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Abstract
We propose a formulation for nonlinear recurrent models that includes simple parametric
models of recurrent neural networks as a special case. The proposed formulation leads to a
natural estimator in the form of a convex program. We provide a sample complexity for this
estimator in the case of stable dynamics, where the nonlinear recursion has a certain contrac-
tion property, and under certain regularity conditions on the input distribution. We evaluate
the performance of the estimator by simulation on synthetic data. These numerical experi-
ments also suggest the extent at which the imposed theoretical assumptions may be relaxed.
Keywords: recurrent neural networks, convex programming, dynamical systems, VC
dimension

1. Introduction

Given a differentiable and convex function f : Rn → R with ∇f (0) = 0, we consider the
dynamics described by the recursion

xt = ∇f (A?xt−1 +B?ut−1) , (1)

where u0,u1, . . . are i.i.d. copies of a random vector u ∈ Rp, the initial state x0 is zero,
and the matrices A? ∈ Rn×n and B? ∈ Rn×p are the parameters of the model. In the setup
described above, we want to address the following problem.

Problem. Given a time horizon T , estimate the model parameters A? and B?, from a
single observed trajectory (u0,x0 = 0), (u1,x1), . . . , (uT ,xT ).

The specific form of the nonlinearity in (1) might seem strange at first, but many
common choices of nonlinearities used in practice are special cases of this formulation. For
instance, increasing nonlinearities that act coordinate-wise can be modeled by choosing the
appropriate separable convex function f in (1). Particularly, the (parameterized) ReLU
function x 7→ x+ + c(−x)+ for some constant c ≥ 0, which is popular in neural network
models, corresponds to the choice of f(x) =

∑n
i=1(xi)2

+/2+c(−xi)2
+/2 in our proposed model.
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Intuitively, A? and B? affect the conditioning of the problem differently; A? applies
to the state variable that may have low temporal variation, whereas B? applies to the
input variable that is constantly changing. For example, if B? is dominated by A?, say,
in the Frobenius norm, one may need to observe the system for a much longer time to
collect enough information about A?. Therefore, to estimate A? and B? in tandem, it is
reasonable to scale one component to avoid error in one component dominating the error
in the other. We introduce β > 0 as a sufficiently large normalizing constant to address
a potential imbalance between the components A? and B?. We collect the ground truth
parameters in C? =

[
A? β−1B?

]
and for t = 0, 1, . . . , we set

zt =
[
xt
β ut

]
.

Therefore, the dynamics can be equivalently expressed as

z0 =
[

0
β u0

]
, and zt =

[
∇f (C?zt−1)

β ut

]
, for t ≥ 1 .

Our goal is effectively to estimate C?, from the observations z0, z1, . . . ,zT .
Not surprisingly, further model assumptions are needed to exclude inherently intractable

instances of the problem. Below in Section 1.3 we state the assumptions we make to analyze
the problem. Under these assumptions, by Theorem 1 we show that if T (i.e., the observation
horizon) scales with n+ p up to some polylogarithmic factors, the estimator described in
Section 1.2 recovers C? with high probability. As explained in that section, our argument
effectively reduces to establishing a positive lower bound for the eigenvalues of the “sample
correlation matrix” of the vectors zt.

In this paper we provide statistical guarantees for the parameter estimation under the
nonlinear recurrent model (1), which itself generalizes the most prevalent recurrent models.
Specifically, we propose a novel estimator that, unlike the few existing competitors, is
formulated as a convex program. More importantly, we show that this estimator is accurate,
with a sample complexity that scales gracefully with the dimensions of the problem, even
for heavy-tailed input distributions.

1.1 Related work

Recurrent Neural Networks (RNN) and similar models of random dynamical systems have
become the main tool in machine learning applications dealing with sequential data. In
this section we briefly review some recent results that provide theoretical analysis for these
models.

Parameter estimation in discrete-time linear dynamical systems whose state variable are
generally governed by the recursion

xt = A?xt−1 +B?ut−1 + ξt , (2)

with ξt denoting an additive observation noise, are studied in (Hardt et al., 2018; Faradonbeh
et al., 2018; Simchowitz et al., 2018; Du et al., 2018; Sarkar and Rakhlin, 2019). The
difference in the mentioned results stem from variations to the model such as
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• observing the state variable indirectly, through the sequence

yt = A′?xt +B′?ut + ξ′t , (3)

with ξ′t denoting an additive output noise,

• observing single versus multiple trajectories,

• restricting A? (e.g., maxi |λi(A?)| < 1 in the stable model versus mini |λi(A?)| > 1 in
the explosive model), and

• choosing to have an input (i.e., B? = 0 versus B? 6= 0) with a certain distribution.

Hardt et al. (2018) consider a prediction problem in controllable linear dynamical systems
with indirect observations as in (3). Specifically, formulating the prediction problem naturally
as a (non-convex) least squares, the prediction error achieved by stochastic gradient descent
(SGD) is analyzed under some technical assumptions. In a stable single input single output
setting, it is shown that with N trajectories of length T observed, the prediction error can
be bounded as O(

√
(n5 + σ2n3)/(TN)) where n is the number of controllable parameters,

and σ2 is the variance of the zero-mean noise terms ξ′t in (3).
Under technical assumptions, Faradonbeh et al. (2018) establish a sample complexity for

estimation of A? in the explosive regime (i.e., mini |λi(A?)| > 1) with heavy-tailed noise
and deactivated input (i.e., B? = 0).

