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Abstract

We study contextual bandit learning with an abstract policy class and continuous action
space. We obtain two qualitatively different regret bounds: one competes with a smoothed
version of the policy class under no continuity assumptions, while the other requires standard
Lipschitz assumptions. Both bounds exhibit data-dependent “zooming” behavior and, with
no tuning, yield improved guarantees for benign problems. We also study adapting to
unknown smoothness parameters, establishing a price-of-adaptivity and deriving optimal
adaptive algorithms that require no additional information.

Keywords: Contextual bandits, nonparametric learning

1. Introduction

We consider contextual bandits, a setting in which a learner repeatedly makes an action
on the basis of contextual information and observes a loss for the action, with the goal of
minimizing cumulative loss over a series of rounds. Contextual bandit learning has received
much attention, and has seen substantial success in practice (e.g., Auer et al., 2002; Langford
and Zhang, 2007; Agarwal et al., 2014, 2017a). This line of work mostly considers small,
finite action spaces, yet in many real-world problems actions are chosen from an interval, so
the action space is continuous and infinite. Therefore, we ask:

How can we learn to make decisions from continuous action spaces,
using (only) bandit feedback?

We could assume that nearby actions have similar losses, for example that the losses are
Lipschitz continuous as a function of the action (following Agrawal, 1995, and a long line of
subsequent work). Then we could discretize the action space and apply generic contextual
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bandit techniques (Kleinberg, 2004) or more refined “zooming” approaches (Kleinberg et al.,
2019; Bubeck et al., 2011a; Slivkins, 2014) that are specialized to the Lipschitz structure.

However, this approach has several drawbacks. A global Lipschitz assumption is crude and
limiting; actual problems exhibit more complex loss structures where smoothness varies with
location, often with discontinuities. Second, prior works incorporating context — including
the zooming approaches — employ a nonparametric benchmark set of policies, which yields a
poor dependence on the context dimension and prevents application beyond low-dimensional
context spaces. Finally, existing algorithms require knowledge of the Lipschitz constant or
other pertinent parameters, which are typically unknown.

Here we show that it is possible to avoid all of these drawbacks with a conceptually new
approach, resulting in a more robust solution for managing continuous action spaces. The
key idea is to smooth the actions: each action a is mapped to a well-behaved distribution
over actions. When the action space is the interval [0, 1], this distribution can be a uniform
distribution over a narrow band around a: an interval [a− h, a+ h], where h > 0 is a given
bandwidth parameter. Rather than restrict the loss function, we posit a different, “smoothed”
benchmark. This approach leads to provable guarantees with no assumptions on the loss
function, since the loss for smoothed actions is always well-behaved. Essentially, we may
focus on estimation considerations while ignoring approximation issues. We recover prior
results that assume a small Lipschitz constant, but the guarantees are meaningful in much
broader scenarios.

Our algorithms work with any competitor policy set Π of mappings from context to
actions, which we smooth as above. We measure performance by comparing the learner’s
loss to the loss of the best smoothed policy, and our guarantees scale with log |Π|, regardless
of the dimensionality of the context space. Compared with prior work, this recovers some
known worst-case results that can only accommodate nonparametric policy sets (Slivkins,
2014; Cesa-Bianchi et al., 2017), but, more importantly, our results accommodate parametric
policy sets that scale to high-dimensional context spaces. Further, we are able to exploit
benign structure in the policy set and the instance to obtain better regret rates.

We also design algorithms that require no knowledge of problem parameters. Particularly,
our algorithm works for all bandwidths h at once, and is optimally adaptive, matching lower
bounds that we prove here. We accomplish this with a unified algorithmic approach.

Our contributions, specialized to the interval [0, 1] action space for clarity, are:

1. We define a new notion of smoothed regret where policies map contexts to distributions
over actions. These distributions are parametrized by a bandwidth h governing the
spread. We show that the optimal worst-case regret bound with bandwidth h is
Θ(
√
T/h log |Π|), which requires no smoothness assumptions on the losses (first row

of Table 1).

2. We obtain instance-dependent guarantees in terms of a smoothing coefficient, which
can yield much faster rates in favorable instances (second row of Table 1).

3. We obtain an adaptive algorithm with
√
T/h regret bound for all bandwidths h

simultaneously. Further we show this to be optimal, demonstrating a price of adaptivity
(third row of Table 1).
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Type Setting Params Regret Bound Status Sec.

Smoothed Worst-case h ∈ (0, 1] Θ
(√

T/h
)

New 4.1

Smoothed Instance-dependent h ∈ (0, 1] O ( minε Tε+ θh(ε) ) New 4.1

Smoothed Adaptive: h ∈ (0, 1] None Θ
(√

T/h
)

New 4.2

Lipschitz Worst-case L ≥ 1 Θ
(
T 2/3L1/3

)
“Old” 5.1

Lipschitz Instance-dependent L ≥ 1 O ( minε TLε+ ψL(ε)/L ) New 5.1

Lipschitz Adaptive: L ≥ 1 None Θ(T 2/3
√
L) New 5.2

Table 1: A summary of results for stochastic contextual bandits, specialized to action
space [0, 1]. For notation, T is the number of rounds, h is the smoothing bandwidth, and
θh(ε) ≤ 1/(hε) is the smoothing coefficient. For the Lipschitz results, L is the Lipschitz
constant and ψL(ε) ≤ 1/ε2 is the policy zooming coefficient. All algorithms take T and Π as
additional inputs. Logarithmic dependence on |Π| and T is suppressed in all upper bounds.

We obtain analogous results when the losses are L-Lipschitz (see rows 3-6 of Table 1).
First, we obtain an instance-dependent result with improved regret rates when near-optimal
arms are confined to a relatively small region of the action space. We capture the improve-
ments via a new quantity called the policy zooming coefficient, generalizing the zooming
dimension from prior work on the non-contextual case. Our regret bounds generalize and
improve those from prior work on “zooming” in Lipschitz bandits, whereby the algorithm
gradually “zooms in” on more promising regions of the action space. Second, we design an al-
gorithm that adapts to an unknown L and obtain matching lower bounds, thus demonstrating
the “price of adaptivity” in the Lipschitz case.

Our results hold in much more general settings: for higher-dimensional and (almost)
arbitrary action spaces and arbitrary smoothing distributions. Our results also apply to the
non-contextual case, where we obtain several new guarantees.

Our algorithms are not computationally efficient, with running times that scale polyno-
mially in |Π|. The significance lies is in the new conceptual approach and the regret bounds.
However, our algorithms are computationally efficient in the non-contextual case.

Our techniques. Our core conceptual contribution is the new definition of smoothed
regret for continuous-action contextual bandits, which, as we have mentioned, offers many
advantages over previous discretization based approaches. While many of our results are
based on adapting techniques from prior work to the smoothing framework, there are many
technical challenges that we pause now to highlight.

Our instance dependent guarantees are based on the PolicyElimination algorithm
of Dudik et al. (2011), which was originally designed for discrete action stochastic contextual
bandits. Here we provide a refined analysis of this algorithm, showing that it adapts to the
effective size of the action space, which informally corresponds to the number of actions
selected by the near-optimal policies. To obtain this adaptivity property, we crucially use the
median-of-means technique to avoid an unfavorable range dependence in our estimates of the
expected loss of each policy. We believe these robust estimation techniques will be broadly
useful in other bandit settings. Indeed, since the preliminary version of this paper, robust
estimators have been successfully used by Wei et al. (2020) to incorporate loss predictors
into contextual bandit algorithms.
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Our adaptive algorithms are based on aggregating instances of EXP4 (Auer et al., 2002)
using the Corral algorithm of Agarwal et al. (2017b). The key challenge here is that
Corral can only aggregate over a finite number of base algorithm, but we would like our
final bound to hold for all bandwidths h taking continuous values. We address this with a
discretization argument, using smoothing to show that a single instance of EXP4 obtains the
desired guarantee for a small interval of h values, which then allows us to use Corral with a
finite number of base algorithms.

Roadmap. For the majority of the paper, we focus on the setting where the action space
is the unit interval, which simplifies the discussion while preserving all of the key ideas. The
setup and key definitions are described in Section 3. Assumption-free results for smoothed
regret are developed in Section 4 and results for Lipschitz problems are developed in Section 5.
General theorems extending beyond the unit interval action space are presented in Section 6,
where we also introduce the necessary additional definitions. The algorithms are analyzed in
Section 7 and Section 8. The lower bounds are presented in Section 9. We close the paper
with some future directions.

2. Related work

With small, discrete action spaces, contextual bandit learning is quite mature, with rich
theoretical results and successful deployments in practice. To handle large or infinite action
spaces, two high-level approaches exist (see books Bubeck and Cesa-Bianchi, 2012; Slivkins,
2019; Lattimore and Szepesvári, 2020, for surveys and background). The parametric approach,
including work on linear or combinatorial bandits, posits that the loss is a parametric function
of the action, e.g., a linear function. The nonparametric approach, which is closer to our
results, typically makes much weaker continuity assumptions.1

Bandits with Lipschitz assumptions were introduced in Agrawal (1995), and optimally
solved in the worst case by Kleinberg (2004). Kleinberg et al. (2008, 2019); Bubeck et al.
(2011a) achieve data-dependent regret bounds via “zooming” algorithms which gradually
“zoom in” on the more promising regions of the action space. Kleinberg et al. (2008,
2019); Kleinberg and Slivkins (2010) consider regret rates with instance-dependent constant,
analogous to the well-known log(t) instance-dependent rates for finitely many arms, and use
zooming algorithms to characterize the corresponding worst-case optimal regret rates for
any given metric space. Further work focused on relaxing the smoothness assumptions and
adapting to unknown smoothness parameters, as well as extensions to contextual bandits
(see Ch. 4 Slivkins, 2019, for a more comprehensive background).

Several papers relax global smoothness assumptions with various local definitions (Auer
et al., 2007; Kleinberg et al., 2008, 2019; Bubeck et al., 2011a; Slivkins, 2011; Valko et al.,
2013; Minsker, 2013; Grill et al., 2015; Shang et al., 2019). While the assumptions and
results vary, our smoothing-based approach can be used in many of these settings. More
importantly, in contrast with these approaches, our guarantees remain meaningful even in
pathological instances, for example when the global optimum is a discontinuity as in the top
panel of Figure 1 (See Example 2).

1. However, we emphasize that for smoothed regret, we make no assumptions on the loss.
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While most of this literature focuses on the non-contextual version, three papers consider
contextual settings, albeit only with fixed policy sets Π. Lu et al. (2010) and Slivkins
(2014) posit that the mean loss function is Lipschitz in both context x and action a and
the learner must compete with the best mapping from X to A. While Lu et al. (2010)
focus on worst-case regret bounds, the algorithm and guarantees in Slivkins (2014) exhibit
“zooming” behavior in the action space, which is qualitatively similar to ours. However, his
regret bound also has a zooming-dependence on the context dimension, whereas our regret
bound applies to arbitrary policy sets and defines packing numbers via expectation over
contexts rather than supremum. Cesa-Bianchi et al. (2017) competes with policies that
are themselves Lipschitz (w.r.t. a given metric on contexts). We can recover their result
via Corollary 7 and a suitable discretized policy set.

Turning to adaptivity, Bubeck et al. (2011b) develops an algorithm that adapts to the
Lipschitz constant in the non-contextual setting given a bound on the second derivative.
Locatelli and Carpentier (2018) obtain optimal adaptive algorithms, but require knowledge
of either the value of the minimum, or a sharp bound on the achievable regret. Slivkins
(2011); Bull (2015) achieve optimal regret bounds in terms of the zooming dimension, but
their regret bounds depend on a certain “quality parameter.” A line of work studying the
non-contextual setting (Valko et al., 2013; Grill et al., 2015; Shang et al., 2019), establishes
adaptive guarantees when performance is measured in terms of optimization error, which is
the difference between the best action selected and the globally optimal action. However,
these results do not translate to our performance measure, cumulative regret. Moreover, all
of the above results concern the stochastic setting, while our optimally adaptive guarantees
carry through to the adversarial setting. Locatelli and Carpentier (2018) also obtain lower
bounds against adapting to the smoothness exponent, and we build on their construction
for our lower bounds.

A parallel line of work on Bayesian optimization, considers the related problem of
maximizing either a sample from a Gaussian process, or a function with bounded norm in
some Reproducing Kernel Hilbert Space (RKHS) (Srinivas et al., 2012). The conceptual
difference with our work is that these results impose regularity assumptions on the problem,
in the same vein as prior work with Lipschitz assumptions, while we make no assumptions and
instead provide guarantees in terms of smoothed regret. On the more technical side, Krause
and Ong (2011) consider a contextual Bayesian optimization setting where there is a kernel
over the joint context-action space, which is analogous to the Lipschitz contextual bandits
setting studied by Slivkins (2014). As mentioned above, these results consider a specific
“nonparametric” policy set, while our results apply to arbitrary policy sets. Berkenkamp et al.
(2019) establish adaptive guarantees for Bayesian optimization, but they obtain incomparable
results using very different techniques from ours.

Finally, our smoothing-based importance weighted loss estimator (5) was analyzed
by Kallus and Zhou (2018); Chen et al. (2016) in the related off-policy evaluation problem,
but they do not consider the smoothed regret benchmark or the online setting, so the results
are considerably different. We also use the median-of-means approach from robust statistics

— specifically a result of Hsu and Sabato (2016) — to avoid an unfavorable range dependence
in our loss estimator. This estimator has been used by Sen et al. (2018) for contextual
bandits with discrete actions, but their results are incomparable to ours.
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3. Smoothed regret

We work in a standard setup for stochastic contextual bandits. We have a context space X ,
action space A, a (possibly large but finite) policy set Π : X → A, and a distribution D over
context/loss pairs X × {functions A → [0, 1]}. The protocol proceeds for T rounds where in
each round t: (1) nature samples (xt, `t) ∼ D; (2) the learner observes xt and chooses an
action at ∈ A; (3) the learner suffers loss `t(at), which is observed. For simplicity, we focus
on the case when DX , the marginal distribution of D over X is known.2 The learner’s goal
is to minimize regret relative to the policy class.

Key new definitions. We depart from the standard setup by positing a smoothing
operator

Smoothh : A → ∆(A),

where ∆(A) is the set of probability distributions over A and h ≥ 0 is the bandwidth: a
parameter that determines the spread of the distribution.3 Bandwidth h = 0 corresponds to
the Dirac distribution. Each action a then maps to the smoothed action Smoothh(a), and
each policy π ∈ Π maps to a randomized smoothed policy Smoothh(π) : x 7→ Smoothh(π(x)).
We compete with the smoothed policy class

Πh := {Smoothh(π) : π ∈ Π}.

