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Abstract

Many optimization problems can be cast into the maximum satisfiability (MAX-SAT) form,
and many solvers have been developed for tackling such problems. To evaluate a MAX-
SAT solver, it is convenient to generate hard MAX-SAT instances with known solutions.
Here, we propose a method of generating weighted MAX-2-SAT instances inspired by the
frustrated-loop algorithm used by the quantum annealing community. We extend the algo-
rithm for instances of general bipartite couplings, with the associated optimization problem
being the minimization of the restricted Boltzmann machine (RBM) energy over the nodal
values, which is useful for effectively pre-training the RBM. The hardness of the generated
instances can be tuned through a central parameter known as the frustration index. Two
versions of the algorithm are presented: the random- and structured-loop algorithms. For
the random-loop algorithm, we provide a thorough theoretical and empirical analysis on
its mathematical properties from the perspective of frustration, and observe empirically a
double phase transition behavior in the hardness scaling behavior driven by the frustration
index. For the structured-loop algorithm, we show that it offers an improvement in hard-
ness over the random-loop algorithm in the regime of high loop density, with the variation
of hardness tunable through the concentration of frustrated weights.

Keywords: Maximum Satisfiability, Restricted Boltzmann Machine, Frustration Index,
Loop Algorithm, Phase Transition

1. Introduction

A Dboolean satisfiability problem is the problem of finding a truth assignment of the boolean
variables in a boolean formula such that the formula is satisfied. A boolean formula is
commonly written in conjunctive normal form (CNF) consisting of clauses. A clause is
formed by the logical disjunction (OR) of literals (boolean variables or their negations),
and the boolean formula is expressed as the logical conjunction (AND) of these clauses.
In other words, a clause is satisfied if at least one of its literals evaluates to true, and all
clauses need to be satisfied in order to solve the boolean satisfiability problem.

A maximum-satisfiability (MAX-SAT) problem is an optimization problem where the
objective is to find the truth assignment of boolean variables such that the number of
satisfied clauses is maximized (without requiring the satisfaction of all clauses). A Max-2-
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SAT problem is a Max-SAT problem with at most 2 literals (variables or their negation) per
clause (Lewin et al., 2002). Many optimization problems can be reduced to this particular
problem (Garey et al., 1974a; Bian et al., 2010; Cheriyan et al., 1996), making it a valuable
testing ground for various algorithms/solvers. In this paper, we focus on the weighted
MAX-2-SAT problem, which is a more general version of the MAX-2-SAT problem where
each clause is assigned some non-negative weight (Krentel, 1988), and the objective is to
find the truth assignments of the literals that maximizes the combined weight of the satisfied
clauses.

The optimization version of the (weighted) MAX-2-SAT problem is known to be NP-
hard (Garey et al., 1974b), and it is difficult to check whether a solver has found the
optimal solution for a given instance. This makes the evaluation of the performance of a
MAX-SAT solver rather impractical. An algorithm that generates Max-2-SAT instances
of tunable hardness such that the solution is known in advance (planted solution) would
therefore be very beneficial. Such algorithms exist, but they generally suffer from one or
more of the following drawbacks: they are unable to generate sufficiently hard instances
(Dimitriou, 2005), the planted solution is not necessarily the optimal solution (Watanabe
and Yamamoto, 2006), they are limited in the structures of the instances that they can
generate (Hen et al., 2015), or they require a considerable amount of computational time
to generate the instances (Xu and Li, 2006).

In this paper, we introduce an algorithm that is capable of generating weighted Max-2-
SAT instances of tunable hardness in both the low and high clause density regimes which
does not suffer from the above limitations. For ease of theoretical analysis and empirical
studies, we can reduce a given weighted MAX-2-SAT problem into the following problem
(see Section 2)

Find a configuration of v e {—1,1}" and h € {-1,1}"™

such that the following energy function is minimized:

(1)
E(v,h) = —(ZWijUihj + Zaivi + ijhj)v
ij i J

where a € R”, b € R™, and W € R™™™. We refer to the above problem for some given
{a,b, W} as an RBM instance. Note that the reduction from a MAX-2-SAT instance
to an RBM instance is always possible (see Section 2), meaning that it is sufficient for
us to focus on generating RBM instances. However, this reduction involves doubling the
number of boolean variables and introducing clauses of large weights (see Section 2.2), thus
introducing unnecessary computational and memory burden in a practical implementation
of the algorithm. Therefore, it is still useful to have an algorithm capable of generating
instances directly corresponding to an underlying graph structure. In this paper, we focus
on generating instances directly on bipartite graphs, though our algorithm can be easily
extended to any underlying graph structure (see Section 4.8).

The quantity F(v,h) as appeared in Eq. (1) is also called the RBM energy in the field
of machine learning, because it is the energy function for an RBM (restricted Boltzmann
machine) (Fischer and Igel, 2012). The nodal configuration with the minimum RBM energy
(or RBM ground state) corresponds to the mode of the RBM joint PMF (probability mass
function) (Fischer and Igel, 2012; Durrett, 2019). Finding the mode of the joint PMF
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allows for a much more efficient sampling of the PMF (Srivastava and Salakhutdinov, 2012;
Geyer, 1991; Tjelmeland and Hegstad, 2001), which helps improve the RBM pre-training in
both decreasing the number of iterations to convergence and minimizing the KL-divergence
(Kullback and Leibler, 1951; Sminchisescu and Welling, 2011; Lan et al., 2014). A brief
extension of this discussion will be presented in Section 7, and a more thorough treatment
of this topic will be given in our related work (Manukian et al., 2020).

To generate RBM instances with a known global optimum and tunable hardness, we take
inspiration from the frustrated-loop algorithm used by the quantum annealing community to
benchmark the performance of quantum annealers (Hen et al., 2015). However, due to the
high connectivity and non-local coupling nature of the RBM instance, the frustrated-loop
algorithm in its original form is unable to provide sufficient hardness for instances at high
density; this is because the positive and negative edges will intersect frequently, resulting in
instances with a lower frustration index than the one desired (see Section 4.5). In this work,
we modify the loop algorithm in a way such that the frustration index can be controlled and
tuned directly (see Section 4.4), which allows us to generate instances of desired hardness.

This paper is organized as follows. In Section 2, we show explicitly the reduction of
a general weighted MAX-2-SAT problem into an RBM instance with Ising-type coupling
(Mezard and Montanari, 2009). In Section 3, we introduce the frustration index (Aref et al.,
2016) in the context of a gauged RBM, and discuss its connection to the population of local
minima. In Section 4, we introduce the random frustrated loop algorithm and propose a
general method for direct control of the frustration index. We also investigate some of
its interesting mathematical properties, and discuss the limitations of the algorithm in its
original form. In Section 5, we make improvements on the algorithm by giving the loops
certain geometrical structures, and we term the new algorithm structured loop algorithm.
We show analytically that the new algorithm has the ability to generate hard instances in
the regime of high loop density. In Section 6, we study empirically how the hardness of the
generated instances scale with RBM size, frustration index, and loop density. We observe
the hardness peaks (Gent and Walsh, 1994) with respect to the loop density for systems of
different sizes, and present a double phase transition (Lee and Yang, 1952) driven by the
frustration index in the hardness scaling behavior with respect to the system size. We also
provide empirical justification of the hardness improvement of the structured loop algorithm
over the random counterpart. In Section 7, we offer a heuristic discussion on some practical
applications of this work to the task of pre-training an RBM.

If the interest of reader is only the generation of frustrated RBM instances, we direct the
reader to Section 4.9 and 5.1 respectively for the random and structured loop algorithms,
where the pseudocode for the generation method is given. The MATLAB implementation
of both algorithms are available in the Github repository PeaBrane/Ising-Simulation.

2. From Weighted M AX-2-SAT to Bipartite Spin Glass

The goal of this section is to show that any given weighted MAX-2-SAT instance can be
reduced to an RBM instance with Ising-type couplings (meaning that the nodal values are
{—1,1}). Similarly, any given RBM instance can also be converted back into a MAX-
2-SAT instance. This means that we can effectively test the performance of a weighted
MAX-2-SAT solver on the corresponding RBM instance.
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The conversion from an RBM instance to a weighted MAX-2-SAT problem is relatively
straightforward and will be described in Section 2.5. The reduction from a weighted MAX-2-
SAT instance to an RBM instance is less obvious and is done in three stages. First, we reduce
a general weighted MAX-2-SAT instance into a QUBO (quadratic binary optimization)
problem (Boros et al., 2007). Then, we reduce the QUBO problem into a larger QUBO
problem of bipartite form. Finally, we convert the binary node values of {0, 1} into {—1,1},
and introduce two extra spins to incorporate the biases.

2.1. From Weighted MAX-2-SAT to QUBO

A QUBO instance is the problem of maximizing the following quadratic polynomial

Z Bix; + Z Z QijTiT; (2)

=1 j=1+1

over the binary variables x € {0, 1}", with the coefficients B; and Q;; being real. The reduc-
tion from a weighted MAX-2-SAT problem to a QUBO problem is rather straightforward,
and it simply involves converting each clause into the equivalent QUBO form

(x; Vxj) = x + x5 — zi25,
(ﬁmz\/azj) — 1 —x; + 25,
( j) — 1—.75j+Ii$j,

(max; V ﬂxj) — 1 —zx;.

The correctness of the conversion can be easily verified by treating a true assignment as 1
and a false assignment as 0, and plugging the corresponding binary values into the right-
hand side (RHS) of the above expressions. We then sum the QUBO terms corresponding
to all the clauses weighted respectively, and the resulting expression is in the QUBO form
if we ignore the constant offset. It is not hard to see that maximizing the summed weights
of the satisfied clauses is equivalent to maximizing the quadratic polynomial in Eq. (2).

2.2. Bipartite Conversion

A bipartite QUBO instance involves binary variables in two disjoint sets, which we can
denote as v € {0,1}"” and h € {0,1}, and every quadratic term in the polynomial is
composed of a variable from each set

Zalv,—i—th +ZZVV’JU’ s (3)

i=1 i=1 j=1

where v € {0,1}" and h € {0,1}™. The underlying bipartite graph is then K, ,, for this
bipartite QUBO problem.

For any given general QUBO instance (Eq. (2)) with n variables, we can always convert
it into a K, bipartite QUBO instance, such that the optimal truth assignment of one
set of variables, say v, corresponds to the optimal truth assignment of the original QUBO
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instance. We can let the bipartite QUBO instance be

E(v,h) :EO(V h) + C’(V h)

_ZBUH—Z Z Qijvihj + C(v,h), )

=1 j=141

with C'(v,h) being some penalty function (in QUBO form) ensuring the invariance of the
maximum under the bipartite conversion. Note that since both Ey and C are in QUBO
form, the addition of the two constitutes a QUBO instance.

The purpose of the penalty function C' is to ensure that v = h is satisfied at the max-
imum of E(v,h). This is done by constructing C(v, h) such that whenever an assignment
deviates from the condition v = h, the function generates a cost large enough to overcome
the increase in the value of the polynomial Ey(v,h) through the relaxation of the v =h
condition. This necessarily implies that the maximum of E(v,h) is the same as the maxi-
mum of E(v,v), with the latter being equivalent to the polynomial of the original QUBO
instance (3) up to a constant offset. Therefore, the maximum of (3) is the same as the max-
imum of (4), and the correctness of the reduction is guaranteed. An explicit construction
of the penalty function C'(v,h) is given in Appendix A.

2.3. Conversion to {—1,1} Binary Values

In this work, it is convenient to restrict the binary variables of the optimization problem
to be {v/,h'} € {—1,1}""™ 5o that the quadratic terms essentially describe Ising-type
couplings between the variables. We shall, from here on, refer to v’ as visible spins and h’
as hidden spins, with the two names descending from the naming conventions of statistical
mechanics and machine learning.

The conversion from the old binary variables, {v,h} € {0,1}""™ to the new binary
variables, {v/,h'} = {—1,1}"*™ values can be simply performed as follows

v = —1+2v, h' = -1+ 2h.

With this conversion, the original QUBO polynomial (see Eq. (4)) can be written in terms
of the new binary variables as

E(V,h)= i i
= ;aﬁz; v-{-Z;b—FZWUh,—{—ZZ Jotn,

i=1 j j=1 =1 i=1 j=1
na m anVU

Qg Z DV
= = i

=1 j=1

lh +1
+ZZW’JU+ 9

=1 j=1

We can define the new linear and quadratic coefficients to be a} = 1(a; + > Wig), by =

%(bj + >, Wij), and W’ = . Furthermore, we can choose to ignore the last
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bracketed term since it is just a constant offset independent of the {v’,h’}. The polynomial
can then be rewritten as

n m n m
CRAUESD SIEES SIS ) ST
i=1 j=1

i=1 j=1

which is in the same form as the original QUBO polynomial.