Simchowitz et al. (2018) analyze the ordinary least squares (OLS) in estimation ofA? from
a single trajectory of observations x0,x1, . . . where there is no input (i.e., B? = 0) and the
process noise is i.i.d. samples of a zero-mean isotropic Gaussian random variable. It is shown
in Simchowitz et al. (2018) that for “marginally stable” systems (i.e., maxi |λi(A?)| ≤ 1),
the estimate Â produced by the OLS, with high probability, achieves the natural error rate
of
∥∥∥Â−A?

∥∥∥ .
√
n/T up to some constants and log factors depending implicitly on A?.

Remarkably, this result applies to systems where the spectral radius of A? equals one (i.e.,
maxi |λi(A?)| = 1) where the more standard arguments based on mixing time which require
stability of the system do not apply.

Oymak and Ozay (2018) considers estimation from a single trajectory of input/output
observation pairs (u0,y0), (u1,y1), . . . where the output sequence y0,y1, . . . is generated
by the recursion (3). Assuming the input, the state noise, and the output noise each to
have i.i.d. samples from zero-mean isotropic Gaussian distributions, (Oymak and Ozay,
2018) studies accuracy of a least squares approach in estimation of the parameter matrix
G? =

[
B′? A′?B? A′?A?B? · · · A′?A

T−2
? B?

]
that characterizes the dynamics.

Similar to (Simchowitz et al., 2018), Sarkar and Rakhlin (2019) establish the estimation
error rate for OLS in the single observation trajectory regime under the model (2) with
deactivated input (i.e., B? = 0) and sub-Gaussian noise ξt. Particularly, in the three
regimes of stable or marginally stable systems (i.e. maxi |λi(A?)| < 1 +O(1/T )), marginally
stable systems (i.e. maxi |λi(A?)| < 1−O(1/T )), and explosive systems (in the sense that
mini |λi(A?)| > 1 +O(1/T )) the operator norm of the error roughly decays as 1/

√
T , 1/T ,

and e−T , respectively.
Du et al. (2018) study the minimax rate of estimation from multiple trajectories in simple

linear recurrent neural networks (and convolutional neural networks). Considering the state
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variable to be linearly collapsed to a scalar in the output, under a subGaussian model for
the input sequence as well as the output noise, the mentioned paper provides upper and
lower bounds for the minimax risk of the mean squared error. In particular, it is shown
that the minimax rate of estimating from T trajectories of length L, is orderwise between√

min{n,L}p/T and
√

(p+ L) min{n, p} log(Lp)/T .
From a technical point of view, linearity in recurrent models typically provides the

convenience of “unfolding” the state recursion into explicit equations in terms of the past
input. This convenient feature disappears immediately as nonlinearities are introduced in
the recursion as in (1). Miller and Hardt (2019) showed that in the stable regime nonlinear
RNNs can be approximated by “truncated” RNNs. Furthermore, they showed that, for
unstable RNNs, gradient descent does not necessarily converge. Oymak (2019) studies
the parameter estimation under (1) when the nonlinearity ∇f is replaced by an activation
function that is strictly increasing and applies coordinatewise. Formulating the problem as
nonconvex least squares, (Oymak, 2019) establishes a sample complexity for the convergence
of in Frobenius norm. Basically, (Oymak, 2019) shows that if T & ρ(n+ p) with ρ being a
certain notion of condition number of B?, then with high probability, SGD converges at a
linear, albeit dimension dependent, rate. Allen-Zhu and Li (2019) analyzed the performance
of SGD applied to the Elman’s model of RNNs. However, their result is not immediately
comparable to our results because of the differences in the setup, e.g.,they consider prediction
performance from multiple independent trajectories of observations whereas we consider
parameter estimation from a single trajectory.

In this paper, we generalize the results of (Oymak, 2019) in two directions. First, our
formulation of the recurrence (1) admits a broader class of nonlinearities, and, as will be
seen in the sequel, it enables us to formulate a convex program as the estimator. Second, the
analysis of (Oymak, 2019) relies critically on the assumption that the input distribution is
Gaussian. This is partly due to the use of the Gaussian concentration inequality for Lipschitz
functions. At the cost of having a stricter form of nonlinearity, we relax the requirement on
the input distribution by allowing the random input to have heavier tail.

1.2 Proposed Estimator

Our proposed estimator is formulated as a convex program as follows

Ĉ ∈ argmin
C∈Rn×(n+p)

T∑
t=1

f(Czt−1)− 〈xt,Czt−1〉 . (4)

Readers familiar with convex analysis may observe that if f∗, the convex conjugate of f , is
smooth, then ∇f∗ ≡ (∇f)−1 and (1) is equivalent to

∇f∗(xt+1) = A?xt−1 +B?ut−1 .

Should ∇f∗ be easy to compute, it is evident that the resulting system of linear equations
can be solved by the common least squares approach to estimate A? and B?. However, we
prefer (4) as the estimator, since it can be implemented regardless of f∗ and its properties.

In view of (1) and convexity of f , it is straightforward to verify that C? is a minimizer for
(4). Under the assumptions specified below in Section 1.3, we will show that the minimizer
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of (4) is unique and therefore Ĉ = C?. In particular, with f assumed to be λ-strongly
convex, we have

f(Czt−1)− 〈xt,Czt−1〉 ≥ f(C?zt−1)− 〈xt,C?zt−1〉+ λ

2 ‖(C −C?)zt−1‖22 .