We then define the smoothed loss of a given policy π ∈ Π and the benchmark optimal loss as

λh(π) := E
(x,`)∼D

E
a∼Smoothh(π(x))

[ `(a) ] , and Bench(Πh) := inf
π∈Π

λh(π) = inf
π∈Πh

λ0(π). (1)

Note that there is a duality between smoothing the policy class and smoothing the loss
function, as λh(π) = λ0(πh). We are interested in smoothed regret, which compares the
learner’s total loss against the benchmark:

Regret(T,Πh) := E
[∑T

t=1 `t(at)
]
− T · Bench(Πh).

Our regret bounds work for an arbitrary policy set Π, leaving the choice of Π to the
practitioner. For comparison, a standard benchmark for contextual bandits is Bench(Π),
the best policy in the original policy class Π, and one is interested in Regret(T,Π).

For the first several sections of the paper, we posit that the actions set is a unit interval:
A := [0, 1], endowed with a metric ρ(a, a′) := |a− a′|. Smoothh(a) is defined as a uniform
distribution over the closed ball Bh(a) := {a′ ∈ A : ρ(a, a′) ≤ h} = [a − h, a + h] ∩ [0, 1].
Let ν denote the Lebesgue measure, which corresponds to the uniform distribution over
[0, 1]. As notation, Smoothπ,h(a|x) is the probability density, w.r.t., ν, for Smoothh(π(x)) at
action a. In Section 6 we present results that apply to a more general setting where the
action space A is embedded in some ambient space and the smoothing operator is given by
a probability kernel. However, all of the key ideas appear in the case of the unit interval.

For some intuition, the bandwidth h governs a bias-variance tradeoff inherent in the
continuous-action setting: for small h the smoothed loss λh(π) closely approximates the true
loss λ0(π), but small h also admits worse smoothed regret guarantees.

2. We mention how this can be relaxed in the next section.
3. The term bandwidth here is in line with the nonparametric statistics literature.
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Figure 1: The discontinuous function in Exam-
ple 2. Smoothed regret provides a meaningful
guarantee, competing with a?h = 1/2.

The loss function (in blue) has large Lipschitz
constant and “needles” that are hard to find.
Smoothing with small bandwidth does not
change the optimum while a large bandwidth
does.

Example 1 The well-studied non-contextual version of the problem fits into our framework
as follows: there is only one context X := {x0} and policies are in one-to-one correspondence
with actions: Π := {x0 7→ a : a ∈ A}. A problem instance is characterized by the expected loss
function λ0(a) := E[`(a)] and the smoothed benchmark is simply Bench(Πh) := infa∈A λh(a).

Smoothing the policy class enables meaningful guarantees in much more general settings
than prior work assuming global continuity (e.g., Lipschitzness). Our results require no
smoothness assumptions on the loss function, in the spirit of the assumption-free analyses
typical in the online learning literature. Our smoothed regret guarantees can be translated
to standard regret bounds under significantly weaker assumptions than global smoothness;
for example smoothness around the actions taken by the optimal policy suffices. Moreover,
the guarantees remain meaningful even when the expected loss function has discontinuities,
as demonstrated by the following example.

Example 2 Consider a family of non-contextual settings with expected loss function

λ0(a) = (1/4 + 1.5 ρ(a, 1/2)) · 1{a 6= a′} + 1/10 · 1{a= a′}, a′ ∈ [0, 1]

(see Figure 1). The optimal action a? = a′ cannot be found in finitely many rounds due
to the discontinuity, so any algorithm is doomed to linear regret. However, the smoothed
loss function λh for any h > 0 essentially ignores the discontinuity (and is minimized at
a∗h = 1/2). Accordingly, as we shall prove, it admits algorithms with sublinear smoothed
regret.

While the above example is pathological, discontinuous loss functions are common in
applications. One generic example is, when the algorithm controls the system parameters
in a computer or a data center, even a small change can make a large difference when
resources are close to saturation. For a more mathematically concrete example, consider the
well-studied dynamic pricing problem (Kleinberg and Leighton, 2003), where the algorithm
is a seller with an infinite inventory of identical goods. In each round the algorithm sets a
price pt ∈ [0, 1] for an item, a buyer arrives with value vt ∈ [0, 1], and purchases the item if
only if pt ≤ vt. The algorithm’s goal is to maximize4 the total revenue,

∑T
t=1 pt · 1{pt≤vt}.

So, we have a discontinuity at vt = pt, even though the payoffs are 1-Lipschitz everywhere

4. To reformulate the problem in terms of losses, posit `(pt, vt) = vt − pt · 1{pt≤vt}.
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else. More complex discontinuity structures can arise if the algorithm is selling multiple
products at once, as the buyers can switch from one product to another.

The bottom panel of Figure 1 provides further intuition for the Smoothh operator.

Adversarial losses. Some of our results carry over as is to the adversarial setting in which
the context-loss pairs are chosen by an adaptive adversary. The benchmark is redefined as

Bench(Πh) := 1
T infπ∈Πh E

[∑
t∈[T ] `t(π(xt))

]
.

where the expectation accounts for any randomness. We will always explicitly specify which
results apply to this setting.

Additional notation. We use Ex∼DX [ · ] to denote expectation over the marginal distri-
bution over contexts. We use the standard big-Oh notation and use the notation g = Õ(f)
to denote that g = O(f · polylog(f)).

4. Smoothed regret guarantees

In this section we obtain smoothed-regret guarantees without imposing any continuity
assumptions on the problem.

4.1. Instance-dependent and worst-case guarantees

Our first result is an instance-dependent smoothed regret bound for a given bandwidth
h ≥ 0.

An important part of the contribution is setting up the definitions. Recall the definition
of the smoothed loss λh(·) and optimal smooth loss Bench(Πh) from (1). The version space
of ε-optimal policies (according to the smoothed loss) is

Πh,ε := {π ∈ Π : λh(π) ≤ Bench(Πh) + ε } .

For a given context x ∈ X , a policy subset Π′ ⊂ Π maps to an action set Π′(x) :=
{π(x) : π ∈ Π′ }. We are interested in Πh,ε(x), the subset of actions chosen by the ε-optimal
policies on context x, and specifically the expected packing number of this set:

Mh(ε, δ) := E
x∼D

[Nδ ( Πh,ε(x) ) ] , (2)

where Nδ(A) is the δ-packing number of subset A ⊂ A in the ambient metric space (A, ρ).5

The smoothing coefficient θh : R→ R measures how the packing numbers Mh(12ε, h) shrink
with ε:

θh(ε0) := sup
ε≥ε0

Mh(12ε, h)/ε. (3)

For the unit interval, observe that θh(ε0) ≤ (hε0)−1 always, but in favorable cases we might
expect θh(ε0) ≤ max{1/h, 1/ε0}, as demonstrated by the following example. Note that the
constant 12 is not fundamental, but is consistent with prior work on instance-dependent
guarantees for continuous action spaces (Slivkins, 2014).

5. A subset S of a set A is a δ-packing if any two points in S are at a distance of at least δ. The δ-packing
number of a set A is the maximum cardinality of a δ-packing of A.
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Example 3 (Small smoothing coefficient) Consider a non-contextual problem, where
the expected loss function is λ(a) := E[`(a) | x0] = | a− a? | for some a? ∈ [2h, 1− 2h]. Then
Mh(ε, h) ≤ O(max { 1, ε/h }). Consequently, θh(ε0) ≤ O(max { 1/h, 1/ε0 }). (See Section 10 for
a derivation.)

Our first result is in terms of this smoothing coefficient.

Theorem 1 For any given bandwidth h > 0, in the stochastic setting, SmoothPolicyElimination
(Algorithm 1) with parameter h achieves

Regret(T,Πh) ≤ O
(

inf
ε0>0
{Tε0 + θh(ε0) log(|Π|T ) log(1/ε0) }

)
.

Since θh(ε0) ≤ (hε0)−1, we obtain a worst case guarantee as a corollary.

Corollary 2 Fix any bandwidth h > 0, in the stochastic setting, SmoothPolicyElimination
with parameter h achieves

Regret(T,Πh) ≤ Õ
(√

T/h log |Π|
)
.

Contrasting with the standard Θ(
√
T |A| log |Π|) regret bound for finite action spaces,

we see that the 1/h term can be viewed as the effective number of actions.
In fact, this worst case bound can also be achieved by a simple variation of EXP4 (Auer

et al., 2002), which can operate in the adversarial version of our problem and actually achieves
O(
√
T/h log |Π|) regret, eliminating the logarithmic dependence on T . The pseudocode for

this algorithm is displayed in Algorithm 2.

Theorem 3 In the adversarial setting, ContinuousEXP4 with policy set Ξ = Πh and learning

rate η =

√
2h ln |Ξ|

T achieves Regret(T,Πh) ≤ O
(√

T/h log |Π|
)

.

Both algorithms are not computationally efficient in general, as the per-round running time
scales as |Π|. For the non-contextual case, one can take |Π| = T/h, see Section 6.2(c).

Remarks. It is not hard to show a Ω(
√
T/h log |Π|) lower bound on smoothed regret.

Specifically, every K arm contextual bandit instance can be reduced to a continuous
action instance with bandwidth h = 1/(2K) by using piecewise constant loss functions
and by mapping actions a ∈ {1, . . . ,K} to h · (2a − 1). Thus, we may embed the lower
bound construction for contextual bandits with finite action space into our setup to verify
that Corollary 2 is optimal up to logarithmic factors (and Theorem 3 is optimal up to
constants).

While not technically very difficult, the worst-case bound showcases the power and
generality of the new definition. In particular, we obtain meaningful guarantees for discon-
tinuous losses as in Example 2. As we will see in the next section, under global smoothness
assumptions, we can also obtain a bound on the more-standard quantity Regret(T,Π).

Turning to the instance-specific bound in Theorem 1, we obtain a more-refined dependence
on the effective number of actions 1/h, which can be thought of as a “gap-dependent” bound.
In the most favorable setting, we have θh(ε0) = max { 1/h, 1/ε0 } which yields Regret(T,Πh) ≤
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Õ
(√

T log |Π|+ 1
h log |Π|

)
, eliminating the dependence on h in the leading term (Recall

that Example 3 has this favorable behavior). Further, via the correspondence with the
finite action setting, we also obtain a new instance-dependent bound for standard stochastic
contextual bandits, which improves on prior worst case results by adapting to the effective
size of the action space (Dudik et al., 2011; Agarwal et al., 2014). This result for the
finite-action setting follows from our more general theorem statement, given in Section 6.

We also note that, while smoothing induces a Lipschitz loss function, a näıve application
of a Lipschitz bandits algorithm yields a suboptimal regret rate. For example, in the
non-contextual version, the smoothed loss function is λh : a 7→ ED Ea′∼Smoothh [ `(a′) ], is 1/h-
Lipschitz, so we may apply a Lipschitz bandits algorithm in a black box fashion.6 However,
this reduction gives a smoothed regret bound of O(T 2/3h−1/3), which is suboptimal when
compared with our Õ(

√
T/h) result. Our guarantees exploit additional information sharing

between actions enabled by the smoothing operator, in particular the fact that when we
choose a particular action, we learn about all smoothed actions in an interval of size h.

Finally, we remark that Algorithm 1 actually achieves a high probability regret bound,
which we have simplified to the stated expected regret bound.

The algorithm. The algorithm is an adaptation of PolicyElimination from Dudik et al.
(2011), with pseudocode displayed in Algorithm 1. It is epoch based, maintaining a version
space of good policies, denoted Π(m) in the mth epoch, and pruning it over time by eliminating
the provably suboptimal policies. In the mth epoch, the algorithm computes a distribution
Qm over Π(m) by solving a convex program (4). The objective function is related to the
variance of the loss estimator we use, and so Qm ensures high-quality loss estimates for
all policies in Π(m). We use Qm to select actions at each round in the epoch by sampling
π ∼ Qm and playing Smoothh(π(x)) on context x. To compute Π(m+1) for the next epoch,
we use importance weighting to form single-sample unbiased estimates for λh(π) in (5),
and we aggregate these via a median-of-means approach (see e.g., Hsu and Sabato (2016)).
Π(m+1) is then defined as the set of policies with low empirical regret measured via the
median-of-means estimator. Näıvely, the running time is poly(T, |Π|).7

The key changes over PolicyElimination are as follows. First, we write (4) as an
optimization problem rather than a feasibility problem, which allows for instance-dependent
improvements in our loss estimates. Second, our importance weighting crucially exploits
smoothing for low variance. Finally, we employ the median-of-means estimator to eliminate
an unfavorable range dependence with importance weighting. The immediate consequence of
this estimator is that we can eliminate the need for uniform exploration, which appears in prior
literature on contextual bandits with finite action spaces (e.g. Dudik et al., 2011; Agarwal
et al., 2014). Perhaps more interestingly, the median-of-means estimator is unnecessary
for Corollary 2 and for prior results with finite action spaces, but it is crucial for obtaining
our instance-dependent bound, since we need the error of our loss estimator to scale with
the characteristic volume Vm := Ex∼D ν

(⋃
π∈Π(m) Bh(π(x))

)
.

6. Formally, when the Lipschitz bandits algorithm recommends action a′t, we sample at ∼ Smoothh(a′t),
observe `t(at) — which has expectation λh(a′t) — and pass this value back to the algorithm.

7. For the non-contextual case, the algorithm simplifies and the running time becomes poly(T ), see also
Section 6.2(c).
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Algorithm 1 SmoothPolicyElimination

Parameters: Bandwidth h > 0, policy set Π, number of rounds T .
Initialize: Π(1) = Π, Batches δT = 5dlog(T |Π| log2(T ))e, Radii rm = 2−m,m = 1, 2, . . ..
for each epoch m = 1, 2, . . . do

// Before the epoch: compute distribution Qm over policy set Π(m).
Set Vm ← Ex∼D ν

(⋃
π∈Π(m) Bh(π(x))

)
// characteristic volume of Π(m)

Set batch size ñm = 320Vm
r2mh

, epoch length nm = ñmδT .

