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Abstract

The computation of the distance to the true distribution is a key component of most state-of-
the-art generative models. Inspired by prior works on the Sliced-Wasserstein Auto-Encoders
(SWAE) and the Wasserstein Auto-Encoders with MMD-based penalty (WAE-MMD), we
propose a new generative model — a Cramer-Wold Auto-Encoder (CWAE). A fundamental
component of CWAE is the characteristic kernel, the construction of which is one of the goals
of this paper, from here on referred to as the Cramer-Wold kernel. Its main distinguishing
feature is that it has a closed-form of the kernel product of radial Gaussians. Consequently,
CWAE model has a closed-form for the distance between the posterior and the normal prior,
which simplifies the optimization procedure by removing the need to sample in order to
compute the loss function. At the same time, CWAE performance often improves upon
WAE-MMD and SWAE on standard benchmarks.

Keywords: Auto-Encoder, Generative model, Wasserstein Auto-Encoder, Cramer-Wold
Theorem, Deep neural network

1. Introduction

One of the crucial aspects in the construction of generative models is devising efficient methods
for computing and minimizing the distance to the true data distribution. In Variational
Auto-Encoder (VAE), the distance to the true distribution is measured using KL divergence
under the latent variable model and minimized using variational inference. An improvement
was brought by the introduction of the Wasserstein metric (Tolstikhin et al., 2017) in the
construction of WAE-GAN and WAE-MMD models, which relaxed the need for variational
methods. WAE-GAN requires a separate optimization problem to be solved to approximate
the used divergence measure, while in WAE-MMD the discriminator has the closed-form
obtained from a characteristic kernel!.

Most recently Kolouri et al. (2018) introduced the Sliced-Wasserstein Auto-Encoder
(SWAE), which simplifies distance computation even further. The main innovation of SWAE

1. Kernel is characteristic if it is injective on distributions, see e.g. Muandet et al. (2017).
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Figure 1: Cramer-Wold distance between two sets is obtained as the mean squared Lo
distance of their smoothed projections on all one-dimensional lines. Figure shows
an exemplary (one of many) projection.

was the introduction of the Sliced-Wasserstein distance, a fast to estimate metric for comparing
two distributions, based on the mean Wasserstein distance of one-dimensional projections.
However, even in SWAE there is no closed-form analytic formula that would enable computing
the distance of the sample from the standard normal distribution. Consequently, in SWAE
two types of sampling are needed: (i) sampling from the prior distribution and (ii) sampling
from one-dimensional projections.

The main contribution of this paper is the introduction of the Cramer-Wold distance
between distributions, which is based on MMD distance and a new Cramer-Wold kernel.
Cramer-Wold kernel is characteristic, i.e. the embedding is injective, and admits a closed-form
in a certain case (see Eq. (12)). Thanks to the closed-form formula, it can be efficiently
computed. We use it to construct the Cramer-World Auto-Encoder (CWAE) model, in which
the cost function has a closed analytic formula. We demonstrate on standard benchmarks
that CWAE is faster to optimise, more stable (no sampling is needed during the learning
process) and retains, or even improves, performance compared to both WAE-MMD and
SWAE.

The Cramer-Wold kernel can be used as a measure between a sample and a mixture of
radial Gaussian distributions. Smieja et al. (2019) present a semi-supervised generative model
SeGMA, which is able to learn a joint probability distribution of data and their classes. It is
implemented in a typical auto-encoder framework but uses a mixture of Gaussians as a target
distribution in the latent space. In such a situation, the classical Wasserstein kernel is difficult
to use since it requires sampling from both (target and real) distributions. SeGMA works
efficiently due to the use of Cramer-Wold distance as a maximum mean discrepancy penalty,
which yields a closed-form expression for a mixture of spherical Gaussian components, and
thus, eliminates the need for sampling.

This paper is arranged as follows. In sections 3 and 4 we introduce and theoretically
analyze the Cramer-Wold distance, with the formal definition of a Cramer-Wold kernel in
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Section 5. Readers interested mainly in the construction of CWAE may proceed directly to
Section 6. Section 7 contains experiments. Finally, we conclude in Section 9.

2. Motivation and related work

One of the ways to look at modern generative models (see, e.g. Tolstikhin et al. (2017))
is to note that each of them tends to minimise a certain divergence measure between the
true, but unknown, data distribution Px and the model distribution Pp that is defined
as a possibly random transportation via the given map D of a fixed distribution Pz, acting
on the latent space Z, into X. The most well known are the Kullback-Leibler (KL) and
Jensen-Shannon (JS) divergences, which refer to the Variational Auto-Encoder VAE (Kingma
et al., 2014) and the Generative Adversarial Network GAN (Goodfellow et al., 2014) models,
respectively (although in GAN a saddle-point objective occurs and hence adversarial training
is required). However, these measures are often hard to use in a learning process due to some
computational problems, including complexity, vanishing gradient, etc.

In recent years new approaches, involving optimal transport (OT) setting (Villani, 2008),
appeared in generative modeling. They were based on the use of the Wasserstein or, generally,
optimal transport, distance as a measure of divergence between distributions. Beside the
classical Wasserstein GAN (Arjovsky et al., 2017) model, we can mention here the Wasserstein
Auto-Encoder WAE (Tolstikhin et al., 2017) as well as the Sliced-Wasserstein Auto-Encoder
SWAE (Kolouri et al., 2018) as models, which were the inspiration and reference points for
our work. In the following two paragraphs we briefly recall the main concepts behind these
ideas.

Wasserstein Auto-Encoder (WAE) Tolstikhin et al. (2017) introduce an auto-encoder
based generative model with deterministic decoder D and a, possibly random, encoder &,
which is based on minimizing the Wasserstein distance dy (Pyx, Pp) between the data and
the model distributions. Recall that dy(u,v) is given by the following formula

B(uv) = inf / o1 — wall3 dy (. 22),
yET (1)

where I'(u, v) is the set of joint probability measures having u and v as marginals. By Theo-
rem 1 of Tolstikhin et al. (2017) this leads to the WAE objective function expressed by a sum
consisting of two terms: (i) an expected cost of a difference between the data distribution Px
and another distribution on the data space that is obtained by a self-transportation of Px via,
appropriately understood, superposition of £ and D, and (ii) a tuned divergence dz between
a prior distribution Pz and another distribution on Z that is obtained by a transportation of
Px into Z via €. In consequence, assuming a deterministic encoder, the authors introduce two
generative models, depending on a specific divergence measure used: WAE-GAN involving
the JS-divergence as dz (learned by the adversarial training), and WAE-MMD, using as dz
the maximum mean discrepancy M M Dj, with a suitably established characteristic kernel
function k.

