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Abstract

Graph learning from data is a canonical problem that has received substantial attention in
the literature. Learning a structured graph is essential for interpretability and identifica-
tion of the relationships among data. In general, learning a graph with a specific structure
is an NP-hard combinatorial problem and thus designing a general tractable algorithm is
challenging. Some useful structured graphs include connected, sparse, multi-component, bi-
partite, and regular graphs. In this paper, we introduce a unified framework for structured
graph learning that combines Gaussian graphical model and spectral graph theory. We
propose to convert combinatorial structural constraints into spectral constraints on graph
matrices and develop an optimization framework based on block majorization-minimization
to solve structured graph learning problem. The proposed algorithms are provably con-
vergent and practically amenable for a number of graph based applications such as data
clustering. Extensive numerical experiments with both synthetic and real data sets illus-
trate the effectiveness of the proposed algorithms. An open source R package containing
the code for all the experiments is available at https://CRAN.R-project.org/package=

spectralGraphTopology.
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1. Introduction

Graphs are fundamental mathematical structures consisting of a set of nodes and weighted
edges connecting them. The weight associated with each edge represents the similarity
between the two connected nodes. Graphical models provide an effective way to characterize
relationships among data variables across numerous applications (Barabási et al., 2016;
Wang et al., 2018; Friedman et al., 2008; Guo et al., 2011; Segarra et al., 2017; Banerjee
et al., 2008; Meinshausen and Bühlmann, 2006). Gaussian graphical modeling (GGM)
encodes conditional dependence relationships among a set of variables (Dempster, 1972;
Lauritzen, 1996). GGM is a tool of increasing importance in a number of fields including
finance, biology, statistical learning, and computer vision (Friedman et al., 2008). In this
framework, an undirected weighted graph is matched to the variables, where each vertex
corresponds to a variable and an edge is present between two vertices if the corresponding
random variables are conditionally dependent (Lauritzen, 1996). Graphical models encode
the dependencies among the data in the form of a graph matrix such that its non-zero
entries quantify the dependencies between two variables.

Let x = [x1, x2, . . . , xp]
> be a p-dimensional zero mean multivariate random variable

associated with an undirected graph and S ∈ Rp×p be the sample covariance matrix (SCM)
calculated from n number of observations, then the GGM method learns a graph via the
following optimization problem:

maximize
Θ∈Sp++

log det(Θ)− tr
(
ΘS
)
− αh(Θ), (1)

where Θ ∈ Rp×p denotes the graph matrix to be estimated, p is the number of nodes
(vertices) in the graph, Sp++ ∈ Rp×p denotes the set of positive definite matrices, h(·) is a
regularization term, and α > 0 is the regularization hyperparameter. If the observed data is
distributed according to a zero mean p-variate Gaussian distribution, then the optimization
in (1) corresponds to the penalized maximum likelihood estimation (MLE) of the inverse
covariance (precision) matrix of a Gaussian random vector also known as Gaussian Markov
Random Field (GMRF). With the refrerence to graph matrix Θ, the random vector x follows
the Markov property: Θij 6= 0 implies xi and xj are conditionally dependent given the rest
of the variables (Lauritzen, 1996; Dempster, 1972).

Prior knowledge about the underlying graph structure is frequently available in a number
of real-world applications. For instance, in gene network analysis, genes can be grouped
into pathways, and connections within a pathway might be more likely than connections
between pathways, forming a cluster (Marlin and Murphy, 2009). For better interpretability
and identification of the structure in the data, it is desirable to enforce specific structures
on the learned graph matrix Θ. Furthermore, a structured graph can be directly applied in
tasks such as community detection, clustering, and causal inference.

Few of the concrete examples where the prior information about graph structure is
available. In some clustering applications, the number of clusters can be interpreted, e.g., the
number of sectors in clustering the financial stocks, the number of digits in the classification
of the handwritten digits (LeCun, 1998). Bipartite structure is a required for constructing
two channel filter banks (Narang and Ortega, 2012); k−component bipartite graphs are
employed for co-clustering (Dhillon, 2001); a regular graph is the best-known communication
efficient structure, thus for designing a communication efficient deep learning architectures
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the requirement of having a regular graph structure is known in advance (Prabhu et al., 2018;
Chow et al., 2016). For multi-resolution transforms and for designing sampling algorithms,
the requirement of tree graph structure is already known (Gavish et al., 2010; Shen and
Ortega, 2010). For many graph signal processing (GSP) tasks, the requirement of sparse
and connected graph representation is known (Sundin et al., 2017).

It is known that if the goal is structured graph learning, structure inference and graph
weight estimation should be done jointly (Ambroise et al., 2009; Hao et al., 2018). Per-
forming structure inference (also known as model selection) before weight estimation (also
known as parameter estimation) results in a suboptimal procedure (Ambroise et al., 2009).
Although GGM has been extended to incorporate structures on the learned graph, most of
the existing methods perform graph structure learning and graph weight estimation sepa-
rately. Essentially, the methods are either able to infer connectivity information (Ambroise
et al., 2009) or to perform graph weight estimation in case the connectivity information
is known a priori (Lee and Liu, 2015; Wang, 2015; Cai et al., 2016; Danaher et al., 2014;
Pavez et al., 2018; Egilmez et al., 2017), but not both tasks simultaneously. Furthermore,
there are few recent works considering the two tasks jointly, but those methods are limited
to some specific structures (e.g., multi-component in Hao et al., 2018) that are not trivially
extended to other graph structures. In addition, these methods involve computationally
demanding steps that make them unsuitable for big data applications.

In general, structured graph learning is an NP-hard combinatorial problem (Anandku-
mar et al., 2012; Bogdanov et al., 2008), thus the task of designing an optimization method
to solve it is inherently challenging. In this paper, we introduce spectral graph theory
tools into the GGM learning framework so as to convert the combinatorial constraints of
graph structures into constraints on the eigenvalues of graph matrices. By realizing that
the structural properties of important families of graphs are encoded in the eigenvalues
of their graph matrices, we develop a general framework for structured graph learning by
translating the combinatorial constraints into the corresponding spectral constraints. We
develop practically usable and theoretically convergent algorithms that are able to learn
graph structures and weights simultaneously.

1.1. Related Work

The penalized maximum likelihood approach with sparsity regularization has been widely
studied for the precision matrix estimation. An `1-norm regularization, h(Θ) =

∑
i,j |Θij |,

which promotes element-wise sparsity on the graph matrix Θ, is a common choice of regu-
larization function to learn a sparse structure (Yuan and Lin, 2007; Shojaie and Michailidis,
2010a,b; Ravikumar et al., 2010; Mazumder and Hastie, 2012; Fattahi and Sojoudi, 2019).
In Friedman et al. (2008), the authors came up with an efficient computational method to
solve (1) and proposed the well-known GLasso algorithm. In addition, non-convex penalties
are proposed for sparse precision matrix estimation to reduce estimation bias (Shen et al.,
2012; Lam and Fan, 2009). However, if a specific structure is required then simply a sparse
graphical modeling is not sufficient (Heinävaara et al., 2016; Tarzanagh and Michailidis,
2017). In this sense, an extension of sparse GGM model is motivated so as to incorporate
more specific structures.
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In this direction, the work in Ambroise et al. (2009) has considered the problem of
graph connectivity inference for multi-component structures and developed a two-stage
framework that combines the expectation maximization (EM) algorithm and the graphical
lasso framework. The works in Lee and Liu (2015); Wang (2015); Cai et al. (2016); Danaher
et al. (2014); Guo et al. (2011); Sun et al. (2015); Tan et al. (2015) have considered the
problem of estimating the edge weights with known connectivity information. However,
prior knowledge of the connectivity information is not always available particularly for
complex data sets with unknown population structures (Hao et al., 2018; Jeziorski and
Segal, 2015). Furthermore, when it comes to simultaneous connectivity inference and graph
weight estimation, two-stage methods based on Bayesian models (Marlin and Murphy, 2009)
and expectation maximization (Hao et al., 2018) were proposed, but these methods are
computationally prohibitive and limited to multi-component graph learning.

Other important graph structures have also been considered, including factor mod-
els (Meng et al., 2014), scale free (Liu and Ihler, 2011), eigenvector centrality prior (Fiori
et al., 2012), degree-distribution (Huang and Jebara, 2008), overlapping structures with
multiple graphical models (Tarzanagh and Michailidis, 2017; Mohan et al., 2014), tree struc-
tures (Chow and Liu, 1968; Anandkumar et al., 2012), and topology estimation from partial
observations (Coutino et al., 2019). Recently, there has been a significant interest in enforc-
ing the Laplacian structure (Lake and Tenenbaum, 2010; Slawski and Hein, 2015; Pavez and
Ortega, 2016; Kalofolias, 2016; Egilmez et al., 2017; Pavez et al., 2018; Zhao et al., 2019),
but all these methods are limited to learning graphs without specific structural constraints.
The work by (Segarra et al., 2017) introduces a sparse estimation problem to infer the graph
topology from the given eigenbasis associated with a specific shift operator. This formula-
tion estimates a graph topology by optimizing the eigenvalues and assume the eigenvectors
to be fixed and known. On the other hand, our proposed formulation estimates a graph
structure via the optimization of both the eigenvalues and the eigenvectors, thus providing
a higher flexibility in capturing the spectral properties of the graph matrix so as to ensure
specific structural properties on the graph to be learned.

Due to the complexity posed by the graph learning problem, owing to its combinatorial
nature, existing methods are tailored to specific structures that cannot be generalized to
other graph structures. In addition, existing methods often require the connectivity in-
formation for graph weight estimation, while also involving multi-stage frameworks that
are computationally prohibitive. Finally, to the best of our knowledge, there is no GGM
framework that is capable of learning a graph with structures such as bipartite, regular,
and multi-component bipartite.

1.2. Summary of Contributions

Enforcing a structure onto a graph is generally an NP-hard combinatorial problem, which is
often difficult to solve via existing methods. In this paper, we propose a unified framework
for structured graph learning. Our contributions are threefold:

1. We introduce new problem formulations that convert the combinatorial structural
constraints into spectral constraints on Laplacian and adjacency matrices, resulting
in three main formulations:
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• Structured graph learning via Laplacian spectral constraints
This formulation uses the Laplacian matrix spectral properties to learn the fol-
lowing graphs: multi-component, regular, multi-component regular, sparse con-
nected , and other specific structured graphs.

• Structured graph learning via adjacency spectral constraints
This formulation uses spectral properties of the adjacency matrix for bipartite
graph learning.

• Structured graph learning via Laplacian and adjacency spectral con-
straints
Under this formulation we simultaneously use spectral properties of Laplacian
and adjacency matrices to enforce non-trivial structures including: bipartite-
regular, multi-component bipartite, and multi-component bipartite-regular.

2. We develop algorithms based on the block majorization-minimization (MM) frame-
work also known as block successive upper-bound minimization (BSUM) to solve the
proposed formulations. The algorithms are theoretically convergent and with worst
case complexity O(p3), which is same as that of GLasso.

3. The effectiveness of the proposed algorithms were extensively verified through a variety
of experiments involving both synthetic and real data sets. The results showed that
our proposed algorithm outperforms the state-of-the-art ones under relative error and
F-score. Furthermore, to the best of our knowledge, this is the first work to provide
a framework for structured graph learning based on Gaussian Markov random fields
and spectral graph theory.

1.3. Outline and Notation

The remainder of the paper is organized as follows. The generalized problem formula-
tion and related background are provided in Section 2. The detailed development of the
algorithms and the associated convergence results are presented in Sections 3, 4, and 5.
Experimental results involving both real and synthetic data sets are provided in Section 6.
Finally, Section 7 draws conclusions and discusses a number of natural extensions of the
proposed framework.

In terms of notation, lower case (bold) letters denote scalars (vectors) and upper case
letters denote matrices. The dimension of a matrix is omitted whenever it is clear from
the context. The (i, j)-th entry of a matrix X is denoted either by [X]ij or Xij . X

† and
X> denote the pseudo inverse and transpose of matrix X, respectively. The all-zero and
all-one vectors or matrices of appropriate sizes are denoted by 0 and 1, respectively. ‖X‖1,
‖X‖F denote `1-norm and Frobenius norm of X, respectively. The Euclidean norm of the
vector x is denoted as ‖x‖2, gdet(X) is defined as the generalized determinant of a positive
semidefinite matrix X, i.e., the product of its non-zero eigenvalues. The inner product of
two matrices is defined as 〈X,Y 〉 = tr(X>Y ), where tr(·) is the trace operator. Diag(X) is
a diagonal matrix with diagonal elements of X filling its principal diagonal and diag(X) is
a vector with diagonal elements of X as the vector elements. Element-wise multiplication
between matrices A and B is denoted as A�B.
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2. Problem Formulation

A graph is denoted by a triple G = (V, E ,W ), where V = {1, 2, . . . , p} is the vertex set,
E ⊆ V × V is the edge set which contains the possible unordered combinations of pair of
nodes {(i, j)}pi,j=1, and W is the adjacency (weight) matrix. We consider a simple undirected
graph with nonnegative weights Wij ≥ 0, without self-loops, and whose edge set contains
only distinct pairs. The entries of the weight matrix W are: Wij 6= 0, if (i, j) ∈ E and
Wij = 0, if (i, j) /∈ E or i = j. Graphs are conveniently represented by some matrix (such
as Laplacian and adjacency graph matrices), whose positive entries correspond to edges in
the graph. The choice of a matrix usually depends on modeling assumptions, properties of
the desired graph, applications, and theoretical requirements.

A matrix Θ ∈ Rp×p is called a graph Laplacian matrix when its elements satisfy

SΘ =

Θ ∈ Rp×p|Θij = Θji ≤ 0 for i 6= j; Θii = −
∑
j 6=i

Θij

 . (2)

As a consequence, a Laplacian matrix Θ is: i) diagonally dominant; ii) positive semidefi-
nite, implied from the diagonally dominant property (den Hertog et al., 1993, Proposition
2.2.20.); iii) and an M -matrix, i.e., a positive semidefinite matrix with non-positive off-
diagonal elements (Slawski and Hein, 2015). In addition, a Laplacian matrix has zero row
sum and column sum, i.e., Θii+

∑
j 6=i Θij = 0, which means that the vector 1 = [1, 1, . . . , 1]>

satisfies Θ1 = 0 (Chung, 1997).
The adjacency matrix W associated with a Laplacian matrix Θ is defined as

Wij =

{
−Θij , if i 6= j,

0, if i = j.
(3)

The positive entries of W encode the edge weights of a graph, whereas Wij = 0, i 6= j,
implies there is no connectivity between vertices i and j.

