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Abstract

Probabilistic graphical models provide a flexible yet parsimonious framework for mod-
eling dependencies among nodes in networks. There is a vast literature on parameter
estimation and consistent model selection for graphical models. However, in many of
the applications, scientists are also interested in quantifying the uncertainty associated
with the estimated parameters and selected models, which current literature has not ad-
dressed thoroughly. In this paper, we propose a novel estimator for statistical inference
on edge parameters in pairwise graphical models based on generalized Hyvärinen scoring
rule. Hyvärinen scoring rule is especially useful in cases where the normalizing constant
cannot be obtained efficiently in a closed form, which is a common problem for graphical
models, including Ising models and truncated Gaussian graphical models. Our estimator
allows us to perform statistical inference for general graphical models whereas the existing
works mostly focus on statistical inference for Gaussian graphical models where finding nor-
malizing constant is computationally tractable. Under mild conditions that are typically
assumed in the literature for consistent estimation, we prove that our proposed estimator
is
√
n-consistent and asymptotically normal, which allows us to construct confidence inter-

vals and build hypothesis tests for edge parameters. Moreover, we show how our proposed
method can be applied to test hypotheses that involve a large number of model parameters
simultaneously. We illustrate validity of our estimator through extensive simulation studies
on a diverse collection of data-generating processes.

Keywords: generalized score matching, high-dimensional inference, probabilistic graph-
ical models, simultaneous inference

1. Introduction

Undirected probabilistic graphical models are widely used to explore and represent depen-
dencies between random variables (Lauritzen, 1996). They have been used in areas ranging
from computational biology to neuroscience and finance. An undirected probabilistic graph-
ical model consists of an undirected graph G = (V,E), where V = {1, . . . , p} is the vertex
set and E ⊂ V × V is the edge set, and a random vector X = (X1, . . . , Xp) ∈ X p ⊆ RP .
Each coordinate of the random vector X is associated with a vertex in V and the graph
structure encodes the conditional independence assumptions underlying the distribution of
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X. In particular, Xa and Xb are conditionally independent given all the other variables if
and only if (a, b) 6∈ E, that is, the nodes a and b are not adjacent in G. One of the funda-
mental problems in statistics is that of learning the structure of G from i.i.d. samples from
X and quantifying the uncertainty of the estimated structure. Drton and Maathuis (2017)
provides a recent review of algorithms for learning the structure, while Janková and van de
Geer (2019) provides an overview of statistical inference in Gaussian graphical models.

Gaussian graphical models are a special case of undirected probabilistic graphical models
and have been widely studied in the machine learning literature. Suppose thatX ∼ N (µ,Σ).
In this case, the conditional independence graph is determined by the pattern of non-zero
elements of the inverse of the covariance matrix Ω = Σ−1 = (ωab). In particular, Xa and
Xb are conditionally independent given all the other variables in X if and only if ωab and
ωba are both zero. This simple relationship has been fundamental for the development
of rich literature on Gaussian graphical models and has facilitated the development of
fast algorithms and inferential procedures (see, for example, Dempster, 1972; Drton and
Perlman, 2004; Meinshausen and Bühlmann, 2006; Yuan and Lin, 2007; Friedman et al.,
2008; Rothman et al., 2008; Yuan, 2010; Sun and Zhang, 2013; Cai et al., 2011).

In this paper, we consider a more general, but still tractable, class of pairwise interaction
graphical models with densities belonging to an exponential family P = {pθ(x) | θ ∈ Θ}
with natural parameter space Θ:

log pθ(x) =
∑
a∈V

∑
k∈[K]

θ(k)
a t(k)

a (xa)

+
∑

(a,b)∈E

∑
l∈[L]

θ
(l)
ab t

(l)
ab (xa, xb)−Ψ(θ) +

∑
a∈V

ha(xa), x ∈ X ⊆ Rp. (1)

The functions t
(k)
a , t

(l)
ab are the sufficient statistics and Ψ(θ) is the log-partition function. We

assume throughout the paper that the support of the densities is either X = Rp or X = Rp+
and P is dominated by Lebesgue measure on Rp. To simplify the notation, for a log-density
of the form given in (1) we will write

log pθ(x) = θ>t(x)−Ψ(θ) + h(x),

where θ ∈ Rs and t(x) : Rp 7→ Rs with s = L ·
(
p
2

)
+ p ·K. The natural parameter space has

the form Θ = {θ ∈ Rs | Ψ(x) = log
∫
X exp(θ>t(x)dx) <∞}. Under the model in (1), there

is no edge between a and b in the corresponding conditional independence graph if and

only if θ
(1)
ab = · · · = θ

(L)
ab = 0. The model in (1) encompasses a large number of graphical

models studied in the literature as we discuss in Section 1.2. Lin et al. (2016) studied
estimation of parameters in model (1), however, the focus of this paper, as we discuss
next, is on performing statistical inference—constructing honest confidence intervals and
statistical tests—for parameters in (1).

The focus of the paper is on the inferential analysis about parameters in the model
given in (1), as well as the Markov dependencies between observed variables. Our inference
procedure does not rely on the oracle support recovery properties of the estimator and is
therefore uniformly valid in a high-dimensional regime and robust to model selection mis-
takes, which commonly occur in ultra-high dimensional setting. Our approach is based on
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Hyvärinen generalized scoring rule estimate of θ in (1). The same procedure was used in
Lin et al. (2016), however, rather than focusing on consistent model selection, we use the
initial estimator to construct a regular linear estimator (van der Vaart, 1998). We establish
Bahadur type representation for our final regular estimator that is robust to model selec-
tion mistakes and valid for a big class of data generating distributions. The purpose of
establishing a Bahadur representation is to approximate an estimate by a sum of indepen-
dent random variables, and hence prove the asymptotic normality of the estimator for (1),
allowing us to conduct statistical inference on the model parameters (see Bahadur, 1966).
In particular, we show how to construct confidence intervals for a parameter in the model
that have nominal coverage and also propose a statistical test for existence of edges in the
graphical model with nominal size. These results complement existing literature, which is
focused on consistent model selection and parameter recovery, as we review in the next
section. Furthermore, we develop a methodology for constructing simultaneous confidence
intervals for all the parameters in the model (1) and apply this methodology for testing the
parameters in the differential network1. The main idea here is to use the Gaussian multiplier
bootstrap to approximate the distribution of the maximum coordinate of the linear part in
the Bahadur representation. Appropriate quantile obtained from the bootstrap distribution
is used to approximate the width of the simultaneous confidence intervals and the cutoff
values for the tests for the parameters of the differential network.

1.1. Main Contribution

This paper makes two major contributions to the literature on statistical inference for graph-
ical models. First, compared to previous work on high-dimensional inference in graphical
models (Ren et al., 2015; Barber and Kolar, 2018; Wang and Kolar, 2016; Janková and
van de Geer, 2015), this is the first work on statistical inference in models where computing
the log-partition function is intractable. Existing works mostly focus on Gaussian graphical
models with a tractable normalizing constant, whereas our method can be applied to more
general models, as we discuss in Section 2.1. Second, we apply our proposed method to si-
multaneous inference on all edges connected to a specific node. Our simultaneous inference
procedure can be used to

1. test whether a node is isolated in a graph; that is, whether it is conditionally inde-
pendent with all the other nodes;

2. estimate the support of the graph by setting an appropriate threshold on the proposed
estimators; and

3. test for the difference between graphical models where we have observations of two
graphical models with the same nodes and we would like to test whether the local
connectivity pattern for a specific node is the same in the two graphs.

Once again, the existing approaches cannot deal with simultaneous testing with an
intractable normalizing constant. Moreover, most of the existing work impose a sparsity
condition on the inverse of Hessian and focus on L = 1 only. Here we relax the sparsity
condition on the inverse Hessian and show how to perform inference for a general L.

1. We adopt the notion used in Li et al. (2007) and Danaher et al. (2014) and define the differential network
as a difference between parameters of two graphical models.
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1.2. Related Work

Our work straddles two areas of statistical learning which have attracted significant research
of late: model selection and estimation in high-dimensional graphical models, and high-
dimensional inference. We briefly review the literature most relevant to our work, and refer
the reader to two recent review articles for a comprehensive overview (Drton and Maathuis,
2017; Janková and van de Geer, 2019). Drton and Maathuis (2017) focuses on structure
learning in graphical models, while Janková and van de Geer (2019) reviews inference in
Gaussian graphical models.

We start by reviewing the literature on learning structure of probabilistic graphical
models. Much of the research effort has focused on learning structure of Gaussian graphical
models where the edge set E of the graph G is encoded by the non-zero elements of the
precision matrix Ω = Σ−1. The literature here roughly splits into two categories: global
and local methods. Global methods typically estimate the precision matrix by maximizing
regularized Gaussian log-likelihood (Yuan and Lin, 2007; Rothman et al., 2008; Friedman
et al., 2008; d’Aspremont et al., 2008; Ravikumar et al., 2011; Fan et al., 2009; Lam and
Fan, 2009), while local methods estimate the graph structure by learning the neighborhood
or Markov blanket of each node separately (Meinshausen and Bühlmann, 2006; Yuan, 2010;
Cai et al., 2011; Liu and Wang, 2017; Zhao and Liu, 2014). Extensions to more general
distributions in Gaussian and elliptical families are possible using copulas, as the graph
structure within these families is again determined by the inverse of the latent correlation
matrix (Liu et al., 2009, 2012a; Xue and Zou, 2012; Liu et al., 2012b; Fan et al., 2017).

Once we depart from the Gaussian distribution and related families, learning the con-
ditional independence structure becomes more difficult, primarily owing to computational
intractability of evaluating the log-partition function. A computationally tractable alterna-
tive to regularized maximum likelihood estimation is regularized pseudo-likelihood which
was studied in the context of learning structure of Ising models in Höfling and Tibshirani
(2009), Ravikumar et al. (2010), and Xue et al. (2012). Similar methods were developed
in the study of mixed exponential family graphical models, where a node’s conditional dis-
tribution is a member of an exponential family distribution, such as Bernoulli, Gaussian,
Poisson or exponential. See Guo et al. (2011a), Guo et al. (2011b), Lee and Hastie (2015),
Cheng et al. (2013), Yang et al. (2012), and Yang et al. (2014) for more details.

More recently, score matching estimators have been investigated for learning the struc-
ture of graphical models in high-dimensions when the normalizing constant is not available
in a closed-form (Lin et al., 2016; Yu et al., 2018). Score matching was first proposed
in Hyvärinen (2005) and subsequently extended for binary models and models with non-
negative data in Hyvärinen (2007). It offers a computational advantage when the nor-
malization constant is not available in a closed-form, making likelihood based approaches
intractable, and is particularly appealing for estimation in exponential families as the objec-
tive function is quadratic in the parameters of interest. Sun et al. (2015) develop a method
based on score matching for learning conditional independence graphs underlying structured
infinite-dimensional exponential families. Forbes and Lauritzen (2015) investigated the use
of score matching for the inference of Gaussian linear models in low-dimensional settings.
However, despite its power, there have not been results on inference in high-dimensional
models using score matching. As one of our contributions in this paper, we build on the
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prior work on estimation using generalized score matching and develop an approach to sta-
tistical inference for high-dimensional graphical models. In particular, we construct a novel√
n-consistent estimator of parameters in (1). This is the first procedure that can obtain

a parametric
√
n rate of convergence for an edge parameter in a graphical model where

computing the normalizing constant is intractable.

Next, we review the literature on high-dimensional inference, focusing on work related
to high-dimensional undirected graphical models. Liu (2013) developed a procedure that
estimates conditional independence graph from Gaussian observations and controls false
discovery rates asymptotically. Wasserman et al. (2014) develop confidence guarantees for
undirected graphs under minimal assumptions by developing Berry-Esseen bounds on the
accuracy of Normal approximation. Ren et al. (2015), Janková and van de Geer (2015),
and Janková and van de Geer (2017) develop methods for constructing confidence intervals
for edge parameters in Gaussian graphical models, based on the idea of debiasing the `1
regularized estimator developed in (Zhang and Zhang, 2013; van de Geer et al., 2014; Ja-
vanmard and Montanari, 2014). A related approach was developed for edge parameters in
mixed graphical models whose node conditional distributions belong to an exponential fam-
ily in Wang and Kolar (2016). Wang and Kolar (2014) develop methodology for performing
statistical inference in time-varying and conditional Gaussian graphical models, while Bar-
ber and Kolar (2018) and Lu et al. (2018) develop methods for semi-parametric copula
models. We contribute to the literature on high dimensional inference by demonstrating
how to construct regular estimators for probabilistic Graphical models whose normalizing
constant is intractable. Our estimators are robust to model selection mistakes and allows us
to perform valid statistical inference for edge parameters in a large family of data generating
distributions.

Finally, we contribute to the literature on simultaneous inference in high-dimensional
models. Zhang and Cheng (2017) and Dezeure et al. (2017) develop methods for performing
simultaneous inference on all the coefficients in a high-dimensional linear regression. In the
same setting, Zhao et al. (2014) use a multiplier bootstrap approach to construct robust si-
multaneous confidence intervals. Chang et al. (2018) applies it to the simultaneous inference
of Gaussian graphical models. These procedures allow for the dimensionality of the vector
to be exponential in the sample size and rely on bootstrap to approximate the quantile of
the test statistic. We extend these ideas to the high dimensional graphical model setting
and show how we can build simultaneous hypothesis tests on the neighbors of a specific
node.

A conference version of this paper was presented in the Annual Conference on Neural
Information Processing Systems 2016 (Yu et al., 2016). Compared to the conference version,
in this paper we extend the results in the following ways. First, we extend the results
to include the generalized score matching method (Yu et al., 2018, 2019) in place of the
original score matching method. This generalized form of the score matching method allows
us to improve the estimation accuracy and obtain better inference results for non-negative
data. In the conference version, we made an assumption that the inverse of the population
Hessian matrix, see Section 4, is (approximately) sparse. We relax this sparsity condition
and develop an inference procedure that is valid even if the sparsity condition is violated,
but the inverse of the Hessian matrix has bounded columns in the `1 norm. Moreover,
instead of focusing on a single edge as in the conference version, in this work we propose
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a procedure for simultaneous inference for all edges connected to a specific node. This
allows us to build hypothesis tests for a broad class of applications, including testing of
isolated nodes, support recovery, and testing the difference between two graphical models.
Furthermore, while the conference version focused on the case where L = 1 in (1), here
we extend the results to a general choice of L. Lastly, we run additional experiments to
demonstrate the effectiveness of our proposed method.