Find distribution Qm over policy set Π(m) which minimizes

max
policies π∈Π(m)

E
context x∼DX

E
action a∼Smoothh(π(x))

[
1

qm(a | x)

]
, (4)

where density qm(a | x) := E
π∼Qm

Smoothπ,h(a|x).

for each round t in epoch m do
Observe context xt, sample action at from density qm(· | xt), observe loss `t(at).

end for
// After the epoch: update the policy set.
for each batch i = 1, 2, . . . , δT do

Define Si,m as the indices of the (i− 1)ñm + 1, . . . , iñth
m examples in epoch m.

Estimate λh(π) with L̂im(π) = 1
ñm

∑
t∈Si,m

ˆ̀
t,h(π) for each policy π ∈ Π(m) where

ˆ̀
t,h(π) :=

Smoothπ,h(at|xt) `t(at)
qm(at|xt) . (5)

end for
Estimate the loss L̂m(π) = median

(
L̂1
m(π), L̂2

m(π), . . . , L̂δTm (π)
)

.

Π(m+1) =
{
π ∈ Π(m) : L̂m(π) ≤ minπ′∈Π(m) L̂m(π′) + 3 rm

}
.

end for

As we have described the algorithm, it requires knowledge of the marginal distribution
over X , which appears in the computation of Vm and in the optimization problem. Both
of these can be replaced with empirical counterparts, and since the random variables are
non-negative, via Bernstein’s inequality, the approximation only affects the regret bound
in the constant factors. This argument has been used in several prior contextual bandit
results (Dudik et al., 2011; Agarwal et al., 2014; Krishnamurthy et al., 2016), and so we
omit the details here.

For the proof, we first use convex duality to upper bound the value of (4) in terms of
the characteristic volume Vm, refining Dudik et al. (2011). As the objective divided by h
bounds the variance of the importance weighted estimate in (5), we may use Chebyshev and
Chernoff bounds to control the error of the median-of-means estimator in terms of Vm, h, and
nm. Our setting of nm then implies that Π(m+1) ⊂ Πh,12rm+1 . Two crucial facts follow: (1)
the instantaneous regret in epoch m+ 1 is related to rm+1 and (2) Vm+1, which determines
the length of the epoch, is related to the packing number Mh(12rm+1, h). Roughly speaking,

11
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Algorithm 2 ContinuousEXP4: EXP4 with continuous sampling

Parameters: Collection of randomized policies Ξ, learning rate η > 0.
// ξ(· | xt) is the probability density for policy ξ given context xt.
Initialization: weights W1(ξ)← 1 for all policies ξ ∈ Ξ.
for t = 1, . . . , T do

Sample policy ξt ∝Wt, sample action at from ξt(· | xt).
// pt(· | xt) is the probability density for action at given context xt.
Observe loss `t(at) and define

ˆ̀
t(ξ) :=

ξ(at | xt)
pt(at | xt)

· `t(at).

Update weights: Wt+1(ξ)←Wt(ξ) · exp(−η ˆ̀
t(ξ)).

end for

this shows that the regret in epoch m is nmrm . Mh(12rm, h)/rm, which we can easily
relate to the smoothing coefficient.

4.2. One algorithm for all h

SmoothPolicyElimination guarantees a refined regret bound against Bench(Πh) for a given
h > 0. Yet choosing the bandwidth in practice seems challenging: since Bench(Πh) is
unknown and not monotone in general, there is no a priori way to choose h to minimize the
benchmark plus the regret. As such, we seek algorithms that can achieve a smoothed regret
bound simultaneously for all bandwidths h, a guarantee we call uniformly-smoothed. This is
achieved by our next result.

Theorem 4 Consider the adversarial setting. For each parameter β ∈ [0, 1], there exists an
algorithm that guarantees

∀h ∈ (0, 1] : Regret(T,Πh) ≤ Õ
(
T

1
1+β h−β

)
· (log |Π|)

β
1+β .

For the non-contextual setting, it achieves a uniformly-smoothed regret of Õ
(
T

1
1+β h−β

)
.

Moreover, for the non-contextual stochastic setting, there exist positive constants c and T0,
such that for any algorithm and any T ≥ T0, there exists h ∈ (0, 1] and a problem instance,
such that on this instance,

Regret(T,Πh) ≥ c · T
1

1+β h−β.

Remarks. The theorem provides a family of upper and lower bounds, one for each β ∈ [0, 1].
As two examples, taking β = 1 we obtain regret rate Õ(

√
T/h) as listed in the third row

of Table 1, while β = 1/2 yields Õ(T 2/3/
√
h). These bounds are incomparable in general and

so the result establishes a Pareto frontier of exponent pairs. In the non-contextual setting,
all pairs are optimal, and, in particular, the

√
T/h rate from Corollary 2 is not achievable

uniformly. More generally, the optimal uniformly-smoothed regret bounds are very different
from those for a fixed bandwidth.

12



Contextual Bandits with Continuous Actions

Note that while β is a parameter to the algorithm, it simply governs where on the Pareto
frontier the algorithm lies, and is not based on any property of the problem.

The algorithm. The algorithm, Corral+EXP4, is an instantiation of Corral (Agarwal
et al., 2017b), which can be used to run many sub-algorithms in parallel. Corral maintains
a master distribution over sub-algorithms, and in each round it samples a sub-algorithm and
chooses the action the sub-algorithm recommends. Corral sends an importance weighted
loss (weighted by the master distribution) to all the sub-algorithms and it updates the
master distribution using online mirror descent with the log-barrier mirror map.

For the sub-algorithms we use our variant of EXP4. Each sub-algorithm instance operates
with a different bandwidth scale, and if run in isolation achieves the optimal non-adaptive
smoothed regret for that bandwidth. Aggregating these sub-algorithms with Corral yields
the uniformly-smoothed guarantee. Note that here and elsewhere, Corral results in a worse
overall regret than the best individual sub-algorithm, but in our setting it nevertheless
achieves all Pareto-optimal uniformly-smoothed guarantees. We describe Corral+EXP4

formally in Section 8.2.
The proof for the upper bound involves a more refined analysis for EXP4 than required

for Theorem 3. First, we discretize bandwidths to multiples of 1/T 2 and show that, for
any i ∈ N, a single instance of EXP4 using discretized bandwidths can compete with all
h ∈ [2−i, 2−i+1] simultaneously, without using Corral. Second, we show that EXP4 is
stable in the sense that, in randomized environments, the regret scales linearly with the
standard deviation of the losses and that this standard deviation need not be known a
priori.8 Stability is crucial for aggregating with Corral as the master’s importance weighting
induces high-variance randomized losses for each sub-algorithm. We finish the proof by
applying the guarantee for Corral (Agarwal et al., 2017b) with log(T ) instances of EXP4
as sub-algorithms, one for each bandwidth scale [2−i, 2−i+1]. For each β ∈ [0, 1], we use a

weakening of the EXP4 regret guarantee, essentially that min
{√

T/h, T
}
≤ T

1
1+β h

− β
1+β for

all β ∈ [0, 1].
The lower bound is inspired by a construction of Locatelli and Carpentier (2018). We

show that if an algorithm, Alg, has small regret against Bench(Π1/4), then it must suffer
large regret against Bench(Πh) for h � 1/4. The intuition is that the 1/4-smoothed regret
bound prevents Alg from sufficiently exploring. Specifically, we construct one instance
where small losses occur in a subinterval I0 ⊂ [0, 1] of length 1/4 and another that is identical
on I0 but where even smaller losses occur in a subinterval I1 of width h� 1/4. Since Alg has
low 1/4-smoothed regret it cannot afford to explore to find I1. In comparison with Locatelli
and Carpentier (2018), the details of the construction are somewhat different, since they
focus on adaptivity to unknown smoothness exponent, while we are adapting to bandwidth
h (and later to unknown Lipschitz constant).

5. Lipschitz regret guarantees

Our results and techniques for smoothed regret project onto the well-studied Lipschitz
contextual bandits problem: each of the three results in Section 4 has a “twin” for the

8. This property was shown by Agarwal et al. (2017b), but our variant of EXP4 is necessarily slightly different.
Nevertheless, the proof is quite similar.
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Lipschitz version. We posit a Lipschitz condition on the expected loss λ(· | x) := E[`(·) | x]:

∀x ∈ X , a, a′ ∈ A :
∣∣λ(a | x)− λ(a′ | x)

∣∣ ≤ L · ρ(a, a′), L ≥ 1. (6)

We assume that L ≥ 1 to avoid the pathological situation where Lipschitzness restricts the
effective loss range. If the Lipschitz constant is less than 1, we set L = 1 in our results.

A version of the standard uniform discretization approach applies, even for the adversarial
setting. Here, we uniformly discretize the action space and the policies (if needed), and we
run EXP4. Standard arguments yield the following regret bound:

Regret(T,Π) ≤ Õ
(
T

2/3 (L log |Π| )1/3
)
. (7)

This result appears in prior work on the non-contextual case and is known to be optimal (Klein-
berg, 2004; Kleinberg et al., 2019; Bubeck et al., 2011a), although the generalization to an
arbitrary policy set Π is new. Interestingly, the worst-case regret bounds in Slivkins (2014);
Cesa-Bianchi et al. (2017) — on Lipschitz contextual bandits with a metric on contexts or
context-arm pairs and with specific policy sets Π, respectively — can be obtained from this
uniform discretization approach. Equation (7) is the point of departure for several results
presented below.

The key observation enabling results for the Lipschitz version is as follows:

Lemma 5 If f : A → [0, 1] is L-Lipschitz, then
∣∣Ea′∼Smoothh(a) f(a′)− f(a)

∣∣ ≤ Lh.

In particular if λ(· | x) is L-Lipschitz, we have Bench(Πh) ≤ Bench(Π) + Lh, which allows
us to easily obtain results for the Lipschitz version by way of smoothed regret.

5.1. Instance-dependent and worst-case guarantees

In correspondence with Theorem 1, our first result here is an instance-dependent regret
bound. We recover the optimal worst-case regret bound for the Lipschitz setting, but
we obtain an improvement when actions taken by near-optimal policies tend to lie in a
relative small region of the action space. Specializing, we recover several state-of-the-art
instance-dependent regret bounds from prior work. Our algorithm is a minor modification of
SmoothPolicyElimination (Algorithm 1), which we denote SmoothPolicyElimination.L
and spell out later in this section.

We reuse the packing numbers Mh(ε, δ) defined in (2), but the instance-dependent
complexity is slightly different. Instead of the smoothing coefficient θh(ε0), we use the policy
zooming coefficient :

ψL(ε0) := sup
ε≥ε0

M0(12Lε, ε)/ε. (8)

The main differences over the smoothing coefficient are that version space of good policies is
based on the unsmoothed loss λ0(π), and we are using the ε- rather than h-packing number
for a fixed bandwidth h. For intuition, we always have ψL(ε0) ≤ O(ε−2

0 ) but a favorable
instance might have ψL(ε0) ≤ O(ε−1

0 ) which yields improved rates.
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Theorem 6 In the stochastic setting, Algorithm SmoothPolicyElimination.L with param-
eter L achieves regret bound

Regret(T,Π) ≤ O
(

inf
ε0>0

{
TLε0 +

ψL(ε0)

L
· log(|Π|T ) log(1/ε0)

})
. (9)

Since ψL(ε0) ≤ O(ε−2
0 ), we obtain the following worst-case bound, which is known to be

optimal up to log(T ) factors.

Corollary 7 In the stochastic setting, algorithm SmoothPolicyElimination.L with param-
eter L achieves the regret bound in (7).

The worst-case result is in correspondence with Corollary 2. It recovers the worst-case
regret bound from prior work focusing on the non-contextual version (Kleinberg, 2004;
Bubeck et al., 2011b). This regret bound can also be achieved by ContinuousEXP4 as a
simple corollary of Theorem 3 (see Corollary 19 in Section 6).

The result can also be applied to a nonparametric policy set in the setting of Cesa-
Bianchi et al. (2017). Here we assume X is a p-dimensional metric space and the policy set
is all 1-Lipschitz mappings from X → A. By a suitable discretization, Corollary 7 yields

Õ
(
T
p+2
p+3

)
regret, which matches their result (since the interval is a 1-dimensional action

space).
The advantage of Theorem 6 is its instance-dependence. Since the packing number

M0(·, ·) is always at least 1, the most favorable instances have ψL(ε0) = O(ε−1
0 ). In this

case, Theorem 6 gives the much faster Õ(
√
T log |Π|) regret rate. The next example

demonstrates such favorable behavior.

Example 4 Let Sd−1 denote the unit sphere in Rd. Consider an instance where X := Sd−1,
A := [−1, 1] and where the policy class Π is a finite subset of linear policies

{
πw : w ∈ Sd−1

}
where πw : x 7→ 〈w, x〉. The marginal distribution over contexts is uniform over Sd−1 and
the expected losses satisfy

∀x ∈ X : E [ `(a) | x ] = f(a− πw?(x)), (10)

where πw? ∈ Π is some fixed policy, f is L-Lipschitz and satisfies f(z)− f(0) ≥ L0 | z | for
all z in R. By construction, E[`(a) | x] is L-Lipschitz in a, for all x. This instance has
M0(Lε, ε) = O(L/L0 ·

√
d), and ψL(ε) = O( L

L0ε
·
√
d). (See Section 10 for a derivation.)

Instance-dependent bounds from prior work are often stated in terms of a packing number
growth rate, called the zooming dimension. Our bound can also be stated in this way, so as
to facilitate comparisons. With zooming constant γ > 0 the zooming dimension is defined as

z := inf
{
d > 0 : M0(12Lε, ε) ≤ γ · ε−d, ∀ε ∈ (0, 1)

}
. (11)

It is easy to see that ψL(ε0) ≤ γ · ε−z−1
0 , and so Theorem 6 may be further simplified to

Regret(T,Π) ≤ O
(
L

z
2+z T

1+z
2+z

)
· ( γ log(T |Π|) )

1
2+z . (12)
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This result agrees with prior zooming results in the non-contextual setting (Kleinberg
et al., 2019; Bubeck et al., 2011a). In the contextual setting, our result is in general
incomparable with the “contextual zooming algorithm” of Slivkins (2014), which scales
with a different quantity called the contextual zooming dimension. Formally the contextual
zooming dimension measures the growth of the ε-packing numbers of the set {(x, a) :
E [ `(a) | x ]−mina′∈A E [ `(a′) | x ] ≤ ε} as a function of ε. This definition, and our zooming
dimension are conceptually similar, as both measure the size of certain near-optimal sets, but
they are generally incomparable. Informally, the definition in Slivkins (2014) is adapted to a
Lipschitz structure on the context space, which does not naturally accommodate arbitrary
policy sets Π as we do, and our zooming dimension involves the “expected context” rather
than the “worst context.” In more detail:

1. Slivkins (2014) needs to assume a metric structure on X ×A, whereas we only assume
a metric structure on A. In addition, Slivkins (2014)’s contextual zooming dimension
is at worst the covering dimension of X ×A, whereas our notion of zooming dimension
is at worst the covering dimension of A. On the other hand, our bound scales with
log |Π| while his does not.