Therefore, to guarantee uniqueness of the minimizer in (4), it suffices to show that, with
high probability, the smallest eigenvalue of

Σ
def=

T−1∑
t=0

ztz
T
t , (5)

is strictly positive with high probability.

1.3 Assumptions

With no restricting conditions imposed on the observation model in (1), the posed estimation
problem is not meaningful. For instance, any affine function f is permitted in the core model
above, but clearly its corresponding trajectory conveys no information about C?.

Assumption 1 (regularity of f). The function f has the following properties:

1. The function f is λ-strongly convex and Λ-smooth in the usual sense, i.e.,
λ

2 ‖y − x‖
2
2 ≤ f(y)− f(x)− 〈∇f(x),y − x〉 ≤ Λ

2 ‖y − x‖
2
2 , (6)

holds for all x,y ∈ Rn.

2. There exist a matrix-valued function F : Rn → Rn×n and some constant ε > 0 such
that, for all x,y ∈ Rn, we have∥∥∥∥1

2 (∇f(x+ y)−∇f(x− y))− F (x)y
∥∥∥∥

2
≤ ε‖y‖2 . (7)

Perhaps the simplest example of the functions that meet the conditions of Assumption
1 is the convex quadratic functions. Let Q be a positive semidefinite matrix that satisfies
λI � Q � ΛI. Then f(x) = 1

2x
TQx clearly satisfies (6), and also satisfies (7) for F (x) ≡ Q

and ε = 0. Using the mean value theorem, we can easily generalize this example to all
twice-differentiable convex functions f whose Hessian obeys λI � ∇2f(x) � ΛI for all
x. For such functions, F and ε can be chosen respectively as F (x) = (λ + Λ)/2 I and
ε = (Λ− λ)/2.

Another important example of the function f that meets the above conditions, is the
piecewise quadratic function

f(x) = 1
2

n∑
i=1

max{λ(−xi)2
+, Λ(xi)2

+} .

The gradient of this function, which can be used as the nonlinearity in (1), is given by

∇f(x) =


Λ+λ

2 x1 + Λ−λ
2 |x1|

...
Λ+λ

2 xn + Λ−λ
2 |xn|

 ,
5
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whose coordinates happen to be the (parameterized) ReLU functions. For this specific f ,
the mapping F can be chosen as

F (x) =


Λ+λ

2 + Λ−λ
2 sgn(x1) 0

Λ+λ
2 + Λ−λ

2 sgn(x2)
. . .

0 Λ+λ
2 + Λ−λ

2 sgn(xn)

 ,
for which (7) holds with ε = (Λ− λ)/2.

An immediate consequence of Assumption 1 is the following.

Lemma 1. Under Assumption 1, the mapping F obeys

(λ− ε)‖y‖2 ≤ ‖F (x)y‖2 ≤ (Λ+ ε)‖y‖2 ,

for all x,y ∈ Rn.

Proof. Using the standard equivalent definitions of strong convexity and smoothness (Nes-
terov, 2013, Theorem 2.1.5), we have

λ‖y − x‖2 ≤ ‖∇f(y)−∇f(x)‖2 ≤ Λ‖y − x‖2 .

Rewriting these inequalities, in terms of the pair (−x+ y,x+ y) in place of (x,y), we can
obtain

2λ‖y‖ ≤ ‖∇f(x+ y)−∇f(x− y)‖2 ≤ 2Λ‖y‖2 .
Furthermore, by (7) and the triangle inequality we have

‖F (x)y‖2 − ε‖y‖2 ≤
1
2‖∇f(x+ y)−∇f(x− y)‖2 ≤ ‖F (x)y‖2 + ε‖y‖2 .

The lemma easily follows from the latter two lines of inequalities.

We make the following assumption on the input u.

Assumption 2 (regularity of the input distribution). The input u has the following prop-
erties:

1. The input u ∈ Rp is a zero-mean isotropic random variable, i.e.,

E(u) = 0, and E(uuT) = I .

2. The coordinates of u have independent symmetric distributions, i.e., for all measurable
subsets A = A1 × . . .×Ap of Rp, we have

P(u ∈ A) =
p∏
i=1

P(ui ∈ Ai) =
p∏
i=1

P(−ui ∈ Ai) .

3. For a certain α ≥ 1, the input u has a bounded directional Orlicz ψα norm, i.e., there
exists a finite absolute constant K > 0 such that

sup
h∈Sp−1

E
(
e
|〈h,u〉|α/Kα

)
≤ 2 . (8)
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The following lemma is an immediate consequence of (8).

Lemma 2. Let u be the random variable under the Assumption 2 and u′ be an independent
copy u. The vector u has a bounded directional fourth moment, i.e., there exist η ∈
[1, 2(4/α)4/αK4] such that

E
(
(〈h,u〉)4

)
≤ η , (9)

holds for all h ∈ Sp−1. Furthermore, for all h,h′ ∈ Sp−1 we have

E
((
〈h,u〉+ 〈h′,u′〉

)4) ≤ max{η, 3}
(
‖h‖22 +

∥∥h′∥∥2
2

)2
.

Proof. Clearly, existence of the exponential moments guarantees that E
(
|〈h,u〉|4

)
<∞ for

all h ∈ Sp−1. To prove the first part, we show that (9) holds for η = 2(4/α)4/αK4. For all
h ∈ Sp−1 we have

E
(
|〈h,u〉|4

)
= η

2 E

(( |〈h,u〉|α
(η/2)α/4

)4/α)

≤ η

2 E

(
exp

( 4
α

|〈h,u〉|α

(η/2)α/4

))
.