Sliced-Wasserstein Auto-Encoder (SWAE)  Another contribution that involves opti-
mal transport setting in generative modeling is the work of Kolouri et al. (2018). It differs
from WAE in the choice of the divergence measure dz. Based on a slicing method and
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the fact that the Wasserstein distance between one-dimensional distributions can be easily
expressed as

2 _ R 12
@y (s ) = / (B (1) — P ()2 dt.
0

where P’ 1'and P;! denote the quantile functions of y and v, respectively, the authors
use the mean value of d%,[, as dz, taken over all one-dimensional projections of appropriate
distributions on the latent space Z (see the next section for more details). This idea directly
motivated our Cramer-Wold distance.

3. Cramer-Wold distance

Motivated by the prevalent use of normal distribution as the prior in modern generative
models, we investigate whether it is possible to simplify and speed up the optimization of
such models. As the first step towards this, we introduce Cramer-Wold distance, which has
a simple analytical formula for computing the normality of high-dimensional samples. On
a high level, our proposed approach uses the traditional Lo distance of kernel-based density
estimation, computed across multiple single-dimensional projections of the true data and the
output distribution of the model. We base our construction on the following two popular
tricks of the trade: sliced based decomposition and smoothing distributions.

Sliced-based decomposition of a distribution Following Kolouri et al. (2018); Desh-
pande et al. (2018), the initial concept is to leverage the Cramer—Wold Theorem (Cramér and
Wold, 1936) and the Radon Transform (Deans, 1983) to reduce computing distance between
two distributions to one-dimensional calculations. For v in the unit sphere Sp C RP, the
projection of a set X C R” onto the space spanned by v is given by v? X, whereas the pro-
jection of N(m,al) is N(vT'm,a). The Cramer-Wold theorem states that two multivariate
distributions can be uniquely identified by all their one-dimensional projections. Hence, to
obtain the key component of SWAE model, i.e. the sliced-Wasserstein distance between two
samples X,Y € RP, we compute the mean Wasserstein distance between all one-dimensional
projections?:

2 (X,Y) = / &2, (T X, 7Y ) dop (v), (1)
Sp

where Sp denotes the unit sphere in RP and op is the normalised surface measure on Sp.
This approach is effective since the one-dimensional Wasserstein distance between samples
has the closed-form; and therefore, to estimate Eq. (1), one has to sample only from all
one-dimensional projections.

Smoothing distributions Using the slice-based decomposition requires defining a distance
measure between two sets of samples in a one-dimensional space. To this end, we use an
approach commonly applied in statistics to compare samples or distributions, which is to
first smoothen (sample) distribution with a Gaussian kernel. For a sample R = (r;);=1., C R

2. Observe that in space H with the scalar product (-, ), each one-dimensional projection is given by a scalar
product x — (z,v), for some v € H. Consequently, this projection is proportional to z — (x, Hz—”>, which
is a 1D-projection with respect to the element from the unit sphere.
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by its smoothing with Gaussian kernel N(0,~) we understand
1
Sm’Y(R) = ﬁ ZN(Ti77)7
(2

where by N(m, S) we denote the one-dimensional normal density with mean m and variance S.
This produces a distribution with regular density and is commonly used in kernel density
estimation.

If R comes from the normal distribution with standard deviation close to one, the
asymptotically optimal choice of v = (4/31)*/® is given by the Silverman’s rule of thumb
(see Silverman (1986)). Theoretically, one can choose an arbitrary fixed . However, we
use an approach similar to the Bowman-Foster normality test (Bowman and Foster, 1993)3.
For a continuous density f, its smoothing sm, (f) is given by the convolution with N(0,~),
and in the special case of Gaussians we have sm, (N (m,S)) = N(m, S + 7).

Cramer-Wold distance We are now ready to introduce the Cramer-Wold distance. For
the convenience of the reader, we formulate the distance between samples first, and then
between sample and a distribution. For a formal definition of distance between distribution
see paragraph “Generalised Cramer-Wold kernel” in Section 6. In a nutshell, we propose to
compute the squared distance between two samples by considering the mean squared Lo dis-
tance between their smoothed projections over all one-dimensional subspaces. By the squared
L, distance between functions f, g : R — R we refer to || f — g||3 = [|f(x) — g(z)*dz. A key
feature of this distance is that it permits a closed-form in the case of the normal distribution.

The following algorithm fully defines the Cramer-Wold distance between two samples
X = (%i)i=1.n, Y = (Yj)j=1.k C RP (for illustration of Steps 1 and 2 see Figure 1):

1. given v in the unit sphere S(0,1) C RP, consider all the projections v'' X = (v7'z;)i=1..n
and vTY = (vaj)j:L,k ,

2. compute the squared Ly distance of the densities sm, (v? X) and sm, (vT X):

lsm (0" X) = sm,, (v V)3,

3. to obtain squared Cramer-Wold distance average, integrate the above formula over all
possible v € Sp.

The key theoretical outcome of this paper is that the computation of the Cramer-Wold
distance can be simplified to a closed-form solution. Consequently, to compute the distance
of two samples there is no need to find the optimal transport like in WAE, nor is it necessary
to sample over the projections as in SWAE.

Theorem 1 Let X = ()i=1.n, ¥ = (yj)j=1.n C RP be givent. We formally define
the squared Cramer-Wold distance with formula

2, (X,Y) = / Jsma (v X) — sty (T V)| dorp (v). 2)
Sp

3. The choice of the optimal value of vy parameter is still a challenging problem. In our paper we use
Silverman’s rule of thumb since it works very well in practical applications. There are other equivalent
rules although other rules also possible.

4. For clarity of presentation we provide here the formula for the case of samples of equal size.
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Then

2 _ 1
dcw(X’ Y) T 2n?2/my

7N

D e W e e i QZ¢ (leiul?y ) )

i Jj'

where ¢p(s) = 1Fl(% % —s) and 1 F is the Kummer’s confluent hypergeometric function
(see, e.g., Barnard et al. (1998)). Moreover, ¢p(s) has the following asymptotic formula
valid for D > 20:

¢D( ) ( +2D 3) 1/2' (4)
To prove Theorem 1 we need the following crucial technical proposition.

Proposition 2 Let z € R and v > 0 be given. Then

/N(UTZ ¥)(0)dop(v) = ! oD (’ZP) ) (5)
s ’ V21 2y

Proof By applying an orthonormal change of coordinates, without loss of generality, we
may assume that z = (21,0,...,0), and then v* 2z = z;v; for v = (v1,...,vp). Consequently,
we get

sf N(vT2,7)(0)dop(v f N(z1v1,7)(0) dop(v).