2. Aside from the metric structure, Slivkins (2014)’s contextual zooming dimension is only
dependent on the conditional distribution of loss given context D(`|x). In contrast,
our notion is dependent on the policy class Π, along with D, the joint distribution of
(x, `), which admits policy class and distribution specific upper bounds.

3. Finally, Slivkins (2014) considers a setting where contexts are adversarially chosen,
and so his contextual zooming dimension considers pessimistic context arrivals. Our
definition involves an expectation over contexts, which may be more favorable.

The algorithm. The algorithm is almost identical to SmoothPolicyElimination. The
main difference is that instead of a fixed bandwidth h across all epochs, we use hm = 2−m in
the mth epoch. We also set the radius parameter rm = L2−m which is slightly different from
before. We call this algorithm SmoothPolicyElimination.L, to highlight the differences.

At a technical level, the main difference with the Lipschitz setting is that we must
carefully balance bias and variance in loss estimates. This is not an issue for smoothed regret
since we have unbiased estimators for λh(π), but not for λ0(π). We do this by decreasing
the bandwidth geometrically over epochs, but the rest of the algorithm, and much of the
analysis are unchanged.

5.2. Optimal Lipschitz-Adaptivity

We now present the corresponding result to Theorem 4. We consider Lipschitz-adaptive
algorithms: those that do not know any information about the problem, apart from T and
Π, and yet achieve regret bounds in terms of T, L, and |Π| only. In particular, the algorithm
does not know L.

Theorem 8 Consider the adversarial setting. For each β ∈ [0, 1], Corral+EXP4 (with
parameter β) is Lipschitz-adaptive with

Regret(T,Π) ≤ Õ
(
T 1−a Lb ( log |Π| )a

)
, where a =

β

1 + 2β
and b =

β

1 + β
.
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For the non-contextual version it achieves a regret Õ
(
T 1−a Lb

)
without knowing the Lipschitz

constant L. Moreover, for the non-contextual stochastic version, there exist positive constants
c and T0, such that for any algorithm and any T ≥ T0, there exists L ≥ 1 and a problem
instance with L-Lipschitz losses, such that on that instance

Regret(T,Π) ≥ c · T 1−aLb.

Remarks. As in Theorem 4, we obtain a family of upper and lower bounds, one for each
β ∈ [0, 1], which make up a Pareto frontier. With β = 1 an optimal Lipschitz-adaptive
rate is T 2/3

√
L which is worse than the T 2/3L1/3 non-adaptive rate from Corollary 7. Note

that it is easy to obtain the worse adaptive rate of Õ
(
LT 2/3

)
simply by guessing that the

Lipschitz constant is 1 in our variant of EXP4.
Several prior works develop adaptive algorithms that either require knowledge of unknown

problem parameters, or yield regret bounds that, in addition to T and L, scale with such
parameters (Slivkins, 2011; Bubeck et al., 2011b; Bull, 2015; Locatelli and Carpentier, 2018).
These algorithms are not Lipschitz adaptive, contrasting with our algorithm that requires
no additional knowledge or assumptions. However, this dependence on other parameters
allows these prior results to side-step our lower bound and achieve faster rates.

Note that Lipschitz-adaptivity is qualitatively quite different from the uniformly-smoothed
adaptivity studied in Theorem 4. With Lipschitz-adaptivity there is a single fixed benchmark
policy class and we simply seek a guarantee against that class, albeit in an environment
with unknown smoothness parameter. However, for Theorem 4 we are effectively competing
with infinitely many policy sets simultaneously (Πh for each h ∈ (0, 1]) and we seek a regret
bound against all of them. Somewhat surprisingly, both settings demonstrate a similar
price-of-adaptivity and the optimally adaptive algorithms are nearly identical.

The algorithm. The algorithm, Corral+EXP4, is again Corral with our variant of EXP4
as the sub-algorithms. The only difference is in how we set the learning rate for the master
algorithm.

6. Our results in a general setup

All results discussed so far are special cases of a more general set of results that we now
present. While all of the key ideas appear in the special case of the unit interval, the
following results demonstrate the generality of our approach. As we have already made
many of the essential remarks, the discussion here is somewhat terse.

We generalize in two directions. First, all results extend to higher-dimensional action
spaces. Formally, A can be an arbitrary convex subset of the d-dimensional unit cube [0, 1]d,
equipped with p-norm ρ(a, a′) := ‖a − a′‖p, for any p ≥ 1. As before, Smoothh(a) is a
uniform distribution over the closed ball of radius h. The instance-dependent regret bounds
carry over as is, and zooming dimension now takes values in [0, d] depending on the problem
instance. Regret bounds in the worst-case corollaries are modified so as to accommodate the
dependence on d. In Corollary 2, the dependence on h is replaced with hd, and there is a
matching lower bound. In Corollary 7, the dependence on T becomes Õ(T (d+1)/(d+2)), which
is known to be optimal. The smoothness-adaptive regret bounds are modified similarly.

Second, we essentially allow arbitrary action spaces and smoothing operators. Formally,
the action space A is endowed with a base metric ρ and a base measure ν. The smoothing
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distribution Smooth(a) can be any distribution with a well-defined density with respect
to ν, and the effective number of actions is the largest possible density value. We define
bandwidth relative to the base metric. In particular, we can handle the unit cube [0, 1]d,
endowed with a uniform measure and the p-norm, p ≥ 1 as a base metric.

The proofs for all instance-dependent regret bounds are deferred to Section 7. The proofs
for all “smoothness-adaptive” regret bounds can be found in Section 8.

6.1. General setup

For completeness, let us recap the basic setup of contextual bandits. There are two sets
X ,A, where X is an abstract context space, and A is an abstract action space. The following
protocol continues over T rounds: at each round t, (i) nature chooses context xt ∈ X and
loss function `t ∈ (A → [0, 1]) and presents xt to the learner, (ii) learner chooses action
at ∈ A, (iii) learner suffers loss `t(at), which is also observed. Performance of the learner is
measured relative to a class of policies Π : X → A via the notion of regret

Regret(T,Π) := E

[
T∑
t=1

`t(at)

]
−min

π∈Π
E

[
T∑
t=1

`t(π(xt))

]
.

We consider both adversarial and stochastic settings. In the adversarial setting the
contexts and losses are chosen by an adaptive adversary, meaning that (xt, `t) may be a
randomized function of the entire history of interaction. In the stochastic setting, we assume
(xt, `t) ∼ D iid at each round t, for some unknown distribution D, although we assume DX ,
the marginal distribution over X , is known.

Base structure. Action space A is endowed with base structure (A, ρ, ν), where ρ is a
metric called the base metric, and ν is a probability measure called the base measure. The
two are consistent, in the sense that ν is well-defined and strictly positive on the closed balls
in (A, ρ) of strictly positive radius. This structure may have no bearing on the loss functions;
it serves only to define and/or instantiate smoothed regret. Essentially, we smoothen relative
to the base measure, and define bandwidth relative to the base metric.

The closed balls are denoted B(a, r) := {b ∈ A : ρ(a, b) ≤ r}, where a ∈ A is the center
and r ≥ 0 is the radius. For normalization, we assume that the metric space has diameter 1.

Smoothing kernel. We generalize the Smooth operator to a smoothing kernel : a mapping
K : A → ∆(A), the set of distributions over actions. For policy π, we use Kπ : x 7→ K(π(x))
to denote the usual function composition. With ΠK := {Kπ : π ∈ Π } as the smoothed
policy class, smoothed regret is simply given by Regret(T,ΠK).

We posit that distributions K(a), a ∈ A are absolutely continuous with respect to the base
measure ν, and represent them via their density functions fK(a). Formally, fK(a) is the Radon-
Nikodym derivative of K(a) relative to ν. As a convention, denote (Ka)(a′) := fK(a)(a

′),
a′ ∈ A. In words, it is the density of distribution K(a) with respect to ν, evaluated at a′.

We derive (worst-case) bounds on Regret(T,ΠK) for an arbitrary smoothing kernel K,
without any assumptions on the loss functions. The regret bounds are in terms of the largest
possible density assigned by K,

κ := sup
a,a′∈A

(Ka)(a′). (13)
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This quantity, called kernel complexity, serves as the effective number of actions.
We trade off κ against a suitably generalized notion of bandwidth:

sup
a,a′∈A: (Ka)(a′)>0

ρ(a, a′). (14)

In words, it is the largest distance that any action can be perturbed by.
The canonical example is the rectangular kernel Kh, where h ∈ (0, 1] is the bandwidth:

(Kh a)(a′) =
1 { ρ(a, a′) ≤ h }

ν(B(a, h))
, ∀a, a′ ∈ A. (15)

In words, Kh(a) puts uniform density on B(a, h), and zero density elsewhere.9

Discussion. In practice, we may have some freedom in choosing the base structure. The
action space A may naturally admit a set system: e.g., the open/closed intervals when A
is a unit cube, or the subtrees when A is the leaf set of a tree. Then, we may have some
leeway in defining the base metric, e.g., it could be any p-norm, p ≥ 1 when A is the unit
cube, or any “exponential tree metric” ρ(x, y) = αdepth(LCA(x,y)), α ∈ (0, 1) when A is a leaf
set.10 Then, we may be able to tailor the base measure to the chosen base metric, so as to
improve the kernel complexity (more on this below).

One can choose smoothing kernels other than the rectangular kernel. One fairly general
formulation is the f -symmetric kernel Kf defined by

(Kf a)(a′) ∼ f(ρ(a, a′)) ∀a, a′ ∈ A, (16)

for some function f : [0, 1] → [0,∞). In particular, the triangular kernel is the special
case when f(x) = max(0, 1− x/h), where h > 0 is the bandwidth. For more refined kernel
complexity vs. bandwidth tradeoff, one could consider an averaged version of bandwidth:

sup
a∈A

∫
ρ(a, ·) dK(a). (17)

That said, in our analysis the smoothing kernel is either arbitrary or rectangular.

Example: covering dimension. To instantiate kernel complexity, consider the notion
of covering dimension. The formal definition is as follows:

Definition 9 For a metric space (A, ρ), the covering dimension with multiplier γ is the
smallest number d ≥ 0 such that for each r ∈ (0, 1], the metric space can be covered with
γ · r−d balls of radius r.

This notion has been used to summarize the complexity of a metric space for Lipschitz
bandits (Kleinberg, 2004). We can also use it to bound kernel complexity.

9. If the action space A is a unit interval, the plot of the density function for Kh(a) is a rectangle, hence
the name rectangular kernel.

10. LCA(x, y) is the least common ancestor of leaves x and y.
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Claim 10 Fix the base metric space (A, ρ) of covering dimension d with multiplier γ. Fix
bandwidth h > 0. Then there exists a probability measure ν such that

ν(B(a, h)) ≥ (h/2)d/γ for each center a ∈ A. (18)

With ν as the base measure, the rectangular kernel Kh has complexity κ ≤ γ · (h/2)−d.

Proof By definition of the covering dimension, there is a collection C of at most N =
γ · (h/2)−d balls of radius h/2 whose union covers A. Define probability measure ν as follows:
pick a ball B ∈ C uniformly at random, then pick a point inside B according to an arbitrary
fixed probability measure νB. Any ball B(a, h), a ∈ A contains some ball B ∈ C, namely a
ball in C that covers a. Hence, B(a, h) ≥ ν(B) ≥ 1/N .

Example: local uniformity. It may be desirable to ensure that the base structure is
uniform, in the sense that balls of similar radius have a similar measure. A “local” version of
this property can be stated as follows: for some number d ≥ 0 called the doubling dimension,

ν(B(a, 2r)) ≤ 2d · ν(B(a, r)) ∀a ∈ A, r > 0. (19)

Then the rectangular kernel Kh, h > 0 has complexity κ ≤ (h/2)−d, like in Claim 10.
By way of background, doubling dimension is a combinatorial notion of low-dimensionality,

widely used in theoretical computer science.11 It is a stronger notion than the covering
dimension: it upper-bounds the covering dimension (with multiplier γ = 2d). A canonical
example is that any subset of ([0, 1]d, `p), d ∈ N, p ≥ 1 has doubling dimension d + O(1).
However, there are examples that are provably very different (Gupta et al., 2003). When the
metric space (A, ρ) is complete, a probability measure ν satisfying (19) exists if and only
if the metric space satisfies a more basic property: any ball of radius r can be covered by
a collection of 2d balls of radius r/2 (Volberg and Konyagin, 1987; Wu, 1998; Luukkainen
and Saksman, 1998). The latter property is typically used to define the doubling dimension.
More background on doubling dimension can be found in (Slivkins, 2006, Chapter 2).

Global uniformity of the base structure. For our instance-dependent results in the
stochastic setting, we require a “global” generalization of (19) which states that any two
balls of a similar radius have a similar size. Formally:

Assumption 1 (instance-dependent results only)

sup
a,a′∈A, h∈(0,1/2]

ν(B(a, 2h))

ν(B(a′, h))
≤ α <∞.

The effect of this assumption is that the α is a multiplier in the regret bounds. While α
gives a direct bound on kernel complexity of the rectangular kernel Kh as κ ≤ (h/2)− logα, it

11. Doubling dimension have been studied in many different contexts such as metric embeddings, trav-
eling salesman and compact data structures, e.g., Gupta et al. (2003); Krauthgamer and Lee (2004);
Krauthgamer et al. (2005); Talwar (2004); Kleinberg et al. (2009); Chan et al. (2009); Slivkins (2007);
Mendel and Har-Peled (2005); Wong et al. (2005).
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can be productive to bound κ using the covering dimension. Indeed, the latter is a much
weaker property, in the sense that it is smaller than logα, and can be much smaller.