1.3. Notation

We use [n] to denote the set {1, . . . , n}. For a vector a ∈ Rn, we let supp(a) = {j : aj 6= 0}
be the support set (with an analogous definition for matrices A ∈ Rn1×n2), ‖a‖q, q ∈ [1,∞),
the `q-norm defined as ‖a‖q = (

∑
i∈[n] |ai|q)1/q with the usual extensions for q ∈ {0,∞},

that is, ‖a‖0 = |supp(a)| and ‖a‖∞ = maxi∈[n] |ai|. For a vector x, xM is a sub-vector of x
with components corresponding to the set M , and x−ab is the sub-vector with component
corresponding to edge {a, b} omitted. For a matrix A ∈ Rm×n, denote ‖A‖q = sup{‖Ax‖q :
x ∈ Rn, ‖x‖q = 1} as the induced `q norm. In particular, ‖A‖∞ = max1≤i≤m

∑n
j=1 |aij |.

We also use ‖A‖max = maxjk |ajk| to denote the maximum component of A. We define En
as the empirical mean of n samples: En[f(xi, θ)] = 1

n

∑n
i=1 f(xi, θ). For two sequences of

numbers {an}∞n=1 and {bn}∞n=1, we use an = O(bn), or an . bn to denote that an ≤ Cbn
for some finite positive constant C, and for all n large enough. We use an .P bn to
denote that an . bn happens with high probability. The notation an = o(bn) is used
to denote that anb

−1
n

n→∞−−−→ 0. We denote an −→D A as convergence in distribution
to a fixed distribution A and an −→P a as convergence in probability to a constant a.
We denote a ◦ b = (a1b1, ..., apbp) for a, b ∈ Rp. For any function f : Rp → R, we use
∇f(x) = {∂/(∂xj)f(x)}j∈[p] to denote the gradient, and ∆f(x) =

∑
j∈[p] ∂

2/(∂x2
j )f(x) to

denote the Laplacian operator on Rp. Note that both the gradient and the Laplacian are
with respect to x.

1.4. Organization of the Paper

The remainder of this paper is structured as follows. We begin in Section 2 with background
on exponential family pairwise graphical model, score matching method, and a brief review
of statistical inference in high dimensional models. In Section 3 we describe the construction
of our novel estimator for a single edge parameter based on a three-step procedure, for L = 1.
Section 4 provides theoretical results and Section 5 discusses the relaxation of sparsity
condition on the inverse of population Hessian matrix. Section 6 extends the procedure to
simultaneous inference for all edges connected to some specific node. In Section 7 we extend
our results to general L. We provide experimental results for synthetic datasets and a real
dataset in Sections 8 and 9 respectively. Section 10 provides conclusion and discussion.

2. Background

We begin with reviewing exponential family pairwise graphical models in Section 2.1, and
then introduce the score matching and generalized score matching methods in Section 2.2.
Finally we provide a brief overview of statistical inference for high dimensional models in
Section 2.3.
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2.1. Exponential Family Pairwise Graphical Models

Throughout the paper we focus on the case where

P = {pθ(x) | θ ∈ Θ}

is an exponential family with log-densities given in (1), which frequently appear in graphical

modeling. There are K sets of sufficient statistics {t(k)
a }k∈[K] for each a ∈ V that depend

on the individual nodes and L sets of sufficient statistics for each (a, b) ∈
(
V
2

)
that allow

for pairwise interactions of different types. Conditional independence graph underlying a

distribution pθ ∈ P has no edge between vertices a and b if and only if θ
(1)
ab = . . . = θ

(L)
ab = 0.

A special case of the model given in (1) are pairwise interaction models with log-densities

log pθ(x) =
∑

(a,b)∈E

θabtab(xa, xb)−Ψ(θ) + h(x), x ∈ X ⊆ Rp, (2)

where tab(xa, xb) are sufficient statistics that depend only on xa and xb. In what follows, we
will consider models that either has the form given in (2) or the more general form given
in (1).

A number of well-studied distributions have the above discussed form. We provide
some examples below, including examples where the normalizing constant Ψ(θ) cannot be
obtained in closed-form.

Gaussian graphical models. The most studied example of a probabilistic graphical
model is the case of the Gaussian graphical model. Suppose that the random variable X
follows the centered multivariate Gaussian distribution with covariance Σ and precision
matrix Ω = Σ−1 = (ωab). The log-density is given as

p(x; Ω) ∝ exp

{
−1

2
x>Ωx

}
, (3)

the support of the density is X = Rp and the sufficient statistics take the form tab(xa, xb) =
xaxb.

Non-negative Gaussian. Our second example of a distribution with the log-density
of the form in (2) is that of a non-negative Gaussian random vector. The probability
density function of a non-negative Gaussian random vector X is proportional to that of the
corresponding Gaussian vector given in (3), but restricted to the non-negative orthant. Here
the support of the density is X = Rp+. The conditional independence graph is determined
the same way as in the Gaussian graphical model case through the non-zero pattern of
the elements in the precision matrix Ω. The normalizing constant in this family has no
closed-form and hence maximum likelihood estimation of Ω is intractable.

Normal conditionals. Our third example is taken from Lin et al. (2016). See also
Gelman and Meng (1991) and Arnold et al. (1999). Consider the family of distributions
with densities of the form

p(x; Θ(1),Θ(2), η, β) ∝ exp

∑
a6=b

Θ
(2)
ab x

2
ax

2
b +

∑
a6=b

Θ
(1)
ab xaxb +

∑
a∈V

ηax
2
a +

∑
a∈V

βaxa

 , x ∈ Rp,
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where the matrices Θ(1),Θ(2) ∈ Rp×p are symmetric interaction matrices with a zero di-
agonal. Members of this family have Normal conditionals, but the densities themselves
need not be unimodal. The conditional independence graph does not contain an edge be-

tween vertices a and b if and only if both Ω
(1)
ab and Ω

(2)
ab are equal to zero. In contrast to

the Gaussian graphical models, the conditional dependence may also express itself in the
variances.

Conditionally specified mixed graphical models. In general, specifying multivariate
distributions is difficult, since in a given problem it might not be clear what class of graphical
models to use. On the other hand, specifying univariate distributions is an easier task.
Chen et al. (2015) and Yang et al. (2015) explored ways of specifying multivariate joint
distributions via univariate exponential families. Consider a conditional density of the form

p(xa | (xb, b 6= a); θa) = exp

fa(xa) +
∑
b6=a

θabBa(xa)Bb(xb)−Ψa(ηa)

 , xa ∈ Xa, (4)

where ηa = ηa(θa, fa, (xb)b6=a) and Ba(·) are known functions for each a ∈ V . Suppose that
for a random vector X, each coordinate Xa follows the conditional density of the form in
(4) with θab = θba for all a, b ∈ V . Then Chen et al. (2015) and Yang et al. (2015) showed
that there exists a joint distribution of X compatible with the conditional densities and
that it is of the form

p(x; Θ) ∝ exp

∑
a∈V

fa(xa) +
1

2

∑
a∈V

∑
b6=a

θabBa(xa)Bb(xb)

 , x ∈ X .

In particular, the joint density above is of the form given in (1), with pairwise interac-
tion sufficient statistics given as tab(xa, xb) = Ba(xa)Bb(xb). When the support of the
distribution is X = Rp or X = Rp+, the parameters of the distribution can be efficiently
estimated using score matching. In the case of unknown function Ba(·), Suggala et al.
(2017) explored nonparametric estimation via basis expansion and fitted parameters using
pseudo-likelihood. Developing a valid statistical inference procedure for this nonparametric
setting is beyond the scope of the current work.

As an example of a conditionally specified model, that we will return to later in the paper,
consider exponential graphical models where the node-conditional distributions follow an
exponential distribution. For a random vector X described by an exponential graphical
model, the density function is given by

p(x; Θ) ∝ exp

−∑
a∈V

θaxa −
∑
a6=b

θabxaxb

 , x ∈ Rp+.

Note that the variable takes only non-negative values. To ensure that the distribution is
valid and normalizable, the natural parameter space Θ consists of matrices whose elements
are positive. Therefore, one can only model negative dependencies via the exponential
graphical model.
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Exponential square-root graphical model. As our last example, consider the expo-
nential square-root graphical model (Inouye et al., 2016) with density function given by

p(x; η,K) ∝ exp
{
−
√
x
>
K
√
x+ 2η>

√
x
}
, x ∈ Rp+.

This square-root graphical model is a multivariate generalizations of univariate exponential
family distributions that can capture the positive dependency among nodes. Specifically,
it assumes only a mild condition on the parameter matrix, but allows for almost arbitrary
negative and positive dependencies. We refer to Inouye et al. (2016) for details on parameter
estimation with nodewise regressions and likelihood approximation methods.

2.2. Score Matching

In this section we briefly review the score matching method proposed in Hyvärinen (2005,
2007) and the generalized score matching for non-negative data proposed in Yu et al. (2018).

2.2.1. Score Matching

A scoring rule S(x,Q) is a real-valued function that quantifies the accuracy of Q ∈ P being
the distribution from which an observed realization x ∈ X may have been sampled. There
are a large number of scoring rules that correspond to different decision problems Parry
et al. (2012). Given n independent realizations of X, {xi}i∈[n], one finds optimal score

estimator Q̂ ∈ P that minimizes the empirical score

Q̂ = arg min
Q∈P

En [S(xi, Q)] . (5)

When X = Rp and P consists of twice differentiable densities with respect to Lebesgue
measure, the Hyvärinen scoring rule (Hyvärinen, 2005) is given as

S(x,Q) =
1

2

∥∥∇ log q(x)
∥∥2

2
+ ∆ log q(x), (6)

where q is the density of Q with respect to Lebesgue measure on X . We would like to
emphasize that this gradient and Laplacian are with respect to x. In this way we get rid
of the normalizing constant which does not depend on x. This scoring rule is convenient
for learning models that are specified in an unnormalized fashion or whose normalizing
constant is difficult to compute. The score matching rule is proper (Dawid, 2007), that is,
EX∼PS(X,Q) is minimized over P at Q = P . Suppose the density q of Q ∈ P is twice
continuously differentiable and satisfies

EX∼P ‖∇ log q(X)‖22 <∞, for all P,Q ∈ P

and
q(x) and ‖∇q(x)‖2 tend to zero as x approaches the boundary of X .

Then the Fisher divergence between P,Q ∈ P,

D(P,Q) =

∫
p(x)‖∇ log q(x)−∇ log p(x)‖22dx,
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where p is the density of P , is induced by the score matching rule (Hyvärinen, 2005). The
gradients in the equation above can be thought of as gradients with respect to a hypothetical
location parameter, evaluated at the origin (Hyvärinen, 2005).

For a parametric exponential family P = {pθ | θ ∈ Θ} with densities given in (1),
minimizing (5) with the scoring rule in (6) can be done in a closed form (Hyvärinen, 2005;
Forbes and Lauritzen, 2015). An estimator θ̂ obtained in this way can be shown to be
asymptotically consistent (Hyvärinen, 2005), however, in general it will not be efficient
(Forbes and Lauritzen, 2015).

2.2.2. Generalized Score Matching for Non-Negative Data

The score matching method in Section 2.2.1 does not work for non-negative data, since the
assumption that q(x) and ||∇q(x)||2 tend to 0 at the boundary breaks down. To solve this
problem, Hyvärinen (2007) proposed a generalization of the score matching approach to the
case of non-negative data.

When X = Rp+ the non-negative score matching loss (analogous to the Fisher divergence
D(P,Q)) is defined as

J+(P,Q) =

∫
Rp
+

p(x) ·
∥∥∇ log p(x) ◦ x−∇ log q(x) ◦ x

∥∥2

2
dx.

The scoring rule for non-negative data that induces J+(P,Q) is given as

S+(x,Q) =
∑
a∈V

[
2xa

∂ log q(x)

∂xa
+ x2

a

∂2 log q(x)

∂x2
a

+
1

2
x2
a

(
∂ log q(x)

∂xa

)2
]
. (7)

For exponential families, the non-negative score matching loss again can be obtained in
a closed form and the estimator is consistent and asymptotically normal under suitable
conditions (Hyvärinen, 2007).

Yu et al. (2018) proposed the generalized score matching for non-negative data to im-
prove the estimation efficiency of the procedure based on the scoring rule in (7). Let
`1, ..., `p : R+ → R+ be positive and differentiable functions and set

`(x) =
(
`1(x1), . . . , `p(xp)

)
.

The generalized `-score matching loss is defined as

J`(P,Q) =

∫
Rp
+

p(x) ·
∥∥∇ log p(x) ◦ `1/2(x)−∇ log q(x) ◦ `1/2(x)

∥∥2

2
dx,

where `1/2(x) =
(
`
1/2
1 (x1), . . . , `

1/2
p (xp)

)
. Suppose the following regularity conditions are

satisfied
lim
xj→∞

p(x)`j(xj)∇j log q(x) = 0 ∀x−j ∈ Rp−1
+ , ∀p ∈ P+,

lim
xj→0

p(x)`j(xj)∇j log q(x) = 0 ∀x−j ∈ Rp−1
+ , ∀p ∈ P+,

EX∼P+

[
‖∇ log q(X) ◦ `1/2(X)‖22

]
< +∞,

EX∼P+

[
‖(∇ log q(X) ◦ `(X))′‖1

]
< +∞.

(8)

10
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Under the condition (8), the scoring rule corresponding to the generalized `-score matching
loss is given as

S`(x,Q) =
∑
a∈V

[
`′a(xa)

∂ log q(x)

∂xa
+ `a(xa)

∂2 log q(x)

∂x2
a

+
1

2
`a(xa)

(
∂ log q(x)

∂xa

)2
]
.

The regularity condition (8) is required for applying integration by parts and Fubini-Tonelli
theorem in order to show consistency of the score-matching estimator.

Note that by choosing `j(x) = x2, for all j, one recovers the original score matching
formulas for non-negative data in (7). The advantage of this generalized score matching rule
is that by choosing an increasing, but slowly growing `(x) (for example, `(x) = log(x+ 1)),
one does not need to estimate high moments of the underlying distribution, which leads to
better practical performance and improved theoretical guarantees. See Yu et al. (2018) for
details.

2.2.3. Score matching for probabilistic graphical models

Score matching has been successfully applied in the context of probabilistic graphical mod-
els. Forbes and Lauritzen (2015) studied score matching to learn Gaussian graphical models
with symmetry constraints. Lin et al. (2016) proposed a regularized score matching proce-
dure to learn conditional independence graph in a high-dimensional setting by minimizing

En
[
S(xi, θ)

]
+ λ‖θ‖1,

where the loss function S(xi, θ) is either S(xi, Qθ) defined in (6) or S+(xi, Qθ) defined in (7).
For Gaussian models, `1-norm regularized score matching is a simple, yet efficient method,
which coincides with the method in Liu and Luo (2015). Yu et al. (2018) improved on the
approach of Lin et al. (2016) and studied regularized generalized `-score matching of the
form

En [S`(xi, Qθ)] + λ‖θ‖1.