From now on, we will discard the prime symbols on the coefficients and the binary
variables in the polynomial expression, and we will always assume that the binary variables
take values {—1,+1}. As it is the convention in the field of machine learning, the RBM
energy is often equipped with a total negative sign, meaning that maximizing a QUBO
polynomial is equivalent to minimizing the corresponding RBM energy

E(V, h) = —(Z Wij’UZ'hj + Z a;v; + Z bjhj).
ij i j
We will also follow this convention in this paper.

2.4. Biases as Ghost Spins

The linear coefficients in the RBM energy are referred to as biases. The bias terms can be
interpreted as spins interacting with some external field. In some cases, it is convenient to
express this interaction as a two-body interaction between a spin and some imaginary fixed
spin, or ghost spins (Griffiths, 1967) with a coupling strength proportional to the external
field.

To be more precise, we can define additional weight elements, W; 11 = a; and Wiy, 4q j =
bj, and two additional spins, v,4+1 = 1 and hp41 = 1, so that the RBM energy can be

expressed compactly as
n+1m+1

E(V,h) = — Z Z Wl-jvihj.
i=1 j=1
In this form, the linear terms are absorbed into the quadratic terms, resulting in a fully
quadratic expression.

2.5. Inverse Conversion

In addition to converting a weighted Max-2-SAT instance into an RBM instance, the inverse
conversion is also possible. Given an RBM instance, one way that the conversion can be
performed is by breaking each Ising coupling up into two clauses, with the form of the two
clauses dependent on the sign of the coupling. The coupling is broken up as follows

Wijvihj . 2W2-j(vl- V —|hj) A 2Wij(—\’07; V hj) if Wz]Z 0,
(—QWZ‘]‘)(’W V hj) N (—QWij)(—"Ui V —|hj) if Wij < 0,
where +1 is interpreted as a true assignment and —1 is interpreted as a false assignment;
the A operation can be interpreted as a plus sign.
It can easily be verified from the RHS of the above conversion that when a bond is
satisfied (say v; = h; when W;; > 0), then both clauses will be satisfied, and if the bond is
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violated (say v; # h; when Wj; > 0), then only one clause will be satisfied. This results in
an energy penalty of 2|W;;| (corresponding to the violation of one clause) whenever a bond
is violated, and this agrees with the left-hand side (LHS) expression.

If we consider an n x m RBM with a weight assigned for every pair of visible and hidden
spins, then there are clearly nm bonds, which break up into 2nm clauses in this conversion
scheme. The clause density of the weighted MAX-2-SAT is then

2nm

A —

If m scales linearly with n, then the clause density is clearly of order O(n), which is extensive
with respect to the system size. In this regime of clause density, it is generally difficult to
generate planted instances of sufficient hardness if the clauses are formed in a completely
random fashion! (Krivelevich and Vilenchik, 2006). In Section 6.4, we address this problem
by presenting an algorithm that enforces certain weight structures on the RBM, which
results in hard instances at high clause density.

3. Frustration of RBMs

In this section we formulate an RBM instance entirely in terms of its corresponding weight
matriz, and express the action of a spin flip as vertex switching (Ellingham, 1991), which is
defined as the negation of the signs of a certain subset of weight elements. We then introduce
a measure of the hardness of an RBM instance known as the frustration index (Mezard and
Montanari, 2009; Aref et al., 2016) and discuss its relationship to the population of local
minima of the RBM instance. For simplicity, we assume from here on that the RBM is
unbiased (Fischer and Igel, 2012) (unless specifically mentioned), meaning that we can set
a = 0and b = 0. Note that most of the results derived in this paper can be easily generalized
to a biased RBM.

3.1. Vertex Switching as Local Gauge

Given any spin configuration s = {v,h} of the RBM, we can negate the signs of (or flip) a
portion of the spins and arrive at some new configuration s’ = {v/,h’}. This is equivalent
to negating a certain subset of the weight elements. We formally define the vertex switching
operation as follows.

Definition 1 Given an n x m RBM with weight matrix W and two states, s = (v,h) and
s’ = (v/, 1), we define the vertex switching operation, Ggg : R™™™ — R"*™  on the weight
matriz,

such that for Vi, j,
Wij’l);-h;- = Wlfjvihj.

1. In the context of k-SAT, this means that we are forming the boolean formula by uniformly sampling
clauses agreeing with the planted solution. In the context of RBM instances, this means that the
frustrated loops are dropped on the bipartite graph randomly (see Section 4.10).
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Remark 2 It is easy to verify that the switching operation is symmetric with respect to its
two subscripts, or

Gss = Gyss.

Furthermore, the operations form an abelian group action on W, or more specifically,
/)
Vs, s, 8", Gsgr = Gsg Gygr = GgrgnGsgr.

Given two states, s and s, it is convenient for us to refer to the set of matriz indices,
F={(i,j) | vih; = —vih;}, as the switching subset from s tos'. An alternative construction
of F is given in Appendiz B. The vertex switching operation on each weight element can
then be defined uniquely as

—Wi; if (Z7J) S
where F¢ = {(i,7) | (i,5) ¢ F}. In some sense, the switching subset F(s,s’) defines the

“transition” from state s to state s' (or the inverse transition). A visual representation of
the switching subset is given in Fig. 1.

G (Wij) = {

Given s and ', we let W' = G4 (W) be the transformed weight matrix under the vertex
switching operation. If we denote F as the energy function of the RBM with weights W,
and E’ as the energy function with weights W', then it is clear that E(s’) = E’'(s). Note
that the energy difference between the two states is given as

E(s') — E(s) = E'(s) - E(s) =2 Y Wyuihy, (5)
F(s,s")

noting the weight elements are summed over the switching subset F(s,s’).

3.2. Gauge Fixing the RBM

In this work, it is convenient to let s be the ground state of the RBM and s’ = +1, then
we refer to W/ = Gg1(W) as the corresponding weight matrix that has been gauge fized
(Kogut, 1979), such that E’(+1) = E(s) is the ground state energy. We shall refer to RBM
with weights W’ that has been gauged fixed as a gauged RBM; an equivalent definition of
a gauged RBM is given as follows.

Definition 3 An RBM is said to be gauged if its ground state is +1.

Remark 4 Note that given any state s and weight matrizc W with ground state sg, the
state can always be expressed equivalently in terms of a gauged RBM. To see this, we first
realize that

G1s(W) = Gss 0 G150 (W) = Gisg (W),

where W' is the gauged weight matriz. And in the gauged RBM, the state can be expressed
as the transition from the ground state via the switching subset F(sg,s). See Fig. 2 for a
visual representation of how a 2 x 2 RBM is gauged.
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Weight Matrix

I F F°
Flipped Visible Spins Flipped Once Flipped Twice
° F¢ F
Unflipped Visible Spins Not Flipped Flipped Once
J° J
Unflipped Visible Spins Flipped Hidden Spins

Figure 1: Vertex switching illustrated in terms of the weight matrix. The elements in the
lower-left block are not flipped. The elements in the upper-left and lower-right blocks are
flipped once. The elements in the upper-right block are flipped twice, hence remain the
same.

Figure 2: Gauging a 2 x 2 RBM; note that the new ground is the +1 state, and every edge
with only one end connected to a flipped spin is negated.
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We continue the discussion on certain properties of a gauged RBM in this subsection.
We first note that for a gauged RBM with weights W, the ground state energy is simply
the sum of all weights

_ZWijUi ZW” —|—1 +1 ZWZJ
(]

ij

From Eq. (5) we see that any other state s can be simply expressed as

E(s)=E(+1)+2)> W

We then see that the energy gap between an arbitrary state and the ground state is twice the
sum of the weight elements in the corresponding switching subset. Note that for a gauged
RBM, the sum of the weight elements of any switching subset must be positive, otherwise
we obtain a configuration with a lower energy than the ground state configuration, thus
contradicting the definition of a gauged RBM. We call this the positive-sum condition, and
it can be used to check whether an RBM is gauged or not.

In practice, it is convenient to first generate the gauged RBM weight matrix by ensuring
that the ground state is kept at +1 (see Section 4.2), and then the weight matrix can be
later processed to have any given spin configuration sg as the ground state by simply taking
the inverse gauge transformation. In fact, this procedure can be performed on any CSP
problem on a general graph structure that possesses local gauge symmetry.

As a historical sidenote, this procedure is referred to as gauge firing in statistical me-
chanics (Kogut, 1979), which is common in the study of gauge fields. For the Ising model
on a 2D lattice, there is a polynomial time algorithm for gauge fixing the lattice, as the
problem can be formulated equivalently on the dual lattice as minimizing the L1 norms of
strings (Fradkin and Susskind, 1978; Barahona, 1982). In fact, the problem of gauge fixing
is in fact equivalent to finding the ground state energy of the Ising spin glass, and becomes
an NP-hard problem for any non-planar graph (Istrail, 2000). This means that the RBM
cannot be gauge fixed efficiently unless the ground state configuration is known beforehand.
In other words, we are essentially gauge fixing the RBM prior to generating the instance,
and ensure that the gauge is not broken in the generation process. Instances resulting from
such generation procedures are referred to as planted instances (Feldman et al., 2018).

3.3. Metric

It is generally useful to define a metric (Simmons, 1963) on the spin configuration space of
the RBM, so we have a sense of how “different” or “far apart” two spin states are. A nailve
choice would be to count the number of spins that are different between the two states,
which is proportional to the L; distance or the so-called “Manhattan distance” (Krause,
1986). This metric is, however, not particularly insightful if the underlying graph structure
is bipartite. To see this most clearly, we can flip all the spins and arrive at a state that
is maximally far from the original state. However, since an unbiased RBM possesses Zo
symmetry flipping all the spins will leave the energy invariant. Therefore, given two states,
a more useful distance would be based on the corresponding switching subset, or |F(s,s’)|.

10



WEIGHTED MAX-2-SAT wiTH FRUSTRATED Looprs oN RBM

If we denote the number of visible spins different between the two states as n’ and
number of hidden spins different between the two states as m’, then we can write

|F(s,s)| = nm/ +n'm —2n'm/.
To normalize this quantity such that it ranges from 0 to 1, we define the distance as

sy — FES]
nm
Note that d generates a pseudometric space in which two states are distinguishable up to a
global spin flip, which is a desirable property. A detailed discussion of this distance is given
in Appendix B.

To see the usefulness of this metric, we first assume all the weight elements, W, and
spins, s, are iid (identically and independently distributed), where Wj; is normal with mean
w and variance o2, and v; or hj has equal probabilities to be +1 or —1. We can then show
that (see Appendix C)

Varpw sy (E(s') — E(s) | d(s,s) = d) = Anmd(p® + o),

so we see that the variance in the energy gap between two random states of a random RBM
is proportional to the distance between the two states.

3.4. Frustration

The frustration index of a weighted graph is defined at the ground state to be the ratio
between the sum of the magnitudes of the unsatisfied bonds and the sum of the magnitudes
of all the bonds (Aref et al., 2016). For a gauged RBM, it is simply the ratio between
the sum of the absolute values of all negative weight elements and the sum of the absolute
values of all weight elements

;o 2wy Wi _ 1Y Wy - Wy
> Wil 2 > Wil

For a randomly generated RBM, the gaps of the low energy states are closely related to the
frustration index, both in terms of distance and energy. To see this directly, we consider the
gap between the ground state and the first excited state (the state with the second lowest
energy). Clearly, the weight elements in the switching subset of the first excited state must
produce the smallest (positive) sum out of all the switching subsets, and a switching subset
with a greater distance is in general more entropically favored. With these two observations
in mind, we now focus on the two regimes of the frustration index, small and large.

In the regime of small frustration, we can, for the sake of argument, assume that f =0,
meaning that for a gauged RBM, all weights are non-negative. In this case, a farther
distance from the ground state would imply that the cardinality of the switching subset
is larger, corresponding to a larger number of weight elements to be summed over. And
since all weights are non-negative, this would mean that it is less likely for the sum to
be the smallest out of all switching subsets. In other words, the entropic favoritism of a
farther distance is suppressed by the requirement of having the smallest sum, so the distance

(6)

11
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between the ground state and the first excited state is usually close for an RBM with small
frustration.

In the regime of larger frustration, however, this suppression does not occur, which is
due to the abundance of negative weights, making it likely for a switching subset of a large
cardinality to still produce a small sum through the cancellation of positive and negative
weights. It is then probable that the distance between the ground state and the first excited
state to be far for a highly frustrated RBM. This is, in fact, a general feature of spin glasses
with typical graph structures (Mezard and Montanari, 2009).

3.5. Maximum Frustration

One interesting question (which as far as we know is open) is what the upper bound to
the frustration of an RBM of a given size is. This question is not only of mathematical
interest, but also of practical importance, since knowing the maximum frustration provides
a reference for evaluating the hardness of the generated instances to the maximal hardness
in terms of the frustration index.