Definition 1. Let Θ be a p×p symmetric positive semidefinite matrix with rank p−k > 0.
Then x = [x1, x2, . . . , xp]

> is an improper GMRF (IGMRF) of rank p− k with parameters
(µ,Θ), assuming µ = 0 without loss of generality, whenever its probability density is

p(x) = (2π)
−(p−k)

2 (gdet(Θ))
1
2 exp

(
−1

2

(
x>Θx

))
, (4)

where gdet(·) denotes the generalized determinant (Rue and Held, 2005) defined as the
product of the non-zero eigenvalues of Θ. Furthermore, x is called an IGMRF with respect
to a graph G = (V, E ,W ) having its matrix representation as Θ, where

Θij 6= 0 ⇐⇒ {i, j} ∈ E ∀ i 6= j, (5)

Θij = 0 ⇐⇒ xi ⊥ xj |x/{xi, xj}. (6)

These relations simply state that the nonzero pattern of Θ determines G, so we can infer
from Θ whether xi and xj are conditionally independent. If the rank of Θ is exactly p, then
x is called a GMRF and the parameters µ and Θ represent the mean and precision matrix
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of a p-variate Gaussian distribution (Rue and Held, 2005). In addition, if the precision
matrix Θ contains only non-positive off-diagonal entries (Slawski and Hein, 2015), then the
random vector x is called an attractive GMRF and if the rank of Θ is less than p then it is
also called an attractive IGMRF.

2.1. A General Framework for Graph Learning under Spectral Constraints

A natural formulation to learn a Laplacian matrix with a specific structure would be via
introducing eigenvalue constraints that are motivated from a priori information. In this
regard, we introduce a general optimization framework for structured graph learning via
spectral constraints on the graph Laplacian matrix as follows

maximize
Θ

log gdet(Θ)− tr
(
ΘS
)
− αh(Θ),

subject to Θ ∈ SΘ, λ(T (Θ)) ∈ ST ,
(7)

where S denotes the observed data statistics (e.g., sample covariance matrix), SΘ is the
Laplacian matrix structural constraint set as in (2), h(·) is a regularization term (e.g.,
`1-norm), and λ(T (Θ)) denotes the eigenvalues of T (Θ) with an increasing order, where
T (·) is a transformation on the matrix Θ. For example, if T is the identity mapping, then
T (Θ) = Θ, which implies the constraints are imposed on the eigenvalues of the Laplacian
matrix Θ; if T (Θ) = W as defined in (3), then the constraints are imposed on the eigenvalues
of the adjacency matrix W . Finally, ST is the set containing the eigenvalues constraints.

Fundamentally, formulation (7) is designed to learn a structured graph Laplacian matrix
Θ given data statistics S, where SΘ enforces a Laplacian matrix structure and ST allows the
inclusion of a desired graph structure via constraints on the eigenvalues. Observe that, in
formulation (7), we have converted the intractable combinatorial structural constraints into
simple spectral constraints. In this way, the structured graph learning problem becomes a
matrix optimization problem under a proper choice of spectral constraints.

Remark 1. Apart from enforcing structure onto a graph, the Laplacian matrix is also
desirable for a number of practical and theoretical considerations, such as: i) Laplacian
matrices are widely used in spectral graph theory, machine learning, graph regularization,
graph signal processing, and graph convolution networks (Smola and Kondor, 2003; Def-
ferrard et al., 2016; Egilmez et al., 2017; Chung, 1997); ii) in the high-dimensional setting
where the number of the data samples is smaller than the dimension of the data, learning Θ
as an M -matrix greatly simplifies the optimization problem because it avoids the need for
the explicit regularization term h(·) (Slawski and Hein, 2015); iii) graph Laplacian matrices
play a crucial role for the GMRF framework, which requires the matrix Θ to be positive
semi-definite (Rue and Held, 2005); iv) graph Laplacian allows flexibility in incorporating
well-known spectral properties of graph matrices (Chung, 1997; Spielman and Teng, 2011).

Remark 2. From a probabilistic perspective, whenever the similarity matrix S is the sample
covariance matrix of Gaussian data, (7) can be viewed as a penalized maximum likelihood
estimation problem of structured precision matrix of an improper attractive GMRF model
(see Definition 1). In a more general setting with non-Gaussian distribution, if the similarity
matrix is positive definite, (7) can be related to the log-determinant Bregman divergence
regularized optimization problem (Dhillon and Tropp, 2007; Duchi et al., 2008; Slawski and
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Hein, 2015), where the goal is to find the parameters of a multivariate Gaussian model that
best approximates the data.

In the next subsections, we specialize the optimization framework (7) under Laplacian
eigenvalue constraints, adjacency eigenvalue constraints, and joint Laplacian and adjacency
eigenvalue constraints.

2.2. Structured Graph Learning via Laplacian Spectral Constraints

To enforce spectral constraints on the Laplacian matrix Θ, i.e., T (Θ) = Θ in (7), we consider
the following optimization problem

maximize
Θ,λ,U

log gdet(Θ)− tr
(
ΘS
)
− αh(Θ),

subject to Θ ∈ SΘ, Θ = UDiag(λ)U>, λ ∈ Sλ, U>U = I,
(8)

where Θ admits the decomposition Θ = UDiag(λ)U>, Diag(λ) ∈ Rp×p is a diagonal matrix
containing λ = {λi}pi=1 on its diagonal with λ ∈ Sλ, and U ∈ Rp×p is a matrix satisfying
U>U = I. We enforce Θ to be a Laplacian matrix via the constraint Θ ∈ SΘ, while
incorporating additional spectral constraints on Θ by imposing Θ = UDiag(λ)U> with
λ ∈ Sλ, where Sλ contains the desired spectral constraints according to the target graph
structure.

In what follows, we introduce various choices of Sλ that enables (8) to learn a variety
of key graph structures.

2.2.1. k-component graph

A graph is said to be k-component if its vertex set can be partitioned into k disjoint subsets
V = ∪ki=1Vi, i.e., any two nodes belonging to different subsets are not connected by an edge.
Any edge in edge set Ei ⊂ E have end points in Vi, and no edge connects two different
components. The k-component structural property of a graph is naturally encoded in the
eigenvalues of its Laplacian matrix. The multiplicity of the zero eigenvalue of a Laplacian
matrix gives the number of connected components of a graph G. In particular, for k = 1 the
structure is a connected graph. Figure 1 depicts a k-component graph and its Laplacian
eigenvalues with k = 3 connected components.

Theorem 1. (Chung, 1997) The eigenvalues of any Laplacian matrix can be expressed as:

Sλ =
{
λ ∈ Rp|{λj = 0}kj=1, c1 ≤ λk+1 ≤ · · · ≤ λp ≤ c2

}
, (9)

where k ≥ 1 denotes the number of connected components in the graph, and c1 > 0, c2 > 0
are constants that depend on the number of edges and their weights (Spielman and Teng,
2011).

2.2.2. d-regular graph

In a d-regular graph, all the nodes have the same weighted degree (di = d, ∀i = 1, 2, . . . , p),
where the weighted degree of the i-th node is defined as di =

∑
jWij , which results in

Θ = dI −W, diag(Θ) = d1, W1 = d1.
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(a) A 3-component graph.
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(b) Eigenvalue distribution of a 3-component graph.

Figure 1: A 3-component graph and the eigenvalue distribution of its Laplacian matrix: three zero
eigenvalues corresponding to three components.

Within the formulation (8), a d−regular structure on the matrix Θ can be enforced by
including the following constraints

Sλ = {λ ∈ Rp|λ1 = 0, c1 ≤ λ2 ≤ · · · ≤ λp ≤ c2} , diag(Θ) = d1. (10)

2.2.3. k-component d-regular graph

A k-component d-regular graph, also known as clustered regular graph, is key in providing
improved perceptual grouping (Kim and Choi, 2009) for clustering applications. Within
the formulation (8), we can enforce this structure by including the following constraints

Sλ =
{
λ ∈ Rp|{λj = 0}kj=1, c1 ≤ λk+1 ≤ · · · ≤ λp ≤ c2

}
, diag(Θ) = d1. (11)

2.2.4. Cospectral graphs

Many applications can be formulated to learn a graph with eigenvalues of the graph Lapla-
cian Θ predefined, also called cospectral graph learning (Godsil and McKay, 1982). For
instance, spectral sparsification of graphs (Spielman and Teng, 2011; Loukas and Van-
dergheynst, 2018) aims to learn a graph Laplacian Θ to approximate the given Θ̄, while
keeping Θ sparse and its eigenvalues λi satisfying λi = f

(
λ̄i
)
, where

{
λ̄i
}p
i=1

are the eigen-
values of Θ̄ and f is some specific function. Therefore, for cospectral graph learning, we
introduce the following constraint

Sλ =
{
λ ∈ Rp|λi = f

(
λ̄i
)
, for i = 1, 2, . . . , p

}
. (12)
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2.3. Structured Graph Learning via Adjacency Spectral Constraints

To enforce spectral constraints on the adjacency matrix W , i.e., T (Θ) = W in (7), we
introduce the following optimization problem:

maximize
Θ,ψ,V

log gdet(Θ)− tr
(
ΘS
)
− αh(Θ),

subject to Θ ∈ SΘ, W(Θ) = VDiag(ψ)V >, ψ ∈ Sψ, V >V = I,
(13)

where Θ is the Laplacian matrix to be optimized, W(Θ) is the linear transformation of
Θ which maps the Laplacian matrix Θ to the corresponding adjacency matrix such that
[W(Θ)]ij = −Θij , if i 6= j and [W(Θ)]ij = 0, if i = j, W(Θ) admits decomposition
W(Θ) = VDiag(ψ)V > with ψ ∈ Sψ and V >V = I. We enforce Θ to be a Laplacian matrix
by the constraint Θ ∈ SΘ, while spectral constraints on the adjacency matrix W(Θ) are
incorporated via W(Θ) = VDiag(ψ)V >, where Sψ contains the spectral constraints for the
desired graph structure.

In the next subsection, we introduce a choice of Sψ that enables (13) to learn bipartite
graph structures.

2.3.1. General bipartite graph

A graph is said to be bipartite if its vertex set can be partitioned into two disjoint subsets
V = V1 ∪ V2 such that no two nodes belonging to the same subset are connected by an
edge (Zha et al., 2001), i.e., for each (l,m) ∈ Vi × Vi then (l,m) /∈ E , i = 1, 2. Spectral
graph theory states that a graph is bipartite if and only if the spectrum of the associated
adjacency matrix is symmetric about the origin (Van Mieghem, 2010, Ch.5, Thm. 22).

Theorem 2. (Van Mieghem, 2010, Ch.5, Thm. 22) A graph is bipartite if and only if the
spectrum of the associated adjacency matrix is symmetric about the origin

Sψ = {ψ ∈ Rp|ψ1 ≥ ψ2 ≥ · · · ≥ ψp, ψi = −ψp−i+1, i = 1, 2, . . . , p} . (14)

2.3.2. Connected bipartite graph

The Perron-Frobenius theorem states that if a graph is connected, then the largest eigen-
value ψp of its adjacency matrix W has multiplicity 1 (Lovász, 2007, Thm. 1.2). Thus, a
connected bipartite graph can be learned by including an additional constraint on the mul-
tiplicity of the largest and smallest eigenvalues, i.e., ψ1 and ψp are not repeated. Figure 2
shows a connected bipartite graph and its adjacency symmetric eigenvalues.

Theorem 3. A graph is connected bipartite if and only if the spectrum of the associated
adjacency matrix is symmetric about the origin with non-repeated extreme eigenvalues

Sψ = {ψ ∈ Rp|ψ1 > ψ2 ≥ · · · ≥ ψp−1 > ψp, ψi = −ψp−i+1, i = 1, 2, . . . , p} . (15)
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(a) A bipartite graph.
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(b) Eigenvalue distribution for a bipartite graph.

Figure 2: Bipartite graph its eigenvalue distribution: eigenvalues are symmetric around zero.

2.4. Structured Graph Learning via Joint Laplacian and Adjacency Spectral
Constraints

To enforce spectral constraints on the Laplacian matrix Θ and adjacency matrix W , we
introduce the following optimization problem

maximize
Θ,λ,ψ,U,V

log gdet(Θ)− tr
(
ΘS
)
− αh(Θ),

subject to Θ ∈ SΘ, Θ = UDiag(λ)U>, W(Θ) = VDiag(ψ)V >,
λ ∈ Sλ, U>U = I, ψ ∈ Sψ, V >V = I,

(16)

where Θ admits decomposition as Θ = UDiag(λ)U>, such that λ ∈ Sλ, U>U = I, and
W(Θ) is the corresponding adjacency matrix whose decomposition isW(Θ) = VDiag(ψ)V >,
such that ψ ∈ Sψ and V >V = I. Observe that this formulation learns a graph Laplacian
matrix Θ with a specific structure by enforcing the spectral constraints on the adjacency
and Laplacian matrices simultaneously. Next, we introduce various choices of Sλ and Sψ
that will enable (16) to learn non-trivial structures.

2.4.1. k-component bipartite graph

A k-component bipartite graph, also known as clustered bipartite graph, is a critical graph
structure to many machine learning and financial applications (Zha et al., 2001). Recall
that the bipartite structure can be enforced by imposing constraints to the eigenvalues of
the adjacency matrix and a k-component structure can be enforced by introducing con-
straints to the eigenvalues of the Laplacian matrix. These two disparate requirements can
be simultaneously imposed in the current formulation (16) via the following constraints sets:

Sλ =
{
λ ∈ Rp|{λj = 0}kj=1, c1 ≤ λk+1 ≤ · · · ≤ λp ≤ c2

}
, (17)

Sψ = {ψ ∈ Rp|ψi = −ψp−i+1, ψ1 ≥ ψ2 ≥ · · · ≥ ψp, i = 1, 2, . . . , p} . (18)

11
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2.4.2. k-component regular bipartite graph

The eigenvalue property of a d−regular graph relates the eigenvalues of its adjacency matrix
and Laplacian matrix, which is summarized in the following theorem.