Applied to data generated from a multivariate truncated normal distribution, the condi-
tional independence graph can be recovered with the same number of samples that are
needed for recovery of the structure of a Gaussian graphical model. Sun et al. (2015) de-
velop a score matching estimator for learning the structure of nonparametric probabilistic
graphical models, extending the work on estimation of infinite-dimensional exponential fam-
ilies (Sriperumbudur et al., 2017). In Section 3, we present a new estimator for components
of θ in (1) that is consistent and asymptotically normal, building on Lin et al. (2016) and
Yu et al. (2018).

2.3. Statistical Inference

We briefly review how to perform statistical inference for low dimensional parameters in a
high-dimensional model. In many statistical problems, the unknown parameter β ∈ Rp can
be partitioned as β = (α, η), where α is a scalar of interest and η is a (p − 1) dimensional
nuisance parameter. Let β∗ = (α∗, η∗) denote the true unknown parameter. In a high-
dimensional setting, where the sample size n is much smaller than the dimensionality p of

11
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the parameter β, it is common to impose structural assumptions on β∗. For example in
several applications, it is common to assume that the true parameter β∗ is sparse. Indeed,
we will work under this assumption as well.

Let us denote the empirical negative log-likelihood by

L(β) =
1

n

n∑
i=1

Li(β),

where Li(β) is the negative log-likelihood for the ith observation. Let I = E
[
∇2L(β)

]
denote the information matrix and denote the partition of I corresponding to β = (α, η) as

I =

(
Iαα Iαη
Iηα Iηη

)
.

The partial information matrix of α is denoted as Iα|η = Iαα − IαηI−1
ηη Iηα.

Consider for the moment a low-dimensional setting. In order to perform statistical
inference about α∗, one can use the profile partial score function defined as

U(α) = ∇αL
(
α, η̂(α)

)
,

where η̂(α) = arg minη L(α, η) is the maximum partial likelihood estimator for η with a
fixed parameter α. Under the null hypothesis that α∗ = α0, we have that (van der Vaart,
1998) √

nU
(
α0
)
−→D N(0, I∗α|η).

Therefore, one can reject the null hypothesis for large values of U
(
α0
)
. However, in a

high-dimensional setting, the estimator η̂(α) is no longer
√
n-consistent and we have to

modify the approach above. In particular, we will show how to modify the profile partial
score function to allow for valid inference in a high-dimensional setting based on a sparse
estimator of η̂(α).

Without loss of generality, assume that α0 = 0. For any estimator η̃, Taylor’s expansion
theorem gives

√
n∇αL(0, η̃) =

√
n∇αL(0, η∗) +

√
n∇αηL(0, η∗) · (η̃ − η∗) + rem, (9)

where rem is the remainder o(η̃ − η∗) term. The first term
√
n∇αL(0, η∗) in (9) converges

to a normal distribution under suitable assumptions using the central limit theorem (CLT).
The distribution of the second term, however, is in general intractable to obtain. This is
due to the fact that the distribution of η̃ depends on the selected model. Unless we are
willing to assume stringent and untestable conditions under which it is possible to show
that the true model can be selected, the limiting distribution of η̃ cannot be estimated even
asymptotically (Leeb and Pötscher, 2007). To overcome this issue, one needs to modify the
profile partial score function, so that its limiting distribution does not depend on the way
the nuisance parameter is estimated.

Ning and Liu (2017) introduced the following decorrelated score function

U(α, η) = ∇αL(α, η)− wT∇ηL(α, η),

12
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where w = IαηI
−1
ηη . The decorrelated score function U(α, η) is uncorrelated with the nui-

sance score functions ∇ηL(α, η) and, therefore, its limiting distribution will not depend on
the model selection mistakes incurred while estimating η∗. In particular, U(α0, η̃) is indeed
asymptotically normally distributed under the null hypothesis, as long as η̃ is a good enough
estimator of η∗, but not necessarily

√
n-consistent estimator. Based on the asymptotic nor-

mality of the decorrelated score function, we can then build confidence intervals for α∗ and
perform hypothesis testing.

In practice, the vector w is unknown and needs to be estimated. A number of methods
have been proposed for its estimation in the literature. For example, Ning and Liu (2017)
use a Dantzig selector-like method, Belloni et al. (2013) proposed the double selection
method, while Zhang and Zhang (2013), van de Geer et al. (2014), and Javanmard and
Montanari (2014) use a lasso based estimator. See also Dezeure et al. (2017), Zhang and
Cheng (2017) for simultaneous inference, Taylor et al. (2014), Yang et al. (2016) for post
selective inference, Li (2019), Cao and Dowd (2019), and Cao and Lu (2019) for for synthetic
control, etc. In this paper, we adopt the double selection procedure of Belloni et al. (2013).
Details will be given in Section 3.

3. Methodology

In this section, we present a new procedure that constructs a
√
n-consistent estimator of

an element θab of θ. Our procedure involves three steps that we detail below. We start by
introducing some additional notation and then describe the procedure for the case where
X = Rp. Extension to non-negative data is given at the end of the section. Throughout this
section we consider L = 1 only, so that the parameter of interest θab is a scalar. Extensions
to general L is discussed later in Section 7.

For fixed indices a, b ∈ [p], let

qabθ (x) := qabθ (xa, xb | x−ab)

be the conditional density of (Xa, Xb) given X−ab = x−ab. In particular,

log qabθ (x) = 〈θab, ϕ(x)〉 −Ψab(θ, x−ab) + hab(x), (10)

where θab ∈ Rs′ , with s′ = 2K + 2p − 3, is the part of the vector θ corresponding to{
θ

(k)
a , θ

(k)
b

}
k∈[K]

, {θac, θbc}c∈−ab, and θab; and ϕ(x) = ϕab(x) ∈ Rs′ is the correspond-

ing vector of sufficient statistics
{
t
(k)
a (xa), t

(k)
b (xb)

}
k∈[K]

, {tac(xa, xc), tbc(xb, xc)}c∈−ab, and

tab(xa, xb). Here Ψab(θ, x−ab) is the log-partition function of the conditional distribution
and hab(x) = ha(xa) + hb(xb). Let ∇ab and ∆ab be the gradient and Laplacian operators,
respectively, with respect to xa and xb defined as:

∇abf(x) =
(

(∂/∂xa)f(x), (∂/∂xb)f(x)
)>
∈ R2,

∆abf(x) =
(

(∂2/∂x2
a) + (∂2/∂x2

b)
)
f(x).

With this notation, we introduce the following scoring rule

Sab(x, θ) =
1

2

∥∥∇ab log qabθ (x)
∥∥2

2
+ ∆ab log qabθ (x) =

1

2
θ>Γ(x)θ + θ>g(x) + c(x), (11)
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where the constant term c(x) = 1
2‖∇h

ab(x)‖2 + ∆hab(x), and

Γ(x) = ϕ1(x)ϕ1(x)> + ϕ2(x)ϕ2(x)> and g(x) = ϕ1(x)hab1 (x) + ϕ2(x)hab2 (x) + ∆abϕ(x)

with ϕ1 = (∂/∂xa)ϕ, ϕ2 = (∂/∂xb)ϕ, hab1 = (∂/∂xa)h
ab, and hab2 = (∂/∂xb)h

ab.

This scoring rule is related to the one in (6), however, rather than using the density qθ
in evaluating the parameter vector, we only consider the conditional density qabθ . We will
use this conditional scoring rule to create an asymptotically normal estimator of an element
θab. Our motivation for using this estimator comes from the fact that the parameter θab
can be identified from the conditional distribution of (Xa, Xb) | XMab

where

Mab := {c | (a, c) ∈ E or (b, c) ∈ E}

is the Markov blanket of (Xa, Xb). Furthermore, the optimization problems arising in steps
1-3 below can be solved much more efficiently, as the scoring rule in (11) involves fewer
parameters.

We are now ready to describe our procedure for estimating θab, which proceeds in three
steps.

Step 1: We find a pilot estimator of θab by solving the following program

θ̂ab = arg min
θ∈Rs′

En
[
Sab(xi, θ)

]
+ λ1‖θ‖1, (12)

where λ1 is a tuning parameter. Let M̂1 = supp(θ̂ab) := {(c, d) | θ̂abcd 6= 0}.
Since we are after an asymptotically normal estimator of θab, one may think that it is

sufficient to find θ̃ab = arg min{En
[
Sab(xi, θ)

]
| supp(θ) ⊆ M̂1} and appeal to results of

Portnoy (1988), who has established asymptotic normality for M -estimators with increasing
number of parameters. Unfortunately, this is not the case. Since θ̃ is obtained via a model
selection procedure, it is irregular and its asymptotic distribution cannot be estimated (Leeb
and Pötscher, 2007; Pötscher, 2009). Therefore, we proceed to create a regular estimator of
θab in steps 2 and 3. The idea is to create an estimator θ̃ab that is insensitive to first-order
perturbations of other components of θ̃ab, which we consider as nuisance components. The
idea of creating an estimator that is robust to perturbations of nuisance has been recently
used in Belloni et al. (2013), however, the approach goes back to the work of Neyman
(1959).

Step 2: Let γ̂ab be a minimizer of

1

2
En[(ϕ1,ab(xi)− ϕ1,−ab(xi)

>γ)2 + (ϕ2,ab(xi)− ϕ2,−ab(xi)
>γ)2] + λ2‖γ‖1, (13)

where λ2 is a tuning parameter. Let M̂2 = supp(γ̂ab) := {(c, d) | γ̂abcd 6= 0}. The intuition
here is that the vector (1,−γ̂ab,>)> approximately computes a row, up to a constant, of the
inverse of the Hessian in (12).
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Step 3: Let M̃ = {(a, b)} ∪ M̂1 ∪ M̂2. We obtain our estimator as a solution to the
following program

θ̃ab = arg min
θ

En
[
Sab(xi, θ)

]
s.t. supp(θ) ⊆ M̃.

Our estimator of θab is the coordinate ab of θ̃ab—which we denote as θ̃ab. Motivation for
this procedure will be clear from the proof of Theorem 2 given in the next section.

Extension to non-negative data. For non-negative data, the procedure is similar. In
place of the score rule in (11), we will use a conditional score rule based on the generalized
`-score rule. We define the following scoring rule

Sab` (x, θ) =
1

2
θ>Γ`(x)θ + θ>g`(x) (14)

with
Γ`(x) = `a(xa) · ϕ1(x)ϕ1(x)> + `b(xb) · ϕ2(x)ϕ2(x)>

and

g`(x) = `a(xa)ϕ1(x)hab1 (x) + `b(xb)ϕ2(x)hab2 (x) + `a(xa)ϕ11(x) + `b(xb)ϕ22(x)

+ `′a(xa)ϕ1(x) + `′b(xb)ϕ2(x).

Here ϕ11 = (∂2/∂x2
a)ϕ, and ϕ22 = (∂2/∂x2

b)ϕ. Now we can define

ϕ̃1 = `1/2a (xa)ϕ1 and ϕ̃2 = `
1/2
b (xb)ϕ2. (15)

Then Γ`(x) = ϕ̃1(x)ϕ̃1(x)>+ϕ̃2(x)ϕ̃2(x)>, which is of the same form as (11) with ϕ̃1 and ϕ̃2

replacing ϕ1 and ϕ2, respectively. Thus our three-step procedure for non-negative data can
be written as follows. For notation consistency, we omit the subscript ` on the estimator θ
and support M .

Step 1: We find a pilot estimator of θab by solving

θ̂ab = arg min
θ∈Rs′

En
[
Sab` (xi, θ)

]
+ λ1‖θ‖1,

where λ1 is a tuning parameter and Sab` is defined in (14). Let M̂1 = supp(θ̂ab).

Step 2: Let γ̂ab be a minimizer of

1

2
En
[
(ϕ̃1,ab(xi)− ϕ̃1,−ab(xi)

>γ)2 + (ϕ̃2,ab(xi)− ϕ̃2,−ab(xi)
>γ)2

]
+ λ2‖γ‖1,

where λ2 is a tuning parameter and ϕ̃1, ϕ̃2 are defined in (15). Let M̂2 = supp(γ̂ab).

Step 3: Let M̃ = {(a, b)} ∪ M̂1 ∪ M̂2. We obtain our estimator as a solution to the
following program

θ̃ab = arg min
θ

En
[
Sab` (xi, θ)

]
s.t. supp(θ) ⊆ M̃.

Our estimator of θab is the coordinate ab of θ̃ab—which we denote as θ̃ab.
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4. Asymptotic Normality of the Estimator

In this section, we outline the main theoretical properties of our estimator. We start by
providing high-level conditions that allow us to establish properties of each step in the
procedure.

Assumption M. We are given n i.i.d. samples {xi}i∈[n] from pθ∗ of the form in (1). Let

γab,∗ = arg min
γ

E[(ϕ1,ab(xi)− ϕ1,−ab(xi)
>γ)2 + (ϕ2,ab(xi)− ϕ2,−ab(xi)

>γ)2]

and

η1i = ϕ1,ab(xi)− ϕ1,−ab(xi)
>γab,∗ and η2i = ϕ2,ab(xi)− ϕ2,−ab(xi)

>γab,∗ for i ∈ [n].

We assume that the parameter vector θ∗ is sparse with |supp(θab,∗)| � n; and the vector
γab,∗ is sparse with |supp(γab,∗)| � n.

Let m = |supp(θab,∗)|∨|supp(γab,∗)|. The assumption M supposes that the parameter to
be estimated is sparse, which makes estimation in the high-dimensional setting feasible. An
extension to the approximately sparse parameter is possible but technically cumbersome,
and does not provide additional insights into the problem. One of the benefits of using the
conditional score to learn parameters of the model is that the sample size will only depend
on the size of supp(θab,∗) and not on the sparsity of the whole vector θ∗ as in Lin et al.
(2016). The second part of the assumption states that the inverse of the population Hessian
is approximately sparse, which is a reasonable assumption for a number of models, since
the Markov blanket of (Xa, Xb) is small under the sparsity assumption on θab,∗. We relax
the sparsity assumption in Section 5.