Making use of the formula for slice integration of functions on spheres (Axler et al., 1992,
Corollary A.6) we get:

1
[ fdop :V{}—; [ =2)P=32. [ f(x,/1—22¢)dop-1(C) da,
Sp 1

- Sp-1

where Vi denotes the surface volume of sphere S C R¥. Applying the above equality to
function f(v1,...,vp) = N(z1v1,7)(0) and s = 22/(2v) = ||z]|?/(27), we consequently get
that the LHS of (5) simplifies to

Vp_ _
6D1 \/2177/[_11(1 — xz)(D 3)/2 exp(—sx?) dx,

g

2.7

which completes the proof since Vi = o and

w‘x

)

(2=t
f,ll eXp(—gg;?)(l — x2)(D—3)/2 dr = \/7? (F(é)) B (%’ % _S)

Proof [Proof of Theorem 1| Directly from the definition of smoothing we obtain that

B2,(X,Y) =[5 [|E S N 2i,7) — £ Y0, N(Ty;,7)|; dop(v). (6)

Applying now the one-dimensional formula for the Lo scalar product of two Gaussians:

(N(r1,71), N(r2,72))2 = N(r1 — r2,71 + 72)(0)
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and the equality || f — gl3 = (f, f)2 + (9, 9)2 — 2(f, 9)2 (where (f, )2 = [ f(z)g(x)dx), we
simplify the squared Lo norm in the integral of RHS of (6) to

115 N@T2i,7) = L S N @ Ty = (0 N7, ), X N (0 21, 7))o+

N y32), SN 35205 N @ 0 7), SN @ )2 =
J

LS NG (- ). 20)(0) + 22N< Ty — ), 29)(0) — & N (@i — 13), 29)(0)
(%3 i

Applying proposition 2 directly, we obtain formula (3). Proof of the formula for the asymp-
totics of function ¢p is provided in the next section. |

Therefore, to estimate the distance of a given sample X to some prior distribution f, one
can follow the common approach and take the distance between X and a sample from f.
As the main theoretical result of the paper we consider the following theorem, which states
that in the case of standard Gaussian multivariate prior, we can completely reduce the need
for sampling (we omit the proof since it is similar to that of Theorem 1).

Theorem 3 Let X = (2;)i=1.n» C RP be a given sample. We formally define

EXNO.0) = [ o (07X) = s (N(0.1) o (v).
Then

2

2 (X, N(0,1)) = gt (L 3, s o (gl )+¢’f+—7—¢%2i¢n(!ﬁj))-

See Figure 2 for a comparison between Cramer-Wold, Wasserstein MMD, and the Sliced-
Wasserstein distances with different data dimensions and sample sizes. In the experiment, we
use two samples from Gaussian distribution N([0,...,0]7,I) and N([«,0,...,0]”,I), where
we change the parameter « in range [0, 6]. Note that the Cramer-Wold distance is the lowest
one irrespective of data dimension and sample size, and does not change much.

4. Computation of ¢p

As it was shown in the previous section, the key element of the Cramer-Wold distance is the
function

op(s) = 1H(3; 5 —s) for s > 0.

Consequently, in this section we focus on the derivation of its basic properties. We provide
its approximate asymptotic formula valid for dimensions D > 20, and then consider the
special case of D = 2 (see Figure 3), where we provide the exact formula.

To do so, let us first recall (see Abramowitz and Stegun (1964, Chapter 13)) that the
Kummer’s confluent hypergeometric function 1/ (denoted also by M) has the following
integral representation

T 1
1B (a,b,z) = (b)/ ezuua—l(l B u)b_“_l du,
—a) Jo
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Figure 2: Comparison between Cramer-Wold, Wasserstein MMD, and Sliced-Wasserstein
distances for different dimensions (from top to bottom for 10, 50,100, 200) and
sample sizes (columns from left to right for 100,200,500, 1000). In the experiment,
we use two samples from Gaussians N ([0, ...,0]7, I) and N([a,0,...,0]T, I), where
the parameter o of the mean shift is changed in range [0, 6].

valid for a,b > 0 such that b > a. Since we consider that latent is at least of dimension
D > 2, it follows that

D 1
QbD(S) _ QD) : / e—suu—1/2(1 _ u)D/2—3/2 du.
2 5) 0
By making a substitution u = 22, du = 2zdz, we consequently get
1
2r'(D/2 —sz? _
¢p(s) = 41“(1/2)1“((17;2)—1/2) /06 (1—a*) P2 da

1
I(D/2 C? o
— r(uz)r((D//z)—m)/ﬁ (1 — 22)P=3)/2 g

—
~
SN—

Proposition 4 For large® D we have
op(s) = (1+ 2575_3)_1/2 for all s > 0. (8)

Proof We have to estimate asymptotics of (7), i.e.

_ F( 2 o s 2\(D—3)/2
s 1—x dz.
¢D() r(L )F(z % f 1€ )

Since for large D and all z € [—1, 1] we have

(1 _ x2)(D—3)/2 —sx? ~ (1 — )(D—S)/2 . (1 _ m2)5 _ (1 _ w2)8+(D_3)/2,

5. In practice we can take D > 20.
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Figure 3: Comparison of ¢p value (red line) with the approximation given by (8) (green line)
in the case of dimensions D = 2,5,20. Observe that for D = 20, the functions
practically coincide.

we get

r%) 1 2\s+(D—3)/2 (%) (s+2-3)
N2l 1—22)" de = : 2 3)
¢p(s) D;l)ﬁ f—l( %) X F(%)ﬁ a I(s+2

To simplify the above, we apply the formula (1) from Tricomi and Erdélyi (1951):

(a—p)la+p-1)
2z +

I'(z+ «)

_ ,a—p
L'(z+p) =20+

O(=17%),

with «, 3 fixed so that a+ 8 = 1 (so only the error term of order O(|z|~2) remains), and get
the following

r((2—3)43 1
PR)/IEh)= Rt ~ (B - 9)? )
_1
Pis+5—p)/Ts+ P~ (s+3-7) "
Summarizing,
(3 -2 4 1/2
¢p(s) = m:(l"‘ D=3 2.
2 74

The above formula is valid for dimensions higher than 20. For lower dimensions we
recommend using iterative direct formulas for ¢p function, which can be obtained using erf
and modified Bessel functions of the first kind Iy and I;. To provide an example we consider
here a special case of D = 2 since it is used in the paper for illustrative reasons in the latent
for the MNIST data-set. As we have the equality (Gradshteyn and Ryzhik, 2015, (8.406.3)
and (9.215.3))

éa(s) = 1A (3, 1,—s) =730 ().

to practically implement ¢o we apply the approximation of Iy from Abramowitz and Stegun
(1964, p. 378) given in the following remark.
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Remark 5 Let s > 0 be arbitrary and let t = s/7.5. Then

e~ 3 (1435156212 +3.08994¢1 4+ 1.2067516 + 0.26597¢5+0.03608¢104-0.00458¢12)
for s €10,7.5],
¢2(8) ~ 2 -1 -9 -3 —4 —5
\/g-(0.398942+0.013286t +0.002253t*—0.001576t~>+40.00916¢t~*—0.020577t
+0.026355t_6—0.016476t_7+0.003924t_8) for s > 7.5.