The canonical example is a finite subset of [0, 1]d of near-uniform density, defined as
follows. For a fixed scale ε > 0, partition [0, 1]d into axis-parallel hypercubes with side ε,
called ε-cells. A subset A ⊂ [0, 1]d is uniform-density at scale ε if each ε-cell contain exactly
one point in A. Then Assumption 1 holds with α = O(1)d, with `∞ as the base metric and
the uniform measure over A as the base measure.12 Similar assumptions have been used in
theoretical computer science literature on networks (Kleinberg, 2000; Kempe et al., 2005;
Kempe and Kleinberg, 2002; Sarkar et al., 2010; Abraham et al., 2015).

6.2. Special cases

(a) Unit interval. Suppose action space A = [0, 1] is endowed with base metric ρ(a, a′) :=
| a− a′ |, and the base measure is uniform over A. Then the rectangular kernel (15) is
precisely the Smoothh operator from Section 3. This example satisfies properties (18)
and (19) (with d = 1) and Assumption 1 (with α = 4, because of the edge effects). So,
all results we presented in Section 4 and Section 5 follow from the general development.

(b) Discretized unit interval. Discretize the [0, 1] interval into M actions: A := {i/M : i ∈
[M ]}, with base metric/measure defined as above. The rectangular kernel Kh takes
local averages across actions. Kernel complexity is κ = 1/h, and we obtain bounds on
smooth regret that are independent of the number of actions M .

(c) Non-contextual setting. The non-contextual setting can be embedded in ours by
positing a single context X := {x0} and policy set Π : {x0 7→ a : a ∈ A}. (When we
state results for the non-contextual version, Π is always assumed to be this class.)
Since our upper bounds typically scale with log |Π|, they do not immediately yield
meaningful guarantees when |A| =∞, but we can obtain meaningful results here via
discretization.

For example, consider the basic setup in Section 3. Since the smoothed loss function
λh(·) is (1/h)-Lipschitz, we can discretize the action space uniformly with step

√
h/T ,

to ensure that |Π| =
√
T/h and the discretization error — increase in regret due to the

discretization — is at most
√
T/h.

(d) Standard (non-smoothed) regret. As a sanity check, let us recover a standard (non-
smoothed) contextual bandit problem as a special case. Let A be a finite set of M
actions, equipped with an identity metric ρ(a, a′) := 1{a 6= a′} and uniform base
measure ν. Then with identity kernel K : a 7→ δa we have ΠK = Π.

(e) Fixed discretization. Interestingly, we also recover regret bounds relative to a fixed
discretization of the action space A. Formally, let A0 be a finite subset of A, let the
base measure be the uniform distribution over A0, and define the smoothing kernel K
to deterministically map each action a to the closest point in A0. Then the smoothed
policy set ΠK is precisely the set of policies whose actions are discretized to A0. It is
easy to see that the kernel complexity (“effective number of arms”) is |A0|.

12. To see this, observe that for every a in A, (b h
2ε
c+ 1)d ≤ | B(a, h) ∩ A | ≤ ( 2h

ε
+ 2)d.
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6.3. Results for smoothed regret

Stochastic Setting: instance-dependent results

We focus on the rectangular kernel Kh. Our results are stated in terms of the smoothing
coefficient θh(ε0), as defined in (3), with smoothed loss suitably redefined as

λh(π) := E
(x,`)∼D

E
a∼Kh(π(x))

[ `(a) ] , π ∈ Π. (20)

Generalizing SmoothPolicyElimination requires the following changes. Rather than use
the Smooth operator, we use the kernel Kh in the variance constraint, action selection scheme,
and importance weighted loss. We also update the batch size parameter ñm := 320κhVm

r2m
.

Theorem 11 (generalizes Theorem 1) Consider the stochastic setting with rectangular
kernel Kh, under Assumption 1. Then SmoothPolicyElimination has

Regret(T,ΠKh) ≤ O
(

inf
ε0>0
{Tε0 + α θh(ε0) log(|Π|T ) log(1/ε0) }

)
.

While Assumption 1 enables better regret rates for benign instances, the algorithm can
be analyzed without this assumption, and for arbitrary kernels. The following regret bound
can be extracted from the proof of Theorem 11 without much difficulty:

Theorem 12 (generalizes Corollary 2) Consider the stochastic setting with an arbitrary
smoothing kernel of kernel complexity κ. Then SmoothPolicyElimination has

Regret(T,ΠK) ≤ Õ
(√

Tκ log(|Π|)
)
.

Adversarial setting

We use a version of EXP4 (Algorithm 2), as before. We handle an arbitrary smoothing kernel
K, obtaining a regret bound in terms of its kernel complexity κ. We obtain Theorem 3 by
specializing to the unit interval, as explained in Section 6.1.

Theorem 13 (generalizes Theorem 3) Consider the adversarial setting with an arbi-
trary smoothing kernel of kernel complexity κ. ContinuousEXP4 (Algorithm 2) with policy

set Ξ = ΠK and learning rate η =

√
2 ln |Ξ|
Tκ admits smoothed regret

Regret(T,ΠK) ≤ O
(√

Tκ log |Π|
)
.

Proof One subtle point in the proof is that we separate the base measure, the smoothing
kernel, and the action sampling distribution. The details follow standard techniques.

From the analysis of algorithm Hedge (Freund and Schapire, 1997), we obtain

T∑
t=1

E
ξ∼Pt

ˆ̀
t(ξ)−min

ξ∈Ξ

T∑
t=1

ˆ̀
t(ξ) ≤

η

2

T∑
t=1

E
ξ∼Pt

ˆ̀
t(ξ)

2 +
log |Ξ|
η

, (21)
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where Pt is a distribution over policies proportional to the weights Wt in the algorithm.
Now, by standard importance weighting arguments we have (i) Eξ∼Pt ˆ̀

t(ξ) = `t(at) and

(ii) Eat∼pt ˆ̀
t(ξ) = Ea∼ξ(·|xt) `t(a). For the variance term, we have

E
at,ξ

ˆ̀
t(ξ)

2 ≤ κ E
at,ξ

`t(at)
2 ξ(at | xt)
pt(at | xt)2

= κ

∫
`2t (a)

pt(a | xt)
pt(a | xt)

dλ(a) = κ ‖ `t ‖22 ≤ κ ‖ `t ‖
2
∞ .

Therefore, taking expectation over both sides of (21), we have

E
T∑
t=1

E
ξ∼Pt

ˆ̀
t(ξ)− Emin

ξ∈Ξ

T∑
t=1

ˆ̀
t(ξ) ≤ E

T∑
t=1

ηκ

2
‖`t‖2∞ +

log |Ξ|
η

. (22)

Applying Jensen’s inequality on the left hand side, using the fact that ‖`t‖∞ ≤ 1, and
optimizing for η, we obtain the claimed regret bound.

Uniformly-smoothed regret

We consider an arbitrary finite family of smoothing kernels K1 , . . . ,KM . The goal is to
obtain small smoothed regret with respect to each of these kernels.

We start with a simple result in terms of the maximal kernel complexity. We use
ContinuousEXP4 (Algorithm 2) with policy set Ξ = ∪i; ΠKi , the union of the smoothed
policy classes. The analysis of Theorem 13 carries over verbatim.

Theorem 14 Consider the adversarial setting with smoothing kernels K1 , . . . ,KM de-
fined on the same base structure. Suppose each kernel has complexity at most κ. Then

ContinuousEXP4 (Algorithm 2) with policy set Ξ = ∪Mi=1 ΠKi and learning rate η =

√
2 ln |Ξ|
Tκ

admits smoothed regret

Regret(T,Ξ) ≤ O
(√

Tκ log |Ξ|
)
, where |Ξ| = M · |Π|.

Our main result is more nuanced, obtaining improved smoothed regret relative to kernels
of small kernel complexity.

Theorem 15 Consider the adversarial setting with smoothing kernels K1 , . . . ,KM , whose
their respective kernel complexities are κ1 , . . . , κM . Let κ? and κmax be, resp., the smallest
and the largest kernel complexity. Algorithm Corral+EXP4 with parameter β ∈ [0, 1]
guarantees the following for each i ∈ [M ]:

Regret(T,ΠKi) ≤ O
(
T

1
1+β (κi log(|Π|M) )

β
1+β

)(
min

{
M, log

κmax

κ?

}) 1
1+β

(
κi
κ?

) β2

1+β

.

Remark 16 Each kernel Ki, i ∈ [M ] can have its own base structure (A, ρi, νi).
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The setup above (specialized to action space A = [0, 1]) almost yields the upper bound
in Theorem 4, except that we can only compete with a finite set of kernels. For example,
choosing Ki as the rectangular kernel with bandwidth h = 2−i recovers a weaker version of
the theorem. For the stronger version that competes with all bandwidths h ∈ [0, 1], we must
exploit further structure. The next result achieves this, generalizing Theorem 4 to action
space A = [0, 1]d with an arbitrary dimension d.

Theorem 17 Consider the adversarial setting, with action space A = [0, 1]d, d ∈ N, uniform
base measure ν, and base metric ρ = `∞. Theorem 4 extends, with h replaced by hd.

Compared to Theorem 17, the dependence on T, |Π|, and κ in the regret bound is
unchanged. Indeed, for the rectangular kernel Kh in d dimensions, we have κ = O(h−d) and
of course κ? = O(1) here. Therefore, the main improvement is that we have eliminated the
dependence on the number of kernels, M . We also provide a refinement for the non-contextual
version, eliminating the dependence on log |Π|, which is infinite in this case.

Turning to the lower bound, observe that the lower bound in Theorem 4 is precisely
the second claim here with d = 1. This result, coupled with the upper bound for the
non-contextual version establishes the optimal uniformly-smoothed regret rate. It further
implies a lower bound for competing with multiple arbitrary kernels. Specifically, there exist
an action space, two kernels K1 and K2, and positive constants c, T0, such that for any
algorithm and any T ≥ T0, there exists an instance for which either

Regret(T,ΠK1) ≥ c · T
1

1+β κ
β

1+β

1 or Regret(T,ΠK2) ≥ c · T
1

1+β κ
β

1+β

2 (κ2/κ1)
β2

1+β .

This confirms the near-optimality of Theorem 15.

6.4. Results for Lipschitz losses

Let us turn to Lipschitz contextual bandits, where we posit the Lipschitz condition (6) with
Lipschitz constant L ≥ 1. The uniform discretization approach applies to general action
spaces, and yields a suitable generalization of regret bound (7). The latter is stated in terms
of the covering dimension d (recall Definition 9):

Regret(T,Π) = Õ
(
T 1−a L1−2a ( γ log |Π| )a

)
,where a = 1

2+d . (23)

This regret bound is a departure point for several results presented below.

Stochastic setting: instance-dependent results

We make several minor modifications to SmoothPolicyElimination.L, as in Section 6.3.
We use rectangular kernel Kh instead of the Smooth operator. We also set the parameters as
follows: recall from Section 5 that instead of using a single smoothing parameter throughout,
SmoothPolicyElimination.L uses bandwidth hm = 2−m at epoch m. In addition, we set,

rm = L2−m, Vm := Ex∼D ν
(⋃

π∈Π(m) Bhm(π(x))
)

and ñm :=
320κhmVm

r2m
.

Theorem 18 (generalizes Theorem 6) Consider the stochastic setting under Assump-
tion 1. Recall policy-zooming coefficient ψL(ε0) and zooming dimension z (with constant γ),
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as defined in (8) and (11). In this setting, SmoothPolicyElimination.L with parameter L
achieves

Regret(T,Π) ≤ O
(

inf
ε0>0

TLε0 +
α · ψL(ε0)

L
· log(|Π|T ) log(1/ε0)

)
≤ Õ

(
T 1−a L1−2a ( γ log |Π| )a

)
, where a = 1

2+z .

It is easy to see that the zooming dimension is upper-bounded by the covering dimension.

Adversarial setting

Our algorithm for smoothed regret in the adversarial setting — a suitably parameterized
version of EXP4 in Theorem 13 — yields meaningful guarantees for the Lipschitz setting, and
in fact essentially recovers the optimal regret rate in (23).

Corollary 19 Consider the adversarial setting. Let Kh, h > 0 be a rectangular kernel, and
let κh be its kernel complexity. Consider ContinuousEXP4 (Algorithm 2) parametrized as in

Theorem 13: policy set Ξ = ΠKh and and learning rate η =

√
2 ln |Ξ|
Tκ . Then

Regret(T,Π) ≤ TLh+O (Tκh log |Π| ) . (24)

We recover the regret bound Equation (23) in terms of the covering dimension d, up to the

multiplicative factor of 2d, for suitable choice of bandwidth h = Θ((log |Π|/T )
1
d+2L

−2
d+2 ).

This is an immediate consequence of Theorem 13 and the following simple fact:

Lemma 20 (generalizes Lemma 5) Let Kh be a rectangular kernel, and f : A → [0, 1]
be an L-Lipschitz function. Then

∣∣Ea′∼Kh(a) f(a′)− f(a)
∣∣ ≤ Lh.

Lipschitz-adaptivity

We extend Theorem 8 to higher dimension, specifically to metric space ([0, 1]d, `∞).

Theorem 21 Consider the adversarial setting, with action space A = [0, 1]d, d ∈ N and
base metric ρ = `∞. Theorem 8 extends, with exponents a = β

1+dβ+β and b = dβ
1+dβ .

7. Analysis: instance-dependent regret bounds

We prove both instance-dependent regret bounds: Theorem 11 for smoothed regret and The-
orem 18 for Lipschitz losses. In fact, we present a joint proof for both results.

7.1. Auxiliary lemmas

We start by stating two auxiliary lemmas whose proofs are deferred to the end of this section.
Recall that the marginal distribution over X , denoted DX , is assumed to be known.

The first lemma provides a guarantee on the optimization problem (4). For a policy set
Π′ ⊂ Π, bandwidth h and context x, define A(x; Π′, h) :=

⋃
π∈Π′ B(π(x), h) =

⋃
a∈Π′(x) B(a, h)
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which is a subset of the action space. Similarly, let V (Π′, h) = Ex∼DX ν(A(x; Π′, h)). Finally,
for a distribution Q ∈ ∆(Π′), bandwidth h, we define its induced action-selection density as

q(a | x) :=
∑
π∈Π′

Q(π)(Khπ(x))(a).

Note that this is the density over the action space of the action-selection distribution induced
by Q on context x.

Lemma 22 For any subset Π′ ⊂ Π with |Π′| < ∞, any bandwidth h > 0, and any data
distribution DX , the program (4) is convex and we have

min
Q∈∆(Π′)

max
π∈Π′

E
x∼DX

E
a∼Khπ(x)

[
1

q(a | x)

]
≤ V (Π′, h).