The vector γab,∗ is determined by the model (10) and parameter θ∗, and is therefore not a
free parameter. For the Gaussian graphical model, it can be shown that the sparsity of θab,∗

implies the sparsity of γab,∗. That is, assumption M holds when the columns of the precision
matrix are sparse. For a general model, it may not be easy to explicitly verify the exact
sparsity of γab,∗, since the calculation of γab,∗ involves calculation of possibly intractable
moments, especially when using generalized score matching with `(x) = log(x + 1) for
non-negative data. For normal conditionals and exponential graphical model, we verify
numerically (in Section 8) that the sample version of γab,∗ behaves approximately like a
sparse vector when n is large enough. These indicate that assumption M is reasonable,
at least in an approximately sparse version. For general models, the sparsity condition on
γab,∗ could be violated and, therefore, we discuss how to relax it in Section 5.

Our next condition assumes that the Hessian in (12) and (13) is well conditioned.

Assumption SE. Let

φ−(s,A) = inf
{
δ>Aδ/‖δ‖22 | 1 ≤ ‖δ‖0 ≤ s

}
and

φ+(s,A) = sup
{
δ>Aδ/‖δ‖22 | 1 ≤ ‖δ‖0 ≤ s

}
denote the minimal and maximal s-sparse eigenvalues of a semi-definite matrix A, respec-
tively. We assume

φmin ≤ φ−(m · log n,E [Γ(xi)]) ≤ φ+(m · log n,E [Γ(xi)]) ≤ φmax,
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where 0 < φmin ≤ φmax <∞.

Assumption SE imposes the sparse eigenvalue condition on the population quantity.
A lower bound on the population Hessian is required even in a low dimensional setting in
order to prove asymptotic normality of an estimator. See, for example, Forbes and Lauritzen
(2015) where the population Hessian is assumed to be invertible. An upper bound on the
Hessian matrix is also commonly assumed in the literature on graphical models and high-
dimensional inference (see, for example, Yang et al., 2015; Belloni and Chernozhukov, 2013).
We use the upper bound on the Hessian to control the size of the estimated support in steps
1 and 2 of the procedure.

For Gaussian graphical model, assumption SE is satisfied with non-degenerate covari-
ance matrix. For general models, assumption SE puts restrictions on the model parameter
in a way that is hard to handle explicitly. Note that related work imposes stronger assump-
tion on the sample Fisher information matrix directly. See, for example, conditions (C1)
and (C2) in Yang et al. (2015).

For the upper bound of the sparse eigenvalue, we remark that the mean of ϕ(x) could
be non-zero. For the Gaussian graphical model, if there is a non-zero mean µ, then the
components of ϕ1(x) and ϕ2(x) would instead be x − µ. Therefore the sparse eigenvalue
would not explode. In practice, we subtract the empirical mean and only need to consider
the centered case. For other models, existing works assume boundedness of the first and
second order moments of all the components of x. See Condition (C3) in Yang et al. (2015).

With assumption SE on the population quantity, the following lemma, adopted from
Corollary 4 in Belloni and Chernozhukov (2013), quantifies the sparse eigenvalues of the
sample quantity En [Γ(xi)].

Lemma 1 Suppose assumption SE is satisfied. Suppose there exist Kn such that ϕ1(xi)
and ϕ2(xi) are bounded: supi ‖ϕ1(xi)‖∞ ≤ Kn and supi ‖ϕ2(xi)‖∞ ≤ Kn a.s. If the sample
size satisfies

K2
n ·m log p · log2(m log p) · log n · log (p ∨ n) = o(nφ2

min/φmax),

then the event

ESE =

{
φmin

2
≤ φ−

(
m · log n,En [Γ(xi)]

)
≤ φ+

(
m · log n,En [Γ(xi)]

)
≤ 2φmax

}
holds with probability at least 1− o(1).

Lemma 1 ensures that the sparse eigenvalues of the sample quantity En [Γ(xi)] are well-
behaved provided that ϕ1(xi) and ϕ2(xi) can be upper bounded, and the sample size is
reasonably large. The scale of the upper bound Kn depends on the sufficient statistics
ϕ(x), and can be verified for concrete models. For example, for the Gaussian graphical
model, a standard result on the Gaussian tail bound gives Kn = C · (log n+ log p)1/2 with
high probability. As another example, Proposition 4 in Yang et al. (2015) shows that,
under mild conditions, Kn = C · (log n + log p) with high probability when the sufficient
statistics of the conditional density are given by xa, xb and xaxb, which includes a wide
range of applications, such as exponential graphical model, and Poisson graphical model.
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For models with more general sufficient statistics, we can modify the proof of Proposition 4
in Yang et al. (2015) to obtain the corresponding rate on Kn, under suitable assumptions.

Let rjθ = ‖θ̂ab−θab,∗‖j and rjγ = ‖γ̂ab−γab,∗‖j , for j ∈ {1, 2}, be the rates of estimation
in steps 1 and 2, respectively. Under the assumption SE, on the event

Eθ =

{
‖En

[
Γ(xi)θ

ab,∗ + g(xi)
]
‖∞ ≤

λ1

2

}
,

we have that r1θ . mλ1/φmin and r2θ . c2
√
mλ1/φmin. Similarly, on the event

Eγ =

{
‖En [η1iϕ1,−ab(xi) + η2iϕ2,−ab(xi)] ‖∞ ≤

λ2

2

}
,

we have that r1γ . mλ2/φmin and r2γ .
√
mλ2/φmin, using results of Negahban et al.

(2012). In order to ensure that Eθ and Eγ hold with high-probability, one needs to choose
appropriate λ1 and λ2. This calculation is specific to the model at hand. For example, if
the vectors

Γ(xi)θ
ab,∗ + g(xi) and η1iϕ1,−ab(xi) + η2iϕ2,−ab(xi) (16)

have sub-Gaussian components, then by taking λ1, λ2 ∝
√

log p/n, the events Eθ and Eγ
hold with probability at least 1 − c1p

−c2 (Yang et al., 2015; Negahban et al., 2012). For
other distributions, we may need to choose larger λ1 and λ2. See also Lemma 9 in Yang
et al. (2015).

The following result establishes a Bahadur representation for θ̃ab.

Theorem 2 Suppose that assumptions M and SE hold. Define w∗ with w∗ab = 1 and
w∗−ab = −γab,∗, where γab,∗ is given in the assumption M. On the event Eγ ∩ Eθ, we have
that
√
n ·
(
θ̃ab − θ∗ab

)
= −σ−1

n ·
√
nEn

[
w∗>

(
Γ(xi)θ

ab,∗ + g(xi)
)]

+O
(
φ2

maxφ
−4
min ·

√
nλ1λ2m

)
,

(17)
where σn = En [η1iϕ1,ab(xi) + η2iϕ2,ab(xi)].

Theorem 2 is deterministic in nature. It establishes a representation that holds on the
event Eγ ∩ Eθ ∩ ESE, which in many cases holds with overwhelming probability. We will
show that under suitable conditions the first term converges to a normal distribution. The
following assumption is a regularity condition needed even in a low dimensional setting for
asymptotic normality of the score matching estimator (Forbes and Lauritzen, 2015).

Assumption R. Eqab
[
‖Γ(Xa, Xb, x−ab)θ

ab,∗‖2
]

and Eqab
[
‖g(Xa, Xb, x−ab)‖2

]
are finite

for all values of x−ab in the domain.

Theorem 2 and Lemma 15 (Appendix A) together give the following corollary:

Corollary 3 Suppose that the conditions of Theorem 2 hold. In addition, suppose the
assumption R holds,

√
nλ1λ2m = o(1) and P (Eγ ∩ Eθ ∩ ESE)→ 1. Then we have

√
n(θ̃ab − θ∗ab) −→D N(0, Vab),

where Vab = (E [σn])−2 ·Var
(
w∗>

(
Γ(xi)θ

ab,∗ + g(xi)
))

and σn is as in Theorem 2.
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When the vectors in (16) are sub-Gaussian, we choose λ1, λ2 ∝
√

log p/n, so that the
sample complexity is given by (m log p)2/n = o(1). For other distributions, we may need a
larger sample size to bound the error term in (17). We see that the variance Vab depends on
the true θab,∗ and γab,∗, which are unknown. In practice, we estimate Vab using the following
consistent estimator V̂ab,

V̂ab = e>ab
(
En [Γ(xi)]M̃

)−1 · Z ·
(
En [Γ(xi)]M̃

)−1
eab, (18)

with

Z = En
[(

Γ(xi)θ̃
ab + g(xi)

)
M̃

(
Γ(xi)θ̃

ab + g(xi)
)>
M̃

]
,

and eab being a canonical vector with 1 in the position of element ab and 0 elsewhere. The
consistency of this variance estimator is provided in the appendix. Using this estimate, we
can construct a confidence interval with asymptotically nominal coverage. In particular,

lim
n→∞

sup
θ∗∈Θ

Pθ∗
(
θ∗ab ∈ θ̃ab ± zκ/2 ·

√
V̂ab/n

)
= κ.

In the next section, we outline the proof of Theorem 2. Proofs of other technical results are
relegated to appendix.

4.1. Proof of Theorem 2

We first introduce some auxiliary estimates. Let γ̃ab be a minimizer of the following con-
strained problem

min
γ

En
[(
ϕ1,ab(xi)− ϕ1,−ab(xi)

>γ
)2

+
(
ϕ2,ab(xi)− ϕ2,−ab(xi)

>γ
)2
]

s.t. supp(γ) ⊆ M̃\(a, b),
where M̃ is defined in the step 3 of the procedure. Essentially, γ̃ab is the refitted estimator
from step 2 constrained to have the support on M̃\(a, b). Let w̃ ∈ Rs′ with w̃ab = 1,
w̃
M̃\(a,b) = −γ̃

M̃\(a,b) and zero elsewhere. The solution θ̃ab satisfies the first order optimality

condition
(
En [Γ(xi)] θ̃

ab + En[g(xi)]
)
M̃

= 0. Multiplying by w̃, it follows that

w̃>
(
En [Γ(xi)] θ̃

ab + En[g(xi)]
)

= (w̃ − w∗)> En [Γ(xi)]
(
θ̃ab − θab,∗

)
+ (w̃ − w∗)>

(
En
[
Γ(xi)θ

ab,∗ + g(xi)
])

+ w∗>En [Γ(xi)]
(
θ̃ab − θab,∗

)
+ w∗>

(
En
[
Γ(xi)θ

ab,∗ + g(xi)
])

,L1 + L2 + L3 + L4 = 0.

(19)

From Lemma 12 and Lemma 13 (Appendix A), we have that

|L1 + L2| . φ2
maxφ

−4
min · λ1λ2m.

Using Lemma 14, the term L3 can be written as

L3 = En [η1iϕ1,ab(xi) + η2iϕ2,ab(xi)]
(
θ̃ab − θab,∗ab

)
+O

(
φ1/2

maxφ
−2
min · λ1λ2m

)
.
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Putting all the pieces together, we can rewrite (19) as

σn

(
θ̃ab − θab,∗ab

)
= −w∗>

(
En
[
Γ(xi)θ

ab,∗ + g(xi)
])

+O (λ1λ2m) .

with σn = En [η1iϕ1,ab(xi) + η2iϕ2,ab(xi)]. This completes the proof.

4.2. Theoretical Results for Non-negative Data

In this section we provide the theoretical results for non-negative data obtained by modifying
the assumptions according to the scoring rule for non-negative data.

Assumption M’. The parameter vector θ∗ is sparse, with |supp(θab,∗)| � n. Let

γab,∗ = arg min
γ

E
[
(ϕ̃1,ab(xi)− ϕ̃1,−ab(xi)

>γ)2 + (ϕ̃2,ab(xi)− ϕ̃2,−ab(xi)
>γ)2

]
,

with ϕ̃1, ϕ̃2 defined in (15). Let η1i = ϕ̃1,ab(xi) − ϕ̃1,−ab(xi)
>γab,∗ and η2i = ϕ̃2,ab(xi) −

ϕ̃2,−ab(xi)
>γab,∗, for i ∈ [n]. The vector γab,∗ is sparse with |supp(γab,∗)| � n. Let m =

|supp(θab,∗)| ∨ |supp(γab,∗)|.

Assumption SE’. We have

φmin ≤ φ−(m · log n,E [Γ`(xi)]) ≤ φ+(m · log n,E [Γ`(xi)]) ≤ φmax,

where 0 < φmin ≤ φmax <∞.

Assumption R’. Eqab
[
‖Γ`(Xa, Xb, x−ab)θ

ab,∗‖2
]

and Eqab
[
‖g`(Xa, Xb, x−ab)‖2

]
are finite

for all values of x−ab in the domain.
Denote the modified events as

Eθ =

{
‖En [Γ`(xi)θ + g`(xi)] ‖∞ ≤

λ1

2

}
and

Eγ =

{
‖En [η1iϕ̃1,−ab(xi) + η2iϕ̃2,−ab(xi)] ‖∞ ≤

λ2

2

}
.

We have the asymptotic normality for the estimator on non-negative data.

Corollary 4 Suppose that assumptions M’, SE’, and R’ hold. Define w∗ with w∗ab = 1 and
w∗−ab = −γab,∗, where γab,∗ is given in the assumption M’. In addition, suppose

√
nλ1λ2m =

o(1) and P (Eγ ∩ Eθ ∩ ESE)→ 1 where

ESE =

{
φmin

2
≤ φ−

(
m · log n,En [Γ`(xi)]

)
≤ φ+

(
m · log n,En [Γ`(xi)]

)
≤ 2φmax

}
.

Then we have √
n(θ̃ab − θ∗ab) −→D N(0, Vab),

with the variance term

Vab = (E [σn])−2 ·Var
(
w∗>

(
Γ`(xi)θ

ab + g`(xi)
))

where σn = En [η1iϕ̃1,ab(xi) + η2iϕ̃2,ab(xi)].
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5. Relaxing the Sparsity Assumption on the Inverse of Hessian

For general models, the sparsity condition on γab,∗ could be violated. For example, for
the non-negative Gaussian graphical model with Σ = Ω = Ip, by direct calculation we
obtain that almost all the components of γab,∗ take the same value, which is approximately
1/p. Therefore γab,∗ is neither sparse, nor approximately sparse (see Section 8 for details).
Instead, it only satisfies a weaker condition ‖γab,∗‖1 ≤ 2. This constant L1 norm condition
is studied in Ma et al. (2017). Since γab,∗ is dense, we cannot select sparse support in Step
2; and therefore Step 3 is no longer valid when p > n.

We relax the sparsity condition on γab,∗ to a constant L1 condition, and modify our
procedure. We apply the debias method in Ma et al. (2017). Specifically, recall that the
scoring rule is

Sab(x, θ) =
1

2
θ>Γ(x)θ + θ>g(x) + c(x),

and the gradient with respect to θ is

∇Sab(x, θ) = Γ(x)θ + g(x).

We obtain an estimator θ̂ab using Step 1, which satisfies

∇Sab
(
x, θ̂ab

)
−∇Sab

(
x, θab,∗

)
= Γ(x)

(
θ̂ab − θab,∗

)
.