5. Cramer-Wold kernel

In this section we first formally define the Cramer-Wold metric for arbitrary measures, and
then show that it is given by a characteristic kernel which has a closed-form for spherical
Gaussians. For more information on kernels, and kernel embedding of distributions, we refer
the reader to Muandet et al. (2017).

Let us first introduce the general definition of the Cramer-Wold cw-metric. To do so we
generalise the notion of smoothing for arbitrary measures p with formula

smy (p) = p* N(0,71),

where * denotes the convolution operator for two measures, and we identify the normal
density N(0,~I) with the measure it introduces. It is well known that the resulting measure
has the density given by

- / N7 T) () duly).

Clearly
smy (N (0,ad)) = N(0, (o +v)I)).

Moreover, by applying the characteristic function one obtains that if the smoothing of two
measures coincide, then the measures coincide too

smy (p) = smy () = p=ur. (10)

We also need to define the transport of the density by the projection  — vz, where v
is chosen from the unit sphere Sp. The definition is formulated so that if X is a random
vector with density f, then f, is the density of the random vector X, := v7 X. Then

)= [ HEda ),

where dp_1 denotes the (D — 1)-dimensional Lebesgue measure. In general, if 1 is a measure
on RP, then s, is the measure defined on R by the formula

po(A) = p({z : 0"z € A}).

Since, if a random vector X has a density N(a,~I), and then the random variable X,
has the density N(v”a,a), we may directly conclude that

N(a,7I)y, = N(wla,~).

10
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Test interpolation Test reconstruction Random sample

WAE-MMD

Figure 4: Results of VAE, WAE-MMD, SWAE, and CWAE models trained on CELEB A
data-set using the WAE architecture from Tolstikhin et al. (2017). In “test
reconstructions” odd rows correspond to the real test points.

It is also worth noting that due to the fact that the projection of a Gaussian is a Gaussian,
the smoothing and projection operators commute, i.e.

sty (fty) = (S ).

11
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Given fixed v > 0, the two above notions allow us to formally define the cw-distance of
two measures p and v with formula

Bulr) = [ s ) = sy ()] o 0). (1)
D
Observe that this implies that cw-distance is given by the kernel function
k) = [ G )sms (4) ,d (0)
D

Let us now prove that the function d.y, defined by equation (11) is a metric, i.e. the kernel
is characteristic).

Theorem 6 Function dey 1S a metric.

Proof Since dcy comes from a scalar product, we only need to show that if the distance of
two measures is zero, the measures coincide.
So let u, v be given measures such that dey (1, ) = 0. This implies that

sy (py) = smy ().

By (10) this implies that p, = v,. Since this holds for all v € Sp, by the Cramer-Wold
Theorem we obtain that u = v. |

We can summarize the above by saying that the Cramer-Wold kernel is a characteristic
kernel which, by the definition and (5), has a closed-form of a scalar product of two radial
Gaussians given by

_ 1 llz—y? >
(N(,0l), Ny, SD))ew = =t (i) - (12)
Remark 7 Observe, that except for the Gaussian kernel, it is the only kernel which has the
closed—form for the spherical Gaussians. It is important since the RBF (Gaussian) kernels
cannot be successfully applied in auto-encoder based generative models (we discuss it in the
next section,). The reason is that the derivative of Gaussian vanishes quickly with distance;

and therefore, it leads to difficulties in training as shown in (Tolstikhin et al., 2017, Section
4, WAE-GAN and WAE-MMD specifics).

6. Cramer-Wold Auto-Encoder (CWAE)

In this section we construct an auto-encoder based on the Cramer-Wold distance. We start
by introducing notation.

Auto-encoder. Let X = (2;)i=1.n C RY be a given data-set. The basic aim of AE is to
transport the data to a typically, but not necessarily, lower dimensional latent space Z = RP
while minimizing the reconstruction error. Hence, we search for an encoder £ : R® — Z and
a decoder D : Z — R" functions that minimise the mean squared error MSE(X; &, D) on
X and its reconstructions D(Ex;).

12
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Auto-encoder based generative model. CWAE, similarly to WAE, is a an auto-encoder
model with modified cost function which forces the model to be generative, i.e. ensures that
the data transported to the latent space comes from the prior distribution (typically Gaussian).
This statement is formalized by the following important remark, see also Tolstikhin et al.
(2017).

S 16 o
7]
5 | £ 06
g™ o
2 || o 04
7 w
12 | <
A S 02
@ 10 . 00 |\
200 model
—— CWAE
£ 150 WAE-MMD (CW kernel)
A
]
T 100
50
0 100 200 300 400 500
Epochs

Figure 5: Comparison between CWAE and WAE-MMD with CW kernel on Fashion-MNIST
data-set.

Remark 8 Let X be an N-dimensional random vector, from which our data-set was drawn,
and let Y be a random vector with distribution f on latent Z.

Suppose that we have constructed functions £ : RN — Z and D : Z — RN (representing
the encoder and decoder pair) such that®

1. D(Ex) =z for x € image(X),
2. random vector EX has the distribution f.
Then by the point 1 we obtain that D(EX) = X, therefore

DY has the same distribution as D(EX) = X.

This means that to produce samples from X we can instead produce samples from Y and map

them by the decoder D.

Since an estimator of the image of the random vector X is given by its sample X, we conclude
that a generative model is correct if it has a small reconstruction error and resembles the
prior distribution in the latent. Thus, to construct a generative auto-encoder model (with
Gaussian prior), we add to its cost function a measure of the distance of a given sample from
a normal distribution.

6. We recall that for function (or in particular random vector) X : Q — RP| by image(X) we denote the set
consisting of all possible values X can attain, i.e. {X(w):w € Q}.

13
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CWAE cost function. Once the crucial ingredient of CWAE is ready, we can describe its
cost function. To ensure that the data transported to latent Z are distributed according to
standard normal density distribution, we can add the Cramer-Wold distance d2, (X, N (0, I))
from standard multivariate normal density to the cost function:

cost(X;E,D) = MSE(X;&,D) + M2, (EX,N(0,1))

CW distance MMD with IMQ kernel
o4
04
—2
-1
4 |
—2
_6
-3 -8
— CW distance —— MMD with IMQ kernel
log(Cw distance) ~10 log(MMD with IMQ kernel)
—4 |
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100

Figure 6: Synthetic data in the latent and the distance from prior cost: the CWAE model
on the left, WAE-MMD on the right. On the horizontal axis there is the share of
z ~ N(0,1) in uniform data. The blue curves represent a standard model (without
logarithm), while the orange denote the one with a logarithm used.