If we consider the RBM instance to be the underlying bipartite graph of an arbitrarily
large quasirandom graph (Chung et al., 1989) (such as a large Paley graph (Blass et al.,
1981)), then it can be shown that there is no constant upper bound to the frustration index
except for the trivial 0.52. This can be shown as a corollary of the fourth theorem stated
and proved in Chung’s paper (Chung et al., 1989), which we do not state here as it is not
directly relevant to our work.

Note that the argument holds only if the RBM is assumed to be arbitrarily large, which
is generally unrealistic in the context of training an RBM. In Appendix D, we then consider
the special case of a 2 x m RBM, and show that the frustration index is bounded above by
0.25, which is the maximum frustration that the loop algorithm can generate (see Section
4.3).

3.6. Local Minima

For the purpose of this work, we define a local minimum to be an RBM state which does
not yield a lower energy by flipping any one spin. This means that if a local optimization
algorithm (which operates through single spin-flips) were to arrive at this state, it will
essentially become “stuck” without the aid of any stochasticity. Therefore, we see that
the population of local minima of a generated instance is an important characterization
of its hardness, as it relates to the likeliness for a local optimizer descending in its energy
landscape to be trapped, thus failing to discover the ground state (or the global minimum).

In terms of the weight matrix of an RBM, it is easy to see that if we gauge a local
minimum to be the +1 state, then the sum of any row or any column of weight elements
must be non-negative, which is a weaker condition than the positive sum condition for
the global minimum (see Section 3.2). This is because the ground state must be a local
minimum, but a local minimum is not necessarily the ground state.

2. If the frustration index is larger than 0.5, then the sum of all weight elements of the gauged RBM must
be negative. This means that we can take the switching subset to be the entire matrix, and break the
positive-sum condition.

12
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4. Random Frustrated-Loop Algorithm

The frustrated-loop algorithm in its original form was proposed to generate spin-glass prob-
lems with known solutions to test the performance of the D-Wave quantum annealer (Hen
et al., 2015). Although the algorithm was initially proposed to be implemented on a 3D
square lattice, it can be easily generalized to any graph as long as it is not acyclic (West
et al., 1996). For the purpose of this paper, we focus on the case of a complete weighted
bipartite graph (West et al., 1996), which, as shown in Section 2.2, is general enough to
represent a weighted MAX-2-SAT problem with any underlying graph structure.

Due to the non-local connectivity of a complete bipartite graph, the algorithm in its
original form is unable to generate sufficiently hard instances at high loop densities (see
Section 4.10), so we propose a modified version of this algorithm (see Section 5) that will be
more suitable for the generating hard instances on a complete bipartite graph. Before doing
that, however, we need to define a few concepts and recall how the original frustrated-loop
algorithm is implemented (Hen et al., 2015).

4.1. Cycle

In the language of graph theory, we can define a “loop” simply as a closed path on a graph
with non-repeating edges or vertices (a cycle) (West et al., 1996). On a bipartite graph, the
length of a loop must clearly be even, which we can denote as 2] (where | > 2 is a positive
integer). We again resort to using the terminologies of RBM, and refer to vertices in one
set as wvisible nodes and vertices in the other set as hidden nodes.

To generate a random loop on an RBM, we start from a random visible node i1, then
“walk” to a random hidden node ji, then return to the visible layer on another random
visible node 75, and so on. Note that for every iteration, the node selected must not be
already within the path, and the last iteration is a walk from j; back to the starting node,
i1, to “close the loop”. This cycle can be compactly expressed as

= J1— %2 —J2— ... — U —J— 1.
From an algorithmic standpoint, generating this loop involves very little computational
overhead as we can simply select [ nodes from the visible layer and [ nodes from the hidden
layer in some random order, and simply connect them based on the order that they are

chosen. Each edge in the loop can be assigned a weight as it corresponds to a two-body
interaction between some visible spin and a hidden spin.

4.2. Frustrated Loop

We provide here a brief discussion of the random frustrated-loop algorithm in its original
form (Hen et al., 2015). The purpose of the algorithm is to generate an RBM instance
with the ground state being s = +1. Trivially, one can set all the weights to positive.
However, as discussed previously, this will result in an instance with zero frustration, or a
ferromagnetic instance, and it will be extremely easy to solve. To make the instance non-
trivial, we have to intentionally introduce negative weights in such a way such the ground
state configuration +1 is kept invariant, so we do not lose track of the planted solution.
One way of doing so is to generate a loop of length 2/ and set all the edge weights in
the loop to 41 except for a single edge weight which we set to —1. Then it can be checked

13
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that the ground state energy of this RBM subsystem is E = — (20 —1)+1 = —2(1 — 1), with
a 2[-fold degeneracy each corresponding to one of the 2/ bonds to violate in this loop, with
+1 being one of the ground state violating the negative weight.

Now, we can drop multiple loops on the graph and “sum” them together, meaning
that when an edge is shared by multiple loops, we sum the weight contributions from the
multiple loops at that given edge. And if an edge is not a part of any loop, then we set
the corresponding weight to 0. It is shown that this procedure leaves the ground state +1
invariant (Hen et al., 2015).

Note that there is no obvious way to directly control the frustration index of an instance
generated this way. As we shall see in later subsections the frustration index is affected by
the lengths of the loops, and the way that the loops intersect. To address this problem, we
can fix the loop length to be the smallest possible value, so that the frustration contribution
of a single loop is fixed (see Section 4.3). Second, we relax the condition that the negative
weight in the loop has to be —1, which enables direct tuning of the frustration index (see
Section 4.4). Lastly, we prohibit the negative weights from overlapping with the positive
weights, so that the frustration index does not decrease with increasing loop density (see
Section 4.5).

4.3. Loop Atom

In the original algorithm, only loops above a certain length are kept (Hen et al., 2015),
because it is argued that small loops may lead to excessively difficult instances (Hen et al.,
2015). The reason for this is because smaller loops contribute a larger frustration. To see
this, consider a loop of length 2[, then we see that the frustration index of this subsystem

is given as (see Eq. (6))

f:}(l_Q(l—l)) :l’

2 21 21

implying that the frustration index scales inversely with the loop length. To keep the
frustration index in control, we then fix the lengths of all loops to the smallest value, which
is 4. The instances generated by these small loops are then expected to be hard, so we
allow the hardness to be tuned down by altering the magnitude of the negative weight (see
Section 4.4).

From here on, we refer to a frustrated loop of the smallest length as a loop atom. Note
that we are not sacrificing any generality by restricting the length of the loops to 4, as
a frustrated loop of any given length can be decomposed as the sum of loop atoms. To
see this, we consider a loop of length 2/ which we wish to decompose, which we denote as
i1—J1—...—ji—i1. Without loss of generality (WLOG), we assume that the edge with the
negative weight is j; —i1. Now, let a smaller loop of length 2(I —1) be i1 —j3 — ... — jj_1 — i1,
with the negative edge being j;_1 — i1, and let a loop atom be iy — 5,1 — 4; — j; — ¢1 with
the negative edge being j; — 1. Note that the two loops intersect at i1 — j;_1, with the
contributions from the two loops canceling out, resulting in the loop i1 — j1 — ... — ji — i1
with the negative edge being j; — i1, which is simply the original loop that we wished to
decompose. We can then repeat the decomposition on the length 2(I — 1) loop into a loop
of length 2(I — 2) plus a loop atom, and reiterate this procedure until the length of the loop
shrinks to 4. Thus, we see that a frustrated loop of length 2/ can be decomposed into [ — 1
loop atoms.
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Figure 3: Summing two-loop atoms results in a larger frustrated loop of length six. Note
that the frustrated edge from the left loop and the positive edge from the right loop cancel
out.

We then see that the loop atom is general enough to produce a frustrated loop of any
given length, and from here on, we shall always assume that an RBM instance is generated
only with loop atoms.

4.4. Tunable Frustration

Recall that the frustration index of a single loop atom is 0.25, which may give rise to
excessively difficult instances. To allow for tunability of the frustration index, we can relax
the condition that negative edge weight in the loop atom must be —1. Instead, we can set
the negative weight to be —a € [—1,0], which guarantees the satisfaction of the positive
sum condition (see Section 3.2). The frustration index contributed by this loop is then

given as
«

F=37o

with f increasing from 0 to 0.25 as we increase « from 0 to 1. The ground state energy of
an instance generated by N of such loops is then —N (3 — «), which we can use to verify
the correctness of the solver.

4.5. Intersection

Often times, two or more loops will “intersect”, meaning that they will share one or more
edges. They can either intersect constructively, meaning that all the weight contributions
at the intersected edge are of the same sign, or intersect destructively, meaning that not all
weight contributions are of the same sign. If we assume that the negative weight of the loop
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atom is —1, then each loop contributes —(1+1+1—1) = —2 units of energy to the ground
state energy, so if we have IV such loop atoms, then the ground state energy is simply —2N.
Therefore, the expression for the frustration index in Eq. (6) can be reduced to

—_

N
SRR i)

If none of the loops intersect or if the they only intersect constructively, then it is easy to see
that > |W| = 4N, resulting in a frustration index of f = 0.25, or the maximum frustration
that one can generate using loop atoms.

Although constructive intersections do not change the frustration index, destructive
intersections decrease the frustration index. From here on, the term “intersection” is used
to refer solely to destruction intersection. To see how the frustration index is affected by
intersections, we consider the scenario where we drop a new loop atom randomly on a graph
with existing loops, then whenever an edge weight of the new loop opposes the sign of the
existing weight on that edge, we denote this occurrence as an intersection event.

If we denote the number of intersection events on the RBM as Ny, then the frustration
index is given as

Y )
2N — Ny~
From Appendix E, we see that the expected number of intersection events, E(N), starts

from 0 and approaches N asymptotically from below as the number of loops increases. If
we were to approximate the expected value of the frustration index as

1
f=50

B(f) = 50~ v =5

then it is clear that the frustration index starts from 0.25 and approaches 0 as N increases,
meaning that the frustration index decreases with increasing density of loops.

Intuitively, this makes sense. If the loop density is small, then it is unlikely that the
loops will intersect, so the frustration will remain at 0.25. As we increase the loop density,
intersection events become more common, and the frustration index will decrease due to
cancellation of positive and negative weights. If the loop density is sufficiently high, then the
law of large numbers will guarantee that all weights will be positive as positive contributions
are three times as dominant than negative contributions, and the frustration index will
become zero. In short, the frustration index is inversely correlated with the loop density in
a random manner, so to prevent any decay and uncertainty in the frustration index, it is
necessary that we prohibit any form of destructive intersections.

4.6. Generality

An interesting question regarding the generality of the loop algorithm is whether it is
possible to generate any RBM instance (which WLOG we here assume to be gauged) of
frustration f < 0.25 with only loop atoms®. Before we extend on this discussion, we first

3. Note that it is inconsequential whether the negative weight of the loop atom —« is tunable or fixed at
—1, as a tunable loop atom can always be expressed as some conical combination of four loop atoms
with —1 negative weight.
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point out that it is trivially possible to generate any ferromagnetic instance (with all weights
being positive) using loop atoms, so the question can be formulated alternatively as whether
any gauged RBM matrix with f < 0.25 can be expressed as a conical combination of loop
atoms and a non-negative matrix. A conical combination is essentially a linear combination
with all the coeflicients being non-negative (Fenchel and Blackett, 1953), where the non-
negative coefficient condition is crucial here because we cannot “negate” the sign of a loop
atom as it will not guarantee invariance of the planted solution.

We now make the statement of this problem more concise. We can consider the weight
matrix w of an unbiased n x m RBM to be an nm dimensional vector. A loop atom 1. can
also be considered a vector in the same vector space, with most of its components being
zero. It can be checked that there are k = 4(’;) (7;) possible loop atoms. Then the problem
becomes whether we can find a set of K non-negative numbers {z1, x2, ..., zx } such that the
following is true

K
Z rrply < w.
k=1

If we denote L = [1,1a, ..., 1x], then the question can be made even more concise:
Does the system Lx < w have a solution with x >0 7 (7)
This is a system of inequalities, with its dual problem given as follows (Solow, 2007):

Does the system L’y > 0 have a solution with

(8)

wly <0andy > 0?

Exactly one of the two statements, (7) and (8) above, can be true at a given instance, so
proving statement (7) true is equivalent to proving statement (8) false. In Appendix F,
we explicitly show that statement (8) is false for a 2 x 3 RBM. The result can be easily
generalized to a 2 x m RBM. The general case of this question for an n x m RBM is (as far
as we know) still open.

4.7. Biases

In Section 2.4, we showed that any bias term can be expressed as an interaction between a
spin and some fixed spin v,41 or hy,y1. In previous sections, we limited our focus to only
unbiased RBM instances, so the frustration contribution of the loop atom is restricted by
the positive sum condition, under the assumption that all four spins in the loop atom can
be freely flipped, generating 8 possible switching subsets (up to a Zs symmetry). However,
if the RBM instance is biased and the loop atom contains one or more fixed spins, then the
number of switching subsets decreases, which relaxes the positive sum condition slightly,
and this will result in a possible increase in the upper bound of the frustration contribution
of the loop atom.