Theorem 4. (Mohar, 1997, Sec. 2.4) Collecting the Laplacian eigenvalues in increasing

order
(
{λj ↑}pj=1

)
and the adjacency eigenvalues in decreasing order ({ψi ↓}pi=1), then the

eigenvalue pairs for a d-regular graph are related as follows:

λi = d− ψi, i = 1, . . . , p. (19)

A k-component regular bipartite structure can be enforced by combining the adjacency
eigenvalues property (for bipartite structure), the Laplacian eigenvalues property (for k-
component structure) and the spectral properties for the regular graph structure:

Sλ =
{
λ ∈ Rp|{λj = 0}kj=1, c1 ≤ λk+1 ≤ · · · ≤ λp ≤ c2

}
, (20)

Sψ = {ψ ∈ Rp|ψi = d− λi, ψ1 ≥ ψ2 ≥ · · · ≥ ψp, i = 1, 2, . . . , p} . (21)

2.5. Block Majorization-Minimization Framework

The resulting optimization programs formulated in (8), (13), and (16) are non-convex, NP-
hard problems. Therefore we develop efficient optimization methods based on block MM
framework (Razaviyayn et al., 2013; Sun et al., 2016). First, we present a general scheme
of the block MM framework

minimize
x

f(x)

subject to x ∈ X ,
(22)

where the optimization variable x is partitioned into m blocks as x = (x1,x2, . . . ,xm), with
xi ∈ Xi, X =

∏m
i=1Xi is a closed convex set, and f : X → R is a continuous function. At

the t-th iteration, each block xi is updated in a cyclic order by solving the following:

minimize
xi

gi

(
xi|x(t)

1 , . . . ,x
(t)
i−1,x

(t−1)
i+1 , . . . ,x

(t−1)
m

)
,

subject to xi ∈ Xi,
(23)

where gi

(
xi|y(t)

i

)
with y

(t)
i ,

(
x

(t)
1 , . . . ,x

(t)
i−1,x

(t−1)
i ,x

(t−1)
i+1 , . . . ,x

(t−1)
m

)
is a majorization

function of f(x) at y
(t)
i satisfying

gi

(
xi|y(t)

i

)
is continuous in

(
xi,y

(t)
i

)
, ∀ i, (24a)

gi

(
x

(t)
i |y

(t)
i

)
= f

(
x

(t)
1 , . . . ,x

(t)
i−1,x

(t)
i ,x

(t−1)
i+1 , . . . ,x(t−1)

m

)
, (24b)

gi

(
xi|y(t)

i

)
≥ f

(
x

(t)
1 , . . . ,x

(t)
i−1,xi,x

(t−1)
i+1 , . . . ,x(t−1)

m

)
, ∀ xi ∈ Xi, ∀ yi ∈ X ,∀ i, (24c)

g′i

(
xi; di|y(t)

i

)
B(t)ig|

xi=x
(t)
i

= f ′
(
x

(t)
1 , . . . ,x

(t)
i−1,xi,x

(t−1)
i+1 , . . . ,x(t−1)

m ; d
)
,

∀ d = (0, . . . ,di, . . . ,0) such that x
(t)
i + di ∈ Xi, ∀ i, (24d)

12
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where f ′(x; d) stands for the directional derivative at x along d (Razaviyayn et al., 2013).
In summary, the framework is based on a sequential inexact block coordinate approach,
which updates the variable in one block keeping the other blocks fixed. If the surrogate
functions gi is properly chosen, then the solution to (23) could be easier to obtain than
solving (22) directly.

3. Structured Graph Learning via Laplacian Spectral Constraints (SGL)

In this section, we develop a block MM-based algorithm for Structured Graph learning
via Laplacian spectral constraints (SGL). In particular, we consider solving (8) under k-
component Laplacian spectral constraints (9). To enforce sparsity, we introduce a sparse
enforcing concave function, h(Θ) =

∑
i>j φ(Θij) with φ(x) , log(ε + |x|), which leads

to the reweighted `1-norm regularization (Candès et al., 2008). The reweighted `1-norm
regularization is effective in enhancing sparsity of the solution and it also reduces the bias
of the estimation. Considering Θ must be symmetric, we impose the sparsity regularization
only on its lower triangular part. Now, problem (8) becomes

minimize
Θ,λ,U

− log gdet(Θ) + tr (ΘS) + α
∑
i>j
φ(Θij),

subject to Θ ∈ SΘ, Θ = UDiag(λ)U>, λ ∈ Sλ, U>U = I.
(25)

The optimization problem (25) is still complicated. To derive a more tractable formulation,
we will introduce a linear operator L to handle the Laplacian structural constraints and
relax the eigen-decomposition equality constraint.

3.1. Graph Laplacian Operator

We recall that a Laplacian matrix Θ as an element of SΘ satisfies i) Θij = Θji ≤ 0, ii)
Θ1 = 0, implying the target matrix is symmetric with degrees of freedom of Θ equal
to p(p − 1)/2. Hence, we construct a linear operator L that transforms a non-negative
vector w ∈ Rp(p−1)/2 into a matrix Lw ∈ Rp×p that satisfies the Laplacian constraints
([Lw]ij = [Lw]ji, for i 6= j and [Lw]1 = 0).

Definition 2. The linear operator L : Rp(p−1)/2 → Rp×p, w 7→ Lw, is defined as

[Lw]ij =


−wi+dj i > j,

[Lw]ji i < j,

−
∑

j 6=i[Lw]ij i = j,

where dj = −j + j−1
2 (2p− j).

The adjoint operator L∗ of L is defined so as to satisfy 〈Lx, Y 〉 = 〈x,L∗Y 〉, ∀x ∈
Rp(p−1)/2 and Y ∈ Rp×p.

Definition 3. The adjoint operator L∗ : Rp×p → Rp(p−1)/2, Y 7→ L∗Y , is defined by

[L∗Y ]k = Yi,i − Yi,j − Yj,i + Yj,j , k = i− j +
j − 1

2
(2p− j),

where i, j ∈ Z+ satisfy k = i− j + j−1
2 (2p− j) and i > j.

13
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In order to illustrate the operational meaning of L and L∗ more clearly, we provide
the following toy examples. Consider a weight vector w = [w1, w2, w3, w4, w5, w6]>. The
Laplacian operator L on w gives

Lw =


∑

i=1,2,3wi −w1 −w2 −w3

−w1
∑

i=1,4,5wi −w4 −w5

−w2 −w4
∑

i=2,4,6wi −w6

−w3 −w5 −w6
∑

i=3,5,6wi

 . (26)

The operator L∗ on a 4× 4 symmetric matrix Y returns a vector

L∗Y =



Y11 − Y21 − Y12 + Y22

Y11 − Y31 − Y13 + Y33

Y11 − Y41 − Y14 + Y44

Y22 − Y32 − Y23 + Y33

Y22 − Y42 − Y24 + Y44

Y33 − Y43 − Y34 + Y44

 . (27)

By the definition of L, we have Lemma 1.

Lemma 1. The operator norm ‖L‖2 is
√

2p, where ‖L‖2 = sup‖x‖=1 ‖Lx‖F with x ∈
Rp(p−1)/2.

Proof. Follows from the definitions of L and L∗: see Appendix 8.1 for a detailed proof.

We have introduced the operator L that transforms the complicated structural matrix
variable Θ into a simple vector variable w. The linear operator L turns out to be a crucial
component of the SGL framework.

3.2. SGL Algorithm

In order to solve (25), we represent the Laplacian matrix Θ ∈ SΘ as Lw and then develop
an algorithm based on quadratic methods (Nikolova and Ng, 2005; Ying et al., 2018). The
formulation (25) is equivalent to

minimize
w,λ,U

− log gdet(Diag(λ)) + tr (SLw) + α
∑
i
φ(wi),

subject to w ≥ 0, Lw = UDiag(λ)U>, λ ∈ Sλ, U>U = I,
(28)

where w ≥ 0 means each entry of w is non-negative. We further relax the problem by
introducing the term β

2 ‖Lw − UDiag(λ)U>‖2F with β > 0, instead of exactly solving the
constraint Lw = UDiag(λ)U>. Note that this relaxation can be made as tight as desired
by choosing β sufficiently large or iteratively increasing β. Now, the original problem can
be approximated as

minimize
w,λ,U

− log gdet(Diag(λ)) + tr (SLw) + α
∑
i
φ(wi) + β

2 ‖Lw − UDiag(λ)U>‖2F ,

subject to w ≥ 0, λ ∈ Sλ, U>U = I.

(29)

14
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When solving (29) to learn a k-component graph structure with the constraints in (9), the
first k zero eigenvalues as well as the corresponding eigenvectors can be dropped from the
optimization formulation. Now, λ only contains q = p−k non-zero eigenvalues in increasing
order {λj}pj=k+1, then we can replace generalized determinant with determinant on Diag(λ)

in (29). U ∈ Rp×q contains the eigenvectors corresponding to the non-zero eigenvalues in
the same order, and the orthogonality constraints on U becomes U>U = Iq. The non-zero
eigenvalues are ordered and lie in this set

Sλ = { c1 ≤ λk+1 ≤ · · · ≤ λp ≤ c2}. (30)

Collecting the variables as a triple
(
w ∈ Rp(p−1)/2,λ ∈ Rq, U ∈ Rp×q

)
, we develop a block

MM-based algorithm which updates one variable at a time while keeping the other ones
fixed.

3.2.1. Update for w

Treating w as a variable while fixing U and λ, and ignoring the terms independent of w,
we have the following sub-problem

minimize
w≥0

tr (SLw) + β
2

∥∥Lw − UDiag(λ)U>
∥∥2

F
+ α

∑
i
φ(wi). (31)

Problem (31) can be written as a non-negative quadratic program

minimize
w≥0

f(w) = f1(w) + f2(w), (32)

where f1(w) = 1
2 ‖Lw‖2F − c>w and f2(w) = α

β

∑
i log(ε+wi), where the absolute value in

φ(wi) is removed because each wi ≥ 0. Here c = L∗
(
UDiag(λ)U> − β−1S

)
.

Lemma 2. f1(w) in (32) is strictly convex.

Proof. From the definition of operator L and the property of its adjoint L∗, we have

‖Lw‖2F = 〈Lw,Lw〉 = 〈w,L∗Lw〉 = w>L∗Lw > 0, ∀ w 6= 0. (33)

The above result implies that f1(w) is strictly convex.

Lemma 3. The function f(w) in (32) is majorized at w(t) by the function

g
(
w|w(t)

)
= f

(
w(t)

)
+
(
w −w(t)

)>
∇f

(
w(t)

)
+
L1

2

∥∥∥w −w(t)
∥∥∥2
, (34)

where w(t) is the update from previous iteration and L1 = ‖L‖22 = 2p.

Proof. f1(w) in (32) is strictly convex and the majorization function can be

g1

(
w|w(t)

)
= f1

(
w(t)

)
+
(
w −w(t)

)>
∇f1

(
w(t)

)
+
L1

2

∥∥∥w −w(t)
∥∥∥2
, (35)
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According to the definition of ‖L‖2 in Lemma 1, we get L1 = ‖L‖22 = 2p. In addition,
f2(w) = αΣ

i
log(ε + wi) is concave and thus can be majorized at w(t) by the first order

Taylor expansion

g2

(
w|w(t)

)
= f2

(
w(t)

)
+
(
w −w(t)

)>
∇f2

(
w(t)

)
, (36)

Totally, we can conclude that g
(
w|w(t)

)
in (34) is the majorization function of f(w) in

(32). More details about majorization function can be seen in (Sun et al., 2016; Song et al.,
2015).

Note that the majorization function g
(
w|w(t)

)
as in (34) is in accordance with the

requirement of (24b), since w(t), λ(t), and U (t) in problem (32) are fixed. For notation
brevity, we present the majorization function as g

(
w|w(t)

)
instead of g

(
w|w(t), U (t),λ(t)

)
.

After ignoring the constant terms in (34), the majorized problem of (32) at w(t) is given
by

minimize
w≥0

g
(
w|w(t)

)
= 1

2w>w −w>a, (37)

where a = w(t) − 1
L1
∇f

(
w(t)

)
and ∇f

(
w(t)

)
= L∗

(
Lw(t)

)
− c + b with b = α

β [1/(ε +

w
(t)
1 ), . . . , 1/(ε+ w

(t)
p(p−1)/2)]>.

Lemma 4. By the KKT optimality conditions we can obtain the optimal solution to (37)
as

w(t+1) =

(
w(t) − 1

L1
∇f

(
w(t)

))+

, (38)

where (x)+ , max(x, 0) and and f is defined in (32).

3.2.2. Update for U

Treating U as a variable and fixing w and λ, we obtain the following sub-problem

minimize
U

β
2

∥∥Lw − UDiag(λ)U>
∥∥2

F
,

subject to U>U = Iq.
(39)

An equivalent trivial reformulation is as follows

maximize
U

tr(U>LwUDiag(λ))

subject to U>U = Iq.
(40)

Problem (40) is an optimization problem on the orthogonal Stiefel manifold St(p, q) = {U ∈
Rp×q : U>U = Iq}. From (Absil et al., 2009; Benidis et al., 2016) the solution of (40) is the
eigenvectors of Lw (suitably ordered).

Lemma 5. From the KKT optimality conditions the solution to (40) is given by

U (t+1) = eigenvectors
(
Lw(t+1)

)
[k + 1 : p], (41)

that is, the p− k principal eigenvectors of the matrix Lw(t+1) with the corresponding eigen-
values in an increasing order.
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3.2.3. Update for λ

We obtain the following sub-problem to update λ

minimize
λ∈Sλ

− log det (Diag(λ)) + β
2

∥∥Lw − UDiag(λ)U>
∥∥2

F
. (42)

Problem (42) can be rewritten as

minimize
λ∈Sλ

− log det (Diag(λ)) + β
2

∥∥U>(Lw)U −Diag(λ)
∥∥2

F
. (43)

With a slight abuse of notation, we denote the indices for the non-zero eigenvalues λi in
(30) from 1 to q = p− k instead of k+ 1 to p. Then, problem (43) can be further simplified
as

minimize
c1≤λ1≤···≤λq≤c2

−
q∑
i=1

log λi +
β

2
‖λ− d‖22, (44)

where λ = [λ1, . . . , λq]
> and d = [d1, . . . , dq]

> with di being the i-th diagonal element of
Diag(U>(Lw)U).

Problem (44) is a convex optimization problem, that can be solved via disciplined convex
programming frameworks such as CVX (Grant and Boyd, 2014; Fu et al., 2017a). However,
such frameworks usually do not scale well, hence we develop a specialized, computationally
efficient algorithm to solve (44) which is derived from the KKT optimality conditions. The
update rule for λ follows an iterative procedure summarized in Algorithm 1.

Remark 3. Problems of the form (44) are known as a regularized isotonic regression. The
isotonic regression is a well-researched problem that has found applications in a number of
domains (Best and Chakravarti, 1990; Lee, 1981; Barlow and Brunk, 1972; Luss and Rosset,
2014; Bartholomew, 2004). To the best of our knowledge, however, there exist no method as
computationally efficient as the one presented in Algorithm 1. The proposed algorithm can
obtain a globally optimal solution within a maximum of q+ 1 iterations for a q-dimensional
regularized isotonic regression problem. In addition, it can be potentially adapted to solve
other isotonic regression problems.

Lemma 6. The iterative-update procedure summarized in Algorithm 1 converges to the
KKT point of Problem (44).