For the prescribed η we have (η/2)α/4α/4 = Kα. Thus, in view of (8), we obtain

E
(
|〈h,u〉|4

)
≤ η

2 2 = η ,

as desired. Since u and u′ are zero-mean, isotropic, i.i.d, and further obey (9), we have

E
((
〈h,u〉+ 〈h′,u′〉

)4) = E
(
(〈h,u〉)4 + 6 (〈h,u〉)2 (〈h′,u′〉)2 +

(
〈h′,u′〉

)4)
≤ η‖h‖42 + 6‖h‖22

∥∥h′∥∥2
2 + η

∥∥h′∥∥4
2

≤ max{η, 3}
(
‖h‖22 +

∥∥h′∥∥2
2

)2
,

which proves the second part.

In addition to the assumptions made above, our analysis crucially depends on a form of
contraction that can be ensured by the following assumption. Note that Λ can be taken as
Λ = Lip(∇f), i.e., the Lipschitz constant of ∇f with respect to the usual Euclidean metric.

Assumption 3 (conctractive dynamics). The nonlinearity ∇f and the matrix A? induce a
contraction in the sense that

Λ ‖A?‖ < 1 .

2. Main result

Our main theorem below, effectively guarantees that T = Õ(n + p) is sufficient for the
matrix Σ to be (strictly) positive definite. Throughout, we denote the matrix M with its
ith column replaced by the zero vector asM\i. Furthermore, we denote the `1 → `2 induced
norm, or equivalently the largest column `2 norm, of M , by

‖M‖1→2
def= max{‖Mz‖2 : ‖z‖1 ≤ 1} .
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Theorem 1. Suppose that the energy of B? is well-spread among its columns in the sense
that ‖B?‖1→2/‖B?‖F = O(p−1/2). Furthermore, suppose that the constant

θ = θα,β,ε,λ,K,B?

def= −εK log
1
α (10 max{η, 3}) ‖B?‖1→2

+ 0.6 min
i=1,...,p

min
{
β, (λ− ε)λ1/2

min

(
B?\iB?

T
\i

)}
,

(10)

is strictly positive. Furthermore, suppose that L satisfies

L ≥ 1 +
log

(
c2

θ2 log
(

2(T−1)(p+1)
δ

) (
Λ‖B?‖F

1−Λ‖A?‖

)2)
log 1

Λ‖A?‖
, (11)

for a sufficiently large constant c > 0. Then, for

T & max{η2, 9} (n+ p)L log
(
eT/L

n+ p

)
+ log

(8L
δ

)
, (12)

we have

λmin(Σ) & θ2

max{η, 3}T ,

with probability ≥ 1− δ. Consequently, on the same event, (4) recovers C?, exactly.

A critical condition of Theorem 1 is that θ is strictly positive. This condition implicitly
requires ε in (7) to be sufficiently small, which in turn implies the condition number of f is
sufficiently close to 1 (i.e. ∇f is nearly linear). Furthermore, it is needed that the energy
of B? to be well-spread not only among its columns, but also in a “spectral” sense. More
precisely, we need the quantity

max
i=1,...,p

‖B?‖1→2

λ
1/2
min(B?\iB?

T
\i)

,

to be sufficiently small. The equation (10) also suggests that a reasonable choice of the
normalizing constant β should satisfy β ≈ (λ− ε)λ1/2

min (B?B
T
?).

3. Simulation

We evaluated the proposed estimator numerically on synthetic data in a setup similar to
the experiments of (Oymak, 2019). In all of the experiments, we consider the dimensions
to be n = 50, p = 100, and the time horizon to be T = 500. For α ∈ {0.2, 0.8} we choose
A? = αR with R being a uniformly distributed n × n orthogonal matrix. Furthermore,
B? ∈ Rn×p is generated randomly with i.i.d. standard normal entries. The normalizing
factor β is chosen as prescribed in (Oymak, 2019). We consider two different models for the
input u. Let g ∼ Normal(0, 1) denote a standard Normal random scalar. The first model is
similar to the model of (Oymak, 2019) where the entries of u are i.i.d. copies of g, whereas
in the second model takes i.i.d. copies of g3 as the entries of u. We refer to these models
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as the Gaussian model and the heavy-tailed model, respectively. The nonlinearity in (1) is
described by one of the functions

f(x) = 1− ρ
2

n∑
i=1

(xi)2
+ + ρ

2

n∑
i=1

x2
i ,

at ρ = 1 (i.e., linear activation), ρ = 0.5 (i.e., leaky ReLU activation with slope 0.5 over
R≤0), ρ = 0.3 (i.e., leaky ReLU activation with slope 0.3 over R≤0), and ρ = 0 (i.e., ReLU
activation).

For each choice of α and ρ, we solved (4) using Nesterov’s Accelerated Gradient Method
(AGM) (Nesterov, 1983; Nesterov, 2013, Section 2.2), for 100 randomly generated instances
of the problem. For the Gaussian model the step-size is set to 10−3, whereas for the
heavy-tailed model the step-size is set to 10−4. In each trial, the AGM is run for a
maximum of 500 iterations and terminated only if the relative error dropped below 10−8

(i.e.,
∥∥∥Ĉ −C?∥∥∥2

F
/‖C?‖2F ≤ 10−8). The optimization task can be solved by the SGD as well.