If the loop atom contains one fixed spin, which WLOG we assume to be hy,11, then
we can write the loop atom as iy — j; — i — (m + 1) — 43, with the two visible biases
generated by this loop being Wi, ;11 and Wi, ,m41. At first glance, the spin h,,1 being
held fixed seems to imply that the number of switching subsets decreases. This observation
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is however not true as the spin h,,+; can be flipped indirectly (up to a Zs symmetry)
through simultaneously flipping the spins v;,, v;, and hj;,. Therefore, the restrictions on
the weights of the loop will not change (see Section 4.4), and the frustration contribution
is still bounded above by 0.25.

If the loop atom contains two fixed spins, we can express the loop atom as i1 — (m +
1) — (n+ 1) — j1 — 41, which generates a visible bias, Wj, y,+1, and a hidden bias, Wy, 11 j, .
The element W41 m41 denotes a constant offset (independent of the spin states) and can
be thus disregarded. In this case, disregarding the null switching subset, we have only
22 — 1 = 3 possible switching subsets, and a possible weight assignment that satisfies the
“positive-sum condition” can be Wi, 41 = Wyp15, = 1and W, 5, = —afor 0 < a < 1.
The maximum frustration contribution of this loop atom (ignoring the weight W1 m+1)
is then

_ Q _1
o =max () = 5

which is greater than the previous upper bound of 0.25. This relaxed upper bound for
the frustration contribution of a loop atom to a biased RBM instance can be exploited to
generate instances with greater variation in hardness.

4.8. Extension to General Graphs

Our choice to study the frustrated-loop algorithm on a bipartite graph is due to the ease
of theoretical analysis, and its direct application to RBM pre-training (see Section 7).
However, the algorithm can be easily applied to any connected graph that is not acyclic
(West et al., 1996). One simply has to detect a sufficient number of random cycles on the
graph, and generate a frustrated loop on each cycle by setting one of its edges to —1 and
the rest to +1.

An efficient way for finding all the cycles in a graph is well known. We first begin by
finding a cycle basis of the graph, or the minimal set of cycles from which all cycles can be
generated through the symmetric difference operation (Whitesitt, 1995). The standard way
to find a cycle basis is from the spanning tree of the graph, and many refined algorithms
already exist for this purpose (Paton, 1969; Tiernan, 1970; Tarjan, 1973; Johnson, 1975).
After finding the cycle basis, we then take the symmetric difference between two or more
randomly selected basis cycles to generate a new random cycle (Mateti and Deo, 1976).

A cycle on a general graph structure can, in general, have any length greater than 3.
Note that a length-3 loop has a frustration contribution of % (in contrast to the maximal
frustration of % for a bipartite graph), meaning that it is possible to generate instances of
even higher frustration on a general graph than on a bipartite graph.

In terms of machine learning, this means that the frustrated loop algorithm can be
applied to a variety of neural network structures. For example, it can be applied to a deep
neural network (LeCun et al., 2015) which can be described as a k-partite graph, or a fully
connected Boltzmann machine which can be described by a complete graph (Salakhutdinov
and Hinton, 2009).
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4.9. Algorithm

A simple version of the frustrated-loop algorithm pseudocode is given in Algorithm 1. The
code allows for the basic functionality of independent tuning of the frustration index and the
loop density. As reasoned in Section 4.2, this algorithm prohibits destructive interference
events and only uses loop atoms with the negative weight of the loop being tunable.

Note that variations on the code can be made, depending on the purpose of the test.
Some examples are: the edge weights can be made normal random variables with small
standard deviations to introduce more randomness; constructive interference can be also
prohibited to have more consistent testing results; the bias terms can be intentionally made
larger to generate more difficult instances. We only show the basic version here to avoid
unnecessary complications.

Algorithm 1 Random Frustrated-Loop Algorithm

1: Initialize an empty n X m matrix W

2 o =3f/(1— f)

3: for iteration € [[1, Njyops|| do

4: Choose a random column j;

5 Choose two random rows i1, 49 such that
Wiljl > 0A Wi2j1 <0

6: Choose another random column js such that
Wiyj, 2 0 A Wiy, 20

T Wiljl — VViljl +1, I/V2'2J'1 A Wi2j1 -G

s Wiy = Wiggy + 1, Wigjy, <= Wiy, +1
: Generate a random state vector s € {—1,1}"t™
10: Gauge W such that s is the lowest energy state

NeJ

The algorithm can be easily modified to generate MAX-2-SAT instances of uniform
weights and tunable clause density. We begin by setting the parameter o« = 1 for all the
loop atoms, and prohibit constructive and destructive intersections of the loops altogether.
In this case, it is clear that the absolute values of all non-zero weights will be 1, and if
we convert the n x m RBM instance into a MAX-2-SAT problem through the procedure
described in Section 2.5, we will obtain a MAX-2-SAT instance with uniform weights. Since
the loops do not intersect, we see that the number of non-zero weights is exactly 4N, where
N is the number of loops. The clause density of the corresponding MAX-2-SAT instance is

then given as
8N
pP=—
nm

meaning that the clause density can be directly controlled by the number of loops.

4.10. Limitation

Even though the frustrated-loop algorithm is able to generate maximally frustrated in-
stances, this does not necessarily imply that the instances are sufficiently hard. This is
due to the randomness of the distribution of negative weights on the weight matrix, mak-
ing it unfavorable for the population of local minima. To be more specific, the expected
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value of each weight element for a maximally frustrated instance (setting @ = 1 for all
loop atoms) generated is 1/2 with a standard deviation of v/3/2, and if we were to find
the sum of a large subset of weights corresponding to a given switching subset F, the sum
is then %|F| £ @m , and this value is most likely positive for a large |F| as a result
of the LLN (Law of Large Numbers). Therefore, the sum of the elements in any row or
column (corresponding to a visible or hidden spin respectively) is positive w.h.p. (with
high probability), meaning that local algorithms based on single spin-flip updates will most
likely flip all the spins to the +1 ground state after a small number of sweeps, making the
instance incredibly easy. In Appendix G, we provide a formal discussion on the absence of
local minima for instances generated by the random algorithm at high loop density in the
limit of large system size. To generate sufficiently hard instances at high density, it is then
necessary to enforce certain structures on the loop atoms, such that the weight distribution
generated by the loop atoms is favorable for the population of local minima.

5. Structured Frustrated-Loop Algorithm

As mentioned in Section 4.10, to generate sufficiently hard instances at high loop density,
the loop atoms cannot be dropped on the weight matrix in a completely random fashion,
otherwise local minima will fail to populate the energy landscape, resulting in instances
that are incredibly easy. Therefore, we have to enforce certain conditions on the loop atoms
for the generation of hard instances in the regime of high loop density.

5.1. Algorithm

We first present the algorithm (see Algorithm 2), followed by an explanation of the advan-
tage of this algorithm over the random counterpart at high loop density. For the sake of
consistency, we prohibit the loops from intersecting (destructively). We start by dividing
the gauged RBM weight matrix into four blocks: the upper-left block Bj, the upper-right
block Bs, the lower-left block Bs, and the lower-right block By. The sizes of the four blocks
are parameterized by the factor d € (0, 1], with the size of block B given as

[(n=1)d]x[(m—-1)d],

and the sizes of the remaining blocks are in accordance with this. Note that this parame-
terization guarantees the non-triviality of the four blocks (meaning that no block is sized
0 x 0).

Note that a loop atom expressed on a weight matrix can be visualized as four elements
that form the vertices of a rectangle. To be more specific, the cycle i1 — j1 — 9 — jo — i1
can be expressed as a weight matrix with the indices of its non-zero elements being (i1, j1),
(i1,72), (i2,71), and (i2, j2), which can be connected to form a rectangle in the 2D Cartesian
coordinate system. In this algorithm, we classify the loop atoms into the following three
types (see Figure 4):

e Left Loop: Two vertices of the loop atom must be in Bj, and the other two vertices
must be in Bs.

e Upper Loop: Two vertices of the loop atom must be in By, and the other two vertices
must be in Bs.
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Figure 4: The weight matrix is divided into four blocks by horizontal and vertical dashed
lines. A left loop is on the left of the vertical line and crosses the horizontal line. An upper
loop is above the horizontal line and crosses the vertical line. A center loop crosses the
intersection of the two lines. Note that the negative weights are all located at the upper
left block of the matrix.
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Algorithm 2 Structured Frustrated-Loop Algorithm

_ =
WM 29

OON N NN N NN e = e
X TS FHEPYE QOO

Initialize an empty n X m matrix W

o =3f/(1- )

N1+ Ny + N3 = Nloops

d e (0,1]

ni = [(n—1)d}; mi=[(m—1)d]

for iteration € [[1, N1]] do
Choose a random row 41 in [[1,n1]];
Choose a random row iy in [[ng + 1,n]];
Choose two random columns ji, jo in [[1,m]]

such that:

Wiljl <0, and Wiljzv mle’ VVZ'QJ'Q >0
Wirji <= Wiyj =, Wiyjy <= Wiyj +1
Wi1j2 — VVilj2 +1, VVizjz A Wi2j2 +1

. for iteration € [[1, N2]| do

Choose two random rows iy,4s in [[1,n1 ]];
Choose a random column j; in [[1,mq ]];
Choose a random column jz in [[m; + 1, m ]
such that:

: for iteration € [[1, N3]| do

Choose a random row 4 in [[ 1, n1]];

Choose a random row iy in [[n1 + 1,n]];
Choose a random column j; in [[1,mq ]];
Choose a random column jg in [[m; + 1, m]]
such that:

. Generate a random state vector s € {—1,1}"*™
: Gauge W such that s is the lowest energy state
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e Center Loop: Every block must contain a vertex of the loop atom.

Furthermore, we restrict all the negative weights to block Bj, which effectively “concen-
trates” the negative weight elements into the upper left block. As we shall see shortly, this
concentration of negative weights is favorable for generating hard instances.

There are a couple of important points to make regarding the symmetry of this algo-
rithm. Note that if all four blocks are of the same size, then the choice of which block to
concentrate the negative weights to is completely arbitrary, since a matrix can always be
permuted such that the upper-left block becomes any one of the four blocks, and it is even
possible to “spread” the negative weights throughout the matrix through permutation. Fur-
thermore, if the negative weight of the loop atom is —1, then the parameterization of this
algorithm with d and 1 — d are equivalent up to a gauge transformation via the switching
subset By U By. Under this transformation, all non-zero elements of By become positive and
those of B4 become negative, meaning that the roles of By and By are effectively “swapped”.

5.1.1. MULTIPLE METASTABLE CLUSTERS

As an important sidenote, we point out that under the structured loop algorithm, only
one metastable cluster is guaranteed, with the remaining clusters arising as a result of the
stochasticity of the generation method, and such clusters can not be controlled directly. In
general, planting multiple metastable clusters is expected to be an incredibly difficult task
itself, as it is almost equivalent to the problem of pre-training the RBM (Hinton, 2002), a
task well-known to be intractable.

To see this, we note that planting an RBM instances where multiple metastable clusters
can be controlled is equivalent to constructing an RBM energy landscape such that the
local minima of the RBM energy, E(v,h), are realized at multiple fixed states. This is
equivalent to performing a maximum likelihood estimation on the weights of the RBM such
that certain states of the joint PMF, p(v,h) = e~ P('1) is maximized. If we were to plant
metastable clusters near visible states coinciding with the data set, then the amplitudes of
the marginal PMF, p(v), over the data set is also expected to be maximized, as the joint
and marginal distribution of a random RBM is expected to be highly correlated. The last
statement is highly non-trivial, and is explored in greater depth in another work (Manukian
et al., 2020), where this marginal-joint correlation is utilized to efficiently pretrain an RBM.

5.2. Degeneracy and Local Minima

Here, we consider loop atoms with three positive edges, +1, and one negative edge with
weight —a € [0, 1] (see Section 4.4). If we denote the numbers of left, upper, and center
loops as N1, N2, and N3 respectively, then it can be shown that

> Bi=(Ni+Na) = a(N1+ Na + Ny),
S By=2N2+Ns > B3=2Ni+N;, Y Bi=Ns.

If we choose F' = By U By to be the switching subset, then the sum of all its elements is

> F=(1-a)(Ni+ N+ Ny).
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We see that if a = 1, then this sum is zero, meaning that the ground state is at least two-fold
degenerate. In this case, we have two clusters of low-energy states, one concentrated near
the planted ground state, and one concentrated distance |F'|/nm from the ground state, and
the energy gap between the two clusters can be tuned through the parameter a. We can
then choose « to be a value arbitrarily close to 1 (but not 1 itself) so that the degeneracy
of F' is broken slightly, which results in instances that are able to “trap” a local solver in
the cluster far away from the planted ground state. We shall refer to this cluster as the
metastable cluster.