Multiplying by some matrix M on both sides and rearranging terms, we obtain

θ̂ab −M · ∇Sab
(
x, θ̂ab

)
= θab,∗ −M · ∇Sab

(
x, θab,∗

)
+
(
I −M · Γ(x)

)(
θ̂ab − θab,∗

)
. (20)

The empirical version of (20) is

θ̂ab −M · En[∇Sab
(
xi, θ̂

ab
)
]

= θab,∗ −M · En[∇Sab
(
xi, θ

ab,∗)] +
(
I −M · En[Γ(xi)]

)(
θ̂ab − θab,∗

)
. (21)

Rather than using Step 3 in the procedure described in Section 3, we define the left hand
side as the proposed estimator:

θ̃ab = θ̂ab −M · En[∇Sab
(
xi, θ̂

ab
)
] = θ̂ab −M · 1

n

n∑
i=1

Γ(xi)θ̂
ab + g(xi). (22)

Notice that the first term in the right hand side of (21) is the true value. Suppose M is an
approximate inverse of En[Γ(x)], then the third term in the right hand side of (21) would
be negligible. For the second term, we see that En[∇Sab

(
xi, θ

ab,∗)] is an average of n i.i.d.
samples. If it is independent of M , then this second term is asymptotically normal, and the
coordinate ab of θ̃ab is the desired estimator, similar to the three-step procedure described
in Section 3. We construct M following the procedure in Ma et al. (2017). We first split the
data into two parts and estimate θ̂ab on the first part, while M is estimated on the second
part. For notation simplicity, let {xi}ni=1 denote observations on the first part and {x′i}ni=1

on the second part. We estimate M by solving the following convex program:

minimize ‖M‖∞
subject to

∥∥ I −M · En[Γ(x′i)]
∥∥

max
≤ λ2.
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By selecting appropriate λ2, the solution M will be an approximate inverse of En[Γ(x′i)]
and, hence, an approximate inverse of En[Γ(xi)]. On the other hand, since we estimate
M based on second part of the data, {x′i}ni=1, it is independent of En[∇Sab

(
xi, θ

ab,∗)]. Let
M∗ be the population version of M . We see that the column ab of M∗ (denoted as M∗ab)
corresponds to w∗ up to a constant, where w∗ is defined in Theorem 2 with w∗ab = 1 and
w∗−ab = −γab,∗. For non-negative Gaussian graphical model with Σ = Ω = Ip, a simple

calculation shows that for large p, we have ‖M∗ab‖1 ≤ 1.5/(1− 2
π ) < 5. We then see that the

bounded L1 norm condition on M∗ab is satisfied.

To establish asymptotic normality of the modified procedure, we define the following
event

E ′γ = {‖ I −M∗ · En[Γ(xi)] ‖max ≤ λ2} .

For example, when ϕ1(x) and ϕ2(x) are sub-Gaussian vectors, modification of Lemma D.1

in Ma et al. (2017) gives us that if λ2 �
√

log p
n , then P (Eγ) → 1. By the proof of Lemma

10, we have that ‖θ̂ab − θab,∗‖1 . λ1m. This shows that the third term of (21) is of order
m · log p/n. Suppose (m log p)2/n = o(1), we then obtain a similar result as in Corollary 3.
It is also straightforward to see that the variance given by (21) is asymptotically the same as
Vab in Corollary 3. We conclude with the following Corollary for sub-Gaussian distribution.

Corollary 5 Suppose that assumptions SE and R hold. Furthermore, suppose ‖M∗ab‖1 ≤
C. If (m log p)2/n = o(1) and P

(
E ′γ ∩ Eθ ∩ ESE

)
→ 1, then the estimator θ̃ab in (22) satisfies

√
n(θ̃ab − θ∗ab) −→D N(0, Vab),

where Vab = Var
(
M∗ab

>(Γ(xi)θ
ab,∗ + g(xi)

))
.

6. Simultaneous Inference

In the last two sections, we have developed a procedure for constructing a consistent and
asymptotically normal estimate of a single edge parameter. In this section, we develop a
procedure for simultaneous hypothesis testing of all edges connected to a specific node. We
adopt the Gaussian multiplier bootstrap (Chernozhukov et al., 2013) to our setting. In this
section we focus on the case where X = Rp. The analysis can be straightforwardly extended
to non-negative data.

For a fixed node a ∈ V , we would like to test the null hypothesis

H0 : θ∗ab = θ̆ab for all b ∈ Va = {1, . . . , p}\{a},

for some values θ̆ab versus the alternative

H1 : θ∗ab 6= θ̆ab for some b ∈ Va = {1, . . . , p}\{a}.

We propose the following test statistic

max
b∈Va

√
n
∣∣∣θ̃ab − θ̆ab∣∣∣ , (23)
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where θ̃ab is obtained by the three step procedure described in Section 3. The null hypothesis
will be rejected for large values of the test statistic. Using the `∞ statistics will allow us to
have power against alternatives that change few of the coordinates of θ̆ab. In order to use
the test statistic in practice, we need to be able to accurately compute the critical value
of the test statistic in a high-dimensional setting. To that end, we describe a multiplier
bootstrap method that will allow us to obtain an accurate critical value to the test statistic
in (23).

For each b ∈ Va and i ∈ {1, . . . , n}, denote

z̃iab = −σ−1
n,ab · w̃

>
ab

(
Γab(xi)θ̆

ab + gab(xi)
)
,

where σn,ab = En [η1iabϕ1,ab(xi) + η2iabϕ2,ab(xi)] as defined in Theorem 2. We use the sub-
script ab to highlight that all of these terms depend on the node a and b. Let ei, i = 1, . . . , n,
be a sequence of independent standard Gaussian random variables and independent of data.
We define the multiplier bootstrap statistic as

W̃ = max
b∈Va

1√
n

n∑
i=1

z̃iabei

and compute the bootstrap critical value as the (1− α) quantile of W̃

c
W̃

(α) = inf{t ∈ R : P(W̃ ≤ t) ≥ 1− α}.

Importantly, note that the quantile of the multiplier bootstrap statistic can be estimated
using a Monte-Carlo method. We will show that the quantiles of W̃ approximate the
quantiles of our test statistic.

Define

ziab = −σ−1
ab · w

∗>
ab

(
Γ(xi)θ

ab,∗ + g(xi)
)
,

as the counterpart to z̃iab, where σab = E[σn,ab]. In order to establish our main theoretical
result on simultaneous inference, we need the following regularity condition.

Assumption RR. Define γabc(xi) = ziabziac − E(ziabziac). There exist ηn and τ2
n, such

that for any b, c ∈ Va, we have ‖γabc(xi)‖∞ ≤ ηn and 1
n

∑n
i=1 Eγ2

abc(zi) ≤ τ2
n with probability

at least 1−n−c1 . Moreover, uniformly for b ∈ Va, we have c0 ≤ 1
n

∑n
i=1 Ez2

iab ≤ C0 for some
0 < c0 < C0.

The assumption RR imposes very mild technical conditions and is standard for a large
number of models when the sample size is large enough. Part of the conditions are adopted
from Chernozhukov et al. (2013) in order to apply the theoretical results on the Gaussian
multiplier bootstrap.

Theorem 6 Suppose the assumptions M, SE, R and RR are satisfied, and the events
Eγ ∩Eθ ∩ESE hold for each b ∈ Va. Furthermore, suppose there exists a constant ε > 0, such
that

1

n

[
(τ2
n + ηn) log p+ (m log p)2 + log(pn)7

]
= o(n−ε). (24)
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Then, under the null hypothesis, we have

sup
α∈(0,1)

∣∣∣∣P(max
b∈Va

√
n(θ̃ab − θ̆ab) ≥ cW̃ (α)

)
− α

∣∣∣∣ = o(1).

The proof of Theorem 6 is provided in the appendix. Since

|θ̃ab − θ̆ab| = max{θ̃ab − θ̆ab, θ̆ab − θ̃ab},

it is straightforward to obtain the following corollary for the test statistic in (23).

Corollary 7 Suppose the conditions in Theorem 6 are satisfied. Then, under the null
hypothesis, we have

sup
α∈(0,1)

∣∣∣∣P(max
b∈Va

√
n|θ̃ab − θ̆ab| ≥ cW (α)

)
− α

∣∣∣∣ = o(1),

where

W = max
b∈Va

1√
n

∣∣∣∣ n∑
i=1

z̃iabei

∣∣∣∣
and the bootstrap critical value is defined as

cW (α) = inf{t ∈ R : P(W ≤ t) ≥ 1− α}.

We remark that we are not aiming for a tight bound on the sample complexity. For
commonly used models, we always have that γabc(xi) in Assumption RR converges to 0 at
a model specific rate. Theorem 6 is valid as long as the sample size is large enough, so that
the sample complexity condition in (24) is satisfied.

Based on Corollary 7, we reject the null hypothesis if the test statistic (23) is greater
than cW (α). This gives us a valid simultaneous test for all the edges connected to some
node a ∈ V with asymptotic Type I error equal to α.

6.1. Applications of Simultaneous Testing

In this section, we show three concrete applications of our proposed procedure. Specifically,
we consider

1. testing for isolated node;
2. support recovery;
3. testing for difference between graphical models.

Testing for isolated node. For a specific node a ∈ V , we would like to test whether it is
isolated in the graph. This specific structural question translates into whether the variable
Xa is conditionally independent with all the other nodes. In this case, we would like to test
the null hypothesis

H0 : θ∗ab = 0 for all b ∈ Va = {1, . . . , p}\{a},

versus the alternative

H1 : θ∗ab 6= 0 for some b ∈ Va = {1, . . . , p}\{a}.

We can directly apply our simultaneous inference procedure with θ̆ab = 0.
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Support recovery. For a specific node a ∈ V , we would like to estimate the support of
a defined as supp(a) = {b ∈ Va, θ

∗
ab 6= 0}. Let S∗ be the true support and we focus on

distributions with sub-Gaussian components. For each node b ∈ Va, let τab be a threshold
that we set as

τab =

√
2V̂ab log p/n,

where V̂ab is the variance estimator defined in (18). We can estimate the support S∗ by
thresholding the values θ̃ab that are smaller than τab. In particular, the support recovery
procedure return the following support set

Ŝ(τab) = {b ∈ Va, |θ̃ab| > τab}.

We have the following result on the support recovery.

Corollary 8 Suppose that the values θ∗ab on the true support are bounded from below as

|θ∗ab| >

√
8V̂ab log p

n
, for all b ∈ S∗.

Then
inf P

(
Ŝ(τab) = S∗

) n→∞−−−→ 1,

where the infimum is taken over all data generating procedures that satisfy the minimum
signal strength condition.

The proof follows in a similar way to the proof of Proposition 3.1 in Zhang and Cheng
(2017) and is omitted here. The result shows that we are able to consistently recover the
support of any node with overwhelming probability.

Testing the difference between graphical models. We consider a two-sample problem
in which we wish to test whether the parameters of two graphical models, with the same set
of nodes and belonging to the same exponential family of the form in (2), are the same. For
example, we may have the data for the same set of nodes collected in different time periods,
and we want to test whether the graph structure changes over time. As another example,
consider functional brain connectivity. It is of interest to test whether brain connectivity is
the same for the healthy subjects and people with a certain disorder.

Formally, suppose there are two densities pθ∗ab,1 and pθ∗ab,2 of the form in (2), indexed

by parameter vectors θ∗ab,1 and θ∗ab,2. Given n1 i.i.d. samples {xi,1}i∈[n1] from pθ∗ab,1 and n2

i.i.d. samples {xi,2}i∈[n2] from pθ∗ab,2 , we would like to test the null hypothesis

H0 : θ∗ab,1 = θ∗ab,2 for all a, b ∈ V × V,

versus the alternative

H1 : θ∗ab,1 6= θ∗ab,2 for some a, b ∈ V × V.

In order to create a test statistic for the difference, we first apply the three step procedure
on each group of observations. That is, we obtain the estimators θ̃ab,1, θ̃ab,2 and estimates
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of their variances V̂ab,1, V̂ab,2. According to the Bahadur representation (17) in Theorem 2,
we have

√
n1 ·

(
θ̃ab,1 − θ∗ab,1

)
= −σ̂−1

n,ab,1 ·
√
n1En1

[
w∗>ab,1

(
Γab(xi,1)θab,∗1 + gab(xi,1)

)]
+ oP(1),

and

√
n2 ·

(
θ̃ab,2 − θ∗ab,2

)
= −σ̂−1

n,ab,2 ·
√
n2En2

[
w∗>ab,2

(
Γab(xi,2)θab,∗2 + gab(xi,2)

)]
+ oP(1).

We propose to use the following test statistic

√
n1 + n2 · max

a,b∈V×V
|θ̃ab,1 − θ̃ab,2|,

which will allow us to identify sparse changes in parameter values. We reject the null
hypothesis for large values of the test statistic above. Next, we describe how to estimate
the quantiles of the test statistic using the multiplier bootstrap.

Denote
z̃iab,1 = −σ−1

n,ab,1 · w̃
>
ab,1

(
Γab(xi,1)θ̃ab1 + gab(xi,1)

)
,

and
z̃iab,2 = −σ−1

n,ab,2 · w̃
>
ab,2

(
Γab(xi,2)θ̃ab2 + gab(xi,2)

)
.

We generate two sequences of independent standard Gaussian random variables

ei,j ∼ N(0, 1) for i = 1, . . . , nj , and j = 1, 2,

that are independent of data as well. The multiplier bootstrap statistic is defined as

W =
1√

n1 + n2
· max
a,b∈V×V

∣∣∣∣∣
(

1 +
n2

n1

) n1∑
i=1

z̃iab,1ei,1 −
(

1 +
n1

n2

) n2∑
i=1

z̃iab,2ei,2

∣∣∣∣∣
and

cW (α) = inf{t ∈ R : P(W ≤ t) ≥ 1− α}

is the bootstrap critical value.
Similar to Corollary 7, under the null hypothesis, we have

sup
α∈(0,1)

∣∣∣∣P(√n1 + n2 · max
a,b∈V×V

∣∣∣θ̃ab,1 − θ̃ab,2∣∣∣ ≥ cW (α)

)
− α

∣∣∣∣ = o(1).

This gives us a valid procedure for testing whether the parameters of two graphical models
are the same or not.

A recent paper (Kim et al., 2019) proposed a different inference procedure that directly
estimates the parameters of the differential network. Xia et al. (2015) studied the two
sample problem in the context of Gaussian graphical models and proposed the following
test statistic

T = max
a,b∈V×V

(
θ̃ab,1 − θ̃ab,2

)2

V̂ab,1 + V̂ab,2
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and showed that under the null hypothesis the limiting distribution of the test statistic
satisfies

P
(
T − 2 log p+ log log p ≤ t

)
→ exp

{
(−2π)−

1
2 exp(−t/2)

}
, as n→∞.