Proof. Please refer to Appendix 8.2 for the detailed proof.
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Algorithm 1: Updating rule for λ

Input: d1, d2, . . . , dq, β, c1, and c2;

1 λi =
1

2

(
di +

√
d2
i + 4/β

)
, i = 1, 2, . . . , q;

2 if λ satisfies c1 ≤ λ1 ≤ · · · ≤ λq ≤ c2 then
3 return λ1, . . . , λq;
4 while not c1 ≤ λ1 ≤ · · · ≤ λq ≤ c2 do
5 if c1 ≥ λ1 ≥ · · · ≥ λr with at least one inequality strict and r ≥ 1 then
6 λ1 = · · · = λr = c1;
7 else if λs ≥ · · · ≥ λq ≥ c2 with at least one inequality strict and s ≤ q then
8 λs = · · · = λq = c2;
9 else if λi ≥ · · · ≥ λm with at least one inequality strict and 1 ≤ i ≤ m ≤ q

then
10 d̄i→m = 1

m−i+1

∑m
j=i dj ;

11 λi = · · · = λm =
1

2

(
d̄i→m +

√
d̄2
i→m + 4/β

)
;

12 end
Output: λ1, . . . , λq.

To update λ, Algorithm 1 iteratively check situations [cf. steps 6, 10 and 14] and updates
λ accordingly until c1 ≤ λ1 ≤ · · · ≤ λq ≤ c2 is satisfied. If some situation is verified, then the
corresponding λi needs to be updated accordingly. Note that the situations are independent
from each other, i.e., each λi will not involve two situations simultaneously. Furthermore,
all λi are updated iteratively according to the above situations until λ satisfies the KKT
conditions.

3.2.4. SGL algorithm summary

Algorithm 2 summarizes the implementation of the structured graph learning via Laplacian
spectral constraints.

Algorithm 2: SGL

Input: SCM S, k, c1, c2, β, α, w(0), ε > 0;
1 t← 0;
2 while stopping criteria not met do

3 update w(t+1) as in (38);

4 update U (t+1) as in (41);

5 update λ(t+1) by solving (44) with Algorithm 1;
6 t← t+ 1;

7 end

Output: Lw(t+1).

The most computationally demanding step in Algorithm 2 is the eigenvalue decompo-
sition required for the update of U . Therefore, the worst-case computational complexity of
Algorithm 2 is O(p3). However, this complexity can be reduced by taking advantage of the
sparse structure and the properties of the Laplacian matrix while conducting its eigenvalue
decomposition. As a comparison, the well-known GLasso method (Friedman et al., 2008) has
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similar worst-case complexity, even though GLasso is not able to learn graphs with structural
constraints. While considering specific structural requirements, the SGL algorithm has a
considerable advantage over other competing structured graph learning algorithms Marlin
and Murphy (2009); Hao et al. (2018); Ambroise et al. (2009).

Theorem 5. The sequence
(
w(t), U (t),λ(t)

)
generated by Algorithm 2 converges to the set

of KKT points of (29).

Proof. The detailed proof is deferred to the Appendix 8.3.

Remark 4. Note that SGL is not only limited to k-component graph learning, but can be
easily adapted to learn other graph structures under aforementioned spectral constraints
in (9), (10), (11), and (12). Furthermore, the SGL can also be utilized to learn popular
connected graph structures (e.g., Erdos-Renyi graph, modular graph, grid graph, etc.) even
without specific spectral constraints just by choosing the eigenvalue constraints correspond-
ing to one component graph (i.e., k = 1) and setting c1, c2 to very small and large values
respectively. Detailed experiments with important graph structures are carried out in the
simulation section.

4. Structured Graph Learning via Adjacency Spectral Constraints (SGA)

In this section, we develop a block MM-based algorithm for Structured Graph learning via
Adjacency spectral constraints (SGA). In particular, we consider to solve (13) for connected
bipartite graph structures by introducing the spectral constraints on the adjacency eigen-
values (14). Since Θ is a connected graph, the term log gdet(Θ) can be simplified according
to the following lemma.

Lemma 7. If Θ is a Laplacian matrix for a connected graph, then

gdet(Θ) = det(Θ + J), (45)

where J = 1
p11>.

Proof. It is easy to establish (45) by the fact that Θ1 = 0.

4.1. Graph adjacency operator

To guarantee the structure of an adjacency matrix, we introduce a linear operator A.

Definition 4. The linear operator A : Rp(p−1)/2 → Rp×p, w 7→ Aw, is defined as

[Aw]ij =


wi+dj i > j,

[Aw]ji i < j,

0 i = j,

where dj = −j + j−1
2 (2p− j).
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An example of A acting on a weight vector of 6 elements w = [w1, w2, . . . , w6]> is given
below

Aw =


0 w1 w2 w3

w1 0 w4 w5

w2 w4 0 w6

w3 w5 w6 0

 . (46)

The adjoint operator A∗ of A is defined so as to satisfy 〈Ax, Y 〉 = 〈x,A∗Y 〉, ∀x ∈
Rp(p−1)/2 and Y ∈ Rp×p.

Definition 5. The adjoint operator A∗ : Rp×p → Rp(p−1)/2, Y 7→ A∗Y , is defined as

[A∗Y ]k = Yij + Yji, (47)

where i, j ∈ Z+ satisfy i− j + j−1
2 (2p− j) = k and i > j.

Lemma 8. The operator norm ‖A‖2 is
√

2, ‖A‖2 = sup‖x‖=1 ‖Ax‖F with x ∈ Rp(p−1)/2.

Proof. Directly from the definition of operator norm, we have

‖A‖2 = sup
‖x‖=1

‖Ax‖F = sup
‖x‖=1

√
2 ‖x‖ =

√
2. (48)

4.2. SGA Algorithm

By introducing the operators L and A, using reweighted `1-norm and relaxing the constraint
Aw = VDiag(ψ)V > in (13), we obtain the following approximation

minimize
w,ψ,V

− log det(Lw + J) + tr (SLw) + α
∑
i
φ(wi) + γ

2‖Aw − VDiag(ψ)V >‖2F ,

subject to w ≥ 0, ψ ∈ Sψ, V >V = I,

(49)

where γ > 0 is the penalty parameter. Suppose there are z zero eigenvalues in the set
Sψ with z ≥ 0. From the symmetry property of the eigenvalues, the zero eigenvalues
are positioned in the middle, i.e., in (14) the eigenvalues ψ p−z

2
+1 to ψ p+z

2
will be zero.

Both (p + z) and (p − z) must be even by the symmetry property. As a consequence, the
zero eigenvalues and the corresponding eigenvectors can be dropped from the formulation.
Now ψ ∈ Rb contains b non-zero eigenvalues and V ∈ Rp×b contains the corresponding
eigenvectors that satisfy V >V = Ib. The non-zero eigenvalues are required to lie in the
following set:

Sψ =
{
ψi = −ψb+1−i, c1 ≥ ψ1 ≥ ψ2 ≥ · · · ≥ ψb/2 ≥ c2, i = 1, . . . , b/2

}
, (50)

where c1 and c2 > 0 are some constants which depend on the graph properties. Collecting
the variables as a triple

(
w ∈ Rp(p−1)/2,ψ ∈ Rb, V ∈ Rp×b

)
, we develop a block MM-based

method that updates one variable at a time while keeping the other ones fixed.
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4.2.1. Update for w

The optimization problem (49) with respect to w is

minimize
w≥0

− log det(Lw + J) + tr (SLw) + α
∑
i
φ(wi) + γ

2‖Aw − VDiag(ψ)V >‖2F .

(51)
Problem (51) is equivalent to

minimize
w≥0

f(w) = f1(w) + f2(w) + f3(w), (52)

where f1(w) = − 1
γ log det(Lw+J), f2(w) = 1

2 ‖Aw‖2F − c̃>w with c̃ = A∗(VDiag(ψ)V >)−
γ−1L∗S, and f3(w) = α

γ

∑
i log(ε+ wi).

Lemma 9. The function f1(w) + f2(w) in (52) is strictly convex.

Proof. First, note that − log det(Lw + J) is a convex function. From the definition of A
and the property of its adjoint A∗, we have

‖Aw‖2F = 〈Aw,Aw〉 = 〈w,A∗Aw〉 = w>A∗Aw > 0, ∀w 6= 0, (53)

which implies f1(w) + f2(w) in (52) is strictly convex.

To get a closed-form solution, we derive a majorized function of (51).

Lemma 10. The function f(w) in (52) is majorized at w(t) by the function

g
(
w|w(t)

)
= f

(
w(t)

)
+
(
w −w(t)

)>
∇f

(
w(t)

)
+
L

2

∥∥∥w −w(t)
∥∥∥2
, (54)

where L = (‖A‖22 + L2/γ), in which ‖A‖22 = 2, and − log det(Lw + J) is assumed to be
L2-Lipschitz continuous gradient 1.

Proof. Assuming − log det(Lw + J) is L2-Lipschitz continuous gradient, we have f1(w) =
− 1
γ log det(Lw + J) is majorized at w(t) by the function

g1

(
w|w(t)

)
= f1

(
w(t)

)
+
(
w −w(t)

)>
∇f1

(
w(t)

)
+
L2

2γ

∥∥∥w −w(t)
∥∥∥2
. (55)

By the Taylor expansion of f2(w) = 1
2 ‖Aw‖2F− c̃>w and Lemma 8, we get the majorization

function of f2(w) can be

g2(w)
(
w|w(t)

)
= f2

(
w(t)

)
+
(
w −w(t)

)>
∇f2

(
w(t)

)
+

1

2
‖A‖22

∥∥∥w −w(t)
∥∥∥2
, (56)

Since f3(w) is concave, the majorization function can be the first order Taylor expansion

g3

(
w|w(t)

)
= f3

(
w(t)

)
+
(
w −w(t)

)>
∇f3

(
w(t)

)
, (57)

We can finish the proof by combining (55), (56) and (57).

1. The Lipschitz constant of − log det(Lw+ J) on the domain {w|λmin(Lw + J) ≥ 1/L2} is L2. Theoreti-
cally, the Lipschitz constant L2 can be unbounded. However, for practical considerations we can assume
it to be bounded by the algebraic connectivity of the graph. See Remark 5 for more details.
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After ignoring the constant terms in (54), the majorized problem of (52) at w(t) is given
by

minimize
w≥0

1
2w>w −w>ã, (58)

where ã = w(t) − 1
L∇f

(
w(t)

)
and ∇f

(
w(t)

)
= 1

γL
∗ (Lw(t) + J

)−1
+ A∗A

(
w(t)

)
− c̃ + b̃

with b̃ = α
γ [1/(ε+ w

(t)
1 ), . . . , 1/(ε+ w

(t)
p(p−1)/2)]>.

Lemma 11. By the KKT optimality conditions we can obtain the optimal solution of (58)
as

w(t+1) =

(
w(t) − 1

L
∇f

(
w(t)

))+

, (59)

where (x)+ , max(x, 0) and f is defined in (52).

Remark 5. The Lipschtiz constant L2 of the function − log det(Lw + J) is related to the
smallest non-zero eigenvalue of Lw, which is bounded away from εw

(p−1)2
(Lemma 1, Rajawat

and Kumar, 2017), where εw > 0 is the minimum non-zero graph weight. However, for
practical purposes the edges with very small weights can be ignored and set to be zero, and
we can assume that the non-zero weights are bounded by some constant εw > 0. To strictly
force the minimum weight property, one can modify the non-negativity constraint w ≥ 0
in problem (49) as w ≥ εw. On the other hand, we do not need a tight Lipschtiz constant
L2. In fact, any L′2 ≥ L2 makes the function g

(
w|w(t)

)
satisfy the majorization conditions

(24).

4.2.2. Update for V

To update V , we get the following sub-problem

maximize
V

tr
(
V>AwVDiag(ψ)

)
,

subject to V >V = Ib.
(60)

Problem (60) is an optimization on the orthogonal Stiefel manifold St(p, b) = {V ∈ Rp×b :
V >V = Ib}.

Lemma 12. From the KKT optimality conditions, the solution to (60) is given by

V (t+1) = eigenvectors
(
Aw(t+1)

)[
1 :

(p− z)
2

,
(p+ z)

2
+ 1 : p

]
, (61)

that is, the eigenvectors of the matrix Aw(t+1) in the same order of the eigenvalues, where
z is the number of zero eigenvalues.

The solution (61) satisfies the optimality condition of (60) on the orthogonal Stiefel
manifold and more details about the derivation can be found in Absil et al. (2009).
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4.2.3. Update for ψ

Solving for (49) with respect to ψ, ignoring the terms independent of ψ, we have the
following sub-problem

minimize
ψ

‖Aw − VDiag(ψ)V >‖2F .

subject to ψ ∈ Sψ,
(62)

The optimization problem (62) may also be written as

minimize
ψ∈Sψ

‖ψ − e‖22, (63)

where ψ = [ψ1, ψ2, . . . , ψb]
> and e = [e1, e2, . . . , eb]

>, in which ψi and ei correspond to the i-
th diagonal element of Diag(ψ) and Diag(V >AwV ), respectively. Problem (63) is a convex
optimization problem with simple linear constraints. Furthermore, due to the symmetry
constraint in Sψ (i.e., ψi = −ψb+1−i, i = 1, . . . , b/2), the variables are related such that we
only need to solve for the first half of the variables [ψ1, ψ2, . . . , ψb/2]>.

Lemma 13. Consider the following isotonic regression problem for ψ̃ = [ψ1, ψ2, . . . , ψb/2]>,

minimize
ψ̃

‖ψ̃ − ẽ‖22,

subject to c1 ≥ ψ1 ≥ ψ2 ≥ · · · ≥ ψb/2 ≥ c2,
(64)

where c1, c2 > 0 and ẽ = [ẽ1, ẽ2, . . . , ẽb/2]>, ẽi =
ei−eb+1−i

2 , i = 1, 2, . . . , b/2. The first half
of the solution to the problem (63) is same as the solution to (64).

The detailed proof is deferred to the Appendix 8.4. The formulation (64) is also similar
to problem (44) without the log determinant term. The solution to problem (64) can be
obtained by following the iterative procedure discussed in Algorithm 1 by setting ψi =
ẽi, i = 1, 2, . . . , b/2, and iteratively updating and checking all the situations until all the ψi
satisfy c1 ≥ ψ1 ≥ ψ2, . . . , ψb/2 ≥ c2. Finally, the solution for the other half of the variables

{ψi}bi=b/2+1 in (63) are obtained by setting ψb+1−i = −ψi, for i = 1, . . . , b/2.

4.2.4. SGA algorithm summary

Algorithm 3 summarizes the implementation of structured graph learning (SGA) via ad-
jacency spectral constraints. The most computationally demanding steps of SGA are the
eigenvalue decomposition and the matrix inversion of p × p matrices, which results in a
worst-case complexity of O

(
p3
)
. As in the SGL algorithm, the computational complexity

of SGA may be reduced by taking advantage of the sparse structure and the properties of
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the adjacency and Laplacian matrices while computing their eigenvalue decomposition and
matrix inversion (Livne and Brandt, 2012; Koutis et al., 2011), respectively.