In Appendix H, we show that for sufficiently large number of center loops, N3, the
population of local minima is expected to be large. We also argue that for an instance class of
sufficiently large frustration, increasing the size parameter, d, increases the distance between
the two clusters, meaning that it is more difficult for the solver to escape the metastable
cluster and find the planted solution. In the next Section (Section 6), we show empirically,
using simulated annealing, that there is an increase in difficulty for the structured frustrated-
loop algorithm over the random frustrated loop algorithm in the regime of high loop density
and large frustration.

5.3. Extension to General Graphs

Similar to how a loop atom can be expressed on an RBM weight matrix as a rectangle, a
frustrated loop of length 4 can be expressed also as a rectangle on the adjacency matrix
(West et al., 1996) of a general graph. To be more specific, the cycle i1 — i — i3 — 14 — i1
can be expressed as a rectangle with indexes (i1,12), (i2,43), (i3,74), and (i4,71). Since the
graph is not necessarily bipartite, the visible-hidden ordering of the coordinate indices is not
well-defined, meaning that the rectangle is not unique. Alternatively, the rectangle can also
be (i1,14), (i4,13), (i3,42), and (i2,1), which is simply the “transpose” of the first rectangle
on the adjacency matrix. Therefore, to ensure the required symmetry of the adjacency
matrix, we express the loop atom as the sum of the two rectangle representations.

Note that similar to the RBM case, we can, WLOG, restrict all the negative elements
in the top-left block of the matrix. With this in mind, we can check that the transpose
of a left loop is simply an upper loop, and the transpose of a center loop is still a center
loop, with the negative edge remaining invariantly in the top-left block. Therefore, we see
that we can choose to ignore, WLOG, the upper loop, and generate half of the adjacency
matrix only with left and center loops, then take the sum of the generated matrix and its
transpose to form the full adjacency matrix.

6. Experimental Evaluation

In this study, we focus on generating n x n RBM instances (equal number of visible and
hidden spins) using the random-loop algorithm (see algorithm 1) and the structured-loop
algorithm (see algorithm 2). An RBM instance can be generated with three parameters:
the size of the system n, the frustration index f (see Section 4.4), and the loop density p,
where the loop density is defined as the ratio between the number of loops and the size of
the system

p=—.
n
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To study the hardness of the generated instance, we use simulated annealing (SA) (Kirk-
patrick et al., 1983) as a powerful stochastic optimizer to solve the generated instances
of different parameter triplets {n, f, p}, and we record the number of sweeps it takes for
the solver to find the ground state (see Section 6.1). The SA algorithm performs directly
on the problem in the original RBM form (see Section 2.3). For testing the performance
of a general MAX-SAT solver, one can easily convert the problem into the corresponding
MAX-2-SAT form.

The evaluation of the hardness of the instances can be roughly divided into three parts.
In the first two parts, we mainly study how the hardness difficulty scales with {n, f, p}
with instances generated with the random-loop algorithm. In the first part, we study how
the hardness varies with the loop density, and observe the expected easy-hard-easy transi-
tions, or hardness peaks (Gent and Walsh, 1994), with the peak amplitudes and locations
dependent on n. In the second part, we study how the hardness scales with n for different
frustration indexes f, and find that we can realize drastically different scaling behaviors
for small changes in the frustration index, which may be related to the characteristic phase
transition of the corresponding spin-glass model (Monasson et al., 1999). In the third part,
we perform a comparative analysis between the random- and structured-loop algorithms in
their abilities to generate hard instances at high-loop density. For the structured-loop al-
gorithm, we observe a second easy-hard transition beyond the first hardness peak, and also
find a doubly-exponentially scaling difficulty improvement factor (over the random loop
algorithm) with respect to the frustration index. All of the testing results can be easily
reproduced by using the MATLAB script main.m which includes the functionality of gen-
erating instances with both the random and structured loop algorithm with user-defined
parameters {n, f, p}.

6.1. Measurement of Hardness

The difficulty of a generated instance is measured by the number of sweeps it takes for the
simulated annealing (SA) algorithm (see Appendix I) summed over all runs, Ny, to find the
ground state configuration. A sweep is defined as an update over all the spins in the RBM,
and a run is defined as a sequence of sweeps before the spin configuration is reset. The
spins are reset if the solver fails to find the planted solution within the maximum allocated
number of sweeps in a given run, which we denote as Ngyeep. For each generated instance,
the solver is run on a single core of an AMD EPYC 7401 24-core processor. Since we are
only interested in the scaling behavior instead of the actual computation time required to
solve the instances, we choose the number of sweeps as a difficulty measure over the walltime
to reduce timing inconsistencies caused by various unrelated factors such as CPU idle time
(Hennessy and Patterson, 2011), inefficiency of the interpretive language (De Rose et al.,
1995), and parallel efficiency (Kumar, 2002). If one wishes to obtain an estimate of the
scaling behavior of the number of arithmetic operations required for SA to find the ground
state, one can simply rescale the number of sweeps by a factor of n? (Garey and Johnson,
1990), since the number of arithmetic operations required for a single SA iteration scales
as O(n?) (see Appendix I).

The SA solver we implement uses a linearly increasing 8 schedule from 0.01 to log(n),
such that the excited states are suppressed as % (White, 1984). This schedule is scaled by
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a factor of 1 in the high density regime to compensate for the increase in the magnitudes of
weights (see Section I). To obtain a fair measure of hardness, it would be most ideal to use
the optimal number of sweeps Ngyeep per run such that the total number of sweeps Ny is
minimized for each generated instance. If Ngyeep is too small, then it is very unlikely for
SA to discover the ground state in the highly non-convex energy landscape even if we were
to perform many resets, and if Ngyeep is too large, then the rate of 8 may be unnecessarily
slow for the given difficulty, meaning that the descent in RBM energy is unnecessarily
“careful”, making the solver take longer than needed to find the ground state. The task
of finding the optimal Ngyeep is difficult, so to have a reasonable estimate of the optimal
Ngweep for hard instances, we first carefully tune Ngyeep for easy instances (of small size
n and small frustration f), and try to see how Ngypeep scales with n and f. The optimal
Nyweep parameter can then be extrapolated for larger n and f. More details of this method
is given in Appendix J. In the script main.m (Pei, 2019), Ngyeep is by default set to a value
optimal for solving instances at the hardest loop density for every n and f (see Section 6.2
and Section 6.3).

6.1.1. SIMULATED ANNEALING AS PROXY

We here make some brief comments justifying the use of single-spin SA for the hardness
measurement of RBM instances, mainly by heuristically arguing that standard global algo-
rithms are not expected to provide a significant improvement in performance, if any, over
the single-spin SA on a bipartite constraint graph. We first note that since an RBM is
highly connected, any attempt to perform a cluster update (Wolff, 1989; Zhu et al., 2015)
will likely be trivial, meaning either the clusters will be very small (at high temperature) or
a cluster will span almost the entire RBM (at low temperature), which is effectively a small
cluster up to the global Zy gauge. This is because the percolation threshold for a randomly
weighted bipartite graph is sharp (Bollobés et al., 2010), and therefore cluster updates are
not expected to provide any considerable improvement, if any, on the mixing rate of the
simulation. As for algorithms based on the message passing techniques (Braunstein et al.,
2005), a spin update follows roughly an update rule in the orthant dynamics generated by
spins distant 2 away (or next-nearest neighbors) on the graph. In addition, since the chro-
matic number is 2 in a bipartite graph, a visible spin update will be informed by messages
originated from all the other visible spins through the hidden layer. This means that in
a complete bipartite graph, every spin will see approximately the same message, and an
iteration of spin updates over the entire RBM will likely be trivial.

Finally, we point out that the hardness of the instance class is measured from the
TTS (time to solution) statistics of a general incomplete stochastic solver (with the total
number of SA sweeps being the proxy), meaning that the solver does not have to prove the
optimum (Prestwich, 2008), as it is able to check continuously against the planted solution
and terminate immediately after the solution is reached. This TTS hardness measure is
separate from the hardness of proving the optimum (required by a complete solver), and
serves as a more accurate measure of the non-convexity of the energy landscape, whereas
the hardness of proof generally scales with the clause density, which may not be directly
related to the shape of the energy landscape. Most open-source incomplete solvers employs
some implementation of WalkSAT as a subroutine (Sorensson and Een, 2005; Audemard
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and Simon, 2009; Martins et al., 2014), which is equivalent to the SA algorithm we use for
this work.

6.2. Hardness Peak

From preliminary studies with a small sample of instances, we find that the locations of the
hardness peaks for different system sizes are rather insensitive to the frustration index or the
reset schedule, Ngypeep. Therefore, we choose to perform this study with a frustration index
of f = 0.05 so that the instances are easy enough to be solved within a reasonable time
window, meaning that we have the ability to solve a larger number of instances to reduce the
uncertainty of the hardness measurement. As the first iteration of the optimization of SA
(see Appendix J), we optimize Ngypeep for solving instances generated at density p = 0.47,
corresponding to the locations of the hardness peaks for small system sizes.

We attempt to locate the hardness peaks for instances of sizes ranging from n = 30 to
n = 200 in increments of 10. For each size n, we perform a hardness measurement for the
following densities

p=0.1x112"  ke]l[1,20],

which is a geometric series from 0.1 to around 1, so the spacing of the densities will be
uniform on a log scale. Measuring the hardness over these densities allows for a rough
estimate of where the hardness peaks are located. For each n, we then “zoom in” on the
range of densities where the peaks are expected to be in, and measure the hardness over this
range with a resolution of 0.005. This finer resolution allows us to pinpoint more precisely
the location of the hardness peaks.

For each tuple {n, p}, we generated 10,000 different instances and solve them with SA
to estimate the sample distribution of Ny, from which we extract the 95th percentile of
Nior under the assumption that the distribution is approximately log-normal (Heyde, 1963)
(see Appendix J). This is then reported as the measure of hardness at {n, p}.

The relationship between the hardness and loop density for various n is shown in Figure
5. Note that for a larger system, the hardness peak is located at a smaller loop density, but
the peak density appears to plateau to a constant value as the system size is increased. If we
formally define the peak density, ppeqr(n), as the density at which the generated instances
result in the highest 95th percentile of Ny, we then find that the relationship between the
peak density and the system size is well-fitted by the following decay function

ppear(n) = 0.3035 + 0.2952 x exp(—0.0196n). (9)

The appearance of the hardness peaks is expected and is common in most planted
constraint satisfaction problems. In the regime of low loop density, the loops do not interact
and the system can be factored into subsystems generated by individual loops. When there
are too many loops, then the population of local minima in the energy landscape is very
low (see Section 4.10). Note that unlike the original frustrated-loop algorithm used by
the quantum annealing community (Hen et al., 2015), the loops in our algorithm do not
intersect, so the decrease in difficulty is not attributed to the decrease in frustration due to
destructive intersections (see Section 4.5). We thus attribute the decrease in difficulty solely
to the random nature of the distribution of the negative weights, for which the LLN will
almost always guarantee the absence of local minima in the regime of high loop density (see
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Figure 5: Total number of sweeps, Ny, versus loop density, p, plots for different values
of system size, n. Note that the data points are more concentrated near the hardness
peaks for higher resolution. Several plots for n > 100 are omitted in the Figure for visual
clarity, but they are nonetheless used to perform the fitting. The dashed red line shows
the exponential fitting p(n) for the relationship between the loop density of the hardness
peak and n, Eq. (9), which appears to plateau to a value around 0.3 as the system size is
increased.

28



WEIGHTED MAX-2-SAT wiTH FRUSTRATED Looprs oN RBM

Appendix G). Therefore, by using the structured-loop algorithm as described in Section 5,
it is possible to retain the difficulty at high loop densities by enforcing certain structures
on the loops. An empirical study of the hardness of structured loop instances in the high
density regime will be presented in Section 6.4.

6.3. Difficulty vs. Frustration

After determining the peak density ppeqr(n) for each n, we now have the ability to generate
the hardest instances for a given pair of {n, f}. This allows us to study the scaling behavior
of the hardness over the hardest instances with respect to n for different frustration indexes
f. For this study, we use the following 8 frustration indexes

f ={0.05,0.10,0.15,0.2,0.21,0.22,0.23, 0.24}.

For each f, we choose an appropriate series of n to estimate the scaling behavior. Since the
higher the frustration, the more difficult the instances, only small values of n can be used
for highly frustrated instances to guarantee finding the solution within reasonable time.

For this study, we use a sweep schedule Ngyeep that is optimized for solving the hardest
instances (see Appendix J). The sample size of the instances for each pair of {n, f} ranges
from 100 to 10000 depending on how hard the instances are (the harder the instances, the
smaller the sample size). As the 95th percentile estimate for Ny is noise dominated for
small sample size, we instead opt to use geometric mean as a more reasonable measure of
hardness.