However, slower convergence of the SGD is only tolerable for large-scale problems where
lower memory load is crucial. Nevertheless, because the estimator (4) is formulated as a
convex program, we can apply the SGD methods with variance reduction (see e.g., Johnson
and Zhang, 2013; Schmidt et al., 2017; Defazio et al., 2014) and rely on their theoretical
guarantees.

Figures 1 and 2 depict the achieved relative error under the Gaussian model and the
heavy-tailed model for the chosen values of α and ρ, respectively. The solid lines show
the median of the achieved relative error, whereas the dashed lines show the 0.1 and 0.9
quantiles of the relative error. Perhaps, the result that might strike as counter intuitive at
first, is that the estimation performance is not monotonic with respect to the strength of
stability. For instance, the plots in the first two rows of Figure 1 suggest that convergence is
faster for the less stable system (i.e., α = 0.8). A similar conclusion can be made regarding
the plots in the first row of Figure 2 corresponding to linear activation functions. However,
it appears that this behavior is sensitive to the level of nonlinearity, particularly in the case
of the heavy-tailed input distributions.

4. Proof of the main result

Proof of Theorem 1. Recall the definition of Σ in (5). We would like to find a lower
bound for the smallest eigenvalue of Σ that holds with high probability. Consider a
sufficiently large integer L as a stride parameter and for ` = 0, . . . , L− 1 let

T` = {t : L ≤ t < T and t = ` mod L} ,

which partition {L, . . . , T − 1} to sets of subsampled time indices with stride L. For each
` = 0, . . . , L− 1, we define the “restarted” state variables x(`)

t through the recursion

x
(`)
t+1 =

0 , t = ` mod L

∇f
(
A?x

(`)
t +B?ut

)
, t 6= ` mod L ,
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Figure 1: Gaussian model
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(b) α = 0.8, ρ = 1

0 100 200 300 400 500
10

- 8

10
- 6

10
- 4

10
- 2

10
0

iteration

0.1 quantile
median
0.9 quantile
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0 100 200 300 400 500
10

- 8

10
- 6

10
- 4

10
- 2

10
0

iteration

0.1 quantile
median
0.9 quantile
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Figure 2: Heavy-tailed model
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and the corresponding restarted version of zt as

z
(`)
t =

[
x

(`)
t

β ut

]
. (13)

For any w ∈ Sn+p−1 we have

wTΣw ≥
T−1∑
t=L

(wTzt)2 =
L−1∑
`=0

∑
t∈T`

(wTzt)2
.

To find a lower bound for
∑
t∈T` (wTzt)2, the strategy is to approximate this summation by

its corresponding restarted version. Aggregating the obtained bounds for all ` = 0, . . . , L− 1
then yields the desired lower bound for wTΣw.

By the Cauchy-Schwarz inequality we have

(wTzt)2 +
(
wT

(
zt − z(`)

t

))2
≥ 1

2
(
wTz

(`)
t

)2
.

Summing over t ∈ T` and rearranging the terms then yields∑
t∈T`

(wTzt)2 ≥ 1
2
∑
t∈T`

(
wTz

(`)
t

)2

︸ ︷︷ ︸
def=S`(w)

−
∑
t∈T`

(
wT

(
zt − z(`)

t

))2

︸ ︷︷ ︸
def= S̃`(w)

.

Observe that the term S` (w) is a sum of independent random quadratic functions. Therefore,
deriving a uniform lower bound for S` (w) is amenable to standard techniques. We also
need to establish a uniform upper bound for the term S̃` (w) for which we leverage the
contraction assumption.

Recall that we denote the matrix M with its ith column replaced by the zero vector as
M\i. The following lemma, whose proof is relegated to the appendix, provides a uniform
lower bound on

∑L−1
`=0 S`(w). The proof for this lemma is also provided in the appendix.

Lemma 3 (uniform lower bound for S` (w)). With probability ≥ 1− δ, for all w ∈ Sn+p−1

we have

L−1∑
`=0

S`(w) ≥ θ2L|T`|

 0.1
max{η, 3} −

√√√√2(n+ p) log eT/L
(n+p) + log 4L

δ

|T`|

 ,

where θ is defined as in (10).

Furthermore, we have the following lemma that establishes a uniform upper bound for∑L−1
`=0 S̃`(w).

Lemma 4 (uniform upper bound for S̃` (w)). Suppose that µ def= p1/2‖B?‖1→2/‖B?‖F = O(1)
and let ε > 0 be a parameter. If for a certain absolute constant c > 0, we have

L ≥ 1 +
log

(
c2T
ε log

(
2(T−1)(p+1)

δ

) (
Λ‖B?‖F

1−Λ‖A?‖

)2)
log 1

Λ‖A?‖
,

12
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then with probability ≥ 1− δ, we can guarantee

L−1∑
`=0

S̃`(w) ≤ ε .