Since the use of special functions involved in the formula for Cramer-Wold distance might
be cumbersome, in all experiments (except the illustrative 2D case) we apply the asymptotic
form (8) of function ¢p:

2 112
2V (X) & g Xy Om + 55750) 72+ (L) 2 = 2 il + 5+ 5505) ™%

where 7, = ( %)2/ ® is chosen using Silverman’s rule of thumb (Silverman, 1986).

Such a solution can be understood as a use of WAE-MMD with a Cramer-Wold kernel.
In CWAE model, we use a logarithm function:

cost(X;&,D) = MSE(X;E,D) + Mogd?,(EX,N(0,1)).

CWAE cost differs from the WAE model cost, by the utilisation of a logarithm function. We
observed that using a logarithm to scale the second term increased training speed, as shown
in Figure 5.

During the first few starting iterations it is typical for the errors’ variation to be high.
In case of CWAE, the D, cost is around 10 times larger than the dy cost of WAE. The
logarithm can tone it substantially, increasing the stability of learning, which is not needed
in WAE. The network finds a smoother way to increase the normality of the latent space,
thus speeding up training process.

At the same time it is probable that at the beginning of training, the distribution of
example projections in the latent space is more uniform. Then, with training progression it
tends to become closer to a normal distribution (assuming a normal prior). A synthetic data
experiment showing this phenomenon is given in Figure 6. The logarithmic cost drops-off
much quicker pulling the model towards quicker minimization.

14
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On the other hand, a modification
of WAE-MMD with cost - -+ + d2(-, ")

FID Score comparison

model

(see Eq. (13)) to -+ + logd2(-,-) (in = e
Eq. (14)) results in a steeper and ¥ cwae
more irregular descent. The WAE- %

MMD cost is closer to zero, and may
sometimes be even negative as noted
in Tolstikhin (2018, “...penalty used
in WAE-MMD is not precisely the pop-
ulation MMD, but a sample based U-
statistic. . . if the population MMD is
zero, it necessarily needs to take nega- ® R 9 o a®
tive values from time to time.”). There- Bateh size

fore the log version is not suitable for

the WAE-MMD version, which coin- Figure 7: Comparison between WAE, SWAE and
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cides with experiments. CWAE with respect to batch size. We

The use of Cramer-Wold distance repeated the experiment five times, con-
and a logarithm in cost function al- fidence intervals represent the standard
lows us to construct more stable mod- deviation.

els. More precisely, the cost function is

less sensitive to the changes of training

parameters like batch size and learning rate, see Figure 7. As a consequence, in practical
applications the CWAE model is easier to train.

Comparison with WAE and SWAE models. Finally, let us briefly recapitulate the
differences between the introduced CWAE model, WAE variants (Tolstikhin et al., 2017) and
SWAE (Kolouri et al., 2018).

Firstly, from the theoretical point of view both SWAE and CWAE models use similar
distances dgy and dy, obtained by integration over all 1-dimensional projections (compare
Egs (1) and (2)). On the other hand, SWAE incorporates Wasserstein distances under the
integral, while in CWAE, under the integral, the Ly distances between regularizations are
used. Additionally, the integral in the dgy, formula is estimated with a finite sum, while for
dew We obtain analytically quite accurate approximate formula.

From a computational point of view, it is important that in contrast to WAE-MMD and
SWAE, the CWAE model does not require sampling from normal distribution (as it is the
case in WAE-MMD) or over slices (as in SWAE) to evaluate its cost function. In this sense,
CWAE uses a closed formula cost function. In contrast to WAE-GAN, our objective does not
require a separately trained neural network to approximate the optimal transport function,
thus avoiding pitfalls of adversarial training.

Comparison with WAE-MMD models. We now compare the proposed CWAE model
to WAE-MMD. In particular, we show that CWAE can be seen as a combination of the
sliced-approach with the MMD-based models. The WAE-MMD model uses approximations,
while CWAE uses a closed-form, which has an impact on training. It results in a more
leveled drop of distance weight, with even negative values in case of a WAE-MMD estimator,
see Figure 6.

15



KNOP SPUREK TABOR PODOLAK MAZUR JASTRZEBSKI

Since both WAE and CWAE use kernels to discriminate between sample and normal
density distribution to compare the models we first describe the WAE model. WAE cost
function for a given characteristic kernel k and sample X = (z;)i=1., € R” (in the D-
dimensional latent) is given by

WAE cost = MSE + \-di(X,Y), (13)

where Y = (y;)i=1. is a sample from the standard normal density N(0,I), and d2(X,Y)
denotes the kernel-based distance between the probability distributions representing X and
Y, that is %Zl 6z, and 1 3.6, where &, denotes the atom Dirac measure at z € RP. The
inverse multi-quadratic kernel IMQ k is chosen as default

C

Lk -
@9 = T e =

where in experiments in Tolstikhin et al. (2017) a value C = 2Do? was used, while o
is a hyper-parameter denoting the standard deviation of the normal density distribution.
Therefore, the model has hyper-parameters A and o, which were chosen to be A = 10,02 = 1
in MNIST, A = 100,02 = 2 in CELEB A.

On the other hand, the CWAE cost function for a sample X = (z;)i=1., C R (in the
D-dimensional latent) is given by

CWAE cost = MSE + Mogd?,(X,N(0,1)), (14)

where the distance between the sample and the standard normal distribution is taken with
respect to the Cramer-Wold kernel with a regularizing hyper-parameter ~, given by the
Silverman’s rule of thumb (the motivation for such a choice of hyper-parameters is explained
in Section 3).

We stress the following important differences

e Due to the properties of the Cramer-Wold kernel, we are able to substitute the sample
estimation of di (X, N(0,1)) given in WAE-MMD by d2,(X,Y) by its exact formula.

e CWAE, as compared to WAE, is less sensitive to the choice of parameters:

1. The choice of regularization hyper-parameter is given by the Silverman’s rule
of thumb and depends on the sample size (contrary to WAE-MMD, where the
hyper-parameters are chosen by hand, and in general do not depend on the sample
size).

2. In our preliminary experiments, we have observed that frequently (like in the
case of log-likelihood) taking the logarithm of the non-negative factors of the cost
function, which we aim to minimise to zero, improves the learning. Motivated by
the above and the CWAE cost function analysis, the CWAE cost uses logarithm
of the Cramer-Wold distance to balance the MSE and the divergence terms.
It turned out that in most cases it is enough to set in Eq. (14) the parameter
A = 1. Furthermore, we show (see Figure 7) that CWAE is less sensitive in respect
to batch size. For every batch size and model we performed a grid search over
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A € {1,10,100} and learning rate values in {0.01,0.001,0.0001}. For every model,
we selected a configuration with the lowest FID score and repeated the experiment
five times. As we can see, CWAE seems to be insensitive to this parameter.