Algorithm 3: SGA

Input: SCM S, c1, c2, w(0), γ, α, ε > 0;
1 t← 0;
2 while stopping criteria not met do

3 update w(t+1) as in (59);

4 update V (t+1) as in (61);

5 update ψ(t+1) by solving (64) with Algorithm 1;
6 t← t+ 1;

7 end

Output: Lw(t+1).

The following theorem establishes the convergence property for SGA.

Theorem 6. The sequence
(
w(t), V (t),ψ(t)

)
generated by Algorithm 3 converges to the set

of KKT points of Problem (49).

Proof. The proof of Theorem 6 is similar to that of Theorem 5 and thus is omitted.

Remark 6. From a combinatorial point of view, finding a bipartite structure is equiva-
lent to a max-cut problem between V1 and V2, which is an NP-hard problem. In a recent
work, Pavez et al. (2018) considered an approximate bipartite graph estimation under struc-
tured GGM settings. The algorithm consists of a two-stage procedure: first, they learn a
bipartite structure via Goemans-Williamson (GM) algorithm (Goemans and Williamson,
1995); then, their algorithm learns the Laplacian weights by the generalized graph Lapla-
cian (GGL) learning method (Egilmez et al., 2017). The GM algorithm, dominated by
a semi-definite programming and Cholesky decomposition of p × p matrix, has a worst-
case complexity O

(
p3
)
, while the GGL method has a computational complexity of O

(
p3
)
.

Therefore, the SGA algorithm enjoys a smaller worst-case computational complexity than
that in Pavez et al. (2018). In addition, to the best of our knowledge, SGA is the first
single stage algorithm for learning bipartite graph structure directly from the data sample
covariance matrix.

5. Structured Graph Learning via Joint Laplacian and Adjacency
Spectral Constraints (SGLA)

In this section we consider the problem (16) for Structured Graph learning via joint
Laplacian and Adjacency spectral constraints (SGLA). Following from the discussions in
previous sections: upon utilizing the Laplacian operator L, the adjacency operator A and
moving the constraints Aw = VDiag(ψ)V > and Lw = UDiag(λ)U> into the objective
function, a tractable approximation of (16) can be written as

minimize
w,λ,U,ψ,V

− log det (Diag(λ)) + tr (SLw) + α
∑
i
φ(wi)

+β
2 ‖Lw − UDiag(λ)U>‖2F + γ

2‖Aw − VDiag(ψ)V >‖2F ,
subject to w ≥ 0, λ ∈ Sλ, U>U = I, ψ ∈ Sψ, V >V = I,

(65)
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where β and γ > 0 are hyperparameters that control the trade-off between each term in (65).
Similarly from the derivations of Algorithms 2 and 3, we collect the variables (w,λ, U,ψ, V )
to develop a block MM-type method for solving problem (65).

Ignoring the terms independent of w, we have the following sub-problem,

minimize
w≥0

tr (SLw) + α
∑
i
φ(wi) + β

2

∥∥Lw − UDiag(λ)U>
∥∥2

F
+ γ

2

∥∥Aw − VDiag(ψ)V >
∥∥2

F
.

(66)
After a few algebraic manipulations, we obtain an equivalent formulation

minimize
w≥0

f(w) = f1(w) + f2(w), (67)

where f1(w) = β
2 ‖Lw‖2F − c>1 w + α

∑
i
φ(wi) and f2(w) = γ

2 ‖Aw‖2F − c>2 w in which

c1 = βL∗(UDiag(λ)U> − β−1S) and c2 = γA∗(VDiag(ψ)V >). Now, we use the MM
framework to obtain a closed form update for problem (66).

Lemma 14. The function f(w) in (67) is majorized at w(t) by the function

g
(
w|w(t)

)
=f1

(
w(t)

)
+
(
w −w(t)

)>
∇f1

(
w(t)

)
+
L1

2

∥∥∥w −w(t)
∥∥∥2

+f2

(
w(t)

)
+
(
w −w(t)

)>
∇f2

(
w(t)

)
+
L2

2

∥∥∥w −w(t)
∥∥∥2
, (68)

where w(t) is the update from previous iteration, L1 = β ‖L‖22 = 2pβ and L2 = γ ‖A‖22 = 2γ.
The condition for the majorization function can be easily checked (Sun et al., 2016; Song
et al., 2015).

Lemma 15. By the KKT optimality conditions the optimal solution for w(t+1) takes the
following form

w(t+1) =

(
w(t) − 1

L1 + L2

(
∇f1

(
w(t)

)
+∇f2

(
w(t)

)))+

, (69)

where (x)+ , max(x, 0), ∇f1

(
w(t)

)
= βL∗

(
Lw(t)

)
− c1 + b1, ∇f2

(
w(t)

)
= γA∗

(
Aw(t)

)
−

c2, and L1 + L2 = 2(pβ + γ). b1 = α[1/(ε+ w
(t)
1 ), . . . , 1/(ε+ w

(t)
p(p−1)/2)]>.

The update for U and V take the same forms as discussed in (41) and (61). The update
for λ can be solved by Algorithm 1, since the Laplacian spectral set Sλ for any graph
structure can always be represented in the form (9). Next, the sub-problem for ψ takes
a similar form as presented in (63) with a specific Sψ depending on the graph structure.
For the structures belonging to bipartite graph families, e.g., connected bipartite, multi-
component bipartite, and regular bipartite graph, the sub-problem for ψ can be solved
efficiently by the algorithm in 4.2.3. When we consider a more general convex set Sψ, the
problem (63) is still a convex optimization problem and thus can be solved via disciplined
convex programming frameworks like CVX. Note that the sub-problems involving (U,λ) and
(V,ψ) are decoupled. As a consequence, the update steps for U,λ and V,ψ can be done in
parallel.
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5.0.1. SGLA Algorithm Summary

Algorithm 4 summarizes the implementation of the structured graph learning (SGLA) via
joint Laplacian and adjacency spectral constraints. In Algorithm 4, the computationally
most demanding step is the eigenvalue decomposition resulting in a worst-case complexity
of O

(
p3
)
. The SGLA algorithm requires two eigenvalue decomposition, while the previous

two algorithms the SGL and the SGA require only one eigendecomposition per iteration.
Interestingly, for the SGLA algorithm the sub-problems involving eigendecompositions are
decoupled, and they can be carried out parallelly to distribute the computational load.

Algorithm 4: SGLA

Input: SCM S, w(0), Sλ, Sψ, β, γ, α, ε > 0;
1 t← 0;
2 while stopping criteria not met do

3 update w(t+1) as in (69);

4 update U (t+1) as in (41);

5 update V (t+1) as in (61);

6 update λ(t+1) by solving (44) with Algorithm 1;

7 update ψ(t+1) by solving (64) with Algorithm 1;
8 t← t+ 1;

9 end

Output: Lw(t+1).

In the SGLA algorithm, imposing spectral constraints on the two graph matrices jointly
is key for enforcing complicated structures. For instance, consider the case of learning
a k-component bipartite graph structure, also known as bipartite graph clustering. For
this structure, there exist k disjoint groups where each group is a bipartite graph. Such
structural requirement makes this an extremely challenging problem. Hence, to the best of
our knowledge, the SGLA algorithm is the first single-stage method capable of learning this
structure directly from the sample statistics. SGLA satisfies these structural requirements
by plug-in the Laplacian spectral properties for the k-component structure along with the
adjacency spectral constraints for the bipartite structure (i.e., Sλ and Sψ as in (17)) in
Algorithm 4 [cf. step 8, 9].

The subsequence convergence result for SGLA algorithm is now established.

Theorem 7. The sequence
(
w(t), U (t),λ(t), V (t),ψ(t)

)
generated by Algorithm 4 converges

to the set of KKT points of Problem (65).

Proof. The detailed proof is deferred to the Appendix 8.5.

6. Experiments

In this section, we present a number of comprehensive experiments for the evaluation of the
performance of the proposed algorithms, i.e., SGL, SGA, and SGLA. The advantage of in-
corporating spectral information in the proposed framework is clearly illustrated. First, we
introduce the experimental settings in Subsection 6.1 and the benchmarks for comparison in
6.2. Then the experiments are organized in the following three parts: Subsection 6.3 evalu-
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ates SGL for learning the following graph structures: grid, modular, and multi-component
graphs; Subsection 6.4 shows bipartite graph learning with SGA, and Subsection 6.4 shows
multi-component bipartite graph learning via SGLA.

6.1. Experimental Settings

For the experiments involving synthetic data, we create several synthetic data sets based
on different graph structures G. First, we generate an IGMRF model parameterized by
the true precision matrix ΘG , which satisfies the Laplacian constraints in (2) as well as
the specific graph structure. Then, a total of n samples {xi ∈ Rp}ni=1 are drawn from the

IGMRF model as xi ∼ N
(
0,Θ†G

)
. The sample covariance matrix (SCM) S is computed as

S =
1

n

n∑
i=1

(xi − x̄i)(xi − x̄i)
>, with x̄i =

1

n

n∑
i=1

xi. (70)

The algorithms use S and prior information regarding the target graph families, i.e.,
whether the graph is k-component, bipartite, or k-component bipartite. We set c1 = 10−5

and c2 = 104. We observed that the experimental performances of the algorithms are not
sensitive to different values of c1 and c2 as long as they are reasonably small and large,
respectively.

The choice for the hyperparameters β, γ, and α are discussed for each case separately.
For each scenario, 20 Monte Carlo simulations are performed. We use the relative error
(RE) and F-score (FS) to objectively evaluate the performance of the algorithms. Those
performance measures are defined as

Relative Error =

∥∥∥Θ̂−Θtrue

∥∥∥
F

‖Θtrue‖F
, F-Score =

2tp

2tp + fp + fn
, (71)

where Θ̂ = Lŵ is the final estimation result of the algorithm and Θtrue is the true reference
graph Laplacian matrix. True positive (tp) stands for the case when there is an actual
edge and the algorithm detects it; false positive (fp) stands for the case when there is no
actual edge but algorithm detects one; and false negative (fn) stands for the case when the
algorithm failed to detect an actual edge. The F-score takes values in [0, 1] where 1 indicates
perfect structure recovery (Egilmez et al., 2017). To check the performance evolution for
each iteration t we evaluate the RE and FS with Θ̂(t). Algorithms are terminated when the
relative change in w(t) is relatively small.

6.2. Benchmarks

The CGL algorithm proposed in Egilmez et al. (2017) is the state-of-the-art method for
estimating a connected combinatorial graph Laplacian matrix from the sample covariance
matrix. For synthetic data experiments with connected graph structure (e.g., modular,
grid, and connected bipartite), we compare the performance of the SGL algorithm to CGL.
Additionally, for more insight, we also compare it to some heuristic based approaches, which
are: i) the pseudo-inverse of the sample covariance matrix S†, which is denoted as Naive
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and ii) the solution of following quadratic program

w? = argmin
w≥0

∥∥∥S† − Lw
∥∥∥2

F
, (72)

which is denoted as QP.

To the best of our knowledge, there is no existing method capable of learning a graph
Laplacian matrix with multiple components (e.g., k-component and k-component bipartite).
Thereby, for the sake of completeness, we compare against Naive and QP, which are expected
to give meaningful results for large sample size scenarios.

For experiments with real data, we compare the performance with GLasso (Friedman
et al., 2008), GGL2, constrained Laplacian rank algorithm CLR (Nie et al., 2016), spectral
clustering (Ng et al., 2002), and k-means clustering. Unlike CGL, the GGL algorithm aims to
estimate a generalized graph Laplacian matrix. As observed in Egilmez et al. (2017), GGL
outperforms CGL in most scenarios, therefore, we omit a comparison with CGL for real data
cases. Note that GGL and GLasso are incapable of estimating a standard Laplacian matrix
in (2), hence it is not possible to compare those methods in synthetic experiments. For
CGL, GGL, and GLasso, the sparsity hyperparameter α is chosen according to the guidelines
outlined in (Egilmez et al., 2017; Zhao et al., 2012).

6.3. Performance Evaluation for the SGL Algorithm

In this Subsection, we evaluate the performance of the SGL algorithm (Algorithm 2) on grid
graph, modular graph, multi-component graph, popular synthetic structures for clustering,
and real data.

6.3.1. Grid graph

We consider a grid graph structure denoted as Ggrid(p), where p = 64 are the number of
nodes, each node is connected to their four nearest neighbors (except the nodes at the
boundaries), and edge weights are selected in a random fashion uniformly distributed from
[0.1, 3].

Figure 3 depicts the graph structures learned by SGL and CGL for n/p = 100. Edges
whose values are smaller than 0.05 were discarded for the CGL algorithm and the SGL
algorithm with the `1-norm regularization, whereas no post-processing was performed for
the SGL algorithm with the reweighted `1-norm regularization. We use α = 0.0015 for both
SGL and CGL. In addition, we fix β = 20 for SGL.

Figure 4 compares the performance of the algorithms for different sample size regimes on
the grid graph model. We fix the number of nodes p = 64 and vary the sample size n such
that the algorithms are evaluated for different ratios of sample size per number of nodes. In
the case of SGL, we fix β = 10 for n/p ≤ 100, otherwise we fix β = 100. Additionally, we set
α = 0. For QP and Naive we do not need to set any parameters. It is observed in Figure 4,
the SGL algorithm significantly outperforms the baseline approaches: for all the sample
ratios SGL can achieve a lower average RE and higher average FS. In particular, to achieve
a RE lower than 0.1, SGL requires a sample size ratio of approximately n/p = 5, whereas,

2. The code for the methods CGL, GGL is available at https://github.com/STAC-USC/Graph_Learning.
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(a) True grid graph (b) CGL (c) SGL (proposed)

Figure 3: Sample results of learning Ggrid(64) (a) True grid graph, (b) CGL (RE = 0.0442,FS =
0.7915) and (c) SGL with reweighted `1-norm (RE = 0.0378,FS = 1).

Naive, QP, and CGL require sample size ratios of approximately n/p = 80, n/p = 30, and
n/p = 30, respectively.
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Figure 4: Average performance results for learning Laplacian matrix of a Ggrid graph. The SGL
algorithm outperforms Naive, QP, and CGL for all the sample ratios.

6.3.2. Modular graph

We consider a random modular graph, also known as stochastic block model, Gmo(p, k, ℘1, ℘2)
with p = 64 nodes and k = 4 modules, where ℘1 = 0.01 and ℘2 = 0.3 are the probabili-
ties of having an edge across modules and within modules, respectively. Edge weights are
selected randomly uniformly from [0.1, 3]. Figure 5 illustrates the graph learning perfor-
mances under different sample size ratios. From Figure 4, SGL and CGL outperforms the
Naive and QP. Furthermore, for small sample size ratios (i.e., n/p = 0.5), SGL achieves a
better performance than that of CGL, while they perform similarly for a larger sample size
ratios.
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Figure 5: Average performance results for learning Laplacian matrix of a modular graph Gmo with
four modules. We set β = 100, α = 0 for SGL. It can be observed that SGL outperforms the baseline
approaches across almost the whole range of sample size ratios.
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Figure 6: Average performance results as a function of the number of samples for learning the
Laplacian matrix of a 4-component graph. SGL significantly outperforms the baseline approaches
denoted as Naive and QP.