Consequently, under (11) and (12), it follows from Lemmas 3 and 4 that

wTΣw &
θ2

max{η, 3}T .

holds uniformly for all w ∈ Sn+p−1 with probability ≥ 1− δ.
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Appendix A. Proofs for technical lemmas

Proof of Lemma 3. For each ` = 0, . . . , L−1, the vectors z(`)
t with t ∈ T` are independent

and identically distributed. Let θ > 0 be a parameter to be specified later. Using a simple
truncation we can write

∑
t∈T`

(
wTz

(`)
t

)2
≥ θ2 ∑

t∈T`

1
(∣∣∣wTz

(`)
t

∣∣∣ ≥ θ) .
To bound the right-hands side of the inequality above uniformly with respect to the set of
binary functions

F`
def=
{
z 7→ 1 (|wTz| ≥ θ) : w ∈ Sn+p−1

}
,

we can resort to classic VC bounds (Vapnik and Chervonenkis, 1971; see also Devroye et al.,
2013, chapters 13 & 14). Particularly, because the VC dimension of F` is no more than
2 (n+ p), with probability ≥ 1− δ/L we have

1
|T`|

∑
t∈T`

1
(∣∣∣wTz

(`)
t

∣∣∣ ≥ θ) ≥ P
(∣∣∣wTz

(`)
t

∣∣∣ ≥ θ)−
√√√√2(n+ p) log e|T`|

n+p + log 4L
δ

|T`|
,
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for all w ∈ Sn+p−1. It only remains to find appropriate lower bounds for the probability in
the summation. Lemma 6 below provides the needed lower bound.

Taking the union bound over ` then shows that with probability ≥ 1− δ we obtain

L−1∑
`=0

1
|T`|

∑
t∈T`

1
(∣∣∣wTz

(`)
t

∣∣∣ ≥ θ) ≥ L
 0.1

max{η, 3} −

√√√√2(n+ p) log e|T`|
n+p + log 4L

δ

|T`|

 ,

which yields the desired bound.

Proof of Lemma 4. Recall the definition of z(`)
t in (13). For every t ∈ T` and w ∈ Sn+p−1

we have (
wT

(
zt − z(`)

t

))2
≤
∥∥∥zt − z(`)

t

∥∥∥2

2

=
∥∥∥∇f (C?zt−1)−∇f

(
C?z

(`)
t−1

)∥∥∥2

2
.

Furthermore, we can write∥∥∥∇f (C?zt−1)−∇f
(
C?z

(`)
t−1

)∥∥∥2

2
≤ Λ2

∥∥∥C? (zt−1 − z(`)
t−1

)∥∥∥2

2

= Λ2
∥∥∥A?

(
∇f (C?zt−2)−∇f

(
C?z

(`)
t−2

))∥∥∥2

2

≤ (Λ‖A?‖)2
∥∥∥(∇f (C?zt−2)−∇f

(
C?z

(`)
t−2

))∥∥∥2

2
.

Using the above inequality recursively yields∥∥∥∇f (C?zt−1)−∇f
(
C?z

(`)
t−1

)∥∥∥2

2
≤ (Λ‖A?‖)2(L−2)

∥∥∥∇f (C?zt−L+1)−∇f
(
C?z

(`)
t−L+1

)∥∥∥2

2

≤ (Λ‖A?‖)2(L−1) ‖xt−L‖22 .

Therefore, we deduce that(
wT

(
zt − z(`)

t

))2
≤ (Λ‖A?‖)2(L−1) ‖xt−L‖22 . (14)

Furthermore, for any time index s ≥ 1 we have

‖xs‖2 ≤ Λ‖A?xs−1 +B?us−1‖2
≤ Λ‖A?‖‖xs−1‖2 + Λ‖B?us−1‖2 .

Therefore, we can write

max
1≤s≤T−1

‖xs‖2 ≤ Λ‖A?‖ max
1≤s≤T−1

‖xs−1‖2 + Λ max
1≤s≤T−1

‖B?us−1‖2 ,

which implies

max
1≤s≤T−1

‖xs‖2 ≤
Λ

1− Λ‖A?‖
max

1≤s≤T−1
‖B?us−1‖2 .
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Since µ = p1/2‖B?‖1→2/‖B?‖F = O(1) by assumption, using the matrix Bernstein
inequality, stated in Lemma 5 below, for each s = 1, . . . , T−1, with probability ≥ 1−δ/(T−1)
we have

‖B?us−1‖2 ≤ c‖B?‖F log
1
2

(2(T − 1)(p+ 1)
δ

)
,

for some absolute constant c > 0. It then follows from a simple union bound that

max
1≤s≤T−1

‖B?us−1‖2 ≤ c‖B?‖F log
1
2

(2(T − 1)(p+ 1)
δ

)
,

holds with probability ≥ 1− δ. Consequently,

max
1≤s≤T−1

‖xs‖2 ≤ c log
1
2

(2(T − 1)(p+ 1)
δ

)
Λ‖B?‖F

1− Λ‖A?‖
,

holds with probability ≥ 1− δ. Under the same event and in view of (14) we have

(
wT

(
zt − z(`)

t

))2
≤ (Λ‖A?‖)2(L−1) c2 log

(2(T − 1)(p+ 1)
δ

)(
Λ‖B?‖F

1− Λ‖A?‖

)2
,

for all w ∈ Sn+p−1, 0 ≤ ` ≤ L− 1, and t ∈ T`. Summation over t ∈ T` then yields

S̃` (w) =
∑
t∈T`

(
wT

(
zt − z(`)

t

))2

≤ T

L
(Λ‖A?‖)2(L−1) c2 log

(2(T − 1)(p+ 1)
δ

)(
Λ‖B?‖F

1− Λ‖A?‖

)2
.