The results are shown in Figure 6, where the data points are fitted with either a poly-
nomial or exponential function depending on the convergence of the fitting. The inter-
esting result is that by tuning the frustration index, we can achieve different scaling laws
for the difficulty. For low frustration indexes, or f = {0.05,0.10,0.15}, the scaling ap-
pears to be quadratic. For medium frustration indexes, or f = {0.2,0.21}, the scaling
follows a sub-exponential trend of the form Ae’v™. And for high frustration indexes, or
f = {0.22,0.23,0.24}, the scaling follows the standard exponential growth of the form
Aebm.

The drastically different scaling laws that we can achieve by only slightly varying f seems
to hint at two discontinuous phase transitions in complexity driven by the frustration index,
which may be potentially related to the thermal phase transition of the corresponding spin
model. Note that phase transitions in classical (Lee and Yang, 1952) or quantum spin-glass
models (Sachdev, 2007) have been well-studied, and in the latter case, it is known that a
quantum phase transition can be driven by the strength of the frustrated coupling terms
(Chen et al., 2007). However, we believe that such two-stage discontinuous phase transition
has not been previously studied in any classical spin model. Therefore, this empirical result
hints that the bipartite Ising spin glass may be an exceptional spin model rich in critical
phenomena.

6.4. Structured-Loop Algorithm

In Section 5 and Appendix H, it is argued that the structured loop algorithm is capable of
generating hard instances at extensive loop density, and the hardness of the instances can
be further increased by concentrating the negative weights into a small block of the weight
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Figure 6: Scaling behavior of the difficulty with respect to system size, n, for different
frustration indexes, f. Note that the plots are on a log-log scale such that a polynomial
scaling behavior will appear as a straight line, and an exponential scaling behavior will
appear as a curve. The solid curves shown in the Figure are fitted curves for the estimated
geometric mean of the Ny, samples. The shaded area denotes the deviation from the mean
by 0.5 times the estimated standard deviation in log space, which corresponds to roughly
the 31th to 69th percentile estimates assuming an underlying log-normal distribution. For
f =1{0.05,0.1,0.15}, the data points are well fitted by a polynomial function of the form A"
with parameters {A,b} = {0.0225,2.0259}, {0.0284,2.0168}, {0.0591,1.9150} respectively.
For f ={0.2,0.21}, the data are well fitted by an exponential function of the from AtV
with parameters {A,b} = {6.2343,0.7227}, {1.0184,1.2283}. For f = {0.22,0.23,0.24},
they are well fitted by an exponential function of the form Ae®® with parameters {4,b} =
{30.7289,0.1579}, {13.3808,0.2564}, {5.9172,0.3738}
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Figure 7: The hardness peaks of instances generated by the structured loop algorithm,
measured as the median statistics, for a 40 x 40 RBM at frustration f = 0.23, with the
loop density varied from 0.01 to around 103. Various parameters of the negative block size,
indicated in the legend as d, are used to generate different hardness variation behaviors,
along with the regular hardness peak for the random loop algorithm shown as reference
(indicated as 'rand’). Instances generated at d = {0.2,0.3} display two hardness peaks,
with the right peak being at an extensive density (~ 40), while instances generated at
d = 0.9 display one prominent hardness peak at unitary density (~ 1). In general, instances
generated with the structured loop algorithm are harder in the high density regime relative
to the random loop algorithm.
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matrix. This section mainly serves as an empirical support of this claim. The testings are
done on an 40 x 40 RBM at frustration f = 0.23, and the loop density is varied over the
following geometric series from 0.1 to around 1000,

p=01x112" ke [[1,80]].

For each {n, f, p} triple, 10000 RBM instances are generated independently to ensure accu-
rate percentile statistics. In this study, we use the median TTS as the measure of hardness,
as higher percentile statistics (above the 95th percentile) appears to be extremely sensitive
to the optimization parameters (see Appendix J).

Note that a higher frustration index is chosen as it is required for the hardness to
be maintained in the high density regime, in addition to display a more prominent easy-
hard-easy-hard-easy transition. In Figure 7, the structured loop algorithm is compared
against the random loop algorithm, and a drastically different hardness variation behavior
for different frustration blocking scheme is observed, which suggests a possible complexity
phase transition induced by the size of the negative block.

In essence, the frustration index deviating from the maximal value of f = 0.25 explicitly
breaks the symmetry between the planted ground state and the planted metastable cluster
with respect to the generation method (see Section 5.1), thus breaking also the symmetry
of frustration blocking scheme between d and 1 — d. The hardness variation behavior then
changes critically at the threshold of d = 0.5, at which point the hardness peak breaks into
two, though an analytic description of why this occurs appears to be difficult. In addition,
a larger deviation from the d = 0.5 equal blocking scheme appears to result in harder
instances, and an a heuristic argument is given in Appendix G that attempts to explain
this behavior in terms of local field dispersion.

7. Connection to RBM Pre-training

The focus of this work is mainly on generating weighted MAX-2-SAT instances of tunable
difficulty with frustrated loops, and the RBM terminology was used so far mainly as a
convenient denotation for a general bipartite spin-glass with Ising-type coupling. Going
beyond terminology, there are indeed several substantial connections of this work to the
field of machine learning, with some directly applicable to using RBM for unsupervised
learning (Fischer and Igel, 2012). These applications form two main branches, one practical
and one heuristic.

The practical application is that minimizing the RBM energy is equivalent to finding
the mode of the RBM model distribution, which can be used to make highly informative
weight updates during the pre-training (Manukian et al., 2020), which improves stability
of the pre-training routine and enables the discovery of a model distribution with a much
lower KL-divergence (against the data distribution) compared to standard methods such as
contrastive divergence (Hinton, 2002). The heuristic connection is that the frustration index
of the RBM contains much information on the behavior of the RBM during pre-training,
meaning that it is possible to use the frustration index as an important indicator for certain
properties of the RBM (see Section 7.2) as a monitoring parameter for the RBM during
training, in place of the KL-divergence whose evaluation is impractical for large system size.
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These connections are studied in more depth both analytically and empirically in another
work (Manukian et al., 2020).

7.1. Pre-training Using the Mode

During pre-training, a gradient descent on the Kullback-Leibler (KL) divergence between
the data and model distribution generates the following update rule for the RBM weights
(Fischer and Igel, 2012):

AW, = p((vihj) p — (vilj) pp)s

where 11 is the learning rate. The first term denotes the expected value of v;h; over the data
distribution, and the second term denotes the expected value over the model distribution.
There are two main problems with this update rule. First, the KL divergence (as with any
other loss function in machine learning) is highly non-convex (Friedman, 2002), meaning
that following the gradient will likely lead to a local minimum instead of the global one.
Second, the model term (the second term in the update rule) is notoriously difficult to
compute exactly since it requires summing over an exponential number of configurations
(Fischer and Igel, 2012):

<Uihj>M = Z p(V,h)’UZ‘hj,
{v,h}

where the expression can be simplified by tracing out the hidden layers, but still leaving
an exponential number of visible layer configurations. In standard practice, this term is
approximated using contrastive divergence (Hinton, 2002), which is a form of Markov chain
Monte Carlo (MCMC). It is well known that CD is a highly unstable method and converges
very poorly (Salakhutdinov, 2010).

The reason why CD performs poorly is because it is prone to being “frozen” under
one of the modes in a multi-modal distribution, and since it is energetically expensive to
transit to another mode through single node flips, this essentially “traps” the Markov chain
and prevents it from effectively exploring the entire probability distribution (Geyer, 1991).
One obvious solution is to reinitialize the Markov chain at the global mode whenever it is
trapped, and this has in fact been shown to be effective in improving the mixing time of
the Markov chain (Sminchisescu and Welling, 2011; Lan et al., 2014). Recently, we have
discovered that the usefulness of the mode goes beyond the effective re-initialization for the
MCMC. In fact, using the mode directly to update the weights guarantees stability of the
training routine and an effective exploration of the probability distribution, which results
in the discovery of a model distribution with drastically lower KL-divergence compared to
CD. We refer to such weight update method as mode training, which we explore extensively
in our other work (Manukian et al., 2020).

7.2. Frustration Index as an Indicator

During RBM pre-training, it is ideal that the KL divergence (Kullback and Leibler, 1951)
can be directly monitored, as it is an indicator of how “close” the data and model distribu-
tions are, so we can observe directly the performance of the pre-training method. However,
computing the KL divergence is usually impractical for large systems since it requires com-
puting the partition function which involves an exponentially scaling number of sums, and
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Figure 8: The evolution of the KL-divergence and frustration index during the pre-training
routine of 10000 randomly initialized RBMs, with the solid line representing the median
statistics and the shaded area enclosing the 30-70 percentile. The RBM size is 9 x 12, and
the data set consists of 9 visible configurations of equal weights generated by a shifting bar
of length 5 (Stoianov et al., 2002). The pre-training algorithm employs the standard CD-1
estimation of the gradient (Hinton, 2002), with the learning rate decreasing linearly from
5x 1072 to 5 x 10~* over 1000 epochs, and the full data set being used for every epoch.
The computation of the KL divergence and frustration index is exact.
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current methods for estimating the KL divergence are mainly based on AIS (annealed im-
portance sampling), which are rather inaccurate (Pérez-Cruz, 2008).

Alternatively, the frustration index can be used as an indicator of the evolution of
the model distribution. Note that during pre-training, the model distribution evolves to
approximate the data distribution, which is generally a distribution with multiple dominant
modes far apart from each other (Fischer and Igel, 2012). This is equivalent to an RBM
energy landscape with low energy states separated closely in energy but far in distance. In
Section 3.4, we argued that this is a characteristic of a highly frustrated system. Therefore,
during pre-training, the frustration index is expected to rise to a relatively large value, and
if it does not, then it may indicate that the model distribution is not converging to the
data distribution. Computing the frustration index is computationally inexpensive once
the minimum energy configuration is known (Aref et al., 2016), so the evaluation of the
frustration index can be scheduled to occur in conjunction with finding the global mode®*.

In Figure 8, we plot the evolution of the frustration index as we pre-train a 9 x 6 RBM
using the standard CD-1 gradient estimate (Hinton, 2002), and we observe a clear increasing
trend of the frustration index with the exception of a small dip in the middle of the pre-
training routine. The frustration index is initially zero, and grows until it plateaus to a
value around 0.18, which is at the critical value where difficulty scaling behavior transits
from polynomial to exponential (see Fig. 6). A possible interpretation of this phenomenon
is that the effectiveness of training the RBM with the mode is exchanged as the hardness of
finding the mode of the PMF itself, which is expected from the “no free lunch” theorem of
optimization algorithms (Wolpert et al., 1997). Nevertheless, from a practical standpoint,
if we were to use a highly effective MAX-SAT solver, obtaining a lower KL divergence using
the mode-training method may be well worth the computational expense of finding the
global mode.

In current practices, the goal of pre-training the RBM serves the purpose of acquiring
better initial weight values for the supervised learning stage when the data labels are scarce
(Erhan et al., 2010). On the other hand, the goal of supervised learning is to increase the
certainty of the activation of out-nodes such that they correspond to the data labels (LeCun
et al., 2015). However, it was recently discovered that pre-training of an RBM is also capable
of achieving a higher certainty of the activation of hidden nodes (Coates et al., 2011), and in
our other work (Manukian et al., 2020), we explore deeper the correlation between the nodal
activation in the hidden layer and the frustration index of the RBM. A mediator of this
correlation may come in the form of information compression, in the sense that the increase
of the activation of hidden nodes is potentially related to the drift-diffusion transition on the
information bottleneck (IB) curve (Shwartz-Ziv and Tishby, 2017), which itself may parallel
the phase transition phenomenon driven by the frustration index (see Section 6.3) as the
RBM is pre-trained. It will be interesting to explore these potentially useful directions
of study even further to establish the connection between the frustration index and the
dynamical properties of the RBM during unsupervised and supervised training.

4. Note that finding the ground state of the RBM exactly, though easier than computing the KL-divergence,
is still an NP-hard problem. Practically speaking, we only have to find a dominant state with energy
sufficiently close to the ground state, such that the frustration index can be effectively approximated.
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8. Code Availability

A MATLAB implementation of the random and structured loop algorithm is available in
the Github repository PeaBrane/Ising-Simulation, which also includes the code for the
SA solver used to perform the hardness measurement. In addition to the codes used for
this work, the repository also contains codes for generating hard instances on a 3D cubic
lattice (Hen et al., 2015; Hamze et al., 2018), and standard algorithms for the simulation
of the lattice (Zhu et al., 2015). Scripts for converting the instances directly into a (w)cnf
file is also available in the repository.