6.3.3. Multi-component graph

We consider learning a k-component graph also known as block-structured graph denoted
as Gmc(p, k, ℘), with p = 64, k = 4 and ℘ = 0.5, where p is the number of nodes, k is the
number of components, and ℘ is the probability of having an edge between any two nodes
inside a component while the probability of having an edge between any two nodes from
different components is zero. Edge weights are selected randomly uniformly from [0.1, 3].
Figure 6 illustrates the graph learning performances in terms of average RE and FS.

6.3.4. Multi-component graph: noisy setting

Here we consider the case of learning a multi-component graph under noise. At first, we
generate a 4-component graph Gmc(20, 4, 1) with equal number of nodes across different
components. The nodes in each component are fully connected and the edges are drawn
randomly uniformly from [0, 1]. Then, we add random noise to all the in-component and
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out component edges. The noise is represented as an Erdos-Renyi graph GER(p, ℘), where
p = 20 is the number of nodes, ℘ = 0.35 is the probability of having an edge between any
two pair of nodes, and edge weights are randomly uniformly drawn from [0, κ]. Specifically,

we consider a scenario where each sample xi ∼ N
(
0,Θ†noisy

)
used for computing the SCM

is drawn from the noisy precision matrix

Θnoisy = Θtrue + ΘER, (73)

where Θtrue is the true Laplacian matrix and ΘER represents the noise that follows an
ER graph structure. Figure 7 illustrates an instance of the SGL performance for a noisy
multi-component graph with fixed n/p = 30, β = 400, α = 0.1, and κ = 0.45.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Θtrue

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Θnoisy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Θlearned

(d) Gtrue (e) Gnoisy (f) Glearned

Figure 7: An example of estimating a 4-component graph. Heat maps of the graph matrices: (a)
the ground truth graph Laplacian matrix Θtrue, (b) Θnoisy after being corrupted by noise, (c) Θlearned

the learned graph Laplacian with a performance of (RE,FS) = (0.210, 1), which means a perfect
structure recovery even in a noisy setting that heavily suppresses the ground truth weights. The
panels (d), (e), and (f) correspond to the graphs represented by the Laplacian matrices in (a), (b),
and (c), respectively.

6.3.5. Multi-component graph: model mismatch

SGL requires the knowledge of the number of components k for learning a multi-component
graph structure. That assumption is also a requirement for similar methods such as CLR.
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In case the number of components is not available a priori, one can infer k via methods
for model selection e.g. cross validation, Bayesian information criteria (BIC), or Akaike
information criteria (AIC). In addition, we also investigate the performance when inaccurate
information about the true number of clusters is given.

We consider an experiment involving model mismatch: the underlying Laplacian matrix
that generates the data has j components, but we actually use k, k 6= j, number of com-
ponents to estimate it. We generate a 7-component graph Gmc(49, 7, 1), where edge weights
are drawn from a Uniform distribution supported on [0, 1]. Additionally, we consider a
noisy model as in (73) i.e., Θnoisy = Θtrue + ΘER, where the noise is an Erdos-Renyi graph
GER(49, 0.25) whose edges are uniformly sampled from [0, 0.45].

Figure 8 shows an example where the underlying graph has seven components, but we use
SGL with k = 2. As we can observe, even though the number of components is mismatched
and the data is noisy, the SGL algorithm is still able to identify the true structure with a
reasonable performance in terms of F-score and average relative error.

Therefore, even in the lack of true information regarding the number of components in a
graph, the graph learned from the SGL algorithm can yield an approximate graph very close
to the true graph, which can be used as an input to other algorithms for post-processing to
infer a more accurate graph.

Figure 9 depicts the average performance of SGL as a function of k. The settings for the
experiment are the same as in Figure 8, except now we use different number of components
information for each instance. As expected, SGL has its best performance when k matches
with the true number of the components in the graph. This also suggests that SGL could be
seamlessly integrated with model selection techniques to dynamically determine the number
of clusters to use in a single algorithm (Figueiredo and Jain, 2002; Schaeffer, 2007; Fraley
and Raftery, 2007).

6.3.6. Popular multi-component structures

We now consider the classical problem of clustering using popular synthetic structures. We
generate 100 nodes per cluster distributed according to structures colloquially known as
two moon, two circles, three spirals, three circles, worms and helix 3d. Figure 10 depicts the
results of learning the clusters structures using the proposed algorithm SGL.

6.3.7. Real data: animals data set

Herein, the animals data set (Osherson et al., 1991; Lake and Tenenbaum, 2010) is considered
to learn weighted graphs. Every node denotes a unique animal and edge weights represent
similarities among them. The data set consists of binary values (categorical non-Gaussian
data) that represent the answers to questions such as ”is warm-blooded?”, ”has lungs?”,
etc. There are a total of 102 such questions, which make up the features for 33 distinct
animals. Figure 11 shows the results of estimating the graph of the animals data set using
the SGL algorithm with β = 1/2 and α = 0. For GGL and GLasso we set α = 0.05. The
input for all the algorithms is the sample covariance matrix plus an identity matrix scaled
by 1/3 Egilmez et al. (2017). The evaluation of the estimated graphs is based on visual
inspection. It is expected that similar animals such as (ant, cockroach), (bee, butterfly), and
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Figure 8: Heat maps of the graph matrices: (a) the ground truth graph Laplacian of a seven-
component graph Θtrue, (b) Θnoisy after being corrupted by noise, (c) Θlearned the learned graph
Laplacian with a performance of (RE,FS) = (0.18, 0.81). The panels (d), (e), and (f) correspond
to the graphs represented by the Laplacian matrices in (a), (b), and (c), respectively. In Figure
8 (c) and (f) we are essentially getting results corresponding to a two-component graph, which is
imperative from the usage of spectral constraints of k = 2. It is observed that the learned graph
(f) consists of the true graph structure in (d) and some extra edges with very small weights which
are due to the inaccurate spectral information. One can use some simple post-processing techniques
(e.g., thresholding of elements in the learned matrix Θ), to recover the true component structure.

(trout, salmon) would be clustered together. Based on this premise, it can be seen that the
SGL algorithm yields a clearer graph than the ones learned by GGL and GLasso.

Figure 12 compares the clustering performance of the SGL method with the state-of-
the-art clustering algorithms: (a) k-means clustering, (b) spectral clustering 3, (c) CLR with
k = 10, and (d) SGL with k = 10. It is remarked that all the algorithms except SGL
are designed specifically for clustering and are not capable of estimating similarities (edge
weights) among nodes. SGL, on the other hand, is capable of doing both clustering and the
estimation of the edge weights jointly.

3. Code for spectral and k-means is available at https://CRAN.R-project.org/package=kernlab (Karat-
zoglou et al., 2004).
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Figure 9: Average performance results as a function of the number of components k: best results
are obtained for the true number of components. The performance is monotonically increasing and
eventually reaches a peak in F-score when k = 7.
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Figure 10: SGL is able to perfectly cluster the data points according to the cluster membership for
all the structures.

34



A Unified Framework for Structured Graph Learning via Spectral Constraints

ElephantRhino

Horse

Cow
Camel

Giraffe

Chimp

Gorilla

Mouse

Squirrel

Tiger
Lion

CatDog

Wolf

Seal

Dolphin

Robin

Eagle

Chicken

Salmon

Trout

Bee

Iguana

Alligator

Butterfly

Ant

Finch

Penguin

Cockroach

Whale

Ostrich

Deer

(a) GLasso (Friedman et al., 2008)
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(b) GGL (Egilmez et al., 2017)
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(c) SGL with k = 1 (proposed)
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(d) SGL with k = 5 (proposed)

Figure 11: Learning the connectivity of the animals data set with (a) GLasso, (b) GGL, (c) SGL
with k = 1 and (d) SGL with k = 5. For all graphs, darker edges denote stronger connections
among animals. The methods (a) GGL, (b) GLasso, and (c) SGL k = 1 were expected to obtain
sparse-connected graphs. But, GGL, GLasso split the graph into multiple components due to the
sparsity regularization. While SGL using sparsity regularization along with spectral constraint k = 1
(connectedness) yields a sparse-connected graph. (d) SGL with k = 5 obtains a graph that depicts
a more detailed representation of the network of animals by clustering similar animals within the
same component. This highlights the fact that the control of the number of components may yield
an improved visualization. Furthermore, the animal data is categorical (non-Gaussian) which does
not follow the IGMRF assumption, hence the above result also establishes the capability of SGL
under mismatch of the data model.
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(a) k-means
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(b) Spectral (Ng et al., 2002)
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(c) CLR (Nie et al., 2016)
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(d) SGL with k = 10 (proposed)

Figure 12: All the methods obtain 10 components intending to group similar animals together.
Clustering with k-means and spectral methods yield components with uncommon (possibly wrong)
groups. For example, in (a) seal, cow, horse are grouped together, and in (b) cockroach, lion, iguana,
tiger, ant, alligator are grouped together which is also contradicts common sense. On the other hand,
it is observed that both CLR (c) and SGL (d) are able to obtain groups of animals adhering to our
general expectation. Although both the results vary slightly, the final results from both the methods
are meaningful. For example, CLR groups all the insects (bee, butterfly, cockroach, ant) together in
one group, while SGL splits them into two groups, one with ant, cockroach and another with bee,
butterfly. On the other hand, SGL groups the herbivore mammals (horse, elephant, giraffe, deer,
camel, rhino, cow) together in one group, while CLR splits these animals into two groups, one
containing rhino, elephant and another group containing the rest.

6.3.8. Real data: Cancer Genome data set

We now consider the RNA-Seq Cancer Genome Atlas Research Network (Weinstein et al.,
2013) data set available at UC-Irvine Machine Learning Database (Dheeru and Karra Taniski-
dou, 2017). This data set consists of genetic features which map 5 types of cancer namely:
breast carcinoma (BRCA), kidney renal clear-cell carcinoma (KIRC), lung adenocarcinoma
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(LUAD), colon adenocarcinoma (COAD), and prostate adenocarcinoma (PRAD). In Fig-
ure 13, those cancer types are labeled with colors black, blue, red, violet, and green, respec-
tively. The data set consists of 801 labeled samples with 20531 genetic features. The goal
with this data set is to cluster the nodes according to their tumor type on the basis of those
genetic features. We apply SGL with k = 5 and β = 5.

We also compare the SGL performance against the existing state-of-the-art methods
for graph learning algorithms namely GLasso with α = 1.71 and GGL with α = 1.71. We
also include in the performance comparison the graph-based clustering algorithm CLR with
k = 5 and m = 10, where m is the number of neighbors taken into the consideration when
creating an initial affinity matrix. Additionally, we conducted experiments with CLR for
different choices of m = 3, 5, 7. We observed similar performances4 for all those values of
m. In Figure 13, GLasso and GGL are not able to enforce the structural components and
learn a connected graph with many wrong edges. SGL outperforms CLR in this clustering
task, even though the later is a specialized clustering algorithm.

The improved performance of the SGL may be attributed to two main reasons: i) SGL
is able to estimate the graph structure and weight simultaneously, which is essentially
an optimal joint procedure, ii) SGL is able to capture the conditional dependencies (i.e.,
the precision matrix entries) among nodes, whereas CLR encodes the connectivity via the
direct pairwise distances. The conditional dependencies are expected to give improved
performance for clustering tasks (Hao et al., 2018). The performance with SGL shows an
almost perfect clustering, which indicates that SGL may be used to perform simultaneous
clustering and graph learning.

6.3.9. Effect of the parameter β

In the current subsection, we study the effect of the parameter β on the algorithmic per-
formance in terms of RE and FS. It is observed from Figure 14 that a large value of β
enables SGL to obtain a small RE and a large FS. For large values of β, the formulation puts
more weight on the penalization term so as to make it closer to the spectral constraints. In
addition, the increase of β tends to stabilize the values of RE and FS. Empirically, however,
we observed that a huge value of β slows down the convergence speed of the algorithm.
Similar observations also applies to the parameter γ for SGA and SGLA algorithms.

6.4. Performance Evaluation for the SGA Algorithm

A bipartite graph is denoted as Gbi(p1, p2, ℘), where p1 and p2 are the number of nodes in
each of the two disjoint groups, and ℘ is the probability of having an edge connecting nodes
of the disjoint groups.

Figure 15 depicts the average performance of the algorithms for different sample size
regimes for a bipartite graph structure Gbi(p1 = 40, p2 = 24, ℘ = 0.6) with edge weights
sampled uniformly from [1, 3]. We set γ = 105. Here we consider a connected bipartite
graph, thus the performance of SGA is also compared to that of CGL.

4. The authors in Nie et al. (2016) report that CLR quite robust to the choice of m.
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(a) GLasso (Friedman et al., 2008) (b) GGL (Egilmez et al., 2017)

(c) CLR (Nie et al., 2016) (d) SGL (proposed)

Figure 13: Learning the clustered graph for the full 801 genetic samples with 20531 features of the
PANCAN data set. Graph learned with (a) GLasso, (b) GGL method: grey colored edges indicate
wrong connections, (c) CLR method: there are two misclassified points in the black group and 10
misclassified points in the red group, and (d) Graph learned with proposed SGL method. The label
information obviously is not taken into consideration. The result for SGL is consistent with the
label information: samples belonging to each set are connected together and the components are
fairly separated with only one wrong connection. Furthermore, the graph for the BRCA (black)
data sample highlights an inner sub-group, which could be possibly attributed to a sub type of
cancer. This result shows that SGL is able to perform both clustering and edge weights learning
simultaneously.
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Figure 14: Effect of the parameter β on the SGL algorithm. We consider estimating a multi-
component graph structure Gmc(32, 4, 0.5) where edge weights were drawn randomly uniformly from
[0, 1]. It is observed that a large value of β enables the SGL to obtain a small RE and a large FS.
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Figure 15: Average performance results for learning Laplacian matrix of a bipartite graph structure
Gbi. The proposed SGA method significantly outperforms the base line approaches, Naive, QP and
CGL.

6.4.1. Bipartite graph learning: noisy setting

We consider here learning a bipartite graph structure under noise as in equation (73),
i.e., the samples used in the computation of the SCM are obtained from a noisy precision
matrix, for which, the ground truth precision matrix corresponds to a bipartite graph. At
first, we generate Gbi(40, 24, 0.70) and the edge weights are drawn from [0.1, 1]. Then we
add random noise to all the possible connections via an ER graph model as GER(64, 0.35)
with edges sampled from [0, 1]. Figure 16 illustrates an instance of the performance of SGA
for learning a bipartite graph structure from noisy sample data.