Therefore, for ε > 0 if

L ≥ 1 +
log

(
c2T
ε log

(
2(T−1)(p+1)

δ

) (
Λ‖B?‖F

1−Λ‖A?‖

)2)
log 1

Λ‖A?‖
,

then with probability ≥ 1− δ for all w ∈ Sn+p−1 we have

L−1∑
`=0

S̃` (w) ≤ ε .

Appendix B. Auxiliary lemmas

We use a special case of a matrix Bernstein inequality (Koltchinskii, 2011, Corollary 2.1).
For reference, the following lemma states the special inequality we need; we omit the proof
and refer the reader to (Koltchinskii, 2011) for the general Bernstein inequality.
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Lemma 5. Suppose that u obeys the Assumption 2. Furthermore, define a coherence
parameter for B? as µ def= p1/2‖B?‖1→2/‖B?‖F. Then, for some absolute constant c > 0,
and any γ ∈ (0, 1], the bound

‖B?u‖2

≤ max
{
c

1
2 log

1
2
(
2γ−1(p+ 1)

)
, cmax{K, 2}µ log

1
α (max{K, 2}µ) log

(
2γ−1(p+ 1)

)
p1/2

}
‖B?‖F ,

holds with probability ≥ 1− γ. In particular, if µ = O(1), meaning that the weight of B?

is distributed almost evenly across its columns, and p is sufficiently large, the bound stated
above effectively reduces to

‖B?u‖2 ≤ c‖B?‖F log
1
2
(
2γ−1(p+ 1)

)
,

for some absolute constant c > 0.

In general, the coherence parameter µ defined in Lemma 5 obeys 1 ≤ µ ≤ p1/2. However,
we assume we operate in the scenario that µ = O(1) so that we apply the simpler bound
stated in the lemma. Therefore, choosing γ = 1/p and for a sufficiently large p we have

P

(∣∣∣∣∣wT

[
F (A?x

(`)
t−1)B?ut−1
β ut

]∣∣∣∣∣− ε‖B?ut−1‖2 ≥ θ
)

≥ P

(∣∣∣∣∣wT

[
F (A?x

(`)
t−1)B?ut−1
β ut

]∣∣∣∣∣ ≥ θ + cε log
1
2 (2p(p+ 1)) ‖B?‖F

)
− 1
p
.

for some absolute constant c > 0.

Lemma 6 (lower bound for the probabilities). With θ defined as in (10), for each ` ∈
{0, 1, . . . , L− 1}, and every t ∈ T` we have

P
(∣∣∣wTz

(`)
t

∣∣∣ ≥ θ) ≥ 0.1
max{η, 3}

Proof. For t = 0, 1, . . . , let it be i.i.d. integers uniformly distributed over {1, . . . , p}, inde-
pendent of everything else. For any vector v, we use the notation v−i to denote the vector
obtained by flipping the sign of the ith coordinate of v. Furthermore, for t ∈ T` let

z
(`)
t =

∇f(A?x
(`)
t−1 +B?u

−it−1
t−1

−β ut

 .
Recall that, by assumption, ut−1 and ut have coordinates with independent symmetric
distributions. Therefore, it is straightforward to show that z(`)

t and z(`)
t are identically

distributed, and for any θ > 0 we can write

P
(∣∣∣wTz

(`)
t

∣∣∣ ≥ θ) = 1
2 P

(∣∣∣wTz
(`)
t

∣∣∣ ≥ θ)+ 1
2 P

(∣∣∣wTz
(`)
t

∣∣∣ ≥ θ)
≥ 1

2 P
(∣∣∣wTz

(`)
t

∣∣∣+ ∣∣∣wTz
(`)
t

∣∣∣ ≥ 2θ
)
.
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Then, it follows from the triangle inequality, and the assumption (7), that

P
(∣∣∣wTz

(`)
t

∣∣∣ ≥ θ) ≥ 1
2 P

(∣∣∣wT
(
z

(`)
t − z

(`)
t

)∣∣∣ ≥ 2θ
)

≥ 1
2 P

(∣∣∣∣∣wT

[
∇f(A?x

(`)
t−1 +B?ut−1)−∇f(A?x

(`)
t−1 +B?u

−it−1
t−1 )

2β ut

]∣∣∣∣∣ ≥ 2θ
)

≥ 1
2 P

(∣∣∣∣∣wT

[
F (A?x

(`)
t−1)B?

(
1
2ut−1 + 1

2u
−it−1
t−1

)
β ut

]∣∣∣∣∣− ε
∥∥∥∥B?

(1
2ut−1 −

1
2u
−it−1
t−1

)∥∥∥∥
2
≥ θ

)
.

(15)

Furthermore, for any γ ∈ (0, 1] we can write

P

(∣∣∣∣∣wT

[
F (A?x

(`)
t−1)B?

(
1
2ut−1 + 1

2u
−it−1
t−1

)
β ut

]∣∣∣∣∣− ε
∥∥∥∥B?

(1
2ut−1 −

1
2u
−it−1
t−1

)∥∥∥∥
2
≥ θ

)

+ P

(∥∥∥∥B?

(1
2ut−1 −

1
2u
−it−1
t−1

)∥∥∥∥
2
≥ K log

1
α

(2
γ

)
‖B?‖1→2

)

≥ P

(∣∣∣∣∣wT

[
F (A?x

(`)
t−1)B?