Note that V (Π′, h) ≤ 1, which yields a weaker, but more interpretable bound.
The following lemma gives a uniform deviation bound on L̂m(π) and E(x,`)∼D 〈Khmπ(x), `〉

in epoch m. Recall that in epoch m, the estimator L̂m(π) is the median of several base

estimators
{
L̂im(π)

}I
i=1

, where I = δT = 5dlog(|Π| log2(T )/δ)e is the number of batches. In

comparison to using the naive empirical mean estimator, this median-of-means estimator has
the advantage that it avoids a dependency on the range of the individual losses, therefore
admitting sharper concentration.

Lemma 23 (Concentration of median-of-means loss estimator) Fix Π′ ⊂ Π, h ∈
(0, 1), δ ∈ (0, 1) and let Q ∈ ∆(Π′) be the solution to (4). Let I = 5dlog(|Π|/δ)e, ñ be
an integer, and {xj , aj , `j(aj)}nj=1 be a dataset of n = Iñ samples, where (xj , `j) ∼ D and
aj ∼ q(· | xj). Define

L̂(π) = median(L̂1(π), . . . , L̂I(π)),

where L̂i(π) = 1
ñ

∑iñ
j=(i−1)ñ+1

Kh(π(xj))(aj)
q(aj |xj) `j(aj). Then with probability at least 1− δ, for all

π ∈ Π′, we have ∣∣∣λh(π)− L̂(π)
∣∣∣ ≤√80κhV (Π′, h)

n
log(e|Π|/δ).

7.2. Proof of Theorem 11 and Theorem 18

The proof proceeds inductively over the epochs and we will do both proofs simultaneously. In
the proof of Theorem 11 we use L(π) := λh(π), while for Theorem 18 we use L(π) := λ0(π) =
E `(π(x)). In both cases π? := argminπ∈Π L(π). For both proofs we use Lm(π) := λhm(π),
noting that for Theorem 11, Lm(π) = L(π). Recall the definitions of the “radii” rm which
are either 2−m or L2−m depending on the theorem statement. In epoch m we prove two
things, inductively:

1. π? ∈ Πm+1 (assuming inductively that π? ∈ Πm).

2. For all π ∈ Πm+1 we have L(π) ≤ L(π?) + 12rm+1.
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Before proving these two claims, we first lower bound nm which provides a bound on the
number of epochs. Assuming π? ∈ Πm, which we will soon prove, we have

nm ≥
κhmVm
r2
m

≥ κhm Ex∼DX ν(B(π?(x), hm))

r2
m

≥ 1

r2
m

= 22m

The first inequality requires δT ≥ 1 (which follows since δ ≤ 1/e) while the third uses the
fact that supp(Khm(a)) ⊂ B(a, hm) so that κhm ≥ supa

1
ν(B(a,hm)) . Hence we know that there

are at most mT := log2(T ) epochs. Applying Lemma 23 to all mT epochs and taking a
union bound, we have

∀m ∈ [mT ], ∀π ∈ Πm :
∣∣∣Lm(π)− L̂m(π)

∣∣∣ ≤√80κhmVmδT
nm

.

Here we are using the fact that Vm = V (Πm, hm) where Vm is defined in the algorithm.

Plugging in the choices for nm :=
320κhmVmδT

r2m
the above inequality simplifies to

∀m ∈ [mT ],∀π ∈ Πm :
∣∣∣Lm(π)− L̂m(π)

∣∣∣ ≤ rm/2. (25)

Let us now prove the two inductive claims under the event that these inequalities hold,
which occurs with probability at least 1− δ. For the base case, since Π1 ← Π we clearly have
π? ∈ Π. We also always have L(π) ≤ L(π?) + 2r1 since the losses are bounded in [0, 1]. For
the inductive step, first we observe that for Theorem 11, L(π) = Lm(π), and for Theorem 18,
|L(π)− Lm(π)| ≤ Lhm = rm. In conjunction with (25), in both cases, we have

∀m ∈ [mT ], ∀π ∈ Πm :
∣∣∣L(π)− L̂m

∣∣∣ ≤ 3rm/2. (26)

By the standard analysis of empirical risk minimization, for the first claim,

L̂m(π?) ≤ L(π?) + 3rm/2 = min
π∈Πm

L(π) + 3rm/2 ≤ min
π∈Πm

L̂m(π) + 3rm.

which verifies that π? ∈ Πm+1. For the second claim, for both Theorem 11 and Theorem 18,
we have for all π in Πm+1,

L(π) ≤ L̂m(π) + 3rm/2 ≤ min
π′∈Πm

L̂m(π′) + 9rm/2 ≤ L(π?) + 6rm.

This proves the second claim since rm = 2rm+1.
For the final regret bound, define m̂T to be the actual number of epochs. For each m ∈ N,

define n̂m to be the actual number of rounds in each epoch, formally defined as follows: (1)
for m < m̂T , n̂m := nm, (2) for m > m̂T , n̂m := 0, and (3) n̂m̂T = T −

∑
m<m̂T

n̂m. We
have that n̂m ≤ nm for all m and that

∑∞
m=1 n̂m = T . Then, in the 1− δ good event, we

can bound the regret of the algorithm as

Regret ≤
∞∑
m=1

n̂m · 12rm,

where we have used the fact that
∑∞

m=1 n̂m = T .
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We optimize the bound as follows: For any ε0 > 0, we first truncate the sum at epoch
mε0 := dlog 1

ε0
e. Using the fact that rm ≤ rmε0 for m ≥ mε0 , we can bound the regret in the

later epochs simply by Tε0. For the earlier epochs we substitute the choice of n̂m. This gives

∞∑
m=1

12n̂mrm ≤ 12 min
ε0>0

Tε0 + 320
∑

m≤mε0−1

κhmVmδT
rm

 .

To simplify further, by our inductive hypothesis we know that

Vm ≤ V (Πm, hm) = E
x∼DX

ν(A(x; Πm, hm)) ≤ E
x∼DX

Nhm(Πm(x)) · sup
a
ν(B(a, 2hm)).

The final inequality is based on the fact that we can always cover A(x; Πm, hm) by a union
of balls of radius 2hm with centers on a hm-covering of Πm, along with the fact that a
maximum (therefore, maximal) δ-packing is a δ-covering. On the other hand we have
κhm ≤ supa

1
ν(B(a,hm)) , so that under Assumption 1 we have

κhmVm ≤ α · E
x∼DX

Nhm(Πm(x))

Set S := {2−i : i ∈ N}. For Theorem 11, using the definition of Mh(ε, δ), and the fact
that Πm ⊆ Πh,12rm , we have κhmVm ≤ αEx∼DX Nhm(Πm(x)) ≤ αMh(12rm, h) . Therefore,
the bounds simplify to

Regret(T,Πh) ≤ 12 min
ε0>0

Tε0 + 320α ·
∑

ε∈S,ε≥2ε0

Mh(12ε, h)δT
ε


≤ 12 min

ε0>0
(Tε0 + 320α · θh(ε0) · log(|Π| log2(T )/δ) · log2(1/ε0) ) ,

where in the second inequality, we use the definition of θh(ε), and the fact that there are
mε0 − 1 ≤ log2(1/ε0) summands in the second term.

Likewise, for Theorem 18, we have

Regret(T,Π) ≤ 12 min
ε0>0

TLε0 + 320α
∑

ε∈S,ε≥2ε0

M0(12Lε, ε)δT
Lε


≤ 12 min

ε0>0
(TLε0 + 320α · ψL(ε0)/L · log(|Π| log2(T )/δ) · log2(1/ε0) )

Both bounds are conditional on the good event, which happens with probability 1− δ.
In the bad event, the expected regret is at most T . Setting δ = 1/T , the theorems follow.

7.3. Proofs for the lemmata

Proof of Lemma 22 The proof follows that of Lemma 1 of Dudik et al. (2011). We
introduce the following notation: for a distribution P over a set of policies Π′, bandwidth h,
denote by its induced action-selection density as

p(a | x) :=
∑
π∈Π

P (π)(Khπ(x))(a).
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Likewise, for a distribution Q over a set of policies Π′, define

q(a | x) :=
∑
π∈Π

Q(π)(Khπ(x))(a).

Define 1|Π′| to be the |Π′|-dimensional vector that takes value 1 on all its entries; in addition,
for policy π in Π′, define eπ as the |Π′|-dimensional vector that takes value 1 on the entry
that corresponds to policy π and takes value 0 everywhere else.

In addition, for Q and P in ∆(Π′), define

f(Q,P ) := E
x∼DX

∫
p(a | x)

q(a | x)
1(a ∈ A(x; Π′, h))dν(a).

It suffices to show that minQ∈∆(Π′) maxπ∈Π′ f(Q, eπ) ≤ V (Π′, h), as for any π in Π′,

f(Q, eπ) = E
x∼DX

∫
Khπ(x)(a)

q(a | x)
1(a ∈ A(x; Π′, h))dν(a)

= E
x∼DX

∫
Khπ(x)(a)

q(a | x)
dν(a)

= E
x∼DX

E
a∼Khπ(x)

1

q(a | x)
,

where the first equality is from the fact that for all a, if Khπ(x)(a) 6= 0 then a /∈ A(x; Π′, h).
Define Q := {Q ∈ ∆(Π′) : maxπ∈Π′ f(Q, eπ) <∞}. Observe that Q is a convex set. Q

is nonempty, as any vector Q such that Qπ > 0 for all π in Π′ (e.g. the uniform distribution
over Π′, 1

|Π′|1|Π′|) is in Q. With this notation,

min
Q∈∆(Π′)

max
π∈Π′

f(Q, eπ) = min
Q∈Q

max
π∈Π′

f(Q, eπ).

Now, note that

min
Q∈Q

max
π∈Π′

f(Q, eπ) = min
Q∈Q

max
P∈∆(Π′)

E
π∼P

f(Q, eπ) = min
Q∈Q

max
P∈∆(Π′)

f(Q,P ).

where the first equality uses the fact that f(Q, ·) is linear. Now, as ∆(Π′) is compact and
convex, Q is convex, f(·, P ) is convex and continuous and f(Q, ·) is concave and continuous,
we may apply Sion’s minimax theorem (Sion, 1958, Corollary 3.3), to obtain that the above
is equal to

max
P∈∆(Π′)

min
Q∈Q

f(Q,P )

Now, given any P in ∆(Π′), consider Pε = (1 − ε)P + ε
|Π′|1|Π′|. We have that Pε is in Q.

Moreover,

f(Pε, P ) ≤ E
π∼P

E
x∼DX

∫
p(a | x)

(1− ε)p(a | x)
1(a ∈ A(x; Π′, h))dν(a)

=
1

1− ε
E

x∼DX
ν(A(x; Π′, h)) =

1

1− ε
V (Π′, h).
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Letting ε→ 0, this implies that for any P in ∆(Π′), infQ∈Q f(Q,P ) ≤ V (Π′, h). Therefore,

max
P∈∆(Π′)

min
Q∈Q

f(Q,P ) ≤ V (Π′, h).

The lemma follows.

Proof of Lemma 23 First, as we have seen, E ˆ̀
i(π(xi)) = λh(π). Moreover,

Var
(

ˆ̀
i(π(xi))

)
≤ E

[
ˆ̀
i(π(xi))

2
]

= E
(x,`)∼D

[ ∫
(Khπ(x))2(a)`(a)2

q(a|x)
dν

]
≤ κhV (Π′, h) ≤ κhV (Π′, h).

where the penultimate inequality uses the fact that Q is the solution to (4), so it satisfies the
guarantee in Lemma 22. Therefore, using Lemma 29 below, we have that for every π ∈ Π′,
with probability at least 1− δ

|Π| , the following holds:

∣∣∣ L̄(π)− L̂(π)
∣∣∣ ≤√80κhV (Π′, h)

n
log(e|Π|/δ).

The lemma is concluded by taking a union bound over all π in Π′.

8. Analysis: smoothness-adaptive guarantees

We now turn to smoothness-adaptive guarantees: Theorem 15 and Theorem 17 for uniformly-
smoothed regret bounds, and Theorem 21 for Lipschitz-adaptive regret bounds. We prove
these results via a joint exposition, building on Corral algorithm from Agarwal et al. (2017b).

8.1. Stability of ContinuousEXP4

We start with a result on the stability of ContinuousEXP4. We consider a slightly modified
protocol. The learner is now presented with randomized loss functions `t which are generated
by importance weighting an original loss function ¯̀

t with some probability pt set by the
adversary. Formally `t = Qt ¯̀t/pt where Qt ∼ Ber(pt) at each round t. Note that here, the
losses presented to the learner are not guaranteed to be bounded, but we do have variance
information, via pt. The original losses ¯̀

t are bounded in [0, 1]. Note further that pt is
revealed at the beginning of round t.

In this setup, Agarwal et al. (2017b) define the following notion of stability.

Definition 24 (See Agarwal et al. (2017b), Definitions 3 and 14) An algorithm with
policy class Ξ is called (β,R(T ))-stable, if in the above protocol it achieves

E
T∑
t=1

¯̀
t(at)−min

ξ∈Ξ
E

T∑
t=1

〈
ξ(xt), ¯̀

t

〉
≤ E[ρ]β ·R(T ), (27)

where ρ := maxt∈[T ]
1
pt

.
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The definition here is slightly different than the one in Agarwal et al. (2017b, Definition
3), in that the right hand side has the term E[ρ]β instead of E[ρβ]. This has no bearing on
the analysis of Corral, but is important for our application, as we will see.

Agarwal et al. (2017b) shows that EXP4 is (1/2,
√
KT log |Π|)-stable in the discrete action

setting, where K is the number of actions. We provide a similar result here, replacing K
with κ and establishing stability whenever the first parameter is in [0, 1/2].

Theorem 25 Algorithm 2 is
(

β
1+β , O

(
T

1
1+β (κ log |Ξ|)

β
1+β

))
-stable, for each β ∈ [0, 1].

Proof For this proof only, we use ξ(xt) to denote the density for the action distribution of
expert ξ on context xt, with respect to ν. Thus the expected loss for expert ξ on round t is
〈ξ(xt), `t〉.

We first show a weaker form of stability. Suppose that ρ̂ ≥ maxt∈[T ]
1/pt is provided to

the algorithm ahead of time. Then following the analysis for EXP4, we have

E
T∑
t=1

`t(at)−min
ξ∈Ξ

E
T∑
t=1

〈ξ(xt), `t〉 ≤ E
ηκ

2

T∑
t=1

‖`t‖2∞ +
log |Ξ|
η

.