Summarizing, the CWAE model, contrary to WAE-MMD, is less sensitive to the choice
of parameters. Moreover, since we do not have the noise in the learning process given
by the random choice of the sample Y from N (0, 1), the learning should be more stable.
As a consequence, CWAE generally learns faster than WAE-MMD, and has smaller standard
deviation of the cost-function during the learning process. Detailed results of the experiments
for CELEB A data-set are presented in Figure 8. Moreover, for better comparison, we
verified how the learning process looks like in the case of original WAE-MMD architecture
form (Tolstikhin et al., 2017), see Figure 8.

Generalised Cramer-Wold kernel. In this paragraph, we show that asymptotically,
with respect to dimension D, Cauchy kernel used in WAE-MMD can in fact be seen as the
sliced kernel. We use two-dimensional subspaces as slices. To do so we need the probability
measure on d-dimensional linear subspaces of R”, see Mattila (1999). One can do it either
directly with the definition of a Grassmanian, or describe it with the orthonormal basis for
integration over orthonormal matrices (Aubert and Lam, 2003; Braun, 2006).

Now we define the d-dimensional sliced Cramer-Wold kernel by the formula

ha(uov) = / (5113 (110), 810 () 1370, p (1),
G(d,D)

where 74 p denotes the respective Radon probability measure on G(d, D). Equivalently, we
can integrate over orthonormal sequences in R” of length d:

Oa(RP) = {(v1,...,v4) € RP)L: |jvy]| = 1,v; L vj}.

The normalised, invariant with respect to orthonormal transformations, measure on O, we
denote with 6. Observe that for d = 1 we obtain normalised integration over the sphere.
Then we obtain that kg can be equivalently defined as

balgev) = [ s 0. sm () ad(s)

Let us first observe that for Gaussian densities the formula for k; can be slightly simplified
ka(N(z,al), Ny, B1)= [o, N (@ =), (0 + 5+ 27)12) (0)dba(v)
d
— de Hl N(viT(a: —y),a+ B+ 27)(0)d0;(v).

i=
Now if we define

dL(s,h) = [ N(@Tser, hly)(0)dby(v),
Oq4

where e; € R is the first unit base vector, we obtain that the kernel-product reduces to
computation of the scalar function ®p

ka(N(z, o), N(y, BI)) = @4 (|lz — yll, o0+ B+ 29).
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The crucial observation needed to proceed further is that the measure space (Og(R”),6,)
can be approximated by (RP N(0,1/D))? This follows from the fact, that if vy,..., vy
are drawn from the density N(0,1/D), then for sufficiently large D we have |lv;|| ~ 1 and
(vi,v5) = 0 for i # j.

Theorem 9 We have
®% (s, h) = (2m)"Y2 . (h 4 s? /D)2

Proof By the observation stated before the theorem, we have

®d(s,h) = de fl[l N (vl'ser, h)(0)dO4(v) Rﬁ( f) ‘]gl[l N (v}'seq, h)(0)N(0, é)(vl)dvl .dvg
1= RD)d 1=

RfD N (v!'ser, h)(0)N(0, %)(vi)dvi.

d
1=

1

It thus suffices to compute each component of the above formula. To do so, we denote by N
the k-dimensional normal density, and get

Jap Ni(s(v,e1),h)(0) - Np (0, 1) (v)dv =

= [75 N1(0, 1) (st )ND(?(O71;61 Jep-1 Np—1(0, 51)(w)dw dt

00 Np(0,=1I)(te
= =, NﬁOﬁ)(s)%dt

= % g P (ot - Y2 exp(—3 DA 2l

27r
V27T w/h+32/D

which yields the assertion of the theorem. |

As a direct consequence, we obtain the following asymptotic formula (with the dimension
D large) of the generalised Cramer-Wold kernel of two spherical Gaussians:

ka(N(z.al), N(y, B1)) = (2m)~% - (a+ B+ 27 + [lo — y||?/ D)=,

Observe, that for d = 2 we obtain the standard inverse multiquadratic kernel.

7. Experiments

In this section we empirically validate the proposed CWAE” model on standard benchmarks
for generative models CELEB A, CIFAR-10, MNIST, and FashionMNIST. We compare
the proposed CWAE model with WAE-MMD (Tolstikhin et al., 2017) and SWAE (Kolouri
et al., 2018). As we shall see, our results match, or even exceed, those of WAE-MMD
and SWAE, while using a closed-form cost function (see previous sections for a more detailed
discussion). The rest of this section is structured as follows. In Subsection 7.2 we report the

7. The code is available at https://github.com/gmum/cwae.
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results of the standard qualitative tests, as well as visual investigations of the latent space.
In Subsection 7.3 we will turn our attention to quantitative tests using Fréchet Inception
Distance and other metrics (Heusel et al., 2017). In Subsection 8 we provide a proof of concept
for an application of the Cramer-Wold distance in the framework introduced by Deshpande
et al. (2018).

7.1. Experimentation setup

In the experiment we use two basic architecture types. Experiments on MNIST and Fashion-
MNIST use a feed-forward network for both encoder and decoder, and an 8 neuron latent
layer, all using ReLLU activations. For CIFAR-10, and CELEB A data-sets we use convolution-
deconvolution architectures. Please refer to Section 7.5 for full details.

Table 1: Comparison of different architectures on the MNIST, Fashion-MNIST, CIFAR-10
and CELEB A data-sets. All models outputs except AE are similarly close to the
normal distribution. CWAE achieves the best value of FID score (lower is better).
All hyper-parameters were found using a grid search (see section 7.5).

Data-set Method Learning A Skewness Kurtosis Rec. FID
rate (normalised) error score

MNIST AE 0.001 - 1197.24 878.07 11.19 52.74
VAE 0.001 - 0.43 0.77  18.79 40.47

SWAE 0.001 1.0 6.01 10.72  10.99 29.76

WAE-MMD  0.0005 1.0 11.70 8.34 11.14 27.65

CWAE 0.001 1.0 12.21 35.88 11.25 23.63

FASHION AE 0.001 - 140.21 85.58 9.87 81.98
MNIST VAE 0.001 - 0.20 4.86 15.41 64.98
SWAE 0.001 100.0 1.15 18.14 10.56 54.48

WAE-MMD  0.001 100.0 2.82 4.33  10.01 58.79

CWAE 0.001 10.0 5.11 65.96 10.36 49.95

CIFARI0O AE 0.001 - 25x10° 1.7 x 104 24.67  269.09
VAE 0.001 - 35.81 3.67  63.77 172.39

SWAE 0.001 1.0 917.32 121.17 2542 14191

WAE-MMD  0.001 1.0 1105.73 2097.14 25.04  129.37

CWAE 0.001 1.0 176.60 1796.66 25.93 120.02

CELEB A AE 0.001 - 4.6 x10° 2.6 x 108 86.41  353.50
VAE 0.001 - 43.72 171.66 110.87 60.85

SWAE 0.0001 100.0 141.17 222.02 85.97 53.85

WAE-MMD  0.0005 100.0 162.67 604.09 86.38 51.51

CWAE 0.0005 5.0 130.08 542.42  86.89  49.69
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Figure 8: CELEB A trained CWAE, WAE, and SWAE models with FID score, kurtosis and
skewness, as well as CW-, WAE-, and SWAE-distances on the original WAE-MMD
architecture from Tolstikhin et al. (2017). All values are the averages from 5
models trained for each architecture. Confidence intervals represent the standard
deviation. Optimum kurtosis is marked with a dashed line.
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7.2. Qualitative tests