9. Conclusion

In this paper, we reformulated the frustrated-loop algorithm, originally conceived to test
quantum annealers, in a way such that it can be directly applied to generating weighted
MAX-2-SAT instances of tunable hardness. In addition, we introduced the structured-loop
algorithm for the purpose of extending the hardness into the high density regime. An unex-
pected discovery is the possible two-stage phase transitions in the hardness scaling behavior
driven by the frustration index, which will hopefully motivate further theoretical work on the
characterization of spin-glass models via the frustration index. Since both algorithms are ca-
pable of generating instances of tunable hardness over a wide range of clause densities, they
can be used in conjunction to effectively evaluate the performance of a wide class of solvers
(Argelich et al., 2008). It would be also interesting to test unconventional solvers that oper-
ate under continuous-time dynamics (Molnar and Ercsey-Ravasz, 2014), and solvers based
on the memcomputing architecture (Traversa and Di Ventra, 2017; Traversa et al., 2018)
that employs memory-assisted dynamics to induce long-range correlations of spins (Sheldon
et al., 2019). We leave these testings for future work.
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Appendix A. Penalty Function

In this section, we show the existence of a penalty function C(v,h) in the conversion from
a general QUBO instance to a bipartite QUBO instance such that the optimum is left
invariant. We formalize this statement as follows.

Proposition 5 Given a QUBO instance
ZB z; + Z Z Qz]xzxj
=1 j=1+1
with (any one of ) the mazimum (mazima) being x'. If we let
C_Z’BH‘Z Z |Qi;l,
=1 j=1+1
and the penalty function be
C(v,h) =2¢Y (v; + hi — vihy),
i=1
then (one of ) the mazimum (mazima), {v',h'}, of the bipartite QUBO problem,
E(v,h) = Ey(v,h) + C(v,h),

must satisfy v/ =h' = x', where Ey(v,h) is given as

ZBU1+Z Z ngvz

i=1 j=1+1

Proof WLOG, we can assume that the original QUBO problem is non-degenerate so there
is only one maximum. We first begin by noting that

0 if’UZ‘ :hi,

v + hi —vih; =
{—1 it v # hi.

From this, we see that the maximum of the bipartite QUBO problem must satisfy v/ = h'.

If this were not the case, then we let v/ = h’ be the optimum with the condition
v = h explicitly enforced, and v/ = h” be the optimum without enforcing any condition,
so E(v',h") > E(v',h’). We denote I = {i | v/ # h!'} as the set of indices where v" and
h” differ. WLOG, we let I = [[1,n"]], where n” < n. Then we have

B, 1) = B(v', 1) <|Fo(v', )| + | Eo(v", b")| — 2n'c
<c+c—2n'c=2(1-n)c
<0,
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where the second inequality is due to the fact that for V{v,h}, |Ey(v,h)| < ¢ by the
triangle inequality. This contradicts with the assumption that E(v”,h"”) > E(v’, h’), so the
maximum of E(v,h) must satisfy v = h.

This implies that

{v/,h'} = argmaxg, p1 F(v, h) = argmaxy, y, | y=n E(v, h),
so we can find the maximum of E(v,h) by first setting v = h, which gives us
n n m
E(V,V) = ZBﬂ)i + Z Z Qijvivj - n,
i=1 i=1 j=i+1

which is equivalent to the expression for the original QUBO energy, so we have v/ = h’ = x'.
|

Appendix B. Switching Subset and Distance

Given two states, s = (v, h) and s’ = (v/, h'), it is convenient to denote the indices of visible
spins that are different between the two states as

I(s,s") = {i } v # Ui},
and the indices of differing hidden spins as
J(s,8)={j ’ hj # h}}.
Furthermore, we denote the cardinality of the two sets as, n’ = |I(s,s’)| and m’ = |J(s,s’)|,

which represent the numbers of differing visible and hidden spins respectively.

Under this denotation, we can write the switching subset as
F(s,s) = (I x J%) U (I° x J),

where I¢ = [[1,n]]/I and J¢ = [[1,m]]/J. It is then obvious that the cardinality of the
switching subset is given as

|F(s,s')|=n'x (m—m')+(n—n") xm/

!/ / / !/
=nm+nm —2n'm’,

so the distance is given as

F / / / / /
d(s,s) = L& _n mln'm’
nm n m nm

We now show that the space defined by this distance is a pseudometric space, and states in
this space are distinguishable up to a global spin flip.
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Proposition 6 d(s,s’) is a pseudometric, with d(s,s’) = 0 if and only if {n',m'} = {0,0}
or {n',;m'} = {n,m}.

Proof Since the distance function d(s,s’) is just |F(s,s’)| divided by some constant factor,
it is sufficient to prove the proposition for |F'(s,s’)|. We first show the second part of the
proposition. Note that the function,

|F(s,s)| = n'm +nm' — 2n'm/,

evaluates to 0 if {n’,m’} = {0,0} or {n’,m’} = {n, m}. To show the converse, we note that
the equation

/ / / /
nm-+nm —2n'm

=n'(m —m') + (n —n")Ym’' =0,

under the conditions n > 0, n > n' >0, m > 0, and m > m’ > 0, has solutions {n',m'} =
{0,0} and {n/,m'} = {n,m}.

To show that |F(s,s’)| is a pseudometric, we have to show that it is non-negative,
symmetric, and satisfies the triangle inequality. First, we note that |F(s,s’)| is trivially
non-negative as it is a cardinal number. Second, we have |F(s,s’)| = |F(s/,s)], as the same
spins are flipped to make the forward and reverse transitions, s — s’ and s’ — s.

Finally, we have to show that given any three states, {s,s’,s”}, the inequality |F'(s,s”)| <
|F(s,s")| 4+ |F(s',s")| is true. We first note that

F(s,s") = F(s,s) AF(s',s"),
where /A denotes the symmetric difference operation. We then have
F(s,s") C F(s,s') U F(¢',s"),

which directly implies the inequality stated above. Therefore, |F(s,s’)| is a pseudometric. B

Appendix C. Energy Gaps in a Random RBM

Proposition 7 Given an n xm RBM with iid weights, W, normally distributed with mean
w and variance 0. For two random states {s,s'} of distance do apart, the expected energy
gap between the two states is given as

Biw,ss) (E) — E(s) | d(s.s) = do) =0,
and the variance is given as
Var(w s s} (E(S/) — E(s) | d(s,s') = do) = dnmdo(u? + o?).
Proof Let F(s,s’) be the switching subset from s to s, then from Eq. (5), we have

E(S,) — E(S) =2 Z Wijvihj.
F(s,s")
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Note that the distance condition is equivalent to |F'| = nmdp, then the expected energy gap
is given as

E{W7S7F} (2 Z Wijvihj ‘ |F| = nmdo)
F
ZQZE(WijUih]‘).
F

However, E(Wj;vih;) = E(W;;)E(v;)E(h;) = 0, so the expected energy gap is zero.
The conditional variance is given as

Var (2 Z W,U’Uihj) = E<(2 Z Wijvihj)2>

= 4EF< Z Z E{W,s} (WijWi/j/UiUi/hjhj/> } ‘F’ = nmd())
(i,7)EF (i',j))EF

- 4EF(ZW5 | |F| = nmdo)
F
= dnmdy(p® + o?),

noting that E(vjvyhjh;) = 0;70,;, which evaluates to 1 only when ¢ =4’ and j = j/, and 0
otherwise. |

Appendix D. Maximum Frustration of a 2 x m RBM
Proposition 8 The upper bound of the frustration index of a 2 x m RBM is 0.25.

Proof We first consider a 2 x m RBM weight matrix that is gauged such that the ground
state is +1, then clearly the sum of each column has to be non-negative, so we cannot have
two negative elements in the same column. This means that we can permute the rows and
columns such that all the negative weight elements are concentrated on the upper left and
lower right corner. We can then divide the matrix into six blocks,

By =1x [[1,777,1“ By =1x [[m1 + 1,m2]] B3 =1x H’I’)’LQ + 1,77’LH
B, =2x [[1,7’)7]1” Bs =2 x [[m1 + 1,m2]] Bg =2 X [[mg + 1,m]],
such that the elements of blocks B; and Bg are all negative, and the elements of the rest

of the blocks are all non-negative. For clarity, we denote S(B;) = ), . |wi| as the sum of
the absolute values of all elements in the i-th block. It is then clear that

S(By) > S(B1)  S(Bs) > S(Bs),

which follows directly from the application of the positive sum condition to each column.
Furthermore, if we apply the positive sum condition on set B; U By U Bg and B U Bs U B,

then we get
S(B2) > S(B1) + S(Bs) S(Bs) > S(B1) + S(Bs).
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Combining these relations between the blocks, we can derive the following
> S(Bi) = (S(B1) + S(B1)) + (S(Ba) + S(Bs)) + (S(Bs) + S(Bs))

> 25(B1) +2(S(B1) + S(Bs)) + 25(Bs)
=4(S(B1) + S(Bs)),

so we see that the sum of the absolute values of all elements is at least four times the
sum of the absolute values all negative elements. Therefore, from Eq. (6), we see that the
frustration index must be smaller than 0.25. [ |

Appendix E. Intersection Event

If we are randomly dropping loop atoms on a kK, ,,, bipartite graph, then the probability
that the loop overlaps with any given edge is given by

p=—-:
nm

Therefore, if we were to drop one loop atom, then the probability that the edge receives a

positive contribution is %p; the probability that it receives a negative contribution is %p;

and the probability that it receives no contribution is 1 — p. If we denote the total number

of random loop atoms as IV, then the probability that any given edge receives k1 negative

contributions and ko positive contributions is given as

Pk, ky) = (ki\fk2> ( ip) ko (Zp) S

The expected number of intersections is then simply E(min{k1, ka2}).

To obtain an analytic expression for this expected value, we have to make a few sim-
plifications. First, we can assume that p < 1, which is justified if the graph is large. If
we denote A = Np, then the marginal distributions of k; and ke are approximately Poisson
distributions

) e

4 Plke) = 1@(32)@'

We can also assume that k1 and ko are approximately independent, which gives us

Bmin{k, ka)) = tA — e Y (37402 4 321, (L2

k=0

P(k1) =

A, (10)

where I is the modified Bessel function of the first kind. As A increases, the pdf of
min{k;, ko} approaches the pdf of k;, and the expected value approaches A/4 from be-
low, which makes sense because the relative spacing of the random variables increases, and
we effectively have min{k;, ko} =~ k;. In other words, we have

A N

E(min{k;, ko}) ~ 1= T
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Appendix F. Generating a 2 x 3 gauged RBM
The negation of statement (8) is given as follows:

If y satisfies LTy >0 andy > 0,

(11)

then it must also satisfy wly > 0.

The goal is to prove this statement true for a 2 x 3 gauged RBM weight matrix w. We first
note that there are 12 possible loop atoms for the system: 4 for the leftmost 2 x 2 block,
4 for the rightmost 2 x 2 block, and 4 for the union of the leftmost and rightmost column.
Given any one of the leftmost loop, 1, the inequality 17y implies

Ly + la1y21 + lizyi2 + laaya2 > 0.

Each of the four leftmost loops corresponds to assigning one of the four edges, {l11, 112,121,122},
to negative, and this results in four inequalities

Y11 + Y21 + Y12 = Y22,
Y21 + Y12 + Y22 = 11,
Y12 + Y22 + Y11 > Y21,
Y22 + Y11 + Y21 = Y12

WLOG, we assume that 729 is the maximum of the four y values, then the four inequalities
reduce to the following inequality

Y11 + Y21 + Y12 > Yoo,

noting that the y values are non-negative. A similar argument applies to the remaining 8
loop atoms.

For the weight matrix, w, WLOG we can assume that the negative elements are wi
and wys, then the positive sum condition implies that

wip + w21 >0, wi2 + wee >0,
wi +wiz +wiz >0,  win + wig + waeg > 0.
We can then derive the following relationship
WTy
=wW11Y11 + Wi2Y12 + W13Y13 + w21y21 + W22Y22 + W23ya3
> yriwi + yrewiz + y13(—wir — wi2)
+y21(—w11) + y2o(—w12) + y23(—w11 — wi2)
> — w11 (Y13 + Y21 + Y23 — Y11)
—wi12(y13 + Y22 + Y23 — Y12)
>0,

since w1 < 0 and wie < 0 by construction, and y13 + 21 + y23 = y11 and y13 + Y22 + Yoz >
y12- Therefore, statement (11) is true, which implies that any gauged 2 x 3 RBM (which
necessarily has f < 0.25) can be generated with loop atoms.
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Appendix G. Local Minima
Consider n iid random variables, {z1, z2, ..., 2, }, with the following PMF

1
Plas=—a) =~ Pa;=1)= Z

where « € (0, 1]. It is clear that the sum of the elements in this set is positive w.h.p. (with
high probability) in the limit of large n. However, if we randomly select n’ elements and
negate their signs, then it can be shown that the probability that the sum of the elements

é(l + erf(/{:n\;%n ))

in the limit of large n, where k is related to « as

is positive is given by

33—«
a+1’

Now, for the sake of simplicity, consider a n x n random RBM with weights W whose
elements are assigned randomly as —a and +1 with probabilities 1/4 and 3/4, respectively
(corresponding to the regime of high loop density, p = O(n)). Clearly, in the limit of large
n, the RBM satisfies the positive-sum condition, meaning that its ground state is +1. Given
0 < ny,ne <n, we consider the switching subset

F = ([1,n1] x [na + 1,n]) U ([n1 + 1,n] x [1,n3]),

where integers are assumed. If the state related to the ground state by this switching subset
is a local minimum, then clearly the following conditions have to be satisfied

Vi € [1,%1], ZQWZ‘J' — i Wij >0
j=1

j=n2+1
n na
ViE[’I’LlJrl,TL], Z Wij*ZWijzo
Jj=n2+1 Jj=1
ni n
Vielng, > Wy— > Wy>0
=1 i=ni+1
n ni
VjE [ng—l—l,n], Z Wij_ZWijZ&
i=ni+1 =1

If we make the approximation that the partial sum over a row and the partial sum over a
column are independent (which is justified because the correlation between the two sums is
only due to one single element at the intersection), then the probability that all the above
conditions are satisfied is
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Note that there are (:1) ways to flip n; spins in the visible layer and (:2) ways to flip ng
spins in the hidden layer. If we further choose to ignore the potential correlations between
the local minima, then the expected number of local minima of an n x n RBM is given by

i Zn: p(”lvn2)<,:l> <,:2> - p(0,0),

n1=0mn2=0

where the reason to subtract p(0,0) is to discount the planted ground state being a trivial
local minimum.