The key observation is that,

E
T∑
t=1

‖`t‖2∞ ≤ E
T∑
t=1

Qt
p2
t

=
T∑
t=1

E 1/pt ≤ T ρ̂

Therefore, with the choice of η =
√

2 log |Ξ|
Tκρ̂ , and using the fact that the conditional expectation

of `t is ¯̀
t, we get

E
T∑
t=1

¯̀
t(at)−min

ξ∈Ξ
E

T∑
t=1

〈
ξ(xt), ¯̀

t

〉
≤
√

2κT log |Ξ| · ρ̂. (28)

This proves a weaker version of stability, where a bound on ρ is specified in advance. The
stronger version is based on the “doubling trick” argument in Agarwal et al. (2017b, Theorem
15). We run EXP4 with a guess for ρ̂ and if we experience a round t where 1/pt > ρ̂, we

double our guess and restart the algorithm, always with learning rate η =
√

2 log |Ξ|
Tκρ̂ . In their

Theorem 15, they prove that if an algorithm is weakly stable in the sense of (28) then, with
restarts, it is strongly stable according to Definition 24. In our setting, their result reveals
that the restarting variant of EXP4 guarantees

E
T∑
t=1

¯̀
t(at)−min

ξ∈Ξ
E

T∑
t=1

〈
ξ(xt), ¯̀

t

〉
≤

√
2√

2− 1
· E[ρ]

1
2 ·
√

2κT log |Ξ|

To obtain a stability guarantee for every β, since the regret is trivially at most T , we obtain

E
T∑
t=1

¯̀
t(at)−min

ξ∈Ξ
E

T∑
t=1

〈
ξ(xt), ¯̀

t

〉
≤ min

(
T, cE[ρ]

1
2

√
κT log |Ξ|

)
≤ cT

1
1+β (E[ρ]κ log |Ξ|)

β
1+β ,

where c > 0 is a universal constant. The second inequality is from the simple fact that
min (A,B ) ≤ AγB(1−γ) for A,B > 0, γ ∈ [0, 1].
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8.2. Corral+EXP4 and its analysis

We first provide a formal description of Corral+EXP4 in the notation of abstract smoothing
kernels. Given a family of smoothing kernels K = {K1, . . . ,KM }, we bucket the kernels
according to their kernel complexity κ, Kb = { i ∈ [M ] : dlog κKie = b } for each b ∈ N, and
we initialize one instance of EXP4 with restarting for each bucket. Then we run Corral over
these instances. We call B = { dlog κKie : i ∈ { 1, . . . ,M } } the set of “active” indices.

Define r := maxK∈K κK
minK∈K κK

and κ? := minK∈K κK . Observe that B ≤ min {M, log r + 1 }.
We have the following guarantee for Corral+EXP4.

Lemma 26 Suppose Corral+EXP4 is run with learning rate η and horizon T . Then, for
all β ∈ [0, 1], it has the following regret guarantee simultaneously for all kernels K in K:

Regret(T,ΠK) ≤ Õ
(

min {M, log r }
η

+ Tη + T ( η ln(|Π|M)κK )β
)
.

Proof This is almost a direct consequence of Agarwal et al. (2017b, Theorem 4). By the
definition of Kb and Ξb, κb := maxξ∈Ξb maxa,x ξ(a|x) ≤ 2b. In addition, |Ξb| ≤ |Π| ·M . Since
for all K ∈ Kb we have dlog κKe = b, therefore κK ∈ (2b−1, 2b]. By applying Theorem 25
we see that EXP4 with restarting has the stability guarantee when measuring regret against
Bench(ΠKi) for each Ki ∈ Kb.

Now, by Theorem 4 of (Agarwal et al., 2017b), Corral ensures ∀b ∈ [B], ∀K ∈ KB:

Regret(T,ΠK) ≤ Õ
(
B

η
+ Tη − E[ρb]

η log T
+ T

1
1+β (E[ρb]κK log(|Π|M) )

β
1+β

)
Optimizing over E[ρb] gives

∀K ∈ K : Regret(T,ΠK) ≤ Õ
(
B

η
+ Tη + T ( ηκK log(|Π|M) )β

)
.

The result follows by observing that B ≤ min {M, log r }.

Proof of upper bound in Theorem 15 We simply run Corral+EXP4 with

η =
B

1
1+β

T
1

1+β (ln(|Π|M)κ?)
β

1+β

,

and apply Lemma 26.

Proof of upper bounds in Theorem 17 Recall that for Theorem 17 we are in the
d-dimensional cube with uniform base measure and with `∞ metric. Our goal is to obtain a
uniformly-smoothed regret guarantee for all bandwidths h ∈ [0, 1], where we are using the
rectangular kernel. This requires a bit more work.

First, set D := d2d+2T 2 and form the discretized set:

H =
{
h ∈ { 1

D ,
2
D , . . . , 1} : 1 ≤ 1

hd
≤ 2dlog2 T e+1

}
.
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We run Corral with kernel class K = {Kh : h ∈ H} and we use EXP4 with restarts as the
sub-algorithms. As |H| ≤ d2d+2T 2, applying Theorem 15 gives

∀h ∈ H : Regret(T,Πh) ≤ Õ
(
T

1
1+β h−dβ(log |Π|)

β
1+β

)
. (29)

We now must lift (29) to all h ∈ [0, 1]. We have the following lemma.

Lemma 27 For any loss ` : A → [0, 1] and bandwidth h ≥ T−1/d, there exists ĥ ∈ H such
that 1

ĥd
≤ 2

hd
and supa

〈
Kĥ(a)−Kh(a), `t

〉
≤ 1

T .

Applying this lemma allows us to obtain a smoothed regret bound for h /∈ H by translating
to ĥ ∈ H, since the former benchmark is smaller by at most O(1) while the latter has
ĥ−d ≤ 2(h)−d. This yields Theorem 17.

For the non-contextual bound, instantiate each sub-algorithm with a policy set Π′ :
{x0 7→ a : a ∈ A′} where A′ is a ε-covering of A, satisfying |A′| ≤ O(ε−d). The above
analysis carries through, and to translate to a /∈ A′ we require a different discretization
lemma.

Lemma 28 For ρ(a, a′) ≤ ε and ` : A → [0, 1], we have | 〈Kh(a)−Kh(a′), `〉 | ≤ 4dεh−d.

The proofs of both lemmas are deferred to the end of this section.
To finish the proof set ε = 1

4dT 2 and note that for h < T−1/d the desired guarantee is

trivial. Thus for all h ≥ T−1/d the cumulative approximation error introduced by discretiza-
tion is at most 1 while the policy set Π′ has ln |Π′| ≤ O(d log dT ).

Proof of upper bounds in Theorem 21 For a finite set of bandwidths H let us
apply Lemma 26 with K = {Kh : h ∈ H} to obtain

∀h ∈ H : Regret(T,Πh) ≤ Õ
(
|H|
η

+ Tη + T
(
η log(|Π||H|)h−d

)β )
Applying Lemma 20, we know that

min
π∈Π

E
T∑
t=1

〈Khπ(xt), `t〉 ≤ min
π∈Π

E
T∑
t=1

`t(π(xt)) + TLh,

and so we obtain

Regret(T,Π) ≤ min
h∈H

TLh+ Õ

(
|H|
η

+ Tη + T
(
η log(|Π||H|)h−d

)β )
.

Define L = {2i : i ∈ {1, 2, . . . , dlog2(T )e}} to be an exponentially spaced grid. If the true
parameter L ≥ T then the bound is trivial, and otherwise L ≤ L̂ ≤ 2L from some L̂ ∈ L.
We choose H of size dlog2(T )e to optimize the above bound for each L̂ ∈ L. Specifically, set

H =
{
hi = (η log(|Π| log2(T )))

β
dβ+1 2

−i
dβ+1 : i ∈ [dlog2(T )e]

}
.
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This yields

Regret(T,Π) ≤ min
h∈H

TLh+ Õ

(
|H|
η

+ Tη + T
(
η log(|Π||H|)h−d

)β )
.

≤ min
h∈H

T L̂h+ Õ

(
|H|
η

+ Tη + T
(
η log(|Π||H|)h−d

)β )
≤ Õ

(
T L̂

dβ
dβ+1 (η log |Π|)

β
dβ+1 +

1

η
+ Tη

)
≤ Õ

(
TL

dβ
dβ+1 (η log |Π|)

β
dβ+1 +

1

η
+ Tη

)
.

We finish the proof by tuning the master learning rate η while ignoring L. This gives

η = T
−(dβ+1)
1+(d+1)β (log |Π|)

−β
1+(d+1)β ,

and the overall regret bound is

Regret(T,Π) ≤ Õ
(
L

dβ
1+dβ T

1+dβ
1+(d+1)β (log |Π|)

β
1+(d+1)β

)
.

As in the proof of Theorem 17, for the non-contextual case we discretize the action space
to a minimal ε cover A′ for A. Choosing ε = (4dT 2)−1 as in that proof suffices here as well.

We remark that Theorem 21 is not a direct corollary of Theorem 17. Rather we must
start with Lemma 26 and first tune h to balance the sub-algorithm’s regret with the TLh
term. Then we tune the master’s learning rate. In particular for fixed exponent β the master
learning rates for Theorem 17 and Theorem 21 are different.

8.3. Proofs of the lemmata

We prove a few auxiliary lemmas used in the previous sections, namely Lemma 27, Lemma 28
and Lemma 29.

Lemma 29 (follows from Hsu and Sabato (2016)) Suppose δ ∈ (0, 1), k = 5dln 1
δ e, ñ

is an integer, and n = kñ. In addition, X1, . . . , Xn are iid random variables with mean µ
and variance σ2. Define

µ̂ := median

 1

ñ

ñ∑
i=1

Xi,
1

ñ

2ñ∑
i=ñ+1

Xi, . . . ,
1

ñ

kñ∑
i=(k−1)ñ+1

Xi

 .

Then with probability 1− δ,

|µ̂− µ| ≤ σ
√

40 ln e
δ

n
.

Proof From the first part of Hsu and Sabato (2016, Proposition 5), taking k = 5dln 1
δ e, we

have that with probability 1− δ,

|µ̂− µ| ≤ σ
√

8k

n
.
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The proof is completed by noting that k ≤ 5(1 + ln 1
δ ) = 5 ln e

δ .

Proof of Lemma 27 Recall the definition of H:

H :=

{
h ∈

{
1

D
,

2

D
, . . . , 1

}
: 1 ≤ 1

hd
≤ 2dlog T e+1

}
.

Set hD = bhDc
D . Note that hD is a multiple of 1

D . In addition, we note that h ≥ T−1, and
hD ≥ h− 1

d2d+2T 2 ≥ h− 1
4dT 2 ≥ h(1− 1

4dT ). Therefore, by Fact 30 below, 1
hdD
≤ 1

hd
( 1

1− 1
4dT

)d ≤
2
hd
≤ 2T ≤ 2dlog T e+1. Hence, hD is in H. Moreover, ν(B(a, h)) ≥ hd, and

ν(B(a, h)∆B(a, hD)) ≤ (2h)d − (2hD)d ≤ (2h)d(1− (1− 1

d2d+2T
)d) ≤ (2h)d

2dT
=
hd

2T
.

Here ∆ denotes the symmetric set difference. Therefore, applying Fact 31, we obtain

| 〈Kh(a)−KhD(a), `〉 | ≤ 2ν(B(a, h)∆B(a, hD))

max { ν(B(a, h)), ν(B(a, hD)) }
≤ 1

T
.

Proof of Lemma 28 Since we are using the `∞ distance and ρ(a, a′) ≤ ε, we have that
ν(B(a, h)∆B(a′, h)) ≤ 2 ‖ a− a′ ‖1 ≤ 2dε. Applying Fact 31 we obtain∣∣ 〈Kh(a)−Kh(a′), `

〉 ∣∣ ≤ 2ν(B(a, h)∆B(a′, h))

max { ν(B(a, h)), ν(B(a′, h)) }
≤ 4dεh−d.

Fact 30 For T, d ≥ 1,
(

1
1− 1

4dT

)d
≤ 1 + 1

T .

Proof We use the following simple facts: for all x in [0, 1], ex ≤ 1 + 2x and e−x ≤ 1− 1
2x.

The proof is completed by noting that 1
(1− 1

4dT
)d
≤ e

1
2T ≤ 1 + 1

T .

Fact 31 For sets S1 and S2, and a loss function ` : A → [0, 1]∣∣∣∣∣
∫
S1
`(a)dν(a)

ν(S1)
−
∫
S2
`(a)dν(a)

ν(S2)

∣∣∣∣∣ ≤ 2ν(S1∆S2)

max(ν(S1), ν(S2))
.

Proof ∣∣∣∣∣
∫
S1
`(a)dν(a)

ν(S1)
−
∫
S2
`(a)dν(a)

ν(S2)

∣∣∣∣∣
=

∣∣∣∣∣
∫
S1
`(a)dν(a) · (ν(S2)− ν(S1)) + ν(S1) · (

∫
S1
`(a)dν(a)−

∫
S2
`(a)dν(a))

ν(S1)ν(S2)

∣∣∣∣∣
≤ ν(S1) · ν(S1∆S2) + ν(S1) · ν(S1∆S2)

ν(S1)ν(S2)
=

2ν(S1∆S2)

ν(S2)

By symmetry, the above is also bounded by 2ν(S1∆S2)
ν(S1) . The proof is completed by taking

the smaller of the two upper bounds.
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9. Lower bounds for smoothness-adaptive algorithms

In this section, we prove the lower bounds in Theorem 15 and Theorem 21, showing that the
exponent combinations we achieve with Corral are optimal. We start with two lemmas that
describe the constructions and contain the main technical argument. In the next subsection
we prove the theorems.

9.1. The constructions

The following two lemmas are based on a construction due to Locatelli and Carpentier
(2018). Their work concerns adapting to the smoothness exponent, while ours focuses on
the smoothness constant. We also use a similar construction to show lower bounds against
uniformly-smoothed algorithms.

We focus on the stochastic non-contextual setting, where we consider policy class
Π = {x0 7→ a : a ∈ A}, and at each time, a dummy context x0 is shown. We use the
shorthand Regret(T, h) to denote Regret(T,Πh). We define Λ to be the set of all functions
from A to [0, 1]. A function λ ∈ Λ defines an instance where `(a) ∼ Ber(λ(a)) for all a ∈ A.