6.5. Performance Evaluation for the SGLA Algorithm

Herein, we consider learning a multi-component bipartite graph structure. This struc-
ture is used in a number of applications including medicine and biology (Nie et al., 2017;
Pavlopoulos et al., 2018), which makes it appealing from both practical as well as theo-
retical perspectives. In order to learn a multi-component bipartite graph structure from
the SCM, we plug-in the Laplacian spectral constraints (Sλ as in (9)) corresponding to
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Figure 16: An instance of bipartite graph learning with the SGA algorithm with data generated
from a noisy graph Laplacian. We set n/p = 500 and γ = 105. (a) the ground truth Laplacian
matrix (Θtrue), (b) Θnoisy after being corrupted by noise, (c) the learned graph Laplacian with a
performance of (RE = 0.219,FS = 0.872).

the multi-component structure along with the adjacency spectral constraints corresponding
to the bipartite structure (i.e., Sψ as in (14)) in Algorithm 4 [cf. step 8, 9]. Figure 17
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Figure 17: Average performance results for learning Laplacian matrices of a Gbi. The proposed SGLA
method significantly outperforms the base line approaches QP and Naive.

depicts the average performance of the algorithms for different sample size regimes for a
block-bipartite graph structure. The block structure contains three components k = 3 with
unequal number of nodes, where each component represents a bipartite graph, which are
denoted by G1

bi(20, 8, 0.5), G2
bi(12, 8, 0.6)2, and G3

bi(8, 8, 0.7). The edge weights are sampled
uniformly from [0.1, 3]. We fix β = 103 and γ = 103. Since we consider a multi-component
bipartite graph, we can only compare with QP and Naive. In terms of RE, the QP perfor-
mance is comparable with that of SGLA, but in terms of FS, SGLA significantly outperforms
the baseline methods.

6.5.1. Multi-component bipartite graph: noisy setting

We consider here learning a block-bipartite graph structure under noise as in (73), i.e., the
samples used in the computation of the SCM are obtained from a noisy precision matrix,
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for which the ground truth precision matrix corresponds to a multi-component bipartite
graph. We first generate a graph with p = 32 nodes and k = 3 components with unequal
number of nodes, where each component represents a bipartite graph structure denoted
by G1

bi(10, 4, 0.7), G2
bi(6, 4, 0.8)2, and G3

bi(4, 4, 0.9). The edge weights are uniformly sampled
from [1, 3]. We then add random noise to all the possible edges between any two nodes via
an ER graph GER(32, .35) with edges sampled from [0, 1]. We set n/p = 250, γ = 105 and
β = 105. Figure 18 depicts one instance of the performance of SGLA for noisy bipartite
graph structure.
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Figure 18: An example of learning a 3-component bipartite graph structure with the SGLA algorithm.
The samples used in the computation of the SCM are obtained from noisy Laplacian precision
matrix. Heat maps of the graph matrices: (a) Θtrue the ground truth Laplacian matrix, (b) Θnoisy

after being corrupted by noise, (c) Θlearned the learned graph Laplacian with a performance of
(RE = 0.225,FS = 0.947), which means an almost perfect structure recovery even in a noisy model
that heavily suppresses the ground truth weights.

7. Discussion and Conclusion

In this paper, we have considered spectral constraints on the eigenvalues of graph matrices
in order to learn graphs with specific structures under the GGM setting. We have developed
a unified optimization framework that is very general and puts forth plausible directions
for future works.

7.1. Discussion

The extensions of this paper include considering more specific prior information on eigen-
values constraints, obtaining structured graph transform for graph signal processing appli-
cations, and extending the framework by considering other statistical models.

7.1.1. Other spectral prior information

In addition to the spectral properties considered in this paper, there are numerous inter-
esting results in the literature that relate the eigenvalue properties to some specific graph
structures, we refer readers to the comprehensive exposition in (Das and Bapat, 2005; Yu
and Lu, 2014; Farber and Kaminer, 2011; Berman and Farber, 2011; Chung, 1997; Spiel-
man and Teng, 2011; Chung, 1997; Mohar, 1997; Yang et al., 2003; Van Mieghem, 2010;
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Schulte, 1996; Lin et al., 2014). The proposed framework has the potential to be extended
to accommodate those prior spectral information.

7.1.2. Structured statistical models

Although the focus of the current paper is on the unification of spectral graph theory
with the GGM framework, the proposed spectral constraints and developed algorithms
are very general and can be integrated with other statistical models such as structured
Ising model (Ravikumar et al., 2010), structured Gaussian covariance graphical models
(Drton and Richardson, 2008), structured Gaussian graphical models with latent variables
(Chandrasekaran et al., 2010), least-square formulation for graph learning (Nie et al., 2016),
structured linear regression, and vector auto-regression models (Basu et al., 2015).

7.1.3. Structured graph signal processing

One of the motivations of the present work comes from the field of graph signal processing
(GSP). This field provides tools for the representation, processing and analysis of complex
networked-data (e.g., social, energy, finance, biology and, etc.), where the data are defined
on the nodes of a graph (Shuman et al., 2013; Ortega et al., 2018). The eigenvectors of
graph matrices are used to define a graph Fourier transform also known as dictionaries,
used in a variety of applications including, graph-based filtering, graph-based transforms,
and sampling for graph signals. More recently, it is realized that the graph eigenvectors
with additional properties (e.g., sparsity) could be instrumental in performing complex
tasks. For example, sparse eigenvectors of the graph matrices are important to investigate
the uncertainty principle over graphs (Teke and Vaidyanathan, 2017). Few other examples
include sparsifying eigenvectors (Sardellitti et al., 2019) and robust eigenvectors(Maretic
et al., 2017). Within the proposed formulation, one can easily enforce desired properties
on the eigenvectors by pairing the optimization step of (13), (16), and (8) with specific
constraints on the eigenvectors (e.g., via regularization). Joint learning of structured graphs
with specific properties on the eigenvectors have significant potential for GSP applications
that have not been investigated yet, and constitute a promising research direction.

7.2. Conclusion

In summary, we have shown how to convert the combinatorial constraints of structured
graph learning into algebraic constraints involving the eigenvalues of graph matrices. We
have developed three algorithms SGL, SGA, and SGLA that can learn structured graphs
from a large class of graph families. The algorithms are capable of learning the graph
structure and their weights simultaneously by utilizing the spectral constraints of graph
matrices directly into the Gaussian graphical modeling framework. The algorithms enjoy
comprehensive theoretical convergence properties along with low computational complexity.
Extensive numerical experiments with both synthetic and real data sets demonstrate the
effectiveness of the proposed methods. We also pinpoint several extensions of future research
directions.
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8. Appendix

8.1. Proof of Lemma 1

Proof. We define an index set Ωt:

Ωt :=

l |[Lx]tt =
∑
l∈Ωt

xl

 , t ∈ [1, p]. (74)

For any x ∈ R
p(p−1)

2 , we have

‖Lx‖2F = 2

p(p−1)
2∑

k=1

x2
k +

p∑
i=1

([Lx]ii)
2 (75)

= 4

p(p−1)
2∑

k=1

x2
k +

p∑
t=1

∑
i,j∈Ωt, i 6=j

xixj (76)

≤ 4

p(p−1)
2∑

k=1

x2
k +

1

2

p∑
t=1

∑
i,j∈Ωt, i 6=j

x2
i + x2

j (77)

= (4 + 2(|Ωt| − 1))

p(p−1)
2∑

k=1

x2
k (78)

= 2p ‖x‖2 , (79)

where the second equality is due to the fact that each xk only appears twice on the diagonal;
the first inequality achieves equality when each xk is equal; the last equality follows the fact
that |Ωt| = p− 1.

Therefore, by the definition of operator norm, we can obtain

‖L‖2 = sup
‖x‖=1

‖Lx‖F =
√

2p, (80)

concluding the proof.

8.2. Proof for Lemma 6

The Lagrangian of the optimization (44) is

L(λ,µ) = −
q∑
i=1

log λi +
β

2
‖λ− d‖22 + µ1(c1 − λ1) +

q∑
i=2

µi(λi−1 − λi) + µq+1(λq − c2).

(81)
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The KKT optimality conditions are derived as:

− 1

λi
+ β(λi − di)− µi + µi+1 = 0, i = 1, . . . , q; (82)

c1 − λ1 ≤ 0; (83)

λi−1 − λi ≤ 0, i = 2, . . . , q; (84)

λq − c2 ≤ 0; (85)

µi ≥ 0, i = 1, . . . , q + 1; (86)

µ1(c1 − λ1) = 0; (87)

µi(λi−1 − λi) = 0, i = 2, . . . , q; (88)

µq+1(λq − c2) = 0; (89)

Lemma 16. The solution of the KKT system (82)-(89) is λi = (di +
√
d2
i + 4/β)/2, for

i = 1, . . . , q, if c1 ≤ λ1 ≤ · · · ≤ cq ≤ c2 hold.

Proof. It is obvious that if the conditions c1 ≤ λ1 ≤ · · · ≤ λq ≤ c2 hold, then the solutions
of the primal and dual variables satisfy all equations.

We start from the corresponding unconstrained version of the problem (44) whose solu-
tion is

λ
(0)
i =

1

2

(
di +

√
d2
i + 4/β

)
. (90)

If this solution satisfies all the KKT conditions (82)-(89), then it is also the optimal. Oth-

erwise, each λ
(0)
i that violates the conditions c1 ≤ λ

(0)
1 ≤ · · · ≤ λ

(0)
q ≤ c2 needs to be

updated.

Situation 1: c1 ≥ λ
(0)
1 ≥ · · · ≥ λ

(0)
r , implying c1 − 1

c1β
≥ d1 ≥ · · · ≥ dr, where at least

one inequality is strict and r ≥ 1. Without loss of generality, let the j-th inequality is strict
with 1 ≤ j ≤ r, i.e. dj > dj+1. The KKT optimality conditions for this pair are:

− 1

λj
+ β(λj − dj)− µj + µj+1 = 0; (91)

− 1

λj+1
+ β(λj+1 − dj+1)− µj+1 + µj+2 = 0; (92)

λj − λj+1 ≤ 0; (93)

µi ≥ 0, i = j, j + 1, j + 2; (94)

µj+1(λj − λj+1) = 0; (95)

We subtract the first two equations and obtain:

2µj+1 = µj+2 + µj +

(
1

λj
− 1

λj+1

)
+ β(λj+1 − λj) + β(dj − dj+1) > 0, (96)

due to the fact that dj > dj+1 and λj ≤ λj+1. Since µj+1 > 0, we also have

2µj = µj+1 + µj−1 +

(
1

λj−1
− 1

λj

)
+ β(λj − λj−1) + β(dj−1 − dj) > 0, (97)
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where dj−1 ≥ dj and λj−1 ≤ λj . Similarly, we can obtain µj > 0 with 2 ≤ j ≤ r. In
addition,

µ1 = − 1

λ1
+ β(λ1 − d1) + µ2 (98)

− 1

c1
+ β(c1 − d1) + µ2 > 0. (99)

Totally, we have µj > 0 with 1 ≤ j ≤ r. By (87) and (88), we obtain λ1 = · · · = λr = c1.
Therefore, we update

λ
(1)
1 = · · · = λ(1)

r = c1. (100)

Situation 2: λ
(0)
s ≥ · · · ≥ λ

(0)
q ≥ c2, implying ds ≥ · · · ≥ dq ≥ c2 − 1

c2β
, where at least

one inequality is strict and s ≤ q.
Similar to situation 1, we can also obtain µj > 0 with s + 1 ≤ j ≤ m + 1 and thus

λs = · · · = λq = c2. Therefore, we update λ
(0)
s , . . . , λ

(0)
q by λ

(1)
s = · · · = λ

(1)
q = c2.

Situation 3: λ
(0)
i ≥ · · · ≥ λ

(0)
m , implying di ≥ · · · ≥ dm, where at least one inequality is

strict and 1 ≤ i ≤ m ≤ q. Here we assume λ
(0)
i−1 < λ

(0)
i (c1 < λ

(0)
1 if i = 1) and λ

(0)
m < λ

(0)
m+1

(λ
(0)
q < c2 if m = q). Otherwise, this will be reduced to situation 1 or 3.

Similar to situation 1, we can also obtain µj > 0 with i + 1 ≤ j ≤ m and thus λ
(1)
i =

λ
(1)
i+1 = · · · = λ

(1)
m .

We sum up equations (91) with i ≤ j ≤ m and obtain

− 1

λj
+ βλj −

1

m− i+ 1

β m∑
j=i

dj + µi − µm+1

 = 0, j = i, . . . ,m. (101)

Here we need to use iterative method to find the solution that satisfies KKT conditions.
It is easy to check that µi = µm+1 = 0 when λ

(0)
i−1 < λ

(0)
i and λ

(0)
m < λ

(0)
m+1. In that case,

according to (101), we have

λj =
1

2

(
d̄i→m +

√
d̄2
i→m + 4/β

)
, j = i, . . . ,m. (102)

where d̄i→m = 1
m−i+1

∑m
j=i dj . Therefore, we update λ

(0)
i , . . . , λ

(0)
m by

λ
(1)
i = · · · = λ(1)

m =
1

2

(
d̄i→m +

√
d̄2
i→m + 4/β

)
. (103)

If there exists the case that λ
(1)
i−1 > λ

(1)
i , we need to further update λ

(1)
i−1, λ

(1)
i , . . . , λ

(1)
m in the

next iteration. It will include two cases to discuss:
1. λ

(1)
i−1 has not been updated by (103), implying that

λ
(1)
i−1 = λ

(0)
i−1 =

1

2

(
d̄i−1 +

√
d2
i−1 + 4/β

)
.
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So λ
(1)
i−1 > λ

(1)
i means di−1 > d̄i→m. KKT conditions for this pair are:

− 1

λi−1
+ β(λi−1 − di−1)− µi−1 + µi = 0; (104)

− 1

λi
+ β(λi − d̄i→m)− µi + µm+1 = 0; (105)

λi−1 − λi ≤ 0; (106)

µp ≥ 0, p = i− 1, i,m+ 1; (107)

µi(λi−1 − λi) = 0; (108)

We subtract the first two equations and obtain

2µi = µi−1 + µm+1 + (
1

λi−1
− 1

λi
) + β(λi − λi−1) + β(di−1 − d̄i→m) > 0, (109)

and thus λi−1 = λi = · · · = λm. Then the equation (101) can be written as

− 1

λj
+ βλj −

1

m− i+ 2
(β

m∑
j=i−1

dj + µi−1 − µm+1) = 0, j = i− 1, . . . ,m. (110)

Hence, we update

λ
(2)
i−1 = · · · = λ(2)

m =
(
d̄(i−1)→m +

√
d̄2

(i−1)→m + 4/β
)
/2. (111)

2. λ
(1)
i−1 has been updated by (103), implying that

λ
(1)
t = · · · = λ

(1)
i−1 =

1

2

(
d̄t→(i−1) +

√
d2
t→(i−1) + 4/β

)
,

with t < i − 1. Then λ
(1)
i−1 > λ

(1)
i means d̄t→(i−1) > d̄i→m. Similarly, we can also obtain

λt = λt+1 = · · · = λm by deriving KKT conditions. We sum up equations (82) over
t ≤ j ≤ m and obtain

− 1

λj
+ βλj −

1

m− t+ 1

β m∑
j=t

dj + µt − µm+1

 = 0, j = t, . . . ,m. (112)

So we update

λ
(2)
t = · · · = λ(2)

m =
1

2

(
d̄t→m +

√
d̄2
t→m + 4/β

)
. (113)

For the case that λ
(1)
m > λ

(1)
m+1, the update strategy is similar to the case λ

(1)
i−1 > λ

(1)
i .