The quality of a generative model is typically evaluated by examining generated samples
or by interpolating between samples in the latent space. We present such a comparison
between CWAE with WAE-MMD in Figure 4. We follow the same procedure as in Tolstikhin
et al. (2017). In particular, we use the same base neural architecture for both CWAE and
WAE-MMD. For each model we consider (i) interpolation between two random examples
from the test set (leftmost in Figure 4), (ii) reconstruction of a random example from the
test set (middle column in Figure 4), and finally a sample reconstructed from a random point
sampled from the prior distribution (right column in Figure 4). The experiment shows that
there are no perceptual differences between CWAE and WAE-MMD generative distribution.

In the next experiment we qualitatively assess the normality of the latent space. This
will allow us to ensure that CWAE does not compromise on the normality of its latent
distribution, which is a part of the cost function for all the models except AE. We compare
CWAE? with VAE, WAE and SWAE on the MNIST data using 2-dimensional latent space
and a two-dimensional Gaussian prior distribution. Results are reported in Figure 9. As is
readily visible, the latent distribution of CWAE is as close, or perhaps even closer, to the
normal distribution than that of the other models.

To summarize, both in terms of perceptual quality and satisfying normality objective,
CWAE matches WAE-MMD. The next section will provide more quantitative studies.

Gaussian noise VAE ) WAE ) SWAE ) CWAE

Figure 9: The latent distribution of CWAE is close to the normal distribution. Each subfigure
presents points sampled from two-dimensional latent spaces, VAE, WAE, SWAE,
and CWAE (left to right). All trained on the MNIST data-set.

7.3. Quantitative tests

In order to quantitatively compare CWAE with other models, in the first experiment we
follow the experimental setting and use the same architecture as in Tolstikhin et al. (2017).
In particular, we employ the Fréchet Inception Distance (FID) (Heusel et al., 2017).

In agreement with the qualitative studies, we observe FID of CWAE to be similar or
slightly better than WAE-MMD. We highlight that CWAE on CELEB A achieves 49.69 FID

8. Since (4) is valid for dimensions D > 20, to implement CWAE in 2-dimensional latent space we apply
equality 1F(1/2,1,—s) = e 21 (%) jointly with the approximate formula (Abramowitz and Stegun,
1964, p. 378) for the Bessel function of the first kind Io.
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Table 2: Comparison between classical cost function of WAE, SWAE and a version with
a logarithm (method names with a -LOG suffix).

Data-set Method Learning A Skewness Kurtosis  Rec. FID
rate (normalised)  error score

MNIST SWAE 0.001 1.0 6.01 10.72  10.99 29.76
SWAE-LOG 0.0005 1.0 2.36 12.20 11.42 24.89

WAE 0.0005 1.0 11.70 8.34 11.14 27.65

WAE-LOG  0.001 1.0 18.22 61.04 13.17 36.08

CWAE 0.001 1.0 12.21 35.88 11.25  23.63

FASHION SWAE 0.001 100.0 1.15 18.14 10.56 54.48
MNIST SWAE-LOG 0.001 10.00 11.01 0.88 14.11 55.17
WAE 0.001 100.0 2.82 4.33 10.01 58.79

WAE-LOG  0.005 1.0 53.37 66.01 16.14 99.51

CWAE 0.001 10.0 5.11 65.96 10.36  49.95

CIFAR10 SWAE 0.001 1.0 517.32 121.17 2542  141.91
SWAE-LOG 0.0005 1.0 157.14 234.52 26.25 119.89

WAE 0.001 1.0 1105.73 2097.14 25.04  129.37

WAE-LOG  0.001 1.0 1.1x108 4.9 x10° 28.25 136.25

CWAE 0.001 1.0 176.60 1796.66 25.93  120.02

CELEB A SWAE 0.0001 100.0 141.17 222.02 85.97 53.85
SWAE-LOG 0.0005 10.0 132.54 465.39 85.82 53.46

WAE 0.0005 100.0 162.67 604.09 86.38 51.51

WAE-LOG  0.0001 1.0 514.43 2154.39  82.53 58.10

CWAE 0.0005 5.0 130.08 542.42 86.89  49.69

score compared to 51.51 and 53.85 achieved by WAE-MMD and SWAE, respectively, see
Figure 8 and Table 1.

Next, motivated by Remark 8, we propose a novel method for quantitative assessment
of the models based on their comparison to standard normal distribution in the latent. To
achieve this we decided to use one of the most popular statistical normality tests, i.e. Mardia
tests (Henze, 2002). Mardia’s normality tests are based on verifying whether the skewness
b1 p(-) and kurtosis by p(-) of a sample X = (z;)i=1., C RP

bio(X) =72 Y (x]x)?, and by p(X) = £ [la*
4.k J

are close to that of standard normal density. The expected Mardia’s skewness and kurtosis
for the standard multivariate normal distribution are 0 and D(D + 2), respectively. To enable
easier comparison in experiments we consider also the value of the normalised Mardia’s
kurtosis given by by p(X) — D(D + 2), which equals zero for the standard normal density.

Results are presented in Figure 8 and Table 1. In Figure 8 we report for CELEB A
data-set the value of FID score, Mardia’s skewness and kurtosis during learning process of
WAE, SWAE and CWAE (measured on the validation data-set).
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WAE, SWAE and CWAE models obtain the best reconstruction error, comparable to AE.
VAE model exhibits a slightly worse reconstruction error, but values of kurtosis and skewness
indicating their output are closer to normal distribution. As expected, the output of AE is
far from normal distribution; its kurtosis and skewness grow during learning. This arguably
less standard evaluation, which we hope will find its way to being adapted by the community,
serves as yet another evidence that CWAFE has strong generative capabilities, which at least
match the performance of WAE-MMD. Moreover, we observe that VAE model’s output
distribution is closest to the normal distribution, at the expense of the reconstruction error,
which is reflected by some blurred reconstructions, typically associated with that approach.

At the end of this subsection we compare our method with classical approaches WAE-
MMD and SWAE with modified cost function. More precisely, similarly to CWAE we use
logarithm in cost function in WAE and SWAE, see Table 2.