Unfortunately, the convergence to the extreme value distribution is rather slow and, as
a result, the critical values based on the limiting approximation are not accurate for fi-
nite samples. In comparison, our multiplier bootstrap procedure provides non-asymptotic
approximation to quantiles of the test statistic. Furthermore, the approximation quality
improves polynomially with the sample size and, as a result, provides a good performance
for small and moderate sample sizes.

Extending the above described inferential procedure to differential networks with latent
variables (Na et al., 2019) and differential functional graphical models (Zhao et al., 2019,
2020) is left for future work.

7. Extension to General L

So far we have assumed that the number of parameters corresponding to an edge is L = 1.
In this section we extend our results to general L. Throughout the section, we treat L as a

fixed quantity. Recall that t
(l)
ab , l ∈ [L], represent sufficient statistics.

Inference for a fixed edge. For a fixed index (a, b), the parameter of interest is the

L dimensional vector, θ
[L]
ab =

[
θ

(1)
ab , . . . , θ

(L)
ab

]
. There is no edge between a and b in the

corresponding conditional independence graph if and only if θ
(1)
ab = · · · = θ

(L)
ab = 0. Following

the same procedure as in Section 3, we have the logarithm of conditional density as

log qabθ (x) = 〈θab, ϕ(x)〉 −Ψab(θ, x−ab) + hab(x),

where θab ∈ Rs′ , with s′ = 2K + 2(p − 2)L + L, is the part of the vector θ corresponding

to
{
θ

(k)
a , θ

(k)
b

}
k∈[K]

,
{
θ

(l)
ac , θ

(l)
bc

}
l∈[L],c∈−ab

, and
{
θ

(l)
ab

}
l∈[L]

; and ϕ(x) = ϕab(x) ∈ Rs′ is the

corresponding vector of sufficient statistics{
t(k)
a (xa), t

(k)
b (xb)

}
k∈[K]

,
{
t(l)ac (xa, xc), t

(l)
bc (xb, xc)

}
l∈[L],c∈−ab

, and t
(l)
ab (xa, xb)l∈[L].

For notation simplicity, for a given node c ∈ −ab, denote θac ∈ RL as the stack of
{
θ

(l)
ac

}
for l ∈ [L]; similarly, denote θbc ∈ RL as the stack of

{
θ

(l)
bc

}
. Let θab,−group denote the

stack of
{
θ

(k)
a , θ

(k)
b

}
k∈[K]

and
{
θ

(l)
ab

}
l∈[L]

, which are the parameters in θab without group

structure. We define γac, γbc, and γab,−group similarly. Let E(a, b) denote the index set of
the parameters corresponding to the edge (a, b). Figure 1 presents an illustrative example
with L = K = 2, p = 6, and (a, b) = (1, 2).

We modify the three step procedure in Section 3 as follow.
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𝜽𝒂𝒄
(𝟏) 𝜽𝒂𝒄

(𝟐)𝜽𝒃𝒄
(𝟏) 𝜽𝒃𝒄

(𝟐)

𝜽𝒂𝒃
(𝟏) 𝜽𝒂𝒃

(𝟐)

𝜽𝒂
(𝟏)

𝜽𝒂
(𝟐)

𝜽𝒃
(𝟏)

𝜽𝒃
(𝟐)

Figure 1: An illustrative example with L = K = 2, p = 6, and (a, b) = (1, 2). The green cells

are the parameters of interest:
{
θ

(l)
ab

}
l∈[L]

; the red cells represent
{
θ

(l)
ac

}
l∈[2],c∈−ab

;

the blue cells represent
{
θ

(l)
bc

}
l∈[2],c∈−ab

; the purple cells represent
{
θ

(k)
a , θ

(k)
b

}
k∈[2]

.

These parameters constitute θab ∈ Rs′ . The green and purple cells correspond

to θab,−group. The striped red cells correspond to θac =
{
θ

(l)
ac

}
l∈[2]

with c = 3.

Finally, the white cells are parameters not used in the estimation, while the gray
cells are zero diagonal values.

Step 1: We find a pilot estimator of θab by solving the following program

θ̂ab = arg min
θ∈Rs′

En
[
Sab(xi, θ)

]
+ λ1

(
‖θab,−group‖1 +

∑
c∈−ab

(
‖θac‖2 + ‖θbc‖2

))
,

where

‖θab,−group‖1 =
L∑
l=1

|θ(l)
ab |+

K∑
k=1

|θ(k)
a |+ |θ

(k)
b |

and λ1 is a tuning parameter. Since L > 1, we use the group Lasso penalty to estimate θ̂ab.
Let M̂1 be the support of θ̂ab:

M̂1 = supp(θ̂ab,−group)
⋃
{E(a, c) | ‖θ̂ac‖2 6= 0}

⋃
{E(b, c) | ‖θ̂bc‖2 6= 0}.

Step 2: For l ∈ [L], let γ̂abl ∈ Rs′−1 be a minimizer of

∑
l∈[L]

1

2
En
[
(ϕ1,abl(xi)− ϕ1,−abl(xi)

>γabl)2 + (ϕ2,abl(xi)− ϕ2,−abl(xi)
>γabl)2

]
+ λ2

(∑
l∈[L]

‖γabl,−group‖1 +
∑
c∈−ab

(
‖γac‖2 + ‖γbc‖2

))
,
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where λ2 is a tuning parameter. Let M̂2 be the union of the support of γ̂abl:

M̂2 =
⋃
l∈[L]

supp(γ̂abl,−group)
⋃
{E(a, c) | ‖γ̂ac‖2 6= 0}

⋃
{E(b, c) | ‖γ̂bc‖2 6= 0}.

Step 3: Let M̃ = E(a, b)∪M̂1∪M̂2. We obtain our estimator as a solution to the following
program

θ̃ab = arg min
θ

En
[
Sab(xi, θ)

]
s.t. supp(θ) ⊆ M̃.

Our estimator of θ
[L]
ab is θ̃

[L]
ab ∈ RL, a block of θ̃ab.

Asymptotic Normality. For each l ∈ [L], define w∗l ∈ Rs′ with w∗abl = 1 and w∗−abl =

−γabl,∗, where γabl,∗ is the population version of γ̂abl. Define

η1il = ϕ1,abl(xi)− ϕ1,−abl(xi)
>γabl,∗ and η2il = ϕ2,abl(xi)− ϕ2,−abl(xi)

>γabl,∗,

and
σn,l = En [η1ilϕ1,abl(xi) + η2ilϕ2,abl(xi)] .

Let u∗l = w∗l /σn,l and U∗ ∈ Rs′×L as the stack of u∗l : U
∗ = [u∗1, . . . , u

∗
L]. Similar to Theorem

2, we obtain the Bahadur representation for θ̃
[L]
ab ∈ RL as:

√
n ·
(
θ̃

[L]
ab − θ

∗[L]
ab

)
= −
√
nEn

[
U∗>

(
Γ(xi)θ

ab,∗ + g(xi)
)]

+ ∆, (25)

where ‖∆‖∞ = O
(
φ2

maxφ
−4
min ·

√
nλ1λ2m

)
. Furthermore, under similar conditions as in

Section 4, we obtain √
n
(
θ̃

[L]
ab − θ

∗[L]
ab

)
−→D N(0, Vab), (26)

where Vab ∈ RL×L is the covariance matrix defined as Vab = Var
(
U∗>(Γ(xi)θ

ab,∗ + g(xi))
)
.

From (26) we can construct a multivariate confidence interval with asymptotically nominal
coverage as before.

Simultaneous inference. For simultaneous inference, with a fixed node a ∈ V , we would
like to test the null hypothesis

H0 : θ
∗(l)
ab = θ̆

(l)
ab for all l ∈ {1, . . . , L} and b ∈ Va = {1, . . . , p}\{a},

for some fixed θ̆ab versus the alternative

H1 : θ
∗(l)
ab 6= θ̆

(l)
ab for some l ∈ {1, . . . , L} and b ∈ Va = {1, . . . , p}\{a}.

Again, the test involves a large number of parameters, (p− 1)L.
First, note that we can directly apply the procedure developed in Section 6. By ignoring

the covariance structure of θ
(1)
ab , . . . , θ

(L)
ab , we can directly use the Gaussian multiplier boot-

strap. Specifically, for each b ∈ Va, we obtain the Bahadur representation in (25). Next, we
stack the resulting p−1 vectors into a (p−1)L dimensional vector and perform the Gaussian
multiplier bootstrap method to calculate the test statistic and critical values. Since L is an
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absolute constant, all the analysis in Section 6 remains valid. However, such a procedure
disregards the group structure on parameters and ignores the off-diagonal elements of the
covariance matrix Vab when constructing the test and computing the critical values.

An alternative approach is based on the moderate deviation result for the χ2-test de-
veloped in Liu and Shao (2013). Here, we outline the procedure and refer to Liu and Shao
(2013) for technical details. First, for each b ∈ Va, we define

T 2
nb = n ·

(
θ̃

[L]
ab − θ̆

[L]
ab

)>
· (Vab)−1 ·

(
θ̃

[L]
ab − θ̆

[L]
ab

)
.

It follows from (26) that the limiting distribution of T 2
nb is χ2

L. Under mild conditions,
Theorem 2.2 of Liu and Shao (2013) shows that

P
(
T 2
nb ≥ x2

)
P
(
χ2
L ≥ x2

) → 1, as n→∞

uniformly for x ∈ [0, o(n1/6)). This motivates the following test statistic

max
b∈Va

T 2
nb.

We obtain the critical value yα that satisfies

(p− 1) · P
(
χ2
L ≥ yα

)
= − log(1− α).

The null hypothesis is rejected if maxb∈Va T
2
nb ≥ y. We can prove that the asymptotic Type I

error is α under the null only when the dependency among T 2
nb is weak. We refer to Liu and

Shao (2013) for technical details. The disadvantage of this approach is that, the terms T 2
nb

are correlated across b ∈ Va, which is ignored when computing the critical value. Despite
ignoring the group structure, the approach based on multiplier bootstrap can control the
Type I error better with small sample sizes. See Section 8 for experimental results.

8. Simulations

In this section, we illustrate the finite sample properties of our inference procedure on
several synthetic data sets. We generate data from four different Exponential family distri-
butions that were introduced in Section 2.1. The first and third example involve Gaussian
node-conditional distributions, for which we use regularized score matching. For the sec-
ond and fourth setting where the node-conditional distributions follow Truncated Gaussian
and Exponential distribution, respectively, we use regularized non-negative score matching
procedure. Following the recommendation in Yu et al. (2018), we set `a(x) = log(x + 1)
for the non-negative settings. In each example, we report the mean coverage rate of 95%
confidence intervals for several coefficients averaged over 500 independent simulation runs.

Gaussian graphical model. For the Gaussian setting, we have X ∼ N(0,Σ) with pre-
cision matrix Ω = Σ−1 = (θab). Without loss of generality, say we are interested in θ12. We
have

θ∗ = (θ∗11, θ
∗
12, . . . , θ

∗
1p, θ

∗
22, θ

∗
23, . . . , θ

∗
2p)

T ,

30



Simultaneous Inference for Pairwise Graphical Models

ϕ(x) =
(
− 1

2
x2

1,−x1x2, . . . ,−x1xp,−
1

2
x2

2,−x2x3, . . . ,−x2xp

)T
,

ϕ1(x) = (−x1,−x2, . . . ,−xp, 0, . . . , 0)T ,

ϕ2(x) = (0,−x1, 0, . . . , 0,−x2,−x3, . . . ,−xp)T ,

g(x) = (−1, 0, 0, . . . , 0,−1, 0, . . . , 0)T ,

where for g the second ‘−1’ is at location p+ 1. Now we have

γab,∗ = arg min E[(ϕ1,ab(xi)− ϕ1,−ab(xi)
Tγ)2 + (ϕ2,ab(xi)− ϕ2,−ab(xi)

Tγ)2]

= arg min E[(x2 − (x1, x3, . . . , xp, 0, . . . , 0)Tγ)2 + (x1 − (0, . . . , 0, x2, x3, . . . , xp)
Tγ)2].

We can see that γab,∗ can be partitioned into first p − 1 elements and last p − 1 ele-
ments: γab,∗ = [γab,∗1 ; γab,∗2 ]. The two parts can be optimized separately. Moreover, both
the population quantity ϕ1(x)ϕ1(x)> and ϕ2(x)ϕ2(x)> are the covariance matrix Σ after
rearranging terms and ignoring zero components. Assumption SE is satisfied with most
of the commonly used covariance matrices with full rank. Moreover, we can verify that
γab,∗1 and γab,∗2 are proportional to the second and first column of the precision matrix Ω.
Therefore, assumption M is satisfied when the columns of the precision matrix Ω are sparse.

For the experiment, we set diagonal entries of Ω as θjj = 1. The sparsity pattern of
the precision matrix corresponds to the the 4-nearest neighbor graph and the non-zero
coefficients are set as θj,j−1 = θj−1,j = 0.5 and θj,j−2 = θj−2,j = 0.3. We set the sample
size n = 300 and vary the number of nodes p. Table 1 shows the empirical coverage rate for
different values of p for four chosen coefficients. As is evident from the table, the coverage
probabilities for the unknown coefficient is remarkably close to nominal.

θ1,2 θ1,3 θ1,4 θ1,10

p = 50 95.4% 92.4% 93.8% 93.2%
p = 200 94.6% 92.4% 92.6% 94.0%
p = 400 94.6% 94.8% 92.6% 93.8%

Table 1: Empirical Coverage for Gaussian Graphical Model

Non-negative Gaussian. For simplicity we first consider score matching for non-negative
Gaussian model with `(x) = x2. Following the setting and notation in the previous para-
graph, we have

ϕ̃1(x) = x1 · ϕ1(x) = x1 · (−x1,−x2, . . . ,−xp, 0, . . . , 0)T ,

ϕ̃2(x) = x2 · ϕ2(x) = x2 · (0,−x1, 0, . . . , 0,−x2,−x3, . . . ,−xp)T .

As before, γab,∗ is separable into two parts; we focus on one to obtain

γab,∗2 =

E x2
1 ·


x2

1 x1x3 · · · x1xp
x1x3 x2

3 · · · x3xp
...

...
. . .

...
x1xp x3xp · · · x2

p



−1

·

E x2
1x2 ·


x1

x3
...
xp


 .
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We can see that it contains expectations, such as x2
1x3x4, which are hard to calculate

explicitly, in addition to the matrix inversion. To the best of our knowledge, this calculation
is intractable. If we instead use generalized score matching with `(x) = log(x + 1), the
calculation would be more complicated.

