ1,...,γk)

k∏
i=1

Yγi (2ES − 2kZ) = Mk (2ES − 2kZ) . (C.2)

We now show that 2ES− 2kZ ≥ (3/2) ·ES > 0 with high probability for k = O(log n),
so the above inequality can be applied repeatedly to obtain a desired lower bound for Mk.
Since upper diagonal elements of A are independent, by Jensen’s inequality we have

ES =
∑
i<j

Pij · E
[

2

tij + 2

]
≥
∑
i<j

2Pij
E tij + 2

≥ 2

maxi,j E tij + 2
·
∑
i<j

Pij .

The second inequality of (4.1) then implies

ES ≥ C∆ log n.
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Let E1 be the event that Z ≤ 2∆. Since ∆ > C log n, it follows from the Chernoff and union
bounds that

P(E1) = P(Z ≤ 2∆) ≥ 1− 1

2n
. (C.3)

When E1 occurs,

2ES − 2kZ =
3ES

2
+

ES
2
− 2kZ ≥ 3ES

2
+
C∆ log n

2
− 4k∆ ≥ 3ES

2

for all k ≤ m, where m = b(C/8) log nc is the largest integer not greater than (C/8) log n.
Therefore if E ∩ E1 occurs then M1 = S > 2ES and by applying (C.2) repeatedly,

Mm ≥Mm−1 ·
3ES

2
≥ · · · ≥

(
3ES

2

)m
.

Using Markov’s inequality, (C.1) and (C.3), we have

P(S > 2ES) ≤ P(S > 2ES,Z ≤ 2∆) + P(Z > 2∆)

≤ P
(
Mm ≥

[
3ES

2

]m)
+

1

2n

≤
(

2

3

)m
+

1

2n

≤ 1

n
,

where the last inequality holds for sufficiently large C. Thus, S ≤ 2ES with probability at
least 1− 1/n.

It remains to bound

ES =
∑
i<j

2Pij · E
[

1

tij + 2

]
.

For every pair of nodes (i, j) we have∣∣∣∣E 1

tij + 2
− 1

E tij + 2

∣∣∣∣ =
1

E tij + 2
·
∣∣∣∣E tij − E tij

tij + 2

∣∣∣∣ ≤ 1

E tij + 2
· E |tij − E tij |

tij + 2
. (C.4)

Since tij is the sum of n independent Bernoulli random variables, by Chernoff bound,

P (tij ≤ E tij/2) ≤ exp

(
−E tij

8

)
.

Consider the function g(x) = |x − E tij |/(x + 2) with x ≥ 0. It is easy to show that
g(x) ≤ E tij if x ≤ E tij/2 and g(x) ≤ 1 if x > E tij/2. Therefore

E
|tij − E tij |
tij + 2

= E g(tij) · I(tij ≤ E tij/2) + E g(tij) · I(tij > E tij/2)

≤ E tij · P(tij ≤ E tij/2) + P(tij > E tij/2)

≤ E tij · exp

(
−E tij

8

)
+ 1

≤ 4.
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The last inequality follows from the fact that x · exp(−x/8) ≤ 3 for all x ≥ 0. By (C.4) and
the last inequality, we get

E
1

tij + 2
≤ 5

E tij + 2
.

Finally,

ES =
∑
i<j

2Pij · E
[

1

tij + 2

]
≤
∑
i<j

10Pij
E tij + 2

and the proof is complete.

Proof [Proof of Corollary 6] We first verify the conditions in Theorem 5. By (4.3),

∆ = max
i

n∑
j=1

Pij = max
i
niδ ≥ C−1nrdnδ ≥ C log n.