At it was mentioned, adding logarithm to WAE-MMD does not work, since penalty
used in WAE-MMD is not precisely the population MMD, but a sample-based U-statistic.
In consequence, cost function can be negative from time to time. Therefore, the log version
is not suitable for the WAE-MMD version. On the other hand, logarithm improves learning
process in case of CWAE and SWAE.

7.4. Comparison of the learning speed

We expect our closed-form formula to lead to a speedup in training time. Indeed, we found
that for batch-sizes up to 1024 CWAE is faster (in terms of time needed per batch) than
other models. More precisely, CWAE is approximately 2x faster up to 256 batch-size.

Figure 10 gives a comparison of mean learning time for different most frequently used
batch-sizes. Time spent on processing a batch is smaller for CWAE for a practical range of
batch-sizes [32,512]. For batch-sizes larger than 1024, CWAE is slower due to its quadratic
complexity with respect to the batch-size. However, we note that batch-sizes even larger
than 512 are relatively rarely used in practice for training auto-encoders.

7.5. Architecture

For WAE, SWAE and CWAE models and each data-set we performed a grid search over
parameter A € {1,5,10,100} and learning rate values from {0.01, 0.005, 0.001, 0.0005, 0.0001}.
For VAE and AE models, we examined only different learning rates. All models were trained
on a 128-element mini-batches. For every model, we report results for a configuration that
achieved the lowest value of FID Score.

MNIST /Fashion-MNIST (28 x 28 images): an encoder-decoder feed-forward architecture:

encoder three feed-forward ReLLU layers, 200 neurons each
latent 8-dimensional,

decoder three feed-forward ReLU layers, 200 neurons each.

CIFAR-10 data-set (32 x images with three color layers): a convolution-deconvolution
network
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Figure 10: Comparison of mean batch learning time (times are in log-scale) for different
algorithms in seconds. All for the same architecture introduced in Tolstikhin
et al. (2017) and all requiring a similar number of epochs to train the full model.
The times may differ for computer architectures with more/less memory on a GPU
card (minimal value in our experiments was about 6 x 1072).

encoder
four convolution layers with 2 x 2 filters, the second one with 2 x 2 strides, other
non-strided (3, 32, 32, and 32 channels) with ReLU activation,
128 ReL.U neurons dense layer,

latent 64-dimensional,

decoder

two dense ReLU layers with 128 and 8192 neurons,

two transposed-convolution layers with 2 x 2 filters (32 and 32 channels) and ReLU
activation,

a transposed convolution layer with 3 x 3 filter and 2 x 2 strides (32 channels) and ReLU
activation,

a transposed convolution layer with 2 x 2 filter (3 channels) and sigmoid activation.

CELEB A (with images centered and cropped to 64 x 64 with 3 color layers): in order
to have a direct comparison to WAE-MMD model on CELEB A, an identical architecture
was used as that in Tolstikhin et al. (2017) utilised for the WAE-MMD model (WAE-GAN

architecture is, naturally, different):
encoder

four convolution layers with 5 x 5 filters, each layer was followed by a batch normalization
(consecutively 128, 256, 512, and 1024 channels) and ReLU activation,
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latent 64-dimensional,

decoder

dense 1024 neuron layer,

three transposed-convolution layers with 5 x 5 filters, and each layer followed by a batch
normalization with ReLU activation (consecutively 512, 256, and 128 channels),

transposed-convolution layer with 5 x 5 filter and 3 channels, clipped output value.

The last layer returns the reconstructed image. The results for all the above architectures
are given in Table 1. All networks were trained with the Adam optimiser (Kingma and
Ba, 2014). The hyper-parameters used were learning rate = 0.001, 81 = 0.9, 5o = 0.999,
e = le — 8. MNIST and CIFAR 10 models were trained for 500 epochs, CELEB A for 55.

Similarly to Tolstikhin et al. (2017), models were trained using Adam for 55 epochs, with
the same optimiser parameters.

8. Cramer-Wold Generator (CWG)

To overcome saddle-point problems Deshpande et al. (2018); Li et al. (2017) introduced
an alternative definition that is based on a single objective, which is a measure between
distributions. The model introduced is a generative Sliced Wasserstein Generator (SWG). It
is not strictly a GAN model, since no adversarial training is used, hence a generator name is
used. It uses the Sliced-Wasserstein distance, estimated with a finite sum as in Kolouri et al.
(2018), to express dissimilarity between Px and Pz.

We want to show here than an analogous model which is based on the Cramer-Wold
rather than Wasserstein distance is also possible. Accordingly, we shall call it a Cramer-Wold
Generator (CWG). The requirements of a generator lead to the following cost function®

CWG cost = di(X,D(Z))v

where X = (z)i=1,.n C RY is data sample and D(Z) = (D(2i))i=1,.n. C RY means
a sample from N (0,) mapped into the data space by the decoder.

We implemented CWG model and trained it on MNIST and Fashion MNIST datasets by
using the original SWG architecture from Deshpande et al. (2018). Further investigation
into the CWG model is fully justified by the results of our qualitative and quantitative tests
that compare CWG and SWG models (see Figures 11 and 12).

9. Conclusions

In this paper we present a new kernel based on Cramer-Wold distance which gives way to
a new auto-encoder based generative model CWAE. It matches, and in some cases improves,
results of WAE-MMD, while using a cost function given by a simple closed analytic formula.

9. It should be noticed that in this case to calculate dzy, (by applying Formula (3)) we should use
v = 6(4/3n)¥®, where & denotes the standard deviation from joined X and D(Z) samples. This follows
from the Silverman’s rule. In CWAE model it was reasonable to take & = 1 since we used d%y, on the
latent, where an encoded sample was trained to be standard Gaussian, but now this assumption cannot
be maintained.
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FID Score comparison FID Score comparison

model model
—— SWG (5000 projections) 2 —— SWG (5000 projections)
CWG CWG
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0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
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Figure 11: Comparison between SWG and CWG models with FID score on MNIST (left-
hand side image) and Fashion MNIST (right-hand side image) data-sets by using
original SWG architecture from Deshpande et al. (2018).
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Figure 12: Randomly sampled images from SWG and CWG models trained on MNIST
and Fashion MNIST using original SWG architecture from Deshpande et al.
(2018).

We hope this result will encourage future work in developing simpler to optimise analogs of
strong neural models.

The use of the introduced Cramer-Wold kernel and metric between samples and distribu-
tions is crucial to the construction of CWAE. This metric can be effectively computed for
Gaussian mixtures. Use of Cramer-Wold kernel allows to construct methods less sensitive to
changes in training parameters and faster minimizing a cost function. All this was shown in
the CWAE generative auto-encoder model, which proved to be fast, more stable, and less
sensitive to the changes of training parameters as compared to other methods, like WAE or
SWAE. Finally, the proposed Cramer-Wold generator model shows that future work could
explore use of this metric in other settings, particularly in adversarial models.
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