One exception is when the precision matrix Ω = Ip, which means xi follows i.i.d. non-
negative standard normal distribution. Using the moments E[x] =

√
2/π, E[x2] = 1,

E[x3] =
√

8/π, E[x4] = 3, we can calculate γab,∗ explicitly. It turns out that the two parts
in γab,∗ are the same. All their components take the same value at approximately 1/p,
except for one component that takes the value approximately 1.6/p. Therefore, we can see
that the sparsity assumption on γab,∗ is violated. It instead only satisfies a weaker condition
that ‖γab,∗‖1 ≤ 2 for large p. Similarly, we can calculate that ‖M∗ab‖1 ≤ 5 for large p. We
then follow the debias method in Section 5 to construct confidence intervals.

For the simulation, we use the same setting as for the Gaussian graphical model with
θj,j−1 = θj−1,j = 0.3 and θj,j−2 = θj−2,j = 0.1. We set `a(x) = log(x + 1), and use the
minimax tilting method to generate the data (Botev, 2017). We first support the bounded
L1 norm condition of M∗ through experiments with a small p = 20, 50 and large n. Here
we focus on the edge (a, b) = (1, 2); results for other edges are similar, and are therefore
omitted. Since we have enough samples, we estimate M as the exact inverse of the empirical
quantity En[Γ(x′i)]. Table 2 shows the average mean and maximum of the L1 norm of M
on column ab, based on 500 independent simulation runs with different sample sizes. This
shows that the L1 norm of the column ab of M∗ would be bounded from above. These
experimental results indicate that the bounded L1 norm condition of M∗ is reasonable.

Table 3 shows the empirical coverage rate for various choices of p and n. Note that
since we are doing sample splitting, the real sample size is 2n. We observe that by using
the debias method, we can obtain nominal coverage rate even for relatively large p with
small n.

n = 500 n = 2000 n = 10000 n = 50000

averaged mean, p = 20 13.01 11.42 11.16 11.10
averaged max, p = 20 17.84 13.46 11.95 11.52

averaged mean, p = 50 24.71 15.19 12.90 12.72
averaged max, p = 50 32.65 17.86 14.13 13.17

Table 2: Averaged mean and max of the L1 norm of M , for Non-negative Gaussian

θ1,2 θ1,3 θ1,4 θ1,10

p = 100, n = 150 94.2% 93.8% 95.0% 92.4%
p = 200, n = 300 95.2% 96.6% 94.8% 94.6%
p = 300, n = 500 94.8% 95.8% 95.0% 94.4%

Table 3: Empirical Coverage for Non-negative Gaussian, using debias method
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Normal conditionals. For the experiment, we consider a special case of normal condi-
tionals with L = 1 parameter matrix, whose density is

p(x;B, β, β(2)) ∝ exp

∑
a6=b

βabx
2
ax

2
b +

∑
a∈V

β(2)
a x2

a +
∑
a∈V

βaxa

 , x ∈ Rp.

This distribution is also considered in Lin et al. (2016). We set βj = 0.4, β
(2)
j = −2,

and we use a 4 nearest neighbor lattice dependence graph with interaction matrix: βj,j−1 =
βj−1,j = −0.2 and βj,j−2 = βj−2,j = −0.2. Since the univariate marginal distributions
are all Gaussian, we generate the data using a Gibbs sampler. The first 500 samples were
discarded as ‘burn in’ step, and of the remaining samples, we keep one in three.

We first support the assumption M through experiments with a small p = 20 and large
n. Here we focus on the edge (a, b) = (1, 2); results for other edges are similar, and are
therefore omitted. We estimate γ̂ab as in Step 2, but without the L1 regularization term
since we have enough samples. For normal conditionals, we have γ̂ab ∈ R2p = R40. There
are five components in γ̂ab with relatively large non-zero values (not decreasing with n),
and we calculate the mean and maximum absolute value of the remaining 35 components.
Table 4 shows the average mean and maximum absolute values of these 35 components,
based on 500 independent simulation runs with different sample sizes. This suggests that
the population quantity γab,∗ would be close to a sparse vector, with an infinite amount of
samples. These experimental results indicate that assumption M is reasonable, at least in
an approximately sparse version.

We then set the number of samples n = 500, and follow the proposed three-step proce-
dure to calculate the coverage rate. Table 5 shows the empirical coverage rate for p = 100
and p = 300 nodes. Again, we see that our inference algorithm behaves well on the above
Normal Conditionals Model.

n = 500 n = 2000 n = 10000 n = 50000

average mean 4.3× 10−3 2.7× 10−3 1.4× 10−3 0.7× 10−3

average max 9.7× 10−3 8.4× 10−3 6.9× 10−3 5.5× 10−3

Table 4: Average mean and max on the 35 components, for Normal Conditionals

β1,2 β1,3 β1,4 β1,10

p = 100 93.2% 93.4% 94.6% 95.0%
p = 300 93.2% 93.0% 92.6% 93.0%

Table 5: Empirical Coverage for Normal Conditionals

Exponential graphical model. We choose θj = 2, and a 2 nearest neighbor dependence
graph with θj,j−1 = θj−1,j = 0.3. We again first support the assumption M through
experiment with a small p = 20 and large n, where we focus on the edge (a, b) = (1, 2)
and use a Gibbs sampler to generate data. For exponential graphical model, we have
γ̂ab ∈ R2p−2 = R38. There are four components in γ̂ab with relatively large non-zero values
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Figure 2: Histograms for θ for exponential graphical model. The first row corresponds to
p = 100 and the second row to p = 300.

(not decreasing with n), and we calculate the mean and maximum absolute value of the
remaining 34 components. Table 6 shows the average mean and maximum absolute values of
these 34 components, based on 500 independent simulation runs with different sample sizes.
This suggests that the population quantity γab,∗ would be close to a sparse vector, with an
infinite amount of samples. Once again, this experiment results indicate that assumption
M is reasonable, at least in an approximately sparse version.

We then set n = 1000 and the empirical coverage rate and histograms of estimates of
four selected coefficients are presented in Table 7 and Figures 2 for p = 100 and p = 300,
respectively.

n = 500 n = 2000 n = 10000 n = 50000

average mean 3.6× 10−3 2.2× 10−3 0.9× 10−3 0.4× 10−3

average max 9.4× 10−2 6.8× 10−3 3.8× 10−3 1.2× 10−3

Table 6: Average mean and max on the 34 components, for Exponential Graphical Model

θ1,2 θ1,3 θ1,4 θ1,10

p = 100 94.2% 91.6% 92.6% 92.4%
p = 300 92.6% 92.0% 92.2% 92.4%

Table 7: Empirical Coverage for Exponential Graphical Model

We can see from the simulations here that we need more samples for inference based on
non-negative score matching to be valid, compared to regular score matching. The results
are still impressive as the sample size is small relative to the total number of parameters in
the model. Moreover, by using the generalized score matching with `a(x) = log(x+ 1), we
get more accurate empirical coverage compared to the original score matching, which uses
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`a(x) = x2. The histograms in Figures 2 show that the fitting is quite good, but to get a
better estimation and hence better coverage, we would need more samples.

Simultaneous inference. We then apply the simultaneous inference procedure to test
for all the edges connected to some node a ∈ V . Since the sample complexity (24) for
simultaneous inference is large, we set p = 50. For hypothesis testing, we focus on the first
node and we would like to test the null hypothesis

H0 : θ∗1b = θ̆1b for all b ∈ V1 = {2, . . . , p},

versus the alternative

H1 : θ∗1b 6= θ̆1b for some b ∈ V1 = {2, . . . , p}.

We set the designed Type I error as α = 0.05 and we consider Gaussian and Non-negative
Gaussian settings as before. Table 8 shows the empirical Type I error under the null
θ̆1b = θ∗1b with different choices of sample size. We see that our procedure works well as
long as we have enough data.

n = 500 n = 800 n = 1000 n = 2000 n = 5000

Gaussian 0.082 0.074 0.042 0.052 0.048
Non-negative Gaussian 0.072 0.062 0.054 0.040 0.046

Table 8: Empirical Type I error of simultaneous test

Simultaneous inference with general L. We finally consider the simultaneous infer-
ence with general L. We consider the normal conditionals model with density

p(x; Θ(1),Θ(2), η, β) ∝ exp

∑
a6=b

Θ
(2)
ab x

2
ax

2
b +

∑
a6=b

Θ
(1)
ab xaxb +

∑
a∈V

ηax
2
a +

∑
a∈V

βaxa

 , x ∈ Rp.

This corresponds to L = K = 2. We apply the two methods in Section 7 to test for all
the edges connected to some node a ∈ V . We set p = 50 and the designed Type I error
α = 0.05. For hypothesis testing, we focus on the first node (i.e., a = 1). Table 9 shows
the empirical Type I error under the null with different choices of sample sizes. We see that
both methods work well as long as we have enough data.

n = 1000 n = 2000 n = 4000 n = 6000

Gaussian multiplier bootstrap 0.076 0.058 0.054 0.048
Moderate deviation method 0.182 0.092 0.068 0.056

Table 9: Empirical Type I error of simultaneous test with general L
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Figure 3: Estimated Structure of Protein Signaling Dataset

9. Protein Signaling Dataset

In this section we apply our algorithm to a protein signaling flow cytometry data set, which
contains the presence of p = 11 proteins in n = 7466 cells (Sachs et al., 2005). Yang et al.
(2015) fit exponential and Gaussian graphical models to the data set.

Figure 3 shows the network structure after applying our method to the data using
an Exponential Graphical Model. We learn the structure directly from the data as well
as provide confidence intervals using the Exponential Graphical Model, rather than log-
transforming the data and fitting Gaussian graphical model as was done in Yang et al.
(2015). To infer the network structure, we calculate the p-value for each pair of nodes, and
keep the edges with p-values smaller than 0.01. Estimated negative conditional dependencies
are shown via red edges. Recall that the exponential graphical model restricts the edge
weights to be non-negative, hence only negative dependencies can be estimated. From
the figure we see that PKA is a major protein inhibitor in cell signaling networks. This
result is consistent with the estimated graph structure in Yang et al. (2015), as well as in
the Bayesian network of Sachs et al. (2005). In addition, we find significant dependency
between PKC and PIP3.

10. Conclusion

Motivated by applications in Biology and Social Networks, much progress has been made
in statistical learning models and methods for networks with a large number of nodes.
Graphical models provide a powerful and flexible modeling framework for such networks to
uncover the dependency among nodes. As a result, there is a vast literature on estimation
and inference algorithms for high dimensional Gaussian graphical models, as well as more
general graphical models in the exponential family. As a disadvantage of most of these
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works, the normalizing constant (partition function) of the conditional densities is usually
computationally intractable and without closed-form formula. Score matching estimators
provide a way to address this issue, but so far all the existing works on score matching focus
on estimation problem for high-dimensional graphical models without statistical inference.
In this paper, we fill this gap by proposing a novel estimator using the score matching
method that is asymptotically normal, which allows us to build statistical inference for a
single edge of the graph. Moreover, we propose the procedure on simultaneous testing on
all the edges connected to some specific node in the graph, using the Gaussian multiplier
bootstrap method. This procedure can be used to test if certain nodes are isolated or not,
recover the support of the graph, and test the difference between two graphical models.
There are a number of interesting and important directions that will be explored in future.
For example, developing inferential techniques based on score matching for multi-attribute
graphical models (Kolar et al., 2013, 2014), graphical models with confounders (Geng et al.,
2019, 2018), time-varying graphical models (Zhou et al., 2010; Kolar et al., 2010b; Kolar
and Xing, 2011), networks with jumps (Kolar and Xing, 2012) and conditional graphical
models (Kolar et al., 2010a), as well as data with missing values (Kolar et al., 2010a). It is
also of interest to incorporate constraints in the model and perform constrained inference
(Yu et al., 2020). Finally, our method is developed for continuous data and developing
results for discrete valued data is also of interest.
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Appendix A. Technical proofs

We first establish a bound on the size of m̂1 =
∣∣∣M̂1

∣∣∣ and m̂2 =
∣∣∣M̂2

∣∣∣ in the following lemma.

Lemma 9 Assume the conditions of Theorem 2 are satisfied. Then

m̂1 + m̂2 . φmaxφ
−2
minm.

Proof From the KKT conditions we have that θ̂ab satisfies

En
[
Γ(xi)θ̂

ab + g(xi)
]

+ λ1 · τ̂ = 0,

where τ̂ ∈ ∂‖θ̂ab‖1. Restricted to M̂1, we have (elementwise)∣∣∣∣(En [Γ(xi)θ̂
ab + g(xi)

])
M̂1

∣∣∣∣ = λ1.
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Computing the `2 norm on both sides,√
m̂1 · λ1 =

∥∥∥∥(En [Γ(xi)θ̂
ab + g(xi)

])
M̂1

∥∥∥∥
2

≤
∥∥∥∥(En [Γ(xi)

(
θ̂ab − θab,∗

)])
M̂1

∥∥∥∥
2

+

∥∥∥∥(En [Γ(xi)θ
ab,∗ + g(xi)

])
M̂1

∥∥∥∥
2

, L1 + L2.

For the first term we have that

L1 ≤ φ+(m̂1 +m,En [Γ(xi)]) · r2θ

. φ+(m̂1 +m,En [Γ(xi)]) · φ−1
min · λ1

√
m,

using Negahban et al. (2012). For the second term, we have that

L2 ≤
√
m̂1 · λ1/2.

Combining the two bounds, we obtain√
m̂1 . φ+(m̂1 +m,En [Γ(xi)]) · φ−1

min

√
m.

Now, proceeding as in the proof of Theorem 3 in Belloni and Chernozhukov (2013), we
establish that

m̂1 . φmaxφ
−2
minm.

The proof for m̂2 is similar.

Our next result establishes bounds on θ̃ab − θab,∗.

Lemma 10 Assume the conditions of Theorem 2 are satisfied. Then

‖θ̃ab − θab,∗‖2 . φ1/2
maxφ

−2
min · λ1

√
m,

‖θ̃ab − θab,∗‖1 . φ1/2
maxφ

−2
min · λ1m.

Proof From the KKT conditions we have that θ̂ab satisfies

En
[
Γ(xi)M̂1

]
θ̂ab
M̂1

+ En
[
g(xi)M̂1

]
+ λ1 · sign(θ̂ab

M̂1
) = 0,

while θ̃ab satisfies
En
[
Γ(xi)M̃

]
θ̃ab
M̃

+ En
[
g(xi)M̃

]
= 0.