Therefore the first condition of (4.1) is satisfied if C is sufficiently large. Also, since

∆ ·max
i,j

[
1 +

(
P 2
)
ij

]
= max

i
niδ ·max

ij
(1 + nijδ

2) ≤ 2Cn2r2d
n δ

3

and
1

log n

∑
i<j

Pij =
1

2 log n

n∑
i=1

nijδ ≥
n2rdnδ

2C log n
,

the second condition of (4.1) holds because rdn ≤ (4C3δ2 log n)−1. Therefore by Theorem 5,
with probability at least 1− 1/n, the upper bound of α is

1

n

∑
i<j

10Pij
E tij + 2

=
1

n

n∑
i=1

∑
j:‖xi−xj‖≤rn

5δ

nijδ2 + 2

≤ 1

n

n∑
i=1

5niδ

nijδ2 + 2

≤ 5C2δ−1,

and the proof is complete.

Appendix D. Proof of Results in Section 5

Proof [Proof of Lemma 7] By the definition of E and E , we have∑
(i,j)∈E

t̃−1
ij ≤

∑
e∈E

∑
{i,j}⊆e

t̃−1
ij .
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Since t̃ij ≥ |e| for each e ∈ EG that contains {i, j} and there are |e|(|e|−1)/2 pairs {i, j} ∈ e,
it follows from above inequality that∑

(i,j)∈E

t̃−1
ij ≤

∑
e∈E

|e| − 1

2
≤ 1

2

∑
e∈E
|e| ≤ dn

2
.

For the last inequality we use the assumption that each node belongs to at most d hyper-
edges.

Proof [Proof of Theorem 8] The proof of this theorem is similar to the proof of Theorem 1
with one exception that we replace α̃ with the upper bound d/2 shown in Lemma 7.

Appendix E. Proof of Results in Section 6

Proof [Proof of Theorem 9] Let S be the sum of k independent Bernoulli random variables
with success probability θ. Then by Bernstein’s inequality, for any δ ∈ [0, 1],

P (|S − kθ| > δkθ) ≤ 2 exp

(
−(δkθ)2/2

kθ + (δkθ)/3

)
≤ 2 exp

(
−δ2kθ

4

)
. (E.1)

Let E be the set of all edges with θij < ε/2. For each (i, j) ∈ E , kθ̂ij is stochastically
bounded by S with θ = ε/2. Therefore by (E.1) with δ = ε,

P(θ̂ij ≥ ε) ≤ P(S ≥ kε) ≤ P(|S − kε/2| ≥ kε/2) ≤ 2 exp

(
−kε

8

)
.

Since k = 100 log n/ε, by the union bound,

P
(
θ̂ij < ε for all (i, j) ∈ E

)
≥ 1− 2n2 exp

(
−kε

8

)
≥ 1− 1

2n
. (E.2)

Consider now Ec, the set of nodes with θij ≥ ε/2. Then using (E.1) with θ = θij and
δ = 1/2, we get

P(|θ̂ij − θij | ≥ θij/2) ≤ P(|S − kθij | ≥ kθij/2) ≤ 2 exp

(
−kθij

16

)
≤ 2 exp

(
−kε
32

)
.

Therefore with k = 100 log n/ε3, we have

P
(∣∣∣ t̂ij
tij
− 1
∣∣∣ ≤ 1

2
for all (i, j) ∈ Ec

)
= P

(∣∣∣ θ̂ij
θij
− 1
∣∣∣ ≤ 1

2
for all (i, j) ∈ Ec

)

≤ 2n2 exp

(
−kε
32

)
≤ 1− 1

2n
. (E.3)

25



Can M. Le

Recall that for edges (i, j) with min{di, dj} > k, we calculate tij directly if θ̂ij < ε and

estimate tij by t̂ij = θ̂ij · min{di, dj} otherwise. From (E.2) and (E.3), we obtain that
|t̂ij − tij | ≤ 1/2 for all (i, j) with probability at least 1 − 1/n. The spectral property (1.1)
then follows from Theorem 2.

The computational complexity of estimating all tij is bounded by∑
(i,j)∈E

min{di, dj}+
∑

(i,j)∈Ec
k ≤

∑
(i,j):θij≤ε/2

min{di, dj}+ 100|EG| log n/ε.

The proof is complete.
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