We iteratively check each situation and update the corresponding λi accordingly. We can
check that the algorithm will be terminated with the maximum number of iterations of q+1

and c1 ≤ λ
(q+1)
1 ≤ · · · ≤ λ

(q+1)
q ≤ c2 holds for all variables. Because each updating above

is derived by KKT optimality conditions for Problem (44), the iterative-update procedure
summarized in Algorithm 1 converges to the KKT point of Problem (44).
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8.3. Proof for Theorem 5

Proof. The proof of algorithm convergence is partly based on the proof of BSUM in Raza-
viyayn et al. (2013). We first show the linear independence constraint qualification on
unitary constraint set SU , {U ∈ Rp×q|U>U = Iq}.

Lemma 17. Linear independence constraint qualification (LICQ) holds on each U ∈ SU .

Proof. We rewrite SU as{
U ∈ Rp×q|gij(U) =

p∑
k=1

ukiukj − Iij , ∀1 ≤ i ≤ j ≤ q

}
, (114)

where uij and Iij are the elements of U and identity matrix I in i-th row and j-th column,
respectively. It is observed that

∇gij(U) =

{
[0p×(i−1); 2ui; 0p×(q−i)], if i = j;

[0p×(i−1);uj ; 0p×(j−i−1);ui; 0p×(q−j)], otherwise.
(115)

We can see ui from ∇gii(U) will only appear in i-th column, but ui from ∇gij(U) with i 6= j
will not appear in i-th column. Consequently, each ∇gij(U) cannot be expressed as a linear
combination of the others, thus each ∇gij(U) is linear independent.

Now we prove Theorem 5. It is easy to check that the level set {(w, U,λ)|f(w, U,λ) ≤
f(w(0), U (0),λ(0))} is compact, where f(w, U,λ) is the cost function in Problem (25). Fur-
thermore, the sub-problems (31) and (42) have unique solutions since they are strictly con-
vex problems and we get the global optima. According to Theorem 2 in Razaviyayn et al.
(2013), we obtain that the sequence (w(t), U (t),λ(t)) generated by Algorithm 2 converges to
the set of stationary points. Note that U is constrained on the orthogonal Stiefel manifold
that is nonconvex, while block MM framework does not cover nonconvex constraints. But
the subsequence convergence can still be established (Fu et al., 2017b) due to the fact that
the cost function value here is non-increasing and bounded below in each iteration.

Next we will further show that each limit of the sequence (w(t), U (t),λ(t)) satisfies KKT
conditions of Problem (29). Let (w∞, U∞,λ∞) be a limit point of the generated sequence.
The Lagrangian function of (29) is

L(w, U,λ,µ1,µ2,M) =− log gdet(Diag(λ)) + tr (SLw) + α
∑
i

φ(wi) +
β

2
‖Lw − UDiag(λ)U>‖2F

− µ>1 w + µ>2 h(λ) + tr
(
M>(U>U − Iq)

)
, (116)

where µ1, µ2 and M are KKT multipliers, and µ>2 h(λ) = µ2,1(α1− λ1) +
∑q

i=2 µ2,i(λi−1−
λi) + µ2,q+1(λq − α2) with µ2 = [µ2,1, . . . , µ2,q+1]>.

(1) we can see λ∞ is derived from KKT conditions of sub-problem (42). Obviously, λ∞

also satisfies KKT conditions of Problem (29).
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(2) We will show w∞ satisfies KKT conditions (29). The KKT conditions with w can be
derived as:

L∗Lw − L∗
(
UDiag(λ)U> − β−1S

)
− β−1µ1 + b = 0; (117)

µ>1 w = 0; (118)

w ≥ 0; (119)

µ1 ≥ 0; (120)

where b = α
β [1/(ε+ w

(t)
1 ), . . . , 1/(ε+ w

(t)
p(p−1)/2)]>. On the other hand, due to the fact that

w∞ is derived by KKT system of (38) see Lemma 4, we obtain

w∞ −
(

w∞ − 1

L1

(
L∗Lw∞ − L∗(U∞Diag(λ∞)U∞> − β−1S) + b∞

))
− µ = 0, (121)

where µ is the KKT multiplier satisfying µ ≥ 0 and µw∞ = 0, and b∞ = α
β [1/(ε +

w∞1 ), . . . , 1/(ε+ w∞p(p−1)/2)]>. Now we could get

L∗Lw∞ − L∗
(
U∞Diag(λ)(U∞)> − β−1S

)
+ b∞ − L1µ = 0, (122)

Therefore, by scaling µ such that L1µ = β−1µ1, we can conclude that w∞ also satisfies
KKT conditions (29).

(3) The KKT conditions with respect to U are as below:

LwUDiag(λ)− 1

2
U
(

Diag(λ)2 + β−1(M +M>)
)

= 0; (123)

U>U = Iq. (124)

Since U∞ admits the first order optimality condition on orthogonal Stiefel manifold, we
have

Lw∞U∞Diag(λ∞)− U∞
(

(U∞)>Lw∞U∞Diag(λ)− 1

2
[(U∞)>Lw∞U∞,Diag(λ∞)]

)
= 0,

(125)

where [A,B] = AB − BA. Note that (U∞)>Lw∞U∞ is a diagonal matrix according to
the update of U∞. So there must exist a M such that U∞ satisfies (123). Therefore,
(w∞, U∞,λ∞) satisfies KKT conditions of Problem (29).

8.4. Proof for Lemma 13

Proof. Note that both ψ and e are diagonal, and additionally we require the values for ψ
to be symmetric across zero, i.e., i.e., ψi = −ψb+1−i, i = 1, . . . , b/2. We can express the
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least square ‖ψ − e‖22 in (63) as

‖ψ − e‖22 =

b/2∑
i=1

(ψi − ei)2 + (−ψi − eb−i+1)2

= 2

b/2∑
i=1

(
ψ2
i − 2ψi

ei − eb−i+1

2
+
e2
i + e2

b−i+1

2

)

= 2

b/2∑
i=1

((
ψi −

ei − eb−i+1

2

)2

+

(
ei − eb−i+1

2

)2

+
e2
i + e2

b−i+1

2

)
. (126)

Thus, we can write

‖ψ − e‖22 = constant + ‖ψ̃ − ẽ‖22 (127)

where ψ̃ = [ψ1, ψ2, . . . , ψb/2] are the first half elements of ψ, and ẽ = [ẽ1, ẽ2, . . . , ẽb/2], with

{ẽi =
ei−eb−i+1

2 }b/2i=1.

8.5. Proof for Theorem 7

Proof. We cannot directly apply the established convergence results of BSUM in (Raza-
viyayn et al., 2013) to prove our algorithm because there are two variables U and V that
may not have unique solutions in iterations while the paper (Razaviyayn et al., 2013) only
allows one variable to enjoy multiple optimal solutions. However, we can still establish
the subsequence convergence as below by following the proof in (Razaviyayn et al., 2013)
together with the fact that λ and U are updated independently with ψ and V .

For the convenience of description, let x = (x1,x2,x3,x4,x5) = (w,λ, U,ψ, V ) with
each xi ∈ Xi. Since the iterates xk are in a compact set, there must be a limit point for the
sequence {xk}. Now we need to show every limit point of the iterates is a stationary point
of (65).

Let x̄ = (x̄1, x̄2, x̄3, x̄4, x̄5) is a limit point of {xk}, and {xkj} be the subsequence
converging to x̄. Without loss of generality, we can assume that

x
kj
1 = arg min

x1

g(x1|xkj−1), (128)

where g(x1|xkj−1) is the majorized function defined in (68).
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For the convenience of proof, we change the updating order along with (w,λ, U,ψ, V )
and have the following updating procedure:

x
kj
1 = arg min

x1

g(x1|xkj−1), (129)

xkj = [x
kj
1 ,x

kj−1
2 ,x

kj−1
3 ,x

kj−1
4 ,x

kj−1
5 ]>; (130)

x
kj+1
2 = arg min

x2

F2(x2|xkj ), (131)

xkj+1 = [x
kj
1 ,x

kj+1
2 ,x

kj
3 ,x

kj
4 ,x

kj
5 ]>; (132)

x
kj+2
3 = arg min

x3

F3(x3|xkj+1), (133)

xkj+2 = [x
kj+1
1 ,x

kj+1
2 ,x

kj+2
3 ,x

kj+1
4 ,x

kj+1
5 ]>; (134)

x
kj+3
4 = arg min

x4

F4(x4|xkj+2), (135)

xkj+3 = [x
kj+2
1 ,x

kj+2
2 ,x

kj+2
3 ,x

kj+3
4 ,x

kj+2
5 ]>; (136)

x
kj+4
5 = arg min

x5

F5(x5|xkj+3), (137)

xkj+4 = [x
kj+3
1 ,x

kj+3
2 ,x

kj+3
3 ,x

kj+3
4 ,x

kj+4
5 ]>; (138)

where Fi(xi|xkj+i−1) is the cost function F (x) in (65) with respect to xi and other variables

fixed, i.e., Fi(xi|xkj+i−1) = F (x
kj+i−1
1 , . . . ,x

kj+i−1
i−1 ,xi,x

kj+i−1
i+1 ,x

kj+i−1
5 ), i ∈ {2, 3, 4, 5}.

Note that here we increase the iteration number k when updating each variable, which is
different with the notation t in Algorithm 4 where we increase t only after updating all the
variables.

We further restrict the subsequence such that

lim
j→∞

xkj+i = zi, ∀i = −1, 0, 1, . . . , 4, (139)

where z0 = x̄.
Since the cost function F (x) in (65) is continuous and nonincreasing, we have

F (z−1) = F (z0) = · · · = F (z4). (140)

By the majorized function property (24b), we have

F (xkj ) ≤ g(x
kj
1 |x

kj−1) ≤ g(x
kj−1
1 |xkj−1) = F (xkj−1). (141)

By the continuity of g(·) according to (24a), we take the limit j →∞ and obtain

g(z0
1|z−1) = g(z−1

1 |z
−1), (142)

Since z0
1 is the minimizer of g(x1|z−1) and g(x1|z−1) has the unique minimizer, we have

z0
1 = z−1

1 . We can see only z1 is updated from z−1 to z0, so we further obtain z0 = z−1.
Regarding x2, we have

F (xkj+1) ≤ F2(x
kj+1
2 |xkj ) ≤ F2(x

kj
2 |x

kj ) = F (xkj ). (143)
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By the continuity of F2(·), we take the limit j →∞ and get

F2(z1
2|z0) = F2(z0

2|z0). (144)

Considering F2(x2|z0) has the unique minimizer, we have z1
2 = z0

2. Similarly, only z2 is
updated from z0 to z1 and thus z1 = z0. We can also obtain z3 = z2 by the uniqueness of
the minimizer of F4(·).

Since x2 and x3 are updated independently with x4 and x5, we have

F4(x
kj+3
4 |xkj+2) = F4(x

kj+3
4 |xkj )− (F (xkj+1)− F (xkj+2))− (F (xkj )− F (xkj+1)) (145)

≤ F4(x
kj
4 |x

kj )− (F (xkj+1)− F (xkj+2))− (F (xkj )− F (xkj+1)) (146)

= F (xkj )− (F (xkj+1)− F (xkj+2))− (F (xkj )− F (xkj+1)). (147)

and

F4(x
kj+3
4 |xkj+2) ≥ F (xkj+3). (148)

Then we take the limit j →∞ and obtain

F (z3) ≤ F4(z3
4|z2) = F4(z3

4|z0) ≤ F4(z0
4|z0) = F (z0). (149)

Together with F (z3) = F (z0), we have

F4(z3
4|z0) = F4(z0

4|z0). (150)

Since z3
4 is the minimizer of F4(x4|z2) as well as F4(x4|z0), and the minimizer of F4(x|z0)

is unique, we can get

z3
4 = z0

4. (151)

By the fact that z0
1 is the minimizer of g(x1|z−1) and x̄ = z0 = z−1, we have

g(x̄1|x̄) ≤ g(x1|x̄), ∀ x1 ∈ X1. (152)

which implies

g′(x1|x̄)|x1=x̄1 = 0. (153)

By the majorized function property (24d) and F (·) is differentiable, we can get

F ′(x1, x̄2, x̄3, x̄4, x̄5)|x1=x̄1 = 0. (154)

Similarly, we can also obtain

F2(x̄2|x̄) ≤ F2(x2|x̄), ∀ x2 ∈ X2. (155)

implying

F ′(x̄1,x2, x̄3, x̄4, x̄5)|x2=x̄2 = 0. (156)

51



Kumar, Ying, Cardoso and Palomar

By the fact that z3
4 is the minimizer of F4(x4|z0), and Eq. (151), we get

F4(x̄4|x̄) ≤ F4(x4|x̄), ∀ x4 ∈ X4. (157)

and thus

F ′(x̄1, x̄2,x3, x̄4, x̄5)|x3=x̄3 = 0. (158)

For x3, we have

F (xkj+2) ≤ F3(x
kj+2
3 |xkj+1) ≤ F3(x

kj+1
3 |xkj+1) = F (xkj+1). (159)

By the continuity of F3(·), we take the limit j →∞ and get

F3(z2
3|z1) = F3(z1

3|z1). (160)

Since z1
3 is the minimizer of F3(x3|z1). By z1 = z0 = x̄, we obtain

F3(x̄3|x̄) ≤ F3(x3|x̄), ∀ x3 ∈ X3. (161)

implying

F ′(x̄1, x̄2, x̄3,x4, x̄5)|x4=x̄4 = 0. (162)

Similarly, we can also have

F5(x̄5|x̄) ≤ F5(x5|x̄), ∀ x5 ∈ X5. (163)

and thus

F ′(x̄1, x̄2, x̄3, x̄4,x5)|x5=x̄5 = 0. (164)

Together with Eq. (154), (156), (158), (162), and (164), we can conclude that x̄ is a
stationary point of (65). Next, we only need to prove that each limit of the sequence xk

satisfies KKT conditions of (65). The proof is very similar to that for Theorem 5 and thus
we omit it here.
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