(
1
2ut−1 + 1

2u
−it−1
t−1

)
β ut

]∣∣∣∣∣ ≥ θ + εK log
1
α

(2
γ

)
‖B?‖1→2

)
. (16)

Observe that (v − v−i)/2 = v|i and (v + v−i)/2 = v|\i are respectively the selectors of the
ith coordinate and its complement. With this convention, on one hand we can write

P

(∥∥∥∥B?

(1
2ut−1 −

1
2u
−it−1
t−1

)∥∥∥∥
2
≥ K log

1
α

(2
γ

)
‖B?‖1→2

)
= P

(∥∥∥B?

(
ut−1 |it−1

)∥∥∥
2
≥ K log

1
α

(2
γ

)
‖B?‖1→2

)
≤ γ , (17)

where the third line follows from the fact that ‖B?‖1→2 is equal to the greatest `2 norm of
the columns of B?, and that under the assumption (8) we have

P

(∣∣∣(ut−1)it−1

∣∣∣ ≥ K log
1
α

(2
γ

))
≤ γ .

On the other hand, we can write

B?

(1
2ut−1 + 1

2u
−it−1
t−1

)
= B?\it−1ut−1

and invoke Lemma 7 below to obtain

P

(∣∣∣∣∣wT

[
F (A?x

(`)
t−1)B?\it−1ut−1
β ut

]∣∣∣∣∣ ≥ 0.36 min
i=1,...,p

min
{
β, (λ− ε)λ1/2

min

(
B?\iB?

T
\i

)})

≥ 0.4
max{η, 3}

(18)
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Therefore, recalling the assumed condition (7), by choosing

θ = θα,β,ε,λ,K,B? ,

and
γ = 0.2

max{η, 3} ,

and in view of (15), (16), (17), and (18) we obtain the desired bound

P
(∣∣∣wTz

(`)
t

∣∣∣ ≥ θα,β,ε,λ,K,B?

)
≥ 0.1

max{η, 3} .

Lemma 7. With the notation and conditions as in Lemma 6 we have

P

(∣∣∣∣∣wT

[
F (A?x

(`)
t−1)B?\it−1ut−1
β ut

]∣∣∣∣∣ ≥ 0.36 min
i=1,...,p

min
{
β, (λ− ε)λ1/2

min

(
B?\iB?

T
\i

)})

≥ 0.4
max{η, 3}

Proof. By conditioning on x(`)
t−1 and applying the Paley-Zygmund inequality (Paley and

Zygmund, 1932; de la Peña and Giné, 1999, Corollary 3.3.2) we have

P

∣∣∣∣∣wT

[
F (A?x

(`)
t−1)B?\it−1ut−1
β ut

]∣∣∣∣∣
2

≥ 0.36 E

∣∣∣∣∣wT

[
F (A?x

(`)
t−1)B?\it−1ut−1
β ut

]∣∣∣∣∣
2 ∣∣∣x(`)

t−1

 ∣∣∣x(`)
t−1



≥ 0.4

E
∣∣∣∣∣wT

[
F (A?x

(`)
t−1)B?\it−1ut−1
β ut

]∣∣∣∣∣
2 ∣∣∣x(`)

t−1

2

E

∣∣∣∣∣wT

[
F (A?x

(`)
t−1)B?\it−1ut−1
β ut

]∣∣∣∣∣
4 ∣∣∣x(`)

t−1

 (19)

Using the assumption that ut−1 and ut are independent, zero-mean, and isotropic we obtain

E

∣∣∣∣∣wT

[
F (A?x

(`)
t−1)B?\it−1ut−1
β ut

]∣∣∣∣∣
2 ∣∣∣x(`)

t−1

 =
∥∥∥∥∥
[(
F (x(`)

t−1)B?\it−1

)T
0

0 β I

]
w

∥∥∥∥∥
2

2

.

Furthermore, in view of Lemma 2, the denominator in (19) can be bounded from above as

E

∣∣∣∣∣wT

[
F (A?x

(`)
t−1)B?\it−1ut−1
β ut

]∣∣∣∣∣
4 ∣∣∣x(`)

t−1

 ≤ max{η, 3}
∥∥∥∥∥
[(
F (x(`)

t−1)B?\it−1

)T
0

0 β I

]
w

∥∥∥∥∥
4

2

.
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Therefore, (19) reduces to

P

∣∣∣∣∣wT

[
F (A?x

(`)
t−1)B?\it−1ut−1
β ut

]∣∣∣∣∣
2

≥ 0.36 E

∣∣∣∣∣wT

[
F (A?x

(`)
t−1)B?\it−1ut−1
β ut

]∣∣∣∣∣
2 ∣∣∣x(`)

t−1

 ∣∣∣x(`)
t−1


≥ 0.4

max{η, 3} . (20)

It follows from Lemma 1 that

λmin

([
F (y)B?\i 0

0 βI

] [(
F (y)B?\i

)T
0

0 βI

])
≥ min{β2, (λ− ε)2λmin

(
B?\iB?

T
\i

)
}

for all y. In particular,

min{β2, (λ− ε)2 λ2
min

(
B?\iB?

T
\i

)
} ≤

∥∥∥∥∥
[(
F (x(`)

t−1)B?\i
)T

0

0 βI

]
w

∥∥∥∥∥
2

2

.

Therefore, the conditional expectation in (20) can be replaced by

min
i=1,...,p

min{β2, (λ− ε)2 λmin
(
B?\iB?

T
\i

)
} .

Finally, taking the expectation with respect to x(`)
t−1 completes the proof.
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