Combining these two equations we have

En
[
Γ(xi)M̃

] (
θ̃ab
M̃
− θ̂ab

M̂1

)
= λ1 · sign(θ̂ab

M̂1
)

and

φmin · ‖θ̃abM̃ − θ̂
ab
M̂1
‖2 ≤

∥∥∥∥En [Γ(xi)M̃
] (
θ̃ab
M̃
− θ̂ab

M̂1

)∥∥∥∥
2

= λ1

√
m̂1.
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Therefore, using Negahban et al. (2012),

‖θ̃ab − θab,∗‖2 ≤ ‖θ̃ab − θ̂ab,∗‖2 + ‖θ̂ab − θab,∗‖2 . φ−1
min · λ1

√
m̂1.

Combining with Lemma 9, we obtain

‖θ̃ab − θab,∗‖2 . φ1/2
maxφ

−2
min · λ1

√
m and ‖θ̃ab − θab,∗‖1 . φ1/2

maxφ
−2
min · λ1m.

A similar result can be established for γ̃ab− γab,∗, which we state without proof, as it is
analogous to the proof of Lemma 10.

Lemma 11 Assume the conditions of Theorem 2 are satisfied. Then

‖γ̃ab − γab,∗‖2 . φ1/2
maxφ

−2
min · λ2

√
m,

‖γ̃ab − γab,∗‖1 . φ1/2
maxφ

−2
min · λ2m.

To simplify notation later, let r̃jθ = ‖θ̃ab−θab,∗‖j and r̃jγ = ‖γ̃ab−γab,∗‖j , for j ∈ {1, 2}.

Lemma 12 Under the conditions of Theorem 2, we have∣∣∣(w̃ − w∗)> En [Γ(xi)]
(
θ̃ab − θab,∗

)∣∣∣ . φ2
maxφ

−4
min · λ1λ2m.

Proof Let Sk be the set of k-sparse vectors in the unit ball,

Sk = {u ∈ Rp : ‖u‖2 ≤ 1, ‖u‖0 ≤ k} .

Abusing the notation, let ‖ · ‖Sk denote the sparse spectral norm for matrices, that is,

‖M‖Sk = max
u,v∈Sk

u>Mv.

Using Lemma 4.9 of Barber and Kolar (2018),

|u>Mv| ≤
(
‖u‖2 + ‖u‖1/

√
k
)
·
(
‖v‖2 + ‖v‖1/

√
k
)
· sup
u′,v′∈Sk

|u′>Mv′|

for any fixed matrix M ∈ Rp×p and vectors u, v ∈ Rp, and any k ≥ 1. With this, we have

(w̃ − w∗)> En [Γ(xi)]
(
θ̃ab − θab,∗

)
≤ ‖En [Γ(xi)] ‖Sm̃ ·

(
r̃2γ + r̃1γ/

√
m̃
)
·
(
r̃2θ + r̃1θ/

√
m̃
)

. φ2
maxφ

−4
min · λ1λ2m,

where the second line follows from the assumption SE, and Lemma 10 and Lemma 11.

Lemma 13 Under the conditions of Theorem 2, we have∣∣∣(w̃ − w∗)> (En [Γ(xi)] θ
ab,∗ + En[g(xi)]

)∣∣∣ . φ1/2
maxφ

−2
min · λ1λ2m.
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Proof Using Hölder’s inequality, we have∣∣∣(w̃ − w∗)> (En [Γ(xi)] θ
ab,∗ + En[g(xi)]

)∣∣∣ ≤ r̃1γ · ‖En [Γ(xi)] θ
ab,∗ + En[g(xi)]‖∞.

On the event Eθ, we have ‖En [Γ(xi)] θ
ab,∗ + En[g(xi)]‖∞ ≤ λ1/2. Finally, using Lemma 11,

we conclude that∣∣∣(w̃ − w∗)> (En [Γ(xi)] θ
ab,∗ + En[g(xi)]

)∣∣∣ . φ1/2
maxφ

−2
min · λ1λ2m.

Lemma 14 Under the conditions of Theorem 2, we have

w∗>En [Γ(xi)]
(
θ̃ab − θab,∗

)
= En [η1iϕ1,ab(xi) + η2iϕ2,ab(xi)]

(
θ̃ab − θab,∗ab

)
+O

(
φ1/2

maxφ
−2
min · λ1λ2m

)
.

Proof We have that

w∗>En [Γ(xi)]
(
θ̃ab − θab,∗

)
= En

[
(η1iϕ1(xi) + η2iϕ2(xi))

>
] (
θ̃ab − θab,∗

)
= En [η1iϕ1,ab(xi) + η2iϕ2,ab(xi)]

(
θ̃abab − θ

ab,∗
ab

)
+ En

[
(η1iϕ1,−ab(xi) + η2iϕ2,−ab(xi))

>
] (
θ̃ab−ab − θ

ab,∗
−ab

)
.

For the second term, we have∣∣∣En [(η1iϕ1,−ab(xi) + η2iϕ2,−ab(xi))
>
] (
θ̃ab−ab − θab−ab

)∣∣∣
≤ r̃1θ · ‖En [η1iϕ1,−ab(xi) + η2iϕ2,−ab(xi)] ‖∞
≤ r̃1θ · λ2/2,

since we are working on the event Eγ . Since r̃1θ ≤ φ
1/2
maxφ

−2
min · λ1m, combining with the

display above, the proof is complete.

Lemma 15 Under the assumptions M and R, we have that

√
n · w∗>

(
En
[
Γ(xi)θ

ab,∗ + g(xi)
])
−→D N (0, H(θ∗)) ,

where H(θ∗) = Var
(
w∗>

(
Γ(xi)θ

ab,∗ + g(xi)
))

.

Proof Let Zi = w∗>
(
Γ(xi)θ

ab,∗ + g(xi)
)
. Then

√
n · w∗>

(
En
[
Γ(xi)θ

ab,∗ + g(xi)
])

=
1√
n

∑
i

Zi.

From Forbes and Lauritzen (2015), we have that E[Zi] = 0 and Var(Zi) is finite. An appli-
cation of the central limit theorem completes the proof.
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Lemma 16 The variance estimator V̂ab is consistent, V̂ab →P Vab.

Proof The variance estimator is obtained by using the second sample moment, and replac-
ing true θab,∗, γab,∗ with θ̃ab, γ̃ab. We show the consistency of V̂ab by showing the consistency
of the estimator for σn and Var

(
w∗,T (Γ(xi)θ

ab,∗ + g(xi))
)
, respectively.

Step 1. We can write

σn = En
[
η1iϕ1,ab(xi) + η2iϕ2,ab(xi)

]
= En

[
w∗,>ϕ1(xi) · ϕ1,ab(xi) + w∗,>ϕ2(xi) · ϕ2,ab(xi)]

= w∗> · En[Γ(xi)] · eab.

Let σ = E[σn] = w∗> · E[Γ(xi)] · eab denote the population version of σn and σ̃n = w̃> ·
En[Γ(xi)] · eab the sample version. With high probability we have that

|σ̃n − σ| ≤ |σ̃n − σn|+ |σn − σ|

≤
∣∣∣(w̃ − w∗)> · En[Γ(xi)] · eab

∣∣∣+
∣∣∣w∗> · [En[Γ(xi)]− E[Γ(xi)]

]
· eab

∣∣∣
≤ ‖w̃ − w∗‖1 ·

∥∥En[Γ(xi)] · eab
∥∥
∞ + ‖w∗‖1 ·

∥∥[En[Γ(xi)]− E[Γ(xi)]
]
· eab

∥∥
∞

. λ2m · (C +
√

log p/n) +m ·
√

log p/n = oP (1).

Step 2. We estimate the variance of w∗>
(
Γ(xi)θ

ab,∗ + g(xi)
)
. Since

E
[
w∗>

(
Γ(xi)θ

ab,∗ + g(xi)
)]

= 0,

we can use the second sample moment to estimate the variance. As above, we plug in θ̃ab

and γ̃ab, to obtain that∣∣∣∣∣En
{
w̃>
(

Γ(xi)θ̃
ab + g(xi)

)}2

− En
{
w∗>

(
Γ(xi)θ

ab,∗ + g(xi)
)}2

∣∣∣∣∣
=

∣∣∣∣∣En
{
w̃>
(
Γ(xi)θ̃

ab + g(xi)
)
− w∗>

(
Γ(xi)θ

ab,∗ + g(xi)
)}

·
{
w̃>
(
Γ(xi)θ̃

ab + g(xi)
)

+ w∗>
(
Γ(xi)θ

ab,∗ + g(xi)
)}∣∣∣∣∣

. En
∣∣∣∣w̃> (Γ(xi)θ̃

ab + g(xi)
)
− w∗>

(
Γ(xi)θ

ab,∗ + g(xi)
) ∣∣∣∣

. En
∣∣∣∣(w̃ − w∗)> (Γ(xi)θ

ab,∗ + g(xi)
)

+ w̃>Γ(xi)(θ̃
ab − θab,∗)

∣∣∣∣
. ‖w̃ − w∗‖1 · En

∥∥∥Γ(xi)θ
ab,∗ + g(xi)

∥∥∥
∞

+ ‖θ̃ab − θab,∗‖1 · En
∥∥∥w̃>Γ(xi)

∥∥∥
∞

= oP (1).

Combining the results of the two steps, completes the proof.
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Proof of Theorem 6 Denote

W0 = max
b∈Va

1√
n

n∑
i=1

ziabei

as the counterpart to W̃ . Let

T0 = max
b∈Va

1√
n

n∑
i=1

ziab and T̃ = max
b∈Va

1√
n

n∑
i=1

z̃iab.

Denote

∆ = max
b,c∈Va

∣∣∣∣ 1n
n∑
i=1

γabc(xi)

∣∣∣∣,
where γabc(xi) is defined in assumption RR. In order to apply Theorem 3.2 in Chernozhukov
et al. (2013), we check the following conditions:

1. P(∆ ≥ n−c) ≤ n−c.

2. P(|T0 − T̃ | ≥ n−c) ≤ p−c.

3. With probability at least 1 − p−c, Pe(|W0 − W̃ | ≥ n−c) ≤ n−c. Here Pe denotes the
probability with respect to {ei}ni=1, conditionally on the observed data.

We verify the first condition by applying Lemma A.1 in van de Geer (2008). By the
definition of γabc(xi), clearly we have E [γabc(xi)] = 0. Together with assumption RR, we
apply Lemma A.1 in van de Geer (2008) and obtain

E[∆] ≤
√

4τ2
n log (2p)

n
+

2ηn log (2p)

n
.

According to (24), for sufficiently large n, we have E[∆] ≤ n−2c, for some c > 0. By Markov
inequality,

P(∆ ≥ n−c) ≤ nc · E[∆] ≤ n−c,

which verifies the first condition.

Next, we verify the second condition. For a fixed b ∈ Va, under the null, we have∣∣∣∣ 1√
n

n∑
i=1

ziab −
1√
n

n∑
i=1

z̃iab

∣∣∣∣ ≤ √n∣∣∣∣(σ−1
ab − σ

−1
n,ab) · w

∗>
ab

(
En
[
Γab(xi)θ

ab,∗ + gab(xi)
])∣∣∣∣

+
√
n

∣∣∣∣σ−1
n,ab · (w

∗
ab − w̃ab)>

(
En
[
Γab(xi)θ

ab,∗ + gab(xi)
])∣∣∣∣

≤
√
nC · λ1λ2m

≤ n−c,
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with probability at least 1−p−c−1, where the second inequality comes from the consistency
of σn, Lemma 13, and Lemma 15. We then have

P(|T0 − T̃ | ≥ n−c) ≤ P
( ⋃
b∈Va

{ 1√
n

∣∣ n∑
i=1

ziab −
n∑
i=1

z̃iab
∣∣ ≥ n−c})

≤
∑
b∈Va

P
( 1√

n

∣∣ n∑
i=1

ziab −
n∑
i=1

z̃iab
∣∣ ≥ n−c)

≤ p · p−c−1 = p−c,

which verifies the second condition.

Finally, we verify the third condition. We have

Pe(|W0 − W̃ | ≥ n−c) ≤ Pe
(

max
b∈Va

{ 1√
n

∣∣ n∑
i=1

(ziab − z̃iab)ei
∣∣} ≥ n−c). (27)

Denote Zb = 1√
n

∑n
i=1(ziab − z̃iab)ei. Under the null we have

ziab − z̃iab =
[
(σ−1
ab − σ

−1
n,ab) · w

∗>
ab

(
Γab(xi)θ

ab,∗ + gab(xi)
)]

+
[
σ−1
n,ab · (w

∗
ab − w̃ab)>

(
Γab(xi)θ

ab,∗ + gab(xi)
)]
.

According to Lemma A.1 in Chernozhukov et al. (2013), we have

E
[

1

n

∥∥∥ n∑
i=1

(
Γab(xi)θ

ab,∗ + gab(xi)
)
ei

∥∥∥
∞

]
. σ0

√
log p

n
+
M log p

n
,

uniformly for each b ∈ Va, where

σ2
0 = max

j

1

n

n∑
i=1

[(
Γab(xi)θ

ab,∗ + gab(xi)
)
ei

]2

j
,

and

M2 = E
[

max
i

∥∥∥(Γab(xi)θ
ab,∗ + gab(xi)

)
ei

∥∥∥
∞

]2

.

We then have

E|Zb| ≤
1√
n

(
(σ−1
ab − σ

−1
n,ab) · ‖w

∗
ab‖1 + σ−1

n,ab · ‖w
∗
ab − w̃ab‖1

)
× E

[∥∥∥ n∑
i=1

(
Γab(xi)θ

ab,∗ + gab(xi)
)
ei

∥∥∥
∞

]

≤ C√
n
· λm ·

(
σ0

√
log p

n
+
M log p

n

)
· n

≤ n−2c,
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uniformly for each b ∈ Va with probability at least 1 − p−c, where the second inequality
comes from the consistency of σn and Lemma 11. Applying Markov inequality again, we
obtain

Pe(|Zb| ≥ n−c) ≤ nc · E|Zb| ≤ n−c.

uniformly for each b ∈ Va with probability at least 1−p−c. Plugging back to (27), we obtain

Pe(|W0 − W̃ | ≥ n−c) ≤ Pe
(

max
b∈Va
|Zb| ≥ n−c

)
≤ n−c

with probability at least 1− p−c, which verifies the third condition.
With the three conditions verified and assumption RR, we apply Theorem 3.2 in Cher-

nozhukov et al. (2013) to obtain

sup
α∈(0,1)

∣∣∣∣P(max
b∈Va

√
n(θ̃ab − θ̆ab) ≥ cW̃ (α)

)
− α

∣∣∣∣ = o(1),

which completes the proof.
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