It can be shown that this value scales poorly with n and k (which is inversely related to
a). In other words, for instances generated with the random loop algorithm at high density,
it will be difficult for local minima to populate the energy landscape for large system sizes
or small frustration indices.

Appendix H. Planted Metastable Cluster

Again, we consider the switching subset F' = By U By as given in Section 5.2. The goal is to
show that the state related to the ground state by F' satisfies the inequality conditions of a
local minimum by a relatively large margin (meaning that any single spin-flip is expected
to incur a large increase in energy), so that any states sufficiently “close” to this state are
likely also local minima.

Since the structured loop algorithm is invariant under a matrix transpose and an ex-
change of the number of left and upper loops, we can simply focus on the sum of the
elements in each individual row:

Viel > Wi;>Y Wy
Je J

Vi e I° ZWijZZWij,
J Je
where we have B; =1 x J and By = I¢ x J€.

Vi € I, we can divide the row of the matrix into two halves, one half in B; and one
half in By. We let the sums of the elements in the two halves be s; and so, respectively.
Furthermore, let nq, no, and n3 be the numbers of left loops, upper loops, and center loops
with vertices in row ¢. Each left loop contributes 1 — o units of weight to s1; each upper
loop contributes either —a or 41 units of weight to s; and +1 unit of weight to so; each
center loop contributes —« units of weight to s; and +1 unit of weight to s2. It is then
clear that the difference between the two sums is given as follows

sp—s1 € [n3(1+a)—ni(1—a), (ng+n3)(l+a)—ni(l—a)l,
whose lower bound should be non-negative in order to enforce the local minimum condition
on row ¢. This gives us

n3 11—«
1 — 1-— >0 —= — >
n3(l14+a) —ni(l —a) > moltal

which is true for every a € [0,1] if ng > n;. Similarly, Vi € I¢, we can again divide the
matrix row into two halves, one half in B3 and one half in B4, and we denote the sums over
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the two halves as s3 and s4. An upper loop does not contribute to either sum; a left loop
contributes 2 units of weight to s3; and a center loop contributes +1 unit of weight to s3
and s4 each. Then the difference between the two sums is

83 — 84 =2n1 > 0,

which is always true. Therefore, ng > n; on each row guarantees the local minimum
condition, and similarly, nz > ns on each column guarantees the local minimum condition
as well. These conditions will likely be satisfied for every row and column if we choose the
number of center loops to be sufficiently large.

H.1. Concentration of Frustration

We see that a center loop is more conducive to the population of local minima than the other
two types of loops, so from here on, we focus exclusively on instances generated by center
loops alone. For instances generated at frustration index f = 0.25, the magnitudes of the
negative and positive loop edges are both 1, so the structured loop algorithm is symmetric
with respect to the exchange of B; and B4. This means that parameterizing the size of
the negative block with d is equivalent to 1 — d. This symmetry is broken if we choose
the magnitude of the negative edge weight to be slightly below 1, or @« = 1 — ¢ (where
0 < € < 1), and a smaller value of d is generally favored for generating hard instances
at high loop density. Intuitively, having a smaller value of d “concentrates” the negative
weights into a smaller block, meaning that the expected value of the negative weights will
be large, thus giving more strength to the weight structure for “misguiding” local solvers
away from the planted solution. We now make this argument slightly more formal.

For ease of analysis, we focus on the marginal distribution of the local field at hq, which

is given as
E Wiiv;.
i

This distribution is conditioned on having N loops intersect with the first column of the
weight matrix, and having an r fraction of visible spins aligning with the planted ground
state, which, WLOG, we assume to be +1. If we further denote

ny = B(nd,r)

as the number of visible spins aligning with the planted solution in the upper-left block
(where B denotes the binomial distribution), then the local field can be expressed as a
random variable parameterized as

L:QB(N, %)(e— 1) +ZB(N, %) _eN

nr — B(nr, d))

B(nr,d)
)7) n(l—d) —eN.

:2B(N (6—1)+2B(N,

Using the linearity of the expected value operator, one can easily show that the expected
local field is Ne(2r — 1), which is independent of the parameter d, and is proportional to
the fraction of hidden spins aligned with the planted ground state.
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Figure 9: The dispersion of the local field (c¢,) with respect to the alignment of the
spins (r) for different concentrations of negative weights (d). The parameters, {n, N, e} =
{1000, 1000, 0.01} are chosen to produce the plots, noting that the loop density is extensive.

The parameter d is relevant when we evaluate the total variance of the local field (over
the probability measure of n;), which can be computed via the law of total variance

Var(L) = Var(E(L | ny)) + E(Var(L | n1)).

It is convenient for us to define the dispersion of the local field as its relative standard

deviation,
~ +/Var(L)
“= "m0y

which provides a measure of the uncertainty of the local field for each spin normalized
against the weight magnitude. In Figure 9, we see that the dispersion is greater if we have
a greater concentration of negative weights (smaller d), resulting in a greater variation in
the hardness of the instances induced by the stochasticity of both the generation method
and the solver.

Appendix I. Simulated Annealing

We first assign the following probability to each spin state s

p(B,s) = E—BE(S)7

where [ is interpreted as the inverse temperature of the system. The simulated anneal-
ing (SA) algorithm can be thought of as a Metropolis-Hastings sampling algorithm on a
PMF varying in time (based on the 3 schedule). Recall that the acceptance ratio for the
Metropolis-Hastings algorithm is

A(s,s") = min (1, p(s’)> = min (1, efﬁ(E(s/)fE(s)))
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An iteration of the SA algorithm over the spins is referred to as a sweep. A sweep consists of
performing single-spin flips over all the spins in the visible layer, followed by spin flips over
the hidden layer. Usually, solving a non-trivial RBM instance using SA requires multiple
sweeps. Since this is a single-spin flip algorithm, we focus on the energy difference of a
single spin flip. Recall that the RBM energy is given by

E(s) = —(ZWijUihj + Zaz"Uz‘ + ijhj)v
ij i J

so the energy change from flipping the spin v; is given by
— E(vi,h) + E(v;,h)
= — ai(vg — ’Ui) + Z Wij (U; — Ui)hj
J

= — 21);(@2' + Z Wijhj)
J
= — QUQHZ(h),

where v; = —v;, and we denoted @(h) = Wh. Similarly, the energy change from flipping
the spin h; is given by
—E(v, h;) + E(v,hj) = —2h;~<;5j(v),

where we define ¢(v) = WTv. Then, the acceptance ratio can be written as

A(vi,v}) = min(1, 62'8“291'),

A(hy, h}) = min(1, e2P"i%).

If the total number of sweeps for a given run is Ngyeep, We can then set 8 € [Bmin, Bmaz)
to follow a linearly increasing schedule, or

c—1
/8 = Bmm + mp_l(ﬁmm} - Bmin)a

We provide a basic pseudo-code for the SA algorithm in Algorithm 3, where the angle
updates for a single spin flip are given by

A@Z = sz(h; — hj) = 2Wijh;-,

Agbj = Wij(vg — ’Ui) = 2W¢jv§.
Assuming that m scales linearly with n, then the size of the RBM (total number of
spins) is of the order O(n). Flipping a single spin requires updating the entire 8 or ¢
vector, so the time complexity of performing a single spin update is O(n). Performing a

sweep requires flipping all the spins of the RBM, so the time complexity of a single sweep
is O(n?).
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Algorithm 3 Simulated Annealing on RBMs

1: Initialize a random spin configuration v(© nh©)

2. (0 = Wh(® ) = wTy(0) p0) — E(v(® n)
3: for ¢ € [1, Ngyeep| do

4: B = 5mm + (/Bmax - /Bmzn)NC;ll

sweep

5 for i € [1,n] do

6: v; = —v;, A = min(1, 625”1'95671))
7 if rand() < A then

8 Get new (), B(©)

9 else

10: Vi = —U;

11: for j € [1,m] do

12: hj =—h;, A= min(l,ezﬁhj‘z);’c 1))
13: if rand() < A then

14: Get new 0(9), E(©)

15: else

16: hj = —hj

Appendix J. Optimal Sweep Schedule

For a given triplet of the parameters {n, f, p}, it is possible to generate multiple random
RBM instances; for each instance, we record the total number of sweeps required to find
the solution as Nyy. This gives us multiple values of N, each corresponding to an RBM
instance generated. It can be checked that the distribution of Ny, follows approximately a
log-normal distribution. If we have k samples of Ny, the estimator of the log mean of Ny
is given as

k
. 1
f=7 ; log (Niot,i)

and the estimator of the log standard deviation of N, is given as

k

o=\ 2 (108 (Niws) — 1)’

=1

We can then estimate the 5th and 95th percentile of the distribution of Ny respectively as

Niot 5% = exp(fi — 26) Niot,95% = exp(fi + 25).

For the remainder of this section, the 95th percentile of Ny is assumed whenever we refer
to Ntot-

To ensure that the hardness is accurately measured for the RBM instance, we have to
ensure that we are using the optimal SA parameters for every given triplet {n, f, p}, which
is equivalent to finding the SA parameters that result in the smallest Ny, value. This
generally incurs a large amount of computational expense as it involves multiple runs under
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different SA parameters. So for this work, we focus on finding the optimal SA parameters
for easy instances (with small {n, f}) such that the scaling behavior can be determined and
the optimal SA parameters for harder instances can be extrapolated.

Our focus here is to determine the scaling behavior of the optimal Ngyeep With respect to
{n, f} at the hardest loop density. This is performed in two iterations, a crude optimization
followed by a finer one. In the first iteration, we essentially assume that the hardness peak
is at po = 0.47, and proceed to determine the scaling behavior of Ngyeep With respect to
{n, f}. Then, using this non-optimal Ngyecp, we can attempt to determine the relationship
between the location of the actual hardness peak, pg, and the system size, n. Note that
it is unimportant that Ngyeep is not yet fully optimized at this stage as the location of
the hardness peak is rather insensitive to the choice of Ngyeep (see Section 6.2). After
determining the hardness peaks for various system sizes, we then proceed with the second
iteration of the optimization, where a more accurate scaling behavior of Nyyeep With respect
to {n, f} is determined by setting p properly at the hardness peak for every system size. In
theory, this procedure can be re-iterated as many times as needed. However, in practice,
we find that the coefficient estimators of the scaling law already converge within their
mean-square errors only after two iterations.

We now present the results for the two iterations. In the first iteration, we fix the loop
density at p = 0.47 and let n € {30, 40, 50, 60, 70,80} and f € {0.05,0.075,0.1,0.125,0.15,0.175}
so the instances are sufficiently easy to solve within a reasonable amount of time. For each
pair of {n, f}, we generate 10000 different RBM instances, and try to find the optimal
Ngweep that minimizes the 95th percentile of N;,;. We fit the relationship between the
optimal Ngyeep and {n, f} with a product of two polynomials corresponding to the two
parameters:

Nsweep(n, f) = (0.504n? — 13.3n + 311)
x (193f3 — 52.7f% + 4.73f — 0.102).
We then use this value of Ngyeep to determine the scaling behavior of the hardest density
with respect to the system size (see Section 6.2). In the second iteration, we then use the

optimal value of Ngyeep properly optimized at the hardness peak to derive more accurately
the following fitting function

Naweep = (1.29n% — 33.1n + 1664)
x (41.4f3 —11.7f% 4 1.06f — 0.018).

This sweep schedule is used to study the phase transition induced by the frustration index
presented in Section 6.3.
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