Lemma 32 Fix any T ∈ N and h ∈ (0, 1/8]. Suppose an algorithm Alg guarantees that

for all instances λ ∈ Λ, Regret(T, 1/4) ≤ RS(1/4, T ) where RS(1/4, T ) ≤
√
T

20(8h)d
. Then there

exists λ ∈ Λ such that Alg has

Regret(T, h) ≥ min

{
T

40 · 2d
,

T

400(8h)dRS(1/4, T )

}
.

Proof We let N = b1/4hcd. Note that as h ≤ 1/8, (1/8h)d ≤ N ≤ (1/4h)d. We also define

∆ = min
{

N
40RS(1/4,T ) ,

1/4

}
∈ (0, 1/4]. By our assumption that RS(1/4, T ) ≤

√
T

20(8h)d
, we have

RS(1/4, T ) ≤ min

{
N2T

200RS(1/4, T )
,
NT

20

}
= 0.2NT∆. (30)

For each tuple (s1, . . . , sd) ∈ [b1/4hc]d, we define a point cs1,...,sd = (h(2s1−1), . . . , h(2sd−1)).
There are N points in total, which we call c1, . . . , cN . Define regions

Hi = B(ci, h), i = 1, . . . , N,

which are disjoint subsets in [0, 1/2]d. Finally, define S = [1/2, 1]d = B(c0, 1/4), where
c0 = (3/4, . . . , 3/4). We define several plausible loss functions φ0, . . . , φN ∈ Λ:

φ0(a) =

{
1/2, a /∈ S
1/2− ∆/2 a ∈ S

and φi(a) =


1/2, a /∈ (Hi ∪ S)

1/2−∆ a ∈ Hi

1/2− ∆/2 a ∈ S

Note that Ea∼Smooth1/4(c0) φ0(a) = 1/2− ∆/2, and Ea∼Smoothh(ci) φi(a) = 1/2−∆.

The environments are parameterized by φi where losses are always Bernoulli with mean
φi. Denote by Ei (resp. Pi) the expectation (resp. probability) over the randomness of the
algorithm, along with the randomness in environment φi.
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Observe that under environment φ0, for h = 1/4, we have T ·mina λ1/4(a) = T · (1/2−∆/2).
Since Alg guarantees that Regret(T, 1/4) ≤ RS(1/4, T ), we have

E0

T∑
t=1

φ0(at)− T · (1/2− ∆/2) ≤ RS(1/4, T ).

As for all a, φ0(a)− (1/2− ∆/2) = ∆/21 { a /∈ S }, we get that

T∑
t=1

E01 { at /∈ S } ≤
2R(1/4, T )

∆
.

Denote by Ti =
∑T

t=1 1 { at ∈ Hi } and observe that

N∑
j=1

E0[Tj ] ≤ E0

[
1
{
at ∈ ∪Nj=1Hj

} ]
≤

T∑
t=1

E0 [ 1 { at /∈ S } ] ≤ 2R(1/4, T )

∆
.

By the pigeonhole principle, there exists at least one i such that

E0[Ti] ≤
1

N

N∑
j=1

E0[Tj ] ≤
2R(1/4, T )

N∆
. (31)

Therefore, by Lemma 33 and the fact that ∆ ≤ 1/4, we have

KL(P0,Pi) ≤ E0[Ti] · (4∆2) ≤ 8R(1/4, T )∆

N
.

By the choice of ∆ ≤ N
40R(1/4,T ) , we have KL(P0,Pi) ≤ 0.2 and so Pinsker’s inequality yields

dTV(P0,Pi) ≤
√

1/2KL(P0,Pi) ≤ 0.4. Therefore,

Ei[Ti] ≤ E0[Ti] + T · dTV(P0,Pi) ≤
2RS(1/4, T )

N∆
+ 0.4T ≤ 0.8T.

where the first inequality is from the definition of the total variation distance and that
Ti ∈ [0, T ] almost surely; the second inequality is by (31); the third inequality is by (30).
Therefore, Ei[Ti] ≤ 0.8T , which implies that on φi

Regret(T, h) = Ei
T∑
t=1

φi(at)− (1/2−∆) ≥ ∆

2
· (T − Ei[Ti]) ≥

∆

2
· 0.2T

≥ min

{
T

40 · 2d
,

T

400(8h)dRS(1/4, T )

}
.

Lemma 33 For ∆ ∈ [0, 1
4 ], KL(P0,Pi) ≤ E0[Ti] · (4∆2).
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Proof We abbreviate lt as the outcome of `t(at). We have the following:

KL(P0,Pi) =
∑

a1,l1,...,aT ,lT

P0(a1, l1, . . . , aT , lT ) log
P0(a1, l1, . . . , aT , lT )

Pi(a1, l1, . . . , aT , lT )

= E0

T∑
t=1

log
P0(lt|at)
Pi(lt|at)

= E0

T∑
t=1

1 { at ∈ Hi } ·KL(Ber(1/2),Ber(1/2−∆))

= E0[Ti] · (−
1

2
log(1− 4∆2)) ≤ E0[Ti] · (4∆2)

where the last inequality uses the fact that log(1− x/2) ≥ −x for x ∈ [0, 1].

For the next lemma, let Λ(L) be the set of all L-Lipschitz mean loss functions.

Lemma 34 Fix any T ∈ N and L ≥ 1. Suppose an algorithm Alg guarantees that for all
instances λ in Λ(1), Regret(T, 0) ≤ RLip(1, T ) where RLip(1, T ) ≤ T

40L
d. Then there exists

a loss function λ ∈ Λ(L) such that

Regret(T, 0) ≥ min

{
T

80
,

TL
d
d+1

3200RLip(1, T )
1
d+1

}
.

Proof We let ∆ = min
{

( Ld

40·RLip(1,T )·8d )
1
d+1 , 1/8

}
∈ (0, 1/8], and N = bL/4∆cd. As L ≥ 1,

L/4∆ ≥ 2. Therefore, (L/8∆)d ≤ N ≤ (L/4∆)d. Observe that by the choices of ∆ and N :

∆ ≤
( L

8∆)d

40RLip(1, T )
≤ N

40RLip(1, T )
.

By our assumption that RLip(1, T ) ≤ T
40L

d, we have that

RLip(1, T ) ≤ 0.2T · Ld

8d(1/8)d−1
≤ 0.2T · Ld

8d∆d−1
≤ 0.2NT∆,

where the first inequality is from that RLip(1, T ) ≤ T
40L

d; the second inequality is from the
fact that ∆ ≤ 1

8 ; the third inequality is from the fact that N ≥ (L/8∆)d.
For each tuple (s1, . . . , sd) ∈ [bL/4∆c]d, define point cs1,...,sd = (∆

L (2s1−1), . . . , ∆
L (2sd−1)).

There are N points in total which we call c1, . . . , cN . Define regions

Hi = B

(
ci,

∆

L

)
, i = 1, . . . , N,

which are disjoint subsets in [0, 1/2]d. Finally, define S = [1/2, 1]d = B(c0, 1/4), where
c0 = (3/4, . . . , 3/4). We define several plausible loss functions φ0 ∈ Λ(1), φ1, . . . , φN ∈ Λ(L):

φ0(a) =

{
1/2− (∆/2− ||a− c0||∞)+ a ∈ S
1/2 else

, φi(a) =


1/2− (∆− L||a− ci||∞)+ a ∈ Hi

1/2− (∆/2− ||a− c0||∞)+ a ∈ S
1/2 else
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Observe that φ0 is 1-Lipschitz, and each φi is L-Lipschitz for i ≥ 1.
Each mean loss function φi defines an environment where realized losses are Bernoulli

random variables. Denote by Ei (resp. Pi) the expectation (resp. probability) over the
randomness of the algorithm, along with the randomness in environment φi.

As Alg guarantees Regret(T, 0) ≤ RLip(1, T ) against all loss functions in Σ(1), we have

E0

T∑
t=1

φ0(at)− T ( 1/2− ∆/2 ) ≤ RLip(1, T ).

Denote by Ti =
∑T

t=1 1 { at ∈ Hi }. Observe that the instantaneous regret for playing in any
Hi is at least ∆/2. Therefore, by pigeonhole principle, there exists at least one i such that

E0[Ti] ≤
1

N

N∑
j=1

E0[Tj ] =
1

N
E0

N∑
j=1

Tj ≤
2RLip(1, T )

N∆
. (32)

Following the exact same calculation as in the proof of Lemma 32 we get that Ei[Ti] ≤ 0.8T ,
which implies that on instance φi

Regret(T ) ≥ Ei
T∑
t=1

φi(at)− ( 1/2−∆ ) ≥ 0.2T · ∆

2
≥ min

{
T

80
,

L
d
d+1

3200RLip(1, T )
1
d+1

}
.

9.2. Proofs of the lower bounds

Proof of the lower bound in Theorem 17 We show that the lower bound statement
holds for T0 = 23d(1+β) and c = 1

80·2d(β+3) .

Fix T ≥ T0; let h1 = 1
4 and h2 = T

−1
d(β+1) ∈ (0, 1

8 ]. In addition, let f(T, h) = c·T
1

1+β h−dβ =

T
1

1+β h−dβ

80·2d(β+3) .
To finish the proof, we claim that for any algorithm Alg, one of the following must hold:

1. There exists some instance λ ∈ Λ, under which Regret(T,Πh1) ≥ f(T, h1) = 4dβT
1

1+β

80·2d(β+3) ;

2. There exists some instance λ ∈ Λ, under which Regret(T,Πh2) ≥ f(T, h2) = T
80·2d(β+3) .

Indeed, suppose Alg is such that for all instances λ, Regret(T,Πh1) < f(T, h1). By our

choice of h2 and T ≥ T0, f(T, h1) ≤
√
T

20·(8h2)d
. Provided that this is satisfied, Lemma 32 with

RS(1/4, T ) = f(T, h1) gives that there is an instance λ′, under which

Regret(T,ΠK2) ≥min

{
T

40 · 2d
,

1

400 · 8d
T

β
1+β h−d2

}
= min

{
1

40 · 2d
,

1

5 · 2dβ

}
T > f(T, h2),

proving the above claim.

Proof of the lower bound in Theorem 21 We show that the lower bound statement
holds for T0 = 1 and c = 1

3200 .
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Fix T ≥ T0; We take L1 = 1 and L2 = T
1+dβ

d(1+(d+1)β) . In addition, we let g(T, L) =

c · T
1+dβ

1+(d+1)βL
dβ

1+dβ = 1
3200 · T

1+dβ
1+(d+1)βL

dβ
1+dβ .

To finish the proof, we claim that for any algorithm Alg, one of the following must hold:

1. There exists some instance λ ∈ Λ(L1), under which Regret(T,Π) ≥ g(T, L1) =
1

3200 · T
1+dβ

1+(d+1)β ;

2. There exists some instance λ ∈ Λ(L2), under which Regret(T,Π) ≥ g(T, L2) = T
3200 .

Indeed, suppose Alg is such that for all instances λ ∈ Λ(L1), Regret(T,Π) < g(T, L1).
By our choice of L2 and T ≥ T0, g(T, L1) ≤ 1

40L
d
2T . Provided this is satisfied, Lemma 34

with RLip(1, T ) = g(T, L1) gives that there is an instance λ′ ∈ Λ(L2), under which

Regret(T,Π) ≥min

{
T

80
,

1

3200
d
d+1

· T 1− 1+dβ
(d+1)(1+(d+1)β)L

d
d+1

2

}
>

1

3200
T = g(T, L2),

proving the above claim.

10. Calculations for the examples

Calculation for Example 3. Straightforward computations reveal that (1) λh(a?) = h/2,
(2) ∀a ∈ [a? − h, a? + h] λh(a) ≤ λh(a?) + h/2, and (3) ∀a /∈ [a? − h, a? + h], λh(a) ≥
λh(a?) + | a−a? |/2. In particular, the third item follows from a Taylor expansion, since
∂λh(a)/∂a ≥ 1/2 for a ≥ a? + h (with a similar property for a ≤ a? − h).

Therefore, if ε ≤ h/2, we have Πh(ε) ⊂ Πh(h/2) ⊂ [a? − h, a? + h], which implies that
Mh(ε, h) ≤ 1. On the other hand, if ε > h/2, we have Πh(ε) ⊂ [a? − 2ε, a? + 2ε], implying
that Mh(ε, h) ≤ 4ε/h. Together we have that Mh(ε, h) ≤ O(max{1, ε/h}), and plugging into
the definition of θh(·) concludes the proof.

Calculation for Example 4. First, for all x and all w in Sd−1, E[`(πw?(x))|x] = f(0) ≤
f(〈w, x〉 − 〈w?, x〉) = E[`(πw(x))|x], which implies that πw? is the optimal policy. Next,
consider the expected regret of any policy πw in Π. Using the properties of f , we have

E[`(πw(x))]− E[`(πw?(x))] ≥ L0 E[| 〈w?, x〉 − 〈w, x〉 |]
= L0‖w? − w‖2 E[|x1|] ≥ Ω(L0/

√
d) · ‖w? − w‖2.

The equality follows from spherical symmetry, while the last inequality follows since the

probability density function of x1 is p(x1) =
(1−x21)

d−3
2

B( d−1
2
, 1
2

)
and thus P(|x1| ≥ 1√

d
) = Ω(1).

This latter inequality implies that, for any πw ∈ Π0,Lε, we have ‖w − w? ‖2 ≤ O(L/L0 ·√
dε). Therefore, for any x we have

Π0,Lε(x) ⊂
[
〈w?, x〉 −O(L/L0 ·

√
dε), 〈w?, x〉+O(L/L0 ·

√
dε)
]
.

This implies that M0(Lε, ε) = Ex∼DX [Nε(Π0,Lε(x)) ] ≤ O(L/L0 ·
√
d). This immediately

implies that ψL(ε) = O( L
L0ε
·
√
d). Instantiating Theorem 18 yields the regret bound.
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11. Conclusions

The main conceptual contribution of our paper is a new smoothing-based notion of regret that
admits guarantees with no assumptions on the loss. Using this, we design new algorithms
providing instance-dependent guarantees with optimal worst-case performance and Pareto-
optimal adaptivity. This also yields new guarantees for non-contextual and Lipschitz bandits.

While our algorithms are computationally efficient in the low-dimensional non-contextual
setting, they are not tractable in general since they require enumerating the policy set.
Hence, the key open question is: Are there algorithms with similar statistical performance
and fast running time?
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